
Design and Implementation of a
2D Acceleration engine for a Video Controller

Master of Science Thesis in Electrical Engineering

BJÖRN FAGNER
MARCUS GUSTAFSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, November 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Design and Implementation of a 2D Acceleration engine for a Video Controller

BJÖRN FAGNER
MARCUS GUSTAFSSON

© BJÖRN FAGNER, November 2009.
© MARCUS GUSTAFSSON, November 2009.

Examiner: ARNE LINDE

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden November 2009

Abstract
The market for small, embedded systems is growing exponentially. More

functions are required of the systems so the designers need to find new
solutions and different approaches for the products to keep up with
demands. One way to make systems faster is to introduce specialized cores.
This allows the CPU to delegate workload, while it proceeds with other
tasks.

Aeroflex Gaisler AB has developed a system-on-chip solution which
Linux can run on. However the rendering of graphics is putting a large
burden on the processor. This project has designed and implemented an IP
core which will relieve the CPU from rendering 2D graphics. The
accelerated operations are fill rectangle, copy area and image blit.

The work has resulted in an acceleration of the framebuffer operations by
between 10 to 40 times on average. Regardless off this acceleration the
operations will be performed in parallel while the CPU executes other
instructions, which is an acceleration in itself.

The accelerator is limited to the color depths of 8, 16 or 32 bits per pixel
and a maximum resolution of 1024x768 pixels.

Sammanfattning
Marknaden för små, inbyggda system växer exponentiellt. Mer funktioner

krävs av systemen vilket gör att utvecklare måste hitta nya lösningar och
angreppssätt för att produkterna ska möta efterfrågan. Ett sätt att öka
systemens prestanda är att introducera specialiserade kärnor. Det tillåter
processorn att delegera arbete medan den arbetar vidare med andra
uppgifter.

Aeroflex Gaisler AB har utvecklat ett system-på-kisel vilket kan köra
Linux. Rendering av grafik lägger dock stor belastning på processorn. Detta
projekt har utvecklat en IP-kärna som avlastar processorn vid rendering av
2D grafik. De accelererade funktionerna är fill rectangle, copy area och
image blit.

Arbetet har gett en acceleration av framebufferoperationerna med mellan
10 och 40 gånger i genomsnitt. Oberoende av denna acceleration kommer
operationerna att utföras parallellt med att processorn exekverar andra
instruktioner, vilket är en acceleration i sig.

Acceleratorn är begränsad till ett färgdjup på 8, 16 eller 32 bitar per pixel
och en maximal upplösning på 1024x768 pixlar.

 Acknowledgement

This thesis has been both interesting and fun to work on. Our thanks to
the whole staff at Aeroflex Gaisler AB for the opportunity and for the
support during project. Special thanks to our supervisor Jiri Gaisler, and also
to Jan Andersson and Daniel Hellström. They have given us great input and
help during the development process. We would also like to thank our
examiner at Chalmers, Arne Linde, who has shown an interest in the work
and been helpful throughout the whole project.

Göteborg, 2009

Björn Fagner

Marcus Gustafsson

Table Of Contents
Definitions and Abbreviations..11

 1 Introduction 13
 1.1 Description of Task...13
 1.2 Outline of Thesis...13

 2 Technical Background 14
 2.1 Framebuffer...14

 2.1.1 Framebuffer Operations..14
 2.2 GRLIB...15

 2.2.1 Overview...15
 2.2.2 LEON3..15
 2.2.3 Plug&Play...16
 2.2.4 GRMON..17

 2.3 AMBA...17
 2.3.1 AHB...18
 2.3.2 APB...19

 2.4 SnapGear Linux..20
 2.4.1 Fill Rectangle (cfbfillrect.c)..20
 2.4.2 Copy Area (cfbcopyarea.c)..22
 2.4.3 Image Blit (cfbimgblt.c)..23
 2.4.4 Gaisler Framebuffer Driver (grvga.c).......................................25

 2.5 Target Technology...25
 2.5.1 GR-XC3S-1500 ..25
 2.5.2 ML501 Evaluation Platform..26

 3 Development Process 27

 4 Design Choices 28
 4.1 Framebuffer Operations..28
 4.2 Resolution and Color Depth..28
 4.3 Optional Core..28
 4.4 VHDL Coding Techniques..28

 5 Gaisler 2D VGA Graphics Accelerator 29
 5.1 Overview...29

 5.1.1 VGA Accelerator (VGAACC.vhd)..30
 5.1.2 AMBA AHB Master Interface (DMA2AHB.vhd)....................30
 5.1.3 APB slave (APBslv.vhd)...31
 5.1.4 Fill Rectangle (Fillrect.vhd)..32
 5.1.5 Copy Area (Copyarea.vhd)..33
 5.1.6 Image Blit (Imageblit.vhd)..35
 5.1.7 SyncRAM Cache...38
 5.1.8 VGA Accelerator Package(VGAACC_pkg.vhd)......................38

 5.2 Details...38
 5.2.1 VGA Accelerator (VGAACC.vhd)..39

 5.2.2 AMBA AHB Master Interface (DMA2AHB.vhd)....................39
 5.2.3 APB Slave (APBslv.vhd)...40
 5.2.4 Fill Rectangle (Fillrect.vhd)..41
 5.2.5 Copy Area (Copyarea.vhd)..47
 5.2.6 Image Blit (Imageblit.vhd)..55

 5.3 Software Driver (grvga.c)...63
 5.3.1 grvgaacc_probe...63
 5.3.2 grvgaacc_fillrect..63
 5.3.3 grvgaacc_copyarea..64
 5.3.4 grvgaacc_imageblit...64

 6 Testing 65

 7 Results 66
 7.1 Synthesis...66
 7.2 Performance..67

 7.2.1 Operation Acceleration..68
 7.2.2 Operation Call Time..72

 8 Conclusion 73

 9 Discussion 74

 10 Future Development 76

References 77

List of Figures 78

List of Tables 79

 Appendix A : Synthesis
 A.1 Full Functionality
 A.2 Reduced Functionality

 Appendix B : Performance
 B.1 Full Functionality
 B.2 Reduced Functionality

 Appendix C : Thesis Proposal

Definitions and Abbreviations
2D Two dimensional.
AHB Advanced High performance Bus. A high performance

protocol introduced in AMBA 2.0.
AMBA Advanced Microcontroller Bus Architecture. An on-chip

communication standard for high performance embedded
microcontrollers.

APB Advanced Peripheral Bus. A protocol for low power
peripherals with reduced interface complexity, part of the
AMBA specification.

BLIT BLock Image Transfer. A computer graphic operation which
produces images from compressed source data.

BPP Bits Per Pixel.
DMA Direct Memory Access. Allows certain hardware subsystems

within the computer to access system memory.
DVI Digital Video Interactive. A multimedia desktop video

standard.
FPGA Field Programmable Gate Array. A chip containing

reconfigurable logic.
ID IDentity.
GPL Gnu General Public License. A free software license.
IP core Intellectual Property core. A reusable unit of logic design or

layout.
JTAG Joint Test Action Group. A connection used for debugging

integrated circuits or as a probing port.
MAC Media Access Control.
PCI Peripheral Component Interconnect. A standard expansion bus

in computers.
PS2 Personal System/2. A standard serial data bus used for

keyboards and mice.
ROP Raster Operations. A computer graphic operation that defines

how existing destination data combines with new color data.
RS232 Recommended Standard 232. A standard serial data bus.
SOC System On a Chip. Refers to an electronic system that are

integrated in to a chip.
USB Universal Serial Bus.
VGA Video Graphics Array. A common computer graphic standard.
VHDL VHSIC (Very High Speed Integrated Circuit) Hardware

Description Language
XOR eXclusive OR. A logic operator.

 1 INTRODUCTION

 1 Introduction
The market for small, embedded systems is growing exponentially. More

functions are required of the systems so the designers need to find new
solutions and different approaches for the products to keep up with
demands. One way to make systems faster is to introduce specialized cores.
This allows the CPU to delegate workload while it proceeds with other
tasks.

The Aeroflex Gaisler LEON3 SPARC V8 processor is distributed as part
of the GRLIB IP library and can be used for system-on-chip design. It has
support for a special version of the Linux distribution SnapGear which is
provided by Aeroflex Gaisler AB. The system has a VGA Controller Core
which is used to run X on top of SnapGear on the LEON3. However,
currently all rendering has been done by software, putting a relatively large
burden on the system processor. A 2D graphics accelerator would relieve the
processor of rendering operations and allow it to perform other tasks
instead. This work is an implementation of a AMBA interface Plug&Play IP
core with the goal to complement the GRLIB IP library with its addition.

 1.1 Description of Task
The object of the project was to read and understand the algorithms of the

framebuffer operations in the Linux video driver and then recreate the
algorithms in a IP core using the hardware description language VHDL. The
existing VGA Controller Core that is handling the framebuffer is limited to a
pixel depth of 8, 16 or 32 bits, this also seemed adequate for the new core.

A number of issues are addressed during this project. An AMBA
compatible interface is needed for both memory access and operation
command calls from the CPU. The software driver will need to be altered or
rewritten to accommodate the hardware calls. The software algorithms will
not be optimal for hardware implementation which means that they will
have to be rewritten. Also the different color depths and resolutions might
need adaptation in the hardware.

 1.2 Outline of Thesis
The first chapters present technical background and introduction to

existing technology used while working on the project. Chapters 3 and 4
gives the reader insight to the work process. The end product of the project
is described in Chapter 5 where the reader will be presented the full system
and the sub-components. This is followed by Chapter 6 which describes the
tests performed to verify the functionality and performance of the
accelerator core. The results of the synthesis and performance tests are then
presented in Chapter 7. Finally the report is summed up in conclusion,
discussion and future development in Chapters 8, 9 and 10.

13

 2 TECHNICAL BACKGROUND

 2 Technical Background
This section will introduce the reader to existing technologies used to

complete the project and to the environment in which the IP core will come
to function.

 2.1 Framebuffer
A framebuffer is a video output device that drives a display from a

memory buffer which contains a full frame, a representation of what is to be
put on the screen. The data in the buffer is typically color values that
describes every pixel to be displayed on the screen.

 2.1.1 Framebuffer Operations
When the data in the framebuffer needs to be modified a framebuffer

operation is performed. There is a multitude of framebuffer operations that
make changes on the screen easier to perform. The three most common,
which have an impact on CPU performance and are a minimum requirement
for acceleration, are:

➢ Fill rectangle A rectangle area on the screen is filled with a
color. The operation uses two different Raster
Operations, ROP. The area can be filled with or
without regard to the original color of the
destination pixel. If consideration to original
color should be taken, the new color pattern and
the original data is combined using the logic
operator XOR, otherwise the original data is
overwritten.

➢ Copy area A rectangle area is copied from one part of the
screen to another. If the areas overlap the
copying might have to be done in reverse
depending on whether the source data will
be overwritten before or after it is read.

➢ Image blit An image is written in the framebuffer area, the
image is produced by source data fetched from
the system memory. There are two kinds of
image blits, monochrome and color. In the
monochrome image blit every bit corresponds
to a foreground or a background color of a pixel.
In color image blit every byte of image data
corresponds to a color of a pixel.

14

 2 TECHNICAL BACKGROUND

Our system uses packed pixel framebuffer organization, this means that
the data for each pixel data is grouped together and is lined up consecutively
(contiguously) one after another from the memory start address of the
framebuffer to the last byte.

 2.2 GRLIB
This section is a short introduction to the GRLIB IP Library.

 2.2.1 Overview
The GRLIB IP Library is a set of reusable IP cores written in VHDL and

designed for system-on-a-chip development. The cores are centralized
around a common on-chip bus with the LEON3 as CPU. Examples of
additional cores in the library are 32-bit PCI bridge with DMA, USB-2.0
host and device controllers, 10/100/1000 Mbit Ethernet MAC, and VGA
Controller Core. It is developed and maintained by Aeroflex Gaisler AB and
is available under the GNU GPL license [3]. An illustration of a template
design can be found in Figure 1.

A short introduction to the features of GRLIB will follow. For more
documentation on the GRLIB IP library and available cores, refer to the
GRLIB User's Manual [3] and the GRLIB IP Cores Manual [2].

 2.2.2 LEON3
The CPU of the GRLIB system is the LEON3 32 bit synthesizable

processor based on the SPARC V8 architecture [7]. It is available in several
versions and is highly configurable with an advanced 7-stage pipeline, high

15

Figure 1: LEON3 Template Design [3].

 2.2 GRLIB

performance IEEE-754 FPU, multiprocessor support and more [6]. Figure 2
shows a block diagram of a LEON3 core configuration.

 2.2.3 Plug&Play
The Plug&Play concept of the GRLIB system is an expansion of the

AMBA 2.0 Specification [1]. It should be interpreted in the broad sense that
the system hardware can be detected and identified through the software,
which thereby can be configured automatically to match the underlying
hardware.

In GRLIB the Plug&Play information consists of three items:

➢ A unique IP core ID.

➢ AHB/APB memory mapping.

➢ An interrupt vector.

This information is sent as constant vectors from the components that is
connected to the bus to the arbiter/decoder where it is stored in a small read-
only area accessible for all AHB masters through standard bus cycles. The
configuration words are defined as shown in Figure 3. There are eight 32 bit
words where four contain configuration words defining the core type and
interrupt routing The other four, defining the memory mapping, are called
‘bank address registers’ (BAR) [3].

16

Figure 2: LEON3 Processor Core Block Diagram [5].

 2 TECHNICAL BACKGROUND

 2.2.4 GRMON
GRMON is a debug monitor for LEON processors and SOC IP cores

based on GRLIB IP library. It is communicating with the LEON debug
support unit (DSU) and allows non-intrusive debugging of the whole target
system. GRMON supports the following functions [6]:

➢ Read/write access to all system registers and memory

➢ Built-in disassembler and trace buffer management

➢ Downloading and execution of LEON applications

➢ Breakpoint and watchpoint management

➢ Support for USB, JTAG, RS232, PCI, Ethernet and
 SpaceWire debug links

 2.3 AMBA
The Advanced Microcontroller Bus Architecture (AMBA) protocol is a

specification for on-chip buses developed by ARM Limited [1].

The AMBA 2.0 specification includes three different buses:

➢ Advanced High-performance Bus (AHB).

➢ Advanced System Bus (ASB).

➢ Advanced Peripherals Bus (APB).

17

Figure 3: AHB plug&play information record [2].

 2.3 AMBA

The GRLIB system uses a combination of two of them. The backbone bus
is of AHB type and for low power peripherals the APB is used, accessed
through a AHB/APB bridge connection, such a system is illustrated in
Figure 4.

Although the implementation is AMBA 2.0 compatible it has been
expanded with a unique Plug&Play method for both AHB and APB, which
allows users to configure and connect the IP cores without the need to
modify any global resources [3].

 2.3.1 AHB
The AHB was developed to address the requirements of high

performance, high clock frequency synthesizable designs and has several
features required of such a system [1], including:

➢ Burst transfers.

➢ Single cycle bus master handover.

➢ Single clock edge operation.

➢ Wider data bus configurations (64/128 bits).

A typical system has the following AHB components:

18

Figure 4: A Typical AMBA AHB Based System [1].

 2 TECHNICAL BACKGROUND

AHB master A bus master is able to initiate read and write
operations by providing an address and control
information. Only one bus master is allowed to
actively use the bus at any one time.

AHB slave A bus slave responds to a read or write
operation within a given address-space range.
The bus slave signals back to the active
master the success, failure or waiting of the
data transfer.

AHB arbiter The bus arbiter ensures that only one bus
master at a time is allowed to initiate data
transfers. An AHB would include only one
arbiter, although this would be trivial in single
bus master systems.

AHB decoder The AHB decoder is used to decode the
address of each transfer and provide a select
signal for the slave that is involved in the
transfer. A single centralized decoder is
required in all AHB implementations.

 2.3.2 APB
The APB is optimized for minimal power consumption and reduced

interface complexity. It appears as a single AHB slave device which acts as
a bridge module between the two buses. The bridge is the only master on the
APB as the rest of the APB modules are slaves which allows for a simple
interface with these specifications [1]:

➢ Address and control valid throughout the access (unpipelined).

➢ Zero-power interface during non-peripheral bus activity
(peripheral bus is static when not in use).

➢ Write data valid for the whole access (allowing glitch-free
transparent latch implementations).

APB master The APB bridge is the only bus master on the
AMBA APB. In addition, the APB bridge is also
a slave on the higher-level system bus.

19

 2.3 AMBA

The bridge unit converts system bus transfers into APB transfers and
performs the following functions:

➢ Latches the address and holds it valid throughout the transfer.

➢ Decodes the address and generates a peripheral select, PSELx,
which indicates which slave is being addressed. Only one
select signal can be active during a transfer.

➢ Drives the data onto the APB for a write transfer.

➢ Drives the APB data onto the system bus for a read transfer.

➢ Generates a timing strobe, PENABLE, for the transfer.

APB slave APB slaves have a simple, yet very flexible,
interface. The exact implementation of the
interface will be dependent on the design style
employed and many different options are possible.

For a write transfer the data can be latched at one of the following points:

➢ On the rising edge of PCLK, when PSEL is HIGH.

➢ On the rising edge of PENABLE, when PSEL is HIGH.

The select signal PSELx, the address PADDR and the write signal
PWRITE can be combined to determine which register should be updated
by the write operation.

For read transfers the data can be driven on to the data bus when
PWRITE is LOW and both PSELx and PENABLE are HIGH. While
PADDR is used to determine which register should be read.

 2.4 SnapGear Linux
Aeroflex Gaisler AB has a specially developed version of SnapGear

Linux that is supported for the SOC design around LEON3 [6]. This is the
operating system that will run on the SOC, incorporating the project's IP
core, and the environment in which the project will be run and tested. This is
also where the software drivers, from which the hardware algorithms are
derived, can be found. These software framebuffer operations and the driver
for the GRLIB VGA Controller Core are described in this chapter.

 2.4.1 Fill Rectangle (cfbfillrect.c)
This is a generic algorithm to perform fill rectangle for framebuffers with

packed pixels for any pixel depth [8]. It makes a pattern to match the color
depth of the framebuffer and writes the color pattern to the destination
address of the rectangle.

20

 2 TECHNICAL BACKGROUND

There are four subroutines, described below, and one of them is called for
each row of the rectangle's height. Which one that is called depends on
which ROP to perform and whether or not the number of bits per pixel and
start address requires the pattern to be realigned for each word.

The called subroutine proceeds by calculating bitmasks used to handle
leading and trailing bits, at the start and end of the row, if the pixel is not
described by a full word. If there are any leading- or trailing bits, the
existing pixel data at the destination is fetched and merged with the new
data by using the bitmask. The created word is then used as the new pattern
to write to the destination address. If the operation call is to write a single
word, the first word is also the last and the two bitmasks needs to be merged
together before they are applied to the data.

Subroutine: Aligned with ROP COPY
The leading bits, if any, are handled first. Then, if there are multiple

words to write, most of them are written by a loop and then the trailing bits
of the row, if any, are handled last. The program then returns from the
subroutine and the destination address for the next row is calculated. After
that, a new subroutine call is made and this procedure loops over the height
of the rectangle.

Subroutine: Unaligned with ROP COPY
The leading bits, if any, are handled first, and then the pattern is realigned.

This realignment is made after each written word in the subroutine. Then, if
there are multiple words to write, most of them are written by a loop and
then the trailing bits of the row, if any, are handled last. The program then
returns from the subroutine and the destination address for the next row is
calculated and the pattern is realigned to match the new row. After that a
new subroutine call is made and this procedure loops over the height of the
rectangle.

Subroutine: Aligned with ROP XOR
With the Raster Operation XOR the existing pixel data at each destination

is merged with the new pattern via an XOR operation. This means that a
read operation is added to the algorithm for each word to be written and the
number of bus requests double.

The leading bits, if any, are handled first. Then, if there are multiple
words to write, most of them are written by a loop and then the trailing bits
of the row, if any, are handled last. The program then returns from the
subroutine and the destination address for the next row is calculated. After
that, a new subroutine call is made and this procedure loops over the height
of the rectangle.

21

 2.4 SNAPGEAR LINUX

Subroutine: Unaligned with ROP XOR
With the Raster Operation XOR the existing pixel data at each destination

is merged with the new pattern via an XOR operation. This means that a
read operation is added to the algorithm for each word to be written and the
number of bus requests double.

The leading bits, if any, are handled first, and then the pattern is realigned.
This realignment is made after each written word in the subroutine. Then, if
there are multiple words to write, most of them are written by a loop and
then the trailing bits of the row, if any, are handled last. The program then
returns from the subroutine and the destination address for the next row is
calculated and the pattern is realigned to match the new row. After that, a
new subroutine call is made and this procedure loops over the height of the
rectangle.

 2.4.2 Copy Area (cfbcopyarea.c)
This is a generic algorithm to perform copy area for framebuffers with

packed pixels for any pixel depth [8]. There are two subroutines, but they
could be split up in four, like fill rectangle. Which one is called depends on
whether the area have to be copied in reverse due to overlap.

Before a subroutine is called the source and destination addresses are
calculated, along with indexes to indicate word unalignment of the first
pixel. Then the appropriate subroutine is called. This is done for each row of
the area.

The called subroutine proceeds by calculating bitmasks used to handle
leading and trailing bits, at the start and end of the row, if the pixel is not
described by a full word. If there are any leading- or trailing bits the existing
pixel data at the destination is fetched and merged with the source data by
using the bitmask. The created word is then the new color data to write to
the destination address. If the operation call is to write a single word, the
first word is also the last and the two bitmasks needs to be merged together
before they are applied to the data.

Subroutine: Bitcopy
The source and destination are tested for alignment. If they are aligned the

leading bits are handled first. Then, if there are multiple words to write,
most of them are written by a loop where a source word is read and written
to the destination word for word. The addresses are increased after each
write operation. The trailing bits of the row, if any, are handled last.

If the source and destination addresses are unaligned, the source data
could be divided over two words. This means that the two source words has
to be fetched, shifted and merged to align with the destination.

The leading bits are handled first. Then, if there are multiple words to

22

 2 TECHNICAL BACKGROUND

write, most of them are written by a loop where the source words are
realigned for each destination word. Before each write to the destination,
new source data is fetched and after each write operation the addresses are
increased. The trailing bits of the row, if any, are handled last. They could
require two source words as well.

Subroutine : Reverse Bitcopy
The source and destination addresses and indexes are recalculated to

accommodate for the reversed order copy. The source and destination are
tested for alignment. If they are aligned the leading bits, which actually are
the last bits of the row, are handled first. Then, if there are multiple words to
write, most of them are written by a loop where a source word is read for
each destination word and written word for word. The addresses are
decreased after each write operation. If there are trailing bits, which are the
first bits of the row, they are handled last.

If the source and destination addresses are unaligned, the source data
could be divided over two words. This means that the two source words has
to be fetched, shifted and merged to align with the destination.

The leading bits are handled first. Then, if there are multiple words to
write, most of them are written by a loop where the source words are
realigned for each destination word. Before each write to the destination
new source data is fetched and after each write operation the addresses are
decreased. The trailing bits of the row, if any, are handled last. They could
require two source words as well.

 2.4.3 Image Blit (cfbimgblt.c)
The software image blit in Linux consists of three functions: fast, slow

and color image blit. Fast and slow image blit are monochrome and the
color image blit supports up to full 32 bits color images. All the blit
functions writes rectangular images [8].

The monochrome image blit copies a monochrome picture from the
system memory to the framebuffer area. The picture is compressed in the
system memory and is a bitmap where every '0' represents background color
pixel and a '1' represents foreground color pixel in the actual picture. In the
software there are two versions of monochrome blit, slow and fast image
blit. The slow subroutine is generalized and can do both blits, but if possible
it is preferable to use the fast subroutine. This can be done if the picture data
and placement call fulfill the requirements. The requirements for fast image
blit is a color depth of 8, 16, or 32 bits per pixel and that the picture width is
divisible by the number of pixels per word. Also, the screen line length has
to be divisible by 4 and the beginning and end of the image rows needs to be
word aligned. The typical usage of monochrome image blit is font handling.

The color image blit copies a color picture from the memory to the

23

 2.4 SNAPGEAR LINUX

framebuffer area. In this case the source data is compressed and if the color
resolution is higher than four bits the function fetches an 8 bit word and uses
the four least significant bits to address a fake palette (pseudo palette) that
consist of 16 colors. The software continuously updates the fake palette to
keep the colors current. The picture's color data must have same format as
the data in the framebuffer.

Subroutine: Fast
The fast image blit fetches 8 bits of source data to address a table. There

is one table for each color resolution. The 8 bpp table consists of 16 32 bit
words and is addressed by a 4 bit word, half of the source data, and the
addressed 32 bit word is written to the framebuffer memory. The 16 bpp
table consists of four 32 bit words and is addressed by a 2 bit word, two bits
from the source byte. The addressed 32 bit word is written to the
framebuffer memory. The 32 bpp table consists of two 32 bit words and is
addressed by one bit from the source byte, and the addressed 32 bit word is
written to the framebuffer memory. After this operation the source word is
shifted to get new source data. When the source word has run out of bits a
new source data fetch is performed and the process is repeated until the end
of the row. After reaching the end of the row a constant, of screen line
length, is added to the destination address and a new source address is
calculated by adding a constant. The function loops over the height of a
rectangle.

Subroutine: Slow
Slow image blit fetches an 8 bit source word and starts by handling

leading bits if the destination start address is unaligned. This is done by
using a bitmask to mask the original framebuffer data at the 32 bit aligned
start address. The write block loop shifts in data, one pixel at a time, every
cycle and when a full 32 bit word is accumulated the word is written to the
framebuffer memory. New source data is fetched when needed and the loop
runs until the last word. Next step is to write possible trailing bits and pad
the remaining bits with framebuffer data. When the end of the row is
reached a constant, of screen line length, is added to the destination address
and a new source address is calculated by adding a constant. The function
loops over the height of a rectangle.

Subroutine: Color
Color image blit fetches an 8 bit source word and starts by handling

leading bits if the destination start address is unaligned. This is done by
using a bitmask to mask the original framebuffer data at the 32 bit aligned
start address. The write loop shifts in data, one pixel at a time, every cycle
and when a full 32 bit word is accumulated the word is written to the
framebuffer memory. New source data is fetched every cycle and color data

24

 2 TECHNICAL BACKGROUND

from the pseudo palette is gathered by indexing the palette with the source
data. Next step is to write possible trailing bits and pad the remaining bits
with framebuffer data. When the end of the row is reached a constant, of
screen line length, is added to the destination address and a new source
address is calculated by adding a constant. The function loops over the
height of a rectangle.

 2.4.4 Gaisler Framebuffer Driver (grvga.c)
The framebuffer driver initiates and registers the GRSVGA VGA

controller when Linux boots up. This is where the software framebuffer
operations are linked to the framebuffer device. To make the driver use the
accelerator instead of the software these operation calls needs to be
redirected to the accelerator. In Chapter 5.3 the modifications made to patch
in the accelerator are described.

 2.5 Target Technology
Two boards were used to test the system. Information on the platforms are

presented in this section.

 2.5.1 GR-XC3S-1500
The GR-XC3S-1500 Development Board incorporates a 1.5 million gates

XC3S1500 FPGA device from Xilinx Spartan-3 family. This board is a
compact, low cost board developed by Pender Electronic Design GmbH in
cooperation with Gaisler Research for evaluation of the LEON2 and
LEON3/GRLIB processor systems [4]. A picture of the topside of the board
can be found in Figure 5.

25

Figure 5: Topside view of the GR-XC3S-1500 Development Board [6]

 2.5 TARGET TECHNOLOGY

The system features Ethernet, JTAG, USB, Video and PS2 interfaces for
off-board communication and has on-board memory in the form of SDRAM
and Flash memory.

 2.5.2 ML501 Evaluation Platform
The ML501 Evaluation Platform from Xilinx sports a Virtex-5

XC5VLX50 FPGA with PS2, JTAG, USB, Ethernet interfaces, DVI video
connector and much more [9]. The ML501 is a versatile and feature-rich
low-cost development platform for multiple applications [10]. This board is
well equipped to be the platform for the tests run under Linux. A picture of
the topside of the board can be found in Figure 6.

26

Figure 6: Topside view of the ML501 Evaluation Platform[10]

 3 DEVELOPMENT PROCESS

 3 Development Process
The development process roughly followed the outline of the project

proposal. The proposal can be found in Appendix C.

1. Development of a specification, defining which operations to be
accelerated, supported resolution and color depth, register interface
and DMA handling.

2. Implementing the 2D engine in VHDL, and verification in
simulation.

3. Implementation on the Spartan3 GR-XC3S-1500 board

4. Testing of the accelerated functions using low-level C programs

5. Final testing of Linux-2.6 kernel with the X window system

The background of the GRLIB and AMBA system was studied as well as
the function of the framebuffer operations. It was understood that the IP-
core, to be implemented as a result of this project, needed interfaces to both
the AMBA AHB and APB. The faster AHB was required for memory
access, to read and write to the framebuffer, and the APB was more suited to
relay the command and initial data needed from the LEON3 CPU.

The implementation in VHDL followed, this was verified by simulating
the hardware in a test bench. Described in more detail in Chapter 6.

The VHDL was then synthesized and programmed on to the development
board where it was tested and verified by using GRMON and low-level test
programs in C. This is also described in more detail in Chapter 6.

Finally the Linux drivers were modified and the design tested under the X
window system.

27

 4 DESIGN CHOICES

 4 Design Choices
This section describes the limitations and the choices made during the

design process.

 4.1 Framebuffer Operations
The choice of which framebuffer operations to be implemented in the

accelerator was made based on which operations that are most common.
However, choosing which part of the framebuffer operations to implement
in hardware was reevaluated several times during the development process.
When smaller problems were solved, additional functions were added to the
hardware implementation in iterations.

 4.2 Resolution and Color Depth
The existing VGA Controller Core handling the framebuffer is limited to

a color depth of 8, 16 or 32 bit which also seemed adequate for this project's
IP core. The accelerator is also limited to a maximum resolution of
1024x768 pixels and resolution widths that are divisible by pixel per word.
There is also the prerequisite that the framebuffer always starts aligned to an
32 bit word address. These limitation gives that each line of the screen is
aligned by a fixed address increment for each supported resolution. This
means that handling of row unalignment will not be necessary.

 4.3 Optional Core
The accelerator is designed in two versions. The version that writes one

row per call has the advantage that it is smaller than the one that writes the
entire rectangle at once, but on the other hand it is slower and puts more
load on the processor. In a small system with limited available area the
version writing one row at a time might be preferable and in a large system
the version drawing the whole rectangle should be faster since the processor
does not have to call the module as often.

 4.4 VHDL Coding Techniques
The design is written in the VHDL coding technique called the two-

process design method [15]. This method ensures readable and efficient
code, both for simulation and synthesis.

The design is also compartmentalized into smaller blocks which have a
specific purpose. The blocks can be seen in Figure 7 and are presented in
Chapter 5. By using a hierarchical design with a separate block, and a
separate file to describe it, for each module of the core it was easy to divide
the work. It also facilitated development, testing and readability.

28

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

 5 Gaisler 2D VGA Graphics Accelerator
This chapter is intended as a guide to the source code of the hardware of

the project. Also the changes to the framebuffer driver in Linux are
addressed.

 5.1 Overview
This section briefly describes the contents of each entity block in the

design. The reader should get a basic understanding of the function and
structure of the design.

The graphics accelerator IP-core consists of a main block, which is
connected to the AHB and APB, and six internal blocks which handle
different functions of the cores operations, see Figure 7. All the blocks are
described in the following sections.

29

Figure 7: Relations between VHDL entities.

 5.1 OVERVIEW

 5.1.1 VGA Accelerator (VGAACC.vhd)

The main entity of the accelerator uses generics to set variables and
instantiate the separate underlying entities. The internal control signals are
routed to the appropriate framebuffer operation module by using the
operation selection signals from the APB slave. Since this is the main block,
it is the only entity with interfaces to the system. The ports of the block can
be found in the illustration in Figure 8.

 5.1.2 AMBA AHB Master Interface (DMA2AHB.vhd)

To access the memory via the AHB an existing IP design from the GRLIB
VHDL IP library is used. The DMA2AHB core is a AMBA AHB master
interface with DMA input. Though the functionality of the AHB is reduced
this interface is well suited to support the requirements of memory access by
the graphics accelerator. The ports of the block can be seen in the illustration
in Figure 9.

30

Figure 9: DMA2AHB block with in and out ports.

Figure 8: VGAACC core with in and out ports.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

 5.1.3 APB slave (APBslv.vhd)

In Figure 10 an illustration of the APBslv block and its ports can be seen.
The operation commands and data from the CPU are sent on the APB. For
the graphics accelerator IP-core to be able to access the APB an AMBA
APB interface, APBslv, has been constructed. It is a basic interface with
seven registers. Six to store the commands and the data required to perform
the framebuffer operations and one to present information on the cores
current state, see Table 1.

When all the necessary data for a specific framebuffer operation has been
received a signal to execute the operation is sent to the operation blocks.
During the execution of the operation no new command can be initiated by
writing to the slaves address space, however all registers can be read. When
the core is busy register seven contains information about the ongoing
operation. See Figure 11 for details of register seven.

31

Figure 10: APBslv block with in and out ports.

Table 1: Offsets for APBslv registers.

Register
number

Offset Register
Information

1 0x00 Command Call Reg(0)
2 0x04 Command Call Reg(1)
3 0x08 Command Call Reg(2)
4 0x0C Command Call Reg(3)
5 0x10 Command Call Reg(4)
6 0x14 Command Call Reg(5)
7 0x18 Operation information output

 5.1 OVERVIEW

 5.1.4 Fill Rectangle (Fillrect.vhd)

The block Fillrect performs the framebuffer operation fill rectangle by
writing a pattern to the framebuffer memory using the DMA2AHB
interface. The interface ports of the block can be seen in Figure 12. This is
done in a state machine with three states as shown in Figure 13. The idle
state is used to wait for the execute signal and for row changes.

If the operation includes the ROP XOR, the existing pixel data will be
fetched, the raster operation performed and data stored to the local cache in
the receive state. In the send state the modified pattern is written to the
framebuffer memory. The memory accesses are done in bursts up to 16
words long.

In the case of the ROP COPY, the existing data will be overwritten by the
pattern throughout the whole rectangle width in an incremental burst, with
the exception of handling leading and trailing bits.

32

31 30 29 3 2 1 0

Bit 31:30, Current operation.
Bit 2, Operation running.
Bit 1, Error occurred during execution of operation.
Bit 0, VGAACC block busy.

Figure 11: Contents of APB slaves register 7.

Figure 12: Fillrect block with in and out ports.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

No row unalignment can occur due to the limitation in pixel depth and
screen resolution, however leading and trailing bits must be handled in the
case of 8 or 16 bits per pixel. This is done in the receive state by applying
bitmasks to both the fetched pixel data and to the fill pattern, before merging
the data into a single word stored in the local cache. The result is then
written to framebuffer memory in the send state.

The memory accesses are done in bursts up to 16 words long. When the
last word of the row has been written, the machine returns to idle state. If
another row is to be filled, an address calculation is performed and the
procedure starts over. This is repeated for each row of the rectangle's height.
When the last pixel pattern of the rectangle has been written, a signal
indicating that the operation is done is sent to the APBslv block.

 5.1.5 Copy Area (Copyarea.vhd)

33

Figure 13: Fill rectangle state machine.

Figure 14: Copy area block with in and out ports.

 5.1 OVERVIEW

The block Copyarea which performs the framebuffer operation copy area
is similar to the Fillrect block. The difference being that instead of a static
pattern to write to the framebuffer memory, the pixel data to write already
exists within the framebuffer memory. This resembles the case of the fill
rectangle framebuffer operation with the ROP XOR, except the data fetched
is from another address than the destination address. The ports of the
Copyarea block can be seen in Figure 14.

There are still the leading and trailing bits to consider. They are handled
in the same way as in the Fillrect block by applying bitmasks to both
existing pixel data, from the destination address, and to the new pixel data
from the source address. The data is then merged into a single word stored
in the local cache. This is done in the receive state before writing the result
to framebuffer memory in the send state.

If the source and destination areas overlap the addresses might have to be
reversed so that no source data is overwritten before it is read. This is
further complicated by the way the data transmitted in bursts over the bus.
The address to the data in memory is incremented throughout the length of
the burst operation and the burst cannot be reversed and the address
decremented instead. When performing a reverse copy the last word of the
first received burst is actually the first word of the area to be copied.

Also, alignment can be an issue when source data and destination data
does not start at the same address offset. To handle unalignment, source data
has to be realigned before it is stored in the cache and written to the
destination address of the framebuffer memory. And if the operation is both
reversed and unaligned, the first word of the first received burst has to be
realigned with data from the last word of the next received burst before
written to the destination address.

The operation is performed in a state machine loop as seen in Figure 15.

34

Figure 15: Copy area state machine.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

 The idle state is used to wait for the execute signal and for row changes.
The functionality of the rest of the loop is this.

Pixel data is fetched from the source address, realigned and masked if
necessary, and stored in the local cache in the receive state. Then written to
the framebuffer memory in the send state. The memory accesses are done in
bursts up to 16 words long. When the last word of the row has been written
the machine returns to idle state. If there is another row to copy, an address
calculation is performed and the copy procedure restarts. This is repeated for
all rows of the area's height. When the last pixel has been copied, a signal
indicating that the operation is done is sent to the APBslv block.

 5.1.6 Image Blit (Imageblit.vhd)

Monochrome image blit
The image blit block read source data from system memory and produces

pixel data from the source data. The illustration in Figure 16 shows the
interface ports of the block. The module can fetch up to 16 32 bit words
which is the size of the local cache memory. This means that 16 times 32
pixels can be written before new source data has to be fetched. The choice
to fetch 32 bit source words, regardless of the number of bits needed, was
made due to efficiency. It takes the same amount of time to fetch a 32 bit
word as an 8 bit word. If the start source word is not 32 bit aligned the
module can address an 8 bit word inside the 32 bit source word.

When source data is received the module determines if the destination
address is unaligned and calculates the first table address if the color depth
is 8 or 16 bits per pixel.

If any of the transmissions has an unaligned destination address, this can
occur in the beginning or end of the row, they need to be handled. At 16 bit
color depth, a single 16 bit word will be written and only one source bit will
be consumed. At 8 bit color depth there are three cases. One, two or three 8
bit words has to be written and the same number of source bits are used.

After writing the possible initial unaligned words, the module will set up
an incremental burst that will transmit until the end of the row or possible
unaligned addresses. Or, until the cache runs empty and new source data

35

Figure 16: Imageblit block with in and out ports.

 5.1 OVERVIEW

must be fetched. All regular transmissions are 32 bit words which, for
example, causes a transfer at 8 bit color depth to write four pixels per clock
cycle.

The data is extracted from a source data vector which is continuously
updated with new source data from the cache when data has been used and
expended. If the color depth is 16 or 8 bits per pixel the module will use two
or four bits respectively, of the most significant bits of the source data
vector. These are used to address a corresponding mask table which creates
the color pattern. At 32 bits per pixel the module will index the source data
vector directly since only one bit is used for every 32 bit word to send. If
two data bits is used, the source vector will be shifted two steps to the left
and two new data bits from the cache will be written on the two least
significant bits.

This was necessary due to possible earlier unaligned transfers using up an
odd number of source bits and the source data vector which would cause it
to be uneven in the end. This way there will always be data available for
aligned data writing until the end of the row or the possible trailing bits that
will end the row.

The data is extracted from a source data vector which is continuously
updated with new source data from the cache when data has been used and
expended. For example if two data bits is used the source vector will be
shifted two steps to left and two new data bits will be written on the two
least significant bits. This way there will always be data available for
aligned data writing until the end of row or the eventual unaligned addresses
that will end the row.

If the color depth is 16 or 8 bits per pixel the module will use two or four
bits respectively, of the most significant bits of the source data vector. Else,
if the pixel depth is 32 bit, only the most significant bit in the source data
vector will be used to index the source data.

When the last pixel in a row is written, the module will calculate the
address to the next row and the address to next source data. New source data
is fetched and the module will start writing the new row. This will continue
until the module reaches the last pixel of the last row. When the last pixel
has been written, a signal indicating that the operation is done is sent to the
APBslv block.

This is a brief description of the state machine, illustrated in Figure 17,
more information can be found in Chapter 5.2.6. The first state entered is the
RX state, when all source data has been received a jump to Setup_TX will
take place. There it will be determined if the first address is aligned or not.
If the first address is unaligned next state is Unaligned_TX, or TX if the first
address is aligned.

36

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

From Unaligned_TX a jump to TX is made if the next address is aligned.
Otherwise the process will remain in Unaligned_TX if the address is
unaligned, jump to Linechange if the row is completed or to RX if the cache
runs out of data. When the TX state is entered it will write until it runs out
of source data or the row is completed, with the exception for trailing bits.
From here the next state can be Linechange if the row is completed,
Unaligned_TX if the last address is unaligned or, if the cache runs out of
data, RX. When the Linechange state is done next state is RX if there are
more rows to write, otherwise the task is completed and all variables resets.

Color image blit
The algorithm of color image blit is quite similar to slow monochrome

image blit with the difference that color image blit fetches its pixel data
from a pseudo palette. It is a structure that consists of 16 32 bit words that
contains color data. This might not seem to be much data but the software is
continuously updating the palette. Thus it is very hard to use for hardware
acceleration since the hardware must know when the software updates the
palette and must wait for the update to complete. In order to see if there are
any good solutions to this problem other hardware drivers were examined.
However, since other hardware accelerators do not accelerate color image
blit the choice to exclude the operation was made.

37

Figure 17: Image blit state machine.

 5.1 OVERVIEW

 5.1.7 SyncRAM Cache

A cache memory has been placed locally to make bursting data to and
from the memory possible. It is a synchronous single port RAM and all of
the framebuffer operation blocks use the same cache with 16 32 bit words.
The cache is clocked by an inverted AMBA system clock. The illustration in
Figure 18 shows the cache block and its ports. More details on the cache
interface can be found in Table 2.

 5.1.8 VGA Accelerator Package(VGAACC_pkg.vhd)
The package contains the accelerator specific record declarations, used

for interfacing the internal blocks, and declarations of functions used in the
design.

 5.2 Details
This section describes the design with more details. The reader should get

a good understanding of the function and structure of the source code and be
able to read and follow the code with little or no problem.

38

Figure 18: Cache block with in and out ports.

Table 2: Signal descriptions of Cache interface.

Signal
name

Field Type Function Active

clk N/A Input Clock -
CACHEo DATA[31:0] Input Data -
CACHEi Addr[0 to 15]

en
DATA[31:0]

Output Address [Integer]
Write enable
Data

-
High
-

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

 5.2.1 VGA Accelerator (VGAACC.vhd)
This is the main entity, it contains all the designs components which

makes the interface to the surrounding system as small and neat as possible.
The function of the main block is to instantiate the sub-components and
handle internal signal routing. This is necessary to make sure that the shared
resources: cache, APB slave and DMA access, is at disposal to the active
framebuffer operation block, and to avoid multiple drivers to shared signals.

The framebuffer operations requires different amounts of data to perform
their tasks. The blocks therefore each have their own input records which
are routed from the output of the APBslv block. Also, by using the operation
selection signal in the first register of the slave output, the input to the
shared resources are connected to the output of the currently active
framebuffer operation block.

In Table 3 the interface signals to the accelerator are described. As seen,
the only contact with the surrounding system are through AMBA interface
signals.

 5.2.2 AMBA AHB Master Interface (DMA2AHB.vhd)
The AMBA AHB interface has, through this block, been reduced in

function to support only what is required for DMA access. Although not
included in the GRLIB IP Core User's Manual, the block is a part of the core
library and can be found in the AMBA sub-directory of the GRLIB folder.
For more information the reader is referred to the VHDL code.

In Table 4 the interface signals for the DMA2AHB block are described.
The AMBA AHB interface is directly connected to the AHB through the
VGAACC block. The DMA interface is routed to the active framebuffer
operation block through the main VGAACC block.

39

Table 3: Signal descriptions of VGAACC interface.

Signal
name

Field Type Function Active

hclk N/A Input Clock -
hresetn N/A Input Reset Low
APBi * Input APB slave input signals -
APBo * Output APB slave output signals -
AHBi * Input AHB master input signals -
AHBo * Output AHB master output signals -
* see GRLIB IP Library User’s Manual [3]

 5.2 DETAILS

 5.2.3 APB Slave (APBslv.vhd)
The accelerator is called by writing the necessary data to the APB slave's

address space on the APB. The calls must be written to the address space in
incrementing offset order starting with the offset 0x00, followed by 0x04
and 0x08 etc. The slave uses the first word to determine the desired
framebuffer operation and how many data words that are needed for that
operation.

All incoming data from the APB is stored in a local register. When the
required number of data words for the desired operation has been received,
the APB slave sends an execute signal and forwards the data through the
VGAACC block.

In Table 5 the interface signals for the APBslv block are described. The
AMBA APB interface is directly connected to the APB through the
VGAACC block. The slaves internal interface of the core is routed to the
active framebuffer operation block through the main VGAACC block.

40

Table 4: Signal descriptions of DMA2AHB interface.

Signal
name

Field Type Function Active

hclk N/A Input Clock -
hresetn N/A Input Reset Low
DMAi Reset

Address[31:0]
Data[31:0]
Request
Burst
Beat[1:0]
Size[1:0]
Store
Lock

Input Reset
Address
Data
Access requested
Burst requested
Incrementing beat
Size
Data write requested
Locked transfer

Low
-
-
High
High
-
-
High
High

DMAo Grant
OKAY
Ready
Retry
Fault
Data[31:0]

Output Access accepted
Write access ready
Read data ready
Retry
Error occurred
Data

High
High
High
High
High
-

AHBi * Input AHB master input signals -
AHBo * Output AHB master output signals -
* see GRLIB IP Library User’s Manual [3]

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

 5.2.4 Fill Rectangle (Fillrect.vhd)
This section will describe the Fillrect block with more detail. The

flowcharts can be a visual aid when reading the code and the tables
describing the interfaces and signals should help to interpret the connections
between the blocks. The reader can also find the required data to perform
the fill rectangle operation in the details of the operation call record.

Flowcharts of Fillrect
The fill rectangle operation is performed in three states, as mentioned

earlier. The full algorithm is here described with more detail through four
flowcharts, one for each state and one describing the combinatorial process
of the Fillrect architecture.

In Figure 19 the flowchart of the combinatorial process is depicted. By
using the flowcharts as a reference and looking at the source code the
function of the algorithm should become clear.

41

Table 5: Signal descriptions of APBslv interface.

Signal
name

Field Type Function Active

hclk N/A Input Clock -
hresetn N/A Input Reset Low
SLVi done

opInfo[1:0]
Input Operation complete

Operation information
High
-

SLVo execute
reg[0:5]
[31:0]

Output Execute operation
Data registers

High
-

APBi * Input APB slave input signals -
APBo * Output APB slave output signals -
* see GRLIB IP Library User’s Manual [3]

 5.2 DETAILS

The process starts by setting variables and interpreting incoming data
from the APB slave. Then the burst length and burst beat [1] is set by
evaluating the number of words left to write. If the current state is either
receive or send the respective state is entered and processed before returning
to the combinatorial flowchart.

During the burst counters keep track of how many granted bus accesses
acquired and how many words received or sent. While continuing through
the flowchart, the bus request is withdrawn if all the grants needed for the
burst are acquired. After that, if the burst has been completed the state is
changed by evaluating the current state and the number of words left to
complete the row. The counters are reset and new addresses are calculated if
needed.

In the idle state each row is initiated and the operation always starts and
ends there, this is described in Figure 20. During receive or send phases the
DMA2AHB is kept active by variables set if the current state is not the idle
state.

At the end of the process DMA errors and system reset is handled before
signals are set by the variables used in the process.

42

Figure 19: Flowchart of combinatorial process of Fillrect.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

To go into more details the flowcharts of the different states of the block
are depicted separately. Figure 20 shows the idle state of the Fillrect block.

The idle state is the beginning and end of each row of the rectangle, as
well as of the whole operation. As seen in the flowchart the state is divided
into three possible paths and one default setting. When waiting on an
operation call the module is a reset state, but when the execute signal is sent
the module is initiated by the left path of the flowchart and the first row of
the rectangle is filled.

Trailing bits, if any, are handled separately by an additional, single word,
send-receive cycle at the end of each row. This is the middle path of the
flowchart.

The path to the right initiates each subsequent row of the rectangle, if
there are more than one.

In Figure 21 the receive state is illustrated.

43

Figure 20: Flowchart of Idle state of Fillrect.

 5.2 DETAILS

The receive state of Fillrect is mainly used with the ROP XOR, however
it is also used to handle leading and trailing bits as seen in Figure 21. When
handling leading bits for ROP COPY the burst length has to be adjusted to
one word. After the data has been sent to the cache the word counter is
increased and the flow of the process exits the receive state.

Finally the flowchart of the send state is depicted in Figure 22.

44

Figure 21: Flowchart of Receive state of Fillrect.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

The flow of the send state shown in Figure 22 depends on which raster
operation to perform and if there are any leading- or trailing bits, the
difference being which data to send and how long the burst should be.

In the case of ROP XOR, or in the case of leading or trailing bits, the data
sent if fetched from the cache. However if the operation is the ROP COPY
the data sent is simply the pattern included in the operation call and the
whole row can be written in a single incremental burst, as opposed to bursts
up to 16 words long which are limited by the size of the cache.

The number of words sent are counted and before the process exits the
send state the flag for trailing bits are unset.

Signals and Interfaces of Fillrect
In Table 6 the interface signals for the Fillrect block are described. They

connect the block to the APB slave, cache and DMA access.

45

Figure 22: Flowchart of Send state of Fillrect.

 5.2 DETAILS

The command call interface from the APB slave is described in detail in
Figure 23. This is the information needed from the Linux driver to perform
the fill rectangle operation.

46

Table 6: Signal descriptions of Fillrect interface.

Signal
name

Field Type Function Active

hclk N/A Input Clock -
hresetn N/A Input Reset Low
FLLi execute

reg[0:3][31:0]
Input Execute operation

Data registers
High
-

FLLo done
opInfo[1:0]

Output Operation complete
Operation information

High
-

DMAi Reset
Address[31:0]
Data[31:0]
Request
Burst
Beat[1:0]
Size[1:0]
Store
Lock

Input Reset
Address
Data
Access requested
Burst requested
Incrementing beat
Size
Data write requested
Locked transfer

Low
-
-
High
High
-
-
High
High

DMAo Grant
OKAY
Ready
Retry
Fault
Data[31:0]

Output Access accepted
Write access ready
Read data ready
Retry
Error occurred
Data

High
High
High
High
High
-

CACHEo DATA[31:0] Input Data from cache -
CACHEi Addr[0 to 15]

en
DATA[31:0]

Output Address [Integer]
Write enable
Data to cache

-
High
-

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

 5.2.5 Copy Area (Copyarea.vhd)
This section will describe the Copyarea block with more detail. The

flowcharts can be a visual aid when reading the code and the tables
describing the interfaces and signals should help to interpret the connections
between the blocks. The reader can also find the required data to perform
the copy area operation in the details of the operation call record.

Flowcharts of Copyarea
The copy area operation is performed in three states, as mentioned earlier.

The full algorithm is here described with more detail through five
flowcharts describing each state and one depicting flow of the combinatorial
process of the Copyarea architecture.

In Figure 24 the flowchart of the combinatorial process is depicted. By
using the flowcharts as a reference and looking at the source code the
function of the algorithm should become clear.

47

31 30 29 28 23 12 11 10 0

FLLi.Reg(0) opsel r dst_idx bpp height

opsel = Operation select signal, “01” for fill rectangle.
r = ROP. '1' for XOR, '0' for COPY.
dst_idx = Destination alignment index.
bpp = Bits per pixel. “11” = 32 bpp, “10” = 16 bpp, “01” = 8
bpp, default is 16 bits per pixel.
height = Number of rows in rectangle.

31 16 15 0

FLLi.Reg(1) Pixels per row Bytes per screen line
FLLi.Reg(2) Destination address
FLLi.Reg(3) Fill pattern

31 0

Figure 23: Details of Fillrect command call record.

 5.2 DETAILS

The process starts by setting variables and interpreting incoming data
from the APB slave. Then the burst length and burst beat [1] is set by
evaluating the number of words left to write. If bus access is granted a
counter is increased to keep track of the number of acquired accesses. If the
current state is either receive or send the respective state is entered and
processed before returning to the combinatorial flowchart. The states are
described later.

In the idle state each row is initiated and the operation always starts and
ends there, this is described below. During receive or send phases the
DMA2AHB is kept active by variables set if the current state is not the idle
state.

At the end of the process DMA errors and system reset is handled before
signals are set by the variables used in the process.

To go into more details the flowcharts of the different states of the block
are depicted separately. Two states, idle and receive, are divided further into
two flowcharts each. Figure 25 and Figure 26 shows the idle state of the
Copyarea block.

48

Figure 24: Flowchart of combinatorial process of Copyarea.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

The idle state is the beginning and end of each row of the area, as well as
of the whole operation. As seen in the flowchart the state is divided into
three possible paths and one default setting. When waiting on an operation
call the module is in a reset state, but when the execute signal is sent the
module is initiated by the left path of the flowchart and the first row of the
area is copied.

The initiation of the module is different depending on whether or not the
area has to be reversed copied and if the data is aligned.

Trailing bits, if any, are handled separately by an additional, single word,
send-receive cycle at the end of each row. This initiation path is described in
Figure 26.

The path to the right initiates each subsequent row of the area, if there are
more than one row. This is also described in Figure 26.

49

Figure 25: Flowchart of Idle state of Copyarea, 1 of 2.

 5.2 DETAILS

To the left in Figure 26 the path handling trailing bits in the idle state of
the Copyarea block is illustrated. A receive-send cycle of one data word is
initiated. This setup is different depending on whether or not the operation is
reverse copy and if the data is aligned.

To the right in Figure 26 the path handling the height of the area is shown.
This also depends on whether or not the operation is reverse copy and if the
data is aligned.

In Figure 27 and Figure 28 the receive state is illustrated.

50

Figure 26: Flowchart of Idle state of Copyarea, 2 of 2.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

The receive state of Copyarea is complex due to the handling of
unaligned data. Therefore the handling of incoming data is described in a
separate flowchart, Figure 28. The variables for DMA access is set in the
beginning of the state and then the handling of incoming data is performed.
If the number of bus accesses acquired matches the burst length the bus
request variable is unset.

If data from the DMA2AHB block is valid the receive state restarted if
the data fetched was destination data. Otherwise some data handling,
necessary for unaligned data, is done. If the burst is complete, flags are set
and some more data handling is done. If not the burst length might be
extended to get extra source data or the word counter is increased.

If the receive cycle is finished counters and flags are reset and the next
state is set.

51

Figure 27: Flowchart of Receive state of Copyarea, 1 of 2.

 5.2 DETAILS

To understand the handling of the incoming data the flowchart in Figure
28 should be of help. The incoming data is handled differently depending on
several variables.

➢ Destination data is received.

➢ There are leading- or trailing bits.

➢ Copy operation is aligned.

➢ Copy operation is unaligned

➢ Copy operation is reversed and aligned.

➢ Copy operation is reversed and unaligned.

To avoid long data paths due to shifting and merging of unaligned data, a
pipeline register has been introduced. This splits the modification of the data
into two cycles, which reduces the data path, and delays the store to cache
by one cycle. Also there are special cases to handle, for example when
leading or trailing bits overlap two source words. Commentary in the code
should also help the reader to a better understanding of what is done to the
data.

52

Figure 28: Flowchart of Receive state of Copyarea, 2 of 2.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

Finally the flowchart of the send state is depicted in Figure 29

The send state is very straight forward. Data is sent from the cache to the
framebuffer memory. When the bus accesses needed for the burst is
acquired the bus request and burst variables are unset. For each word sent
the word counter is increased and when the last word is sent a flag for
transmission done is set.

When the send cycle is done the counters and flags are reset, the number
of words left to copy decreased and new addresses calculated. If the row is
completed the state is set to idle, otherwise to receive.

Signals and Interfaces of Copyarea
In Table 7 the interface signals for the Copyarea block are described.

They connect the block to the APB slave, cache and DMA access.

53

Figure 29: Flowchart of Send state of Copyarea.

 5.2 DETAILS

The command call interface from the APB slave is described in detail in
Figure 30. This is the information needed from the Linux driver to perform
the copy area operation.

54

Table 7: Signal descriptions of Copyarea interface.

Signal
name

Field Type Function Active

hclk N/A Input Clock -
hresetn N/A Input Reset Low
CPYi execute

reg[0:3][31:0]
Input Execute operation

Data registers
High
-

CPYo done
opInfo[1:0]

Output Operation complete
Operation information

High
-

DMAi Reset
Address[31 :0]
Data[31:0]
Request
Burst
Beat[1:0]
Size[1:0]
Store
Lock

Input Reset
Address
Data
Access requested
Burst requested
Incrementing beat
Size
Data write requested
Locked transfer

Low
-
-
High
High
-
-
High
High

DMAo Grant
OKAY
Ready
Retry
Fault
Data[31:0]

Output Access accepted
Write access ready
Read data ready
Retry
Error occurred
Data

High
High
High
High
High
-

CACHEo DATA[31:0] Input Data from cache -
CACHEi Addr[0 to 15]

en
DATA[31:0]

Output Address [Integer]
Write enable
Data to cache

-
High
-

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

 5.2.6 Image Blit (Imageblit.vhd)
This section will describe the Imageblit block with more detail. The

flowcharts can be a visual aid when reading the code and the tables
describing the interfaces and signals should help to interpret the connections
between the blocks. The reader can also find the required data to perform
the image blit operation in the details of the operation call record.

As mentioned earlier, only the monochrome blit operation has been
implemented in the core.

Flowcharts of Imageblit
The image blit module consists of five states RX, TX, Linechange,

Setup_TX and Unaligned_TX. The algorithm of the module is described in
flow charts, one for every state and one for the combinatorial process. In
order to keep the flow charts readable they describe a simplified model of
the actual states. Describing texts will give more details in connection to the
flow charts.

55

31 30 29 26 20 19 13 12 11 10 0

CPYi.Reg(0) opsel r dst_idx src_idx bpp height

opsel = Operation select signal, “10” for copy area.
r = Reverse copy, active high.
dst_idx = Destination alignment index.
src_idx = Source alignment index.
bpp = Bits per pixel. “11” = 32 bpp, “10” = 16 bpp, “01” = 8
bpp, default is 16 bits per pixel.
height = Number of rows in rectangle.

31 16 15 0

CPYi.Reg(1) Pixels per row Bytes per screen line
CPYi.Reg(2) Destination address
CPYi.Reg(3) Source address

31 0

Figure 30: Details of Copyarea command call record.

 5.2 DETAILS

Figure 31 shows the main flow in the image blit module. The process
starts with initiating variables and parse the data received from the APB
slave. The first state entered is the receive state RX in which all of the
source data is fetched. Then Setup_TX is entered to determine if the first
pixel to write has an unaligned address. Next state is one of the two transmit
states, TX or Unaligned_TX. The TX state handle all 32 bit aligned transfers
and Unaligned_TX handles unaligned addresses and trailing bits. The
process ends with error handling, system reset and setting the signals by the
using process variables.

56

Figure 31: Flowchart of combinatorial process of Imageblit.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

In the RX state, shown in Figure 32, the purpose is to fetch source data.
This is done as follows: a request is sent to the AHB and then wait for the
Grant signal. When Grant is set, the number of grants are counted until it
matches the proposed quantity of 32 bit words to fetched. Then the request
signal is unset. When the DMAO Ready signal is set, the source data is
available to be written in the cache memory. The Grant counter is used to
control the number of data words to receive. Before leaving the state a new
source address is calculated and the next state is Setup_TX.

A new source data fetch is done for every new row. Since the maximal
amount of data is limited by the local cache size, a maximum of 16 32 bit
words can be fetched in one burst. If that is not enough data for the whole
row of the image it is possible to fetch new data words until the row is
finished. The module can address 8 bit words in the 32 bit source word if the
source data is unaligned.

57

Figure 32: Flowchart of RX state of Imageblit.

 5.2 DETAILS

Setup_TX state, depicted in Figure 33, determine if the destination
address is unaligned and calculates the first table addresses if 8 or 16 bit
color depth. If the destination address is unaligned next state will be
unaligned_TX and if the address is 32 bit aligned next state is TX.

The TX state sets a request on the AHB and wait for the Grant signal.
When Grant is set, the number of grants are counted until it matches the
proposed quantity of 32 bit words to transmitted. Then the request signal is
unset. When the DMAO Okay signal is set the bus is available for
transmitting data. Next state can be Unaligned_TX or RX or Linechange.
The flow of the TX state is illustrated in Figure 34.

58

Figure 33: Flowchart of Setup_TX state of Imageblit.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

The TX state sets up an incremental burst that will transmit until the end
of the row to the last trailing bits, if there are any, or if cache runs empty and
new data must be fetched. In TX state all transmissions are 32 bit words
which means a transfer at 8 bit color depth writes 4 pixels per clock cycle.

The data is extracted from a source data vector which is continuously
updated with new source data from the cache when data has been used and
expended. If the color depth is 16 or 8 bits per pixel the module will use two
or four bits respectively, of the most significant bits of the source data
vector. These are used to address a corresponding mask table which creates
the color pattern. At 32 bits per pixel the module will index the source data
vector directly since only one bit is used for every 32 bit word to send. If
two data bits is used, the source vector will be shifted two steps to the left
and two new data bits from the cache will be written on the two least
significant bits.

This was necessary due to possible earlier unaligned transfers using up an
odd number of source bits and the source data vector which would cause it
to be uneven in the end. This way there will always be data available for
aligned data writing until the end of the row or the possible trailing bits that
will end the row.

59

Figure 34: Flowchart of TX state of Imageblit.

 5.2 DETAILS

The flow through the Unaligned_TX state, shown in Figure 35, is quite
similar to the TX with the main difference that the transmission size is set to
8 bit or 16 bit words and single burst is used. This state is used if any of the
transmissions has an unaligned destination address or if there are any
trailing bits. If the state is needed and the color depth is 16 bits per pixel
there will be a single 16 bit word written. If the color depth is 8 bits per
pixel there are three cases. One, two or three 8 bit words will be written
depending on the destination offset or how many trailing bits there are. The
pixel data is calculated by tables, the same way as in TX. Next state can be
TX, Linechange or RX.

60

Figure 35: Flowchart of Unaligned_TX state of Imageblit.

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

The Linechange state is straightforward and the flow trough the state,
depicted in Figure 36, is simple. It will add one screen line to the destination
address, calculate the new source address and set the length of the cache
memory. The next state is RX if there are more rows in of image to blit. If
the image is finished the module will reset and wait for instructions for the
next image.

Signals and Interfaces of Imageblit
In Table 8 the interface signals for the Imageblit block are described.

They connect the block to the APB slave, cache and DMA access.

61

Figure 36: Flowchart of Linechange of Imageblit.

 5.2 DETAILS

The command call interface from the APB slave is described in detail in
Figure 37. This is the information needed from the Linux driver to perform
the image blit operation.

62

Table 8: Signal descriptions of Imageblit interface.

Signal
name

Field Type Function Active

hclk N/A Input Clock -
hresetn N/A Input Reset Low
BLTi execute

reg[0:5][31:0]
Input Execute operation

Data registers
High
-

BLTo done
opInfo[1:0]

Output Operation complete
Operation information

High
-

DMAi Reset
Address[31:0]
Data[31:0]
Request
Burst
Beat[1:0]
Size[1:0]
Store
Lock

Input Reset
Address
Data
Access requested
Burst requested
Incrementing beat
Size
Data write requested
Locked transfer

Low
-
-
High
High
-
-
High
High

DMAo Grant
OKAY
Ready
Retry
Fault
Data[31:0]

Output Access accepted
Write access ready
Read data ready
Retry
Error occurred
Data

High
High
High
High
High
-

CACHEo DATA[31:0] Input Data from cache -
CACHEi Addr[0 to 15]

en
DATA[31:0]

Output Address [Integer]
Write enable
Data to cache

-
High
-

 5 GAISLER 2D VGA GRAPHICS ACCELERATOR

 5.3 Software Driver (grvga.c)
To make Linux utilize the hardware calls instead of the generic software

algorithms the existing VGA Controller driver was modified. The added
functions are described in this section.

 5.3.1 grvgaacc_probe
This function probes the system and look for the accelerators IP core. The

cores APB slave registers are then mapped to allocated i/o-memory which
makes it accessible from the kernel.

 5.3.2 grvgaacc_fillrect
To make the hardware call for the fill rectangle framebuffer operation the

cfb_fillrect function is replaced by this function. If the required prerequisites
set by the limitations in the accelerator engine is not met the software
algorithms are called as a default. If they are met, the function prepares the
hardware call by calculating the address, destination index and fill pattern
necessary for the hardware accelerator. The function then checks if the core

63

31 30 27 20 12 11 10 0

BLTi.Reg(0) opsel spitch bpp height

opsel = Operation select signal, “11” for image blit.
spitch= Source alignment offset.
bpp = Bits per pixel. “11” = 32 bpp, “10” = 16 bpp, “01” = 8
bpp, default is 16 bits per pixel.
height = Number of rows in rectangle.

31 16 15 0

BLTi.Reg(1) Pixels per row Pixels per screen line
BLTi.Reg(2) Destination address
BLTi.Reg(3) Source address
BLTi.Reg(4) Background color
BLTi.Reg(5) Foreground color

31 0

Figure 37: Details of Imageblit command call record.

 5.3 SOFTWARE DRIVER (GRVGA.C)

is busy, waits until it is available and writes the data to the memory
addresses mapped to the APB slaves registers.

 5.3.3 grvgaacc_copyarea
To make the hardware call for the copy area framebuffer operation the

cfb_copyarea function is replaced by this function. If the required
prerequisites set by the limitations in the accelerator engine is not met the
software algorithms are called as a default. If they are met, the function
prepares the hardware call by calculating the addresses, destination index
and if the area needs to be reversed copied. The function then checks if the
core is busy, waits until it is available and writes the data to the memory
addresses mapped to the APB slaves registers.

 5.3.4 grvgaacc_imageblit
To make the hardware call for the image blit framebuffer operation the

cfb_imageblit function is replaced by this function. If the required
prerequisites set by the limitations in the accelerator engine is not met the
software algorithms are called as a default. If they are met, the function
prepares the hardware call by calculating the addresses, destination offset
and other parameters needed. If it is a monochrome blit the function then
checks if the core is busy, waits until it is available and writes the data to the
memory addresses mapped to the APB slaves registers. If the image has a
higher color depth, the software color image blit algorithm is called.

64

 6 TESTING

 6 Testing
The accelerator was to be tested on the GR-XC3S-1500 Development

Board [4]. However, to be able to run Linux additional cores, such as an
Ethernet interface and an FPU, is required. Unfortunately this made the
system design too big for the Spartan-3 FPGA. The Spartan-3 was still used
to run the tests in GRMON but to test the system while running Linux we
used the ML501 Evaluation Platform [9] which features a larger Virtex-5
FPGA.

Testing has been performed all through the developing process. For the
first applications, such as interfacing with the DMA, VHDL testbenches was
used. The interface was verified in ModelSim [11], both by optically
checking the simulated signals and by automatically comparing written data
to the original data. Also, the handling of unaligned addresses was verified
in this manner.

When a more complete accelerator core was achieved, the test
environment changed to the development board. The design was synthesized
using Synplify [12], place and route was done using Xilinx ISE [16] and
programmed to the FPGA using iMPACT [13]. The use of the hardware
monitor GRMON, available in the GRLIB package, enabled many new
ways of verification.

While working in the GRMON environment test programs was written in
C-code and run on the LEON3 CPU. This meant that the addressing and
APB access to the core could be tested through software. Verification was
done by optically confirming that the correct color and shape was displayed
on the screen at the right place. The access to frambuffer memory and APB
registers, to actually see the data, was also used while debugging the cores
functionality.

When the functionality was fully verified, the drivers for SnapGear Linux
was modified to make use of the accelerator. The use of the accelerator in
console mode was confirmed by setting watch points in the code. The X
window system was installed and the performance of was tested and
compared with the benchmark program X11perf [14]. Unfortunately the X
window system did not make use of the driver as intended and the test data
from X11perf could not be used.

Instead test programs were written to simulate the driver's software
algorithms and hardware calls. To compare hardware and software the two
function calls are a similar sequence and the C-function Clock() was used to
time the tests. Each framebuffer operation was performed five times to
eliminate unwanted variations. These programs were tested in GRMON and
the results were optimistic. However, due to the fact that the GRMON
environment is locked at the color depth of 16 bits per pixel, the tests are
also limited to this color depth.

65

 7 RESULTS

 7 Results
This chapter will present the results from the synthesis and the

performance test programs. Data from both the fully functional version of
the design and the reduced functionality version are presented and
compared.

 7.1 Synthesis
The size of the individual blocks are presented in Table 9. Both versions

of the core are represented. Two blocks, Copyarea and Imageblit, are quite
big and will need further work to reduce the size. The three smallest blocks
should be the same size for both of the versions but differ some. This is
discussed in Chapter 8.

The size of the whole accelerator core is presented in Table 10 and Table
11, the elements represent combinational and sequential logic respectively.
The reduced function core should be smaller in size compared to the full
function core, however as seen in Table 10 the total utilization of the
FPGA's resources are bigger in the reduced function core. The size of the
reduced function core versus the full function core is discussed further in
Chapter 8.

66

Table 9: Area for each block of VGAACC, full and reduced functionality.

VGAACC: Blocks Full Reduced

Name LUT's
[pcs]

Utilization
[%]

LUT's
[pcs]

Utilization
[%]

APB Slave 293 4.09 307 5.21
Copyarea 3332 46.6 1697 28.8

Fillrect 884 12.4 652 11.1
Imageblit 2022 28.3 2545 43.2

DMA2AHB 199 2.78 211 3.58
Cache 0 0 43 0.73

Total LUT's VGAACC 7157 100 5891 100

 7 RESULTS

In Table 11 the number of registers used by the two versions of the core
are presented. The total utilization of resources for the reduced function core
is bigger than for the full function core here as well as in Table 10.
Additional information of the size of the design can be found in Appendix A
which contains the full area report from the synthesis.

It should also be mentioned that some timing errors exists in the design,
although no problems has been noted during execution.

 7.2 Performance
In order to evaluate the efficiency of the construction two test bench

programs were made. The test benches were constructed to simulate the real
case of software driver calls as well as possible. All test was preformed with

67

Table 10: Combinational logic utilization for top level VGAACC.

VGAACC: Top Level
Combinational Logic

Full Reduced

Name Elements
[pcs]

Elements
[pcs]

LUTS 7157 5891
MUXCY 1108 1034
XORCY 1015 905

MULT18x18/MULTI18x185 2 1
SRL16 0 0

Total Comb. Logic 9282 7831

Total Utilization 81.61% 82.31%

Table 11: Sequential elements utilization for top level VGAACC.

VGAACC: Top Level
Sequential Elements

Full Reduced

Name Elements [pcs] Elements [pcs]

Registers 1345 1237

Total Utilization 11.83% 13.00%

 7.2 PERFORMANCE

16 bit color depth at 1024x768 pixels screen resolution since GRMON only
supports 16 bit color. Each of the two versions of the accelerator core was
tested against the generic software algorithm from Linux, modified from the
subroutines found of cfb_copyarea, cfb_filrect and cfb_imageblit. To
compare hardware to software the two calls are a similar sequence and the
C-function Clock() was used to time the tests.

The timing of the tests was performed in two different ways. The first to
measure how much faster the accelerator core is to complete the framebuffer
operation in comparison to the software algorithm, presented in section
7.2.1. And second, to measure the number of freed CPU cycles. That is, the
time it takes to make the hardware call versus the time it takes to perform
the framebuffer operation in software, presented in section 7.2.2.

 7.2.1 Operation Acceleration
The results of the acceleration are presented in tables in this section and a

more complete range of tests can be found in Appendix B.

The full function version of the core is as expected faster than the reduced
function core, approximately 2 to 3 times faster depending on the length of
the rows. Longer rows means less difference which seems reasonable since
the main difference between the functions is that the software must make a
new hardware call every row when using the reduced function core.

First of we have the results for the full function Fillrect operation.

In Table 12 the actual acceleration of the performed operations are
presented as number of hardware executions per software execution, for

68

Table 12: Full function Fill rectangle comparison.

Fill Rectangle

Rectangle
Size

[Pixels]

Aligned
[Software/Hardware]

Unaligned
[Software/Hardware]

COPY XOR COPY XOR

1024x768 35 9 - -
1021x768 29 9 28 9
1021x1 11 9 13 7
4x768 31 17 8 10

512x384 33 10 18 9
32x32 18 12 7 12

 7 RESULTS

different rectangle sizes. As can be seen the acceleration ranges from 8
times to 35 times faster than the software algorithm, depending on rectangle
size and raster operation.

The results for the reduced function Fillrect core are presented in Table 13
in a similar manner as the previous results. The acceleration varies, but as
expected the larger, wider, rectangles are accelerated more since the
hardware calls are repeated for each row. The reduced function core
accelerates the fill rectangle operation by up to 9 times depending on
rectangle size and raster operation. Even if there is no acceleration the CPU
will still be freed up to execute other instructions by performing the
hardware call, as presented in Chapter 7.2.2.

Next up are the results for the full function Copyarea core in Table 14.
The performance improvement over the software algorithm ranges between
9 to 18 times, depending on area size and whether or not the copying is done
in reverse. There are several different cases of unalignment for copy area,
here the case of destination address unalignment is presented. Data on other
cases can be found in Appendix B. The area sizes around 32 pixels in width
are interesting because of the limit in 16 words per burst. Which means that
an extra DMA access is needed when the limit is exceeded.

69

Table 13: Reduced function Fill rectangle comparison.

Fill Rectangle

Rectangle
Size

[Pixels]

Aligned
[Software/Hardware]

Unaligned
[Software/Hardware]

COPY XOR COPY XOR

1024x768 9 8 - -
1021x768 9 8 8 8
1021x1 5 5 5 5
4x768 1 0 6 5

512x384 5 6 5 5
32x32 5 5 5 5

 7.2 PERFORMANCE

Table 15 present the results for reduced function Copyarea core. These
results are not as good as for the full function for smaller areas, which
matches the results for the two Fillrect cores. The acceleration of the
operation ranges in this case between 1 and 10 times, depending on area size
and whether or not the copying is done in reverse.

Finally the results for the Imageblit core. In Table 16 the results for the
full function version are presented. The acceleration of Imageblit is really

70

Table 14: Full function Copy area comparison.

Copy Area

Area
Size

[Pixels]

Aligned
[Software/Hardware]

Dst-Unaligned
[Software/Hardware]

Forward Reverse Forward Reverse

1022x768 11 11 14 15
1021x768 11 11 15 15
512x768 11 12 - -
33x33 10 13 13 13
32x32 18 15 11 13
31x31 9 13 13 16

Table 15: Reduced function Copy area comparison.

Copy Area

Area
Size

[Pixels]

Aligned
[Software/Hardware]

Dst-Unaligned
[Software/Hardware]

Forward Reverse Forward Reverse

1022x768 10 10 10 10
1021x768 10 9 10 9
512x768 9 9 - -
33x33 1 1 1 1
32x32 1 1 2 1
31x31 1 1 1 1

 7 RESULTS

good for large images as presented by the results in Table 16. But in reality
the blits performed are usually not that large. It is more realistic that the blits
are the size of the mid range results. The full function hardware operation
image blit can be performed between 2 and 275 times per software
execution of the same operation, depending on image size and address
alignment.

The results for reduced function Imageblit are presented in Table 17.

71

Table 16: Full function Image blit comparison.

Image Blit

Image Size
[Pixel]

Aligned
[Software/Hardware]

Unaligned
[Software/Hardware]

1024x768 94 -
1023x768 - 258
512x384 91 275
32x32 16 50
12x12 5 17
8x8 3 8
4x4 2 3

Table 17: Reduced function Image blit comparison.

Image Blit

Image Size
[Pixels]

Aligned
[Software/Hardware]

Unaligned
[Software/Hardware]

1024x768 49 -
1023x768 - 141
512x384 32 101
32x32 3 11
12x12 2 4
8x8 1 4

 7.2 PERFORMANCE

The acceleration of the reduced function Imageblit compares well against
the full function version and software algorithms, as can be seen in Table
17. The time to perform the image blit operation in the reduced function
core is between 1 and 141 times faster than to execute the same operation in
software, depending on image size and address alignment.

 7.2.2 Operation Call Time
Data presented here are spot checks as an example of how the accelerator

relieves the CPU. These tests have only been done for the fully functional
core because the reduced function core is called in a loop and does not give
as big impact for an area that is not that wide.

In Table 18 the usefulness of the accelerator core is clear as the difference
between the software execution of the framebuffer operation and the
hardware call well over 1000 clock cycles. For larger areas than 32x32 bits,
the time to perform the framebuffer operation in software will increase but
the number of cycles for the hardware call will remain approximately the
same. This results in extra time for the CPU to do other operations.

72

Table 18: Operation Call Time Gain.

Operation Time Call
(32x32 pixels)

Software Operation
vs

Hardware Call

Fill rectangle
[Clocks]

Copy area
[Clocks]

Image blit
[Clocks]

COPY XOR Fwd Rev

Software Operation 1056 2064 2340 3265 2125
Hardware Call 27 24 58 110 57

Difference 1029 2040 2282 3155 2068

 8 CONCLUSION

 8 Conclusion
We conclude that the core is functional, usable and that it does accelerate

the framebuffer operations as intended and presented in Chapter 7.2. In the
cases where the acceleration of the actual operation is not that good, the
CPU is still relived of the rendering workload and free to execute other tasks
during the time the accelerator core performs the framebuffer operation.

Though the code is functional, rewriting it could still be beneficial in
respect to eliminating the residual timing errors and to reduce the area.
Since some of the blocks are quite large, a decrease in size is recommended
before using the core in real world applications.

The two different versions might not be as useful as was intended since
the difference in size is less than expected. As mentioned earlier, one of the
reasons for making two versions of the accelerator core was to give the user
of a platform with limited resources the option of a smaller core. The
smaller size of the core should have compensated for the reduced
functionality where the area of the core was an issue. However, as can be
seen in Table 10 the total size differs only by a few percent and is almost
negligible. A closer look at the numbers in Table 9 reveals that the reduced
function core is even slightly larger than the full function core for some
blocks.

This can be explained by the number of hours put into the different
versions. The core with reduced functionality was a stepping stone to the
core with full functionality and when the smaller core worked, the focus of
the development process shifted to the fully functional core. This means that
the later core went through more iterations of design improvements than the
earlier core which was only revisited to compare the results of the synthesis
and performance tests.

Though the performance in the X window system could not be tested
during this project, someone with more experience of Linux and X should
be able to adjust the necessary settings so that the modified driver can be
used also with X. This would allow the more accepted X11pref performance
test to be used as a benchmark while comparing the hardware accelerated
graphics to the software's algorithms.

73

 9 DISCUSSION

 9 Discussion
The results for the fill rectangle operation are, as expected, best for an

aligned rectangle with ROP COPY. In this case only one bus access per row
is used and the data for the whole row is written in a single burst. There are
also no read accesses during this operation. The unaligned ROP COPY is
slightly less accelerated because of the leading and trailing bits that require
existing data to be read from the framebuffer memory which means extra
bus accesses. With ROP XOR there are read- write cycles throughout the
operation and the size of the cache then limits the throughput. This causes
saturation of the acceleration.

For the copy area operation the results are more even, if compared to the
other operations. This is because there always are read- write cycles during
the operation, which means that the size of the cache limits the throughput
as in the fill rectangle ROP XOR case. Unaligned is accelerated more than
aligned due to faster realignment of data in hardware than in software.

The results for the image blit operation are as expected. The hardware is
faster at decoding the image data and larger images are accelerated to a
greater extent because of fewer source data fetches, compared to the
software algorithm. Unaligned blits gets a better improvement because of
the slow software algorithm that only handle one pixel at a time, while the
hardware implementation handles multiple pixels per transfer. A small
acceleration decrement can be seen when source data in the cache is
depleted and the operation needs to do another source data fetch.

The project took more time to follow though than what was expected and
deadlines were postponed throughout the work. A reason for this was that
the preliminary studies took a relatively large amount of the time. Since we
have a background in hardware construction, our software knowledge was
not that strong and too much time was spent to understand the software
algorithms. Aeroflex Gaisler AB is a state of the art company and great help
was at hand from the staff at all times, both with software and hardware
questions, and we should have asked for help and used their knowledge
more. A larger diversity of hardware solutions and drivers could also have
been studied while researching the technical background. This would have
made it easier to understand the algorithms used and some of the difficulties
that emerged during the development could have been avoided.

We were free to specify the modules to be included in the core as we
thought appropriate. This was very instructive because we had to consider
and evaluate every construction choice that was made. However, this
resulted in difficulties to define the project specification. The first choice of
which parts, of the framebuffer operations, to implement in hardware was
rushed and was too much too soon in terms of what was comprehended of
the algorithms at that stage. By taking a step back and isolating problem
areas, the work went on smoother. When the smaller problems were solved,

74

 9 DISCUSSION

additional functions were added to the hardware implementation in
iterations. This was a good development process and lead to the two
versions of the core.

The last time consuming problem we encountered was that the modified
driver was not used in the X windows system which made it impossible to
get benchmarks of the hardware accelerator in Linux. However, even if the
driver does not work in X, the core and driver has been verified to work in
the Linux console at system start-up.

During the testing and verification a bug was discovered in the software
algorithm of the copy area framebuffer operation. A bug report has been sent
to the maintainer of the module.

To sum up, the results from the tests show that the core works and we feel
that the project has been a success. Although the size of some of the blocks
means that a rewrite of the code is necessary we hope that Aeroflex Gaisler
AB can benefit from the end product. This was a very interesting and
instructive project, the workload of the accelerator engine's implementation
and design was appropriate for a master thesis for two students and we had
fun with it.

75

 10 FUTURE DEVELOPMENT

 10 Future Development
The first thing that comes to mind for future development is to look at the

X window system and adjust its settings to make use of the modified Linux
driver. However, the modified driver should be seen as a temporary patch
since neither of us are proficient enough regarding C programming to write
a driver that is integrated with the kernel. A separate driver for the
accelerator should be developed to truly integrate the hardware calls into the
Linux system. Also, the modified driver uses a busy-wait form for the
hardware calls. This could be replaced with an interrupt steered call for a
more efficient use of the CPU time.

The second is to eliminate the residual timing errors in the design and
reduce the area by rewriting the VHDL code. One way to reduce the area of
the IP core could be to merge the Fillrect and Copyarea function blocks,
since they resemble each other.

To look further the GRLIB system will get a wider 64 bit data bus. This
would benefit the accelerator and result in fewer bus accesses, faster data
transfers and less strain on the bus.

Some work has been done to smooth the transition to incorporate the
wider bus. Most of the data vectors widths has been set with a constant,
declared in the VGAACC package. This constant could be exchanged for an
generic value, which represent the system's bus width, and thereby adapt
most of the core. Both the Copyarea and Fillrect blocks are prepared for a
64 bit bus and should not need much altering, although this has not been
tested. For Imageblit the transition would be more complex. Larger mask
tables will be needed in addition to a redesign of the current algorithm.
Another thing to consider is that the local cache would have to double in
size unless the burst length's of 16 word are reduced.

While running Linux on the system we noticed that the AHB was
overloaded at higher resolutions and pixel depths. Too many cores was
using the bus, the VGA controller, the Ethernet controller and the VGAACC
core. One idea could be to put the graphics on a separate bus and have a
separate graphics memory for the framebuffer. This would work nice for
Copyarea and Fillrect but Imageblit will need access to system memory to
fetch source data, however the amount of source data needed should be
small.

Future development could also mean to add more frambuffer operations
to the core, although this would mean alterations to the blocks and operation
select signal it should relieve the CPU further.

76

REFERENCES

References
[1] ARM, AMBA Specification, Revision 2.0, ARM, 5/13/1999

[2] J.Gaisler, E. Catovic, M. Isomäki, K. Glembo, S. Habinc,
GRLIB IP Core User’s Manual, Version 1.0.20, Gaisler
Research AB, Gothenburg, 2/12/2009

[3] J. Gaisler, S. Habinc, E. Catovic, GRLIB IP Library User’s
Manual, Version 1.0.20, Gaisler Research AB, Gothenburg,
2/12/2009

[4] Gaisler Research / Pender Electronic Design GmbH, GR-
XC3S-1500 Development Board - User Manual, Revision 1.1,
Gaisler Research / Pender Electronic Design GmbH,
5/29/2006

[5] J. Gaisler, M. Isomäki, LEON3 GR-XC3S-1500 Template
Design, Gaisler Research AB, Gothenburg, 2006

[6] Aeroflex Gaisler AB, Http://www.gaisler.com, Aeroflex
Gaisler AB, 2008

[7] SPARC International, Inc., Http://www.sparc.org, SPARC
International, Inc., 2008

[8] Unknown authors, the Linux Cross Reference,
Http://lxr.linux.no, 2009

[9] Xilinx, ML501 Evaluation Platform – User Guide, Version
1.4, Xilinx, 8/29/2009

[10] Xilinx, ML501 Evaluation Platform, Http://www.xilinx.com,
Xilinx, 2009

[11] Mentor Graphics, ModelSim SE PLUS 6.1e, Revision 2006.03,
Mentor Graphics, 3/8/2006

[12] Synopsys, Synplify PRO, Version C-2009.03, Synopsys,
2/13/2009

[13] Xilinx, iMPACT, Release 10.1.03, Xilinx, 2008

[14] J. McCormack P. Karlton S. Angebranndt, C. Kent, K.
Packard, G. Gill, X11 server performance test program,
Http://www.xfree86.org, 2009

[15] J.Gaisler, A structured VHDL Design Method, Gaisler
Research AB, Http:// www.gaisler.com/doc/ vhdl 2proc.pdf , 2006

[16] Xilinx, ISE, Release 10.1.03, Xilinx, 2008

77

http://www.gaisler.com/
http://www.gaisler.com/doc/vhdl2proc.pdf
http://www.gaisler.com/doc/vhdl2proc.pdf
http://www.gaisler.com/doc/vhdl2proc.pdf
http://www.gaisler.com/doc/vhdl2proc.pdf
http://www.xfree86.org/
http://www.xilinx.com/
http://www.lxr.linux.no/
http://www.sparc.org/

LIST OF FIGURES

List of Figures
Figure 1: LEON3 Template Design [3]..15
Figure 2: LEON3 Processor Core Block Diagram [5]..................................16
Figure 3: AHB plug&play information record [2]..17
Figure 4: A Typical AMBA AHB Based System [1]....................................18
Figure 5: Topside view of the GR-XC3S-1500 Development Board [6].....25
Figure 6: Topside view of the ML501 Evaluation Platform[10]..................26
Figure 7: Relations between VHDL entities...29
Figure 8: VGAACC core with in and out ports..30
Figure 9: DMA2AHB block with in and out ports.......................................30
Figure 10: APBslv block with in and out ports...31
Figure 11: Contents of APB slaves register 7...32
Figure 12: Fillrect block with in and out ports...32
Figure 13: Fill rectangle state machine...33
Figure 14: Copy area block with in and out ports..33
Figure 15: Copy area state machine..34
Figure 16: Imageblit block with in and out ports...35
Figure 17: Image blit state machine..37
Figure 18: Cache block with in and out ports...38
Figure 19: Flowchart of combinatorial process of Fillrect...........................42
Figure 20: Flowchart of Idle state of Fillrect..43
Figure 21: Flowchart of Receive state of Fillrect...44
Figure 22: Flowchart of Send state of Fillrect..45
Figure 23: Details of Fillrect command call record......................................47
Figure 24: Flowchart of combinatorial process of Copyarea.......................48
Figure 25: Flowchart of Idle state of Copyarea, 1 of 2.................................49
Figure 26: Flowchart of Idle state of Copyarea, 2 of 2.................................50
Figure 27: Flowchart of Receive state of Copyarea, 1 of 2..........................51
Figure 28: Flowchart of Receive state of Copyarea, 2 of 2..........................52
Figure 29: Flowchart of Send state of Copyarea..53
Figure 30: Details of Copyarea command call record..................................55
Figure 31: Flowchart of combinatorial process of Imageblit.......................56
Figure 32: Flowchart of RX state of Imageblit...57
Figure 33: Flowchart of Setup_TX state of Imageblit..................................58
Figure 34: Flowchart of TX state of Imageblit...59
Figure 35: Flowchart of Unaligned_TX state of Imageblit..........................60
Figure 36: Flowchart of Linechange of Imageblit..61
Figure 37: Details of Imageblit command call record..................................63

78

LIST OF TABLES

List of Tables
Table 1: Offsets for APBslv registers...31
Table 2: Signal descriptions of Cache interface..38
Table 3: Signal descriptions of VGAACC interface.....................................39
Table 4: Signal descriptions of DMA2AHB interface..................................40
Table 5: Signal descriptions of APBslv interface...41
Table 6: Signal descriptions of Fillrect interface..46
Table 7: Signal descriptions of Copyarea interface......................................54
Table 8: Signal descriptions of Imageblit interface......................................62
Table 9: Area for each block of VGAACC, full and reduced functionality..66
Table 10: Combinational logic utilization for top level VGAACC..............67
Table 11: Sequential elements utilization for top level VGAACC...............67
Table 12: Full function Fill rectangle comparison..68
Table 13: Reduced function Fill rectangle comparison................................69
Table 14: Full function Copy area comparison...70
Table 15: Reduced function Copy area comparison.....................................70
Table 16: Full function Image blit comparison...71
Table 17: Reduced function Image blit comparison.....................................71
Table 18: Operation Call Time Gain...72

79

 APPENDIX A : SYNTHESIS 1

 Appendix A : Synthesis
This section presents the detailed printout from the area report of the

synthesis with Synplify[12]. The target technology is the GR-XC3S-1500
Development Board [4] with a Spartan3XC3S-1500-4 FPGA. The results
are presented block by block in top-down order for both versions of the
VGAACC design.

 A.1 Full Functionality
--
Utilization report for Top level view: VGAACC
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 1345 100 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block VGAACC: 1345 (11.83 %
Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 7157 100 %
MUXCY 1108 100 %
XORCY 1015 100 %
MULT18x18/MULT18x18S 2 100 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block VGAACC: 9282 (81.61 %
Utilization)

Distributed RAM

Name Total elements Number of LUTs Utilization
--
DISTRIBUTED RAM 32 32 100 %
==
Total Distributed RAM in the block VGAACC: 32 (0.28 % Utilization)

--
Utilization report for cell: APBslave
Instance path: VGAACC.APBslave
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 245 18.2 %
LATCHES 0 0 %
==

 APPENDIX A : SYNTHESIS 2

Total SEQUENTIAL ELEMENTS in the block APBslave: 245 (2.15 %
Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 293 4.09 %
MUXCY 0 0 %
XORCY 0 0 %
MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block APBslave: 293 (2.58 %
Utilization)

--
Utilization report for cell: Copyarea
Instance path: VGAACC.Copyarea
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 457 34 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block Copyarea: 457 (4.02 %
Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 3332 46.6 %
MUXCY 588 53.1 %
XORCY 524 51.6 %
MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block Copyarea: 4444 (39.08 %
Utilization)

--
Utilization report for cell: DMA2AHB
Instance path: VGAACC.DMA2AHB
==

SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 115 8.55 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block DMA2AHB: 115 (1.01 %
Utilization)

 APPENDIX A : SYNTHESIS 3

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 199 2.78 %
MUXCY 31 2.8 %
XORCY 31 3.05 %
MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block DMA2AHB: 261 (2.29 %
Utilization)

--
Utilization report for cell: Fillrect
Instance path: VGAACC.Fillrect
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 190 14.1 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block Fillrect: 190 (1.67 %
Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 884 12.4 %
MUXCY 144 13 %
XORCY 121 11.9 %
MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block Fillrect: 1149 (10.10 %
Utilization)

--
Utilization report for cell: Imageblit
Instance path: VGAACC.Imageblit
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 334 24.8 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block Imageblit: 334 (2.94 %
Utilization)

COMBINATIONAL LOGIC

 APPENDIX A : SYNTHESIS 4

Name Total elements Utilization
--
LUTS 2022 28.3 %
MUXCY 345 31.1 %
XORCY 339 33.4 %
MULT18x18/MULT18x18S 2 100 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block Imageblit: 2708 (23.81 %
Utilization)

--
Utilization report for cell: Syncram
Instance path: VGAACC.Syncram
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 4 0.2970 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block Syncram: 4 (0.04 %
Utilization)

Distributed RAM

Name Total elements Number of LUTs Utilization
--
DISTRIBUTED RAM 32 32 100 %
==
Total Distributed RAM in the block Syncram: 32 (0.28 % Utilization)

--
Utilization report for cell: generic_syncram
Instance path: Syncram.generic_syncram
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 4 0.2970 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block Syncram.generic_syncram:
4 (0.04 % Utilization)

Distributed RAM

Name Total elements Number of LUTs Utilization
--
DISTRIBUTED RAM 32 128 100 %
==
Total Distributed RAM in the block Syncram.generic_syncram: 32 (0.28
% Utilization)

 APPENDIX A : SYNTHESIS 5

 A.2 Reduced Functionality
--
Utilization report for Top level view: VGAACC
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 1237 100 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block VGAACC: 1237 (13.00 %
Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 5891 100 %
MUXCY 1034 100 %
XORCY 905 100 %
MULT18x18/MULT18x18S 1 100 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block VGAACC: 7831 (82.31 %
Utilization)

Distributed RAM

Name Total elements Number of LUTs Utilization
--
DISTRIBUTED RAM 32 32 100 %
==
Total Distributed RAM in the block VGAACC: 32 (0.34 % Utilization)

--
Utilization report for cell: APBslave
Instance path: VGAACC.APBslave
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 251 20.3 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block VGAACC.APBslave :251
(2.64 % Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 307 5.21 %
MUXCY 0 0 %
XORCY 0 0 %

 APPENDIX A : SYNTHESIS 6

MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block VGAACC.APBslave: 307
(3.23 % Utilization)

--
Utilization report for cell: Copyarea
Instance path: VGAACC.Copyarea
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 239 19.3 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block VGAACC.Copyarea: 239
(2.51 % Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 1697 28.8 %
MUXCY 250 24.2 %
XORCY 251 27.7 %
MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block VGAACC.Copyarea: 2198
(23.10 % Utilization)

--
Utilization report for cell: DMA2AHB
Instance path: VGAACC.DMA2AHB
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 115 9.3 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block VGAACC.DMA2AHB: 115
(1.21 % Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 211 3.58 %
MUXCY 31 3 %
XORCY 31 3.43 %
MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==

 APPENDIX A : SYNTHESIS 7

Total COMBINATIONAL LOGIC in the block VGAACC.DMA2AHB: 273
(2.87 % Utilization)

--
Utilization report for cell: FillRect
Instance path: VGAACC.FillRect
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 110 8.89 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block VGAACC.FillRect: 110 (1.16
% Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 652 11.1 %
MUXCY 98 9.48 %
XORCY 79 8.73 %
MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block VGAACC.FillRect: 829 (8.71
% Utilization)

--
Utilization report for cell: Imageblit
Instance path: VGAACC.Imageblit
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 518 41.9 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block VGAACC.Imageblit: 518
(5.44 % Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 2545 43.2 %
MUXCY 655 63.3 %
XORCY 544 60.1 %
MULT18x18/MULT18x18S 100 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block VGAACC.Imageblit: 3745
(39.36 % Utilization)

 APPENDIX A : SYNTHESIS 8

--
Utilization report for cell: Syncram
Instance path: VGAACC.Syncram
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 4 0.3230 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block VGAACC.Syncram:4 (0.04 %
Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 43 0.730 %
MUXCY 0 0 %
XORCY 0 0 %
MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block VGAACC.Syncram: 43 (0.45
% Utilization)

Distributed RAM

Name Total elements Number of LUTs Utilization
--
DISTRIBUTED RAM 32 32 100 %
==
Total Distributed RAM in the block VGAACC.Syncram: 32 (0.34 %
Utilization)

--
Utilization report for cell: generic_syncram
Instance path: Syncram.generic_syncram
==
SEQUENTIAL ELEMENTS

Name Total elements Utilization
--
REGISTERS 4 0.3230 %
LATCHES 0 0 %
==
Total SEQUENTIAL ELEMENTS in the block Syncram.generic_syncram:4
(0.04 % Utilization)

COMBINATIONAL LOGIC

Name Total elements Utilization
--
LUTS 43 0.730 %
MUXCY 0 0 %
XORCY 0 0 %

 APPENDIX A : SYNTHESIS 9

MULT18x18/MULT18x18S 0 0 %
SRL16 0 0 %
==
Total COMBINATIONAL LOGIC in the block Syncram.generic_syncram:
43 (0.45 % Utilization)

Distributed RAM

Name Total elements Number of LUTs Utilization
--
DISTRIBUTED RAM 32 128 100 %
==
Total Distributed RAM in the block Syncram.generic_syncram: 32 (0.34
% Utilization)

 APPENDIX B : PERFORMANCE 1

 Appendix B : Performance
This section presents the test bench results of the VGAACC. The tests has

been performed on the GR-XC3S-1500 Development Board [4] in the
GMON environment at a resolution of 1024x768pixels and a color depth of
16 bits per pixel. The results are presented for both versions of the
VGAACC design and the time is measured in clock cycles.

 B.1 Full Functionality
Fillrect: Fill full screen (1024x768pixels), ROP_COPY
-===-
Time, SOFT: 418193
Time, ACC: 11666
SOFT/ACC: 35
-==================================-

Fillrect: Fill full screen (1024x768pixels), ROP_XOR
-===-
Time, SOFT: 896888
Time, ACC: 89834
SOFT/ACC: 9
-==================================-

Fillrect: Fill screen (Leading) (1021x768pixels), ROP_COPY
-===-
Time, SOFT: 424769
Time, ACC: 14900
SOFT/ACC: 28
-==================================-

Fillrect: Fill screen (Trailing) (1021x768pixels), ROP_COPY
-===-
Time, SOFT: 424064
Time, ACC: 14604
SOFT/ACC: 29
-==================================-

Fillrect: Fill screen (Leading,Trailing) (1022x768pixels), ROP_COPY
-===-
Time, SOFT: 429068
Time, ACC: 17724
SOFT/ACC: 24
-==================================-

Fillrect: Fill screen (Leading) (1021x768pixels), ROP_XOR
-===-
Time, SOFT: 893236
Time, ACC: 90040
SOFT/ACC: 9
-==================================-

Fillrect: Fill screen (Trailing) (1021x768pixels), ROP_XOR;
-===-
Time, SOFT: 894347

 APPENDIX B : PERFORMANCE 2

Time, ACC: 91718
SOFT/ACC: 9
-==================================-

Fillrect: Fill screen (Leading,Trailing) (1022x768pixels), ROP_XOR
-===-
Time, SOFT: 897451
Time, ACC: 91398
SOFT/ACC: 9
-==================================-

Fillrect: Unaliged (Trailing) (1x768), ROP_COPY
-===-
Time, SOFT: 14970
Time, ACC: 1042
SOFT/ACC: 14
-==================================-

Fillrect: Unaliged (Leading) (1x768), ROP_COPY
-===-
Time, SOFT: 15263
Time, ACC: 1215
SOFT/ACC: 12
-==================================-

Fillrect: Unaligned (Trailing) (1x768pixels), ROP_XOR
-===-
Time, SOFT: 15128
Time, ACC: 1197
SOFT/ACC: 12
-==================================-

Fillrect: Aligned (1x768), ROP_COPY
-===-
Time, SOFT: 15269
Time, ACC: 1213
SOFT/ACC: 12
-==================================-

Fillrect: Aligned (1x768pixels), ROP_XOR
-===-
Time, SOFT: 15259
Time, ACC: 1152
SOFT/ACC: 13
-==================================-

Fillrect: Unaligned (Leading,Trailing) (2x768pixels), ROP_COPY
-===-
Time, SOFT: 19848
Time, ACC: 1728
SOFT/ACC: 11
-==================================-

Fillrect: Unaligned (Leading,Trailing) (2x768pixels), ROP_XOR
-===-
Time, SOFT: 22496
Time, ACC: 2160

 APPENDIX B : PERFORMANCE 3

SOFT/ACC: 10
-==================================-

Fillrect: Aligned (2x768pixels), ROP_COPY
-===-
Time, SOFT: 15187
Time, ACC: 1134
SOFT/ACC: 13
-==================================-

Fillrect: Aligned (Trailing) (3x768pixels), ROP_COPY
-===-
Time, SOFT: 19691
Time, ACC: 1564
SOFT/ACC: 12
-==================================-

Fillrect: Unaligned (Leading) (3x768pixels), ROP_XOR
-===-
Time, SOFT: 22203
Time, ACC: 1128
SOFT/ACC: 19
-==================================-

Fillrect: Unaligned (Leading,Trailing) (4x768pixels), ROP_COPY
-===-
Time, SOFT: 23463
Time, ACC: 2714
SOFT/ACC: 8
-==================================-

Fillrect: Unaligned (Leading,Trailing) (4x768pixels), ROP_XOR
-===-
Time, SOFT: 26253
Time, ACC: 2486
SOFT/ACC: 10
-==================================-

Fillrect: Aligned (1024x1pixels), ROP_COPY
-===-
Time, SOFT: 534
Time, ACC: 38
SOFT/ACC: 13
-==================================-

Fillrect: Aligned (1024x1pixels), ROP_XOR
-===-
Time, SOFT: 1132
Time, ACC: 154
SOFT/ACC: 7
-==================================-

Fillrect: Aligned (1024x2pixels), ROP_COPY
-===-
Time, SOFT: 1241
Time, ACC: 56
SOFT/ACC: 22

 APPENDIX B : PERFORMANCE 4

-==================================-

Fillrect: Aligned (1024x2pixels), ROP_XOR
-===-
Time, SOFT: 2271
Time, ACC: 246
SOFT/ACC: 9
-==================================-

Fillrect: Aligned (Trailing) (1021x1pixels), ROP_COPY
-===-
Time, SOFT: 647
Time, ACC: 42
SOFT/ACC: 15
-==================================-

Fillrect: Aligned (Trailing) (1021x1pixels), ROP_XOR
-===-
Time, SOFT: 986
Time, ACC: 163
SOFT/ACC: 6
-==================================-

Fillrect: Unaligned (Leading) (1021x1pixels), ROP_COPY
-===-
Time, SOFT: 556
Time, ACC: 51
SOFT/ACC: 10
-==================================-

Fillrect: Unaligned (Leading) (1021x1pixels), ROP_XOR
-===-
Time, SOFT: 1133
Time, ACC: 166
SOFT/ACC: 6
-==================================-

Fillrect: Unaligned (Leading,Trailing) (1022x1pixels), ROP_COPY
-===-
Time, SOFT: 568
Time, ACC: 51
SOFT/ACC: 11
-==================================-

Fillrect: Unaligned (Leading,Trailing) (1022x1pixels), ROP_XOR
-===-
Time, SOFT: 1315
Time, ACC: 138
SOFT/ACC: 9
-==================================-

Fillrect: Unaligned (Leading,Trailing) (512x384pixels), ROP_COPY
-===-
Time, SOFT: 114932
Time, ACC: 6361
SOFT/ACC: 18
-==================================-

 APPENDIX B : PERFORMANCE 5

Fillrect: Unaligned (Leading,Trailing) (512x384pixels), ROP_XOR
-===-
Time, SOFT: 230197
Time, ACC: 23160
SOFT/ACC: 9
-==================================-

Fillrect: Unaligned (Leading,Trailing) (32x32pixels), ROP_COPY
-===-
Time, SOFT: 1580
Time, ACC: 224
SOFT/ACC: 7
-==================================-

Fillrect: Unaligned (Leading,Trailing) (32x32pixels), ROP_XOR
-===-
Time, SOFT: 2251
Time, ACC: 203
SOFT/ACC: 11
-==================================-

Fillrect: Aligned (32x32pixels), ROP_COPY
-===-
Time, SOFT: 1347
Time, ACC: 63
SOFT/ACC: 21
-==================================-

Fillrect: Aligned (32x32pixels), ROP_XOR
-===-
Time, SOFT: 2101
Time, ACC: 157
SOFT/ACC: 13
-==================================-

Fillrect: Aligned (512x384pixels), ROP_COPY
-===-
Time, SOFT: 109500
Time, ACC: 3314
SOFT/ACC: 33
-==================================-

Fillrect: Aligned (512x384pixels), ROP_XOR
-===-
Time, SOFT: 228255
Time, ACC: 22684
SOFT/ACC: 10
-==================================-

Fillrect: Aligned (4x768pixels), ROP_COPY
-===-
Time, SOFT: 16143
Time, ACC: 506
SOFT/ACC: 31
-==================================-

 APPENDIX B : PERFORMANCE 6

Fillrect: Aligned (4x768pixels), ROP_XOR
-===-
Time, SOFT: 22184
Time, ACC: 1114
SOFT/ACC: 19
-===-
-===-

Copyarea: Copy quadrant (Reversed) (510x382pixels)
-===-
Time, SOFT: 281911
Time, ACC: 23566
SOFT/ACC: 11
-==================================-

Copyarea: Copy quadrant (510x382pixels)
-===-
Time, SOFT: 271702
Time, ACC: 22739
SOFT/ACC: 11
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed) (1021x768pixels)
-===-
Time, SOFT: 1415482
Time, ACC: 92978
SOFT/ACC: 15
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed) (1022x768pixels)
-===-
Time, SOFT: 1421261
Time, ACC: 92797
SOFT/ACC: 15
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (1021x768pixels)
-===-
Time, SOFT: 1400718
Time, ACC: 92291
SOFT/ACC: 15
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Trailing) (1022x768pixels)
-===-
Time, SOFT: 1405596
Time, ACC: 92448
SOFT/ACC: 15
-==================================-

Copyarea: Aligned Copy (1022x768pixels)
-===-
Time, SOFT: 1054675
Time, ACC: 91875
SOFT/ACC: 11
-==================================-

 APPENDIX B : PERFORMANCE 7

Copyarea: Aligned Copy (Trailing) (1021x768pixels)
-===-
Time, SOFT: 1056909
Time, ACC: 93406
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (Reversed) (1022x768pixels)
-===-
Time, SOFT: 1074849
Time, ACC: 90568
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (1021x768pixels)
-===-
Time, SOFT: 1083917
Time, ACC: 91532
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (1024x384pixels)
-===-
Time, SOFT: 526355
Time, ACC: 44990
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (Trailing) (1023x384pixels)
-===-
Time, SOFT: 528708
Time, ACC: 45704
SOFT/ACC: 11
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (1021x384pixels)
-===-
Time, SOFT: 700396
Time, ACC: 45471
SOFT/ACC: 15
-==================================-

Copyarea: Src-Unaligned Copy (Trailing) (1021x384pixels)
-===-
Time, SOFT: 701675
Time, ACC: 46069
SOFT/ACC: 15
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Trailing) (1022x384pixels)
-===-
Time, SOFT: 703222
Time, ACC: 47131
SOFT/ACC: 14
-==================================-

Copyarea: Src-Unaligned Copy (1022x384pixels)

 APPENDIX B : PERFORMANCE 8

-===-
Time, SOFT: 700575
Time, ACC: 46003
SOFT/ACC: 15
-==================================-

Copyarea: Aligned Copy (Reversed) (1024x384pixels)
-===-
Time, SOFT: 538030
Time, ACC: 44990
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (1023x384pixels)
-===-
Time, SOFT: 544403
Time, ACC: 45429
SOFT/ACC: 11
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed) (1021x384pixels)
-===-
Time, SOFT: 708258
Time, ACC: 46838
SOFT/ACC: 15
-==================================-

Copyarea: Src-Unaligned Copy (Reversed,Trailing) (1021x384pixels)
-===-
Time, SOFT: 706879
Time, ACC: 45824
SOFT/ACC: 15
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed,Trailing)
(1022x384pixels)
-===-
Time, SOFT: 710401
Time, ACC: 46438
SOFT/ACC: 15
-==================================-

Copyarea: Src-Unaligned Copy (Reversed,Trailing) (1022x384pixels)
-===-
Time, SOFT: 705765
Time, ACC: 45464
SOFT/ACC: 15
-==================================-

Copyarea: Aligned Copy (512x768pixels)
-===-
Time, SOFT: 539867
Time, ACC: 44906
SOFT/ACC: 12
-==================================-

Copyarea: Aligned Copy (Reversed)(512x768pixels)

 APPENDIX B : PERFORMANCE 9

-===-
Time, SOFT: 552939
Time, ACC: 46095
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (Trailing) (511x768pixels)
-===-
Time, SOFT: 541899
Time, ACC: 46489
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (511x768pixels)
-===-
Time, SOFT: 733540
Time, ACC: 47363
SOFT/ACC: 15
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (509x768pixels)
-===-
Time, SOFT: 726530
Time, ACC: 45676
SOFT/ACC: 15
-==================================-

Copyarea: Src-Unaligned Copy (Trailing) (509x768pixels)
-===-
Time, SOFT: 728324
Time, ACC: 46821
SOFT/ACC: 15
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Trailing) (510x768pixels)
-===-
Time, SOFT: 728695
Time, ACC: 47012
SOFT/ACC: 15
-==================================-

Copyarea: Src-Unaligned Copy (510x768pixels)
-===-
Time, SOFT: 726730
Time, ACC: 46279
SOFT/ACC: 15
-==================================-

Copyarea: Aligned Copy (Trailing) (31x31pixels)
-===-
Time, SOFT: 2274
Time, ACC: 250
SOFT/ACC: 9
-==================================-

Copyarea: Aligned Copy (32x32pixels)
-===-

 APPENDIX B : PERFORMANCE 10

Time, SOFT: 2364
Time, ACC: 197
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (Trailing) (33x33pixels)
-===-
Time, SOFT: 2556
Time, ACC: 273
SOFT/ACC: 9
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (31x31pixels)
-===-
Time, SOFT: 3233
Time, ACC: 274
SOFT/ACC: 11
-==================================-

Copyarea: Aligned Copy (Reversed) (32x32pixels)
-===-
Time, SOFT: 3215
Time, ACC: 248
SOFT/ACC: 12
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (33x33pixels)
-===-
Time, SOFT: 3715
Time, ACC: 332
SOFT/ACC: 11
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (31x31pixels)
-===-
Time, SOFT: 3605
Time, ACC: 204
SOFT/ACC: 17
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Trailing) (32x32pixels)
-===-
Time, SOFT: 3656
Time, ACC: 244
SOFT/ACC: 14
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (33x33pixels)
-===-
Time, SOFT: 3816
Time, ACC: 232
SOFT/ACC: 16
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed,Trailing)
(31x31pixels)
-===-

 APPENDIX B : PERFORMANCE 11

Time, SOFT: 3234
Time, ACC: 243
SOFT/ACC: 13
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed) (32x32pixels)
-===-
Time, SOFT: 3285
Time, ACC: 241
SOFT/ACC: 13
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed,Trailing)
(33x33pixels)
-===-
Time, SOFT: 3696
Time, ACC: 294
SOFT/ACC: 12
-==================================-

Copyarea: Src-Unaligned Copy (Trailing) (31x31pixels)
-===-
Time, SOFT: 3526
Time, ACC: 258
SOFT/ACC: 13
-==================================-

Copyarea: Src-Unaligned Copy (32x32pixels)
-===-
Time, SOFT: 3538
Time, ACC: 221
SOFT/ACC: 16
-==================================-

Copyarea: Src-Unaligned Copy (Trailing) (33x33pixels)
-===-
Time, SOFT: 3794
Time, ACC: 271
SOFT/ACC: 13
-==================================-

Copyarea: Src-Unaligned Copy (Reversed,Trailing) (31x31pixels)
-===-
Time, SOFT: 3726
Time, ACC: 230
SOFT/ACC: 16
-==================================-

Copyarea: Src-Unaligned Copy (Reversed) (32x32pixels)
-===-
Time, SOFT: 3865
Time, ACC: 276
SOFT/ACC: 13
-==================================-

Copyarea: Src-Unaligned Copy (Reversed,Trailing) (33x33pixels)
-===-

 APPENDIX B : PERFORMANCE 12

Time, SOFT: 3987
Time, ACC: 279
SOFT/ACC: 14
-===-
-===-

Imageblit: Aligned (32x32pixels)
-===-
Time, SOFT: 2137
Time, ACC: 137
SOFT/ACC: 15
-==================================-

Imageblit: Unaligned (32x32pixels)
-===-
Time, SOFT: 6408
Time, ACC: 166
SOFT/ACC: 38
-==================================-

Imageblit: Aligned (1024x768pixels)
-===-
Time, SOFT: 1567258
Time, ACC: 16648
SOFT/ACC: 94
-==================================-

Imageblit: Unaligned (1023x768pixels)
-===-
Time, SOFT: 4675264
Time, ACC: 18044
SOFT/ACC: 259
-==================================-

Imageblit: Unaligned (512x384pixels)
-===-
Time, SOFT: 1172820
Time, ACC: 4238
SOFT/ACC: 276
-==================================-

Imageblit: Aligned (512x384pixels)
-===-
Time, SOFT: 392426
Time, ACC: 4086
SOFT/ACC: 96
-==================================-

Imageblit: Aligned (8x8pixels)
-===-
Time, SOFT: 215
Time, ACC: 61
SOFT/ACC: 3
-==================================-

Imageblit: Unaligned (8x8pixels)
-===-

 APPENDIX B : PERFORMANCE 13

Time, SOFT: 477
Time, ACC: 66
SOFT/ACC: 7
-==================================-

Imageblit: Aligned (12x12pixels)
-===-
Time, SOFT: 379
Time, ACC: 71
SOFT/ACC: 5
-==================================-

Imageblit: Unaligned (12x12pixels)
-===-
Time, SOFT: 1103
Time, ACC: 68
SOFT/ACC: 16
-==================================-

Imageblit: Aligned (4x4pixels)
-===-
Time, SOFT: 126
Time, ACC: 52
SOFT/ACC: 2
-==================================-

Imageblit: Unaligned (4x4pixels)
-===-
Time, SOFT: 155
Time, ACC: 54
SOFT/ACC: 2
-==================================-

Imageblit: Aligned (64x64pixels)
-===-
Time, SOFT: 8202
Time, ACC: 300
SOFT/ACC: 27
-==================================-

Imageblit: Unaligned (64x64pixels)
-===-
Time, SOFT: 24840
Time, ACC: 251
SOFT/ACC: 98
-==================================-

Imageblit: Unaligned (33x32pixels)
-===-
Time, SOFT: 6485
Time, ACC: 178
SOFT/ACC: 36
-==================================-

Imageblit: Unaligned (31x32pixels)
-===-
Time, SOFT: 6105

 APPENDIX B : PERFORMANCE 14

Time, ACC: 149
SOFT/ACC: 40
-===-

 B.2 Reduced Functionality
Fillrect: Fill full screen (1024x768pixels), ROP_COPY
-===-
Time, SOFT: 418001
Time, ACC: 31202
SOFT/ACC: 13
-==================================-

Fillrect: Fill full screen (1024x768pixels), ROP_XOR
-===-
Time, SOFT: 896907
Time, ACC: 102134
SOFT/ACC: 8
-==================================-

Fillrect: Fill screen (Leading) (1021x768pixels), ROP_COPY
-===-
Time, SOFT: 424432
Time, ACC: 38217
SOFT/ACC: 11
-==================================-

Fillrect: Fill screen (Trailing) (1021x768pixels), ROP_COPY
-===-
Time, SOFT: 424057
Time, ACC: 41472
SOFT/ACC: 10
-==================================-

Fillrect: Fill screen (Leading,Trailing) (1022x768pixels), ROP_COPY
-===-
Time, SOFT: 429406
Time, ACC: 45606
SOFT/ACC: 9
-==================================-

Fillrect: Fill screen (Leading) (1021x768pixels), ROP_XOR
-===-
Time, SOFT: 894041
Time, ACC: 101519
SOFT/ACC: 8
-==================================-

Fillrect: Fill screen (Trailing) (1021x768pixels), ROP_XOR;
-===-
Time, SOFT: 894388
Time, ACC: 103413
SOFT/ACC: 8
-==================================-

Fillrect: Fill screen (Leading,Trailing) (1022x768pixels), ROP_XOR
-===-

 APPENDIX B : PERFORMANCE 15

Time, SOFT: 897361
Time, ACC: 103366
SOFT/ACC: 8
-==================================-

Fillrect: Unaliged (Trailing) (1x768), ROP_COPY
-===-
Time, SOFT: 15159
Time, ACC: 15120
SOFT/ACC: 1
-==================================-

Fillrect: Unaliged (Leading) (1x768), ROP_COPY
-===-
Time, SOFT: 15173
Time, ACC: 15231
SOFT/ACC: 0
-==================================-

Fillrect: Unaligned (Trailing) (1x768pixels), ROP_XOR
-===-
Time, SOFT: 15087
Time, ACC: 15153
SOFT/ACC: 0
-==================================-

Fillrect: Aligned (1x768), ROP_COPY
-===-
Time, SOFT: 15287
Time, ACC: 15257
SOFT/ACC: 1
-==================================-

Fillrect: Aligned (1x768pixels), ROP_XOR
-===-
Time, SOFT: 15296
Time, ACC: 15192
SOFT/ACC: 1
-==================================-

Fillrect: Unaligned (Leading,Trailing) (2x768pixels), ROP_COPY
-===-
Time, SOFT: 19875
Time, ACC: 22520
SOFT/ACC: 0
-==================================-

Fillrect: Unaligned (Leading,Trailing) (2x768pixels), ROP_XOR
-===-
Time, SOFT: 22356
Time, ACC: 23512
SOFT/ACC: 0
-==================================-

Fillrect: Aligned (2x768pixels), ROP_COPY
-===-
Time, SOFT: 15155

 APPENDIX B : PERFORMANCE 16

Time, ACC: 15201
SOFT/ACC: 0
-==================================-

Fillrect: Aligned (Trailing) (3x768pixels), ROP_COPY
-===-
Time, SOFT: 19459
Time, ACC: 21607
SOFT/ACC: 0
-==================================-

Fillrect: Unaligned (Leading) (3x768pixels), ROP_XOR
-===-
Time, SOFT: 41827
Time, ACC: 44498
SOFT/ACC: 0
-==================================-

Fillrect: Unaligned (Leading,Trailing) (4x768pixels), ROP_COPY
-===-
Time, SOFT: 65334
Time, ACC: 69545
SOFT/ACC: 0
-==================================-

Fillrect: Unaligned (Leading,Trailing) (4x768pixels), ROP_XOR
-===-
Time, SOFT: 91502
Time, ACC: 98746
SOFT/ACC: 0
-==================================-

Fillrect: Aligned (1024x1pixels), ROP_COPY
-===-
Time, SOFT: 92141
Time, ACC: 98822
SOFT/ACC: 0
-==================================-

Fillrect: Aligned (1024x1pixels), ROP_XOR
-===-
Time, SOFT: 93154
Time, ACC: 99000
SOFT/ACC: 0
-==================================-

Fillrect: Aligned (1024x2pixels), ROP_COPY
-===-
Time, SOFT: 94387
Time, ACC: 99120
SOFT/ACC: 0
-==================================-

Fillrect: Aligned (1024x2pixels), ROP_XOR
-===-
Time, SOFT: 96693
Time, ACC: 99481

 APPENDIX B : PERFORMANCE 17

SOFT/ACC: 0
-==================================-

Fillrect: Aligned (Trailing) (1021x1pixels), ROP_COPY
-===-
Time, SOFT: 97265
Time, ACC: 99560
SOFT/ACC: 0
-==================================-

Fillrect: Aligned (Trailing) (1021x1pixels), ROP_XOR
-===-
Time, SOFT: 98582
Time, ACC: 99777
SOFT/ACC: 0
-==================================-

Fillrect: Unaligned (Leading) (1021x1pixels), ROP_COPY
-===-
Time, SOFT: 99138
Time, ACC: 99866
SOFT/ACC: 0
-==================================-

Fillrect: Unaligned (Leading) (1021x1pixels), ROP_XOR
-===-
Time, SOFT: 100406
Time, ACC: 100070
SOFT/ACC: 1
-==================================-

Fillrect: Unaligned (Leading,Trailing) (1022x1pixels), ROP_COPY
-===-
Time, SOFT: 101056
Time, ACC: 100165
SOFT/ACC: 1
-==================================-

Fillrect: Unaligned (Leading,Trailing) (1022x1pixels), ROP_XOR
-===-
Time, SOFT: 102390
Time, ACC: 100375
SOFT/ACC: 1
-==================================-

Fillrect: Unaligned (Leading,Trailing) (512x384pixels), ROP_COPY
-===-
Time, SOFT: 217551
Time, ACC: 119338
SOFT/ACC: 1
-==================================-

Fillrect: Unaligned (Leading,Trailing) (512x384pixels), ROP_XOR
-===-
Time, SOFT: 447810
Time, ACC: 147465
SOFT/ACC: 3

 APPENDIX B : PERFORMANCE 18

-==================================-

Fillrect: Unaligned (Leading,Trailing) (32x32pixels), ROP_COPY
-===-
Time, SOFT: 449499
Time, ACC: 148561
SOFT/ACC: 3
-==================================-

Fillrect: Unaligned (Leading,Trailing) (32x32pixels), ROP_XOR
-===-
Time, SOFT: 451663
Time, ACC: 149743
SOFT/ACC: 3
-==================================-

Fillrect: Aligned (32x32pixels), ROP_COPY
-===-
Time, SOFT: 452902
Time, ACC: 150496
SOFT/ACC: 3
-==================================-

Fillrect: Aligned (32x32pixels), ROP_XOR
-===-
Time, SOFT: 454883
Time, ACC: 151526
SOFT/ACC: 3
-==================================-

Fillrect: Aligned (512x384pixels), ROP_COPY
-===-
Time, SOFT: 563265
Time, ACC: 166751
SOFT/ACC: 3
-==================================-

Fillrect: Aligned (512x384pixels), ROP_XOR
-===-
Time, SOFT: 792751
Time, ACC: 195320
SOFT/ACC: 4
-==================================-

Fillrect: Aligned (4x768pixels), ROP_COPY
-===-
Time, SOFT: 16283
Time, ACC: 15412
SOFT/ACC: 1
-==================================-

Fillrect: Aligned (4x768pixels), ROP_XOR
-===-
Time, SOFT: 22372
Time, ACC: 22881
SOFT/ACC: 0
-===-

 APPENDIX B : PERFORMANCE 19

-===-

Copyarea: Copy quadrant (Reversed) (510x382pixels)
-===-
Time, SOFT: 274959
Time, ACC: 29281
SOFT/ACC: 9
-==================================-

Copyarea: Copy quadrant (510x382pixels)
-===-
Time, SOFT: 268765
Time, ACC: 26272
SOFT/ACC: 10
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed) (1021x768pixels)
-===-
Time, SOFT: 1082667
Time, ACC: 107012
SOFT/ACC: 10
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed) (1022x768pixels)
-===-
Time, SOFT: 1075304
Time, ACC: 103946
SOFT/ACC: 10
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (1021x768pixels)
-===-
Time, SOFT: 1056262
Time, ACC: 101757
SOFT/ACC: 10
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Trailing) (1022x768pixels)
-===-
Time, SOFT: 1055120
Time, ACC: 99788
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (1022x768pixels)
-===-
Time, SOFT: 1055108
Time, ACC: 99762
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (Trailing) (1021x768pixels)
-===-
Time, SOFT: 1056459
Time, ACC: 101873
SOFT/ACC: 10
-==================================-

 APPENDIX B : PERFORMANCE 20

Copyarea: Aligned Copy (Reversed) (1022x768pixels)
-===-
Time, SOFT: 1075657
Time, ACC: 103551
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (1021x768pixels)
-===-
Time, SOFT: 1083334
Time, ACC: 107313
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (1024x384pixels)
-===-
Time, SOFT: 527002
Time, ACC: 49212
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (Trailing) (1023x384pixels)
-===-
Time, SOFT: 528639
Time, ACC: 50382
SOFT/ACC: 10
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (1021x384pixels)
-===-
Time, SOFT: 528370
Time, ACC: 50323
SOFT/ACC: 10
-==================================-

Copyarea: Src-Unaligned Copy (Trailing) (1021x384pixels)
-===-
Time, SOFT: 528028
Time, ACC: 50762
SOFT/ACC: 10
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Trailing) (1022x384pixels)
-===-
Time, SOFT: 527976
Time, ACC: 49149
SOFT/ACC: 10
-==================================-

Copyarea: Src-Unaligned Copy (1022x384pixels)
-===-
Time, SOFT: 528026
Time, ACC: 49533
SOFT/ACC: 10
-==================================-

 APPENDIX B : PERFORMANCE 21

Copyarea: Aligned Copy (Reversed) (1024x384pixels)
-===-
Time, SOFT: 537484
Time, ACC: 51679
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (1023x384pixels)
-===-
Time, SOFT: 544321
Time, ACC: 53452
SOFT/ACC: 10
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed) (1021x384pixels)
-===-
Time, SOFT: 541718
Time, ACC: 53422
SOFT/ACC: 10
-==================================-

Copyarea: Src-Unaligned Copy (Reversed,Trailing) (1021x384pixels)
-===-
Time, SOFT: 541752
Time, ACC: 53592
SOFT/ACC: 10
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed,Trailing)
(1022x384pixels)
-===-
Time, SOFT: 537606
Time, ACC: 52026
SOFT/ACC: 10
-==================================-

Copyarea: Src-Unaligned Copy (Reversed,Trailing) (1022x384pixels)
-===-
Time, SOFT: 541870
Time, ACC: 53673
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (512x768pixels)
-===-
Time, SOFT: 540875
Time, ACC: 53311
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (Reversed)(512x768pixels)
-===-
Time, SOFT: 552702
Time, ACC: 59566
SOFT/ACC: 9
-==================================-

 APPENDIX B : PERFORMANCE 22

Copyarea: Aligned Copy (Trailing) (511x768pixels)
-===-
Time, SOFT: 542466
Time, ACC: 56462
SOFT/ACC: 9
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (511x768pixels)
-===-
Time, SOFT: 552622
Time, ACC: 59735
SOFT/ACC: 9
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (509x768pixels)
-===-
Time, SOFT: 540753
Time, ACC: 56251
SOFT/ACC: 9
-==================================-

Copyarea: Src-Unaligned Copy (Trailing) (509x768pixels)
-===-
Time, SOFT: 540613
Time, ACC: 56559
SOFT/ACC: 9
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Trailing) (510x768pixels)
-===-
Time, SOFT: 540234
Time, ACC: 53212
SOFT/ACC: 10
-==================================-

Copyarea: Src-Unaligned Copy (510x768pixels)
-===-
Time, SOFT: 539922
Time, ACC: 53708
SOFT/ACC: 10
-==================================-

Copyarea: Aligned Copy (Trailing) (31x31pixels)
-===-
Time, SOFT: 2305
Time, ACC: 1226
SOFT/ACC: 1
-==================================-

Copyarea: Aligned Copy (32x32pixels)
-===-
Time, SOFT: 2668
Time, ACC: 1365
SOFT/ACC: 1
-==================================-

Copyarea: Aligned Copy (Trailing) (33x33pixels)

 APPENDIX B : PERFORMANCE 23

-===-
Time, SOFT: 2504
Time, ACC: 1338
SOFT/ACC: 1
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (31x31pixels)
-===-
Time, SOFT: 3145
Time, ACC: 1945
SOFT/ACC: 1
-==================================-

Copyarea: Aligned Copy (Reversed) (32x32pixels)
-===-
Time, SOFT: 3256
Time, ACC: 1955
SOFT/ACC: 1
-==================================-

Copyarea: Aligned Copy (Reversed,Trailing) (33x33pixels)
-===-
Time, SOFT: 3626
Time, ACC: 2473
SOFT/ACC: 1
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (31x31pixels)
-===-
Time, SOFT: 2324
Time, ACC: 1197
SOFT/ACC: 1
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Trailing) (32x32pixels)
-===-
Time, SOFT: 2365
Time, ACC: 1173
SOFT/ACC: 2
-==================================-

Copyarea: Dst-Unaligned Copy (Leading) (33x33pixels)
-===-
Time, SOFT: 2518
Time, ACC: 1286
SOFT/ACC: 1
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed,Trailing)
(31x31pixels)
-===-
Time, SOFT: 3122
Time, ACC: 2003
SOFT/ACC: 1
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed) (32x32pixels)

 APPENDIX B : PERFORMANCE 24

-===-
Time, SOFT: 3304
Time, ACC: 2033
SOFT/ACC: 1
-==================================-

Copyarea: Dst-Unaligned Copy (Leading,Reversed,Trailing)
(33x33pixels)
-===-
Time, SOFT: 3678
Time, ACC: 2436
SOFT/ACC: 1
-==================================-

Copyarea: Src-Unaligned Copy (Trailing) (31x31pixels)
-===-
Time, SOFT: 2536
Time, ACC: 1324
SOFT/ACC: 1
-==================================-

Copyarea: Src-Unaligned Copy (32x32pixels)
-===-
Time, SOFT: 2682
Time, ACC: 1224
SOFT/ACC: 2
-==================================-

Copyarea: Src-Unaligned Copy (Trailing) (33x33pixels)
-===-
Time, SOFT: 2519
Time, ACC: 1347
SOFT/ACC: 1
-==================================-

Copyarea: Src-Unaligned Copy (Reversed,Trailing) (31x31pixels)
-===-
Time, SOFT: 3118
Time, ACC: 1979
SOFT/ACC: 1
-==================================-

Copyarea: Src-Unaligned Copy (Reversed) (32x32pixels)
-===-
Time, SOFT: 3341
Time, ACC: 2042
SOFT/ACC: 1
-===-

Copyarea: Src-Unaligned Copy (Reversed,Trailing) (33x33pixels)
-===-
Time, SOFT: 3531
Time, ACC: 2494
SOFT/ACC: 1
-===-
-===-

 APPENDIX B : PERFORMANCE 25

Imageblit: Aligned (32x32pixels)
-===-
Time, SOFT: 2277
Time, ACC: 344
SOFT/ACC: 6
-==================================-

Imageblit: Unaligned (32x32pixels)
-===-
Time, SOFT: 6584
Time, ACC: 347
SOFT/ACC: 18
-==================================-

Imageblit: Aligned (1024x768pixels)
-===-
Time, SOFT: 1567232
Time, ACC: 26501
SOFT/ACC: 59
-==================================-

Imageblit: Unaligned (1023x768pixels)
-===-
Time, SOFT: 4675505
Time, ACC: 29908
SOFT/ACC: 156
-==================================-

Imageblit: Unaligned (512x384pixels)
-===-
Time, SOFT: 1171805
Time, ACC: 11244
SOFT/ACC: 104
-==================================-

Imageblit: Aligned (512x384pixels)
-===-
Time, SOFT: 392706
Time, ACC: 9012
SOFT/ACC: 43
-==================================-

Imageblit: Aligned (8x8pixels)
-===-
Time, SOFT: 218
Time, ACC: 166
SOFT/ACC: 1
-==================================-

Imageblit: Unaligned (8x8pixels)
-===-
Time, SOFT: 486
Time, ACC: 117
SOFT/ACC: 4
-==================================-

Imageblit: Aligned (12x12pixels)

 APPENDIX B : PERFORMANCE 26

-===-
Time, SOFT: 384
Time, ACC: 166
SOFT/ACC: 2
-==================================-

Imageblit: Unaligned (12x12pixels)
-===-
Time, SOFT: 1059
Time, ACC: 183
SOFT/ACC: 5
-==================================-

Imageblit: Aligned (4x4pixels)
-===-
Time, SOFT: 132
Time, ACC: 110
SOFT/ACC: 1
-==================================-

Imageblit: Unaligned (4x4pixels)
-===-
Time, SOFT: 206
Time, ACC: 189
SOFT/ACC: 1
-==================================-

Imageblit: Aligned (64x64pixels)
-===-
Time, SOFT: 8350
Time, ACC: 755
SOFT/ACC: 11
-==================================-

Imageblit: Unaligned (64x64pixels)
-===-
Time, SOFT: 24662
Time, ACC: 767
SOFT/ACC: 32
-==================================-

Imageblit: Unaligned (33x32pixels)
-===-
Time, SOFT: 6409
Time, ACC: 316
SOFT/ACC: 20
-==================================-

Imageblit: Unaligned (31x32pixels)
-===-
Time, SOFT: 6529
Time, ACC: 419
SOFT/ACC: 15
-===-
-===-

 APPENDIX C : THESIS PROPOSAL 1

 Appendix C : Thesis Proposal
2D Acceleration engine for a Video Controller
Background
Gaisler Research develops and supports the GRLIB integrated VHDL IP

library. The library is freely available in opensource, and includes blocks
such as the LEON3 SPARC V8 processor, PCI, USB host/device
controllers, CAN, DDR and ethernet interfaces. The AMBA onchip bus is
used as the standard communication interface between the GRLIB cores.

Project description
The work will consist of developing twodimensional (2D) acceleration

engine for an existing SVGA frame buffer. The GRLIB library contains an
SVGA frame buffer which can display an image on a monitor using
several different resolutions and color depths. All rendering is currently
done by software, putting a relatively large burden on the system
processor. The task will be to define and implement 2D rendering
operations in a separate hardware engine to offload the processor.

The video controller is frequently used together with the LEON3
processor to run Xwindows on top of linux. For this, the frame buffer
driver (fbdev) in the linux kernel is used. The driver has hooks for
accelerated video functions, such as block moves and rectangle fills.
These accelerated functions are the primary candidates to be
implemented in hardware, as they can be used directly without having to
develop a new video driver in the kernel.

The 2D acceleration engine will be implemented together with a leon3
system on the GRXC3S1500 FPGA development board. This board can
support a full Leon3 system and also contains a 24bit video DAC and
VGA connector.

The work will be split in the following tasks:
1. Development of a specification, defining which operations to be

accelerated,supported resolution and color depth, register
interface and DMA handling.

2. Implementing the 2D engine in VHDL, and verification in
simulation.

3. Implementation on the Spartan3 GRXC3S1500 board
4. Testing of the accelerated functions using lowlevel C programs
5 Final testing of linux2.6 kernel with Xwindows

Qualifications
The applicant(s) should have strong interest in digital design, and be familiar the

VHDL language and associated CAD tools. The work is suitable for one or two
student(s). Support and mentoring will be provided by the supervisor and other
Gaisler Research staff.

	 1 Introduction
	 1.1 Description of Task
	 1.2 Outline of Thesis

	 2 Technical Background
	 2.1 Framebuffer
	 2.1.1 Framebuffer Operations

	 2.2 GRLIB
	 2.2.1 Overview
	 2.2.2 LEON3
	 2.2.3 Plug&Play
	 2.2.4 GRMON

	 2.3 AMBA
	 2.3.1 AHB
	 2.3.2 APB

	 2.4 SnapGear Linux
	 2.4.1 Fill Rectangle (cfbfillrect.c)
	 2.4.2 Copy Area (cfbcopyarea.c)
	 2.4.3 Image Blit (cfbimgblt.c)
	 2.4.4 Gaisler Framebuffer Driver (grvga.c)

	 2.5 Target Technology
	 2.5.1 GR-XC3S-1500
	 2.5.2 ML501 Evaluation Platform

	 3 Development Process
	 4 Design Choices
	 4.1 Framebuffer Operations
	 4.2 Resolution and Color Depth
	 4.3 Optional Core
	 4.4 VHDL Coding Techniques

	 5 Gaisler 2D VGA Graphics Accelerator
	 5.1 Overview
	 5.1.1 VGA Accelerator (VGAACC.vhd)
	 5.1.2 AMBA AHB Master Interface (DMA2AHB.vhd)
	 5.1.3 APB slave (APBslv.vhd)
	 5.1.4 Fill Rectangle (Fillrect.vhd)
	 5.1.5 Copy Area (Copyarea.vhd)
	 5.1.6 Image Blit (Imageblit.vhd)
	 5.1.7 SyncRAM Cache
	 5.1.8 VGA Accelerator Package(VGAACC_pkg.vhd)

	 5.2 Details
	 5.2.1 VGA Accelerator (VGAACC.vhd)
	 5.2.2 AMBA AHB Master Interface (DMA2AHB.vhd)
	 5.2.3 APB Slave (APBslv.vhd)
	 5.2.4 Fill Rectangle (Fillrect.vhd)
	 5.2.5 Copy Area (Copyarea.vhd)
	 5.2.6 Image Blit (Imageblit.vhd)

	 5.3 Software Driver (grvga.c)
	 5.3.1 grvgaacc_probe
	 5.3.2 grvgaacc_fillrect
	 5.3.3 grvgaacc_copyarea
	 5.3.4 grvgaacc_imageblit

	 6 Testing
	 7 Results
	 7.1 Synthesis
	 7.2 Performance
	 7.2.1 Operation Acceleration
	 7.2.2 Operation Call Time

	 8 Conclusion
	 9 Discussion
	 10 Future Development
	 Appendix A : Synthesis
	 A.1 Full Functionality
	 A.2 Reduced Functionality

	 Appendix B : Performance
	 B.1 Full Functionality
	 B.2 Reduced Functionality

	 Appendix C : Thesis Proposal

