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Abstract

Fall detection and identification is essential for elderly care applications. In this thesis, video
analysis techniques are investigated for detection of falls using RGB-D sensor. The focus is
to detect the human object from videos and study the contribution of different features in fall
classification. Speeded Up Robust Features detection by thresholding the difference image is
used to locate the key points of the human. The key points are used to define the region of
interest from which features are extracted. The spatio-temporal features studied are Histogram
of Oriented Gradients, optical flow and shape analysis. The extracted features are tested using
SVM classifier to distinguish fall and lying down events. The experiments are conducted on 800
RGB-D videos performed by 19 subjects. The results obtained are good for almost all features
(about 95% classification rate).

Keywords: HOG, Shape analysis, Optical flow, SURF, C-SVM, fall detection, elderly care,
RGB-D videos
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1
Introduction

Falls are a major cause of fatal injuries in elderly population (> 70 years of age) [1]. Based on
WHO statistics [2], accidental falls affect 32% - 42% of the elderly population each year. Elderly
people experience frequent falls as they are infirm and weak from age-related biological changes.
According to UN global statistics, almost 40% of the old people currently live independently
[3]. The rise in aged population is expected to be more than 2 billion people in 2050. For such
a growing elderly population, assistive devices are needed to lead an independent life. Such
devices help in the detection and reporting of fall accidents. Hence, healthcare and surveillance
industries are investing in camera-based fall detection systems which provides timely medical
assistance [4]. The elderly population also welcomes the idea of fall detection systems for their
improved security and safety at home.

The current research works in the field of fall detection and classification are as follows. Rougier
et al. [5] uses shape deformation during a video sequence to detect falls and shape matching to
track the person’s silhouette. Shape analysis methods are used to quantify the deformation and
for classification Gaussian mixture model is used. Mastorakis et al. [6] uses Kinect sensor inputs
to detect fall, based on the velocity and inactivity calculations. The contraction and expansion
of 3D bounding box in terms of width, height and depth is used to measure the velocity. Both
[5] [6] depend on the lack of inactivity after post-fall phase. Zhang et al. [7] uses 3D RGB-D
videos for analysis to protect the person’s identity. The person tracking switches to RGB video
when the person is out of range from 3D camera. The analysis employs hierarchy classification
to robustly recognize 5 activities.

Most of the studies have suggested different features with similar results, but no comparison has
been made to find the best-suited method [8]. Also, the number of volunteers involved in tests are
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CHAPTER 1. INTRODUCTION

comparatively low to use the results for real-life scenarios. A robust fall detection system must
classify fall as fall and any other activity as non-fall to use in real life situations. If it classifies
fall as non-fall it is termed as miss and in such case the medical response cannot be made
on time. Similarly, if non-fall is classified as fall it is termed as false alarm and such systems
becomes undependable and useless. Some of the studies does not consider about the privacy of a
person in the videos when designing systems for fall detection. Few detection systems are based
on inactivity of the person in the post-fall phase. But a long lie (inactivity) is associated with
high mortality rates among the elderly, hence a reliable fall detector must diminish the long lie.
The upcoming fall detection systems must provide better solutions to overcome the mentioned
drawbacks. It is difficult to design such reliable and robust systems. Most of the commercial
products in the market are not as widely used and have no impact on elderly independent living
[9].

The current project tries to find working solutions for the researched problem of fall detection
and classification by using computer vision and machine learning. In this thesis, RGB-D videos
which are captured from the cameras and infrared sensors are used for fall detection. The ob-
ject needs to be tracked to detect falls and relevant features that describe the activity are later
extracted. These extracted features are used in activity classification to determine the type of
activity the feature belongs to.

1.1 Objective of this thesis

The thesis aims to detect and classify falls using videos with less false alarm and misses. The
video dataset made in university campus containing the fall and lying down activities are pro-
vided by Signal Processing research group at Chalmers University of Technology. Each video
contains a single person performing the activity of either fall or lying down. The long video
needs to be cropped to shorter activity events, which is done manually by using video editing
software. The object in the video foreground describes the detail of any activity. So it’s neces-
sary to use object detection for tracking the single person in the videos. The tracked objects are
used to find the region of interest (ROI). The next step is to find prominent features that describe
the activity from the detected region.

The features need to be as distinct as possible to differentiate fall from another confusion class
lying down. The goal is to extract features like the Histogram of Oriented Gradients (HOG),
optical flow and shape analysis for feature extraction. Finally, the features are used as inputs
to a classifier for activity identification. In this thesis, support vector machine (SVM) based
on supervised learning is used for the classification. The trial and error method is used to find
the parameter settings with high classification rate. The process setup containing the modules
of object detection, feature extraction and activity classification are implemented in MATLAB
software.
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CHAPTER 1. INTRODUCTION

1.2 Scope

The study can be extended for various other video activities (apart from fall and lying down) to
observe human behavior that could help automation of elderly care. The current work focuses
on different features and its respective parameters to enhance the classification rate, while for
future a comparative study between different classifiers can be done. Such study will identify
which classifier gives optimal learning solution for the classification of human activities.

1.3 Outline of the report

The thesis report contains the following sections: Section 2 details basic theory and methods
that are related to the thesis work. Section 3 describes the methods and block diagram used in
this thesis. Section 4 includes the experimental results and evaluation. Finally, conclusions are
given and future work is discussed.
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2
Theory and methods

This section reviews some basic theory and mathematical concepts behind image processing
methods that are useful in this project. The algorithms mentioned here are used for fall detection
and classification. This section is divided into 3 parts detailing the algorithm for object detection
and tracking, defining the features and classifying them. The first part on object detection covers
background subtraction, morphological operations and Speeded-Up Robust Features (SURF)
detector. The second part is about features such as HOG, Optical flow and Shape analysis. The
final part covers the supervised learning algorithm of SVM to classify the features.

2.1 Detect foreground object

Background subtraction is one way of detecting the objects in the foreground. The morphologi-
cal operations when used on images result in object contours which are useful for detection. To
define the foreground object with boundary points, its relative interest points need to be detected.
SURF detection algorithm is a useful method for key point detection of an object.

2.1.1 Background subtraction

A fixed camera captures the RGB-D video sequence of the object with a background. The
difference frame Idi f f is found between two consecutive frames to detect the foreground object
(human). It is extracted from the RGB video for successive frames IRGB until the last frame is
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CHAPTER 2. THEORY AND METHODS

reached.
Idi f f ,n = IRGB,n+1− IRGB,n (2.1)

where nth frame ranges from [1, len-1] and len - number of frames in a video. It is not always
possible to have a stationary background in real environments. Factors like indoor reflections
and illumination changes affect the captured frames. Yet, background subtraction is a simple
method which is useful in moving object detection.

2.1.2 Morphological operations

Morphological operations are a useful mathematical tool for shape based image processing. The
two basic operations are erosion and dilation [10].

Erosion and Dilation: The process of erosion shrinks the object in an image while dilation
grows the object within an image. Consider f (x,y) a greyscale image and b(x,y) an operator
used in morphological process. The erosion output [ f 	 b] uses the operator b(−x,−y) for
filtering, while dilation output [ f ⊕ b] uses b(x,y) as the operator. The functions are given in
(2.2) and (2.3).

[ f 	b](x,y) = min
(s,t)∈b

{ f (x+ s,y+ t)} (2.2)

[ f ⊕b](x,y) = max
(s,t)∈b

{ f (x− s,y− t)} (2.3)

Closing and Opening: Closing [ f •b] operator fills in the holes within an image, while opening
[ f ◦b] operator separates the connected objects in an image. These operations given in (2.5) and
(2.4) are derived from the erosion and dilation process.

[ f •b] = ( f ⊕b)	b (2.4)

[ f ◦b] = ( f 	b)⊕b (2.5)

2.2 SURF key points detection

Key or corner point detectors like Scale Invariant Feature Transform (SIFT) and SURF are used
to find the interest points in an image. SURF detection is computationally faster than the SIFT
method.

The ’Fast-Hessian’ detector from SURF is based on scale-space analysis of Hessian matrix [11].
The second order derivatives of Gaussian function Lxx(p,σ), Lxy(p,σ), Lyy(p,σ) defines the
Hessian matrix H (p,σ) as shown in (2.6). The image I at point p = (x,y) is convolved with
a given Gaussian function of scale σ to obtain the derivatives. The Gaussian derivatives are

5



CHAPTER 2. THEORY AND METHODS

discretized and cropped for practical applications, instead the SURF detector uses filter approx-
imation for Gaussian second order derivatives (Dxx, Dyy and Dxy). The Hessian determinant
modified after including filter approximation is given in (2.7).

H (p,σ) =

[
Lxx(p,σ) Lxy(p,σ)

Lxy(p,σ) Lyy(p,σ)

]
(2.6)

det(Happrox) = DxxDyy− (0.9Dxy)
2 (2.7)

For scale-space analysis in SURF detector, it uses integral images (I∑(p)) and filter approxi-
mations to avoid the smoothing of images at every level in image pyramids. This is possible
because the filter can easily be up-scaled to larger filter sizes 9×9, 15×15, 21×21, 27×27 at
every scale. The Gaussian approximations (σ ) of the scaled filters also scale accordingly. For
example, the 4th scale filter of size 27×27 has a corresponding σ = 3×1.2 = 3.6 = s [11]. The
scales are grouped into octaves and at larger scales for higher octaves the filter step sizes are
doubled (i.e. 15×15, 27×27, 39×39, 51×51 for 2nd octave).

To detect the interest points from the image, a 3×3×3 neighbourhood non-maximum suppres-
sion is done to localize the image over scale and space. The maxima of Hessian matrix de-
terminant is interpolated in both scale and image space. This interpolation locates the interest
points as detailed in [11]. The detectors are used in applications of object recognition involving
humans or face details and to track moving targets.

2.3 Features

The success of any activity classification depends on the prominence and distinctiveness of its
features. For two actions to be distinct, it is mandatory to have similar intra-class features and
distinctive inter-class features. The properties of such extracted features have to be robust, cost
efficient, orientation invariant and insensitive to disfigurement. Lastly, feature extraction from
an image helps in reducing dimensionality. The transform values of the image or newly defined
feature functions achieves feature reduction. A detailed description on HOG, optical flow, shape
analysis features are given in the next sections.

2.3.1 Histogram of Oriented Gradients

HOG descriptors [12] describe the pixel distribution (histogram of intensity values) based on
contour orientations (edge directions).
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CHAPTER 2. THEORY AND METHODS

The image processing in HOG descriptor according to [12] is given and its process flow is as
shown in the Figure 2.1. RGB colour space is preferred and the pixel’s gradient is assigned from
the largest norm gradient between three colour channels. A simple gradient filter [-1, 0, 1] with
σ = 0 is the best option for filtering, as convolving with larger or smoothing masks decreases
the performance.

The method considers ’cells’ as small spatial regions that divides the image window and ’blocks’
as a larger spatial region containing the cells. The block shape is either a rectangle (R-HOG)
or a circle (C-HOG), but R-HOG is chosen as the spatial subdivision into blocks and cells are
easier. The R-HOG contains non-overlapping cells of size m×m. An edge orientation histogram
is formed for each cell, with histogram bins in the range of 0◦ to 180◦ where the gradient is
unsigned. The number of bins in the histogram is 9 thus the range has a unit scale value of 20◦.

Each pixel in a local cell associates itself with an orientation based on its gradient element. The
vote for the histogram is a function of pixel’s gradient magnitude. The cells are grouped into

Figure 2.1: Steps involved in the processing of Histogram of Oriented Gradients from [13]
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CHAPTER 2. THEORY AND METHODS

blocks of size r× r, and the blocks are overlapped at half the block size. The optimal value
for cell size is 8×8 and block size is 2×2, as 6-8 wide pixel cells imitate human anatomy in an
image. A trade-off is observed when defining the block size, as large values ignore local content
and smaller value suppresses global details.

Normalization is carried out to remove local range variations and it uses block-based L2-Hys

method. It clips the L2 normalized value which is given as v/
√
||v||22 + k2, where ||v||2 is the

L2-norm of descriptor vector v and ′k′ is a regularization constant. When descriptors are not
normalized or when L1-norm is used instead of L2, detection performance reduces drastically.

A detection window is used to compute the descriptor, which also includes margin information
around the object that provides extra context to the person. The reduction in margin size or an
increase in the person size results in border reduction, giving loss of performance. Instead of a
soft linear SVM, a Gaussian kernel SVM increases performance. The HOG descriptor is often
used for human detection.

2.3.2 Optical flow

Optical flow is the pattern of apparent motion that is contained in a visual scene. To estimate the
optical flow certain assumptions are made [14]. The mostly followed assumption is ’Grey value
Constancy’ in which the pixel intensity does not change as it flows between frames. Consider
f (x,y, t) is the intensity of the pixel (x,y) at time ’t’, if the flow is [u(x,y, t),v(x,y, t)] then the
assumption is written as:

f (x,y, t) = f (x+u,y+ v, t +1) (2.8)

Taylor expansion is applied to linearize the above equation.

f (x+u,y+ v, t +1) = f (x,y, t)+u
∂ f
∂x

+ v
∂ f
∂y

+1
∂ f
∂ t

(2.9)

From which the ’Optical flow constraint’ is obtained, given in below equation:

u
∂ f
∂x

+ v
∂ f
∂y

+
∂ f
∂ t

= 0 (2.10)

But the Grey value Constancy assumption leads to an ill-defined problem, as two unknowns (u
and v) have to be solved from a single equation. To resolve the problem, two different methods
that are either local or global in approach are used. Lucas and Kanade (LK) came up with a
localized solution which considers a smaller image neighbourhood of size ρ where the assump-
tion is true. Horn and Schunuck (HS) proposed a global differential method which considers
the assumption to be true for the entire image, where dense flow estimates are obtained with a
regularization parameter α .
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CHAPTER 2. THEORY AND METHODS

A hybrid technique that combines robustness of local LK method and the density of global HS
method is used for optical flow estimation. To obtain a combined local-global (CLG) method,
a multi-resolution approach is followed that adopts coarse-to-fine warping techniques [15]. The
details of these solutions are unrelated to this thesis work and are defined from [14], [15]. The
optical flow implementation used in this project is available from [16]. The optical flow vec-
tors are very large for high-resolution frames. So the optical flow is defined as a characteristic
distribution instead of using the entire flow vector as the motion feature descriptors.

Histogram of Oriented Optical flow: Optical flow vector uses a characteristic distribution in
terms of magnitude or direction to describe its features. The orientation is based on flow vector
v = [vx,vy] with respect to horizontal axis computed from θ = tan−1(

vy
vx
). To make it invariant to

direction (left to right or vice versa) the orientation range is considered to be,

− π

2
+π

b−1
B
≤ θ <−π

2
+π

b
B

(2.11)

where B is the number of bins used in the histogram which is user variant input. The value added
to bth bin (1≤ b≤ B) in a histogram is the sum of vector magnitudes

√
vx

2 + vy
2 which is later

normalized. This feature is called as Histogram of Oriented Optical flow (HOOF) introduced in
[19].

HOG of Optical flow: The optical flow (OF) vector v = [vx,vy] is characterized as an RGB
colour image. A HSV (Hue-Saturation-Value) model based color-coding converts the optical
flow vector to an RGB image. At each pixel, the flow direction OF phase is coded as hue while
the flow magnitude OFmag is coded as saturation.

OF phase = tan−1(
vy

vx
) (2.12)

OFmag =
√

vx
2 + vy

2 (2.13)

Figure 2.2: The visualization of flow fields from [17]. The color code in [18] is used to visualize a
flow field: each pixel denotes a flow vector where the orientation and magnitude are represented by
the hue and saturation of the pixel respectively.
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CHAPTER 2. THEORY AND METHODS

The color-coding scheme is given in [18] and it is shown in the Figure 2.2. The optical flow fields
are color-coded to result in an RGB image IHSV . The colour of the image shows the direction
of object motion and the saturation shows the magnitude of its motion. After finding the HSV
based RGB image, to define its features the HOG descriptor (see Section 2.3.1) is used. This
HOG feature on HSV image IHSV is called as HOG of Optical flow (HOGOF).

2.3.3 Shape feature

The shape feature in [20] is described below. Shape representations such as the centre of gravity,
eccentricity, orientation, aspect ratio, extrema points and the distance between boundary points
and centroid are explained.

Centre of gravity: Centroid or centre of gravity is a fixed position (gx,gy) in the region with N
number of points and is given by,

gx =
1
N

N

∑
i=1

xi

gy =
1
N

N

∑
i=1

yi

(2.14)

such that, (xi,yi) ∈ {(xi,yi)| f (xi,yi) = 1}. It’s illustrated in the Figure 2.3.

Eccentricity: It is the ratio of lengths between the major axis and minor axis in an elliptical
boundary. A minimum bounding rectangle method is used to determine the eccentricity (V ) of a
symmetric object as shown in the Figure 2.3.

V =
Major axis length
Minor axis length

=
a
b

(2.15)

Minimum bounding rectangle: The smallest bounding box (BB) is in the shape of a rectangle

Figure 2.3: Shape feature analysis from [20]. Left: Centroid and Eccentricity. Right: Minimum
bounding rectangle.
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Axis of least 
inertia

E1 Extreme point 

E2 Extreme point

Centroid

Feature point

Figure 2.4: Symbolic features (Extrema points) based axis of least inertia from [20]

that contains the entire object points within it as shown in the Figure 2.3. The formulation of
aspect ratio of this method is given as:

Aspect Ratio =
Length
Width

=
L
W

(2.16)

Orientation: Orientation gives the angular value between the major axis of the ellipse to its
x-axis. The values range from −90◦ to 90◦, where the ellipse has same second moments as the
bounding box.

θ = tan−1 Major axis length
x- axis length

(2.17)

The shape representations cannot be used as standalone shape descriptors. The shape descriptors
also include other parameters like distance function and its derivatives to discriminate shapes.

Extrema Points: The longest axis passing through the centroid of a shape is defined as the
reference, to compute squared distances between the axis and all extrema points on the outer
boundary as illustrated in the Figure 2.4. Among the projected points, 8 farthest points away
from the axis is selected as the Extrema points E1, E2, E3, E4, E5, E6, E7 and E8. This feature
is invariant to transforms, rotation and translation. Extrema points along with other mentioned
shape features are available in MATLAB function ’regionprops’.

Boundary point to centroid distance: It is defined as the Euclidean distance between the
extrema in the boundary to the centroid. It is translation invariant and is defined as:

d(n) =
√
(x(n)−gx)2 +(y(n)−gy)2 (2.18)

The derivative of distance function could be used to define the trajectory of the moving object
and is formulated as the difference in distances between consecutive frames.

11



CHAPTER 2. THEORY AND METHODS

2.4 SVM classification

A Support Vector Machine is a useful method for data classification. A non-linear function is
used to map the input feature vectors to a high-dimensional feature space, where the hyperplane
is defined. An optimal hyperplane [21] to separate classes is a decision function D(x) with the
maximal margin between feature vectors as shown in Figure 2.5. A small part of the input data
called support vectors determines the margin function that has a maximum width of separation.
SVM requires training data to construct a hyperplane and using the decision function it classifies
the features of testing data. The training data contains two components: one is the class label
and other is the feature vector.

In the Figure 2.5 the support vectors in both classes lie on the ’dashed line’ which represent
the margin function while the decision function is the ’solid line’ that divides the two classes.
The decision function decides the feature class, from the figure D(x) > 0 is labelled as class
(+1) marked in ’blue’ and D(x) < 0 as class (-1) marked in ’red’. Supervised training for the
SVM uses the labelled training data. The use of support vectors to find optimal hyperplane (with
maximal margin) also makes the computation faster.

C-Support Vector Machine for Classification: C-SVM constructs a soft margin separating
hyperplane for classifying features into respective class labels. Given training vectors xi ∈Rn,
i = 1,...,l in two classes, and a label vector y ∈ R l such that yi ∈ {1,−1} C-SVM [21]; [23]
solves for minimum generalization error,

Figure 2.5: An example of a separable problem in a 2-dimensional space from [22]. The support
vectors, marked on dashed line, define the margin of largest separation between the two classes.
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min
w,b,ε

1
2

wT w+C
l

∑
i=1

ξi

subject to yi(wT
φ(xi)+b)≥ 1−ξi,

ξi ≥ 0, i = 1,...,l

(2.19)

where φ(xi) maps xi into a higher-dimensional space, w is a weight vector, b is a bias, C > 0
is a regularization coefficient, and ξi is a slack variable. The algorithm to find the soft margin
hyperplane is detailed in [23]. The decision function D(x) that defines the hyperplane is given
in (2.20) where sgn is the sign function,

D(x) = sgn(wT
φ(xi)+b) (2.20)

In this thesis, SVM is used as a tool for classification. To implement the classifier module a
kernel function is used, to map the features into high dimensional space. C-Support Vector
Classification from LIBSVM package [24] is used in this project.

13



3
Work in this thesis

This chapter describes in detail the methods and algorithms used for fall detection and classifi-
cation. The project flow diagram is shown in the Figure 3.1. The process begins with RGB-D
video inputs given to object detection techniques. Object detection is followed by tracking the
object and later using it to find the region of interest. ROI is given as the input for feature extrac-
tion that uses spatio-temporal features. The SVM classifier takes feature inputs and classifies
them to respective class labels.

In this project RGB-D videos that capture human activity is used as the input. The object detec-
tion is carried out by using difference image and object contour from morphological operations.
The detected object is tracked with a bounding box using SURF key points and the BB is modi-
fied to the region of interest. The ROI is then normalized to fixed size and used as the input for
feature extraction. The three features used in this thesis are HOG, optical flow and shape. The
features are normalized and fixed to a constant interval. The feature vectors are used in C-SVM
classifier to identify the classes by binary classification. At last, the classification performance
and evaluation are given.

Figure 3.1: Flow diagram of modules used for fall detection and classification
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3.1 Object detection and tracking methods

3.1.1 Background subtraction by using the difference image

The difference image Idi f f defined in Section 2.1.1 is useful for object detection. When tak-
ing the frame difference between consecutive frames the stationary background is subtracted,
leaving the region of a moving object. This is possible as the camera is fixed and it captures a
moving object. The object needs to be moving, if the object is also stationary it results in zero
detection. The foreground object detection is not always possible in real environments, as the
background is affected by factors like reflections and illumination changes. In this method, RGB
difference image is used as it has fewer background disturbances. The depth difference image
is avoided as it includes more background noise. Though RGB difference image is better than
depth, it suffers from reflection and illumination changes. Also when the person or object in the
video wears black colour clothing that is similar to the background, it results in partial object
detection. Hence, only either the upper or lower part of the human is detected.

3.1.2 Apply morphological operations to find object contour

The object contour is obtained using morphological operations on depth frames IDepth (greyscale
images). In this method, the opening operators discussed in Section 2.1.2 are used to define
morphological skeleton Iskel . The outer boundary points of this skeleton are used as the object
contour Ishape. The above steps are implemented by using ’bwmorph’ function in MATLAB
as shown in the Algorithm 1. The depth images are considered for morphological operators
in MATLAB, as the ’bwmorph’ function performs on a binary or greyscale image. The output
frames containing the object contour also contains some background clutter, which needs to be
removed before feature definition.

Algorithm 1 Object contour by morphological operations in Depth video

for every Depth video with frames IDepth do
for n = 1 to len, where ’len’ - number of frames in a video do

function BWMORPH(IDepth,n, ’skel’) . Image Processing Toolbox in MATLAB
return Iskel,n

end function
function BWMORPH(Iskel,n, ’endpoints’)

return Ishape,n
end function

end for
end for
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3.1.3 Object tracking with bounding box by using SURF key points

Once the object is detected in a video, the bounding box is then allocated which encloses the
detected object. To define the location of the bounding box, first the interest points of the moving
object are defined using SURF discussed in Section 2.2. In this thesis work, the SURF key points
are computed from the RGB difference image Idi f f to obtain the object bounding box. It uses the
function ’detectSURFFeatures’ in MATLAB described by the Algorithm 2. The detected key
points are given as x-axis (Sx) and y-axis (Sy) coordinate vectors. These coordinates are used to
define the locations of the bounding box by (3.1).

[x1,x2,y1,y2] = [min(Sx),max(Sx),min(Sy),max(Sy)] (3.1)

The bounding box location ’x1’ and ’x2’ indicates the minimal and maximal point in the horizon-
tal axis respectively while ’y1’ and ’y2’ indicates the minimal and maximal point in the vertical
axis. One of the parameters used in ’detectSURFFeatures’ function is ’MetricThreshold’. This
parameter indicated as SURF thres is modified in this method to vary the number of key points.
When the threshold is high less key points are detected and when the threshold is less more key
points are detected, which can affect the bounding box size.

Algorithm 2 Object bounding box from SURF key points

for every RGB video with difference image Idi f f do
for n = 1 to len, where ’len’ - number of frames in a video do

function detectSURFFeatures(Idi f f ,n, ’MetricThreshold’)
. Computer Vision System Toolbox in MATLAB

return [Sx,Sy]n
end function
Find [x1,x2,y1,y2]n by (3.1)

end for
end for

3.1.4 Append zeros outside bounding box to form the region of interest of size
(a×a)

The region of interest is a small segment of the entire image frame. This segmenting step focuses
on finding the foreground object. Consider the tracked objects with bounding box locations
[x1,x2,y1,y2]. The ’width’ (x2−x1+1) and ’height’ (y2−y1+1) of the box are used to compute
the aspect ratio of the object. The length l defined as l = max(width,height), varies for every
frame as the tracked object’s aspect ratio changes with motion. Next the tracked object with BB
(bounding box) size (width× height) is defined as ROI with area (l× l). When defining ROI
to maintain the aspect ratio of the object, zero pixel values are appended in the remaining area
outside BB. An illustrative example of this method where background pixel values are appended
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Figure 3.2: Illustration of changing the bounding box to the region of interest as defined in Section 3.1.4.
Append intensity values outside BB to form ROI of area (l× l) which is later resized to size (a× a), in the
illustration the appended pixels are background pixel values indicated by ’texture’ region.

is shown in the Figure 3.2. The method is adopted from [25] and uses either RGB (IRGB) or
Depth (Ishape) based tracked objects. The overall image is segmented to ROI frame IROI where
only the object details are present that is useful in feature extraction. The region of interest (IROI)
is then normalized to size (a×a).

3.2 Extract features from the region of interest

The features are extracted using three types of descriptors namely HOG, Optical flow and Shape.
These feature methods use the region of interest frames IROI,n to obtain the frame-based vectors
’hn’. The frame-based vector contains ’L f ’ number of feature components for an ROI frame.
The value ’n’ ranges between [1, len] where ’len’ denotes the number of frames in an activity
video. The total number of frames for each activity video is not the same, due to differences
in motion speed. But, the input of classifier requires features on fixed interval (equal feature
length) for all activity.

3.2.1 Window averaging to obtain time dependent features

Consider the frame-based vector ’hn’ of a video activity, where n = 1,...,len. The length of
a video activity ’len’ is different for each video. Window averaging is defined to obtain time
dependent feature vectors. A fixed number of feature vectors are obtained on a fixed interval
k = 1,...,M. Each time dependent feature vector ’f̂k’ is an average from a segment of frame-

based vectors with window size W = round
(

len
M

)
. The varying averaging window W is used to
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Figure 3.3: Window Averaging method on a fixed interval M. The graphical figure shows a line diagram
that indicates frame-based vector. The video length ’len’ is divided into windows of size ’W ’. The grouped
windows shown in ’red’ brackets undergo window averaging to give time dependent feature vectors.

calculate the time dependent feature vector as given in (3.2). The feature vector ’f̂k’ has a fixed
interval ’k’ ranging between [1,M].

f̂k =
1

W

W

∑
j=1

h(k−1)W+ j ; k = 1, ...,M (3.2)

The excess frames outside the ’M’ fixed interval [(len−M×W ) < W ] is dropped. Additional
use of this method is to reduce the feature vector dimensionality. A pictorial representation of
the window averaging method is shown in the Figure 3.3. The frame-based vectors from a video
of frame length ’len’ are grouped into windows of size ’W ’. The time dependent feature vectors
in interval M after window averaging is indicated in the figure.

For each selected feature (HOG, Optical flow and Shape), the time dependent feature vectors
’f̂k’ are obtained from window averaging in a fixed interval M. The transpose of time dependent
feature vectors are computed and are serially combined one after the other to give the final feature
vector (row vector) denoted by ’f̂ j

’ given in (3.3) for each jth video. The length of feature
vector ’f̂ j

’ is M×L f and it is based on fixed interval ’M’ and number of feature components
’L f ’, which are fixed to obtain an equal feature length for all activities. The value of ’ j’ ranges
between [1,N] where ’N’ is the number of videos.

f̂ j
= [f̂1

j f̂2
j
... f̂M

j
] ; j = 1, ...,N (3.3)
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3.2.2 HOG feature vector

The HOG feature is extracted from the region of interest IROI . The definition of HOG is detailed
in Section 2.3.1. In this method the MATLAB function ’extractHOGFeatures’ is used to ob-
tain the feature vector as shown in the Algorithm 3. The HOG frame-based vector is given as
’hHOG,n’, with LHOG as the number of HOG feature components.

Window averaging defined in (3.2) is used to obtain HOG time dependent vectors ’f̂k
j,HOG

’ in
fixed interval M. The final HOG feature vector ’f̂ j,HOG

’ for each jth video with feature length
M×LHOG is obtained according to (3.3).

f̂ j,HOG
= [f̂1

j,HOG f̂2
j,HOG

... f̂M
j,HOG

] (3.4)

Algorithm 3 Obtaining HOG features

for every RGB video with IROI do
for n = 1 to len, where ’len’ - number of frames in a video do

function extractHOGFeatures(IROI,n)
. Computer Vision System Toolbox in MATLAB

return hHOG,n

end function
end for

end for

3.2.3 Optical flow feature vector

The optical flow vector between two adjacent frames is computed. The input used in optical flow
is the region of interest of an image frame IROI from the RGB video. The optical flow vector
[vx,vy] in the ’x− axis’ and ’y− axis’ directions are obtained from adjacent ROI frames along
with parameter settings in [16]. The MATLAB function ’Coarse2FineFrames’ from [16] is used
to find the flow vectors. The optical flow vectors cannot be directly used as feature descriptor
because of its large feature length. The flow vectors are used to define optical flow feature as in
Section 2.3.2 by either the HOOF or HOG of optical flow (HOGOF) method.

Histogram of Oriented Optical flow: In HOOF feature, the optical flow magnitude and direc-
tion are used in a distribution histogram. The flow vectors [vx,vy] for every frame in a video is
given as input along with the number of bin specification (binSize). The constant bin number
is used to specify the orientation range for the histogram. The output of this function is HOOF
frame-based vector ’hOF,n’ with ’LHOOF ’ number of HOOF feature components for nth frame.
This method is available as a MATLAB function ’gradientHistogram’ from [19].
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Algorithm 4 Obtaining Optical flow features

for every RGB video with IROI do
for n = 1 to len, where ’len’ - number of frames in a video do

function Coarse2FineTwoFrames(IROI,n, IROI,n+1, ’para’)
. Optical flow code from [16]

return [vx,vy]n
end function
HOOF Feature
function gradientHistogram([vx,vy]n, ’binSize’)

. HOOF code from [19]
return hOF,n

end function
HOGOF Feature
function flowToColor([vx,vy]n)

. Flow color coding from [18]
return IHSV,n

end function
function extractHOGFeatures(IHSV,n)

. Computer Vision System Toolbox in MATLAB
return hOF,n

end function
end for

end for

Figure 3.4: Flow diagram of HOGOF feature extraction module

HOG of Optical flow: The HOG of Optical flow feature (HOGOF) uses optical flow vectors
[vx,vy] from the region of interest as input. The optical flow magnitude (OFmag) and direction
(OF phase) are computed from (2.13) and (2.12) respectively. Based on HSV model, for each
frame the optical flow magnitude is coded as saturation image ’Isat’ and direction is coded as
hue image ’Ihue’. The combined HSV image IHSV is in RGB colour space. The magnitude and
direction values of flow vectors are colour-coded using existing MATLAB function ’flowTo-
Color’ from [18].

The output IHSV,n frames are used as input to HOG to yield HOG of Optical flow feature
(HOGOF). This is achieved by using ’extractHOGFeatures’ function from MATLAB. The out-
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put from this function is the HOGOF frame-based vector hOF,n for each nth frame, with LHOGOF

number of HOGOF feature components. The process flow is as shown in the Figure 3.4.

The steps involved to find optical flow features are given in Algorithm 4. The optical flow
frame-based vector ’hOF,n’ uses window averaging in (3.2) to obtain time dependent feature

vector ’f̂k
j,OF

’. The final optical flow feature vector ’f̂ j,OF
’ for each jth video with feature

length M×LOF is computed following (3.3).

f̂ j,OF
= [f̂1

j,OF f̂2
j,OF

... f̂M
j,OF

] (3.5)

3.2.4 Shape feature vector

Depth videos are used to extract shape features. Shape feature analysis is done on depth video
IROI frames from object detection to give the feature descriptors in two parts. The two parts
contain the form and motion features as given in (3.6) and the process flow is shown in the
Figure 3.5.

hSHAPE = [hcontour hmotion] (3.6)

Form features of shape descriptor: The shape feature with form components is defined in
(3.7). The form features follows shape parameters in Section 2.3.3 and are defined below.

hcontour,n = [pg,pExtrema,1,...,pExtrema,8,θ ,AR,V,d1,...,d8]n (3.7)

The proposed descriptor at every nth frame of the video has the centre of gravity of ROI (pg)
given by (2.14). The i-Extrema points (pExtrema,i) where i = 1,...,8, are obtained from the outer
boundary of the region of interest IROI . The coordinate vector of a pixel point in 2D space is
given as p = (px, py), so each spatial point has two feature values. The spatial points contribute
18 shape feature components.

Orientation (θ ) is the angle between the x-axis and the major axis of the bounding box ellipse
given in (2.17). Aspect ratio (AR) is the ratio of width to height obtained from BB locations
[x1,x2, y1,y2] given by (3.8).

AR =
x2− x1 +1
y2− y1 +1

(3.8)

Figure 3.5: Flow diagram of shape feature extraction module
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Figure 3.6: Form feature components of shape descriptor. An illustration of form features between adjacent
frames n and n+1 is shown. The spatial points used to determine pixel velocity are indicated by colour ’blue’
(Extrema) and ’yellow’ (centroid). The Euclidean distances di are indicated by ’green’ solid lines.

Eccentricity (V) is the ratio of lengths between the major and minor axis of the object in an
elliptical bounding box given by (2.15).

The Euclidean distance (di) between each extrema coordinate (pExtrema,i) and centroid (pg) is
defined by (3.9). There are a total of 29 form feature components defined and some of them
are illustrated in the Figure 3.6 between adjacent frames. The shape feature components are
obtained using the MATLAB function ’regionprops’ as shown in Algorithm 5.

di = ‖pExtrema,i−pg‖2 ; i = 1,...,8 (3.9)

Motion features of shape descriptor: The motion features are grouped as shape descriptor
which is mathematically defined below:

hmotion,n = [∇d1,...,∇d8,kpExtrema,1 ,..,kpExtrema,8 ,kpg ]
n+1
n (3.10)

The final part of shape descriptor consists of 17 motion features which contain the distance
gradients and pixel velocity due to object movement between adjacent frames ’n’ and ’n+1’.

The first 8 motion features indicates the distance gradients ∇di between two adjacent frames.
The gradients find the difference in Euclidean distances from 8 extrema points. The ∇di

n for nth

frame is defined by (3.11) taking distance values between frames ’n’ and ’n+1’, where di value
is defined by (3.9).

∇di
n = di

n+1−di
n ; i = 1,...,8 (3.11)

The next 9 motion features indicate pixel velocity of 9 spatial points (8-extrema and centroid).
The pixel velocity is defined as the Euclidean distance between respective spatial point locations
in adjacent frames ’n’ and ’n+1’. Let’s consider kp

n as the pixel velocity of spatial point ’p’ at
nth frame,

kp
n = ‖pn+1−pn‖2 (3.12)
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Figure 3.7: An illustration of Shape descriptors with spatio-temporal shape features. The spatial points are
indicated by colour ’blue’ (Extrema) and ’yellow’ (centroid). The Euclidean distances di are indicated by
’green’ solid lines. The pixel velocity indicated by dashed lines with arrows. The colour ’orange’ for the
extrema points and ’violet’ for the centroid.

A visual illustration of the defined shape descriptors with 46 features are partially shown in the
Figure 3.7. The spatio-temporal features are indicated as markers and lines of different colours
to identify the shape descriptors.

The frame-based vector ’hSHAPE,n’ for shape feature is computed from (3.6), with LSHAPE = 46

number of shape feature components. To find time dependent feature vector ’f̂k
j,SHAPE

’, window
averaging is done on a fixed interval M by (3.2). The final shape feature vector ’f̂ j,SHAPE

’ for
each jth video with feature length M×LSHAPE is followed from (3.3).

f̂ j,SHAPE
= [f̂1

j,SHAPE f̂2
j,SHAPE

... f̂M
j,SHAPE

] (3.13)

3.2.5 Normalize feature values

The normalization of each given feature (HOG, Optical flow and Shape) is defined after window
averaging on time dependent feature vectors ’f̂k

j
’ given in (3.3). Let µk denote the mean feature

vector and σk denote the variance feature vector computed over k = 1,...,M fixed interval and
j = 1,...,N number of training videos. The definition of µk and σk are given in (3.15) and (3.16)
respectively. Each vector ’f̂k

j
’, µk and σk has L f number of feature components. The feature

23



CHAPTER 3. WORK IN THIS THESIS

Algorithm 5 Shape descriptors defined by form features

for every Depth video with IROI do
for n = 1 to len, where ’len’ - number of frames in a video do

function REGIONPROPS(IROI,n, ’Centroid’, ’Extrema’, ’Orientation’)
. Image Processing Toolbox in MATLAB

return [pg,pExtrema,1,...,pExtrema,8,θ ]n
end function
function REGIONPROPS(IROI,n, ’MajorAxisLength’, ’MinorAxisLength’)

. Image Processing Toolbox in MATLAB
V = MajorAxisLength / MinorAxisLength
return [V]n

end function
function ASPECTRATIO([x1,x2,y1,y2]n)

AR = (x2− x1 +1)/(y2− y1 +1)
return [AR]n

end function
for i = 1 to 8 do

function EUCLIDIST(pExtrema,i,pg)
return di,n

end function
end for
hcontour,n = [pg,pExtrema,1,...,pExtrema,8,θ ,AR,V,d1,...,d8]n

end for
end for

normalization ’fk
j’ is defined on time dependent feature vectors as given in (3.14).

fk
j =

f̂k
j−µk

σk
; j = 1,..,N ; k = 1,...,M (3.14)

µk =
1
N

N

∑
j=1

1
M

M

∑
k=1

f̂k
j

(3.15)

σk =

√√√√ 1
N

N

∑
j=1

(f̂k
j−µk)2 (3.16)

3.2.6 Combine all features in series

To obtain most of the spatio-temporal details in a single feature vector, the serial combination
of feature vectors is done. In this thesis, the row vector of one feature is appended along with
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the previous feature’s row vector. The feature vector f j,COMBINE defined in (3.17) is a serially
combined vector (row vector), which has feature length M× (LHOG +LOF +LSHP) for each jth

video. The HOG feature f j,HOG provides spatial details, the optical flow feature f j,OF gives
the motion details and the shape feature f j,SHAPE has both form and motion features. A feature
vector with three type of features is useful for classifying an activity.

f j,COMBINE = [f j,HOG f j,OF f j,SHAPE ] (3.17)

3.3 Design of a classifier

The final part is to design a classifier that separates the extracted features to its related classes.
The classifier used in this thesis is C-SVM for classification as discussed in section 2.4.

Activity Classification for Binary Class: Binary classification means two-class classification,
where the C-SVM classifier separates the final feature vector by applying a soft margin. The
RBF kernel function is used in C-SVM to map the features into a higher dimensional space. The
RBF function with kernel parameter γ is given as,

K(xi,x j) = exp(−γ||xi− x j||2),γ > 0. (3.18)

Cross-validation and Grid search: The cross-validation followed in this design is n-fold cross-
validation, where the dataset is randomly divided into n equal subsets. Out of the n subsets, one
subset is tested each time against rest of n−1 training data. This is repeated ’n’ times till each
subset is tested only once. The mean value from the n-fold results gives a single estimation. Grid
search identifies the parameter with best estimates by using an extensive search. The search is
made from coarse to the fine range of values. Grid search and cross validation are used together
to determine the (C, γ) values for C-SVM. The C-SVM classifier from LIBSVM package [24]
is used for experiments.

The Algorithm 6 details the steps involved in using the designed C-SVM classifier. First the
input feature vectors (f j,HOG, f j,OF , f j,SHAPE , f j,COMBINE) for all ’ j’ videos are labelled based
on their classes. The entire set of feature vectors is divided into training and testing data matrix to
be used in the classifier. The data is converted to the sparse matrix form to be used in LIBSVM.
The function used for classification is ’easy.py’ from LIBSVM package which takes training
and testing data as inputs. The features are normalized for training and testing set respectively
by an in-built function. The parameters ’C’ and ’γ’ are determined by grid-search and 10-fold
cross validation. The classifier is trained with the input to produce support vectors. The support
vectors are later used in testing data to find decision values used for classifying the features.
Later, the testing data with classified labels are used to find the performance measures including
classification rate.
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Algorithm 6 C-SVM classification to find the class labels for test features
for each feature do

Label the features by class
Separate and group them into training and testing data
Convert the grouped data in sparse matrices
function easy.py(training matrix, testing matrix)

. Function from LIBSVM package [24]
Normalize the matrix values
Find C and γ by grid search and 10-fold cross validation
Training the classifier with RBF kernel
Use C and γ to find decision values for testing matrix
return Classify the labels using decision function D(x)

end function
end for

3.3.1 Performance measures

The definition of binary classification performance measures [26] are based on following four
parameters TP - True Positive, FP - False Positive, TN - True Negative and FN - False Negative
given by confusion matrix in Table 3.1. The classified labels from C-SVM classification are
compared with the original class labels of testing data. The classification parameter for each
testing sample is assigned based on the confusion matrix.

Class Classified as (+1) Classified as (-1)

Label (+1) TP FN

Label (-1) FP TN

Table 3.1: Confusion matrix to determine parameters used in binary classification performance
measures

After assigning each testing data with classification parameters, the overall performance mea-
sures are computed for the total testing dataset. The six basic measures of classification analysis
for C-SVM are TPR - True Positive Rate, TNR - True Negative Rate, FPR - False Positive Rate,
FNR - False Negative Rate, Classification rate also referred to as Accuracy (ACC) and Miss rate.
All the measures are in percentage (%) and are computed as follows:

True Positive Rate (T PR%) =
T P

T P+FN
(3.19)

True Negative Rate (T NR%) =
T N

T N +FP
(3.20)

False Positive Rate (FPR%) =
FP

T N +FP
(3.21)
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False Negative Rate (FNR%) =
FN

T P+FN
(3.22)

Classification rate (%) =
T P+T N

T P+FN +T N +FP
(3.23)

Miss rate (%) =
FP+FN

T P+FN +T N +FP
(3.24)
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4
Experimental results

The videos used in the experiments are provided by Signal Processing research group from
Chalmers University of Technology. The actions are captured as RGB-D videos using Kinect.
The Kinect is an electronic device with infrared (IR) motion sensing technology that provides
depth data indicating object’s relative location with respect to the camera in addition to RGB
visual data [27]. Kinect videos have a default 24-bit RGB video stream with resolution 640 ×
480 pixels. The greyscale depth video is also of same (640 × 480) resolution with 11-bit depth
data. The IR sensor has a location ranging limit of 1 to 6 m approximately and the camera
pivot can be either tilted or rotated. The camera is fixed during the experiment to obtain still
background frames. RGB videos are made up of 3 channels (Red, Blue and Green) each with
8-bit data and an intensity range [0, 255]. The combined 24-bit value gives pixel intensity used
in color computation analysis. The RGB-D videos are preferred as they contain depth video
with greyscale frames which are useful in shape feature extraction.

4.1 RGB-D video datasets

The two main activities fall and lying down are considered for the experiments. The activities
are performed by 19 different persons and are recorded as a single long video that is segmented
manually using video editing software. The final activity videos are made up of 30-60 frames
with a runtime of 1s-3s, making them independent of long lie after the activity. The dataset
is comprised of 400 falls and 400 lying down videos. Each fall video consists of one person
walking in front of the camera and suddenly falling down arbitrarily. Each lying down video
captures the person as he or she sits down to lay flat on the floor.
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For classification, the fall video features are labelled as (+1) and lying down video features are
labelled as (-1). The sequence of frames involved in each activity is shown in the Figures 4.1
and 4.2 for RGB and depth videos respectively. The rows (1-3) shows fall frames, rows (4-6)
shows lying down frames and rows (7-9) shows the intermediate position of sitting down.

To use in experimental analysis the video datasets for both fall and lying down is divided into
two study cases:

• Case study-1 uses 50% of total videos as training data and the rest 50% as testing data.

Figure 4.1: Frame sequence from the RGB video dataset. Row 1-3: Frame sequence for falling down activity
in RGB video. Row 4-6: Frame sequence for lying down activity in RGB video. Row 7-9: Frame sequence for
sitting down activity in RGB video.
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Figure 4.2: Frame sequence from the Depth video dataset. Row 1-3: Frame sequence for falling down activity
in depth video. Row 4-6: Frame sequence for lying down activity in depth video. Row 7-9: Frame sequence
for sitting down activity in depth video.

The first 200 videos are used for training while the rest 200 videos are used for testing in
both classes of activity.

• Case study-2 uses 80% of total videos as training data and the rest 20% as testing data.
The first 320 videos are used for training and the remaining 80 videos are used for testing
in fall and lying down activity.
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Classifier No. of Fall No. of Lying

Input Videos Down Videos

Training 200 (50%) 200 (50%)

Testing 200 (50%) 200 (50%)

Total Number of Videos 400 400

Table 4.1: Case study-1 with first 50% of total videos used for training data and the rest 50% used
for testing data

Classifier No. of Fall No. of Lying

Input Videos Down Videos

Training 320 (80%) 320 (80%)

Testing 80 (20%) 80 (20%)

Total Number of Videos 400 400

Table 4.2: Case study-2 with first 80% of videos used for training data and the rest 20% used for
testing data

The experiments are performed on a randomized dataset. This is shown in a distribution table
where the contribution of each member is indicated for fall and lying down activity. The data
also shows the contribution of each member for training and testing data in both case studies.
Among the 19 member group each subject appearing on the video is visually recognized and
identified with a number. The tables shown in the Figures 4.3 and 4.4 is included respectively
for both fall and lying down activities.

Figure 4.3: Distribution of number of fall activities performed by each subject in Case study-1 and Case
study-2. The data is further divided into training and testing data for both case studies.
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Figure 4.4: Distribution of number of lying down activities performed by each subject in Case study-1 and
Case study-2. The data is further divided into training and testing data for both case studies.

Tests on fall classification are conducted by using the three normalized feature vectors HOG
f j,HOG given by (3.4), HOG of optical flow (HOGOF) f j,OF given by (3.5) and shape feature
f j,SHAPE given by (3.13). They are tested separately and in combined form f j,COMBINE given by
(3.17), where the ’ j’ value ranges between [1,N], with N number of videos. The tests are con-
ducted to study the contribution of each feature for activity classification based on classification
rate. The experiment and evaluations are carried out in MATLAB (R2014b) student software
with Image Processing and Computer Vision System Toolboxes.

4.2 Setup

4.2.1 HOG features

The HOG feature used in the experiments are obtained from RGB video inputs. This section
mentions the parameter settings used to extract the HOG feature vector f j,HOG. The RGB video
frames are given as input and for every successive frame difference image is determined by
background subtraction. The object detected by difference frames are given as input to SURF
detector (Algorithm 2). The metric threshold is set to SURF thres = 50 and the detected SURF
key points are used to define bounding box locations [x1,x2,y1,y2] for object tracking. The
bounding box locations and RGB frames are taken as inputs to find the ROI. The ROI is formed
by appending zero values outside BB as shown in the Figure 3.2. For the last step of foreground
human detection, the ROI frames IROI are normalized to size 32×32.

The normalized ROI frames IROI is given as input to HOG feature extraction in Algorithm 3.
The default parameters of HOG given in Section 2.3.1 are set as function inputs. The function
gives HOG frame-based vector hHOG,n for each frame with number of HOG feature components
LHOG = 324. The number of frames in a video for each input video is different at this point,
so a fixed interval for time dependent feature vector is set to M = 10. The window averaging is
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Figure 4.5: Output frames at each step of the HOG feature setup. Top Frame 1: Fall RGB frame used as input.
Top Frame 2: SURF key points in ’green’ marked on RGB difference frame. Top Frame 3: The ’red’ bounding
box marked in difference frame based on SURF key points. Bottom Frame 1: The ROI after appending zeros
outside BB and resized to area 32×32. Bottom Frame 2: HOG feature visualization for ROI input, in which
each white plot shows the distribution of gradient orientations within the HOG cell.

obtained by following (3.2). The HOG feature vector f̂ j,HOG
given by (3.4) is given as output

with feature length 3240 (i.e. 324×10) for each ’ j’ videos. The feature values are normalized
by using (3.14) on time dependent feature vectors.

The Figure 4.5 shows the output frames at each step of HOG feature extraction. The figures in
the top row are results of object detection and tracking. In Row 1: Frame 1 indicates the RGB
input for fall activity, Frame 2 indicates the SURF key points on RGB difference frame and
Frame 3 shows the bounding box marked from SURF point locations. The figures in the bottom
row are from feature extraction. In Row 2: Frame 1 shows the resized ROI used as HOG input
and Frame 2 indicates the visualization of HOG feature.

4.2.2 Optical flow features

The methods and parameter settings for optical flow features HOOF and HOGOF are given
as follows. The RGB videos are taken as input, where the object is detected by background
subtraction from difference frames. This is followed by the object tracking with a bounding
box, where the BB locations are obtained from SURF detector. The SURF takes difference
frames as input with metric threshold SURF thres = 50 as mentioned in Algorithm 2. To find the
region of interest IROI the method shown in the Figure 3.2 is used. The object detected RGB
frames are appended with background pixel values outside BB, which are later normalized to
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fixed size 32×32.

Next step is the optical flow feature extraction by either HOOF or HOGOF descriptors. Initially,
the optical flow vectors between adjacent frames IROI are computed using Algorithm 4. The
parameter settings for ’Coarse2FineFrames’ are the default values from [16] package. The
obtained flow vectors [vx,vy] are given as inputs to either of the two feature descriptors.

Histogram of Oriented Optical flow: For HOOF feature along with flow vectors the parameter
number of bins is set to binSize = 32 in the function gradientHistogram [19]. This gives output
HOOF frame-based vector hOF,n with number of HOOF feature components LHOOF = 32. The
time dependent feature vectors from window averaging using (3.2) has a fixed interval value M
= 10. The feature values are normalized by using (3.14) on time dependent feature vectors. The
HOOF feature vector f̂ j,OF

given by (3.5) is of feature length 320 (i.e. 32×10) for each ’ j’
videos.

HOG of Optical flow: The HSV images IHSV of resolution 32×32 are obtained by colour-
coding optical flow vectors as shown in Algorithm 4. It uses the function flowToColor from
[18]. The HSV-based RGB frames IHSV are used to extract HOG features by Algorithm 3. The
extracted frame-based vector HOG of optical flow (HOGOF) ’hOF,n’ has number of HOGOF
feature components LHOGOF = 324.

Figure 4.6: Output frames at intermediate steps of Optical flow (HOGOF) setup. Top Frame 1: Input RGB
frame for the fall activity. Top Frame 2: The tracked bounding box (red) defined using SURF key points over
the difference frame. Bottom Frame 1: The region of interest (IROI) resized to size 32×32. Bottom Frame 2:
The HSV image frame IHSV after colour-coding by [18]. Bottom Frame 3: HOGOF feature visualization for
IHSV input, in which each white plot shows the distribution of gradient orientations within the HOG cell.
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The time dependent feature vectors from window averaging using (3.2) has a fixed interval value
M = 10. The HOGOF feature vector f̂ j,OF

given by (3.5) is of feature length 3240 (i.e. 324×10)
for each ’ j’ videos. The feature values are normalized by using (3.14) on time dependent feature
vectors. The final experimental setup with optical flow feature uses HOGOF descriptors.

The Figure 4.6 shows intermediate frame outputs from the optical flow experimental setup. The
setup focuses on HOGOF feature, where the top row of figures indicates object detection and
tracking. In Row 1: Frame 1 shows the fall activity from RGB video and Frame 2 indicates the
SURF key points based BB (’red’) on RGB difference frame. The figures in the bottom row
are part of optical flow feature extraction. In Row 2: Frame 1 shows normalized ROI frame
which is used to find the flow vectors, Frame 2 shows HSV image frame IHSV of size 32×32
from colour-coding the flow vector and Frame 3 indicates the visualization of HOGOF feature
for IHSV frame.

4.2.3 Shape features

The shape feature extracted from Depth videos uses the setup parameters as given. Initially,
object detection by background subtraction is done to result in difference frames of RGB videos.
The difference frame is used in object tracking to define bounding box by SURF key points.
The settings for the detector are metric threshold SURF thres = 50. The tracked bounding box
locations [x1,x2,y1,y2] are used in the ROI definition.

Since for shape feature depth videos are used as input, initially morphological operations are
applied on depth videos to get contour image frames Ishape by Algorithm 1. This depth contour
frame is used along with the BB locations to get the region of interest as shown in the Figure 3.2.
The depth details inside the bounding box locations are defined for the region of interest. The
region outside of the bounding box is appended with zero values to give IROI and are normalized
to size 32×32.

Figure 4.7: The frame outputs at each level of the experimental setup in shape feature extraction. Frame
1: Depth video frame for the fall activity. Frame 2: The object contour frame Ishape and the bounding box
locations.
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The normalized ROI frames are used in shape feature extraction following (3.6). The shape fea-
ture extraction is obtained using ’regionprops’ function in MATLAB Image Processing Toolbox.
The shape frame-based vector (hSHAPE,n) for every frame contains form and motion descriptors
with number of shape feature components LSHAPE = 46. To obtain time dependent features win-
dow averaging is computed on a fixed interval M = 10 using (3.2). The shape feature vector
f̂ j,SHAPE

given by (3.13) is with feature length 460 (i.e. 46×10) for each ’ j’ videos. The feature
values are normalized by using (3.14) on time dependent feature vectors.

In the Figure 4.7 the output frames at intermediate steps of shape feature extraction is shown.
The figures from left to right shows object tracking in shape features. Frame 1 shows the fall ac-
tivity in depth video used as the input and Frame 2 shows the contour frame Ishape and bounding
box marked in ’red’ used for the region of interest.

4.3 Evaluation

4.3.1 Case study-1

The contribution of each extracted features (HOG, Optical flow and Shape) for activity clas-
sification is studied in terms of its performance measures (see Section 3.3.1). For the experi-
mental setup, the individual features HOG, HOGOF and Shape are extracted by following the
steps in Sections 4.2.1, 4.2.2 and 4.2.3 respectively. The final feature vectors are indicated by
f j,HOG, f j,OF , f j,SHAPE for all input RGB-D videos.

The extracted feature vectors for both activities are labelled into respective classes fall (+1) and
lie down (-1). The dataset is now divided into training and testing data to be used in the classifier.
For Case study-1, the first 50% of total feature dataset is used as training data by combining both
fall and lying down activities. According to table 4.1, the 200 feature vectors from fall and lying
down are combined to form the training data with N = 400 labelled feature vectors. In the same
way, the rest 50% of feature dataset is used as testing data. The remaining 200 feature vectors in
fall and lying down are combined to form the testing data with N = 400 labelled feature vectors.

To classify the features into respective activity C-SVM classifier from LIBSVM package is used.
The processing steps are as mentioned in Algorithm 6. The ’C’ and ’γ’ parameters determined
by grid search varies for each feature HOG, HOGOF and Shape. The testing data is classified
into certain labels based on its feature vector, this classified labels is compared with the original
labels to determine the performance measures from (3.19) to (3.24). The results of the test are
presented in Table 4.3 for the three features based on Case study-1 testing data.

It can be observed that all the three features have classification rate ≥ 93%. The HOG and
HOGOF features have highest classification rate about 94%. A direct relation between number
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Type of Classification Miss TPR TNR FPR FNR

Features Rate (%) Rate (%) (%) (%) (%) (%)

HOG 93.75 6.25 92.50 95.00 5.00 7.50

HOGOF 94.00 6.00 92.00 96.00 4.00 8.00

Shape 92.75 7.25 94.50 91.00 9.00 5.50

Table 4.3: The performance measures in % specified by (3.19) to (3.24) for evaluating three ex-
tracted features HOG, Optical flow (HOGOF) and Shape. The evaluation is done on Case study-1
based on the testing dataset.

of feature components L f and classification rates can also be seen. The HOG and Optical flow
(HOGOF) features have similar classification rate about 94%, with higher number of distinct
features components LHOG = LHOGOF = 324. The Shape feature has relatively a lesser classifi-
cation rate at 92.75%, yet it is obtained at low feature cost LSHAPE = 46.

In terms of FPR and FNR all the three features have values between 5% and 10%. An asymmetry
is observed where either FNR or FPR is of higher value than the other. The measures true
positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false negative rate
(FNR) are inter-related. A very less FPR (about 1%) is good to avoid faulty classification of
any activity as fall. But the FNR must also be of lesser value (<5%) to prevent not classifying
genuine fall activity as fall.

4.3.2 Case study-2

In this test each extracted features (HOG, Optical flow and Shape) are analyzed individually for
fall classification. The test is compared in terms of its performance measures (see Section 3.3.1).
For the experimental setup, the individual features HOG ’f j,HOG’, HOGOF ’f j,OF ’ and Shape
’f j,SHAPE’ are extracted from input RGB-D videos by following the steps in Sections 4.2.1, 4.2.2
and 4.2.3 respectively.

The feature vectors are labelled into respective classes, based on the type of activity fall (+1) and
lie down (-1). The feature dataset is separated into training and testing data according to Case
study-2, to be later used in the classifier. In Case study-2, the first 80% of total feature dataset
is used as training data from both fall and lying down activities. According to table 4.2, the
320 feature vectors from fall and lying down are combined to form the training data with N =
640 labelled feature vectors. The rest 20% of the dataset is used as testing data. The remaining
80 feature vectors in fall and lying down are combined to form the testing data with N = 160
labelled feature vectors.
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Type of Classification Miss TPR TNR FPR FNR

Features Rate (%) Rate (%) (%) (%) (%) (%)

HOG 96.88 3.12 96.25 97.50 2.50 3.75

HOGOF 96.88 3.12 95.00 98.75 1.25 5.00

Shape 91.88 8.12 100.00 83.75 0.00 16.25

Table 4.4: The performance measures in % specified by (3.19) to (3.24) for evaluating three ex-
tracted features HOG, Optical flow (HOGOF) and Shape. The evaluation is done on Case study-2
based on the testing dataset.

The C-SVM classifier from LIBSVM package follows the steps in Algorithm 6 to classify testing
features into respective class labels. The ’C’ and ’γ’ parameters determined by grid search varies
for each test based on the type of features used (HOG, HOGOF and Shape). The testing data
with classified labels are compared with original labels to determine the performance measures
in (3.19) to (3.23). In Table 4.4 the Case study-2 testing data results are presented for the three
features.

From the results, it can be seen that the HOG and HOGOF feature has highest classification rate
(96.88%) among the three. When comparing the results between two case studies, it is observed
that Case study-2 is better than Case study-1. The classification rate for HOG and HOGOF
features are above 95%. This can be reasoned out as in Case study-2 the number of feature
details L f along with the number of training data (80% of total dataset) is relatively high.

The FPR and FNR are less than 5% for the given two features. It can be seen in Case study-2
that the FPR and FNR have relatively reduced from the results in Case study-1. They also have
symmetrical values at < 5% for HOG and HOGOF, which is better than the performance in Case
study-1. It can be concluded that fall identification with high classification rate and better FPR
and FNR is possible when large detailed feature vectors are combined over a large number of
training data.

The shape feature has a classification rate of 91.88% with a very high FNR (16.25%). Shape
feature has lesser performance than Case study-1 with 92.75% classification rate. An asymmetry
is still observed in shape feature where FNR (16.25%) is very high than FPR (0%). The reason
behind lesser performance can be more than the contribution number of feature components.
This can be due to the selection of (C,γ) values used in classification. The extensive grid search
obtains best (C,γ) for better TPR than the overall classification rate.

Some of the technical problems faced while extracting features from the region of interest can
also play a key role in its classification. The contour obtained from morphological operations
contains corner points from the background as well, which are not completely removed while
appending zero values outside BB. Such faulty contour might result in Extrema point detection
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outside the human form. In some cases, the Extrema points are plotted on the same location
or even left undetected, which is due to partial contour obtained from limb occlusions. Such
technical difficulties when corrected while extracting features, might improve the performance
of a classifier.

4.4 Results from combined 3 types of feature vectors

The three types of features HOG, Optical flow (HOGOF) and Shape are extracted from RGB-D
videos following the experimental setup mentioned in Sections 4.2.1, 4.2.2 and 4.2.3. In this
evaluation for optical flow feature, HOG of optical flow (HOGOF) is used. The serially com-
bined feature vectors f j,COMBINE is given by (3.17) for each j videos. This serial combination
is carried out for all videos in the dataset for both fall and lying down activities.

This long feature vectors are labelled into respective classes fall (+1) and lie down (-1). The
labelled feature vectors are divided into training and testing data according to Case study-1 and
Case study-2. Case study-1 has 50% of training and testing data while Case study-2 has 80%
training and 20% testing data. The training and testing data follows the steps in Algorithm 6
when used in C-SVM classifier from LIBSVM package. The ’C’ and ’γ’ parameters determined
by grid search is different for each Case Study 1 and 2. The classified labels of testing data are
compared with its original labels to compute the performance measures in (3.19) to (3.23).

The test results achieved on testing data of Case study-1 and 2 datasets for serially combined
features is shown in Table 4.5. The classification rate is high (> 95%) in both case studies,
compared to the individual features contribution as seen between Table 4.3 and 4.4. As expected
Case study-2 has higher performance than Case Study-1. The FPR and FNR have also reduced
< 5% and are more similar in values.

It can be observed that a very high classification rate >95% is possible because the serial combi-
nation attempts to include most of the spatio-temporal details from each of the studied features

Type of Classification Miss TPR TNR FPR FNR

Case Study Rate (%) Rate (%) (%) (%) (%) (%)

Case study-1 95.25 4.75 95.50 95.00 5.00 4.50

Case study-2 97.50 2.50 97.50 97.50 2.50 2.50

Table 4.5: The performance measures in % specified by (3.19) to (3.24) for evaluating serially
combined feature vector. The evaluation is done on both Case study-1 and 2 based on the testing
datasets.
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(HOG, optical flow and shape). In both case studies, a reduction in FPR and FNR is also achieved
while for the same case study the individual features had very high FNR and FPR > 5%.

It can be concluded that combination of feature vectors with multiple spatio-temporal feature
details will improve the FNR, FPR and hence make fall identification better. When feature
vector is combined serially verification must be done for the limit of feature length, as long
feature vector tends to take more computation time when used in the classifier. In this evaluation
the serially combined feature vector is of length 6940 (i.e. 3240+3240+460). The given feature
length becomes a relatively lesser problem when using the LIBSVM tool, as it can handle feature
length in the range of thousands for 800 videos.

4.5 Tests to evaluate parameter settings in algorithms

From the results discussed in both Case study-1 and Case study-2 each feature individually and
in combined form achieves a classification rate of ≥ 93%. This is possible because the initial
settings fixed in each method or algorithm is evaluated before using in the final experimental
setup. This section details the test cases carried out to find optimal parameters for some of the
detection and extraction methods.

4.5.1 Comparison of optical flow features

The experimental setup for optical flow feature uses two type of descriptors: Histogram of Ori-
ented Optical flow (HOOF) and Histogram of Oriented Gradients for Optical flow (HOGOF).
To evaluate which of the two optical flow features achieve high classification rate, a comparative
study is done. Initially, the HOOF and HOGOF features are obtained by following the exper-
imental settings mentioned in Section 4.2.2. Later the features are evaluated for classification
by using C-SVM classifier on Case study-2 testing dataset mentioned in Section 4.3.2. The
performance measures for each feature is given in Table 4.6.

Type of Classification Miss TPR TNR FPR FNR

Features Rate (%) Rate (%) (%) (%) (%) (%)

HOGOF 96.88 3.12 95.00 98.75 1.25 5.00

HOOF 83.75 16.25 78.75 88.75 11.25 21.25

Table 4.6: The performance measures in % specified by (3.19) to (3.24) for evaluating three ex-
tracted features HOGOF and HOOF. The evaluation is done on Case study-2 based on the 20%
testing data.
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From the results, it can be observed that HOGOF feature has higher classification rate than
HOOF feature. The FPR and FNR values are ≤ 5% for HOGOF feature, while for HOOF
feature the FPR and FNR are >10%. Let’s consider the number of feature components in each
case: HOOF feature LHOOF = 32 and HOGOF feature LHOGOF = 324. It can be seen that the
relation between the number of feature components LHOGOF > LHOOF can be directly related
with classification results.

When a given feature has a higher number of descriptors to describe an activity, the better is the
feature’s classification ability. While both the optical flow features HOOF and HOGOF captures
the motion detail of the activity using flow vectors, the way in which each descriptor represents
the dense flow vector is different. While HOOF uses a standard orientation histogram, the HOG
uses a dense estimate by dividing the ROI size to smaller ’blocks’ and ’cells’ and combining
their histogram values. Hence, the HOGOF feature is better than the HOOF feature.

4.5.2 Shape feature components evaluation

The shape feature extraction used in this project includes both form and motion features as
given in (3.6). To study the contribution of motion features in shape descriptor a comparative
evaluation is done where shape feature vector with only form feature components LSHAPE = 29
given in (4.1) is evaluated initially.

hSHAPE = [hcontour] (4.1)

Later, both the form and motion feature components for shape feature vector with LSHAPE = 46
from (3.6) is evaluated.

The experimental setup used to obtain the shape feature is given in Section 4.2.3, which is
evaluated based on Case study-2 testing dataset with classifier settings mentioned in Section
4.3.2. The performance measures of both the shape feature vectors are presented in Table 4.7.

From the results, it can be observed that the detection rate TPR values are higher for the shape
feature with both form and motion components. This increase in detection rate for motion feature

Type of Classification Miss TPR TNR FPR FNR

Shape feature Rate (%) Rate (%) (%) (%) (%) (%)

hSHAPE = [hcontour] 94.38 5.62 97.50 91.25 8.75 2.50

hSHAPE = [hcontour hmotion] 91.88 8.12 100.00 83.75 0.00 16.25

Table 4.7: The performance measures in % specified by (3.19) to (3.24) for evaluating two variation
of shape feature in (3.6). The evaluation is done on Case study-2 based on the 20% testing data.
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components can be reasoned out two ways: First the increase in the number of descriptors, i.e.
the number of shape feature components increases from LSHAPE =29 to 46. An increase in
the number of features can include more details of the activity and thus help to classify better.
Secondly, the added shape components are motion features that include the temporal details of
the activity.

Though the overall classification rate is less, as mentioned before in Case study-2 it is due to
the technical problems in shape feature classification. It can be concluded from the above tests
that the shape features with more number of descriptors and with motion feature details perform
better with improved detection rates (TPR).

4.5.3 Impact of M value to compute time-dependent feature vectors

For a given jth video containing ’len’ frames, the averaging window length W for comput-

ing time-dependent features changes depending on the M value (i.e, W = round
(

len
M

)
). This

subsection will study the impact on classification performance while changing M value, hence
change of averaging window length in extracting time-dependent features.

The captured RGB-D videos for any activity either fall or lying down is made up of varying
length ′len′ for a video. Since each subject can perform the same activity in a different manner
and it is also impossible for the same person to repeat the activity similarly. Thus, the activity
videos end up with varying video length. But the classifier requires feature vector inputs of fixed
interval value to perform activity classification. Window averaging given by (3.2) is used to find
time dependent feature vector in an interval M.

A test is done to find the optimal M setting for combined feature ’f j,COMBINE’ that gives high
classification rate. In this test the combined feature is obtained following (3.17) for different
fixed interval values M = [5, 10, 15]. The evaluation is carried out on Case study-2 testing

Fixed time Window Size Classification Miss TPR TNR FPR FNR

interval (M) Mean (Wavg) Rate (%) Rate (%) (%) (%) (%) (%)

M =5 6 98.75 1.25 100.00 97.50 2.50 0.00

M = 10 3 97.50 2.50 97.50 97.50 2.50 2.50

M =15 2 96.88 3.12 96.25 97.50 2.50 3.75

Table 4.8: The performance measures in % specified by (3.19) to (3.24) for different fixed interval
M = [5,10,15] using combined feature vector ’f j,COMBINE ’. The evaluation is done on Case study-2
based on the 20% testing data.
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dataset (see Section 4.3.2) using C-SVM classifier. The results are given in Table 4.8 with
performance measures for each fixed interval M.

The peak classification rate of 98.75% is observed at M = 5. Consider on an average the activity
videos are made up ≈35 frames, the window sizes W = [5 and 7] for given len = 35 does not
drop any frames. The time limit M for window averaging must be fixed to achieve window sizes
that prevents the drop of excess frames. When a lot of excess frames in the end are dropped the
activity details are lost partially and hence result in faulty classification.

Another reason for high classification rate at M = 5 is the overfitting problem in the classifier,
as with increase in ’M’ value the dimensionality of the feature also increases (L f ×M). A
trade-off can be observed between classification rate and computation time for higher M, as it
eventually increases the final feature length (i.e. L f ×M). At last, the fixed interval selected for
each feature HOG, optical flow and shape is M =10 which reduces computation time as well as
achieves better classification rate.

4.5.4 Optimal ROI size (a×a) for feature extraction

The region of interest IROI obtained from modifying bounding box is normalized to fixed size
a× a as shown in the Figure 3.2. This step is included in all feature extraction methods as
explained in Sections 4.2.1, 4.2.2 and 4.2.3 respectively. In HOG and HOGOF the feature
components (LHOG, LHOGOF ) are dependent on the ROI size. Hence, it’s fixed to a constant
size a×a to have same number of feature components for all frames in an RGB-D video. The
computation of features is also faster and easier when the size is small.

A test study is done to find an optimal size (a× a) which has higher performance for the com-
bined feature ’f j,COMBINE’. The combined feature is obtained following (3.17), where different
ROI sizes a = [16,24,32] are tested. The classification rate is measured by evaluating Case
study-2 test dataset in C-SVM classifier (see Section 4.3.2). The results of the evaluation are

ROI size Feature Classification Miss TPR TNR FPR FNR

(a×a) Used Rate (%) Rate (%) (%) (%) (%) (%)

a =16 f j,HOG 96.25 3.75 96.25 96.25 3.75 3.75

a =24 f j,HOG 97.50 2.50 96.25 98.75 1.25 3.75

a = 32 f j,HOG 96.88 3.12 96.25 97.50 2.50 3.75

Table 4.9: The performance measures in % specified by (3.19) to (3.24) for HOG feature vector
’f j,HOG’ evaluated with different sizes (a× a), where a = [16, 24, 32]. The evaluation is done on
Case study-2 based on the 20% testing data.
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ROI size Feature Classification Miss TPR TNR FPR FNR

(a×a) Used Rate (%) Rate (%) (%) (%) (%) (%)

a =16 f j,COMBINE 97.50 2.50 96.25 98.75 1.25 3.75

a =24 f j,COMBINE 97.50 2.50 96.25 98.75 1.25 3.75

a = 32 f j,COMBINE 97.50 2.50 97.50 97.50 2.50 2.50

Table 4.10: The performance measures in % specified by (3.19) to (3.24) for combined feature
vector ’f j,COMBINE ’ evaluated with different sizes (a×a), where a = [16, 24, 32]. The evaluation is
done on Case study-2 based on the 20% testing data.

listed in Tables 4.9 and 4.10 for ROI size a = [16, 24, 32].

It can be observed that the classification rate and TPR increases as the IROI size ’a’ increases (see
Figure 3.2 for definition of ’a’), because the number of feature components L f is directly related
with ’a’. The combined feature with more components includes more detail of the activity and
thus has a better classification rate. The HOG feature has best performance at a = 32 with
classification rate 97.50% and TPR 97.50%.

The test is not evaluated for the ROI of size less than a = 16, as the default ’cell’ size is 8×8 and
HOG feature cannot be obtained with the assumed ’block’ settings. A trade-off can be observed
between classification rate and computation time for higher size a×a. Finally, an optimal size
32×32 is fixed for each feature as better classification rate is achieved with less computation.

4.5.5 Varying metric threshold SURF thres in SURF

The SURF detector is used on RGB difference frames to find the human in an activity video.
The key points from SURF detection are used to define the bounding box locations which is
helpful in object tracking. The SURF detection can be modified by varying the metric thresh-
old ’SURF thres’ parameter, which defines the strongest feature threshold. The strongest feature
threshold indicates the maxima of Hessian matrix determinant given in (2.7). For a larger value
of SURF thres less SURF key points are detected, while for smaller SURF thres more SURF key
points are obtained.

To evaluate the impact of SURF thres in the combined feature ’f j,COMBINE’ classification, tests
are conducted on different metric thresholds SURF thres = [50, 100, 500]. The feature extraction
for the combined feature is from (3.17) and are evaluated on Case study-2 (see Section 4.3.2)
testing dataset using the C-SVM classifier. The classification results are listed in Table 4.11 for
the HOG feature with varying SURF metric thresholds.
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Metric Threshold Feature Classification Miss TPR TNR FPR FNR

(SURF thres) Used Rate (%) Rate (%) (%) (%) (%) (%)

50 f j,COMBINE 97.50 2.50 97.50 97.50 2.50 2.50

100 f j,COMBINE 98.13 1.87 97.50 98.75 1.25 2.50

500 f j,COMBINE 97.50 2.50 96.25 98.75 1.25 3.75

Table 4.11: The performance measures in % specified by (3.19) to (3.24) for the combined feature
’f j,COMBINE ’ evaluated with different SURF metric threshold SURF thres = [50, 100, 500]. The
evaluation is done on Case study-2 based on the 20% testing data.

The observations show that for the combined feature with SURF thres = 100 a high classification
rate 98.13% is achieved, and then the classification rate decreases with increase in SURF thres. A
low SURF metric threshold results in a large bounding box with background details around the
object, while a high metric threshold with less key points results in a tight bounding box around
the object.

A tight bounding box is useful when it eliminates the background clutter for defining the region
of interest. Though for the HOG feature according to Section 2.3.1, the detection window should
also include margin information around the object for improved performance. The margin infor-
mation provides extra context to the person and reducing the border results in the performance
loss. So for the final setup, SURF thres = 50 is fixed for all the features HOG, optical flow and
shape.
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5
Conclusions

The thesis on fall identification uses three types of features HOG, optical flow and shape, to
obtain a classification rate of about 95%. To define the region of interest given algorithms are
used, along with existing methods on object detection. The three features are studied for fall
activity classification using RGB-D videos. The object detection and feature extraction modules
use MATLAB based algorithms. The optimal parameters required for the above algorithms are
evaluated such that the classification rate is high. Shape feature at very low feature cost results
in good classification rate. The shape feature is based on depth videos so it is useful to overcome
the problem of subject’s privacy. The fall detection is independent of the long lie as it uses short
activity videos. The combination of three feature vectors serially results in high classification
rate along with low FPR and FNR. The given methods can be used for identifying accidental
falls, in health care applications.

Though a wide range of algorithms is available for object detection and feature extraction, in this
thesis it is restricted to the given methods because of time constraint. The problems encountered
while using the methods are as follows: The difference image detects a partial object when the
subject in the video is wearing black clothing. In shape analysis, the contour obtained from
morphological operation contains background objects. The defined region of interest for shape
partially removes the background details. This partial removal results in the definition of extrema
points outside the contour. The extrema points are also lost when human contour undergoes limb
occlusions.
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