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Abstract
Automotive vehicles are sophisticated systems embedding with many subsystems
such as infotainment, power-train, exterior light, etc. CEVT has been developing
automated testing using auto-generated python scripts to execute various functions
on expensive equipment to investigate these systems’ behavior. It is time-consuming
to execute test scripts. In this thesis we investigate and develop an RNN based log-
file prediction method in order to improve the automated testing efficiency. Further-
more, a generative adversarial model for data augmentation has been investigated
to verify whether the prediction performance can be further improved. The results
show that the LSTM detection system can achieve around 86% accuracy on a small
data-set and it can save up to 60% of execution time to improve the test efficiency.

Keywords: infotainment system, deep learning, LSTM, generative adversarial net-
work, RNN, LeakGAN.
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1
Introduction

1.1 Background

Modern automotive vehicles are sophisticated systems embedding with many sub-
systems such as infotainment, power-train, exterior light, etc. These subsystems
are controlled by Electronic Control Unit (ECU) which is a embedded system to
provide better functionality incorporation of different module and improve the effi-
ciency. Since ECU has much functionality and therefore, it is needed to be tested
automatically to guarantee that both software and hardware works properly. A fault
in system can hardly risk people’s live, but it will still impact the user’s experience.
Together with CEVT AB, the division of EE(electronic engineering) is currently
exploring a new infotainment prototype for the next-generation system which is an
android-based under the hood. With an increasing of systems complexity, Manual
testing is time-consuming, tedious and requires substantial investment in human
resources[4].

A new approach that is being tried at CEVT is to use system models that describe
the possible behavior of the system under test in order to auto-generate python
scripts that execute these functions in real time, either in vehicle, or at an earlier
stage in production, Hardware In the Loop setups, which are super computers de-
signed to simulate all or part of the vehicle system. These test executions result in
log files with details about the test execution such as executed functions and infor-
mation about whether the test case passed or failed. Since the test scripts run in real
time on expensive equipment, test execution time is an essential factor that CEVT
wants to reduce. Since the generation of test scripts is rapid, but the execution is
rather slow, there is a need to try to increase the number of failed test cases per
unit of time, so that more bugs can be found earlier in production, reducing overall
cost. CEVT would therefore like to investigate the possibility of first predicting
which test cases will fail, based on prior experience, and then sorting out these for
execution and hopefully increasing the proportion of failed test cases to passed test
cases during real time test execution. The method to investigate and implement for
this thesis is a machine learning approach in order to try to classify test scripts as
pass/fail based on their input and thus enabling filtering out auto-generated test
scripts that have a very low probability of resulting in a failed execution

1



1. Introduction

1.2 Purpose
For the purpose of this project is to improve the efficiency for automated testing,
log files will be provided for analysis. These log files contains detailed information
about each executed automated test case, including input data and output data.
Up to at least 15000 of log-files has been produced and collected by CEVT and pro-
vide to this thesis project. The goal of this project is to investigate and develop a
suitable deep learning methods based on the log-file. The log-files provided contains
the input and output of the automated test execution as data concerning executed
steps, timestamps and pass/fail/error outcome of each action.

The research topic can be varied from simple to very complex. The most simple way
is to perform supervised learning through label pass and fail test cases separately
to examine whether the incoming test cases can be predicted correctly. This helps
to facilitate better awareness of this specific data as a proof of concept.

1.3 Objective
To achieve the purpose, the project is divided into following parts:

• To find suitable input vector for deep learning by selecting some relevant com-
ponents from high dimensional log-file. This is largely done through empirical
tests. Different approaches with diverse parameters will be tried and compared
with each other for the highest possible accuracy in prediction.

• To seek suitable deep learning methods to predict the outcome of a small
sample Body Domain system to achieve the highest prediction accuracy.

• To examine whether data augmentation for log-files is achievable by applying
Generative Adversarial Networks.

1.4 Scope
During the data collection, the output of log files error output has different formats
and outlines, thus it is challenging to write a specific program for general error
collection without containing any unwanted noise. It is a trade-off between large
data extraction with low quality and lesser data extraction with high accuracy. The
project is mainly focusing on supervised learning.

1.4.1 Limitation
When finishes the thesis project, the program/script has not been performed on the
whole infotainment system due to the unexpected software delay in the company
and lack of data set. Fortunately, another department in Pannverkstad use similar
python scrip for testing vehicle’s Body Domain system such as Exterior light part
and produce same format of log-file. Therefore, the main scope of this project has
been changed from infotainment system to the Body Domain system for the exterior
light part. But the thesis work has proved in the sample of body domain system that

2



1. Introduction

the whole concept is valid and effective, and this approach will not only be employed
in the exterior light system, but also in the other hardware/software systems like
infotainment later to improve the test efficiency.

3
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2
Theory and Method

This chapter describes some basic concepts in machine learning, the fundamental
theory and methods with related work of various models which have been studied
and applied in this project.

2.1 Machine Learning Methods

Machine learning(ML) [5] is a multidisciplinary sub-field within the area of computer
science which covers a series of subjects e.g., statistics, probability theory, etc. In
the last decade with the increase in available computational power, machine learning
algorithms have been developed vastly and widely applied in various applications
such as image processing, natural language, self-driving vehicle, etc. Machine learn-
ing algorithms allow the computer to learn from preexisting data-sets and make a
prediction based on early learning experience, which means ML has the ability to
handle the data without being explicitly programmed.

2.1.1 Deep Artificial Neural Networks

Human brain neurons [6] with synapses and terminals to receive and transmit infor-
mation from our sense, with many can build up a network which can handle different
complex information. Artificial Neural is a type of method designed for mimicking
the human brain with a similar concept. With innumerable artificial neural working
together, it is possible to build up an Artificial Neural Network to represent our
human brain’s interaction.

Figure 2.1: Figure illustrates the single neuron of human brain

5



2. Theory and Method

2.1.2 Classification Problem
Classification problem is a central topic in machine learning which refers to identi-
fying a set of dataset to categorize which class it belongs to. For instance, in IMDb
movie review, researchers can use machine learning algorithms to train neural net-
works with a set of dataset which consists of different review sentences that have
been labeled as negative or positive. The neural network can utilize training data
to learn the underlying characteristics of negative/positive comment so that it can
perform classification prediction when it encounters new datasets.

2.2 Neural Network

2.2.1 Feed forward Neural Network
The basic unit of a neural network is a single neuron Figure 2.2 illustrates the most
simple architecture of a feed-forward neural network that can be constructed.

Figure 2.2: Illustration depicting the principle of single neuron and corresponding
weight bias and the activation function.

Taking supervised learning as an example. Suppose a training sample : input vector
x ∈ IRn, weight vector w ∈ IRn, and threshold b ∈ IRn, then the output y is:

y = f(wTx+ b) = f(
n∑
i=1

wixi + b) (2.1)

Each input is multiplied with its weight respectively and summed together. The
activation function can be e.g. either Rectified Linear Units (ReLU) or a sigmoid
function. A linear model can only approximate linear relations between the input
and output. Thus it is crucial to apply a non-linear activation function f since it
allows the neural network to represent non-linear dependencies. With many such
single neurons, we can build up a simple feed-forward neural network.

6



2. Theory and Method

Figure 2.3: Illustration depicting the principle of a simple feed-forward neural
network.

The illustration above illustrates a simple neural network. The first layer is called
the input layer, the last layer is the output layer, the layer L2 noted is called a
hidden layer because no node in the middle layer usually cannot be observed.

2.2.2 Recurrent Neural Network
A Recurrent Neural Network (RNN) [7] is a type of neural network which allows
neurons to receive states from a previous time, with this characteristic. RNN has
the ability to memorize previous states like the human brain and hence, RNN is
suitable to handle sequential data. For instance, normal feed machine translation
or voice recognition. Figure 2.4 shows the structure of RNN, the recurrent neural

Figure 2.4: Recurrent Neural Network

network can be expressed by following formulas, where ht is a hidden state at time
step t, W is the weight matrix, f is the activation function, Ot is the output at time
step t, b and c is the bias for hidden layer and output layer accordingly:

at =b+Wht−1 + Uxt (2.2)
ht =f(at) (2.3)
ot =c+ V ht (2.4)

At every time step t the input is parameterized by a weight matrix U , ht is denoted
as a hidden layer, every step previous hidden layer is multiplied by a weight matrix

7



2. Theory and Method

Figure 2.5: Time-unfolded computational graph

W feed-forward to the next step hidden layer, the connection between hidden layer
and output is parameterized by matrix V [7].

In summary, with feedback loops, the recurrent neural network can keep not only
the previous time step information but also contains all historical information in
reserve implicitly in the hidden unit and transmit data in next time-step. This
feature allows RNN to perform sequence data which a Feed-forward network can
not.
As similar as feed-forward network, vanishing gradient descent which described in
section 2.3.1 is a major barrier for RNN to handle the long time sequence formation.
The conventional RNN updates the weight and bias via backpropagation (BPTT).

2.2.2.1 Long Short-Term Memory

Long short-term memory is a specific type of RNN that was proposed by Sepp
Hochreiter and Jürgen Schmidhuber in 1997 [8] aims to solve the vanishing gradient
descent problem.

Figure 2.6: Figures shows the
internal state algorithm.

Figure 2.7: Illustration de-
picting the internal structure of
LSTM neurons.

8



2. Theory and Method

Figures 2.6 and 2.7 illustrate the example of structure of LSTM, each cell has three
gates: input gates I, forget gates F and output gates O. By updating the weight
through Backpropagation Through Time, where Zf ,Zi,Z,Zo are the weight corre-
sponding with different gates and all depending on all previous hidden states and
current input, then times with different weights accordingly.

Z =tanh(W [xt, ht−1]) (2.5)
Zi =σ(W i[xt, ht−1] (2.6)
Zf =σ(W f [xt, ht−1] (2.7)
Zo =σ(W o[xt, ht−1] (2.8)

These weights learn automatically whether to forget or remember previous infor-
mation. Compared to RNN which only has one transfer state ht , LSTM has two
transfer states, cell state ct , hidden state ht, four inputs, and one output. The
current cell state equals to the forget gate’s weight times previous cell states and
sum with input gates weight time input weight. The forget gates which control the
cell states base on previous hidden layer state ht−1 and input state xt

ft = σ(Wf · [ht−1, xt]) (2.9)

With the combination of previous hidden state and input, multiplied with the input
gates weight, and passed through a sigmoid function, obtaining the input gate it with
a value between 0 and 1, which is the percentage decided how much information is
allowed to pass through from the input. In order to update the cell state Ct, the
previous cell state Ct−1 scale by forget gate ft and summing with C̃ times with input
gate it, which allows Lstm separately decide when to forget old information or when
to obtain new information. [2], where the C̃ is the candidate state value between
zero and one depends on the previously hidden layer and current input.

it = σ(Wi · [ht−1, xt]) (2.10)
C̃ = tanh(Wc · [ht−1, xt]) (2.11)
Ct = ft · Ct−1 + it · C̃t (2.12)

The value of output gates are derived by output of sigmoid functions which include
previous hidden state and current input state, are multiplied by output weight.
Lastly, the current hidden state is derived by the multiplication of the output gate
ot and a hyperbolic tangent function which is fed with current cell state Ct

ot = σ(Wo[ht−1, xt]) (2.13)
ht = ot ∗ tanh(Ct) (2.14)

9



2. Theory and Method

Figure 2.8: Illustration depicting the internal structure of a Lstm neuron [2]

2.2.3 Convolutional Neural Network
Convolution Neural Network(CNN), originally invented for computer vision, is one of
widely used architecture can attain top performance in image processing [9]. A new
manner was proposed by Kim [10] has shown that with little hyperparameter tuning,
CNN can also achieve great effectiveness in sequential data classification problem.
In order to get dense representation for sequence information. An example of such
method is Word Embedding which has been mentioned in Section 2.2.5.3. CNN
applies a specific receptive field called 1D convolution since it convolves only in one
direction. With such convolutional filter, it can extract n-gram feature (described in
section 2.2.5.3) from the sentence with various of filters kernel size which has been
shown in the Figure 2.9

Figure 2.9: N-gram feature extraction by using 1D-convolutional filter

A max-pooling operation is conducted after convolutional layer in order to further
condense the feature information. Max-pooling is a down-sampling strategy where
the only maximum value of each subset is retained to represents the subset feature
from previous layer. It reduces the computational cost and can prevent the over-
fitting problem.

10



2. Theory and Method

2.2.4 Generative Adversarial Network
Generative Adversarial Network(GAN) is a type of generative model first proposed
by (Goodfellow et al.,2014) [11], unlikely discriminative model used in statistical
classification in supervised machine learning. Typically, a generative model such
as GAN which is capable of learning data distribution Pdata(x) from latent space
by given sample and generating realistic synthetic data, i.e. vivid portrait. GAN
usually is composed of two sub-model, a generator (G) and a discriminator (D).
The basic idea of GAN is to maximize the likelihood of generator parameter θG by
given a true data distribution Pdata(x). Such maximum likelihood estimation can
be described as following formula:

θoptG = argmax
θ

z∏
k=1

PG(xz; θG) (2.15)

Where xz are samples from the true data distribution Pdata(x). Multipling with log
and turn a log of products into a sum of logs derives:

argmax
θ

log
z∏

k=1
PG(xz; θG) = argmax

θ

z∑
k=1

logPG(xz; θG) (2.16)

This can be rewritten as expectation value of likelihood from all sample X.

θoptG ≈ Ex∼pdata [logPG(x; θ)] (2.17)

However, it is hard to maximize the likelihood θoptG without given any feedback to
generator and hence, a discriminator is introduced in order to evaluate the differ-
ence between true data distribution Pdata(x) and synthetic data distribution PG(θG)
which produced from generator. These two models compete with each other through
adversarial training.
During the training process, in each iteration, the generator mimics the true data
distribution and update it’s parameter through back-propagation and tries to fool
the discriminator with more realistic input data, while the discriminator is trained
with both labeled true data and synthetic data which generated from generator and
is obviously a binary classification model. Such alternating training process endures
until the generator converges to true data distribution. The following equation
describes the loss function of GAN. In the training scheme, an interleaved training is
conducted, the discriminator tries to maximize the expectation value of loss function
in one step. Simultaneously, the generator attempts to minimize the expectation
value in another step.

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ex∼pz(z)[log(1−D(G(z)))] (2.18)

In each step, the discriminator parameter θd is updated through stochastic gradient
ascent

∇θd

1
m

m∑
i=1

[logD(xi) + log(1−D(G(zi)))] (2.19)

And the generator parameter θG is updated through gradient descent, but fix the
discriminator.

∇θg

1
m

m∑
i=1

log(1−D(G(zi))) (2.20)

11



2. Theory and Method

The original GAN has many issues during training, and it is well-known as prover-
bially hard to train, one main problem is model collapse this leads generator lose
diversity and generated limited type of output. Another main issue is vanishing gra-
dients due to the discriminator is ineffective and failed from distinguishing between
fake and real input.

2.2.5 Generative Adversarial Network for Sequential Data
Augmentation

2.2.5.1 SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient

The GAN which is proposed by (Goodfellow et al.,2014) [11] is designed for gener-
ating continuous data. It has two main problems impedes its application prospect
in NLP. For instance, in image processing, the generator can be updated by slightly
changing model parameters in the direction of gradient of the loss from discrimi-
nator in pixel scale in order to generate a more realistic image. Nevertheless, it is
inapplicable in NLP, since word tokenization makes sentence presentation in high
dimension space is not continuous and cannot find the corresponding sentence with
a slight change of parameter and hence, the loss from discriminator is not differen-
tiable [12]. Secondly, the reward from discriminator can be only obtained with an
entire sequence has been generated. This makes the ’guiding signal’ sparsely and
hardly to judge how good the partially generated sentence is [12].
In order to solve these two problems, a new framework SeqGan proposed by [12]
has proved with promising result. With combining of Reinforcement learning ,by
treating generator as a stochastic policy to make it feasible to update parameter
through policy gradient [12].
Given a generatorGθ with parameter θ to produce a sequence Y1:T = (y1, ...yt, ....yT ), yt ∈
Γ, where Γ is volcabulary of available tokens, t is time-step. The stochastic gener-
ating policy for the next token denoted as Gθ(yt|Y1:t−1). To update generator via
Policy Gradient. We need to maximize the expected end reward as follows [12].

J(θ) = E[Rt|s0, θ] =
∑
y1∈Γ

Gθ(y1|s0) ·QGθ
Dφ

(s0, y1) (2.21)

where R is a reward, RT is the reward in final time T , Q(s, a) is the action value
with state s and action a, The expectation of the reward at final time T is the
summation over all the Q values followed by policy Gθ [12]. In order to approximate
the action-value function Q(s, a), it is obtained by the discriminator as follows:

QGθ
Dφ

(a = yT , s = Y1:T−1) = Dφ(Y1:T ) (2.22)

The reward can only be returned when the sequence is fully generated, With such
sparse reward, it is hardly to obtain instantaneous feedback for the model and
difficult to inspect how good the currently produced token is. Therefore, in order to
attain an intermediate reward in each time step, a Monte Carlo (MC) search with
a roll-out policy Gβ is introduced as [12], where the superscripts N is the roll-out
number:

{Y 1
1:T , ..., Y

N
1:T} = MCGβ(Y1:t;N) (2.23)

12



2. Theory and Method

Equation (2.24) describes the action value function in two cases, when t = T in
final time, it can get an intermediate rewards from discriminator, when sequence is
partially produced for t < T , it adapts MC approach to produce complete sequence,
starting rolling out from time t to the end, summarizes all the roll-out reward and
average them as action-value:

QGθ
Dφ

(a = yt, s = Y1:T−1) =


1
N

∑N
n=1Dφ(Y n

1:T ), Y n
1:T ∈ MCGβ(Y1:t;N), for t < T

Dφ(Y1:t), for t = T

(2.24)

Figure 2.10: Figure illustrates the principle of Monte Carlo tree search.

The generator’s parameters θ can be updated when a new discriminator is retrained

∇θJ(θ) =
T∑
t=1

EY1:t−1∼Gθ [
∑
yt∈Γ
∇θGθ(yt|Y1:t−1) ·QGθ

Dφ
(Y1:t−1, yt)] (2.25)

θ ← θ + αh∇θJ(θ) (2.26)
Algorithm 1 illustrates the pseudocode of SeqGAN
Algorithm 1: SeqGAN algorithm
Initialize G(generator) and D(discriminator) with random weight ;
Pre-train G for N iterations using MLE with real data S ;
Using current G generate negative sample ;
Pre-train D with cross entropy ;
while SeqGAN not converges do

for generator do
for t in 1:T do

Calculate reward Q with Eq 2.24
Update generator parameter via policy gradient by Eq 2.25 and 2.41

for discriminator do
Train discriminator D for J iterations with Eq 2.18

13



2. Theory and Method

2.2.5.2 LeakGAN: Long Text Generation via Adversarial Training with
Leaked Information

LeakGan is new framework proposed by [3] aims to solve long sequence generation
issue, similar to SeqGan, it adopts Policy Gradient to update the generator parame-
ter. Although SeqGAN has a breakthrough for text generation by adapting a Policy
gradient method, the reward can only be observed after the a complete sequence is
generated. This makes the feedback lack of intermediate information of sequence
structure even with MC-approach. The LeakGan is introduced as an alternative
type of discriminator D, differs from SeqGAN, it consists of two components, a
feature extractor feature(s;φf ) with CNN and a binary classification layer [3].

Dφ(s) = σ(φTl Ffeature(s;φf )) = σ(φTl f) (2.27)

where σ is a sigmoid function σ(x) = 1
1+ez , the feature extractor learn and form

a high dimension feature representation f = Ffeature(s;φf ) where s is denoted as
sequence, such information leaks to the generator Gθ as a guiding signal to alleviate
the sparsity signal during the training process [3].
A hierarchical architecture has been introduced in generator part. Including two
generators: A Manager and a Worker. The Manager is an LSTM model which takes
responsibility for taking with leaked feature vector ft at each time step t and outputs
a goal vector gt [3]. It can be expressed as following equations:

ĝt, H
M
t = M(ft, hMt−1; θm) (2.28)
gt = ĝt/ ‖ĝt‖ (2.29)

where M(·; θm) is the Manager with parameter θm, in order to obtain current time
goal vector ĝt and hidden state hmh−1, the Manager needs to feed with current time
step feature vector ft and previous time hidden state hmt−1, to stabilize the model
behavior, goal vector needs to be normalized as Equation (2.29). The feature sub-
goal vector gt needs to go through a linear projection ψ(gt) model with weight
matrix Wψ to produce a guiding signal wt in order to govern the Worker’s generated
sequence[3]. It can be expressed as following Equation (2.30).

wt = ψ(
c∑
i=1

gti) = Wψ(
c∑
i=1

gt−i) (2.30)

the Worker is similar to the Manger denoted as W (.; θw) with parameter θw, fed
with current input xt and previous hidden state hwt−1, outputs Ot which contains all
current generated token and current hidden state hwt , the outputs Ot then further
multiply with matrix wt which is a guiding signal from Manager[3].

Ot, h
w
t =W(xt, hWt−1; θω) (2.31)

Gθ(·|st) =softmax(Ot · ωt/α) (2.32)

In the training process, the Worker is updated by applying a policy gradient algo-
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2. Theory and Method

rithm followed by SeqGan (Yu et al)[3] and loss is defined as:

Lprew =Est−1∼G[
∑
xt

W (xt|st1 ; θw)] (2.33)

Ladvw =Est−1∼G[
∑
xt

rItW (xt|st1 ; θw)] (2.34)

where rIt is the intrinsic reward can be described as:

rIt = 1
c

c∑
i=1

dcos(ft − ft−i − gt−i) (2.35)

Since these mathematical variables are pretty similar as other equations and hence,
it will be explained later in eq 2.36.

In the pre-train and adversarial training stage. the Manager’s parameters are up-
dated though policy gradient as well which can be expressed as following accordingly[3]:

∇pre
θm
gt = ∇θmdcos(ft+c − ft, gt(θm)) (2.36)

∇adv
θm gt = −Qf (st, gt)∇θmdcos(ft+c − ft, gt(θm)) (2.37)

where ft+c− ft calculates the feature representation ft difference after c time steps,
gt(θm) is the goal vector, the output from Manager which has been described in
Equation (2.29) and (2.28) Qf (st, gt) = E[rt] is the expected reward can be calculate
by applying Monte Carlo approach which has been mentioned in Section 2.10. dcos
calculates the cosine similarity of two sequences which can be represented as two
vector −→a and−→b respectively, equation can be described as [13]:

cosθ =
−→a ·
−→
b

‖−→a ‖
∥∥∥−→b ∥∥∥ (2.38)

In both pre-training and adversarial training stage, the loss of discriminator is a
cross entropy which can be expressed as:

LD = −(ylog(p) + (1− y)log(1− p)) (2.39)
Where p is the confidence score which is the probability value from discriminator.
y is the true label which included synthetic data is labeled as 0, and real data is
labeled as 1.

2.2.5.3 Other Issues

N-gram

N-gram is a probabilistic language model that it used to estimate the probabil-
ity of next occurring word in a sequence of words. If the input is a sentence which
sequence of each word, N-gram model can calculate the probability of the sentence,
in other words, the joint probability of these words in the sentence. Commonly, in
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2. Theory and Method

text classification problem usually use Bi-gram(N=2) and Tri-gram(N=3), for in-
stance:

Bi-gram: (Machine learning), (Deep learning), (computer science)
Tri-gram: (Deep machine learning),( Artificial neural network)

Suppose there is a sentence denoted as f comprises of n word f = (v1, v2, ...vn),
each word vi depends on the effect of the occurrence probability from the first word
v1 to its previous word v, then the totally probability of this sentence is:

p(f) = p(v2|v1)p(v3|v1v2)...p(vn|vn−1...v2v1) (2.40)

Embedding Layer Approach

Embedding approach widely used in NLP field, it can convert discrete variables
into a continuous vector representation. The most significant advantage of such a
method is it can represent complex contexts. Embedding method can capture spa-
tial information from high dimension and compress it into lower densely dimension.
Compare to other conventional methods such as n-gram which mentioned in Section
2.4 and one-hot encoding, if the number of variable N increase, the total dimension of
matrix representing would grow exponentially, this encounter dimensionality prob-
lem and leads to the curse of dimensionality, with embedding approach, the number
of parameters grows only linearly and hence, it can efficiently prevent such issue [14].

Reinforcement Learning and Policy Gradient

Reinforcement learning is a particular type of algorithms differs from supervised
learning refers to how good an agent interacts in an environment in order to max-
imize cumulative reward r [15]. The agent can have various state (s ∈ S) with
different action (a ∈ A), in order to optimize the action to get the maximum re-
ward, a policy π(s) defines to describe agent’s behavior as a strategy in a given state.
During the action-optimization training, the agent performs a number of actions to
explore the environment followed by different policy π(s), the agent should not only
consider the reward of the generated sequence but also consider the long-term ben-
efits. In order to make decision for the best current action, the agent accumulates
all the expected future reward includes the current time-step reward, the larger
accumulative reward means the better action it is, even the current state reward
is negative and hence, reinforcement learning has capable of sacrificing immediate
reward to learn long-term strategy.
Policy gradient approach is a widely used technique that aims to update optimal
policy π(s) with long-term feedback through gradient descent. It does not update
the model’s parameter through back-propagation directly. Instead of it uses reward
to update the possibility of the selected action. The probability of the correspond-
ing action will be increased with positive long-term reward, a negative reward will
decrease the likelihood of action which will be chosen in the next time. In mathe-
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matical terms, it can be described as Equation (2.41) [16]:

J(θ) =
∑
s∈S

dπ(s)V π(s) =
∑
s∈S

dπ(s)
∑
a∈A

π(a|s)Qπ(s, a) (2.41)

where, dπ(s) represents the probability in state s following by policy π, the expected
reward J(θ) equals to the averaging of all the value of state followed by a policy
π, the state value function V (s) can be rewritten as averaging all the action-value
followed with policy π.

2.3 Methods for Learning Hyper-Parameters

2.3.1 Vanishing Gradient Descent
The vanishing gradient problem limits the development of neural networks such as
RNN. To briefly explain the phenomenon, we introduce a single feed-forward neuron
network with multiple layers. The figure 2.11 illustrates the structure of a multiple
layer network.

Figure 2.11: Illustration depicting the principle of back-propagation

In layer i,each layer’s weights and biases denoted as L(i) w(i) and b(i) accordingly,
the output and ’ground true’ target are denoted as o(i) and t(i) respectively.
Using the feed-forward principle which was presented in Section 2.2.1, the output O
will be:

O = V (i) = f(w(i)(f(w(i−1)...f(w(2)f(w(1)x+ b(1)) + b(2))..b(i−1)) + b(i)) (2.42)

where f is the activation function,to simplify the notation the choice of activation
function is not specified. The impact of each layer is calculated using the chain rule
by:

∂V (i)

∂V (i−1) =f ′(c(i))w(i) (2.43)

∂V (i)

∂V (i−2) = ∂V (i)

∂V (i−1)
∂V (i−1)

∂V (i−2) = f ′(c(i))w(i)f ′(c(i−1))w(i−1) (2.44)
...

where c(i) = w(i)V (i−1) − b(i). This yields the error expression updating for each
layer:

E(i) = [t− V (i)(x)]f ′(c(i))
i+1∏
j=i

[w(i)f ′(c(j−1))] (2.45)
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Intuitively, if the terms w(i)f ′(c(j−1)) are either less or larger than one, then the error
values either vanishes or explodes rapidly when i decreases. Thus the error updating
for each layer will be very large or small. This leads directly to the instability of the
network and causes the vanishing gradient descent problem [17].

2.3.2 Dropout
Deep neural network’s non-linear properties make it adaptable to fit complex rela-
tionships between inputs and outputs. With this characteristic, model will learn the
spurious noise which only exists in training dataset but not in test data even though
both have the same distribution, and leads to an over-fitting problem [18].

Figure 2.12: Vanilla full con-
nected network.

Figure 2.13: Full connected
with fifty percent dropout.

Dropout is an efficient way to address this issue. The underlying idea is to randomly
remove some neurons from the network temporarily with a certain percentage, this
decrease the complexity of model, make the model more robust against noise.
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3
Towards Automated Infotainment

Systems: a LSTM-based
Approach.

The aim of this project is to improve the efficiency for automated testing via imple-
menting machine learning approach for automating an infotainment system. This
chapter describes the method which has been studied and developed in this project.
The data pre-processing is needed. The rationale for enhancing the classification
performance using GAN model is presented as well.

Figure 3.1: Block diagram illustrating the use of LSTM and LeakGAN model in
the detection system

3.1 LSTM for the Sequential Prediction
The system has been implemented from scratch with Keras using Tensorflow as
backend. Figure 3.1 shows the flowchart of LSTM detection system. The coming
subsection is presented and followed by this block diagram.

3.1.1 Input Data
Log files contain detailed information about each executed automated test case. Up
to at least 15000 log-files has been produced and collected by CEVT and has been
provided to this thesis project. The log-files provided contains the input and out-
put of the automated test execution as data concerning executed steps, timestamps,
pass/fail outcome and error key for the failed case of each action.
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The log-files consists of two parts, the first part is the TEST CASE STEPS parts.
This part contains which test function will be executed in a certain sequence broadly
without much detail information. In order to initialize the test case, a certain driving
mode needs to be chosen first. Figure 3.2 shows what it looks like:

Figure 3.2: Figure illustrates the log-file’s Test Case Steps part

The second part is the TEST CASE LOG. It detailed documents i.e. test step length
and timestamps for executed test function with specific condition and expected
acceptance signal. If an error occurs during the testing process, An error message
which includes keyword will be recorded in order to facilitate troubleshooting later.
Figure 3.3 illustrates what TEST CASE LOG part looks like:
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Figure 3.3: Figure illustrates the log-file’s Test Case Log part
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There are totally 39 different test functions used to generate the test cases. These
functions are the exterior light part of the vehicle, for instance: brake light, rear
fog light, right indicator, etc. These indicator components are connected together
to a server, the server then sends the test signal which following the test sequence
from generated test-case. Each component has corresponding sensor will send back
the signal to the server, the server will then verify whether the component works
regularly.

All the test cases have been generated and tested in the Hardware-In-the-Loop(HIL)
system and been labeled as Passed and Failed. HIL simulation methodology is an
useful and effective manner in automating testing. It provides great compatibility
for components replacing and reduction of time for the development costs. Compare
to conventional pure numerical simulation without any hardware. HIL simulation
system can produce significant better result and show the feasibility of practical
implementation[19].

3.1.2 Selection of Input Vector
In order to extract the sequential information of the log-file, a rudimentary technique
can be adapted is regular expression which has been studied and used to extract
test sequence. Regular expression is a special sequence of characters that define a
search pattern used to match string pattern and extract information from text such
as log-file,text etc.

A general python script has been written in order to batch handle and extract test
sequence from log-files and save as a CSV-file separately. In order to quantify the
data, each test function has been assigned a unique value randomly from 1 to 39.
Each case is converted to a string with various integer digits.

[39 1 ...... 22 14 8 3]
In order to feed input vector into a neural network, the first layer embedding required
a fixed length input size , this means Zero Padding technique is needed to be applied,
the Padding length is aligned with the test cases’ maximum length which is 300.

[0 0 ..... 39 1 ...... 22 14 8 3]︸ ︷︷ ︸
Length =300

3.2 Sequence Data Learning and Prediction by
LSTMs

In recent years, Python became one of the most popular languages for machine
learning with its readability and versatility, as a highly extensible programming
language. Python supports over a hundred thousand different libraries and has been
well optimized and documented. In machine learning field, several top deep learning
frameworks such as Pytorch, Tensorflow has been well supported. Therefore, in this
project , it has been selected as primary language.
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3.2.1 Architecture of LSTM
Figure 3.4 shows the structure of LSTM. It initializes with an input layer, and the
input layer has shape (None, 300) which means it can receive any amount of inputs
with variable-length sequence of 300-dimensional vectors since embedding layer need
a fixed size of input which has been mentioned in Section 3.1.2. It sends one token
each time step into the embedding layer, the embedding layer then maps of a discrete
token to a vector of high dimension representation. Afterthat, the data goes though
LSTM for learning required for subsequent .

Figure 3.4: Lstm model sturcture

3.2.2 Many to One
Figure 3.5 illustrates the many to one structure which has been used to perform the
prediction. As can see, each LSTM cell can have a amount of circles, these circles
represent the basic LSTM units which has been explained and illustrated in Section
2.8, In each LSTM cell, these units can be described as a feed-forward network and
depend on the hyper-parameter setting. In each time step, the input sends data once
at a time to the LSTM cell. In the final time step, the LSTM cell will send an output
to the classifier to perform prediction. The classifier then returns a probability value
between 0 and 1 which can be regarded as confident value, if the value is close to
1, it means the corresponding test cases has almost 100 percent confidence can be
seen as passed test cases and vice versa. If there are two layers, then the LSTM cell
sends hidden state not only to the next time step’s LSTM cell of the current layer,
but also sends it to the LSTM cell which is in next layer with current time step.

Figure 3.5: Lstm model detailed structure
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3.3 Sequential Data Augmentation
Many methods have been tried and tested e.g. downsampling upsampling, class
weight. In image processing, many tricks can be implemented to augment the data-
set, e.g. mirror the image, do some rotation of the image, scale image etc. In NLP
field. Synonym Replacement is most efficient one. for instance, if there is a sen-
tence ‘I love deep learning’ . ‘love’ can be replaced with ‘like’. The sentence still
retains same segmentation, but the data distribution has been changed. None of
the augmentation techniques which are mentioned above is suitable and applicable
for such specific automating testing since each test function representation is totally
irrelevant and independent.

One way might be feasible for data augmentation is to apply GAN to generate
synthetic data through learning the data distribution from all failed test cases, since
most information will be lost by downsampling the data-set and therefore, generate
equally amount of failed cases data as passed test cases might be useful and solve
this issue.
The code for data augmentation LeakGAN model was downloaded from ‘https:
//github.com/CR-Gjx/LeakGAN/tree/master/Image%20COCO’ and has been tested
with the experimented dataset to guarantee the program is executable and has same
performance as it has been mentioned in the research paper. In this project, the
code will be used as the main framework for further investigation.

Figure 3.6: Figure illustrates the structure of LeakGAN[3]
.
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3.3.1 Pseudo Algorithm for LeakGAN

One primary difference LeakGAN [3] introduced another generator Manager to alle-
viate the sparsity reward issue. Secondary, LeakGAN performs interleaved training
in per-train process to mitigate model collapse issue, since it is a typical issue for
GAN model.

The following table shows the algorithm of LeakGAN:
Algorithm 2: LeakGAN algorithm
Initialize W(Worker) M(Manager) D(Discriminator) with random weights;
Pre-train D using positive sample and negative sample with cross entropy;
Pre-train W and M using leaked information from D with Eq (2.33) and (2.36);
Conduct pre-training alternating until convergence ;
while Adversarial Training do

for generator do
Generate sequence S1:T = (s1, ..., sT )
for t in 1:T do

Store Leaked information ft from D;
Obtain gt from Manager with Eq (2.29) and (2.28);
Get expected reward Q(ft, gt) using Monte Carlo approach ;
Update W and M parameter with Eq (2.34) and (2.37) respectively

for discriminator do
Generate negative samples using current W and M and concatenate
positive samples;
Train D for N iterations with Eq (2.27)

First, initialize the weights for generator including Worker W and Manager M and
the Discriminator D from a Gaussian distribution N(µ = 0, σ = 1), with zero mean
and one standard deviation. In the pretraining process, use cross-entropy as loss
function to pretrain the Discriminator with positive samples, which is the real failed
test cases and the negative samples which are produced from generator. Then pre-
train the W and M using leaked information from D. These two pretraining steps
perform alternatively until the model converges.

In adversarial training, the Generator first generates a complete sequence S1:T from
starting time to final time step T as sample which uses to obtain the feedback from
Discriminator later. In each time step t, it sends a partial sequence S1:t = (s1, ..., st)
to the discriminator in order to attain leaked information ft. Furthermore, with
Leak information, we can attain the feature sub-goal gt from Manager via Eq (2.29)
and (2.28). After that, it applies Monte Carlo search method to obtain expected
Reward Q(ft, gt) as Error and adopt Reinforcement Learning method Policy Gradi-
ent to perform back-propagation to update generator’s parameter. Such adversarial
training process repeats until LeakGAN converges.
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3.4 Dataset
The data-set which provided by CEVT for test case prediction has severe imbalance
problem, Table 3.2 describes the total number of original data in each class:

# Dataset Class
“Passed”

Class
“Failed”

16894 15988 906
100% 94.64% 5.36%

Table 3.1: Table shows totally number of dataset which use to analyse in this
project and ratio between class “Failed” and “Passed”

In order to deal with it, several manners has been tried, we found by adapting Down-
sampling technique though downsample the majority data class which is the Passed
test cases will help the model converge faster. Another word, randomly sample from
passed test cases in order to balance the dataset as 50/50 which can achieve the best
performance.

3.4.1 Training Dataset
There are totally 1810 data sequences in the training dataset after applying down-
sampling, the dataset is randomly split with ratio 64%, 16% and 20% for training,
validation, and testing respectively which shows in the table:

Training Validation Testing Total
1158 290 362 1810
64% 16% 20% 100%

Table 3.2: Table shows the ratio of the dataset

3.4.2 Augmentated Data by LeakGAN
The dataset for training process is all the failed test cases. However, since the length
of input sequence diverse among each date and the LeakGAN can only output a fixed
length which is determined by hyper-parameter. If the length of output is set as
maximum length 300, then the time of training process which applies roll-out policy
described in Section 2.2.5.1 grows exponentially with long sequence and these type
of dataset only acounts for 0.5% of total dataset which has been shown in Figure
3.7 and therefore, enable to save the training time and also stabilize the training
process, with empirical test we found set input length equal to 150 is an appropriate
choice.
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Figure 3.7: Figure illustrate the frequency of sequence length

Therefore, a small fraction of data which the length of a sequence is large than 150
is discarded.
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4
Experimental Results

This chapter is mainly divided into two parts. The first section shows the per-
formance of LSTM with down-sampling technique. Several study cases have been
designed and experimented to achieve the best model prediction performance. The
second section describes the results of applying LeakGAN for data augmentation,
the experiment outcome is outlined and presented.

4.1 Evaluation Metric
This section describes three different metrics which use to assess the model perfor-
mance.

4.1.1 LSTM Model’s Accuracy Metric
The output from classifier is a confident value between 0 and 1, by setting a threshold
which is equivalent to 0.5, if the output is higher than 0.5, then the data is labeled
as passed cases and vice versa, the expression can be described as following, where
O is the output from classifier:

Label =
{
Pass if O > 0.5
Fail Otherwise (4.1)

4.1.2 Confusion Matrix
Confusion matrix (CM) is a common way used to visualizes the performance mea-
surement for individual classes. Each row represents the predicted class, and each
column represents the true class. For a binary classification then it will be a two
by two matrix with four different element: True Positive(TP), True Negative(TN),
False Positive(FP), False Negative(FN). Figure 4.1 shows the visualization of CM.

4.1.3 Receiver Operating Characteristic
Receiver operating characteristic approach (ROC) is another useful tool to evalu-
ate prediction quality for 2 classes. It shows the curve in continuous measurement
and describes the ratio between FP and TP across a range of various classification
thresholds. The Y-axis represents the true positive rate (TPR) and x-asix represents
the false positive rate (FPR), the ideal target is to set TPR = 1 and FPR = 0,
which is the (0,1) point in the figure, this means all the classification prediction
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Figure 4.1: Confusion matrix

is correct. Since the company wants to filter out passed test as many as possible
to save testing time meanwhile still retain high accuracy for TN prediction. Thus
it is informative to compare model performance and set the best optimal decision
threshold.

Area under curve (AUC) is the area under the ROC curve, another measurement
metric to evaluate the classifier performance. It is a probability value between 0 and
1. Typically, The larger of AUC values indicate the better of model’s performance
it is.

4.1.4 2-D Histogram
To verify whether the output from LeakGAN converges to real data distribution,
both research paper [12, 3] have introduced en Oracle model Goracle to produce the
real data distribution. The benefit of having such oracle is that firstly, the model
is initialized with weight from Gaussian distribution and it can produce data-set
which can be represented as ‘true’ data distribution. Secondly, it is easy to evaluate
the performance of the generative model Gθ. Since the Oracle model represents
the real data distribution, in each time via picking some samples generator Gθ and
calculate the loss by adopting negative log-likelihood(NLL)[12]. However, in reality,
there is never such model exists and hence, it is hard to verify whether the generated
sequence from generator Gθ converges to true data distribution.

One alternative way to indirectly observe data property is to check the transfer prob-
ability density via plotting a 2D-histogram. In mathematics, Suppose the probability
P from current time steps j to the next time step K is denoted as Pr(k|j) = Pj,K ,
then it can be described as a square matrix.

P =


P1,1 P1,2 . . . P1,k−1 P1,k
P2,1 P2,2 . . . P2,k−1 P1,k
... ... . . . ... ...
Pj,1 Pj,2 . . . Pj,k−1 Pj,k

 (4.2)

where summation of totally transition probability from time steps j to all the next
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time step must be equal to 1:
S∑
j=1

Pi,j = 1 (4.3)

4.2 Setup
Both LeakGAN and LSTM-model were trained on a desktop computer with Win-
dows 10 system and Anaconda platform. Table 4.2 shows the hardware and software
specification which have been used in this project.

Graphic card Palit GeForce GTX 1070 Ti Dual 8GB
Processor Intel Core i5 2500K 3,3GHz
Memory Corsair 16GB DDR3 CL10 1600MHz

Operating System Microsoft Windows 10 Home
CUDA 10.0.130
CuDNN 7.3.1

Tensorflow 1.13.1
Pytorch 1.0.1
Keras 2.2.4

Table 4.1: Table shows the computer specification which used for training

4.3 Test Performance on LSTMs

4.3.1 Hyper-Parameter Fine-Tuning
We extensively tune the hyper-parameter with different cases empirically. This sec-
tion describes the best results of hyper-parameter optimization

Embedding dimension. As mentioned in Section 2.2.5.3, Embedding approach rep-
resents each input variable as a distributed value in an n-dimensional space. Several
various input value has been tested, we found that value between 40 and 120 can
obtain the best results. With higher input dimension would make the model un-
stable and harder to perform gradient descent. the value of loss function would
fluctuate vastly. Any significant lower and higher value will obtain worse accuracy
performance. This matches the number of test function which means model prefer
sparse vector instead of low dense dimension vector.

Learning rate. With the various experiment, a relative bigger initiation learning
rate would help model fast converge to a sub-optimal point. Instead of using a fixed
learning rate, vary the learning rate over the training process helps model further
converge and significantly improve the accuracy. We found around 0.03 is an appro-
priate value from the start, with patience 4 and decrease factor 0.7.
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One mishap is worth to be mentioned is that when setting learning rate around
4 × 10−4, the model can obtain even higher performance on training accuracy, but
model completely failed to perform any prediction, this is due to a too small learning
rate may lead the model stuck with sub-optimal point and loss the generalization
capability.

Early stopping approach is employed as a call back function, through empirical test
the loss function is monitored with patient 7 can obtain the best results and prevent
over-fitting problem.

Dropout: Different value of parameter dropout has been tested. We found 0.2 is the
best value. With value below 0.15, the model would have severe over-fitting. With
higher value, the model will have lower accuracy performance.

4.3.2 Training Results
In order to achieve the highest prediction performance for prediction system, this
needs to be done mainly by empirical test, and hence, a series of tests are conducted
and table 4.2 shows the several representative cases with various layer units and
structure which have been designed and studied. In the column of LSTM indicates
the number of units for each layer. A checkpoint strategy has been used to record the
best model during the training process, the train and test accuracy in the following
table represents the highest accuracy among the training epochs. All these cases has
been conducted at least three times and pick the best results in order to eliminate
the assessment bias.

Case Study Layer LSTM units Train Accuracy Test Accuracy
1 1 64 0.832 0.817
2 1 128 0.833 0.787
3 1 256 0.866 0.855
4 2 64/32 0.868 0.850
5 2 128/64 0.540 0.516

Table 4.2: Table illustrates the results of different study case
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Figure 4.2: Training Accuracy Figure 4.3: Training Loss

Figure 4.4: Validation Accuracy Figure 4.5: Validation Loss

Case study four shows that with two LSTM layers which have 64 and 32 units
accordingly, the model can achieve the highest performance on training accuracy.
However case study three can achieve slightly lower on training accuracy but rel-
atively higher accuracy on the test data-set. Notes that in order to eliminate all
the uncertainty factor which has been discussed in the Section 4.3.3, a random seed
is applied to split the data deterministic randomly and hence, all the test data-set
is precisely the same. Since the training dataset is pretty small with only around
1800, thus it is intuitively that with a less complicated model, it can achieve better
performance to avoid the over-fitting problem. There are some other study cases
has been tried. For instance, a much more sophisticated model or a much less com-
plicated model, but the value of loss is either fluctuate vastly or hardly to conduct
gradient descent. One interesting phenomenon that needs to be mentioned is that
Case study five, the model seems totally failed to fit the data-set.

Figure 4.6 illustrates classification performance in confusion matrix. As can see, the
classifier seems can distinguish more actual classes “Pass” and “Fail” cases.
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Figure 4.6: The confusion matrix for case study 3

There are totally 362 samples used to evaluate the classification performance. Each
row represents the true label, there are 175 cases in what the actual label was
Failed, and 187 cases which the actual label was passed. Each column represents
the predicted label. The color in each cell shows as a gray scale represents the ratio
of each class from white zero percent to the black which is hundred percent

4.3.3 Discussions
In order to maximum minimize the interference of various factors for the training
process, a pseudo-random number generator is used to initialize model weight and
split data-set randomly. In stead of performing experiment repeatedly, a pseudo
random number generator makes ‘random’ sequence become deterministic. This
means whether split a train test data-set, it will get exactly same distribution, this
can further eliminate any uncertainty and avoid variation in training process, ensure
performance on each experiment is as close as possible.

4.3.4 Threshold Optimization
In order to optimizing the LSTM detection system’s performance since our priority
is to filter out all potential “ Pass” class to save testing time, while still retain high
classification accuracy on the actual “Fail” class and hence. ROC cruve which has
been mentioned in Section 4.1.3 is used for the analysis.
where Y-axis represents the true positive rate(TPR) equal to TP

P
, X-axis represents

the false positive rate(FPR) which is equivalent to FP
N
, the curve is constructed by

setting different thresholds and show the relation of various performance, the diag-
onal dot line represents the threshold of accuracy performance which is 50/50, in
other words, any point on or below this line means there is no different of detecting
something then just flip a coin randomly, which means it is useless.

Four study cases with different thresholds were designed and studied which show in
the Figure 4.7 for seeking the balance between FPR and TPR. If a low threshold has
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Figure 4.7: Figure illustrates the ROC curve for case study 3

been set, this means the fraction of False positive increases, the model may mispre-
dict some actual failed test cases as passed test cases. Therefore, in order to cover
most failed cases, the threshold should be set relatively higher than usual. This can
be expressed as following equation, where O is output from the neural network:

Class Label =
{
Pass if O > Threshold
Fail Otherwise (4.4)

Figures 4.8 to 4.11 illustrate the confusion matrices in four different cases. The
left figure represents the numerical value and the right figure represents the percent-
age.

Figure 4.8: Case1, the threshold has been set as 0.862
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Figure 4.9: Case2, the threshold has been set as 0.822

Figure 4.10: Case3, the threshold has been set as 0.67

Figure 4.11: Case4, the threshold has been set as 0.24

The investigation which shows above illustrates that with setting relative high
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threshold around 0.85, the model can predict correctly and cover around 90% accu-
racy of the actual failed test cases, and still enable to filter out approximately 40%
to 60% of passed test cases which means. This means the company can save around
half of the time for automated testing.

4.4 Results: GANs for Sequential Data Augmen-
tation

As described in Section 2.2.5.2, LeakGAN has shown promising results in generat-
ing long consistency outputs. To examine whether it is suitable and applicable to
further improve the classification performance for automating testing. This section
describes the outcome of using LeakGAN for generating synthetic log-file as data
augmentation. The experimental of model parameter, input data are presented.

4.4.1 Parameter Tuning
Table 4.3 describes the fine-tuned parameter of LeakGAN model. Compare to the
original official synthetic data demonstration has up to 10000 amount of data, our
data is much smaller (around 900) and much simplified in terms of quantity and
complexity accordingly. It is intuitively to reduce the complexity of the model.

In terms of N-gram filter which has been explained in Sections 2.2.5.3 and 2.2.3,
with several experiments, we found with either too large or too small filter size leads
the model collapses, the loss of discriminator is either fluctuate vastly or very large.

Generator embedding dimension 32
Generator hidden layer 32
Generator learning rate 0.005
Discriminator Embedding dimension 5
Discriminator hidden layer Dimension 32
Discriminator learning rate 0.003
Sequence Length 150
Batch Size 64
Goal dimension size 16
Discriminator filter size 4, 5, 6, 7, 8, 9, 10, 15, 20
The number of n-gram filter 200,100,150,150,150,150,150,150,150

Table 4.3: Table describes the fine-tuned hyper-parameter for the model

The learning of generator is equivalent to the standard setting which has been set
as 0.005 can obtain best performance. Regarding the learning rate of discriminator,
with imperial experiment, we discover with too small learning will cause model
collapse and losing diversity, the model performs best when it has been set as 0.003.
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4.4.2 Pre-Training
We followed the LeakGan algorithm, pre-train the generator and discriminator inter-
leavingly. With pre-trained module it helps to conduct gradient descent and update
generator more effiectively in adversarial training.

4.4.2.1 Generator

The LeakGAN model has two sub-generator including Worker W and Manager M
which has described in 2.2.5.2:

Figure 4.12: Pre-training Worker Loss

Fig 4.12 illustrates the Loss of worker that it converges around 2.5 after 200 epochs.

Figure 4.13: Pre-training Manager Loss

And the manager’s loss shows in Fig 4.13, since the plot Y-axis is in small-scale,
although it keeps decreasing, still it is pretty substantial.
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4.4.2.2 Discriminator

Figure 4.14: Pre-training Discriminator Loss in log-scale

Fig 4.14 shows that the discriminator loss converges to zero since it applies cross
entropy as loss function and therefore, it is naturally that it will converge to zeros
if Discriminator can accurately distinguish between synthetic data and real data.

4.4.3 Adversarial Training
Figures 4.15 to 4.17 show the plot obtained in the adversarial training stage.

4.4.3.1 Generator

Figure 4.15: Worker Loss

As can see, all the loss are pretty stable and do not have vastly fluctuation, the loss
of Manager and Worker does have slightly fluctuation around 100 to 150 epochs,
afterwards both loss goes back and maintained around -0.014 and 0.4 accordingly.
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Figure 4.16: Manager Loss in log-scale

If we ignore such small oscillation in the middle of training process. All the figures
look pretty stable and do not have enormously decreasing or increasing after 200
epochs.

4.4.3.2 Discrimiantor

Figure 4.17: Discriminator Loss

The loss of discriminator decreases consistently from 0.008 to 0 after around 50
epoch and does not have any fluctuation after 75 epochs.
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4.4.4 Outcome Verification
As discussed in Section 4.1.4 one way to verify whether the outcome from LeakGAN
converges to the real data distribution is to check the transfer probability of the
dataset. In our case, there are totally 39 test functions and hence, it can be described
as a 39 by 39 matrix, Fig 4.18 shows the probability density comparison between
the real data and synthetic data.

Figure 4.18: Figures above depict the transforming probability distribution. Each
line represents the current token, and each column represents the probability from
current token to next corresponding token. The color scale shows the probability
value from 0 % to 100%,

The result indicates that the data has been converged and close to the real data
distribution. Although the value of probability transition state for each state is not
exactly the same, still the pattern looks pretty similar to the real one. This indicates
that the LeakGAN model learns some feature successfully and converges to the real
data distribution.

Another alternative way is to let human observers review the outputs to evaluate
the quality of generated sequence. Figures 4.19 and 4.20 show the comparison be-
tween real data which samples from failed test cases and the synthetic test sequence
which generated from LeakGAN. As can see, the synthetic data is pretty similar
to the real test case. In the beginning, it follows the topology pattern and ran-
domly chooses some driving mode, after that some function test of external light
components begins. However, if we close look these sequence step, the synthetic
data sometimes seems do not fulfill with test logic. For instance, after executing
extli.rear_fog_light() from last fourth step, the next step should verify if the rear
fog light component has been turned on. Conversely, it executes the function to
check if it has been turned off.

41



4. Experimental Results

Figure 4.19: Real failed test
cases.

Figure 4.20: Sythetic test cases
which generated from LeakGAN.

4.4.5 Data Augmentation Assessment
Lastly, to verify whether the augmented data is useful for classification improvement.
We use the same model structure as LSTM detection system. The training process
has been divided into two steps, the first step is pre-training process, the training
data is composed of augmented data which generated from LeakGan and real passed
test cases.

# Aug-
mented

# Original
DATA

# Total Training Validation Testing

5000 5000 10000 7200 1800 1000
100% 72% 18% 10%

Table 4.4: Table shows the amount of augmented data sequences which have
used to pre-train the neural network and the ratio of training ,validation, and

testing data.

Figures 4.21 and 4.22 show that during the pre-training stage, it seems the model
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Figure 4.21: Pre-training Accuracy Figure 4.22: Pre-training Loss

can distinguish between synthetic data and real data instantly after two epoch, loss
of pertaining process decreases to zero as well and pretty stable after two epochs.

Figure 4.23: Refinement Training accu-
racy

Figure 4.24: Refinement Training Loss

Figures 4.23 and 4.24 illustrate the model performance in refinement training. The
hyper-parameter setting has been set as same as novel detection which described in
Section 4.3.1. The training accuracy can achieve and stabilize around 86% after 60
epochs. However, the validation accuracy decreases, this indicates the model has
slightly over-fitting, which can be observed in loss figure as well.

4.4.6 Discussion
The original purpose is to apply SeqGAN for data-augmentation. Occasionally,
we found another paper during the research with same team leader which pointed
out that the SeqGAN model suffers from generating long sequence (around 20).
Nonetheless, the SeqGAN paper never discussed such issue. LeakGAN has demon-
strated excellent result in generating long sequences. However, the research paper
has only showed demonstration which sequence has been limit as 40 length. This
makes model became uncertainty that whether it is still efficient when sequence is
larger than 100 length.
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4.5 Final Results Comparison
Two training figs. 4.25 and 4.26 are listed in order to have a intuitive assessment
of the data augmentation performance. As can see that both two models can reach
approximately 0.85% around 60 epochs on training accuracy and have slightly over-
fitting issue which are normal and the model performance behavior are pretty iden-
tical.

Figure 4.25: Refinement training accu-
racy with GAN Data Augmentation

Figure 4.26: Training accuracy without
Data Augmentation

Table 4.5 illustrates the performance comparison on test data-set. Notice that a
random seed is applied to split the data deterministic randomly, so the test data-set
is precisely the same in order to eliminate the assessment bias. The results show
that there is no significant improvement with data augmentation.

Test Accuracy
With GAN Data Augmentation 0.845
Study Case 4 0.850

Table 4.5: Table illustrates the test accuracy comparison between with Data Aug-
mentation and without Data augmentation(study case 4)

4.5.1 Disscussion
The reason for using GAN data augmentation yields worse result is that maybe the
LeakGAN model still not converge to real data distribution in spite of the output
looks pretty decent, logic and similar as test cases. Since the research paper has
demonstrated the experimental data which has been limited as 40 lengths. But in
our case, the sequence length is 150 which far exceeded than experimental data. This
makes the model suspiciously whether it can conduct gradient descent effectively.
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Conclusion

In this project, we showed that RNN neural network has a potential application for
automating testing based on log-file. The outcomes show that the LSTM detection
system can achieve around 86% accuracy on test set with a small amount of training
data plus augmented data sequences(by LeakGAN). By setting relative high thresh-
old around 0.8, the model can filter out around 60% of passed test cases but still can
distinguish and cover 90% of failed test cases. This means the company can save
at least 50% of the time of automating testing but still can discover the majority of
test issue.

For LeakGAN, the outcome shows that the model can generate reasonable sequen-
tial output with fine-tuned parameter. However, the result shows that there is no
improvement for prediction performance by using GANs for data augmentation.
Although LeakGAN has shown promising results in generating long sequences, cur-
rently it does not satisfy our specific application. Further study is required on this
issue.

Future Work

Due to the limit of time, there are still lots of topic can be further researched and
studied. Since training leakGAN is pretty time consuming and hence, keep fine-
tuning the model to verify if the performance can be further improved.

There are still some other models which has breakthrough in generating discrete
sequential data. For instance, Variational Auto Encoder(VAE) is another type gen-
erative model which has promising result in NLP field. In term of GAN, RankGAN
MaliGAN and TextGAN also show promising result in generation sentences.

Anomaly Detection is another interesting frontier field in Machine learning. One
class neural network(OC-NN) proposed by [1] (Chalapathy et al. [2018a]) is the
start-of-the-art for outlier detection. The mode has capable to extract feature of one
class data and represents a tight envelope of data. Since 95% of our data is passed
test cases and therefore, by feeding all the passed into neural network instead of
conducting down-sampling might be a suitable topic to conduct research.
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