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Abstract
One of the current frontiers in neurosciences is to understand brain connectivity
both in healthy subjects and patients. Recent studies suggest that brain connec-
tivity measured with graph theory is a reliable candidate biomarker of neuronal
dysfunction and disease spread in neurodegenerative disorders. Widespread abnor-
malities in the topology of the cerebral networks in patients correlate with a higher
risk of developing dementia and worse prognosis.

In order to recognize such abnormalities, brain network graph measures should be
compared with the corresponding measures calculated on random graphs with the
same degree distribution. However, creating a random graph with prescribed degree
sequence that has number of nodes of magnitude of 105 is a recognized problem.
Existing algorithms have a variety of shortcomings, among which are slow run-time,
non-uniformity of results and divergence of degree distribution with the target one.

The goal of this thesis is to explore the possibility of finding an algorithm that can
be used with very large networks. Multiple common algorithms were tested to check
their scaling with increasing number of nodes. The results are compared in order
to find weaknesses and strengths of particular algorithms, and certain changes are
offered that speed up their runtimes and/or correct for the downsides. The degree
distributions of the resulting random graphs are compared to those of the target
graphs, which are constructed in a way that mimics some of the most common
characteristics of brain networks, namely small-worldness and scale-free topology,
and it is discussed why some of the models are more appropriate than others in
this case. Simulations prove that the majority of algorithms are vastly inefficient
in creating random large graphs with necessary limitations on their topology, while
some can be adapted to showcase to a certain extent promising results.
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1
Chapter 1

1.1 Brain networks and graph theory

Brain connectivity is an important subject of study for neuroscience. Measured
with graph theory, it becomes a biomarker of neuronal dysfunction and spread of
neurodegenerative disorders such as Alzheimer’s [1], Parkinson’s [2], and others.
Prognosis becomes worse the more pronounced the abnormalities and disruption in
connectivity patterns in patients are.

Brain connectivity, same as social networks, transportation, linguistics etc., can be
studied efficiently with the help of graph theory. Representing elements of networks
with vertices and connections with edges, a graph is created, various measures of
which can be studied later in order to learn more about the underlying system.
In case of a brain network, the vertices represent either the individual neurons, or
the anatomical or functional areas of a brain, while edges showcase the connections
between those (synapses or presentations of statistical dependencies between those
areas).

It is useful to inspect the graph by looking at the adjacency matrix, whose elements
can be either 0 (meaning the pairs of vertices are adjacent) or 1 (not adjacent).
Brain networks are derived from anatomical data, computer simulations or other
methods often yield matrices with elements different from 0 and 1, and afterwords
thresholded to produce a binary network [3]. The resultant matrices can be symmet-
ric or non-symmetric, representing undirected or directed graphs correspondingly.
We are going to mostly focus on undirected graphs which are more important to the
model we are investigating. Also, we are going to be working with simple graphs, i.e.
such that have no duplicate and self-edges, in other words, no vertex is connected
to itself by an edge and has at most 1 edge connecting it to any other vertex.

One of the more commonly used and important measures of graphs is the degree
distribution. The degree of a vertex is the number of edges attached to it, and in
case of directed graphs there is an in-degree and an out-degree. The degree distri-
bution is the probability distribution of such degrees over the network. This is not
to be confused with degree sequence, which might be thought of as a realization of
a degree distribution, a non-increasing sequence of degrees of vertices of a specific
graph. To find out whether the network has certain irregularities it should be com-
pared to random graphs with the same degree distribution.
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1. Chapter 1

Brain networks are complex, which means they display both regularity and random-
ness. This combination might manifest in different ways [4], and there exist a lot
of different random graph models. The Erdős-Rényi model can perhaps be called
the base one for creating random graphs. It can be applied to basically any kind
of graphs, including directed and non-directed, with self-loops or without them and
so on. Within this model, a random graph is picked uniformly and randomly from
the set of all graphs with n nodes and M edges (G(n,M)). A closely related model,
proposed by Edgar Gilbert, involves connecting n nodes with independent probabil-
ity p between each other (G(n, p)). The features that are present in brain networks,
however, are inhomogenous degree distribution [5] and a specific connectivity pat-
tern on a local level [6]. These are referred to, correspondingly, as scale-free and
small-world networks.

In the case of scale-free networks [7] a small number of vertices have many more con-
nections and are called hubs. They are extremely important to network functioning
and should they be removed, the network functionality would be disrupted. At the
same time, deletion of less important nodes does not influence the network nearly as
much, and this was shown to be true for brain networks. The degree distribution for
scale-free networks follows a power law (although it is argued that for the brain it
actually is an exponentially truncated power law, which is less vulnerable to attack
on specific nodes [8]).

The small-world topology [9] is similar to random networks in terms of degree dis-
tribution shape - it resembles bell curve. The network with such topology is inho-
mogeneous because nodes that are adjacent to a certain node are also highly likely
to be adjacent to each other, vastly increasing clustering coefficient (the likelihood
of such adjacency) compared to the Erdős-Rényi model. Such architecture allows
areas in the brain that are functionally similar to be densely interconnected.

1.2 General idea of the research
Data for creating graphs for brain networks is often gathered from MRI, fMRI, EEG
etc. In order to construct a graph from this data we use the BRAPH package [10].
In addition to obtaining the brain connectivity graphs, the package also assess the
graph structure and tests for differences between the groups. Finally, it normalizes
the network measures by random graphs. However, the networks in question tend
to be very large, with 105 vertices and more. As it turns out, creating a random
graph with a prescribed degree distribution for comparison takes a very long time
with naive algorithms and implementations, and creating a random graph according
to Erdős-Rényi model is not sufficient because of heterogeneity between the nodes.
Hence there is need for creating a suitable algorithm that would not slow down the
work of the whole package, while at the same time keeping the degree distribution
of created random graph close to the given one (obtained from clinical data) and
picking a candidate graph uniformly among all the possible ones, which is the aim
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1. Chapter 1

of this thesis.

The work is carried out on the following way: first, a graph with a large number of
nodes is created, whether completely randomly (e.g. by Erdős-Rényi model), or with
scale-free or small-world characteristics in order to resemble the actual brain net-
works. There are certain mechanisms for creating these, e.g. small-world topology
can be created by applying the Watts-Strogatz mechanism, and scale-free network
can be implemented by consecutively adding nodes to the graph and using preferen-
tial attachment (one of the most basic models is the Barabasi-Albert model). Then,
an algorithm is tested, that is supposed to create a random graph with a degree
distribution that would be close to the original graph. Runtime is averaged over
several runs, and also for different sizes of the original graph in order to learn how it
scales with increasing number of nodes. Finally, a degree distribution of the original
graph and the created ones are compared to test how different they are.
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2
Chapter 2

2.1 Random graphs
The first step is to create a graph that is based on the Erdős-Rényi model, i.e.
completely random with exception for the number of nodes n and probability of
edge inclusion p. There are quite a few algorithms that aim to create random graphs
but the baseline ones scale poorly for large networks, hence many modifications and
improvements are proposed, for example, in [11]. We are going to explore some of
them, for now focusing on the average run-time and the ways to improve it.

2.1.1 Baseline algorithm (ER)
The most basic idea for creating a G(n, p) graph is to go through every possible
edge and include it with probability p, which can be accomplished by creating two
loops.

Algorithm 1 ER
1: G(n, p) = ∅
2: for i = 1 to n do
3: for j = 1 to n do
4: Generate uniform random number θ ∈ [0, 1)
5: if θ < p then
6: G(n, p) := G(n, p) + (i, j)

This algorithm is really basic and can be improved in many ways, some of which
will be demonstrated here. The others will be left out. For example, it is rather
simple to use a single loop instead of two without changing the main idea. Also
we are deliberately leaving parallel variations out which are out of the scope of this
work.

2.1.2 ZER
The central point in this algorithm is skipping the generation of random numbers for
some edges. Authors argue [11] this is similar to the process in Z Reservoir algorithm
hence the name ZER. Since not all edges are connected and number of skipped edges
is geometrically distributed with parameter p, computationally ZER is expected to
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2. Chapter 2

be faster than the base ER, however due to logarithmical computations this is not
always the case. E is maximum number of possible edges in a graph.

Algorithm 2 ZER
1: G(n, p) = ∅
2: i = −1
3: while i < E do
4: Generate uniform random number θ ∈ [0, 1)
5: Skip value k = max(0,

⌈
log1−p θ

⌉
− 1)

6: i := i+ k + 1
7: G(n, p) := G(n, p) + ei

8: Discard the last edge

ei is an ’encoded’ edge. This is done in order to have one loop and one index, thus
vastly decreasing computational time. It can be decoded into more usual indices i
and j in the following way:

i = bind/vc
j = ind mod v

where ind is the single index and v is the number of edges in the graph.

2.1.3 PreLogZER
This algorithm becomes computationally more efficient than the previous one, ZER,
by pre-calculating all the logarithm values. However, the benefits are obvious only
to a certain extent; if the random numbers that are used in the process are of
higher precision (more than 16-bit) or graphs are not large enough, this variation
might actually perform worse. However the idea of pre-calculating certain operations
before the main loop might be important in the following work.

Algorithm 3 PreLogZER
1: G(n, p) = ∅
2: c = log(1− p)
3: for i = 1 to RANDMAX do
4: log(i) = log(i/RANDMAX)
5: i = −1
6: while i < E do
7: Generate uniform random number θ ∈ [0, RANDMAX)
8: Skip value k = max(0,

⌈
log(θ)
c

⌉
− 1)

9: i := i+ k + 1
10: G(n, p) := G(n, p) + ei

11: Discard the last edge
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2. Chapter 2

There is one more version of this algorithm, PreZER, which is based on avoiding
logarithmic computation whenever possible at all, by pre-computing the breakpoints
of cumulative distribution function of skip value F (k). This lends much better results
however since the focus of the work is different we will not go into detail here.

2.2 Random graphs with given degree distribu-
tion

Simply generating random graphs as was described in the previous part is not
enough. The random graph needs to have the same, or a rather close, degree dis-
tribution as the one that is being investigated, and as was mentioned in chapter 1,
brain networks tend to exhibit characteristics more complex than simple random
graphs of Erdős-Rényi model.

One way to solve the task is to focus on getting the exact (or close) degree sequence
di. The other approach is to get a correct degree distribution that converges to
the one of the original graph as number of nodes goes to infinity [15]. Considering
that the graphs we are investigating have thousands of nodes this approach would
lead to feasible results. One of the algorithms that follows this idea first creates
a directed graph based on the degree distribution of the original graph, and then
removes directions.

Algorithm 4 Directed graph with removed directions (DGRD)
1: Create a truncated version of the original distribution G, Gn, where gnk = gk for
k = 0, 1, ..., n− 2, gnk = ∑∞

k=n−1 gk for k = n− 1 and gnk = 0 for k ≥ n
2: For each vertex vi get a random variable Yi from the distribution Gn.
3: Pick Yi random vertices to be hit, independently for each vertex (at this point

we have a directed graph).
4: Remove directions from the graph by fusing edges together - if at least one

directed edge is present between two nodes make it undirected.

This algorithm shows very fast running times, with mean values being around 1.71s
for p = 0.01, 2.74s for p = 0.05 (for the graph with 10000 nodes). However this
algorithm works reliably only for certain distributions, e.g. mixed Poisson. In our
tests it also ran fine for random distribution, although for it the 4th step (removal
of directions) had to be skipped. It also gives better results than ER or ZER for
more complicated original graphs.

2.3 Results
In order to check and compare the performance of various algorithms, first a ran-
dom graph is created with a degree distribution that will be the target one. The
base model again is Erdős-Rényi, meaning each edge is included with predetermined
probability. However in order to mimic the brain networks we will introduce two
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2. Chapter 2

other ’methods’ of creating the original, or target graph, related to small-world and
scale-free characteristics. Of course, ideally the brain network would have features of
all of them simultaneously and we do not know the particular parameters for mod-
elling these, but it still might show which algorithms show more promise than others.

In order to recreate the small-world network behaviour [9] the Watts-Strogatz mech-
anism can be used. Three parameters need to be specified prior to the creation of
such network, namely number of nodes N , average probability of edge inclusion
(similar to ER graphs) p or average degree K, and finally a rewiring probability q.
At first, a regular lattice is constructed, where each of N nodes is connected to K
neighbours. After that, for every node ni every edge (ni, nj) is taken where i < j
and it is rewired with a probability q: the edge is changed to (ni, nk), with nk being
a random node chosen uniformly so that no multiple or self-edges are created.

For scale-free networks the existing algorithms tend to be too slow once the number
of nodes becomes large. The important characteristic of scale-free behaviour however
is rather easy to mimic: it is power law distribution of node degrees, i.e. P (k) = k−γ,
where γ is usually picked in range from 2 to 3. Therefore we create a graph that has
a degree sequence sampled from power law distribution with appropriate choice of γ.
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Comparison of degree distributions for different random graph models
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Figure 2.1: Comparison between degree distributions of random graphs produced
with various characteristics, left to right: ER model, small-world network, scale-free
network. Each network has 1000 nodes, p=0.1 for ER and small-world network,
q=0.1 for small-world network. Shape of small-world network degree distribution
curve resembles that of ER model, being somewhat sharper

2.3.1 Running times of algorithms
All algorithms showed comparable average running times, with running time in-
creasing almost linearly in log-log representation. There is much more variance in
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running times for graphs with small number of nodes. Original graph was chosen
as ER, but it does not affect average running times of algorithms. On the plot you
can see comparison between running times of ER, ZER and DGRD.
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Figure 2.2: Running time of ER, ZER and DGRD algorithms with error bars, for
number of nodes 10, 100, 1000 and 10000. Results are averaged over 5 runs. p=0.25

2.3.2 Results of algorithms for original ER graph
Here (and in every following similar plot) the target degree distribution is shown in
red. All algorithms perform quite well since the original graph is the simplest to
reproduce.
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Figure 2.3: Degree distribution for ER, 10000 nodes
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Figure 2.4: Degree distribution for ZER, 10000 nodes
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Figure 2.5: Degree distribution for DGRD, 10000 nodes

2.3.3 Results of algorithms for original small-world graph

Shape of the degree distribution for a small-world graph closely resembles one for
ER one, and all algorithms again seem to show quite good results.
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Figure 2.6: Degree distribution for ER, 10000 nodes
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Figure 2.7: Degree distribution for ZER, 10000 nodes
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Figure 2.8: Degree distribution for DGRD, 10000 nodes

2.3.4 Results of algorithms for original scale-free graph
In this case we finally can see the difference in performance between the algorithms.
Both ER and ZER fail to reproduce the shape of degree distribution curve because
they do not take it into account, instead operating on average probability of edge
inclusion which is more optimal for previous two models. However DGRD results
resemble the original distribution while having approximately similar average run-
times. Overall DGRD seems to be a good candidate, repeating degree distribution
of various target graphs and having decent average run-times.
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Figure 2.9: Degree distribution for ER, 1000 nodes. We see how a simple model
fails to repeat the target degree distribution.
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Figure 2.10: Degree distribution for ZER, 1000 nodes. Result is smoother than
for ER, however still far from correct.
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Figure 2.11: Degree distribution for DGRD, 1000 nodes. Result is even better
because algorithm does not imply the structure to be almost entirely random as in
previous algorithms case, although there is still room for improvement.
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Chapter 3

3.1 Generation of random graphs with arbitrary
degree distribution

The problem with the algorithms from the previous section is that they are related
to, or focus on creating graphs with degree distribution that belongs to a certain
class (e.g. Poisson distribution). They might work for arbitrary distributions but
much slower, or sometimes generate a network that would have a degree distribution
that is far from the required one. Therefore there is a need for another, more general
approach.

There are two more things to mention here. First, since we are not basing the al-
gorithm on any particular distribution and the algorithms usually build or change
a graph step by step, there is a possibility of ending up with a degree sequence
that is not graphical, i.e. there is no graph which would have the given sequence
as its degree sequence. There are several known algorithms for this problem, the
Havel-Hakimi [16] one being perhaps one of the fastest and easiest to implement.
Suppose we have a degree sequence S = d1, d2, ..., dn that is non-increasing. It is
graphic if and only if another list, S ′ = d2 − 1, d3 − 1, ..., dd1+1 − 1, dd1+2, ..., dn, has
only non-negative integers and is graphic, therefore this algorithm is recursive. The
step is applied at most n − 1 times, until either the last sequence consists only of
zeros, which means that the original sequence was graphic, or the algorithm gets
stuck and the current list cannot be reduced accordingly to move on to the next
step, which means that the original sequence was not graphic. In most algorithms it
is feasible to apply this check at each step to check if the current sequence is graphic
or not, and to either retrace the changes one step back or restart the whole random
graph creation entirely.

Second, the uniformity requirement might not have to be strict. Even if the results
of the algorithm are non-uniform, it is generally possible to compute the probabil-
ities of various outcomes and then simulate a general distribution via importance
sampling [17]. Essentially the results are re-weighted from a trial distribution, but
this is considered to be a difficult problem, often requiring construction of said trial
distribution step by step recursively, which also adds up to the overall run-time of
the algorithm. In addition to this, the number of possible random graphs in our
case is really high due to large number of nodes, and calculating probabilities of
each possible combination appearing as a result of chosen algorithm would be very
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3. Chapter 3

complicated.

However the results can be non-uniform to a certain extent and this might still sat-
isfy the requirements necessary to check real-world networks. The most important
part when it comes to them is to study the appearance of certain subgraphs or motifs
[19]. Motifs are statistically significant or recurrent patterns or parts of graph. The
ones that researchers are usually interested in appear in the brain networks much
more often than would be expected by pure chance, and the majority of algorithms
don’t give the results that are biased to an extent that would negate an occurence
of an important motif. Therefore, while numerically the probabilities of certain ran-
dom graphs appearing in process of using one of the algorithms we are looking into
might be skewed they still would represent the average topology of the graphs and
showcase particular motifs. That said, it is still preferable to have non-uniformity
being as low as possible.

3.2 Configuration model

Perhaps the most basic idea would be to create a list of ’stubs’ for each vertex that
is equal to its degree and connect those stubs between each other at random until
none are left (a similar approach is described, for example, in [18]). This model
has many names, such as configuration model or matching algorithm. However, it
has a number of drawbacks, which range from simple and easily avoidable (e.g., the
number of stubs has to be even) to more difficult ones. Such algorithms do not
work well with distributions with ’heavy tails’ such as scale-free, and multiple or
self-edges might be created, in which the network usually has to be discarded which
considerably slows down the average runtime of the algorithm.

In our tests algorithm (slightly changed to avoid multiple or self-loops) has shown a
very fast rise in run-time with increase of number of nodes (the maximum number of
nodes tested was 500 which already was very slow), rendering it unfeasible for graphs
with 10000 nodes or more. The degree distribution however was rather close, but
that was to be expected for this algorithm. In the majority of cases, it reproduced
the target degree distribution, and even if there was a difference, it was very small.
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Figure 3.1: Running time of configuration algorithm with error bars, for number of
nodes 10, 50, 100, 200, 300, 400 and 500. Results are averaged over 5 runs. p=0.1.
The rise is faster than linear in log-log scale.
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Figure 3.2: Degree distribution for configuration model, 100 nodes, original ER
graph, p=0.1. It can be seen that the resultant degree distribution is slightly different
from the target one, albeit the difference can almost be neglected.
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Figure 3.3: Degree distribution for configuration model, 200 nodes, original scale-
free graph. The difference is very slight.

3.3 Switching model

The other idea is to use a Markov chain to create the necessary random graph [19].
This algorithm is often called ’switching’, because each step a Monte Carlo switching
step is performed where a pair of edges is selected at random and then the ends are
exchanged. The exchange is carried out only if self-edges or multiple edges were not
created in the process. The problem with this algorithm is that it is hard to decide
when the the graph is ’shuffled’ enough times, and because it is doubtful that the
results will be uniform. Some variations, as ’go with the the winners’ one, prove to
be successful and avoid the last problem however they also tend to become rather
slow.

Average running time obviously heavily depends on the number of shuffling steps.
By definition of this algorithm the degree distribution remains the same, so this re-
quirement for the algorithm is satisfied by default, but assuming the offered number
of shuffling steps to be 4 ∗ (number of edges) [20], increasing the number of nodes
in graph vastly increases the running time of algorithm, for 10000 nodes getting an
average value of about 464 seconds. Decreasing number of shuffles helps but then
there is no guarantee that the algorithm properly randomizes the features of the
graph. One of the advantages of both switching and configuration models however
is that graphicality check can be avoided as it is possible to simply check for multiple
or self-edges at each step and discard the change instantly to avoid it if necessary.
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Figure 3.4: Running time of switching algorithm with error bars, for number of
nodes 10, 100, 1000 and 10000. Results are averaged over 5 runs. p=0.1. Number
of shuffling steps assumed as 4 ∗ (number of edges)

3.4 Preferential attachment model
Another group of algorithms [17] suffers from non-uniformity as well. However it
never gets stuck or needs a restart because of creation of self- or multiple loops,
and it has modifications ([21]) that aim at making the results more uniform. It
constructs the network edge by edge, attaching them to nodes preferentially pro-
portionally to current degree of a node. In this algorithm the graphicality check
has to be carried out each step for every possible candidate list which significantly
increases the runtime. Certain improvements were offered that are said to improve
the runtime to O(nM), but the standard model shows runtimes of O(n2M) ([22]).

One of the best algorithms that is built on this model for getting almost exact
degree sequence is reported in [13]. It is claimed to have an almost linear running
time (O(Mdmax), where dmax is the maximum vertex degree) and to be sampling
uniformly from the set of graphs with given degrees, which is also important. The
algorithm keeps track of remaining degrees of vertices i and j, d̂i and d̂j. Once
again, using a set of edges L which is initially empty and another set of edges V
corresponding to our graph, we can write out the algorithm as follows:

Algorithm 5 Random graph with given degree distribution
1: L = ∅
2: while edges can be added to E do
3: Choose vi vj ∈ V with probability proportional to d̂id̂j(1− didj

4M ), i, (vi, vj) /∈
E

4: E := E + (vi, vj), d̂i := d̂i − 1, d̂j := d̂j − 1
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The problem however is that whereas this algorithm has incredible runtimes com-
pared to all others mentioned before the limitations and requirements are way too
strict. First, it will not always generate a graph altogether, one possible situation
being that no edges are allowed to add to the graph but not all necessary edges
have been added yet. Second, low probability of this situation occurring holds only
for graphs where dmax = O(m1−4−τ ), where τ is a positive constant, this severely
impacting possible application of this algorithm to the real-world networks.
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Concluding remarks

Creating a random graph for large number of nodes in a matter of seconds while
guaranteeing a degree distribution that is close to the target one is still an open
problem. While a multitude of different algorithms exist none offer both precision
and fast runtime, and it is usually better to focus on one or another. In our tests the
DGRD algorithm seems to have shown results that are rather good as it is the only
algorithm that showed sub-10 seconds runtime for 10000 nodes while generating a
graph with a degree distribution that is somewhat close to the original one.
A lot of other options require significantly more testing and/or updates. A major-
ity of studies focuses on theoretical confirmation of realization of a degree sequence
while not paying as much attention to the runtime or in general applicability to a
graph that has thousands of nodes.
Perhaps the most perspective algorithm is the one developed by Blitzstein and Di-
aconis, namely preferential attachment model. While the original offer is very slow,
it has many updates and changes in other works that try to adapt it to different
requirements, improve its performance and make it faster. The current options have
strict limitations but it seems like the solution might be found based on the idea of
sequential construction of graph where edge is added preferentially based on the cur-
rent or leftover degree of nodes. Other models have much more serious drawbacks
which probably cannot be accounted for or changed easily; configuration models
are exhausted and don’t work well for many real-world networks while the switching
models have ingrained problem of impossibility of guessing how many shuffling steps
need to be performed before the algorithm produces viable results.
It is necessary to test the future algorithms in a way that was followed in this work:
both check the runtimes on high number of nodes and compare the degree distribu-
tions with the target ones, especially those that resemble real-world networks to a
certain extent, for example in case of brain networks having small-world and scale
free characteristics. In general, creation of such random graphs is a difficult prob-
lem, yet it still is just a small step in overall process of modelling brain networks
with help of graph theory.
This master’s thesis is part of my studies at Chalmers University of Technology,
thanks to a Swedish Institute scholarship.
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