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Abstract

In this master thesis we study the jumps characteristics for prices in different
asset classes and applying the models to exchange-traded certificates issued by
SEB. The report presents a definition of jumps and looks at the behavior of them
in terms of upward and downward jump sizes and the durations between them.
The behavior differs between the various asset classes for both sizes and durations
but distributions for sizes tend to be heavy-tailed compared to durations which
tend to be light-tailed. From the results of fitting models to historical data a
jump diffusion model was built where the jump part came from the model fitting
which was added to the Black-Scholes model.
By simulations of possible future scenarios of the asset price one could use that
to see how it affected the prices of certificates with different leverages. Each
certificate has a certain stop loss level which means that the customer is protected
from losing more than invested amount. This means that the issuer is exposed
to jump risk by calculating the possibility of breaking the stop loss level and by
how much, one can calculate the issuer’s risk exposure.
The results show that the risk of breaking the stop loss level within 10 years is
pretty big, and of course larger for more volatile asset classes like commodities
compared to currencies which are less volatile. The tail events can unfortunately
turn into big losses.
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1 Introduction
An always present subject is to find a model beyond the Black-Scholes that captures
the behavior of financial asset prices in the best way. There are plenty of these kinds
of models which can be divided into two parts, Stochastic-Volatility models and Jump
Diffusion models. The first one extends the Black-Scholes model, which sees the volatil-
ity as constant, to a model that has a varying volatility over time. The Jump Diffusion
model does instead add a jump process to the Black-Scholes, in form of discrete jumps
which occur randomly and changes the prices. The jumps make it seem like the process
captures the fluctuations of an asset price.
The jumps in a Jump-Diffusion model are often seen as the discontinuous changes in
the sample path of a Brownian motion. The asset price is never continuous so usually
the definition of a jump is that when the price changes over a certain time with a
certain size, a jump has occurred. Almost all types of assets have this kind of behav-
ior. It comes with a so called jump risk, i.e. the risk that the price makes a discrete
jump through a stop loss, barrier or any other kind of level. Banks and other financial
institutions sell products where they guarantee the buyer that they will not loose more
than a certain amount of their money. Therefore the seller has a risk of loosing money
if their margins are not big enough.
One product of that type is SEB:s Exchange-Traded Certificates, products that track
prices of different assets. The certificates come with different levels of leverage which
makes them more or less risky and the investor is guaranteed to not loose more than
it has invested. SEB provides certificates in both currencies and commodities. Com-
modities are often very volatile and it’s pretty common that they can drop in price
with more then 10 percent in one day.
This master thesis explores Jump Diffusion models with different jump-distributions
to match the wide range of underlying assets. When the models are found, simula-
tions are made to find the probabilities and sizes of breaching stop losses for SEB:s
exchange-traded certificates.
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2 Theory
This section presents the theory behind all methods used in this master thesis.

2.1 Black-Scholes model
The Black-Scholes model gives a price of an European option for time t ≥ 0 with a
given starting capital S(0) and interest µ. As everyone know, the future cannot with
certainty be predicted. Therefore the model consists of an uncertainty parameter B(t).
{B(t)}t≥0 belongs to a family of random processes, which together builds a stochastic
process. The price of the option with these parameters is given by

S(t) = S(0) eB(t)+µt för t ≥ 0. (1)

There are many stochastic processes but a proper choice is of great importance.
The Lévy process is proper because its three abilities [1, s. 25]:

• B(0) = 0,

• B(t) has independent increments:

B(t1)−B(t0), . . . , B(tn)−B(tn−1) are independent variables

for 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn,

• B(t) has stationary increments:

Distribution for B(t+h)−B(t) does not depend on t, but only on h ≥ 0.

This means that the increments shall be independent of each other and the dis-
tribution of the increments shall be the same. The Lévy processes are a family of
processes and in the Black-Scholes model the distribution for B(t+h)−B(t) is normal
N(0, σ2h) where σ2 is the volatility.

2.1.1 Evaluation of the Black-Scholes Model

The Black-Scholes is widely used but it is at the same time known that it has its
weaknesses. There are a couple of tests to evaluate how well the model imitates real
world data. The test controls if the above criterias are fulfilled. One way is to take
the logarithm of equation (1)

{L(n+1)−L(n)}n∈N = {ln(S(n+1))− ln(S(n))}n∈N = {B(n+1)−B(n) +µ}n∈N. (2)

and evaluate the received, so called, log increments {ln(S(n+1))− ln(S(n))}n=0,...,N ,
which also are assumed to be normal distributed, N(0, σ2h). The next step is to check
if they are independent which means that they are also uncorrelated.

To visually check if the log increments are normal distributed a Q-Q plot can be
used and to see how well the log increments fit a normal distribution, MLE is used. To
get a numerical result of how well the model reflects real data the Kolmogorov-Smirnov
method is a good choice. The tests are described under section (2.4).
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2.2 Jump Diffusion Process
The assumption in the Black-Scholes model that the log increments are normal dis-
tributed is not correct, the log returns for real market data tends to be more heavy-
tailed. This means that rare events are not as rare as the Black-Scholes models says
and the Black-Scholes model has to be improved or replaced to get better results and
that leads us to a Jump Diffusion model.

There are two basic blocks in a Jump Diffusion model, the Brownian motion part
(the diffusion part) and a process capturing rare events (the jump part). For further
discussion proper definitions of a jump, jump size and duration between jumps are
given below.

2.2.1 A Jump

For a financial process Xt, a threshold α (α > 0) is set on both positive and negative
side of the devolatilized log increments of Xt,

| lnXt − lnXt−1 − µ̂
σ̂

| ≥ α. (3)

We say that a jump has occurred if a devolatilized log increment exceeds the thresh-
old.

2.2.2 Jump Size

When a jump occurs at time t, the jump size At is the difference between the log
prices, i.e. the value of the log increment at time t,

At = lnXt − lnXt−1.

If At > 0 then the jump is upward and if At < 0 then the jump is downward.

2.2.3 Jump Duration

When a jump occurs at time s and the next consecutive jump occurs at time t (t > s),
the jump duration is t− s.

2.2.4 A First Jump Diffusion Model

For a basic standard jump diffusion model the jump part consists of a Poisson process.
The Poisson process (2.2.6) has independent and stationary increments, which makes
it a Lévy process.

When working with financial time series it is not very interesting to restrict oneself
to having only one jump size, but rather a process. If the jump durations consider
being exponential distributed and the jump sizes vary over time by a arbitrary distri-
bution, the Compound Poisson process (2.2.6) can come in hand.

If a Brownian motion (Bt) with drift (µ) is combined with a Compound Poisson
process we obtain a so called jump diffusion model:
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Xt = µt+Bt +

Nt∑
i=1

Yi. (4)

A stock price can be expressed by St = SXt0 with Xt as in equation (4). Taking
jumps {Yi} with a Gaussian distribution one obtains the famous Merton Model [2, s.
125-144].

The process given by equation (4) is a Lévy process, but stock prices are often
modeled as exponentials of Lévy processes to ensure that the price is positive and the
log increments are independent and stationary. This gives the jump diffusion model

St = S
µt+Bt+

∑Nt
i=1 Yi

0 . (5)

When comparing equation (5) with the Black-Scholes model, equation (1), it is
easily seen that equation (5) is a generalization of equation (1) and gives the possibility
to behave more like real financial time series.

2.2.5 A New Jump Diffusion Model

The Lévy processes are not limited to the form of equation (5). Therefore it gives
an opportunity to elaborate with the jump process. In finance it is well known that
downward jumps tend to be larger than upward jumps. A natural assumption is
therefore that upward and downward jumps have different distributions for the jump
size. Furthermore, the assumption in model (5) that the durations between jumps
are exponential distributed is somehow restricted. To build a model that can have
different distributions for upward and downward jump sizes and different distributions
for the duration between upward and downward jumps are of great desire. In this
master thesis four different distributions have been used with varying abilities. The
distributions can be found under section (2.2.6). When taking different processes for
both upward and downward jumps and also for the durations between them, equation
(5) is changed to

St = S0e
µt+σBt+Xt=

∑Nt
i=1 Y

1
i ·1U1

i
≤t−

∑Nt
j=1 Y

2
j ·1U2

j
≤t (6)

where µ is the drift, σ is the volatility, Bt is the Brownian motion, U1
t and U2

t are the
duration processes and Y 1

t and Y 2
t are the processes for jump sizes.

2.2.6 Distributions and Processes

In this section six different types of processes and distributions are presented in terms
of definition and abilities.

The Poisson Process
Take a sequence {τi}i≥1 of independent and exponential random variables with pa-
rameter λ with the cumulative distribution function as P [τi ≥ y] = eλy and take
Tn =

∑n
i=1 τi. This gives the Poisson process:

Nt =
∑
n≥1

1t≥Tn .

The Poisson process is often used for waiting times were the intervals between
events are exponentially distributed. A drawback is when applying this to jump dif-
fusion models, the jump sizes are always one.
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The Compound Poisson Process
Take a sequence {Yi}i≥1 of independent random variables with law f and let N be a
Poisson process with parameter λ. Then the Compound Poisson process is given by

Xt =

Nt∑
i=1

Yi.

The Compound Poisson Process is a development of the Poisson process. The wait-
ing times are still exponentially distributed but the jump sizes can have an arbitrary
distribution.

Exponential Distribution
The probability density function (pdf) for the Exponential distribution is given by

f(x;λ) =

{
λe−λx for x ≥ 0,
0 for x < 0,

where λ can be seen as a inverse scale parameter. The cumulative distribution function
(CDF) can be expressed as

F (x;λ) =

{
1− e−λx for x ≥ 0,
0 for x < 0,

Gamma distribution
The probability density function for the Gamma distribution is given by

f(x; k,Θ) = xk−1 e−x/Θ

ΘkΓ(k)
for x ≥ 0 and k, Θ > 0,

where k is the shape parameter, Θ is the scale parameter and Γ(k) is the gamma
function. Furthermore the cumulative distribution function can be expressed as

F (x; k, θ) =
γ(k, x/Θ)

Γ(k)
.

Generalized Pareto Distribution
The probability density function for the Generalized Pareto distribution is given by

fξ,µ,σ(x) =
1

σ
(1 +

ξ(x− µ)

σ
)−

1
ξ−1 for x ≥ µ when ξ ≥ 0 and x ≤ µ− σ/ξ when ξ < 0,

where µ is the location parameter, σ is the scale parameter and ξ is the shape param-
eter. The cumulative distribution function can be expressed as

F(ξ,µ,σ)(x) =

{
1− (1 + ξ(x−µ)

σ )−1/ξ for ξ 6= 0,

1− exp(−x−µσ ) for ξ = 0,

with the parameters as for the pdf.

The AR(1) Process
An autoregressive (AR) model is a type of linear prediction of an output depending
on previous outputs. The AR(1) means that the next output only depends on the last
one. The AR(1) model is given by

yn = a0 + a1yn−1 + σεn,

where a0 and a1 are constants and εn ≈ N(0, 1).
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2.3 Exchange-Traded Certificates
An exchange-traded certificate is a debt security issued by a bank where the price
is tracking the price of a reference asset. The American equivalent security is called
exchange-traded notes, ETN. The market benchmarks can for example be commodi-
ties, currencies or stocks. The advantage for certificates is that they provide the
opportunity to invest in markets that can be difficult to get access to. The certificates
have issue dates, maturity dates, are exchange-traded and are as easy to buy as stocks.
The certificates come in many forms where one can take a short or a long position with
different leverages.

2.3.1 Bull and Bear Certificates

Certificates issued by SEB [3] are divided into three types with different kind of yield
potential and risk:

• Long - The price goes up when the price of the reference asset rises and down
when the reference price falls. It has no leverage.

• Bull - The price goes up when the price of the reference asset rises and down
when the reference price falls. It comes with different sizes of leverage.

• Bear - The price goes up when the price pf the reference asset falls and down
when the reference price rises. It comes with different sizes of leverage.

SEB:s Bull and Bear certificates gives leverage based on the total percent change
between issue price and current price for the reference asset. Hence, the leverage
changes over time when the price changes.

2.3.2 Prices of SEB:s Certificates

For exchange-traded certificates with currencies as underlying, the pricing looks like
as follows (USD/SEK as underlying).
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CVt = CVt−1 · (1− Fee · InteresRatePeriod) + V Ft,
where
CVt = Value of the certificate at day t,
CVt−1 = Value of the certificate at day t-1,
CV0 = Starting value,
V Ft = NumOfUSDt−1 · [(1 + FUSDt−1 ) ·Reft −Reft−1]+

+FSEKt−1 ·NumOfSEK,
V Ft = Change in certificate value between day t-1 and day t,
NumOfUSDt = NumOfUSDt−1 · (1 + FUSDt−1 )+

+
NumOfSEK·FSEKt−1 −Fee·InterestRatePeriod·CVt−1

Reft
,

FUSDt−1 = (InterestRateBaseUSDt−1 − Fee · InterestRateMarginUSD)·
·InterestRatePeriod,

FSEKt−1 = (InterestRateBaseSEKt−1 − Fee · InterestRateMarginSEK)·
·InterestRatePeriod,

FUSD0 = 0,

FSEK0 = 0,

FUSDt−1 = Finance USD at day t-1,
FSEKt−1 = Finance SEK at day t-1,
Reft = Value of reference asset at day t,
Reft−1 = Value of reference asset at day t-1,
Ref0 = Value of reference asset at initial day,
NumOfUSD0 = CV0·InitialLeverage

Ref0
,

NumOfSEK = CV0 · (1− InitialLeverage).
(7)

The interest period refers to the period from the day before the valuation until the
valuation day and applicable interest rate convention is actual number of days divided
by 360.

The values for the Bear certificates are the same but with negative initial leverages.

The Bull and Bear exchange-traded certificates on commodities are calculated dif-
ferently since the commodities are listed in USD. The investor is therefore exposed to
both USD/SEK movements and the price of the commodity forward. The price of a
Gold Bull certificate is calculated in the following way:

8



CVt = CVt−1 · Ft−1 · ExchangeRatet
ExchangeRatet−1

+NumOfReft−1·
·(Reft −Reft−1 · ExchangeRatet,

where
CVt = Value of the certificate at day t,
CVt−1 = Value of the certificate at day t-1,
CV0 = Starting value,
Ft−1 = (1 + (InterestRateBaset−1 − InterestBaseMarginUSD·

·max[1, |NumOfReft−2| ·Reft−1 · ExchangeRatet−1

CVt−1
])·

·InterestRatePeriod) · (1− FeeInterestPeriod),
NumOfReft = NumOfReft−1 · Ft,
NumOfRef0 = CV0·InitialLeverage

Ref0·ExchangeRate0 ,

F0 = 1,
Reft = Value of reference asset at day t,
Reft−1 = Value of reference asset at day t-1,
Ref0 = Value of reference asset at initial day,
ExchangeRatet = Exchange rate at day t,
ExchangeRatet−1 = Exchange rate at day t-1,

(8)
The interest period refers to the period from the day before the valuation until the

valuation day and applicable interest rate convention is actual number of days divided
by 360.

The exchange rate refers to the exchange rate USD/SEK, expressed as number of
SEK per USD.

After rolling over to a new future contract, NumOfReft−1 is changed to

NumOfReft−1(after rolling) = NumOfReft−1(before rolling)·
·Reft−1(before rolling)
Reft−1(after rolling) ,

where Reft−1(before rolling) refers to the price of the earlier contract and
Reft−1(after rolling) refers to the price of the new contract.

Valuations for the rest of the Exchange Trading Certificates can be found at [3].

2.3.3 Risks involved

Each certificate issued by SEB comes with a stop loss. The stop loss is set for the
leverage which vary over time (7, 8). For example the leverage for commodities is
calculated as

Leveraget =
NumOfReft ·Reft · ExchangeRatet

CVt
.

There is a margin between the stop loss level and the point where the issuer cannot
unwind their positions in the reference asset without loosing money. Therefore, it
is important to estimate the probability of breaching the stop loss and if breaching,
estimate how much the leverage passes the stop loss level, i.e. the jump risk. This
is important because the investor will not loose more than invested capital, i.e. the
issuer is obligated to cover for any losses resulting from unwinding positions. If the
stop loss is breached, the investor will get back the value based on the price where the
issuer is able to unwind there positions at, with a minimum of zero.

9



2.4 Test Methods
Through the thesis many mathematically tests are used to confirm, strengthen or
dismiss assumption that are given. The tests can be found under this subsection.

2.4.1 Q-Q Plot

A Q-Q plot gives a visual estimate on how similar a distribution is to another. The
quantiles of two distributions are plotted against each other. The CDF of a distribution
can be divided into q equally sized subsets. The point where two of those subsets
meet is called a q-quantile. The value of the k:th q-quantile is the point x where
the probability of a random variable is less then x where it has it’s max k

q and the
probability that the random variable is larger or equal to x is at least q−k

q . These
quantile values are the ones that build the Q-Q plot.

2.4.2 Maximum Likelihood Method

Maximum Likelihood Estimator, MLE, is a widely used method in statistics to esti-
mate the parameters for a statistical model or distribution. When applying the method
to a data set, it provides estimates for the model’s parameters.

The method takes the parameters for the model that gives the greatest probability
of fitting the distribution. This means the parameters that maximize the likelihood
function.

If a sample of n independent and identically distributed random variables (iid) x1,
x2,..., xn is observed, which are coming from a certain distribution where the pdf f0(.)
is unknown. However, the function f0(.) belongs to a certain family of distributions
{f(|θ), θεΘ}, called the parametric model, so that f0 = f(.|θ0) where θ0 is unknown.

The goal is therefore to find an estimator θ̂ which would be as close as possible to
the true value θ0.

The first step of the MLE is to build the joint density function for the iid data set

f(x1, x2, . . . , xn|θ) = f(x1|θ) · f(x1|θ) · · · f(xn|θ).

If the parameters x1, x2,..., xn are fixed and the function θ is variable, one comes to
the distribution function called likelihood

L(θ|x1, . . . , xn) = f(x1, x2, . . . , xn|θ) =

n∏
i=1

f(xi|θ).

It’s often much easier to work with the logarithm of the likelihood function, log-
likelihood.

lnL(θ|x1, . . . , xn) =

n∑
i=1

ln f(xi|θ), l̂ =
1

n
lnL.

And when taking the maximum of the average of the log-likelihood function the max-
imum likelihood estimator (MLE) of θ0 is received

θ̂mle = argmaxθεΘ l̂(θ|x1, . . . , xn).

10



2.4.3 Kolmogorov-Smirnov Method

The Kolmogorov-Smirnov method is a nonparametric test for the equality of continu-
ous, one-dimensional probability distributions that can be used to compare a sample
with a probability distribution. This is called a one-sample K-S Test, or when com-
paring two samples it is called two-sample K-S test. The test gives the maximum
distance between the empirical distribution function from the sample and the cumu-
lative distribution function of the reference distribution. The null hypothesis is that
the samples are drawn from the reference distribution. The test statistic is given by

KS = max|Fn(x)− F (x)|,

where Fn(x) is the empirical distribution function:

Fn(x) =
1

n

n∑
i=1

IXi≤x,

where F (x) is the fitted distribution function and IXi≤x is the indicator function.

11
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3 Implementation
This master thesis is in whole based on the Black-Scholes model which is widely used
in the financial market. To show that the model has it’s disadvantages and deficiencies
a couple of tests were run on historical market data. The data series picked for the
tests were the same as the underlying assets in the exchange-traded certificates. The
number of daily closing prices that were used ranged between 10 and 20 years depend-
ing on the availability of data for the different assets. The prices that the commodity
certificates are based on are forward contracts that are rolled monthly. Due to the
difficulties to get historical prices for rolled forward contracts, daily spot prices were
used for simplicity.

3.1 Tests on the Black-Scholes Model
For the Black-Scholes model the increments are assumed to be standard normal dis-
tributed and that the model fulfill the criteria of a Lévy process [1, s. 25]. Then by
calculating devolatilized log increments, equation (2), from N + 1 days of historical
data Sn, it can be used in distribution tests.

3.1.1 Maximum Likelihood Estimation

The first test that was done to the log increments were the maximum likelihood esti-
mation, section (2.4.2). The parameters that fit a normal distribution to the empirical
data, the log increments, were calculated with the Matlab function mle. The param-
eters were calculated for some of the underlying assets to confirm if the assumption
that the log increments are not standard normal distributed.

3.1.2 Q-Q Plot

The parameters received from the MLE were used to creat Q-Q plots, section (2.4.1),
in Matlab, with the command qqplot. From the pictures one can visually see if the
log increments fit a standard normal distribution.

3.1.3 Kolmogorov-Smitnov Test

To even get more information, in form of a numerical result, on how well the log
increments fits to a normal distribution, the Kolmogorov-Smirnov goodness of fit test,
section (2.4.3), was done on the increments. The largest distance between the empirical
data and the normal distribution were calculated with the Matlab command kstest.

3.2 Building the Jump-Diffusion Process
To develop the Black-Scholes model the idea was to include a jump process to the
Brownian motion. By the definitions of a jump the threshold was calculated as in
equation (3) with lnXt − lnXt−1 as the size of a jump. This level was set depending
on the volatility of the underlying asset. The minimum jump size for commodities was
set to 2% and for currencies it was set to 1%. The thresholds were then calculated
based on these assumptions.

13



3.2.1 Get Jumps

For each series of log increments, one series each based on historical data for the
different underlying assets, upward jumps, downward jumps and the jump durations
were calculated and sorted out based on the definitions (2.2.1 ,2.2.2 ,2.2.3) and certain
thresholds α. Though the downward jumps are always negative, the absolute value of
the sizes were taken for simplicity.

The hypothesis that upward jumps and downward jumps have different distribu-
tions was tested by looking at histograms over the jump sizes and durations. Numerical
results were calculated by counting the number of upward and downward jumps and
also looking at the maximum and minimum value of the jump sizes.

3.2.2 Distribution Tests

To find an approximation of the distribution for upward and downward jump sizes and
the jump durations, a couple of tests were done on the jump data. Some of the tests
gave visual results and to determine which distribution that gives the best approxima-
tion, the results from the Kolmogorov-Smirnov goodness of fit test (2.4.3) were used
as a numerical measure.

Three different distributions were tested for both jump sizes and durations. Those
were the Exponential distribution, the Gamma distribution and the Generalized Pareto
distribution (2.2.6). These have different tail behavior and skew which gave a wide
range of possible types of distributions. To fit the empirical data, i.e. the upward
and downward jump sizes and durations, to the chosen distributions the MLE (2.4.2)
were used. The parameters received from the MLE were then used to create CDFs,
these were compared to CDFs of the empirical data with the Kolmogorov-Smirnov
test, that gave the largest distance between the compared CDFs. The results could
then be visually confirmed by plotting the two CDFs in the same graph.

It’s well known in finance that increments are not independent of each other, i.e.
big movements tend to come in cluster. By plotting the jump sizes over time one
could visually see if that was true. Due to this conclusion another process was tested
for upward and downward jump durations, the AR(1) model (2.2.6). By taking the
logarithm of jump up and jump down durations, and estimating the parameters a0

and a1 by least square method and σ by the residual by MLE (2.4.2) one gets the
parameters for the autoregressive model. By simulating durations from the AR(1)
model and building CDFs the Kolmogorov-Smirnov test were used again to find the
maximum distance between the CDFs. The simulation and the Kolmogorov-Smirnov
test were run 1000 iterations to get good estimates of the results from the KS-test.

3.2.3 Choice of Distributions

From the results of KS-tests, distributions were chosen for upward jumps sizes, down-
ward jump sizes, durations between upward jumps and durations between downward
jumps. The distribution that had the lowest Kolmogorov-Smirnov distance was chosen
as the proper distribution.

3.2.4 The Final Process

By combining the Black-Scholes model (1) with processes from the chosen distributions
in (3.2.3) the final process becomes (6). This model has much more flexibility to
replicate real market behavior.

14



3.3 Simulate Asset Prices With the Jump Diffusion Model
From the results of fitting jumps to different distributions the final jump diffusion
model (6) were used to simulate future scenarios for the underlying asset. The simu-
lation algorithm looks like

• Calculate the drift µ as the mean of historical data in form of log increments
when jumps are excluded.

• Calculate the standard deviation from historical data with a moving window size
of five days. Build a vector of the calculated values.

• Define a time vector t0, . . . , tN , where N is the number of days. (The time
between issue date to maturity are for most of the Certificates 10 years, i.e.
approximately 2500 days, hence N is set to 2500).

• Simulate N upward jump sizes from the chosen distribution with parameters
received from the method under subsection (3.2), {Y 1

i }Ni=1.

• Simulate N downward jump sizes from the chosen distribution with parameters
received from the method under subsection (3.2), {Y 2

i }Ni=1.

• Simulate upward jump durations from the chosen distribution with parameters
received from the method under subsection (3.2) and take the cumulative sum
to build a vector {U1

i }Ni=1.

• Simulate downward jump durations from the chosen distribution with parameters
received from the method under subsection (3.2) and take the cumulative sum
to build a vector {U2

i }Ni=1.

• The jump process is then given by Xt =
∑NT
i=1 Y

1
i · 1U1

i ≤t −
∑NT
i=1 Y

2
i · 1U2

i ≤t.

• Uniformly randomly draw of N values of σ from the vector of possible σ-values.

• Draw N randomly values from the standard normal distribution to create the
process Bt.

• The Jump Diffusion process is then given by

St = S0e
µt+σtBt+Xt=

∑NT
i=1 Y

1
i ·1U1

i
≤t−

∑NT
i=1 Y

2
i ·1U2

i
≤t . (9)

3.4 Calculate the Prices for Exchange Traded Certificates
SEB is issuing a wide range of exchange traded certificates. Simulated prices were
calculated for the certificates in table (1)

Table 1: The names of the 12 certificates tested in this master thesis.

EURSEK Bull EURSEK Bear
USDSEK Bull USDSEK Bear
Gold Bull Gold Bear
Silver Bull Silver Bear
Oil Bull Oil Bear
Wheat Bull Wheat Bear
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The prices for certificates are calculated as in subsection (2.3.2), where the constant
values can be found in table (2).

Table 2: Constants for calculations of certificate prices.

InterestRateBaseSEK is Stibor = 0.02

InterestRateBaseEUR is Eonia = 0.015

InterestRateMarginSEK = 0.002

InterestRateMarginEUR = 0.002

As explained in section (2.3) the calculations for the different kind of certificates
are pretty similar to each other, but can basically be divided into two different classes,
commodities and currencies. No more simulations were needed for the currency cer-
tificates though the price is calculated as in equation (7) with the simulated data from
section (3.3) used as Reft. For the commodities one more simulation were done in
the same manner as before because a simulation for the price of the commodity and
for price of USDSEK were needed. Then the price of the commodity certificate are
calculated as in equation (8).

3.5 Probability of Exceeding Stop Losses
The different exchange-traded certificates comes with different level of stop losses.
There is a risk that the price of the certificate exceeds the level of the stop loss and
a risk that the crossing is done by a discrete jump. The probability of crossing those
levels can be approximated by repeated simulations of future time series of certificate
prices. Therefore 1000 simulations for each certificate were simulated to receive a good
estimate of the probability of crossing the stop loss level and if crossing, estimate the
size of the jump through the level.

3.5.1 Valuation of the Results

To see how sensitive the simulation of the future time series is, depending on the
parameters for the distributions, more simulations were done. By randomly draw the
values of the parameters from a normal distribution with the earlier used value as
mean µ and standard deviation σ = 0.1µ. The simulation was run 1000 times and the
results are presented as a probability distribution and numerical results as max, min,
mean and standard deviation.

16



4 Results
All the numerical and visual results from the implementation in section (3) are pre-
sented below. The visual results are presented for two different underlying assets and
certificates.

4.1 Valuation of the Black-Scholes Model
To se how well the Black-Scholes model fitted to historical data, daily close prices for
gold and USD/SEK, where tested. The close prices and log increments of the prices
are plotted in figures (1, 2).
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Figure 1: The top picture illustrates the daily rate of USD/SEK.
The bottom picture shows the corresponding log increments of USD/SEK.
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Figure 2: The top picture illustrates the daily price of gold in USD.
The bottom picture shows the corresponding log increments of gold.

The log increments of the historical data were fitted to a normal distribution with
MLE (2.4.2), and the parameters received can be found in table (3).

Table 3: Parameters received from MLE with normal distribution.

Asset Mean Standard Deviation

USD/SEK 0.0001 0.007
Gold 0.0002 0.0101

To visually see the results, Q-Q plots were created and can be seen in figure (3).
The conclusion that the log increments does not fit to a normal distribution can easily
be drawn since the market data are much more heavy-tailed.
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Figure 3: Q-Q plots over log increments for USD/SEK and gold.

To further strengthen this conclusion a Kolmogorov-Smirnov test was run on the
data. The results are displayed in table (4). It shows that the KS-distance are pretty
big and the test rejects the null hypothesis that the data belongs to a normal distri-
bution.

Table 4: Results from KS-test with normal distribution.

Asset KS-Distance Rejects null hypothesis p-value

USD/SEK 0.4878 Yes 0
Gold 0.4828 Yes 0
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4.2 Results From Building a Jump Diffusion Model
The tests on the Black-Scholes model showed that it had weaknesses and a jump-
process might be a proper choice of a better model. The definition of jump sizes and
durations were given. The chosen thresholds for the different assets can be found in
table (5).

Table 5: Chosen thresholds for jumps.

Asset Threshold

USD/SEK 1.4153
EUR/SEK 1.9834
Gold 1.9380
Silver 1.0853
Oil 0.8403
Wheat 1.5054

4.2.1 Jumps of Historical Data

By the definition of jumps (2.2.1, 2.2.2), upward and downward jumps and upward and
downward durations were taken from historical data. The data are gathered in tables
(6) and (7) and is visualized in figure (4) and (5). It shows that upward and downward
jump sizes do not follow the same distribution. The results show that there tend to
be more upward jumps but the downward jump sizes tend to be larger. When looking
at the results from the duration, the durations between upward jumps are longer than
for downward jumps.

Table 6: Upward and downward jump sizes.

Asset Num. of upward jumps Total Days Max Mean

USD/SEK 494 8107 0.0901 0.0151
EUR/SEK 146 5799 0.0938 0.0149
Gold 134 5392 0.0889 0.0283
Silver 534 5393 0.1220 0.0309
Oil 800 5458 0.1315 0.0343
Wheat 152 3195 0.1094 0.0317

Asset Num. of downward jumps Total Days Max Mean

USD/SEK 500 8107 0.0653 0.0144
EUR/SEK 137 5799 0.0315 0.0140
Gold 168 5392 0.0773 0.0285
Silver 519 5393 0.1479 0.0345
Oil 790 5458 0.4272 0.0356
Wheat 130 3195 0.2336 0.0336
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Table 7: Upward and downward jump durations.

Asset Num. of upward durations Total Days Max Min Mean

USD/SEK 493 8107 304 1 16.4037
EUR/SEK 145 5799 882 1 38.6759
Gold 133 5392 909 1 38.2857
Silver 533 5393 279 1 10.0938
Oil 799 5458 141 1 6.8273
Wheat 151 3195 710 1 21.0464

Asset Num. of downward jumps Total Days Max Min Mean

USD/SEK 499 8107 163 1 16.1784
EUR/SEK 136 5799 976 1 41.2426
Gold 167 5392 855 1 31.7545
Silver 518 5393 206 1 10.2432
Oil 789 5458 101 1 6.9113
Wheat 129 3195 566 1 24.7442
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Figure 4: Jump sizes for USD/SEK and gold.
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Figure 5: Jump durations for USD/SEK and gold.

4.2.2 Distribution of Jump Sizes and Jump Durations

Different distributions were used to test which distribution that fitted historical data
the best. The parameters from the MLE can be found in tables (8, 9, 10, 11).
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Table 8: Parameters for upward jump sizes received from MLE with different distri-
butions.

Asset Distribution Parameters

USD/SEK Exponential λ = 0.0151
Generalized Pareto ξ = −0.1588, σ = 0.0169
Gamma k = 8.5991, Θ = 0.0018

EUR/SEK Exponential λ = 0.0149
Generalized Pareto ξ = −0.1319, σ = 0.0164
Gamma k = 8.3334 , Θ = 0.0018

Gold Exponential λ = 0.0283
Generalized Pareto ξ = −0.3883, σ = 0.0371
Gamma k = 8.1193, Θ = 0.0035

Silver Exponential λ = 0.0309
Generalized Pareto ξ = −0.2981, σ = 0.0376
Gamma k = 7.9901, Θ = 0.0039

Oil Exponential λ = 0.0343
Generalized Pareto ξ = −0.3044, σ = 0.0423
Gamma k = 6.6371, Θ = 0.0052

Wheat Exponential λ = 0.0317
Generalized Pareto ξ = −0.3446, σ = 0.0398
Gamma k = 7.7282, Θ = 0.0041

Table 9: Parameters for downward jump sizes received from MLE with different dis-
tributions.

Asset Distribution Parameters

USD/SEK Exponential λ = 0.0144
Generalized Pareto ξ = −0.2466, σ = 0.0168
Gamma k = 10.2530, Θ = 0.0014

EUR/SEK Exponential λ = 0.0140
Generalized Pareto ξ = −0.6386, σ = 0.0203
Gamma k = 14.6415, Θ = 0.0010

Gold Exponential λ = 0.0285
Generalized Pareto ξ = −0.4877, σ = 0.0388
Gamma k = 10.4936, Θ = 0.0027

Silver Exponential λ = 0.0345
Generalized Pareto ξ = −0.2630, σ = 0.0417
Gamma k = 5.7506, Θ = 0.0060

Oil Exponential λ = 0.0356
Generalized Pareto ξ = −0.0637, σ = 0.0374
Gamma k = 5.0001, Θ = 0.0071

Wheat Exponential λ = 0.0336
Generalized Pareto ξ = −0.0903, σ = 0.0363
Gamma k = 4.4301, Θ = 0.0076

23



Table 10: Parameters for upward jump durations received from MLE with different
distributions.

Asset Distribution Parameters

USD/SEK Exponential λ = 16.4037
Generalized Pareto ξ = 0.4323, σ = 9.6570
Gamma k = 0.7520, Θ = 21.8140

EUR/SEK Exponential λ = 38.6759
Generalized Pareto ξ = 0.8479, σ = 11.6557
Gamma k = 0.5120, Θ = 75.5460

Gold Exponential λ = 38.2857
Generalized Pareto ξ = 0.5587, σ = 16.8673
Gamma k = 0.6004, Θ = 63.7656

Silver Exponential λ = 10.0938
Generalized Pareto ξ = 0.3880, σ = 6.0779
Gamma k = 0.8271, Θ = 12.2039

Oil Exponential λ = 6.8273
Generalized Pareto ξ = 0.1353, σ = 5.8448
Gamma k = 1.2219, Θ = 5.5875

Wheat Exponential λ = 21.0464
Generalized Pareto ξ = 0.7396, σ = 6.4800
Gamma k = 0.5158, Θ = 40.8070

Table 11: Parameters for downward jump durations received from MLE with different
distributions.

Asset Distribution Parameters

USD/SEK Exponential λ = 16.1784
Generalized Pareto ξ = 0.3234, σ = 11.0149
Gamma k = 0.8573, Θ = 18.8715

EUR/SEK Exponential λ = 41.2426
Generalized Pareto ξ = 0.6520, σ = 16.6681
Gamma k = 0.5972, Θ = 69.0614

Gold Exponential λ = 31.7545
Generalized Pareto ξ = 0.6154, σ = 13.4608
Gamma k = 0.5991, Θ = 53.0062

Silver Exponential λ = 10.2432
Generalized Pareto ξ = 0.2065, σ = 8.0678
Gamma k = 0.9518, Θ = 10.7621

Oil Exponential λ = 6.9113
Generalized Pareto ξ = 0.1584, σ = 5.7642
Gamma k = 1.1273, Θ = 6.1306

Wheat Exponential λ = 24.7442
Generalized Pareto ξ = 0.8056, σ = 6.8927
Gamma k = 0.4871, Θ = 50.7988
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The assumptions that durations are correlated were tested and the results can be
seen in figure (5) of durations over time. Another process was therefore tested on the
durations, in addition to the previous distributions, the AR(1) process. The fitted
parameters for the AR(1) process are based on 1000 simulations and can be found in
tables (12, 13).

Table 12: Parameters for upward jump durations with AR(1) processes.

Asset a0 a1 σ

USD/SEK 1.7568 0.1207 1.2724
EUR/SEK 1.9660 0.1791 1.5531
Gold 2.2558 0.1315 1.3968
Silver 1.4927 0.0635 1.1082
Oil 1.3626 0.0672 0.9263
Wheat 1.2627 0.2970 1.4022

Table 13: Parameters for downward jump durations with AR(1) processes.

Asset a0 a1 σ

USD/SEK 1.7568 0.1665 1.1816
EUR/SEK 2.3333 0.1322 1.3943
Gold 2.0516 0.1499 1.4094
Silver 1.4703 0.1394 1.1262
Oil 1.3226 0.0747 0.9804
Wheat 1.5958 0.1510 1.4822

CDFs were then created from the results of the MLE and the comparison between
them and empirical CDFs are presented in figures (6, 7, 8, 9).
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Figure 6: Fitted CDFs of upward jump sizes compared to empirical CDFs for
USD/SEK and gold.
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Figure 7: Fitted CDFs of downward jump sizes compared to empirical CDFs for
USD/SEK and gold.
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Figure 8: Fitted CDFs of upward jump durations compared to empirical CDFs for
USD/SEK and gold.
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Figure 9: Fitted CDFs of downward jump durations compared to empirical CDFs for
USD/SEK and gold.
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The largest distance between the CDFs that are given from the Kolmogorov-
Smirnov goodness of fit test are presented in tables (14, 15, 16, 17).

Table 14: Results from KS-tests on upward jump sizes for the different distributions.

Asset Distribution KS-Distance Rejects null hyp. p-value

USD/SEK Exponential 0.4830 Yes 0
USD/SEK Generalized Pareto 0.4354 Yes 0
USD/SEK Gamma 0.1532 Yes 0
EUR/SEK Exponential 0.4900 Yes 0
EUR/SEK Generalized Pareto 0.4466 Yes 0
EUR/SEK Gamma 0.1712 Yes 0
Gold Exponential 0.5029 Yes 0
Gold Generalized Pareto 0.5232 Yes 0
Gold Gamma 0.1997 Yes 0
Silver Exponential 0.4733 Yes 0
Silver Generalized Pareto 0.4134 Yes 0
Silver Gamma 0.1475 Yes 0
Oil Exponential 0.4391 Yes 0
Oil Generalized Pareto 0.3708 Yes 0
Oil Gamma 0.1233 Yes 0
Wheat Exponential 0.4663 Yes 0
Wheat Generalized Pareto 0.4260 Yes 0
Wheat Gamma 0.1487 Yes 0.0021

Table 15: Results from KS-tests on downward jump sizes for the different distributions.

Asset Distribution KS-Distance Rejects null hyp. p-value

USD/SEK Exponential 0.4959 Yes 0
USD/SEK Generalized Pareto 0.7489 Yes 0
USD/SEK Gamma 0.1509 Yes 0.0229
EUR/SEK Exponential 0.5061 Yes 0
EUR/SEK Generalized Pareto 0.7833 Yes 0
EUR/SEK Gamma 0.1288 Yes 0.0193
Gold Exponential 0.4933 Yes 0
Gold Generalized Pareto 0.7457 Yes 0
Gold Gamma 0.1427 Yes 0.0019
Silver Exponential 0.4248 Yes 0
Silver Generalized Pareto 0.6494 Yes 0
Silver Gamma 0.1261 Yes 0
Oil Exponential 0.4173 Yes 0
Oil Generalized Pareto 0.6543 Yes 0
Oil Gamma 0.1372 Yes 0
Wheat Exponential 0.4397 Yes 0
Wheat Generalized Pareto 0.6766 Yes 0
Wheat Gamma 0.1877 Yes 0
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Table 16: Results from KS-tests on upward jump durations for the different distribu-
tions.

Asset Distribution KS-Distance Rejects null hyp. p-value

USD/SEK Exponential 0.1739 Yes 0
USD/SEK Generalized Pareto 0.1327 Yes 0
USD/SEK Gamma 0.1203 Yes 0
USD/SEK AR(1) 0.7744 Yes 0
EUR/SEK Exponential 0.2785 Yes 0
EUR/SEK Generalized Pareto 0.1368 Yes 0.0079
EUR/SEK Gamma 0.1413 Yes 0.0055
EUR/SEK AR(1) 0.7975 Yes 0
Gold Exponential 0.2097 Yes 0
Gold Generalized Pareto 0.0690 No 0.5291
Gold Gamma 0.1357 Yes 0.0135
Gold AR(1) 0.8352 Yes 0
Silver Exponential 0.1797 Yes 0
Silver Generalized Pareto 0.1440 Yes 0
Silver Gamma 0.1512 Yes 0
Silver AR(1) 0.8248 Yes 0
Oil Exponential 0.1362 Yes 0
Oil Generalized Pareto 0.1433 Yes 0
Oil Gamma 0.1243 Yes 0
Oil AR(1) 0.8068 Yes 0
Wheat Exponential 0.3215 Yes 0
Wheat Generalized Pareto 0.1368 Yes 0.0063
Wheat Gamma 0.1810 Yes 0
Wheat AR(1) 0.8607 Yes 0
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Table 17: Results from KS-tests on downward jump durations for the different distri-
butions.

Asset Distribution KS-Distance Rejects null hyp. p-value

USD/SEK Exponential 0.1321 Yes 0
USD/SEK Generalized Pareto 0.0925 Yes 0
USD/SEK Gamma 0.1081 Yes 0
USD/SEK AR(1) 0.6818 Yes 0
EUR/SEK Exponential 0.2713 Yes 0
EUR/SEK Generalized Pareto 0.1002 No 0.1216
EUR/SEK Gamma 0.1717 Yes 0
EUR/SEK AR(1) 0.8191 Yes 0
Gold Exponential 0.2213 Yes 0
Gold Generalized Pareto 0.1058 Yes 0.0441
Gold Gamma 0.1239 Yes 0.0108
Gold AR(1) 0.8342 Yes 0
Silver Exponential 0.1110 Yes 0
Silver Generalized Pareto 0.1539 Yes 0
Silver Gamma 0.1013 Yes 0
Silver AR(1) 0.7994 Yes 0
Oil Exponential 0.1347 Yes 0
Oil Generalized Pareto 0.1753 Yes 0
Oil Gamma 0.1143 Yes 0
Oil AR(1) 0.7653 Yes 0
Wheat Exponential 0.3118 Yes 0
Wheat Generalized Pareto 0.1480 Yes 0.0062
Wheat Gamma 0.1579 Yes 0.0028
Wheat AR(1) 0.8284 Yes 0

The Kolmogorov-Smirnov test rejects the null hypothesis that the data belongs to
the tested distribution, for all distributions. But the distributions that had the small-
est Kolmogorov-Smirnov distances were chosen as proper distributions. The chosen
distributions for each asset can be seen in table (18).

Table 18: Chosen distributions for upward and downward jump sizes and durations.

Asset Up Sizes Down Sizes Up Durations Down Durations

USD/SEK Gamma Gamma Gamma Generalized Pareto
EUR/SEK Gamma Gamma Generalized Pareto Generalized Pareto
Gold Gamma Gamma Generalized Pareto Generalized Pareto
Silver Gamma Gamma Generalized Pareto Gamma
Oil Gamma Gamma Gamma Gamma
Wheat Gamma Gamma Generalized Pareto Generalized Pareto
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4.3 Simulations of Future Asset Prices
The models received from section (3) were used to simulate possible future scenarios
for asset prices. The parameters in tables (8, 9, 10, 11) were used in the model and by
the algorithm (3.3) when the time series were simulated. Two examples of series are
displayed in figures (10, 11), one for USD/SEK and one for gold.
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Figure 10: Example of simulated rate of USD/SEK ten years ahead.
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Figure 11: Example of simulated price of gold ten years ahead.
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4.4 Calculations of Certificate Prices
The prices of different certificates (Bulls and Bears on currencies and commodities)
were explicitly determined from the simulations of the asset prices by equations under
section (2.3.2). The corresponding certificate prices of a Gold Bull and USDSEK Bear
are found in figures (12, 13).
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Figure 12: Example of simulated price of gold, rate of USD/SEK and corresponding
price of Bull D S ten years ahead.
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Figure 13: Example of simulated price of USDSEK Bear D S ten years ahead.
The line indicates the level of the stop loss.

4.5 Probabilities of Exceeding Stop Losses
By the 1000 simulations for each certificate the probabilities of exceeding the stop
losses for the leverages could be estimated. The estimated probabilities of exceeding
stop losses within 10 years are put together in table (19). The same table shows the
median-, max- and min-values on how much the leverage exceeded the maximum lever-
age (the stop loss), it is calculated as

Size = (
Leverage after breaking

Stop Loss
− 1) · 100
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Table 19: The table presents the probability of exceeding stop losses and sizes of
the breaking. The median, max and min values are jump size through stop losses
calculated as the percentage of the maximum leverage (the stop loss).

Certificate Prob. of crossing stop loss Median Max Min

USDSEK Bull 5% 5.3142 16.0782 % 1.1063 %
USDSEK Bear 57% 7.3460 % 62.0978 % 0.4313 %
EURSEK Bull 0 % 0 % 0 % 0 %
EURSEK Bear 56 % 5.6096 % 31.3385 % 0.0381 %
Gold Bull 20 % 6.1360 % 71.1140 % 0.2814 %
Gold Bear 74 % 6.1889 % 167.3845 % 0.2049 %
Silver Bull 38 % 7.4643 % 78.1238 % 0.0970 %
Silver Bear 90 % 9.4294 % 143.4668 % 0.1762 %
Oil Bull 44 % 8.8249 % 211.7520 % 0.4047 %
Oil Bear 78 % 10.3002 % 433.1139 % 0.3664 %
Wheat Bull 53 % 5.5904 % 49.9065 % 0.0573 %
Wheat Bear 85 % 4.1883 % 163.7760 % 0.0377 %

4.5.1 Valuation of the Results

By letting the input parameters for the distributions vary by a normal distribution
one could se how sensitive the results are. The simulation results can be seen in table
(20). It shows that the probability of exceeding a stop loss is similar to the results in
table (19). The max values vary a lot as expected due to more extreme input values
to the distributions.

Table 20: The table presents the probability of exceeding stop losses and sizes of the
breaking. The median, max and min values are jump size through stop losses calculated
as the percentage of the maximum leverage (the stop loss). The input parameters vary
by a normal distribution.

Certificate Prob. of crossing stop loss Median Max Min

USDSEK Bull 7% 6.2875 19.1272 % 0.1483 %
USDSEK Bear 55% 5.2150 % 81.1722 % 0.2424 %
EURSEK Bull 0 % 0 % 0 % 0 %
EURSEK Bear 47 % 1.9130 % 27.4839 % 0.1413 %
Gold Bull 28 % 7.5450% 39.6160% 0.1308%
Gold Bear 72 % 6.3173 % 50.1201 % 0.1674 %
Silver Bull 49 % 8.4663 % 108.7231 % 0.4566 %
Silver Bear 77 % 11.7882 % 129.2536 % 0.1277 %
Oil Bull 46 % 7.7372 % 384.5597 % 0.3324 %
Oil Bear 61 % 11.4165 % 917.2793 % 0.0146 %
Wheat Bull 61 % 6.2458 % 96.8745 % 0.1503 %
Wheat Bear 90 % 5.2746 % 98.5555 % 0.0792 %
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5 Conclusions
This master thesis is based on the Black-Scholes model and it is shown through tests
that the model has its weaknesses. The tests shows that the Black-Scholes model
underestimates the tail events. Therefore by adding a jump diffusion process to the
Black-Scholes model, a new model is received that can capture the behavior of market
data in a better way.

Definitions are given of upward and downward jumps and the durations between
them. Different distributions are then fitted to the jumps and durations to find the
distributions that imitates market data the best. For most of the assets the Gamma
distribution is a proper choice for upward and downward jump sizes and the Gener-
alized Pareto distribution is often the best choice for durations between upward and
downward jumps.

Prices for different commodities and currencies are then simulated based on the
new jump diffusion model. The simulated data are then used to calculate the price of
different certificates issued by SEB. The simulated prices of the certificates are ana-
lyzed and the probability of exceeding the stop losses for the leverages of the certificate
is estimated. It gives an approximation for the chance of crossing a stop loss and an
estimate of how big the jumps through the stop losses can be.

Finally, the parameters are varied for the different distributions to test the goodness
of the results. It is shown that the probability of exceeding a stop loss did not differ
much from the previous results, but the maximum size of the jumps through the stop
losses is even more extreme.
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