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Abstract

To increase greenhouse productivity and reduce power consumption, a large scale lighting
control system is sought for. Part of the envisioned lighting control system involves plant
stress detection wherefore a novel stress detection method, termed Dynamic Fluorescence
Response Analysis (DFRA), is being developed. Enabling DFRA in situations where
sunlight is present requires that the method, in its current form, is modified. To this
end, several techniques mitigating the unwanted effects of sunlight are developed or
investigated in this work. Among these techniques are Fraunhofer Line Discrimination
(FLD), an established method for remotely determining photosynthetic activity in plants.
It is found that FLD is unsuitable for DFRA without highly precise equipment, as
it amplifies noise when used at the time scales required. Furthermore, several signal
processing techniques are implemented, extending DFRA to being applicable also in
presence of sunlight. The techniques are evaluated and it is found that most of them are
overly sensitive to measurement noise, causing the stress diagnosis to be unreliable.

Keywords. Remote sensing, plant stress, dynamic fluorescence response analysis (DFRA),
sun-induced chlorophyll fluorescence (SIF), Fraunhofer line discrimination (FLD), signal
processing, parametric modelling, system identification





Sammanfattning

För att öka produktiviteten samt minska energiförbrukningen i växthus behövs ett
storskaligt reglersystem för växthusbelysningen. Detta reglersystem innefattar stress-
detektion hos växter varför en ny stressavkänningsmetod, Dynamisk Fluorescensrespon-
sanalys (DFRA), h̊aller p̊a att utvecklas. För att DFRA skall kunna användas i närvaro
av solljus krävs modifikation av metoden. I detta arbete utvecklas eller undersökes där-
för ett flertal olika sätt att mildra de oönskade effekterna av solljus p̊a DFRA-metoden.
Bland dessa finns till exempel Fraunhoferlinjeurskiljning (FLD, för Fraunhofer Line Dis-
crimination), en etablerad metod för att detektera fotosyntetisk aktivitet hos växter p̊a
l̊anga avst̊and. Slutsatsen är att FLD, utan precis utrustning, inte lämpar sig väl för an-
vändning tillsammans med DFRA, d̊a metoden vid de intressanta tisskalorna förstärker
brus. Vidare undersöks ett flertal signalbehandlingsbaserade metoder, av vilka de flesta
visar sig överkänsliga emot brus, och gör s̊aledes stressdiagnosen otillförlitlig.

Nyckelord. Fjärravkänning, växtstress, dynamisk fluorescensresponsanalys (DFRA),
Fraunhoferlinjeurskiljning (FLD), signalbehandling, parametrisk modellering, systemi-
dentifiering
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1

Introduction

With automation progressively spreading through a range of industries, the green-
house industry is quick to follow. In order to match market demands precisely

and in a just-in-time way, increased control of crop growth is needed. Further, aug-
mented control of plant growth is expected to reduce power consumption and increase
plant growth overall. Chalmers University of Technology and Heliospectra AB are, to
this end, jointly developing a biological feedback method to control (or maximise) plant
growth, as shown in Figure 1.1. A subcomponent of this biological feedback method
is detection of plant stress, whereon the focus of this study lies. As plant stress limits
growth, the two are interlaced in such a way that focusing on eliminating stress is a
practical goal in itself. Furthermore, it is expected that plant stress detection could be
applied to detect abiotic as well as biotic stressors, such as excess light and infections,
respectively.

Figure 1.1: Conceptual intelligent light biological feedback system represented as a block
diagram. Source: Torsten Wik

1



1.1. BACKGROUND CHAPTER 1. INTRODUCTION

The method, termed Dynamic Fluorescence Response Analysis (DFRA), is based on
analysis of the chlorophyll fluorescence response from plants when subjected to exci-
tation light. Most advantageously, DFRA enables remote stress detection when most
traditional fluorescence based stress detection methods require on-leaf measurements.
However, the DFRA method, in its current use, requires specialised equipment to func-
tion. LED greenhouse lamps are suitable actuators for generating the excitation light
as they provide precise control and short response times. Furthermore, LED lamps,
as opposed to traditional high-pressure sodium (HPS) lamps, can emit light spectrally
distributed in a manner more suited to the method, not to mention the plants them-
selves. Additionally, spectrometers are needed to collect the various signals needed by
the DFRA method.

1.1 Background

In short, the DFRA method comprises fitting of a ready-made dynamical model to
collected measurements and subsequent analysis of the properties of the model. As yet,
DFRA has only been proven to work in closed lab environments (see [5, 6, 13]). It is not
feasible to create such isolated lab conditions in a greenhouse. However, for the method
to be applicable for commercial greenhouse operation it must necessarily function also
when sunlight is present. Consequently, the focus of this study lies on investigating
several techniques mitigating the disturbing influence of sunlight. The following three
research questions are posed:

• Does sunlight adversely affect the DFRA model estimation?

• If so, how can these effects be mitigated?

• Which of the investigated countermeasures seems most promising for future use?

1.2 Purpose and aim

The intention of this study is to investigate or develop a number of methods with which
sunlight can be accounted for in the DFRA method. The study should investigate at least
one method based on spectrometry and, further, at least one based on signal processing.

1.3 Scope

The focus of this study lies on method development, studying how varying sunlight
can be accounted for in the DFRA method. Due to this, and to the author’s lack of
background in biology, reference measurements for assessing plant stress level are not
performed.

2



1.4. DOCUMENT STRUCTURE CHAPTER 1. INTRODUCTION

Instead, results are considered adequate if they are similar to previous experiments
made in controlled lab environments. Alternatively, the results should be similar in
experiments where the plant stress level can be assumed to be the same.

1.4 Document structure

In Chapter 2, relevant concepts and related research are presented, giving a background
to this work. Thereafter follows Chapter 3 which lays forth the methods developed, or
investigated, in this work. Following that, the results of using the methods on both
simulated and measured data are shown in Chapter 4. The results and methods are
discussed in Chapter 5, along with suggestions for future work. Finally, the methods are
evaluated and the research questions answered in short as part of Chapter 6.
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2

Theory and Related Work

Understanding of several biological and signal processing concepts is a necessary
prerequisite for being able to follow the majority of this text. Therefore, the most

vital ones are presented here. Following this, recent research in related areas, e.g. DFRA
and sun-induced fluorescence retrieval, is summarised, giving an overview of the back-
ground of this work.

2.1 Theory

This section describes several concepts. Firstly, perhaps the most central one, chlorophyll
fluorescence, is described along with a few other biology-related concepts. Secondly,
parametric modelling is described in short, with two model structures being described in
more detail. Lastly, filtering methods are presented. Some of the concepts shown could
appear trivial but are nonetheless included as the fields of biology and signal processing
are indeed quite separate.

2.1.1 Chlorophyll fluorescence

Photosynthesis is the chemical process taking place in plants which uses absorbed light
energy to convert carbon dioxide and water into storable chemical energy (sugar) and
oxygen. Light energy is absorbed in photosystem II (PSII) and photosystem I (PSI) by
proteins containing chlorophyll, to drive photochemistry. However, the absorbed light
can also be dissipated as heat, a process called non-photochemical quenching (NPQ), or
be re-emitted as light in the form of chlorophyll fluorescence (ChlF). ChlF is emitted at
wavelengths between 650-800 nm [3], as can be seen in Figure 2.1.

5



2.1. THEORY CHAPTER 2. THEORY AND RELATED WORK

Figure 2.1: Example of
chlorophyll fluorescence radi-
ation.

ChlF has been used for decades to non-invasively measure
photosynthetic activity in plants. By exciting ChlF manu-
ally with a flash of light, and comparing the ratio between
different parts of the response, information regarding the
prevalence of NPQ and photochemistry can be gathered.
Measurements of this type are normally conducted on-leaf
with an instrument creating the exciting flash of light as
well as measuring the induced ChlF.

Typically, a sudden increase in light gives rise to a quick
response in ChlF intensity which then starts to fall over the
course of a few minutes due to an increase in electron transport rates away from PSII (a
process known as photochemical quenching, PQ), as well as a gradual increase in NPQ.
Steady state of the ChlF signal is normally reached after 15 - 20 minutes, however this
differs greatly between plant species [16].

2.1.2 Photosynthetically active radiation

In studies on photosynthesis, it is common to measure light to which plants are subjected
only in the interval from 400 nm to 700 nm wavelength. Light in this wavelength band is
absorbed by cholorophyll pigments in PSII and PSI, and used to drive photosynthesis.
This radiation wavelength interval is commonly referred to as Photosynthetically Active
Radiation, or PAR [17]. In order for photosynthesis to be active, actinic light - light
with sufficient spectral quality and intensity to drive the photochemical reactions - must
be present. The limit for light actinism varies with plant species.

2.1.3 Data sampling

In order to handle continuous signals in computers, it is common to convert them into
sequences of discrete data points through sampling. Given a continuous signal x(t),
values can be collected at N discrete time instants {t1, ... , tN} to form a sampled
sequence {x(t1), ... , x(tN )}. Often, the same interval between samples is used, such
that a sampling interval Ts can be defined. With such an assumption, notation can be
somewhat simplified with the following shorthand:

y(n) , y(t0 + nTs), n = 1, ... , N, (2.1)

with t0 denoting the time of the first sample.

2.1.4 System identification

In many engineering problems it is of interest to make predictions, or characterisations
of a physical system. If the system being studied is very complex, it can be a time-

6



2.1. THEORY CHAPTER 2. THEORY AND RELATED WORK

consuming or even infeasible task to create a model based on physical insights. In such
cases, a predefined model structure can be used, which does not necessarily have a
structure matching the system, but which is able to make predictions of the system’s
behaviour (or output). Given input and output measurement data, u ∈ RN and y ∈ RN ,
respectively, a model can be estimated which generates the outputs ŷ ∈ RN such that,
e.g.

VN =
N∑
n=1

(y(n)− ŷ(n))2 (2.2)

is minimised.

2.1.5 Parametric model

Given experimental data with consecutive inputs u and outputs y, a model can be
estimated that generates the outputs ŷ from the input sequence u. In the parametric
case, the model is estimated given a set of parameters θ = [θ1 · · · θM ], with a priori
defined M and model structure. The fit percentage for an estimated model is calculated
as the normalised root mean square error [27]:

fit[%] = 100

(
1− ‖y − ŷ‖
‖y −mean(y)‖

)
(2.3)

2.1.5.1 Autoregressive exogenous input model

One such structure, termed ARX for AutoRegressive with eXogenous input, is simple
with respect to estimation of model parameters and has the following appearance [12, 14]:

y(n) =
B(q)

F (q)
u(n)q−k +

1

F (q)
e(n), (2.4)

with q being the time shift operator, e(t) the disturbance, B and F polynomials of the
transfer function to be estimated, and k ∈ Z∗ the input delay. This model structure is
also known as the equation error model [28].

If the structure is expressed in the form of a difference equation, it becomes clear that
estimation of the parameters in an ARX model is simple due to the equation being linear
in the parameters:

y(n) = b1u(n− k) + b2u(n− 1− k) + ...+ bnb
u(n− nb − k)

− a1y(n− 1)− ...− anay(n− na) + e(n) (2.5)

= θTϕ(n) + e(n),

7



2.1. THEORY CHAPTER 2. THEORY AND RELATED WORK

where

θ = [b1 · · · bnb
a1 · · · ana ]T (2.6)

ϕ(n) = [u(n− k) u(n− 1− k) · · · u(n− nb − k) − y(n− 1) · · · − y(n− na)]T
(2.7)

Given a data set {u, y}, a parameter vector estimate θ̂ can, for this structure, easily be
identified using the least squares method [12], for example.

2.1.5.2 Output error model

Another model structure is the so called Output Error (OE) model. Its structure is
similar to the ARX structure, with the difference that the error e(t) is not fed back into
the system. It is covered here as it is the model structure found to give the best fit
to the ChlF response in plants studied by previous work [5, 6, 13]. The model has the
following structure [12, 14]:

y(n) =
B(q)

F (q)
u(n)q−k + e(n). (2.8)

Here, it is not as simple to identify the parameters of the polynomials B and F , as
the corresponding difference equation is a nonlinear function of θ. In general, the least
squares solution for this case is biased [12] and so an iterative approach must be applied,
e.g. gradient descent [14] or the instrumental variables method [12].

2.1.6 Frequency domain representation

A discrete time transfer function G(q) can be represented in the frequency domain by
transforming it to G(z) with the Z-transform. Properties of the frequency function G(z)
can be studied, such as the input-output magnification of the function, or its input-output
phase shift. Studying these frequency-dependent properties can then reveal attributes
which would otherwise be difficult to show. As a very basic example, a two sample
moving average filter,

y(n) =
u(n) + u(n− 1)

2
, (2.9)

can be represented by the transfer function

G(z) = 0.5 + 0.5z−1. (2.10)

The transfer function can then in turn can be shown in a Bode plot, by evaluating the
transfer function at z = ejωTs , as can be seen in Figure 2.2 (a Bode plot shows the input-
output magnification and phase shift of a transfer function as functions of frequency ω).
Clearly, the filter admits lower frequency input signals while rejecting higher frequencies
— it has a low-pass character.

8



2.1. THEORY CHAPTER 2. THEORY AND RELATED WORK

Figure 2.2: Bode plot of a simple two sample moving average filter. The top graph
shows the frequency dependent input-output amplification of the filter, while the bottom
graph shows its phase shift. The filter admits lower frequencies while attenuating higher
frequencies, as is expected of an averaging filter.

2.1.7 Butterworth filter

Filter design is often a compromise between several filter properties. The Butterworth
filter design method produces a filter which is maximally flat in the passband (perturbing
the frequency content of interest as little as possible) while having a slow roll-off in the
stopband [4, 21]. In other words, if the unwanted signal content has frequencies in the
same region as the desired signal, it is not attenuated much by the filter.

Using the Butterworth design technique to design a low-pass filter with unity gain in the
passband produces a filter with gain according to Equation (2.11). Here, n is the filter
order and ωc the cut-off frequency [21].

|G(ω)| = 1√
1 +

(
ω
ωc

)2n (2.11)

9



2.1. THEORY CHAPTER 2. THEORY AND RELATED WORK

Filter

Algorithm

ϕ(t) ŷ(t)

y(t)

e(t)

Figure 2.3: General adaptive filter configuration. It is the objective of the adaptive filter
to ensure that ŷ(t) matches y(t) as closely as possible using ϕ(t) as input, e.g. by minimising
the mean square of e(t).

The filter has a gain of 0.5 at the cut-off frequency independently of the filter order, but
has an increasing roll-off with increasing order [21].

2.1.8 Adaptive filtering

An adaptive filter is, as the name implies, a filter which changes with time. It operates
in a closed loop configuration in some way, and its parameters are changed to achieve a
goal (e.g. minimisation of the mean squared error of some signal) via an algorithm, as
shown by Figure 2.3. In the case of Figure 2.3, it can e.g. be the task of the adaptive
filter to use the input ϕ(t) to minimise the mean square of the error e(t), by ensuring
that ŷ(t) matches y(t) as closely as possible, for instance by minimising the cost function
ξ [21]:

ξ =
n∑
k=0

(y(k)− ŷ(k))2 (2.12)

The structure of the filter must be specified a priori, i.e. the number of filter parameters
N , and, in the parametric modelling case, which parameter vector θ and regressor vector
ϕ to use.

There are two main algorithms for adapting the filter parameters; stochastic gradient and
recursive least squares (RLS). The two algorithms have advantages over each other in the
form of higher convergence speed (RLS) as opposed to reduced computational complexity
(stochastic gradient). To follow the time-varying parameters of a plant canopy as closely
as possible the RLS algorithm is chosen for evaluation here. Furthermore, a forgetting
factor α can be added to the algorithm, which ensures that previous states of the plant
are not overly emphasised. The forgetting factor is essentially a weight which is reduced
as samples become older. With forgetting factor, the cost function to be minimised by
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the algorithm is instead [21]

ξ =
n∑
k=0

αk−n(y(k)− ŷ(k))2 (2.13)

2.1.8.1 The Recursive Least Squares algorithm

The algorithm minimising ξ in Equation (2.13) is shown below. The RLS algorithm is
initialised by setting the covariance matrix Rϕ and parameter vector θ̂ to

Rϕ(0) =
1

δ
IN (2.14)

θ̂(0) = 0 (2.15)

where δ is a small positive number to indicate a large initial uncertainty. Following the
initialisation the following is calculations are repeated for each sample, n = 1, 2, ... [21]:

ŷ(n) = θ̂(n− 1)ϕ(n) (2.16)

e(n) = y(n)− ŷ(n) (2.17)

R−1ϕ (n) =
1

α

[
R−1ϕ (n− 1)−

R−1ϕ (n− 1)ϕ(n)ϕT (n)R−1ϕ (n− 1)

α+ ϕT (n)R−1ϕ (n− 1)ϕ(n)

]
(2.18)

θ̂(n) = θ̂(n− 1) +R−1ϕ (n)ϕ(n)e(n) (2.19)

2.2 Related work

Recent research in related areas is presented below, focusing firstly on methods of re-
trieval of ChlF from spectral measurements influenced by the severe disturbance of sun-
light and secondly on DFRA, a newly developed method for remote detection of plant
stress.

2.2.1 Remote sensing of sun-induced fluorescence

Figure 2.4: Conceptual
illustration of FLD. ChlF
(green) is added to the re-
flected sunlight (red).

Previous work by Maier et al. [15] proposes a method for
extracting ChlF from air- or spaceborne spectral measure-
ments. Maier et al. [15] apply the Fraunhofer line discrimi-
nation (FLD) principle to separate ChlF from reflected light.
Based on this principle, Rascher et al. [24] measure spec-
tral data both at ground level and at a flight height of
3.5 km with the goal of relating ground based field stud-
ies and global scale measurements of ChlF to each other.

11
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FLD utilises the absorption band of atmospheric oxygen at
762 nm, where the ratio between fluorescence and reflected
sunlight is relatively high, to extract the chlorophyll fluo-
rescence signal. By studying the ratio between the incident
irradiance in the absorption band and that just outside it, and comparing it to the cor-
responding ratio for the emitted and reflected radiance from the plant canopy, the ChlF
signal can be extracted. In essence, a system of equations can be posed as

Li =R · Ei + F (2.20)

Lo =R · Eo + F (2.21)

and then solved for F. L denotes radiance (to the right in Figure 2.4) and E denotes
incident sunlight (to the left in Figure 2.4). R denotes reflectance. The subscripts {i,o}
denote that a value is taken inside or outside the absorption band, respectively.

Rascher et al. [24] improve upon the method laid forth by Maier et al. [15], by accounting
for variation of ChlF intensity around the O2-A (oxygen has several absorption bands,
however only the A and B bands are in the range of ChlF) absorption band at 760 nm.
Furthermore, Rascher et al. [24] use atmospheric modelling software (MODTRAN-5) —
based on work by Berk et al. [2] — to accurately account for atmospheric extinction
and reflection of light, which is necessary for remote measurements. Rascher et al. [24]
use interpolation over a second order curve to estimate the reflectance in the absorption
band, thus correcting for varying fluorescence and reflectance over the band. The low
model order is motivated further by other, more specialised, research in the area [9, 18]
where higher model orders are shown to be necessary only for the O2-B absorption band
(at 687 nm), and being more sensitive to sensor noise otherwise.

The method shown in the work by Rascher et al. [24] is, among others, evaluated in a
study by Meroni et al. [19]. A comparison is made between several methods based on the
original FLD method developed by Plascyk and Gabriel [22]. It is found that the best
choice of method depends very much on available instrumentation, with some methods
only being applicable with highly precise instruments. Based on the evaluation made
by Meroni et al. [19], the particular method implementation shown by Rascher et al.
[24] (”3FLD” in [19]) is chosen for use in this work due to the more advanced methods
requiring high precision instruments. The details of this method are found in Section
3.3.2.1.

A study by Julitta et al. [10] evaluates the performance of four spectrometers in extract-
ing sun-induced fluorescence with the FLD principle. It is found that a very high spectral
resolution is needed (≤ 1 nm full width at half maximum, FWHM) to accurately capture
the fluorescence signal. The following equation for calculating absorption band depth is
used to evaluate performance of a spectrometer in detecting the absorption band [10]:

Depth[%] = 100 · Lout − Lin
Lout

, (2.22)
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with L(λ) being the incident irradiance. The two points at which values are taken are
defined as

Lout = max
λ∈(750,755)

L(λ), Lin = min
λ≈760

L(λ). (2.23)

A value of 75 % is said to represent an adequate spectrometer according to Julitta et al.
[10]. Using a spectrometer with spectral resolution of 0.2 nm, the depth of the O2-A
absorption band was estimated to 81 % by Julitta et al. [10]. The same value for a
spectrometer with resolution 1 nm was 77 % and 49 % for a spectrometer with 5.5 nm
resolution. In other words, using spectrometers with too low spectral resolution results
in sunlight still being present in the calculated fluorescence value. Julitta et al. [10] finds
that, for the O2-B absorption band, the accuracy of the extracted ChlF value depends
heavily on spectral resolution. The spectral resolution limit of 1 nm is more harsh in
this case, with the accuracy deteriorating quickly with decreasing resolution. It should
be mentioned that Julitta et al. [10] use a threshold of 3 mW m−2 sr−1 nm−1, based on
a study by Rossini et al. [25], to determine the corresponding 75 % threshold.

Focus of the research on retrieval of sun-induced fluorescence appears to lie on the
steady-state absolute level of ChlF to determine photosynthetic activity rather than
rapid changes in ChlF. Consequently, [9, 10, 15, 18, 24, 25] do not have an upper limit
on e.g. integration or sampling times. This enables noise removal through e.g. sample
averaging, as performed by Julitta et al. [10], without loss of information.

2.2.2 Dynamic chlorophyll a fluorescence response analysis

Carstensen et al. [6, 7], and related work by Lindqvist [13], describe a novel method
for remote detection of plant stress termed Dynamic Fluorescence Response Analysis.
The method involves fluorescence induction from a distance of 1-2 m with an LED lamp,
and subsequent analysis of the measured slow fluorescence dynamics. By fitting an OE
model (see Section 2.1.5) to the ChlF response to a step excitation, frequency dependent
properties of the modelled system can be studied. The step excitation is relatively small
compared to the constant background light used. Carstensen et al. [5] shows that a lower
model order is sufficient to model a plant under conditions with too much light. Lindqvist
[13] further shows that water induced stress affects the model order and phase shift of the
identified system. An OE model with three poles and three zeros is sufficient to model
the fluorescence response of the plant canopy when the plants are not stressed. When the
plants are overly stressed, only two poles and two zeros are needed and during extreme
stress, a single pole is enough. The analysis is performed through visual inspection of
the model phase shift plot, with the gain being mostly ignored due to its dependency on
sensor placement and spatial configuration of the canopy. The only exception is that the
resonance frequency (frequency where the amplitude response is highest) is occasionally
used to characterise the level of stress.

PSII is non-linear in its response to changes in light. It has been suggested by Carstensen
et al. [6] that the ChlF response exhibits the characteristics of a buffer system with feed-

13



2.2. RELATED WORK CHAPTER 2. THEORY AND RELATED WORK

back. Furthermore, the system varies with time, depending on a multitude of factors,
e.g. plant stress or light level. Due to the non-linearity and time-variance of the mod-
elled system, it is necessary to use very specific parts of the ChlF response for system
identification. As an example, the response to upward steps is different than that to
downward steps, wherefore upward and downward steps are not used in the same sys-
tem identification data sets. Moreover, there exists a deadzone for low incident PAR, as
stated in Section 2.1.2, where a certain level of photon flux is necessary for photochemical
reactions to take place. To avoid this non-linearity of the modelled system, a background
light level exceeding the required level is always used for DFRA. Additionally, the same
estimation and validation data sets are used for DFRA model estimation, due to the
time-varying nature of the modelled system in conjunction with the time invariance of
the estimated model.

It is shown by Lindqvist [13] that the stress dependent change of the phase function varies
with plant species. This means that tailoring of the DFRA method to each individual
species of plant is required.
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3

Methods, Materials and
Experiments

Accounting for reflected sunlight in measurements of chlorophyll fluorescence is a
daunting task. As shown in Chapter 2, it is indeed an area where significant

scientific advances are still being made. The main cause of difficulty is the fact that
the ChlF constitutes merely 1-5 % of the plant canopy radiance [19], making extraction
of the fluorescence difficult. Several methods separating the ChlF signal from reflected
sunlight are applied in this work, as described in this chapter.

3.1 Material

Firstly, collection of measurement data is presented. In order to measure ChlF, spec-
trometers are used in this work, mounted on a rig together with optic fibres and LED
greenhouse lamps. The lamps are used to excite a ChlF response in a canopy of basil
plants which is then measured by one of the spectrometers. Furthermore, the sunlight
and excitation light are measured by two other spectrometers.

3.1.1 Spectrometers

All measurement data in this thesis have been collected in a commercial greenhouse
with a set-up utilising three spectrometers. The spectrometers are installed to measure
incoming (lamp and sun) light, fluorescence contaminated by reflected sunlight, and
solely sunlight, respectively. The first of the spectrometers, M1 in Table 3.1, is connected
with an optic fibre and cosine corrector in order to collect incoming light from about
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Table 3.1: Instrument data for spectrometers used in experiments. All instrument data
save for the absorption band depth is supplied by the manufacturer. If two values exist
for a parameter, this indicates that the second value was used for the corresponding second
experiment.

Reference name M1 M2 Jaz

Measured spectrum Irradiance at
canopy level

Radiance
from canopy

Irradiance
above lamp

Spectrometer model (Ocean Optics) Maya2000 Pro Maya2000 Pro Jaz

Wavelength resolution (FWHM) [nm] 1.85 1.85 1.06

Wavelength range [nm] 199.1-1116.7 198.2-1085.6 339.7-1022.4

Absorption band depth [%] 79 - 63

Fibre diameter [µm] 600 / 50 600 3900

Cosine corrector Yes No Yes

Field of view 180◦ 20◦ 180◦

12 cm above the plant canopy. The second spectrometer (M2 in Table 3.1) is used, also
with an optic fibre, to measure reflected light and fluorescence. The spectrometer is
fitted with a Gershun tube to limit its field of view to a 0.35 m2 area of the canopy (20◦

field of view from a height of 81 cm). The third spectrometer, Jaz in Table 3.1, is used
to measure only sunlight, with an attached cosine corrector, approximately 10 cm above
the lamp(s).

To further remove noise from spectrometer measurements, spectra are collected in total
darkness to be subtracted from the data post measurement. The darkness spectra were
not collected at the experiment site due to the time consuming nature of their collection.

3.1.2 Excitation light

The lamp(s) used for inducing fluorescence responses, Heliospectra LX602, contains
LEDs of three types: blue (450 nm), red (660 nm) and white (5700K) LEDs. Only
the blue LEDs are used for excitation, as they are furthest from the ChlF wavelength
band and therefore do not interfere with ChlF measurements. Figure 3.1 below shows
the spectrum of one lamp when using only the 450 nm LEDs, at maximum intensity.

With the lamp settings used (450 nm LEDs at maximum), one lamp outputs 55.8 µmol m−2 s−1

PAR of blue light at canopy level when turned on. The input signal used (one lamp) is
a square wave with a period of 120 s, as shown in Figure 3.2.

When a background light is used, it is provided by a second, similar, lamp, for which
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Figure 3.1: Wavelength spectrum of excitation light.

Figure 3.2: Square wave used as input signal to excite ChlF response.

the spectrum can be seen in Figure 3.3. The intensity of the lamp is set according to
what is necessary (see Section 3.2).

The LX602 lamps have temperature controllers for which references in the experiment
are set at 8 ◦C, implying that the fans in the lamps are running continuously and thus
keeping the LED temperature constant and, further, affecting the voltage over the LEDs
equally at all times during an experiment.
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Figure 3.3: Spectrum of light used to create a background level with PAR similar to
sunlight, added with the excitation signal from Figure 3.1.

3.1.3 Plant species

All experiments have been conducted on basil (Ocimum Basilicum, ’Aroma2’) plants, as
they were readily available to perform experiments on at the greenhouse. Furthermore,
previous work in this research project [5, 13] has focused on this particular cultivar of
basil. Experiments are conducted on plants of different age in the first experiment and
on only one age-group of basil in the second experiment. The basil plants in the second
experiment were approximately three days from harvest.

3.2 Experiments

Two experiments were performed in a commercial greenhouse, owned by Spisa Smaker
AB, in P̊aarp, Sweden (56◦01′38′′ N, 12◦48′54′′ E). The first experiment took place
between 11:25 and 17:01 the 11th of February 2016. A second experiment was performed
the 20th of April the same year, between 12:20 and 17:28. In February, the weather
was mostly overcast, however, intermittently there were a few minutes of sunlight. In
April, on the other hand, scarcely a single cloud was visible during the entire day. The
approximate sunlight photon flux at canopy level was 70 µmol m−2 s−1 PAR in February
and 500 µmol m−2 s−1 in April.

The second experiment was conducted to verify results from the first and, further, to
collect data with an actinic sunlight level comparable to the background light used by
Lindqvist [13].
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3.2.1 February experiment

ChlF was induced through repeated series of three light level steps, from the lamp being
completely off to having the blue LEDs at full power, as seen in Figure 3.2. Thick insula-
tion curtains were present during the entire experiment, diffusing the incident sunlight.
The spectrometer integration times were kept at a constant level during each experiment
run. Sampling times were changed several times during the experiment, however within
one series of steps the sampling time was kept constant. The two sampling times used
were 0.8 s and 1 s, generally longer during the later hours to allow for longer spectrometer
integration times.

Some measurements were corrupted by activation of the greenhouse HPS lamps. These
measurements were discarded as the HPS lamps radiate light at the ChlF wavelengths.

3.2.2 April experiment

Excitations in this experiment were supplied as three series of 30 consecutive steps,
followed by three shorter series used for experiment verification. The first series of
step excitations was performed while the greenhouse curtains were in place, in effect
providing some optical diffusion lowering the effects of reflections and shading. The
second series was performed with the curtains removed, giving a background sunlight
level of nearly 900 µmol m−2 s−1 PAR. The third was performed with two excitation
lamps to attain a larger excitation signal (89 µmol m−2 s−1). Following these series,
three shorter experiments with one excitation lamp were performed, first with a black
cover admitting a mere 0.3 µmol m−2 s−1 PAR of sunlight, then without the cover and
finally with the cover again. While using the cover, background light was supplied by
the second lamp, mimicking (approximately) the amount of PAR supplied by the sun at
that time as a constant background light, between150 and 200 µmol m−2 s−1 PAR. The
spectrum of the background light can be seen in Figure 3.3.

During all the step series, the integration times were changed in an automated fashion
to optimise signal strength and avoid spectrometer saturation.

3.3 Methods

Four methods are applied and evaluated in this work. The first two are related to the
area of spectrometry, while the second two are based upon signal processing concepts.
The first two methods are:

• Fraunhofer line discrimination (FLD), Section 3.3.2.1

• Spectral quotient, Section 3.3.2.2
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These two methods operate only on a single sample, but more extensively within one
spectrum. In contrast, the second two methods operate over several samples. They are:

• Curve fitting disturbance removal, Section 3.3.3.1

• Parametric model extension, Section 3.3.3.2

The first two methods are used together with OE model estimations for DFRA stress
diagnosis. The latter two are evaluated with both OE and ARX models, as it is rea-
soned that their application might create some error which does not conform to the OE
structure. Furthermore, the latter two are evaluated with simulation data to attest their
validity. Additionally, these two methods are based upon a measurement model, which
is presented in Section 3.3.1 below instead of in conjunction with the corresponding
sections, in order to give the reader better understanding.

3.3.1 Measurement model

Sunlight is a disturbance in two manners. Firstly, as sunlight has spectral content in the
same waveband as the ChlF signal, it all but overwhelms the signal of interest. Secondly,
the sunlight induces ChlF and, hence, acts as an input disturbance to the system which
is to be modelled, potentially interfering with identification of the system.

The wavelength dependent, time-varying dynamic ChlF response (yf ) from PSII to input
PAR (u) is modelled by the operator g acting on the input u:

yf (λ,n) = g(u(λ,n),λ,n), (3.1)

with λ being wavelength and n being sample number. u comprises the sum of lamp light
l(λ,n) and sunlight d(λ,n) such that

u(λ,n) = l(λ,n) + d(λ,n). (3.2)

In the ChlF wavelength band, λ ∈ (650,800), the spectrometer measurements y(λ,n)
contain both ChlF and reflected sunlight. Within this wavelength band, the lamp has
been assumed not to interfere wherefore only the reflection of sunlight is accounted for.
The measured radiance y is then

y(λ∗,n) =

g(u(λ,n),λ∗,n) +R(λ∗) · d(λ∗,n) if λ∗ ∈ (650,800)

R(λ∗) · u(λ∗,n) if λ∗ /∈ (650,800)
, (3.3)

where R(λ∗) is the wavelength dependent reflectance of the plant canopy. Outside the
ChlF interval, the measured values are assumed entirely free of ChlF.

As the signals are quite burdensome to handle when they are dependent on wavelength
as well as time, it is convenient to study them over wavelength intervals instead. A signal
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x(n) is thus formed from the corresponding x(λ,n) based on a chosen interval (λ1,λ2) in
the following manner:

x(n) =

∫ λ2

λ1

x(λ,n)dλ (3.4)

where λ1 and λ2 are chosen according to what interval is of interest. The block diagram
in Figure 3.4 models the measured signals, and is used as basis for the signal processing
based methods described in Section 3.3.3. Here y(n) is the measured ChlF on the interval
λ ∈ (735,755) as well as the reflected light within that interval.

The quantity d(n) is measured in two different manners. Firstly, it is measured directly
by the topmost spectrometer collecting only sunlight. For that spectrometer, the spectra
collected are integrated according to Equation (3.4) over the PAR interval. Secondly,
in order to minimise the number of spectrometers used, the sunlight signal is calculated
from the spectrometer facing the canopy, by integrating over the interval 850 - 1000 nm.
Naturally, this signal does not have the correct magnitude, however this is compensated
for by an overestimation of the reflectance (see Equation (3.24)).

In the measurement model, ρ is the fraction of sunlight added to the collected measure-
ments. Remember that the lamp light contains no light in the ChlF wavelengths and
does therefore not pass through the ρ block in Figure 3.4. In fact, ρ is the product of
two factors:

ρ = f ·R (3.5)

where f is the ratio between sunlight in the ChlF wavelengths and sunlight in the interval
used to create the sunlight signal, i.e. the portion of the sunlight signal disturbing the
ChlF signal. In other words,

f(n) =

∫ 755
735 d(λ,n)dλ∫ λ2
λ1
d(λ,n)dλ

(3.6)

The wavelength dependency of R is ignored here as the interval is small. It can be seen
in Figure 3.4 and Equation (3.3) that y(n) is assumed to be a linear composition of fluo-
rescence and reflected sunlight. Both d(n) and l(n) are integrated over the PAR interval
as per Equation (3.4). In some cases it is not possible to calculate f . Furthermore, it is
only possible to estimate R. For convenience, R and f are therefore treated as a unit,
ρ, to be estimated.

3.3.2 Spectral data treatment methods

Two of the methods used operate on a single sample only, and utilise spectral information
within that sample to deduce e.g. ChlF. These methods are presented here, starting with
FLD which exploits the atmospheric absorption band caused by oxygen. The second
method, termed spectral quotient, is similar in concept but uses intervals instead of
specific wavelengths.
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g(u(n),n)

ρ

l(n)

d(n)

u(n) yf (n) y(n)

Figure 3.4: Measurement model.

3.3.2.1 Fraunhofer line discrimination

Table 3.2: FLD quanti-
ties Vj(n) and correspond-
ing signals.

Vj(n) x(λ,n)

Ej(n) u(λ,n)

Lj(n) y(λ,n)

Lpj (n) S(λ,n) · d(λ,n)

τj(n) τ(λ,n)

Sj(n) S(λ,n)

In order to extract the relatively weak fluorescence signal from
measurements contaminated by sunlight, it is advantageous to
use the O2-A absorption band as described in Section 2.2.1.
The method, known as Fraunhofer line discrimination, relies
on the fact that the ratio between the shoulders of the absorp-
tion band and the bottom of the band should be the same,
both for direct and reflected sunlight. However, the ratios dif-
fer in measurements of reflected light from a plant canopy due
to the addition of ChlF. Thus, the remainder from comparison
between the ratios is determined by the ChlF signal.

The fluorescence intensity, F , inside the absorption band is
calculated according to (3.7) [9, 24].

Fi(n) = B
Xi(n)(Eo(n) +Xo(n)So(n))−AXo(n)(Ei(n) +Xi(n)Si(n))

B(Eo(n) +Xo(n)So(n))−A(Ei(n) +Xi(n)Si(n))
, (3.7)

where the i and o subscripts indicate that a value is taken inside or outside the absorption
band, respectively. A full derivation of this equation is found in Appendix A. The values
are calculated from Equations (3.8) - (3.10), where Vj (j ∈ i,o) and x(λ,n) are replaced
with the quantities shown in Table 3.2.

Vi(n) =
1

λ2−λ1

∫ λ2

λ1

x(λ,n)dλ (3.8)

Vo(n) =
1/2

λ4−λ3

∫ λ4

λ3

x(λ,n)dλ+
1/2

λ6−λ5

∫ λ6

λ5

x(λ,n)dλ (3.9)

Xj(n) = π
Lj(n)− Lpj

τj
(3.10)
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where

λ1 = 759 nm, λ3 = 757 nm, λ5 = 768 nm

λ2 = 763 nm, λ4 = 751 nm, λ6 = 773 nm (3.11)

Lpj is the path scattered radiance and τj is the transmittance of the atmosphere in the
upward direction. Sj(n) is the spherical albedo (fraction of reflected sunlight which is
scattered by the surrounding atmosphere into the sensor).

B in Equation (3.7) is the factor relating ChlF intensity inside and outside the absorption
band, and A is the factor between the reflectance of the canopy inside and outside the
absorption band, i.e.

Fi(n) = BFo(n), Ri = ARo, (3.12)

again with the same intervals.

For this work it is assumed that τj = 1, and consequently Sj = 0, and further that
Lpj is close to zero as the distances involved are not very large (these assumptions are
also supported by Julitta et al. [10], Meroni et al. [19] for the ”centimeters to meters”
canopy level range). These assumptions are necessary in order to avoid using expensive
atmospheric modelling software. Furthermore, it is assumed that B = 0.8 based on
[1, 23]. Consequently, Equation 3.7 reduces to the following:

Fi = πB
LiEo −ALoEi
BEo −AEi

(3.13)

The method described above is entirely based on radiometrical research and removes a
very large portion of sunlight reflections. There are, however, some assumptions that
can be altered to improve the performance of this method.

Modified assumptions
Equation (3.7) is based on an approximation of the reflectance, which is not readily
available, with apparent reflectance. The apparent reflectance, which is the quotient
between incident light and radiant light (i.e. it includes fluorescence), is not well suited
to the DFRA method, as the method uses relative changes rather than absolute levels.

In order to circumvent the use of apparent reflectance, another set of assumptions can
be made. Firstly, the measurement model, which Equation (3.7) is based upon, i.e.

L(λ) = Lp(λ) +
1

π

(ER(λ) + F (λ)) τ(λ)

1− S(λ)R(λ)
, (3.14)

is used. Here, ER(λ) is the pure reflected sunlight, which is not measured, and otherwise
the notation is the same as above. Again, it is assumed that the distances involved are
short and that consequently

Lp(λ) = 0, τ(λ) = 1 =⇒ S(λ) = 0, (3.15)
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Secondly, it is assumed that

F (λ) = F0 + kF (λ− λ0), (3.16)

where kF is taken from known ChlF spectra. Finally, it is assumed that the reflectance
can be modelled as

R(λ) =
ER(λ)

E(λ)
= R0 + kR(λ− λ0) (3.17)

Equations (3.14)-(3.17) together pose a system of equations with unknowns F0, R0 and
kR, which can be calculated by using measurements from three different wavelengths.
So far the method is similar to what Meroni et al. [19] name the cFLD method, which
is described in [8, 20]. However, to further minimise the effects of measurement noise,
measurements are instead taken over the interval 756 nm - 761 nm and the three un-
knowns are calculated by least squares. These assumptions improve the performance of
FLD, however, the spectrometers used do not have sufficient spectral resolution for it to
be possible to remove all of the sunlight in this way. Furthermore, when measuring solar
induced fluorescence stable atmospheric conditions are assumed, something which is not
always the case. It is possible that some ChlF dynamics could be excited by sunlight,
perturbing the DFRA model estimate. Moreover, using two different spectrometers with
independent measurement noises in conjunction with FLD creates a great deal of noise
in the output data, as will be seen in Chapter 4.

3.3.2.2 Spectral quotient

The signal processing based methods, which will be described in the next section, are
sensitive to relative sensor placements. FLD, albeit less sensitive to sensor placement,
is highly sensitive to measurement noise. This sensitivity is amplified by the use of
several spectrometers for which the measurement noises, naturally, are independent.
For these reasons, a method which utilises one spectrometer to extract the ChlF signal
was developed. Naturally, the spectrometer of choice is the one facing the canopy as it
is the only one receiving ChlF.

Looking at one step, if ns is the sample at which the step occurs, the measured outputs
are

y(λ,n) =

g(d(λ,n),λ,n) +R(λ) · d(λ,n) if n < ns

g(u(λ,n),λ,n) +R(λ) · u(λ,n) if n ≥ ns
(3.18)

where g is zero outside the ChlF interval. The quantity of interest is g(l(λ,n),λ,n), when
n ≥ ns (for simplification, the integral of g(l(λ,n),λ,n) over λ ∈ (735,755) is instead
sought for - it is equivalent when looking at ChlF dynamics). Assuming that the plants’
response to the lamp light can be decoupled from that to the sunlight, which is the case
when the sunlight does not induce any dynamic ChlF response, the plants’ ChlF response
to the lamp can be modelled separately from the plants’ response to the sunlight through

g(u(λ,n),λ,n) = g(l(λ,n),λ,n) + g(d(λ,n),λ,n). (3.19)
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This means that, after a step, the signal

y(λ,n) = g(l(λ,n),λ,n) + g(d(λ,n),λ,n) +R(λ) · d(λ,n), λ ∈ (735,755). (3.20)

The sum g(d(λ,n),λ,n)+R(λ)·d(λ,n) in Equation (3.20) can be calculated for the interval
λ ∈ (735,755) as ∫ 755

735

(
g(d(λ,n),λ,n) +R(λ)

)
dλ = Q

∫ 1000

800
d(λ,n)dλ, (3.21)

where Q is the spectral quotient defined below. If the sunlight can be assumed to have a
constant spectral distribution, Q can be calculated from the measurements taken before
the step occurs, as an average over all samples n < ns:

Q =
1

ns − n0

ns∑
k=n0

∫ 755
735

(
g(d(λ,k),λ,k) +R(λ) · d(λ,n)

)
dλ∫ 1000

800 R(λ) · d(λ,k)dλ
. (3.22)

The integrand in the denominator is in fact equal to the measurement y(λ,n) as there is
no ChlF in that interval. The integrand in the numerator is recognised from Equation
(3.18) and is also known. Equations (3.20) - (3.22) together make it possible to calculate
g((λ,n),λ,n) on the interval λ ∈ (735,755) for samples n ≥ ns:∫ 755

735
g(l(λ,n),λ,n)dλ =

∫ 755

735
y(λ,n)dλ−Q

∫ 1000

800
y(λ,n)dλ, (3.23)

The assumption imposed upon the spectral quotient Q is violated in situations where
the spectral distribution of the measured spectrum changes with time. This is the case
when e.g. clouds interfere with the incoming sunlight for a part of the step.

3.3.3 Signal processing methods

The methods in this section operate over several consecutive samples and not to a great
extent over wavelength, instead using wavelength intervals to create signals in the time
domain (refer to Section 3.3.1). Equation (3.4) shows how the signals are formed, for
incoming light the PAR interval is used and for ChlF the interval λ ∈ (735,755) is used.
To evaluate the theoretical validity of the methods put forth in this section, and to
show and understand in which situations they are applicable, the methods are tested
by simulation (see Section 3.3.4) in addition to being used on measurement data. All
measurement data are filtered with a fifth order band-pass Butterworth filter, with pass
band from 0.01 rad s−1 to 1 rad s−1 based on the interval of interest suggested by [13].

3.3.3.1 Curve fitting disturbance removal

To remove the reflected sunlight from the measured output, the following method was
applied. The disturbance d(n) multiplied by a factor ρ̂, estimating the reflectance of the
canopy, is subtracted from the measurements as shown in Figure 3.5 below.
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g(u(n),n)

ρ

ρ̂

l(n)

d(n)

u(n) y(n)

−

canopy

Figure 3.5: Estimation of canopy reflectance.

Ideally, ρ̂ should match ρ. However, since ρ is not available, ρ̂ can instead be calculated
such that the squared difference between y(n) and ρ̂d(n) is minimised:

min
ρ̂

(y(n)− ρ̂d(n))2 (3.24)

Further analysis and details of the method can be found in Appendix C. In short, the
estimated ρ̂ fulfilling Equation (3.24) depends, to a small degree, on the fluorescence
response to u(n), meaning that ρ̂ is not truly equal to the reflectance ρ. In other words,
some sunlight still remains after this method has been applied.

3.3.3.2 Parametric modelling

Ideally, the estimated reflectance ρ̂ should be equal to ρ, since otherwise not all reflected
sunlight can be removed. It is therefore desirable to eliminate the mismatch of ρ̂. How-
ever, this requires knowledge (or an estimate) of the function g(u(n), n), due to the ChlF
response to sunlight not being static as is the case with pure reflection. Given distur-
bance d(n) and output data y(n), a transfer function ĝ of the system can be estimated
together with a model of the reflection. Using a model order of three poles and three
zeros as suggested by Lindqvist [13], with sunlight as disturbance and input signal, the
difference equation for y(n) becomes

y(n) = θTϕ(n) = (b0 + ρ)d(n) + (ρa1 + b1)d(n−1) + (ρa2 + b2)d(n−2)

+ (ρa3 + b3)d(n−3) + b0l(n) + b1l(n−1) + b2l(n−2) + b3l(n−3)

− a1y(n−1)− a2y(n−2)− a3y(n−3) (3.25)

with the parameter vector θ given by

θ = [a1 a2 a3 ρ+b0 ρa1+b1 ρa2+b2 ρa3+b3 b0 b1 b2 b3]
T (3.26)
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and with the regressor vector ϕ defined by

ϕ(n) = [−y(n−1) − y(n−2) − y(n−3) d(n) l(n) u(n−1) u(n−2) u(n−3)]T

(3.27)
where the parameters ρai+bi, i ∈ {1,2,3} arise from the fact that the signal y(n), which
is contaminated by reflection, is not fed back into the system. The signal that is fed
back is in fact y(n)− ρd(n). With noise being more prevalent in this case compared to
Lindqvist [13], a model of lower order is also used in some cases. Reducing the number of
poles and zeros to two, lowers the likelihood for the model to be sensitive to measurement
noise. The reduced order model, in this case, is analogue to Equation (3.25) with the
modification that a3 and b3 are removed.

The parameter vector estimate θ̂ is determined such that it minimises the squared error
by aggregating the data series into a matrix φ:

φ = [ϕ(4) · · · ϕ(N)] (3.28)

Consequently, the parameter vector estimate minimising the squared error, θ̂LS , is found
as

θ̂LS = (φTφ)−1φTy (3.29)

or, in cases where φ is ill-conditioned, with the truncated least squares or truncated
singular value decomposition (see e.g. [12]). The vector y is then

y = [y(4) · · · y(N)]T (3.30)

The estimated system ĝ(q) is then, using the estimated parameters,

ĝ(q) =
b0 + b1q

−1 + b2q
−2 + b3q

−3

1 + a1q−1 + a2q−2 + a3q−3
(3.31)

Modelling with recursive filter
Both the curve fitting disturbance removal and extended parametric model methods
can be implemented in a recursive manner. By using an adaptive filter, as described in
Section 2.1.8, continuous updates of the model parameters are determined, as new data
becomes available. Barring the initialisation of the filter, the model always has a starting
point for the parameter vector estimate θ̂, based on the last filter iteration, which can
be assumed to be close to the minimum as the plants do not change much from sample
to sample (10-15 minutes of adaptation to a change in background light was needed by
Lindqvist [13] in order to avoid transient behaviour due to a change in stress level).

The model structure used for the recursive filter is the reduced order (two poles and two
zeros) model described in Section 3.3.3.2. The filter is tested with initial parameters
all set to 1 and with initial parameters equal to the ones calculated with the method
described in Section 3.3.3.2. The forgetting factor α is chosen arbitrarily to 0.998 (see
Figure 3.6), with a sampling time of 1 s, as it was considered to coincide somewhat with
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Figure 3.6: Weight on a sample resulting from different forgetting factors α, relating to
how many samples ago the sample was taken. As the sampling time used is 1 s, the unit on
the horizontal axis is also time.

the time scale at which plants react to external stress. For reference, field experiments
with traditional ChlF excitation typically require a 30 minute relaxation period between
two excitation flashes [16].

3.3.4 Simulation

In order to test the methods presented in Section 3.3.3, fluorescence data is generated
using a known OE430 system, estimated from laboratory experiments on basil plants.
A disturbance mimicking sunlight is generated as white noise filtered through a low-
pass Butterworth filter with cut-off frequency 0.157 rad s−1, so as to approximate the
variations of sunlight. To the sunlight signal a step input is added, simulating the lamp
signal. The two signals are added together to create the input to the OE430 model. The
total input can be seen in the top plot of Figure 3.7. The output of the reference OE430
system can be seen in the bottom plot of Figure 3.7.
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Figure 3.7: Input to and output from the reference OE430 system. The input is generated
as filtered white noise, added with a step signal.

To accurately simulate the disturbing presence of sunlight, the output in Figure 3.7 is
added with one or two more signals, creating two different tests. The first is to scale
the sunlight signal and add it to the output, thus simulating reflection. The second also
involves adding measurement noise, to test the sensitivity of the estimation algorithms
used. The three signals are shown in Figure 3.8.
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Figure 3.8: Composition of simulation signal. For the noise free test, the top two signals
are added together to simulate reflection. The noise is then added to test the sensitivity to
noise of the estimation algorithms used.
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Results

Among the experiments conducted, six step responses are chosen to be displayed here.
All six steps are taken from the April experiment, from a series of steps collected

between 15:05 and 16:05 (the third of the step series described in Section 3.2.2). This
measurement series is shown in Figure 4.7. Unfortunately, during this period, the light
collected by the spectrometer facing the canopy is very different from the light collected
by the spectrometer collecting sunlight (see especially Figure 4.11, bottom two plots,
as compared to Figure 4.10). This is due to the vast difference in light environments
measured by two spectrometers with different placement. Therefore, the interval from
850 nm to 1000 nm is used wherever possible (all cases except where FLD is used) to
create the sunlight signal. The April experiment is chosen as it is the only one where
a verification experiment has also been performed. Within the April experiment, the
particular step series used in this chapter has been chosen as it is temporally close to
the verification experiment. The fifth step series, while closer in time to the verification
experiment, is not used as it is disturbed too much by reflections and shading from
within the greenhouse. Details of the verification experiment can be found in Appendix
B — only the resulting mean system is used here, shown in all Bode plots in black.

4.1 Method validation through simulation

Using the OE430 system known beforehand, input and output signals are generated as
previously explained in Section 3.3.4. Based on this data, the signal processing methods
of Section 3.3.3 are evaluated theoretically.

Firstly, curve fitting disturbance removal is tested on simulated data, with results shown
in Figure 4.1 and Figure 4.2. A fit less than 100 % is expected as there is noise present.
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Figure 4.1: Simulation results of curve fitting disturbance removal. Two model structures
are used to generate the output.

Both an OE and an ARX model are fitted to data, as the resulting error from the curve
fitting method is likely to be of different character than measurement noise. Two model
structures are used as the resulting error from the operation reasonably has different
properties than measurement noise. The fit percentage is good considering the presence
of noise, however it is clear that the ARX model is missing some characteristics of the
true system.

Fitting the extended parametric model detailed in Section 3.3.3.2 to simulation data
yields the result shown in Figure 4.3, with Bode diagram shown in Figure 4.4, for the
noise free case. The estimated system is shown in blue. The least squares solution was
found with singular value decomposition, and the Bode diagrams match perfectly.

In the case where noise is present, however, the situation is quite different. In order
to arrive at the OE estimate, an iterative method was used. Both the result from this
method and the least squares solution are shown in Figure 4.5 and the corresponding
Bode diagram in Figure 4.6. Even though the simulated model output is very accurate,
the Bode diagram fit is not. A general similarity is still present as seen in Figure 4.6.
The model in Equation (3.25) was also solved for the exact parameters with MATLAB’s
nonlinear least squares solver [26], using several different starting points. Using the
known correct parameters gave the correct solution, indicating that the model structure
is correct. However, perturbing the initial parameter values slightly causes the solver to
end up in one of several other local minima, with incorrect parameter values.
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Figure 4.2: Bode diagrams of the estimated OE and ARX systems, using data where the
disturbance has been removed with curve fitting, compared to the true system. The true
system has been estimated as an OE system on laboratory ChlF measurement data.
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Figure 4.3: Output of the estimated model (blue) and the noise free data used to estimate
the model (gray).
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Figure 4.4: Bode diagram of the true system (left) and the estimated model (right). No
noise is present in the estimation data, and therefore only the least squares solution is shown.

35



4.1. METHOD VALIDATION THROUGH SIMULATION CHAPTER 4. RESULTS

Figure 4.5: Output of the extended parametric model estimated with least squares (red),
the iteratively refined model (blue) and the data corrupted by noise, used to estimate the
model (gray).
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Figure 4.6: Bode diagram of the true system (black) along with the least squares model
estimate (red), and the iteratively refined model (blue).
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4.2 Experimental data

Figure 4.7 shows the entire experiment between 15:06 and 16:06. In the interest of
brevity, six steps are chosen from this series: the 3rd, 6th, 14th, 24th, 27th and 28th steps.
The selection is made at random, excluding those where the data had obviously been
corrupted (such as the first step in Figure 4.7). Figure 4.8 to Figure 4.10 show the chosen

Figure 4.7: All 30 step responses, as measured by the spectrometer facing the canopy. The
six steps which are used in this chapter are the 3rd, 6th, 14th, 24th, 27th and 28th steps in
this figure. The data is integrated over the interval from 735 nm to 755 nm.

steps in more detail, as integrated over two different intervals (735 nm to 755 nm and
850 nm to 1000 nm, respectively). Figure 4.11 shows the sunlight as measured by the
topmost spectrometer, integrated over the PAR interval. It is clear that the measured
sunlight does not match the reflected which can be seen in Figures 4.8 - 4.10. This is due
to the placement of the spectrometers. The bottom two plots are disturbed by shadows
cast by structures in the greenhouse, and the measured light is therefore vastly different
from the light reaching the plant canopy. Figure 4.12 shows the total incoming lamp
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Figure 4.8: The first two step responses. The top two plots show the fluorescence response
to one step excitation from the lamp, as well as reflected sunlight in the ChlF wavelength
interval. The bottom two plots show the corresponding reflected sunlight in the neighbouring
wavelength band between 850 nm and 1000 nm. All data is taken from the spectrometer
facing the plant canopy.

light and sunlight, measured by the bottom spectrometer and integrated over the PAR
interval.
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Figure 4.9: The third and fourth step responses. The top two plots show the fluorescence
response to one step excitation from the lamp, as well as reflected sunlight in the ChlF
wavelength interval. The bottom two plots show the corresponding reflected sunlight in the
neighbouring wavelength band between 850 nm and 1000 nm. All data is taken from the
spectrometer facing the plant canopy.
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Figure 4.10: The fifth and sixth step responses. The top two plots show the fluores-
cence response to a step excitation from the lamp, as well as reflected sunlight in the ChlF
wavelength interval. The bottom two plots show the corresponding reflected sunlight in the
neighbouring wavelength band between 850 nm and 1000 nm. All data is taken from the
spectrometer facing the plant canopy.
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Figure 4.11: Sunlight during step excitations, as measured by the spectrometer collecting
only sunlight.
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Figure 4.12: Measured total of incoming photosynthetically active lamp light and sunlight.
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4.3 Method performance

Using the measurements shown in Section 4.2, the ChlF output is calculated using the
methods detailed in Chapter 3. They are all clearly affected by measurement noise, to
such a degree that the stress diagnosis becomes very unreliable. Further, it is not certain
what character the ChlF response has when the plant canopy is affected by a varying
background light level. The performance is evaluated as NRMSE fit percentage [27], in
conjunction with similarity of the Bode diagram to the OE430 reference system. The
reference system is estimated from data where the sun had no influence, but with a
similar background level as provided by the sun. Furthermore, the reference experiment
was performed directly following the experiment under influence of sunlight. Details on
the reference experiment can be found in Appendix B.

The Bode diagrams in this section are all normalised to the gain at 0.01 rad s−1, as this
is the lowest frequency of interest (approximately the steady-state gain), as described in
[13]. Normalising the gain clarifies the ratio between resonance frequency and steady-
state gain.

4.3.1 Fraunhofer line discrimination

Figure 4.13 shows the fluorescence calculated with the method described in Section
3.3.2.1. The fluorescence dynamics are somewhat visible. However, any high frequency
content, such as an initial smaller peak, is likely to be lost in noise. OE320 models are
fitted to the calculated ChlF responses, shown in Figure 4.14, as the higher order model
structure has a tendency to model noise. The Bode diagrams of these systems are found
in Figure 4.15.
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Figure 4.13: The six ChlF step responses, calculated with Fraunhofer line discrimination.
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Figure 4.14: OE320 models fitted to the ChlF output calculated by means of Fraunhofer
line discrimination.
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Figure 4.15: Bode diagrams of the OE320 models fitted to FLD output data. The reference
system is shown as a thicker black line.
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4.3.2 Curve fitting disturbance removal

Figure 4.16 shows the effect of fitting the sunlight signal to the fluorescence signal to
remove the reflection, as described in Section 3.3.3.1. The plots shown are fluorescence
data prior and post treatment with this method, as well as the sunlight signal being
fitted.

Figure 4.16: Performance of the curve fitting method. The sunlight is integrated over the
interval 850 - 1000 nm for the canopy facing spectrometer. The sunlight is shown in orange
(right axis). The fluorescence measured in the interval 735 - 755 nm is shown in green (left
axis). It has been shifted down to fit into the plot. The signal resulting from the curve
fitting is shown in blue (left axis).
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Figure 4.17: OE430 models fitted to the six different steps. The reflected sunlight has
been removed from the output data (gray) through fitting of the sunlight signal to the raw
irradiance data. All units are in µmol m−2 s−1.
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Figure 4.18: Bode diagrams of the six estimated OE430 systems, which are also shown
in Figure 4.17. The systems are estimated from data treated by curve fitting disturbance
removal. The reference system is shown as a thicker black line.
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4.3.3 Spectral quotient

Figures 4.19 shows OE320 models fitted to experiment data where sunlight reflection
and sunlight induced ChlF has been removed as described in Section 3.3.2.2. Figure 4.20
shows Bode diagrams for the estimated systems, as compared to the reference system.

Figure 4.19: OE320 models fitted to the ChlF output calculated by means of spectral
quotient.
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Figure 4.20: Bode diagrams of the OE320 models fitted to spectral quotient output data.
Gains are normalised to the gain at 0.01 rad s−1. The reference system is shown as a thicker
black line.

52



4.3. METHOD PERFORMANCE CHAPTER 4. RESULTS

4.3.4 Parametric modelling

As the estimation of the parametric model in Equation (3.25) gives unsatisfactory results
with simulation data, it is not expected to perform well with measured data. Neverthe-
less, the results are presented here, in Figure 4.21, Figure 4.22 and Figure 4.23. Figure
4.21 shows the model outputs when subjected to the measured input (sunlight and lamp
light) data. The relatively low noise attenuation is likely due to the high feedthrough
gain of the sunlight zero polynomial (reflectance). Figure 4.22 shows Bode diagrams of
the fitted OE430 models, and Figure 4.23 shows Bode diagrams for the corresponding
ARX430 models.

Figure 4.21: Extended ARX430 and OE430 models fitted to measurement data
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Figure 4.22: Bode diagrams for the extended OE430 model estimates. Gains are nor-
malised to the gain at 0.01 rad s−1. The reference system is shown as a thicker black line.

Figure 4.23: Bode diagrams for the extended ARX430 model estimates. Gains are nor-
malised to the gain at 0.01 rad s−1. The reference system is shown as a thicker black line.
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A singular value decomposition of the regressor matrix φ for one of the steps reveals the
following singular values σi:

{σ1, ..., σ11} = {1.700 · 103, 1.453 · 102, 8.375 · 101, 7.804 · 101,

6.036 ·101, 6.067 ·10−2, 4.734 ·10−2, 4.494 ·10−2, 2.433 ·10−2, 8.745 ·10−3, 7.331 ·10−3}
(4.1)

The condition number of the matrix is very large, and the smallest singular value is small.
This indicates that the matrix is (a) ill-conditioned and (b) close to losing rank. The
problem of ill-conditioning is solved with regularisation by means of truncated singular
value decomposition. The issue of rank is discussed further in Chapter 5.

4.3.5 Adaptive filtering

The results for the adaptive filter were not created for data where a verification exper-
iment was made, due to accurate parameter estimation for the parametric model not
being possible as shown by simulations.

55





5

Discussion

This study builds on and contributes to work in both spectrometry and chlorophyll
fluorescence analysis. The main contribution of this study is combining remote

sensing of ChlF responses with disturbance rejection techniques. In this chapter, the
developed methods are discussed and an attempt at evaluation is made. Furthermore,
some possible extensions of this work are suggested.

5.1 Methods

As the inner workings of the plant canopy is unknown to the outside observer, it is hard
to know what the step responses should look like. To exemplify, studying Figure 4.7,
which contains all steps, reveals that many of the steps do not have a typical ChlF step
response appearance. It may be so that PSII reacts differently to a step under a changing
background level, and that the identified systems therefore cannot be expected to be the
same. Verification with simulation data is therefore a reasonable approach; if the canopy
behaves differently under varying sunlight, that needs to be accounted for in a different
manner (e.g. only performing step excitations under constant sunlight, though however,
there should be better ways).

Furthermore, models with similar fit to the noisy data, i.e. similar fit percentages and
appearance, can have widely different phase plots. In the case with noise, it is therefore
unreliable to use the phase plot for stress diagnosis.

Aspects pertaining to the individual methods are discussed below.
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5.1.1 Fraunhofer Line Discrimination

The modification of using least squares with the cFLD method laid forth by Gómez-
Chova et al. [8] and Moya et al. [20], outlined in Section 3.3.2.1 (”modified assumptions”),
aid considerably in extracting the fluorescence response from sunlight-contaminated sig-
nals. It is not certain why this has not been performed in other studies on ChlF in the
presence of sunlight. Presumably, the increased accuracy of the results obtained is less
clear when atmospheric modelling software and more accurate spectrometers are used
(which is the case for all spectrometric studies referred to herein). Lack of atmospheric
modelling software is most likely part of the reason why FLD does not remove all of the
reflected sunlight - there is bound to be a small amount of path reflected radiance as well
as an upwelling transmittance lower than 1. Furthermore, the spectral resolution of the
spectrometers used causes a reduction in the absorption band depth. Thus, some light
from adjacent wavelengths is included in the absorption band due to pixel quantisation
in the spectrometer.

5.1.2 Spectral quotient

This method is, in essence, the same as the curve fitting approach, with the small
exception that it only uses samples before the excitation step. The two are, however,
formulated in two very different ways. It would be expected that using only the samples
before the step would give performance in removing the sunlight, as the ChlF response
to lamp light does not affect the ’fit’. The full curve fitting approach does however seem
more effective at removing the reflected sunlight, when looking at the results.

5.1.3 Curve fitting disturbance removal

Removal of sunlight from the measured fluorescence signal by means of sunlight curve
fitting as described in Section 3.3.3.1 is problematic. If the sunlight varies in a way
similar to the fluorescence response it is highly probable that the sunlight curve is overly
fitted to the response rather than the reflected sunlight. Furthermore, although less
prevalent, this is the case also when the sunlight behaves benignly (i.e. not changing in
a different way when the ChlF response is occurring). It should, however, be possible
to weight the fit so that a good fit is less prioritised where ChlF can be expected - the
problem, then, becomes how to shape the weighting so that it does not affect the fit
negatively.

Theoretically, if the sunlight itself is not actinic, it should be possible to fit the sunlight
curve only to where ChlF is not excited and hence avoid erringly fitting the curve to the
response. The curve fitting method is better suited to static responses, and is essentially
a very basic variant of the parametric model described by Equation (3.25) where only
ρ is considered. The effect of using this method where a ChlF response is present is in

58



5.1. METHODS CHAPTER 5. DISCUSSION

other words that ρ̂ is overestimated, and that consequently some of the sunlight signal
remains after the operation.

5.1.4 Parametric modelling

The extended model described by Equation (3.25) likely needs modification to be con-
sistently solvable for the correct minimum. The slightest presence of noise using the
current model iteration makes the solution unreliable for the purpose of stress diagnosis.
Another candidate for why the model does not give reliable parameter values could be
the observability or identifiability of the system. With the output y(n) essentially being
generated by two separate subsystems, the individual outputs of which it is not possible
to know, it becomes difficult to know which of the two subsystems generates which part
of the output.

A few of the small singular values in the regressor matrix φ are likely due to the matrix
being Toeplitz structured (the same elements appear in block diagonals). However,
the number of singular values which are exactly zero when noise is not present is only
one. For the case with noise, this indicates that only one singular value is small due to
this fact. The remaining small singular values are then due to near linear dependency
between columns. This means that a parameter in θ can be estimated wrongly, and then
compensated for in the fit by another parameter being estimated wrongly ’in the other
direction’.

The fact that noise is present in the regressor matrix φ, both in input and output values,
makes the least squares solution biased. While the instrumental variable method is used
to iteratively improve this solution, the method does not handle input noise well.

If a personal evaluation is to be given, this method appears the most elegant; all of
the other methods have some assumption worked into them. If it would be possible to
estimate the parameters in this model in a consistent way, that would be the paramount
solution to the DFRA-in-sunlight problem.

5.1.5 Adaptive filtering

The filter performance depends on the model structure being correct, and an evaluation
of this approach is difficult to make as the approach could be spot on while it is the
model structure that needs revision.

This method enables continuous monitoring and parameter updates; it would be an
interesting experiment to use this method on a plant canopy which is subjected to a
change in stress during the course of an experiment.
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5.2. FUTURE WORK CHAPTER 5. DISCUSSION

5.2 Future work

This section has been redacted from the published version of this text at the request of
Heliospectra. It is available at the discretion of Heliospectra and the author.
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6

Conclusion

Sunlight adversely affects the DFRA model estimation. If the sunlight is not constant,
it continuously generates a ChlF response which disturbs the DFRA modelling.

Furthermore, the feedthrough magnification of the estimated system is severely changed
when some of the incoming light is merely reflected back instead of going through PSII
to be output as ChlF. If the method is to be used with a changing background level,
additional steps must be taken.

With the resolution of the spectrometers used in this work, the FLD method produces too
much noise, however if higher resolution spectrometers were to be used (i.e. better than
1 nm) this method would likely give the best ChlF estimations. The output data from
FLD can then be used directly in DFRA, if the input signal is taken to be both sunlight
and lamp light. A negative aspect of this method is that it requires two spectrometers.

In contrast, using only one spectrometer to measure ChlF on the canopy, while simulta-
neously deducing the sunlight from reflected irradiance in the 850 - 1000 nm, proved to
be a most successful approach. It lessens the noise arising from spectrometer integration
times and requires only one spectrometer. If the intensity of the lamps at canopy level
is known (which is not unlikely), this is the only spectrometer needed. However, this
approach can only be used for the signal processing methods, which all have their own
small problem.

The curve fitting disturbance removal method does not remove all sunlight, as the sun-
light curve is partly fitted to the ChlF response to the lamp input. The extended para-
metric model estimation is the most elegant solution, however the problem is non-linear
and difficult to solve for the correct parameter values, especially in the presence of noise.
The adaptive filter is based upon the model and is in all likelihood a good approach
however it is based on the model.
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CHAPTER 6. CONCLUSION

The DFRA method as a whole is sensitive to the non-linearity of the system, as the
non-linear ChlF response dynamics is modelled as a linear system. While this is not a
problem in laboratory conditions, the model mismatch is perfectly evident when there
is a varying background disturbance. The fact that the system cannot be expected to
react similarly to the same input signal makes even visual assessment of the response
curves difficult.

With regard to the DFRA method in presence of noise, the phase plot is too sensitive
with the present noise level, as it is not clear which model fit is better between two very
similar fits. The models, which are similar in fit, can have a large difference in phase
plots. It is therefore unreliable for showing plant stress in exposed environments, unless
the noise is reduced by a considerable amount. Instead, it would be better to use the
steady-state to resonance frequency gain ratio to diagnose plant stress, if the noise level
cannot be reduced.

The most promising method for future applications is the adaptive filter, as it is better
suited for automating plant stress detection, however it requires that model parameter
estimation be solved in some way. If this cannot be done, FLD should be used in
conjunction with precise spectrometers and shorter sampling time to combat the noise
created by the method.
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A

Derivation of Fraunhofer Line
Discrimination equations

The FLD method rests upon the assumption that the ratio between radiance inside and
outside the absorption band is equal for incident and reflected (superscript R) sunlight:

Ei
Eo

=
ERi
ERo

(A.1)

The quantities ERj , j ∈ {i,o}, added with chlorophyll fluorescence F , are measured by a
spectrometer (radiances Lj):

Ei
Eo

=
Li − F
Lo − F

(A.2)

Extracting F from the equation yields:

F =
EoLi − EiLo
Eo − Ei

(A.3)

This equation is the base of a plethora of methods which improve upon it. One such
method is 3FLD, which does not assume constant fluorescence over the absorption band,
and furthermore accounts for the fact that the reflectance differs slightly over the interval
concerned. Moreover, 3FLD compensates for the effects of path reflected radiance Lpj and
atmospheric transmittance τj to enable measurements from very high altitudes. This is
described by the two relations below, where A and B are assumed constant.
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APPENDIX A. DERIVATION OF FRAUNHOFER LINE DISCRIMINATION
EQUATIONS

Fi = BFo, Ri = ARo (A.4)

The measured radiance, inside and outside the absorption band, is modeled as below
based on a radiative transfer model [11]. Surface reflectance is assumed to be Lamber-
tian. τj represents upward transmittance for the distance from surface to sensor, Rj the
reflectance and Sj the atmospheric spherical albedo (the term SjRj is the portion of
sunlight which is reflected by the surface and then backscattered into the sensor by the
surrounding atmosphere).

Lj = Lpj +
1

π

(ERj + Fj)τj

1− SjRj
, ERj = RjEj , j ∈ {i,o} (A.5)

ERj is not available as a pure measurement, and so the reflectance Rj cannot be calculated
exactly. However, an approximation can instead be made using the apparent reflectance
R̃j , in order to find A:

Rj ≈ R̃j =
Lj
Ej

=
ERj + Fj

Ej
(A.6)

As the quantity R̃j depends on Fj to a greater degree in the absorption band, its value is
not calculated from Li and Ei directly but instead deduced through linear interpolation
between the two shoulder bands:

R(λ) ≈ a1λ+ a2 (A.7)

The parameters a1 and a2 are calculated by using one point on each side of the absorption
band, λ1 = 753 nm and λ2 = 771 nm, based on the apparent reflectance R̃.

a1 =
R̃(λ2)− R̃(λ1)

λ2 − λ1
, a2 = R̃(λ1)

λ2
λ2 − λ1

− R̃(λ2)
λ1

λ2 − λ1
(A.8)

From this we can calculate A, inserting λ3 = 760 nm into Equation (A.7), as

A =
R(λ3)

R(λ1)
≈ R̃(λ1)C1 + R̃(λ2)C2

R̃(λ1)
(A.9)

where

C1 =
λ2 − λ3
λ2 − λ1

, C2 =
λ3 − λ1
λ2 − λ1

(A.10)

Using atmospheric modelling software, Sj , τj and Lpj can be calculated. Consequently,
what remains are four unknowns Ri, Ro, Fi, and Fo. In the interest of brevity, we first
introduce Xj :
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APPENDIX A. DERIVATION OF FRAUNHOFER LINE DISCRIMINATION
EQUATIONS

Xj = π
Lj − Lpj
τj

(A.11)

Inserting into Equation (A.5) yields the top two equations in the following system of
equations for the four variables:



Xi = RiEi+Fi
1−SiRi

(1)

Xo = RoEo+Fo
1−SoRo

(2)

Fi = BFo (3)

Ri = ARo (4)

(A.12)

We can separate Ro from (2) in Equation (A.12), using (3) to eliminate Fo:

Ro =
Xo − FiB−1

Eo + SoXo
(A.13)

Inserting Equation (A.13) into (1) from Equation (A.12), while using (4) to eliminate
ρi, yields

Xi =
AXo−FiB

−1

Eo+SoXo
Ei + Fi

1−AXo−FiB−1

Eo +SoXo
Si

(A.14)

Now, we can express the fluorescence inside the absorption band by rearranging the
equation to only have Fi on the left side:

Fi = B
Xi(Eo + SoXo)−AXo(Ei + SiXi)

B(Eo + SoXo)−A(Ei + SiXi)
(A.15)
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B

Estimation of reference model

Using the measurements obtained without the presence of sunlight, a reference system
was estimated as described by Lindqvist [13]. Only the second to the sixth step of Figure
B.1 are used, with the others being disturbed by unwanted external factors (e.g. wind
causing motion of the sun cover or plant canopy).

Figure B.1: Fluorescence in the interval between 735 nm and 745 nm, as measured by the
downward facing spectrometer. The measurements are obtained without the presence of
sunlight, in order to have a reference model with which to evaluate the methods in this
work. Background lighting with photon flux similar to the ambient sunlight is generated
by a second lamp. Only the second through sixth steps are used to generate the reference
model, as the others are clearly disturbed by e.g. undesirable motion of the sun cover.
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APPENDIX B. ESTIMATION OF REFERENCE MODEL

Figure B.2 shows the OE models fitted to the five selected step responses. A model
structure with three poles and three zeros is used, motivated the relatively small influence
of measurement noise enabling use of a higher model order (matching previous work by
Lindqvist [13].

Figure B.2: OE430 models fitted to measured fluorescence responses.
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APPENDIX B. ESTIMATION OF REFERENCE MODEL

The Bode diagrams of the five models can be seen in Figure B.3 as dotted black lines.
The mean system, used in Chapter 4, is shown as a solid black line. It is calculated
simply by taking the mean value of all five systems’ magnitude and phase response, for
the frequencies shown.

Figure B.3: Bode diagrams for the five estimated OE430 models (dotted), and the mean
system (solid).
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C

Least squares curve fitting

To further analyse the ρ̂ resulting from the minimisation shown in Equation (3.24), the
components of y(n) and u(n) can be written explicitly:

min
ρ̂

(g(l(n) + d(n), t) + ρd(t)− ρ̂d(t))2 (C.1)

This gives a ρ̂ minimizing the expression as

ρ̂ = ρ+
g(l(t) + d(t), t)

d(t)
(C.2)

It is clear that ρ̂ is not a precise estimation of ρ, but depends also on the ChlF response.
However, as the fraction in Equation (C.2) is much smaller than the reflectance (typically
in the order of thousandths), the approximation can be used in situations where the
sunlight is sufficiently large to warrant its use.

To perform the minimisation described by Equation (3.24), the problem is structured as
an optimisation:

minimise 1
2‖Y −Dx‖

2
2

s.t. Ax ≤ B
x ≥ 0

(C.3)
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APPENDIX C. LEAST SQUARES CURVE FITTING

with

x = [ρ̂ m], Y = [y1 · · · yN ]T B = [1 Y T ]T

D =



d1 −1
...

...

dM −1

dM+1 1
...

...

dN 1


, A =

1 0

D

 (C.4)

where the subscripts 1, ..., N denote sample number, N is the number of samples in a
single step, m is the slack variable, and M is the last sample before the step (close, but
not exactly equal to N

2 ).
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