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Abstract
Data-driven approaches using deep learning have become increasingly popular within
the field of autonomous driving. One such approach is called imitation learning,
where the autonomous agent learns by simply observing demonstrations from a
human expert driver. This form of supervised learning will be used in our thesis
for training the DecisionNet—a neural network responsible for predicting the future
trajectory of the autonomous vehicle.

To simplify the task, sequences of 2D top-down views (TDVs) will be used as high-
level data representation for both the input and output of the DecisionNet. The
spatio-temporal information in the TDVs will then be processed by ConvLSTM,
serving as the backbone for the DecisionNet. A CNN-based network, called ENet,
will also be used to efficiently increase the capacity of the model. In the two-phase
variant of the DecisionNet, the entire network is organized into an encoder-decoder
architecture, where the encoding phase encodes information from the past, and the
decoding phase unrolls the hidden states to give predictions into the future.

One difficulty that arises is the time-horizon problem, which prevents the model
from being able to see beyond the present timestep. To solve this, we transform
the two-phase variant into the one-phase variant, by connecting the output of one
timestep as input to the next timestep. This is to allow the DecisionNet to predict
the future trajectory, while observing the situations on the road at the same time.

In our dataset of mostly high-way scenarios, it is rare to find a scenario where the
vehicle has to decelerate behind another vehicle. To address this issue, we use data
augmentation to generate more data for these cases, thus increasing the robustness,
and also allowing the models generalize well for these deceleration scenarios.

Finally, evaluation is done both by manual visual inspection, and by comparing the
output predictions directly against the ground-truth data. Our results show that
the one-phase ENet-ConvLSTM-ENet architecture, trained with data augmentation,
gives the best performance on most scenarios we want to tackle.
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1
Introduction

Within the last few years, autonomous driving has become one of the hottest topics
in the field of artificial intelligence. However, despite lots of investments coming from
both industry and academia, it still largely remains an unsolved problem. Recent
advances in deep machine learning have opened up many new doors to make fully-
autonomous cars become a reality. To contribute to this exciting progress, the main
goal of this thesis is to investigate how to perform imitation learning on high-level
perception data, that would allow an autonomous driving agent to learn directly
from a human expert driver.

The thesis was performed in the Deep Learning Team at Zenuity, which is a company
that focuses on providing new solutions for Advanced Driver Assistance Systems
(ADAS) and Autonomous Driving (AD), thus shaping the future of the automotive
industry. The company has provided us with necessary training data as well as
crucial computing resources, in order to make this work possible.

1.1 System design for autonomous driving
An autonomous driving system is typically very complex, and thus must have good
design choices to bring out the best performance, while still maintaining a level of
scalability that would allow the system to handle real-world scenarios. Focusing
mainly on utilizing deep neural works, the latest research in this area have proposed
a number of approaches, many of which can broadly be classified into two main
categories: an end-to-end approach, or a modular-pipeline approach. This section
will discuss them in detail, including both their advantages and disadvantages.

1.1.1 End-to-end paradigm

Figure 1.1: End-to-end paradigm to autonomous driving
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1. Introduction

The current state of the art in autonomous driving relies on a set of sensors (such as
LiDAR, Cameras, GPS, etc.) to collect the raw data that can capture exactly what
is happening around the vehicle. Using these raw sensor data, we can then build
an end-to-end learning algorithm where a Deep Neural Network (DNN) can be used
to directly predict the low-level control outputs such as the steering angles or the
brake pressures, without ever having to extract any hand-crafted features from the
raw sensor data. Such an end-to-end framework has been demonstrated to produce
good results in imitating the human expert driver [4, 8, 9, 17, 27, 47].

The fact that end-to-end models can be trained without the need for any hand-
crafted features gives it a major advantage over other approaches, as it requires less
manual effort from the developers. For example, there is no need to manually label
camera images with features such as lane markings or bounding boxes of surrounding
cars. Such labeling work is not only time-consuming but can also be prone to human
mistakes. Instead, the end-to-end paradigm lets the data speak for itself, allowing
the model to automatically detect features that it deems to be important. As a
result, this can lead to better performance and a smaller system [4].

Despite of these advantages, there is one major drawback that might make it difficult
to use the end-to-end paradigm in practice. This is due to its lack of modularity—
which, in turn, makes it hard for the developers to unit test, debug, and verify the
system to the customers, insurance companies, and law enforcement. If the system
produces an erroneous behavior, it would rather be difficult to pinpoint exactly which
parts of the model that are responsible. Recent research into interpretable end-to-
end models, such as the ones presented in [5, 19], partially solves this problem, by
attempting to identify potential regions on the input images that the models used
to make certain driving decisions. However, this is still not enough to put complete
trust in the system, as already pointed out by [23].

1.1.2 Modular pipeline paradigm
As the name suggests, the modular pipeline paradigm organizes the overall system
architecture into a set of modules. This is to tackle the inherent lack of modularity
in the end-to-end paradigm.

In the recent research, Müller et al. [26] argues that the end-to-end approach is
difficult to scale into realistic urban driving due to the black-box nature of the
end-to-end models, as well as because of the need for a huge amount of training
data required to cover full diversity of different driving scenarios. Instead, their
approach is to design the system based on modularity and abstraction, which can
give more scalability, and will also allow them to transfer the driving policies trained
in simulation environment into a reality. A similar idea has also been presented by
Bansal et al. [3], as well as by many other previous works [42, 43, 53]; while Chen et
al. [7] and Sauer et al. [37] have chosen to explore the direct perception approach,
which is often described as the combination between the end-to-end paradigm and
the modular pipeline paradigm.
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1. Introduction

As shown in Figure 1.2, the key idea of the modular pipeline is to organize the
architecture into three major stages: the perception of the surroundings, the decision
making stage to output a driving policy, and finally a controller that can produce
low-level outputs (such as acceleration, steering, etc.) to actually control the vehicle.
Each of these stages can either be learned from data with machine learning or hand-
designed using mathematical models and various traditional techniques [32]. For the
scope of this thesis, the main focus will be on the decision module, where the goal
is to develop a deep neural network (called the DecisionNet) that can be trained to
produce the desired driving behaviors.

Figure 1.2: Modular pipeline paradigm to autonomous driving

An important aspect of the modular pipeline is the interface between modules, and
how data is passed between them. The key idea is to introduce abstractions, by
using high-level data representations within the pipeline. For example, the input to
the DecisionNet can contain relevant features (such as lane markings, positions of
surrounding cars, traffic lights, etc.), which have been extracted from the raw data
by the perception module. The output, on the other hand, should be able to encode
the driving policy generated by the DecisionNet. Exactly how these high-level data
representations are implemented will be explained in more detail in Chapter 2.

Using high-level representation for the input helps encapsulate the DecisionNet from
being directly exposed to the raw sensor input, which can be heavily influenced by
the changing weather and illumination conditions on the road. Likewise, by using
high-level representation for the output, the DecisionNet will not need to care about
the exact dynamics of the vehicle. Such encapsulation of the DecisionNet means that
the decision module will not suffer from the problem of the domain transfer. In other
words, a learned model of the DecisionNet—which has been trained on data collected
during the day-time—can also be used to drive many different types of vehicles
during the night-time, or even within a simulated environment. Such characteristics
can be important when scaling the system into realistic urban driving.

One downside of this architecture is that it can lead to the accumulation of errors
throughout the pipeline. In other words, errors coming from the perception module
can propagate onto the decision module, and then to the low-level controller. Thus,
each part of the system might require time-consuming engineering to be done in
order to minimize the errors. However, this can also be considered as an added
benefit, because the DecisionNet will now have to adapt to the imperfections and
the noise characteristics of the perception module, thus making it more robust.

Finally, as will be shown in Chapter 2.4, the high-level data representation makes it
much easier to perform data augmentation in order to generate interesting scenarios

3



1. Introduction

for training and testing the DecisionNet. Doing such data augmentation directly on
the raw sensor data would have been too difficult and computationally expensive.

1.2 Imitation learning

Imitation learning (IL), as the name suggests, is a machine learning approach where
an autonomous agent tries to acquire certain behaviors by simply imitating a human
expert. This was originally inspired by the work in robotics [2], and has recently
gained a lot of attention in the field of autonomous driving, either in the form of
the inverse reinforcement learning approach, or the behavior cloning approach.

To a certain extent, IL is very similar to the supervised learning approach that many
are familiar with. However, instead of having to manually label all the training data,
the learning process of IL only requires demonstration from a human expert. This
makes this approach quite intuitive for autonomous driving, since demonstration is
exactly how we would teach a young adult how to drive.

1.2.1 Inverse reinforcement learning approach
In traditional reinforcement learning (RL), an agent typically learns how to behave
optimally through trials and errors. The learning process often requires a reward
function that acts a feedback signal, telling the agent whether it is performing well
or badly. The agent then uses this reward function to come up with the best driving
policy that maximizes the reward. Unfortunately, it is often very hard to define a
good reward function for autonomous driving, since we would need to take many
factors into consideration (e.g., maintaining a safe following distance, staying away
from any pedestrians, not changing lane so often, etc.). This is one of the reasons
why it is difficult to apply RL in practice for the task of driving.

To overcome this limitation of RL, Abbeel & Ng [1] proposed inverse reinforcement
learning (IRL) as a way to iteratively learn the reward function that can best model
the behavior of the human expert driver. IRL can often be formulated as a linear
or quadratic program, and thus can be solved very efficiently [30]. Once the reward
function is known, then it is just a matter of finding the best driving policy that
maximizes the reward, using the standard traditional RL algorithm.

Due to safety reasons, the training of such RL algorithm must be done in a simulated
environment, because otherwise, it would be too dangerous and costly for the agent
to make mistakes on the real roads. Unfortunately, creating a simulation that can
capture all the features and dynamics of the real world can be extremely difficult,
if not impossible. This makes it very hard to transfer the expert’s driving policy
from the real world into the simulation, which poses a great challenge for training
to be performed with imitation learning via IRL. Due to this problem of domain
transfer, we have decided to opt for an imitation learning approach that lies closer
to the behavior cloning approach presented below.
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1. Introduction

1.2.2 Behavior cloning approach

Compared to IRL, behavior cloning approach is much more straight-forward. Simply
put, the autonomous agent will aim to clone the expert’s behavior by mapping the
input directly to an output, typically with the help of a neural network. This allows
the system to be trained end-to-end, with the raw sensor input being mapped directly
to the low-level steering controls, as shown in [4, 9, 34].

There is one inherent problem with pure behavior cloning, however. Since the data
collected demonstrates only the desired behaviors, the agent will never be taught how
to recover from the mistakes that it makes during training. For example, consider
a scenario where the agent is driving too fast that it is about to crash into another
car in front. Since the human demonstrator would never make such a mistake in the
first place, no data will be available to tell the agent to slow down in that situation.
This makes it quite difficult to generalize the model towards scenarios that are either
too rare, or even missing from the collected data.

One way to address this problem of pure behavior cloning is to use an online learn-
ing approach with an interactive human demonstrator [35]. The main idea is to
incorporate the demonstrator as part of the training loop itself, such that the agent
can ask for feedback whenever it makes a mistake. This essentially means that more
data are collected even during training. The only downside of this method is that
the expert has to be available at all time, which can be very expensive.

Recently, researchers at Waymo have proposed data augmentation as a much cheaper
and easier way to tackle the problem of pure behavior cloning [3]. Their approach is
to introduce small perturbations in the trajectory of the human expert driver. These
perturbations essentially generate more training data that will allow the agent to
correct its behavior, in case it deviates slightly from the desired trajectory. As will
be shown later in Chapter 2.4, similar approach will be used in our thesis, but with
more focus on deceleration scenarios, as these scenarios are quite rare in our dataset.

1.3 Objectives

Our main goal is to design and develop a deep neural network for the DecisionNet
as part of the modular pipeline shown in Figure 1.2. This network is to be trained
and evaluated via the imitation learning approach, using only the high-level data
representation. To further limit the scope of the thesis, only high-way scenarios will
be considered, in which the model is expected to output basic safe driving behaviors,
including lane following and not crashing into other cars. With these objective in
minds, the thesis aims to answer the following questions:

1. What are the challenges in designing a high-level data representation that can
accurately capture the information from the surrounding environment, as well
as being able to encode the driving decisions output from the DecisionNet?

5



1. Introduction

2. What are the challenges in designing an architecture for the DecisionNet that
can process both the spatial and temporal information at the same time?

3. To what extent can imitation learning be used to learn about safe driving
behaviors and the interactions between vehicles (such as in the case when a
vehicle has to decelerate behind a slow car in front)? Will the behavior cloning
approach be sufficient, or will we have to go beyond pure imitation?

4. How should the evaluation be done for a model trained with imitation learning?
What are the possible methods of quantifying the model’s performance?

1.4 Thesis outline
In Chapter 2, the focus will be on the data pipeline, in which we will describe how
the raw sensor data is processed from start to finish, all the way until the data gets
fed into the DecisionNet. Here, we introduce many important concepts (such as the
top-down view, driving sequence, etc.) that will be used throughout the thesis.

In Chapter 3, we will first cover some basic DNN architectures that already exist
in the literature. These background knowledge will then be used to design our own
network architecture for the DecisionNet. Lastly, we will introduce the so-called
time-horizon problem, and then explain how to modify network to tackle this issue.

In Chapter 4, we will discuss the process of training 5 different DecisionNet models,
and also propose different strategies for evaluating these models. The results of the
evaluation will be displayed in this chapter, including both the quantitative and
qualitative measurements on various driving scenarios.

In Chapter 5, we will attempt to explain the behaviors of each of the trained models,
and then compare their performances against each other. This will hopefully give
us an insight into the advantages and disadvantages of our chosen approach.

Finally, in chapters 6 and 7, we will draw our final conclusions, and then discuss
briefly about what more we can do in the future work.

1.5 Additional resources
The thesis comes with additional materials and resources that show the results of the
training, as well as short video clips that demonstrate different concepts presented
in the thesis. These additional materials can be accessed at our project website [10]:

https://sites.google.com/view/imitationlearningthesisproject/
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2
Data pipeline

As mentioned in Section 1.2, imitation learning is essentially a data-driven approach,
where the goal of the agent is to imitate the behaviors of the expert driver. In order
to best capture these behaviors, it is important to set up a good data pipeline that is
able to correctly collect and preprocess the data, thus accurately reflecting the ego-
vehicle’s surroundings as well as the driving decisions of the expert driver. Having
a good data pipeline also allows us to partly automate the process of generating the
data in an efficient manner, thus giving the agent access to a large pool of training
data that can be used to steer the agent towards the desired driving behaviors.

In addition to assuring the correctness and efficiency of the data generation, the
data pipeline is also the place where the representation for the high-level input and
output would be defined. This is quite essential for the realization of the modular
pipeline approach, presented earlier in Figure 1.2. The data representation that is
chosen should at least fulfill the following three criteria:

1. The high-level input should be able to capture both the spatial and temporal
information from the situations on the roads in a compact and simple way.
This would hopefully make it easier for the learning model to pick out the
features that are important for making the desired driving decisions.

2. Both the high-level input and high-level output should be independent of the
vehicle models and the environments in which the driving takes place. This
would allow us to transfer the learned skills and reuse the trained model for
other types of vehicles in other types of environments as well.

3. The data representation should allow for some flexibility, such that one can
easily add new features to the representation itself, in order to capture a
greater detail of what is really happening on the road. This is very helpful if
the system is to be further developed and then deployed in the real world.

In Section 2.2, we introduce the concept of the top-down view and argue for why this
particular data representation would satisfy all the criteria listed above. But before
going into those details, Section 2.1 will give an overview of the preprocessing steps
in the data pipeline, thus explaining how the data provided by Zenuity is utilized.
Section 2.3 will focus on the coordinate systems used for plotting the top down view,
which will also lead to a rather interesting insight into what’s known as a driving
sequence. Finally, Section 2.4 will describe several data augmentation techniques
that can be used to improve the generalization of the learning model.
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2.1 Data preprocessing

Figure 2.1: Overview of the data preprocessing steps

An autonomous vehicle must be equipped with a set of data sensors in order to
dynamically collect data from the changing environment. The sensors serve two
main purposes. First, they allow the vehicle to gather information about all objects
within a certain range of the surroundings, such as lane markings, road barriers,
pedestrians, other vehicles, street signs, etc. Secondly, the sensors allow the vehicle
to know about its own motions within the environment. This is also known as the
ego-motions. Combining these information together will give a clear image of what
is happening on the road at every single timestep. In this project, the data that is
used comes directly from the following three sensors:

• Lidar: Relies on laser beams to create data point clouds that can give a 3D
representation of the surrounding. Lidar can accurately measure the positions
and motions of objects in vicinity, and thus can be used in many perception
tasks, such as object tracking and object detection.

• Camera: Produces colored images that capture the surrounding environment
in a 2D representation. The dense information stored in the camera’s pixels
can reveal a lot about the objects on the road, which is very useful for many
computer vision tasks such as object classification or image segmentation.
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• GPS-enabled IMU: A collection of out-of-the-box algorithms and hardware
equipment, that are used to accurately measure the ego-motions, including
the GPS positions, velocity, acceleration, and orientation of the ego-vehicle.

As can be seen from Figure 2.1, the raw data from the sensors will be decoded and
processed by a relatively simple perception stack, which is responsible for running
many sensor fusion and computer vision algorithms to solve various perception tasks
in autonomous driving. Since the scope of the thesis focuses only on the usage of
the high-level data, this perception stack can simply be thought of as a black box
that summarizes the ego-motions and the perception data into a set of numerical
data logs—which is also where the desired high-level features can be extracted from.
These logs contain information such as: the longitude and latitude GPS positions of
the ego-vehicle over time, the bounding boxes of objects and obstacles on the road
together with their classification probabilities, the positions of the lane markings
and road barriers, among many other things.

Since the scope of the thesis has been narrowed down to only deal with high-way
scenarios, it is necessary to filter out all samples that are related to driving in
densely-populated urban areas with lots of pedestrians. Such filtering work has
been done by manually inspecting the camera images, as well as by automated
computer scripts that can filter out data based on the GPS locations. Figure 2.2
below shows the typical high-way scenarios in the filtered dataset, which actually
amounts to approximately 150 hours of continuous driving. Also, in order to increase
the diversity of the dataset, it is important for the filtering process to gather data
that was collected from different times of the day, in different weather conditions,
and even in different countries. The diversity would help the learning model to be
more robust and thus generalize better to unseen data.

Figure 2.2: Images fetched from Zenuity’s image repository showing the typical
types of road contained in our filtered data.

The numerical data logs from the perception stack will be further processed by the
latter parts of the preprocessing pipeline, which we have written and tailored to
our specific needs. These numerical data logs are to be consumed directly by the
sequence generator, a module responsible for generating a single driving sequence at
a time. The sequence generator is also connected to two other plugins for converting
between different coordinate systems and for the data augmentation purposes. These
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will be explained in further details in Section 2.3 and 2.4, respectively. As shown in
Figure 2.1, a driving sequence is composed of multiple consecutive top down views
that can be divided into the past, the present, and the future timesteps. The idea is
for the learning model to consume the top down views from the past and the present
as inputs, and then predict an output that can be compared to the ground truth
data in the future timesteps. The length of a driving sequence is simply the number
of timesteps in the sequence, and should be dynamically adjustable during both
training and testing. However, for the sake of convenience, the number of the past
and the future timesteps are fixed at tp = 14 and tf = 25, respectively, as shown
in Table 2.1. Similarly, the sampling frequency has been chosen to be 10 Hertz,
making the time difference between two consecutive timesteps to be 0.1 seconds.

Configurable Parameters Default Values
Visibility in x-direction 40 meters (ranging from −20 to 20)
Visibility in y-direction 160 meters (ranging from −60 to 100)
Image resolution 0.2 meters per pixel
Sampling frequency 10 Hertz (with 1 timestep = 0.1 seconds)
Number of past frames (tp) 14
Number of future frames (tf ) 25

Table 2.1: List of parameters used for the generation of a driving sequence.

2.2 Top down view
The usage of the top-down view as a high-level representation of the data is not a
new idea, and has in fact been explored by the team at Waymo Research in their
recent related work [3]. Before going into the details of why using the top-down
view is so beneficial, let us start with some concrete definition.

While it is certainly convenient to think of the top-down view as if you are looking
down at the road from above, it should not be confused with the idea of taking a
photograph over the road and representing the data simply as an RGB image. It
is much more precise to define the top-down view mathematically as a 3D tensor
of dimension (H,W,C), where H and W are the height and width of the top-down
view, and C is the number of channels. Unlike an RGB image which always must
have exactly 3 channels, the top-down view is much more flexible, since the number
of channels, as well as what kind of information to be stored in each channel, can
vary across different implementations. In fact, the only requirement is that the
information from one channel has to be independent from the information stored in
another channel. This is because it would allow the top-down view to be extended
with more features, simply by adding new channels on top of existing ones. As will
be discussed later, in our chosen implementation, three pieces of information will
be represented in the top-down view—namely, the bounding box of the ego-vehicle,
the detected lane markings, and the bounding boxes of other vehicles—all of which
can be represented within a channel, independently from one another.
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Since a channel in the top-down view is simply a 2D grid of pixels, capturing the
spatial information from the road is quite straight-forward. This grid of pixels is
a direct representation of an x-y Cartesian coordinates system that has the origin
located at the position of the ego-vehicle at the present timestep. In other words, at
time t = 0, the ego-vehicle is always located at the coordinates (x0, y0) = (0, 0), and
the direction of motion is towards the positive y-axis. Since the focus of the thesis is
mostly on high-way scenarios, the ability to see far ahead is much more important
than the ability to see sideways. Therefore, at the present timestep, the visibility
in the y-direction is chosen to be 160 meters, much higher than the visibility in the
x-direction, which is only 40 meters. With these configurations, the top-down view
will be able to cover at least 4 seconds of driving time, assuming that the vehicle is
travelling straight along the y-axis at the maximum speed of 40 m/s.

One important thing to note here is that there is always some loss of information
when converting the 3D information from the real-world into the 2D representation
of the top-down view. For example, information about the steepness of the road will
naturally be excluded from the top-down view. However, it is possible to argue that
the effect of this is minuscule for the task at hand, especially considering that the
top-down view is always parallel to the surface of the road, and that it only covers a
short travelling distance within a short period of time. Besides, it is always possible
to simply add a new channel to represent the steepness of the road, in the case that
this information proves to be important later on.

Lastly, as a final remark, it should be emphasized that the top-down view is not only
capable of capturing the spatial information, but it can also track how the situation
on the road changes over time, thus capturing the temporal information as well. This
is done by simply stacking consecutive top-down views on top of each other, which
is mathematically equivalent to stacking multiple 3D tensors into a single 4D tensor
of dimension (T,H,W,C), where T denotes the number of timesteps available.

2.2.1 Input

As shown in Figure 2.3, the top-down view that we have chosen for the model
input consists of three channels. The first channel contains the bounding box of
the ego-vehicle, which encodes both the position and the heading of the vehicle at
some particular time instance. Note that it is not necessary to explicitly encode
the speed of the vehicle as part of the top-down view, since the speed can easily
be deduced mathematically just by looking at how the top-down view changes over
time in a driving sequence. The second channel contains lines that represent the
lane markings on the road. These lane markings are assumed to be 20 centimeters
wide, which is equivalent to 1 pixel under the current resolution specified in Table
2.1. Finally, the third channel contains the bounding boxes of all dynamic objects
on the road, which are basically objects that can move by themselves, such as other
cars, trucks, motorcycles, pedestrians, etc.
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(a) Channel 1: The bounding box of the ego-vehicle

(b) Channel 2: The detected lane markings

(c) Channel 3: The bounding boxes of other vehicles

(d) All channels combined into a colored image for visualization

Figure 2.3: Example of the top-down view at a particular time instance, where the
ego-vehicle is moving horizontally towards the right of the image, along y-direction.

Since the input should contain the spatial information from both the past and the
present, the total number of timesteps in the input sequence must be tp + 1 (see
Figure 2.1). Height and width of the top-down view can be calculated by taking the
visibility and dividing it by the resolution. Using the values presented in Table 2.1
in these calculations would give us (T,H,W,C) = (15, 800, 200, 3) as the dimension
of the 4D tensor that represents the input sequence. The content of this 4D tensor
should also be normalized by scaling all values between the range [0, 1]. In fact, one
can think of each channel in the input sequence simply as an occupancy grid, where
1 means the pixel is occupied, and 0 means the opposite. This also implies that if a
pixel is occupied by two channels at the same time, then some sort of a collision has
occurred. If it is a collision between a vehicle and a lane, it might be alright as long
as a lane switch is allowed at that point. On the other hand, a collision between a
vehicle and another vehicle is disastrous and an unwanted behavior.
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While much of the attention has been focused on the simplicity of the top-down view,
using only three channels in the input sequence certainly has some limitations. For
example, since street signs and traffic lights are not part of our implementation of
the top-down view, it is impossible for the model to learn when to stop and wait
for the red light, or when to slow down to obey the speed limit. To overcome
this limitation in the future work, the top-down view must be extended with new
channels that can encode information from the street signs and the traffic lights,
in order to capture a more complete picture of the driving environment. Another
limitation of our approach has to do with the second channel, which appears to be
too generic, and does not distinguish between different types of lane markings. In
the real world, lane markings can either be solid or dashed lines, and can even have
different colors. These different types of lane markings are there to convey different
traffic rules regarding whether a vehicle is allowed to cross and switch to another
lane. If this information is omitted from the input sequence, it can lead to bad
driving behavior from the learning model. Therefore, in the future work, the second
channel must be modified such that it is more capable of capturing these different
types of lane markings, and thus allowing the model to obey these traffic rules.

(a) Missing lane markings for parts of the top-down view

(b) Missing lane markings for the entire view altogether

Figure 2.4: Examples of noisy data with missing lanes.

As a final remark, it is worth noting that real data is never perfect, and may suffer
from different kinds of noises that could lead to poor estimations from the perception
modules. Figure 2.4 shows some examples of such noisy data, where in the first case,
the lanes are only missing in the areas surrounding the ego-vehicle, but in the second
case, the lanes are completely missing from the top-down view. Even for a human,
it is quite difficult to navigate, given such a noisy input. However, this can always
happen in the real world, regardless of how advanced the perception modules are
made to be. To prepare for such scenarios, it is important to increase the robustness
by also including these noisy data samples into the training set. Even though it is not
possible to properly evaluate the driving behavior on such data samples, including
noisy data would hopefully allow the model to give some reasonable predictions, at
least until other safety measures can be kicked in to drive the vehicle to safety.
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2.2.2 Output

For the sake of simplicity and convenience, the top-down view will also be used to
represent the high-level output of the learning model. However, unlike the input
to the model, the output will only consist of one single channel, containing the
predictions of where the bounding box of the ego-vehicle is located in the future
timesteps. This is equivalent to the first channel of the input top-down view de-
scribed previously. It is also mathematically equivalent to a 4D tensor of dimension
(25, 800, 200, 1), given that the desire is for the model to predict 25 timesteps into
the future. As an interesting note, since the output channel can always be thought
of as an occupancy grid of 1s and 0s, the learning task is essentially a classification
problem, aiming to classify each pixel either as occupied or not occupied. With such
an occupancy grid, the model can easily be evaluated, since any collision between
the ego-vehicle and another object can quickly be spotted out. Given the similarity
between the top-down view of the input and the output, another advantage of our
approach is that the output at a future timestep can easily be fed back as the input
to the model to predict the next timestep. This technique will actually be used in
one of the learning models introduced later in Chapter 3.

By predicting the locations of the bounding box over time, the learning model essen-
tially outputs the positions and the headings of the ego-vehicle in future timesteps.
However, to actually control the vehicle, much more information must be provided,
such as the throttle levels or the angles of the steering wheel. While it is certainly
possible to train the model to also predict these quantities as well, it would make
the problem much more complex and difficult. The reason is because the gas pres-
sures and the steering angles are both mathematically linked to the positions and
the headings, which means that the model would also have to learn about these
mathematical relationships under the hood. Instead, a much better idea is to sim-
ply output the locations of the bounding box, thus giving us the future trajectory
of the ego-vehicle. A controller can be written to directly consume this trajectory,
and then derive other quantities and low-level controls such as steering, gas, speed,
and acceleration. This low-level controller is part of the modular pipeline presented
in Figure 1.2, but is beyond the scope of the thesis.

2.3 Coordinate systems

To correctly plot the top-down view, the sequence generator requires a plugin that
can perform conversions between different measurement units and coordinate sys-
tems. More specifically, the data pipeline has to deal with these coordinate systems:

1. The GPS coordinate system
2. The Local coordinate system
3. The Reference coordinate system (or Ref for short)

The GPS coordinate system is used by the GPS device to pin-point the exact location
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of the ego-vehicle. It follows the WGS-84 standard1, which models the Earth as an
ellipsoid and sets up a non-Cartesian coordinate system with the origin located at
the center of the Earth. A particular point on the surface of the Earth can then
be specified by measuring the angles that this point makes with the center of the
Earth. The angles are usually given in the unit of Decimal Degrees (DD), with the
range of [−180°, 180°] for longitudes and [−90°, 90°] for latitudes. Apart from the
GPS position, the GPS device also reports the heading of the ego-vehicle, which is
basically the angle between the forward direction of the vehicle and the True North2.

The Local coordinate system, on the other hand, is a standard x-y Cartesian coor-
dinate system that can be used to directly plot the top-down view. It has the origin
being attached to the position of the ego-vehicle, and it is always oriented in such a
way that the y-direction coincides with the forward direction of the vehicle. Since
the vehicle is moving and changing its direction at all time, the Local coordinate
system is essentially a non-static coordinate system, and thus cannot be used to
track the motion of the ego-vehicle itself. It is largely needed because all of the
information about the surrounding, including the lanes and objects, are tracked and
measured with respect to the data sensors installed on-board.

Since the GPS coordinate system cannot be used to capture information about
the surrounding, and the Local coordinate system cannot be used to track the ego-
motion, a third coordinate system is needed to combine them both. For this purpose,
the Reference coordinate system (or Ref for short) is introduced. Ref has the exact
same properties as the Local coordinate system, except for the fact that the origin
is fixed at the location of ego-vehicle at the present timestep of a driving sequence,
making Ref a static coordinate system. The main difference between the two co-
ordinate systems lies exactly in this aspect. From the point of view of the Local
frame of reference, the lanes appear as if they are moving backwards relative to the
static ego-vehicle. On the other hand, the Ref coordinate system directly shows
that the ego-vehicle is moving forward relative to the static lanes. A side-by-side
visualization can actually be found on our project website [10].

Considering that a static frame of reference is able to capture both the surrounding
and the ego-motion at the same time, a driving sequence can actually be defined
by specifying the static coordinate system that was used for plotting the top-down
view. In fact, every time the static coordinate system is changed with a different
origin and orientation, it is as if an entirely new driving sequence has been generated.
Therefore, it is important to convert all information from the driving sequence into
the static Ref coordinate system, which can be achieved by applying some linear
transformations to a 2D vector space, as will be shown later. Before that can be done
however, it is necessary to first transform the ellipsoidal WGS-84 coordinate system
into a flat Cartesian plane, using algorithms such as the UTM map projection.

1World Geodetic System is a standard used for the GPS navigation system that many people
are familiar with. The latest revision of the standard was given in 1984, hence the name WGS-84.

2True North is the direction along a meridian on the Earth’s surface towards the North Pole.
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2.3.1 UTM map projection
Map projections are algorithms used to project coordinates on the surface of the
Earth onto a flat 2D map. Typically, this involves wrapping an imaginary shape
around the globe, and then projecting the points directly on the surface of this
shape. A popular choice for such a shape is a cylinder, as used in the Mercator map
projection and its variants, including the Universal Transverse Mercator (UTM).
Since the surface of the Earth is curved, projecting it onto a plane will always cause
some distortions in the shapes of objects, as well as in the directions and distances
between them. UTM map projection was actually designed to minimize the amount
of distortions, with the aim of achieving high accuracy for small regions on the map.
This is ideal for the data pipeline since a driving sequence only needs to cover a very
short driving distance at a time.

UTM divides the longitudinal range of the globe into 60 zones, with each being
flattened onto a plane separately. The narrow width of each zone, which only spans
6° in longitudes, allows the projection to be done with little amount of distortions.
To make it easier for referring to an area on Earth, the zones are further divided into
20 latitude zone bands, resulting in the UTM grid as shown in Figure 2.5. For each of
the 60 zones, the entire flattened area will be superimposed by a standard Cartesian
coordinate system—oriented in such a way that the x-axis is at the equator, and the
y-axis coincides with the central meridian of that particular zone. Since each zone is
superimposed by a different coordinate system, moving across the boundary of two
zones is problematic. In such a rare case, the simplest solution is to approximate
and assume that the trajectory lies entirely within one of the two zones.

Figure 2.5: The UTM grid with 60 zones horizontally and 20 latitude zone bands
vertically. Image taken from the public domain on Wikipedia Commons [46].

To complete the conversion from the WGS-84 standard to the UTM coordinate
system, the headings of the ego-vehicle must also be converted as well. Since the
curvature of the Earth has been flattened down onto a 2D plane, the headings
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should now be measured with respect to the Grid North3, instead of the True North
as mentioned previously. The difference in angles between the two North directions
is usually referred to as the grid convergence. As illustrated in Figure 2.6, the grid
convergence can vary across different places on the map; and it is zero only at
the equator and along the central meridian of a UTM zone, since those locations
coincide exactly with the two axes of the Cartesian coordinate system that has been
superimposed on that particular zone. In fact, exact calculations can be carried
out by using simple trigonometry, as shown in [31]. Let λ and φ be the WGS-84
longitude and latitude of a point in a UTM zone, and λ0 be the longitude of the
central meridian of that zone. Then the grid convergence, γ, can be calculated as:

γ(λ, φ) = arctan(tan(λ− λ0) sin(φ)) (2.1)

Figure 2.6: Illustration of the difference between the Grid North and the True
North in an arbitrary UTM zone. Image drawn not to scale.

Due to the narrow width of the UTM zones, the grid convergence is typically very
small, and thus can often be ignored in many applications. However, this is not the
case here, since even a tiny change in the heading angle can cause a large visible
change in the top-down view. The reason is because in the Ref coordinate xsystem,
the top-down view is plotted from the perspective of the ego-vehicle. This means
whenever the ego-vehicle heads at a different direction, the entire top-down view
will have to be rotated accordingly. Therefore, it is important to take the grid
convergence into account when using UTM map projection.

3Grid North is the direction pointing northwards along the grid lines in UTM map projection.
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2.3.2 Conversions to Ref coordinate system
As mentioned previously, in order to plot the top-down views for a driving sequence,
both the ego-motions and the surrounding information must be converted to the
static Ref coordinate system. Thanks to the UTMmap projection, the conversions to
Ref can now be done by applying simple linear transformations to different Cartesian
coordinates. These conversions, while simple, can actually be confusing and error-
prone, since the Cartesian coordinate systems can be located at different origins and
have different orientations.

Figure 2.7: Plot of two arbitrary Cartesian coordinate systems, α and β.

Let α and β be two arbitrary x-y Cartesian coordinate systems, with the origins
located respectively at point A and point B, as illustrated in Figure 2.7. Let’s
also denote θ as the angular difference between the y-axes of the two coordinate
systems, and let Bα be the location of the origin B with respect to the α coordinate
system. Now, assuming that both θ and Bα are given, then the coordinates of any
random point P can be converted from α to β, by using a rotational matrix R and
a translation vector t, as shown in the following equation:

Pβ = R(Pα − t)

where: t = Bα and R =
[

cos θ sin θ
− sin θ cos θ

] (2.2)

The complete derivation of Equation 2.2 can be found in Appendix A. The strategy
now is to use this generic equation to convert from GPS to Local coordinate system,
and then apply the exact same technique to convert from Local to Ref coordinate
system. To simplify the notations, let’s denote each of these three coordinate systems
with the subscripts g (GPS), l (Local), and r (Ref), such that:
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• θgl, Rgl, and tgl specify the rotational matrix and translation vector used to
transform from the GPS to the Local coordinate system.

• Similarly, θlr, Rlr, and tlr specify the rotational matrix and translation vector
used to transform from the Local to the Ref coordinate system.

Figure 2.8: Illustration of the GPS (g), the Local (l), and the Ref (r) coordinate
system, plotted from the perspective of the flattened GPS coordinate system.

Suppose that the origins of the Local and the Ref coordinate system are located at
point A and point B, respectively, as illustrated in Figure 2.8. This means that:

• Ag is the GPS coordinates of the ego-vehicle at the timestep that the top-down
view is being plotted, and θgl is the heading of the ego-vehicle at that timestep.

• Bg is the GPS coordinates of the ego-vehicle at the present timestep t = 0,
and θlr is the difference in the heading angles between the two timesteps.

Once the values for the quantities Ag, Bg, θgl, θlr are known, the generic Equation
2.2 can then be used to convert any arbitrary point P from the Local coordinate
system to the Ref coordinate system as follows:

Pr = Rlr(Pl − tlr) =
[

cos(θlr) sin(θlr)
− sin(θlr) cos(θlr)

]
(Pl −Bl)

where: Bl = Rgl(Bg − tgl) =
[

cos(θgl) sin(θgl)
− sin(θgl) cos(θgl)

]
(Bg − Ag)

(2.3)

For a single top-down view, points along the lane markings and points around the
bounding boxes of different objects, are all converted to the Ref coordinate system
using the Equation 2.3 above. The same strategy can then be repeated for other
top-down views as well, thus giving a complete driving sequence for training.
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2.4 Data augmentation
Data augmentation is a set of techniques that are used to generate new data samples
based on the existing ones, essentially enlarging the training dataset without actually
having to collect more data. Having a larger training set can help the learning model
to be more robust and generalize better towards unseen data. Two augmentation
techniques are used for this project: (1) applying random rotations to the top-down
views, and (2) synthesizing deceleration scenarios based on the collected data.

Since the focus of the thesis is on high-way scenarios, a large proportion of the
data would only involve driving in a straight line along the y-direction of the top-
down view. This might lead to the tendency of the model to always drive straight,
regardless of whether of the lanes are straight or not. This is an example of an
irrelevant pattern in the data, that can potentially trick the model into picking out
the wrong features, instead of actually learning the underlying cause of the observed
driving behavior. To tackle this, for each driving sequence in the training set, the
top-down views will be rotated by a random angle in the range of [−10°, 10°], as
shown in Figure 2.9. Note that such rotations would violate the definition of the
Ref coordinate system. However, since all of the top-down views in a sequence are
rotated by the same angle, this still gives a valid driving sequence for training.

(a) Original top-down view without any rotation

(b) The same top-down view rotated by −10°

(c) The same top-down view rotated by 10°

Figure 2.9: Data augmentation by rotations of the top-down view.
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One benefit of using data augmentation is that it can also be used to synthesize
driving scenarios that occur very rarely in the training dataset. This is particularly
useful for imitation learning via behavioral cloning. As already mentioned in Section
1.2.2, if the autonomous agent ends up in a situation that has not been observed
during training, the learning model would get stuck and even fail to predict anything
at all. In our case, since much of the training data is about high-way scenarios where
it is always possible to switch to a faster lane and perform an overtake, it is very
rare to see a scenario where the ego-vehicle would have to decelerate for a slower
car in front (in case overtaking is not desirable). Augmenting such scenarios into
the training dataset would be hugely beneficial.

2.4.1 Augmentation of deceleration scenarios

Figure 2.10: Illustration of an arbitrary driving trajectory (left) that has been
shortened to create a deceleration scenario (right). Points C and D are chosen
to mark the section in which the vehicle should decelerate (i.e., with a non-zero
deceleration rate). The points along each trajectory are equally spaced in time.
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Listed below is the set of criteria for the augmentation of deceleration scenarios:

• Augmentation should result in scenarios where the ego-vehicle moves at a
constant speed for a while, and then decelerates to a slower speed. Note
that it is important not to first accelerate and then decelerate, since it is not
desirable to teach the learning model such bad behavior.

• Augmentation should strive for a uniform deceleration. While this might not
be realistic in real life, it is still a good behavior and much simpler to simulate.

• As it does not make sense for the ego-vehicle to suddenly decelerate without
any reasons, it is also necessary to synthesize an extra car that is driving slowly
just in front of the ego-vehicle. Any vehicles from the original data that are
within the path of this extra car must also be removed.

• The augmentation procedure should be fast and simple to compute. It should
also take the curvature of the road into account, i.e., both the ego-vehicle and
the extra car must not appear as if they are switching to a different lane.

Consider a trajectory from point A to B, as illustrated in Figure 2.10. To create a
deceleration scenario based on this trajectory, the strategy is to simply shorten it,
and then put all the points from the original trajectory to the new trajectory in such
a way that the distances between the points decrease over time. The shortening is
done by randomly picking two points (C and D) along the original trajectory, in
order to mark the section where deceleration should take place.

Since the goal is to simulate uniform deceleration, the SUVAT equation of motions
will be used; in particular, equations 2.4 and 2.5 below. Note that the two dimensions
of the top-down view should be treated separately and independently from one
another, which means the vector notations can be used. Here, t stands for the
number of timesteps since the deceleration begins, s is the position of the vehicle at
time t, u is the initial velocity at point C, v is the final velocity at point D, and a
is the (non-zero) rate of deceleration.

s = ut+ 1
2at2 (2.4)

v = u + at (2.5)

where: s =
(
sx
sy

)
, u =

(
ux
uy

)
, v =

(
vx
vy

)
, a =

(
ax
ay

)
6= 0 (2.6)

The main idea now is pick an appropriate deceleration rate a, and then use it in the
equation 2.4 to compute the position of every point along the new trajectory.

One naive method to pick a is to first choose the final point D, and then use its
position to compute a via equation 2.4. However, this does not allow us to control
the final velocity, since v is never part of the equation. Another alternative is to
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choose the final velocity v, and then use that to compute a via equation 2.5. This
does not work either, since s is no longer part of the calculations, and thus it is not
possible to control the final position of the ego-vehicle. A much better alternative is
combine the two methods together. The key idea is to first pick a desired value for
the final velocity, and then find the final position along the original trajectory that
would best match this desired final velocity. (See Algorithm 1 below.)

Algorithm 1: Augmenting deceleration of the ego-vehicle
1. Randomly choose the initial point C. Then compute the corresponding initial

velocity u, and the total number of timesteps during deceleration.
2. Choose the final point D by doing the following:

(a) Randomly pick a desired final velocity v′ as some small ratio of u.
(b) Use v′ to compute the desired deceleration rate a′ via equation 2.5.
(c) Use a′ to compute the desired final position s′ via equation 2.4.
(d) Find a point along the original trajectory that is closest to the desired

position s′. Use the found point as the final point D.
3. Use the positions of the start and end points, C and D, to compute the

actual deceleration rate a via equation 2.4.
4. Use the equation 2.4 again, but now with the actual deceleration rate a, to

compute positions of each and every point along the augmented trajectory.

While this algorithm might seem complicated at first glance, it only involves basic
vector computations, and thus can be done very efficiently.

As the final step of the augmentation, an extra car of some random size will be
augmented into the scene just in front of the ego-vehicle. This extra car will move
at the same velocity as the final velocity of the ego-vehicle (i.e., the velocity at point
D after the augmentation). All existing objects that are moving within the path of
this extra car will also be removed.
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This chapter focuses on the designs of different neural network architectures for
the DecisionNet, which is the module responsible for making the driving decisions
for the autonomous vehicle. As described in the previous chapter, the DecisionNet
will receive from the data pipeline the top-down views that represent the past and
present of the driving sequence as input, and then predict a series of top-down views
representing the future trajectory of the ego-vehicle.

To deal with the past and the future separately, an encoder-decoder architecture
will be used. The key idea is to have the encoding phase to encode information
from the past (and also the present); while the decoding phase is for decoding the
hidden states to give the predictions of the future. This will be referred to as the
two-phase variant of the DecisionNet. Later on in the last section of the chapter,
this two-phase variant will be modified a little bit to give us the one-phase variant,
which will allow the model to both predict and observe the future at the same time,
thus solving the so-called time-horizon problem.

The architectures for the DecisionNet are actually built upon many popular neural
network architectures that have already existed in the literature. These network
architectures will be described in detail in Section 3.1. Among these, the most
important ones for the DecisionNet are CNN, ENet, and ConvLSTM.

3.1 Popular network architectures

3.1.1 FFNN

FFNN (or Feed Forward Neural Network) is the most basic form of a neural network
architecture, which was designed based of the inspiration of the network of neurons
in the human brains. However, instead of the biological neurons, FFNN is made
up of artificial neurons, organized in multiple layers. Each artificial neuron can be
thought of as a function, mapping the inputs that come from the neurons in the
previous layer, to an output that can be connected to the neurons in the next layer.
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In the context of FFNN, such function mapping can be expressed recursively as:

zl = Wal−1 + bl−1 (3.1)
al = f(zl) (3.2)

where zl represents the linear combination of the inputs al−1 from the previous layer;
al is the output of a (typically non-linear) activation function applied on zl; and the
weights W and biases bl−1 are learnable parameters of the network.

Let m and n be the number of neurons in layer l− 1 and layer l, respectively. Then
it can be deduced that al, bl−1, and zl are all n-by-1 vectors; al−1 is an m-by-1
vector; and W is an n-by-m matrix.

Figure 3.1: Example of a deep FFNN with biases.

Figure 3.1 shows an example of how the artificial neurons from different layers are
connected to each other in a typical FFNN. The number of layers is called the
depth of the network, which is essentially where the term “deep learning” originates
from. The deeper the network, the more capable it is of learning more complex
features from the data. This is due to the non-linearity introduced by the non-
linear activation functions applied at each layer, as shown in Equation 3.2. In fact,
it can easily be shown that without any activation function, the deep structure of the
network would have no meaning, since all the layers can simply be collapsed into
a single-layer neural network. Therefore, choosing the right non-linear activation
functions and having a deep structure are usually the keys to success in deep learning.

There are many candidates for a good activation function. Some of the most popular
ones include Sigmoid, Tanh, ReLU, and PReLU, which will be used later on in
the thesis. Sigmoid and Tanh are often used as squashing functions in order to
squash the values between some specific range. This range is (0, 1) for Sigmoid,
and (−1, 1) for Tanh. On the other hand, ReLU function allows the value to go

26



3. Model design

up to positive infinity, and sets all negative values to zero. However, this often can
lead to a phenomenon known as “dying” neurons [25, 38], because a negative value
will immediately give zero gradient, thus stopping the learning process altogether in
typical gradient descent algorithm used to optimize the network. Due to this reason,
PReLU (or Parametric ReLU) was introduced as an alternative. This function is
very similar to ReLU, but instead of setting all negative values to zero, it uses an
extra learnable parameter α to avoid the problem with the zero gradient [14, 49].

Figure 3.2: Plots of some popular activation functions.

Mathematically, the activation functions in Figure 3.2 can be expressed as follow:

sigmoid(z) = 1
1 + e−z

(3.3)

tanh(z) = sinh z
cosh z = e2z − 1

e2z + 1 (3.4)

relu(z) =
{

0, for z ≤ 0
z, for z > 0

}
(3.5)

prelu(z) =
{
αz, for z ≤ 0
z, for z > 0

}
(3.6)

3.1.2 CNN
CNN (or Convolutional Neural Network), originally proposed by [22], is a type of
neural networks most commonly used for learning features from inputs that are
equivalent to 3D tensors of dimension (H,W,C) = (height,width, channels). In
particular, CNN can be used for learning from RGB images, and thus has received
a huge success within the field of computer vision [12, 13, 45]. Part of the reason
for this success is due to the CNN’s ability to learn important spatial features from
the the images with much less parameters, especially when compared to FFNN.

A single CNN layer contains a number of so-called kernels, which are basically
windows of relatively small size (typically 3 to 7 pixels on each dimension). These
kernels hold the learnable parameters that can capture various spatial information
from the input feature maps, which have been output from the previous layer. A
convolution operation, denoted by ∗, will then slide each of these kernels across the
width and the height dimensions of the input feature maps, matching the input with
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the kernel, in order to create a new feature map to be passed on to the next layer
(see the graphical illustration from [29]). This type of convolution is most commonly
referred to as Conv2D (since the sliding operation is applied across 2 dimensions of
the input), and can be expressed mathematically as:

Y = f(W ∗X + b) (3.7)

where X and Y are the input and output of the Conv2D layer, W is the set of
kernels, and b contains a set of learnable biases (one bias for each kernel, typically).

To work out the dimensions of each quantity in Formula 3.7, let the input X be a
3D tensor of dimensions (Hx,Wx, Cx). Now suppose that there are Nk kernels in the
layer, then W will be a 4D tensors of dimension (Nk, Hk,Wk, Cx). Note that each
kernel must have exactly the same number of channels as the input, as Conv2D only
allows the kernels to be slided across the width and height dimensions. Finally, the
convolution operation should result in the output Y of size (Hy,Wy, Nk).

As usual, the activation function f should be applied pixel-wise across the feature
map in order to introduce non-linearity into the network. With such activation
applied at every layer, the key is to construct the final network by stacking multiple
CNN layers on top of each other, resulting in a deep structure that would allow the
network to learn more complex features from the input.

In the classical form of convolutions, the kernels are typically moved across the
feature maps with a step size of one. However, in non-unity strided convolutions
[21], the step size can be set to a value higher than one. This can be utilized
as a downsampling technique [39], which reduces the computational resources of
the network, thus allowing us to stack even more layers of CNN on top of each
other to increase the depth of the network. The downsampled feature maps can
then be upsampled again using various upsampling techniques, such as nearest-
neighbor interpolation, where each pixel value is copied to other pixels in the nearest
neighborhood. These techniques mentioned here will later be used in the thesis as
an efficient way to downsample and upsample the top-down views.

3.1.3 ENet
ENet (or Efficient Net) is a neural network architecture that was originally proposed
by [33] to be used for semantic segmentation of images in real-time system. However,
it was later found that ENet could also be utilized for many other deep machine
learning tasks as well, such as image classification as shown in [6], or monocular
depth estimation as shown in [28]. This is no surprise, since the design of ENet
was built primarily based on a variety of different types of convolutional layers,
which have been shown to be very good at learning spatial features from the data.
ENet is not only capable, but is also computationally efficient, and thus it would
be beneficial to take advantage of such an architecture in order to efficiently extract
the spatial information contained within the top-down views.
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The efficient performance of ENet is the result of the combination of many state-
of-the-art techniques already existing in the deep learning literature. In particular,
ENet utilizes the so-called bottleneck architecture [15], which uses skip connections,
just like in any typical residual neural networks (or ResNets). For each “bottleneck
residual block”, the idea is to have a 1× 1 convolutional layer with fewer kernels to
reduce the dimensionality of the input tensor when entering the block; and then have
another 1 × 1 convolutional layer to expand (or restore) the dimensionality when
exiting the block. Such changes in dimensionality mean smaller tensors, and thus
cheaper computations for the bottleneck parts inside each block. Together with
skip connections, these bottleneck blocks make it easier to efficiently stack more
convolutional layers on top of each other to create a deeper network.

ENet is actually organized as an encoder-decoder architecture. Here, the authors
choose to have more learning parameters in the encoder, instead of opting for a more
symmetric architecture. This means the encoder will do most of the processing on
the downsampled input, and the decoder only needs to upsample the output back
to the original resolution and fine-tuning the details. Downsampling the resolution
is crucial for reducing the computational cost; but it can also hurt the performance,
and thus should only be deployed in the first few layers of the encoder, where
the computations are often the most expensive. In ENet, downsampling in the
encoder is achieved by both max-pooling and non-unity strided convolutions; and
conversely, upsampling in the decoder is achieved by max-unpooling and transposed
convolutions, as suggested by [52].

One extra benefit of downsampling the resolution is that it will give the network a
wider receptive field. This is because as the resolution gets smaller, each neuron will
be able to “perceive” a wider area of the input, thus taking more into account the
visual context of the surrounding scenes. However, since aggressive downsampling
can also hurt the performance, the authors of ENet found that it is much better
to achieve wider receptive field using dilated convolutions [50]. The main idea of
this technique is to perform convolutional operations on non-consecutive pixels of
the input tensor, thus allowing each kernel to be applied on a wider area. In ENet,
dilated convolutions are used inside 4 bottleneck blocks of the encoder.

Last but not least, asymmetric convolutions [41] are used in some bottleneck blocks
as a way to further optimize the network. In these blocks, instead of convolving
with symmetric kernels of size n×n, the idea is to decompose these kernels into two
layers of asymmetric kernels of size n × 1, followed by kernels of size 1 × n. This
reduces the number of learnable parameters from n2 to 2n, thus removing potential
redundancy, and also giving a larger speedup. Moreover, as non-linear activations
can also be added between these two layers, the network becomes more expressive.

3.1.4 LSTM
LSTM (or Long Short Term Memory), originally proposed by [16], is a type of a
recurrent neural network that can be used for many sequence modelling problems.
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It is capable of extracting temporal information, thus learning both the long-term
and short-term dependencies of an input sequence. The key innovation of LSTM is
the usage of memory cells, with the read-write access being controlled by a set of
gates, that can be open or closed based on the network’s learning experience. The
mathematical description of such a memory cell can be summarized by the equations
below, which follows the formulation given by [48], with some slight modifications.

it = sigmoid(Wxixt +Whiht−1 + bi)
ft = sigmoid(Wxfxt +Whfht−1 + bf )
ot = sigmoid(Wxoxt +Whoht−1 + bo)
c̃t = tanh(Wxcxt +Whcht−1 + bc)
ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(3.8)

Here, � denotes the Hadamard’s element-wise multiplication. W ’s and b’s represent
the learnable weights and biases. xt is the input of the current timestep. ct and ht
are the cell states and the hidden states of the memory cell. Note that xt, ct, and
ht are all vectors of some particular dimensions that should be chosen depending on
the problem being tackled. Finally, it, ft, ot represent the three control gates of the
cell, namely, the input gate, the forget gate, and the output gate, respectively.

As clearly shown from the Equation 3.8, all three gates of the LSTM cell are activated
by the sigmoid activation function, which outputs a value between 0 and 1, where
0 represents a closed gate, and 1 represents an open gate. Therefore, these gates
control the flow of information within the LSTM network. The forget gate ft controls
how much information from the previous cell states should be discarded from the
memory. The input gate it controls how much information from the current input xt
that should be accumulated to the memory. Lastly, the output gate controls what
information to output for the current timestep. The LSTM network will try to learn
the best values for these gates, using the set of weights W ’s and biases b’s that are
shared among all memory cells.

Multiple LSTM layers can also be stacked on top of one another to create a deeper
structure, that would allow the network to learn more complex behaviors from the
input sequences. In such an architecture, the outputs ht of an LSTM layer will be
passed on as the inputs xt to the next layer.

As the final remark, encoder-decoder architecture is very popular in LSTM, as it
allows the network to take the entire input sequence into account before predicting
the output sequence. For example, in the work of Sutskever et al. [40] for machine
translations, the encoder is used to only extract all information from the English
sentence, while the translation to French is actually done in the decoder. Similar
strategy will be used in our thesis, with the idea of encoding information from the
past driving sequence, before predicting the future driving sequence in the decoder.
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3.1.5 ConvLSTM
Even though LSTM is capable of learning the temporal information from the input
sequence, one major drawback with LSTM is that it cannot be used to learn any
spatial information, because the input xt in Equations 3.8 are just simple vectors that
contain no spatial dimensions. To tackle this issue, Xingjian et al. [48] introduces
ConvLSTM (or Convolutional LSTM), which aims to combine the capabilities of
both CNN and LSTM together into a single architecture, allowing it to be able to
process both spatial and temporal information at the same time.

Mathematically, a ConvLSTM memory cell behaves exactly the same way as an
LSTM cell, as clearly shown by the similarity between Equations 3.8 and Equations
3.9 below. But instead of using simple vectors, the inputs (Xt), the gates (It,, Ft,
Ot), and the internal memory states (Ct, Ht) are all 3D tensors, thus allowing the cell
to also capture the spatial information. Using ∗ and � to denote the convolutional
operation and the Hadamard’s product, the mathematical operations performed by
a ConvLSTM cell can be expressed as:

It = sigmoid(Wxi ∗ Xt +Whi ∗ Ht−1 + bi)
Ft = sigmoid(Wxf ∗ Xt +Whf ∗ Ht−1 + bf )
Ot = sigmoid(Wxo ∗ Xt +Who ∗ Ht−1 + bo)
C̃t = tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)
Ct = Ft � Ct−1 + It � C̃t
Ht = Ot � tanh(Ct)

(3.9)

Like any other deep neural networks, ConvLSTM layers can also be stacked on top
of each other, thus allowing the network to deeply process the spatial information
for each timestep. However, it should be noted that stacking ConvLSTM can be
very expensive computationally. Every time a new ConvLSTM layer is added, eight
convolutional operations need to be performed for each timestep, as clearly shown
by Equations 3.9. On the other hand, adding an extra CNN layer only requires an
extra convolutional operation, which means CNN is much cheaper than ConvLSTM
in terms of both computation time and memory consumption.

Nevertheless, with the ability to learn both spatial and temporal information at the
same time, ConvLSTM proves to be very useful for many applications related to
video processing, such as future frames predictions demonstrated in [11, 24, 44]. In
a much similar fashion, one can think of the driving sequence as a video over the
top-down views, and thus ConvLSTM will serve as the backbone for the DecisionNet.

3.2 DecisionNet architecture
This section focuses on the architectural design of the DecisionNet—the module
responsible for processing the top-down views (TDVs) from the past and the present,
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in order to predict the next TDVs representing the future trajectory of the ego-
vehicle. As mentioned previously, all proposed architectures will have ConvLSTM
layers at the core, such that the networks can process both spatial and temporal
information at the same time. Since ConvLSTMs are computationally expensive,
the idea is to not stack them to create a deep structure. Instead, several layers
of CNNs will be used to increase model capacity, while keeping the consumption
of computational resources as minimal as possible. This results in a “sandwich”
architecture, where ConvLSTMs are wrapped around by CNN layers.

As a starting point, we design a very simple network consisting of standard Conv2D
layers, to be used for wrapping around the ConvLSTMs. Our simple network will
be referred to as SNet, and will be composed of an encoder and a decoder, both of
which will be presented in Section 3.2.1. As will be shown later, we will eventually
replace SNet with ENet, in order to improve the performance of the final network.

In our “sandwich” architecture, each frame of the input driving sequence will first
be spatially processed by SNet/ENet encoder to generate the corresponding hidden
representations. Downsampling the resolution will be done in this stage to increase
computational efficiency, and also widen the receptive field. These hidden represen-
tations are then passed on to the ConvLSTMs, which will unroll in the temporal
dimension all the way into the future. Finally, the outputs from the ConvLSTMs
will be fed into the SNet/ENet decoder to upsample the resolution and generate
one-channel TDVs that actually present the final outputs of the DecisionNet.

3.2.1 SNet-ConvLSTM-SNet

Figure 3.3: Two-phase SNet-ConvLSTM-SNet architecture, shown for a sequence
of tp past frames and tf future frames. Downward arrows represent flow of spatial
information. Rightward arrows represent flow of temporal information. Components
with the same name also share the same training parameters.

Shown in Figure 3.3 above is the encoder and decoder of our SNet-ConvLSTM-
SNet sandwich architecture, which has been unrolled along the time dimension of
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the driving sequence. This type of architecture should, from now on, be referred
to as the two-phase variant of the DecisionNet, since it splits a single forward
pass through the network into two separate phases. The encoding phase encodes
information from the top-down views that come from the past and the present. The
decoding phase will then unroll the hidden representations, and output the top-down
views representing the future trajectory of the ego-vehicle.

Layers Kernel
Shape

Downsampling
Factors

Output
Shape

#
Params

input — — (800, 200, 3) —
conv2d_1 (3, 3, 3) (2, 2, 1) (400, 100, 16) 448
conv2d_2 (3, 3, 16) (2, 2, 1) (200, 50, 32) 4640
conv2d_3 (3, 3, 32) (2, 2, 1) (100, 25, 64) 18496
conv2d_4 (3, 3, 64) (1, 1, 1) (100, 25, 128) 73856

Table 3.1: Overview of the SNet encoder, where downsampling of the resolution
is done by non-unity strided convolutions.

Layers Kernel
Shape

Upsampling
Factor

Output
Shape

#
Params

input — — (100, 25, 128) —
conv2d_5 (3, 3, 128) (1, 1, 1) (100, 25, 128) 147584
conv2d_6 (3, 3, 128) (1, 1, 1) (100, 25, 64) 73792

upsampling2d_1 — (2, 2, 1) (200, 50, 64) 0
conv2d_7 (3, 3, 64) (1, 1, 1) (200, 50, 32) 18464

upsampling2d_2 — (2, 2, 1) (400, 100, 32) 0
conv2d_8 (3, 3, 32) (1, 1, 1) (400, 100, 16) 4624

upsampling2d_3 — (2, 2, 1) (800, 200, 16) 0
conv2d_9 (3, 3, 16) (1, 1, 1) (800, 200, 8) 1160
conv2d_10 (1, 1, 8) (1, 1, 1) (800, 200, 1) 9

Table 3.2: Overview of SNet decoder, where upsampling of the resolution is done
by nearest-neighbor interpolations. The last Conv2D layer is only used for reshaping
the final output and fine-tuning the details.

SNet architecture is mostly made up of relatively simple and standard Conv2D
layers, as clearly shown by Tables 3.1 and 3.2. The encoder and decoder also appear
to be quite symmetrical; each having 4 to 6 layers deep, with ReLU activation
functions being inserted in between to obtain non-linearity. Downsampling is done
in the encoder using 3 layers of stride-2 convolutions, shrinking the original resolution
of 800×200 down to only 100×25. This allows us to add more kernels, thus increasing
the number of learnable parameters and capacity of the model. The resolution is
then restored in the decoder using 3 layers of nearest-neighbor interpolations.
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Sitting between the SNet encoder and decoder are two thin layers of ConvLSTM,
designed to have the properties as described in Table 3.3. These ConvLSTM layers
will not be stacked on top of each other, but instead will be concatenated along
the time dimension, passing the internal memory states (Ht and Ct in Equation 3.9)
from the first layer into the second layer, thus allowing the network to predict all
the way into the future.

With the second ConvLSTM layer already being initialized by the internal memory
states from the first layer, there is no need for the decoder to receive any extra
inputs. Implementation-wise, this will be equivalent to passing the null inputs into
the ConvLSTM. These null inputs are basically tensors of only zeros, which will
zero out the gradients during a typical gradient descent algorithm, thus allowing
the network to ignore these inputs completely.

Layers Kernel
Shape

Input
Shape

Output
Shape

#
Params

convLSTM_1 (3, 3, 128) (tp + 1, 100, 25, 128) — 1180160
convLSTM_2 (3, 3, 128) — (tf , 100, 25, 128) 1180160

Table 3.3: ConvLSTM layers, serving as backbone for the DecisionNet. The layers
are concatenated along the time dimension, for a sequence of tp past TDVs and tf
future TDVs. Number of learnable parameters can be computed with Equation 3.9.

Looking at the sandwich architecture as a whole, it might seem like we have put too
little effort on extracting the temporal information from the data, considering that
there are only 2 layers of ConvLSTM. This, by no means, implies that processing
the spatial dimensions is more important than the time dimension. If anything,
it actually reflects the intertwined relationship between space and time, because
learning more about the spatial dimensions also helps the network to learn and
predict how the top-down views are changing over time. This is also the idea behind
ConvLSTM, as the purpose of ConvLSTM is learn the spatio-temporal information,
instead of treating space and time as separate entities.

3.2.2 ENet-ConvLSTM-ENet
While SNet is a great starting point for DecisionNet, it does not great performance.
This is not surprising, as SNet is relatively simple and shallow, compared to many
state-of-the-art deep neural networks already existing in the literature. However,
thanks to the usage of the sandwich architecture presented earlier, it is quite a
trivial task to replace SNet with a much more powerful network such as ENet,
thus creating the ENet-ConvLSTM-ENet architecture as can be seen in Figure 3.4.
ENet helps boost the performance, while consuming the computational resources
as efficiently as possible. One advantage is that ENet has already been carefully
designed by the authors of the original paper [48], thus saving us the troubles of
fine-tuning the network ourselves, which can be a very tedious process.
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Figure 3.4: Two-phase ENet-ConvLSTM-ENet architecture, shown for a sequence
of tp past frames and tf future frames. Downward arrows represent flow of spatial
information. Rightward arrows represent flow of temporal information. Components
with the same name also share the same training parameters.

Unlike SNet, which is only a few layers deep, ENet has 27 bottleneck blocks that
are stacked on top of each other [33]; and within each block are also several layers
of convolutions. Such depth allows ENet to pack lots of non-linearities internally,
thus allowing the network to learn more complex spatial features than SNet. As
previously described in Section 3.1.3, ENet uses many optimization techniques to
maintain this depth efficiently in terms of computations. These techniques include
the usage of 1×1 convolutions to reduce the number of kernels; max-pooling and non-
unity strided convolutions for downsampling the resolutions; dilated convolutions to
expand the receptive field with smaller kernels; and finally, asymmetric convolutions
for substantially reducing the number of learnable parameters.

3.2.3 The time-horizon problem
One major drawback of using the two-phase variant of the DecisionNet, in which
the encoder and decoder are run separately from one another, is that the network
will not be able to see how the situation on the road changes over time in the
future timesteps. This is called the time-horizon problem, since the network is not
permitted to see anything beyond the present timestep.

For most scenarios, time-horizon problem is not an issue, because with good training,
the network should be able to indirectly predict the future motions of surrounding
cars, and then adjust the trajectory of the ego-vehicle accordingly. But in some
cases, such accurate predictions are hard to achieve, or even impossible. Consider a
scenario where a car right in front of the ego-vehicle is moving at a constant speed,
and then suddenly decides to decelerate in the future. Since the network can only
see the past and the present, it will predict the speed of that car to be constant at
all time, and thus will not prepare to decelerate to avoid a collision.
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Figure 3.5: One-phase variant of DecisionNet, in which the network is allowed to
dynamically observe the situation on the roads, while simultaneously predicting the
future ego-trajectory. ⊕ denotes the concatenation of the 1-channel output with the
2 last channels of the input top-down views, thus creating a 3-channel input that
can be fed again into the network. Only one layer of ConvLSTM is used here.

The only solution to the time-horizon problem is to allow the network to also observe
the situation on the roads at the same time as it is trying to predict the future ego-
trajectory. This is the idea behind the one-phase variant of the DecisionNet. In
this setup, there will no longer be an encoder and a decoder, but instead, the entire
forward pass will run in one single phase. The output at a future timestep t will be
used to drive the vehicle towards the predicted position. And then the entire scenes
at timestep t will be captured as a top-down view, which can then be fed back into
the network to produce the next output for timestep t+ 1.

In the one-phase variant, the idea of feeding the output of one timestep as input to
the next timestep is partially inspired by Sutskever et al., in their LSTM architecture
designed for machine translations [40]. It was easy to apply this technique in their
LSTM model because the inputs and outputs are essentially the same, with both
being one-hot vector representations of words in the same vocabulary. However, this
is much harder to do for the DecisionNet, since its inputs and outputs are TDVs
containing different numbers of channels. Thus, as illustrated in Figure 3.5, the
trick is to concatenate the 1-channel output from the network (which represents the
future position of the ego-vehicle), with the last 2 channels from the ground-truth
data (which represent the lanes and positions of other cars), in order to obtain a
3-channel input that can be fed into the network again. Initially, it might seem
like the network is cheating by looking at the ground-truth data. But if analyzed
carefully, this is conceptually the same as if the ego-vehicle is being driven by a
model that can dynamically observe the situation on the roads in real-time.
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This chapter focuses on the training and the evaluation of the DecisionNet.

Section 4.1 starts with the optimization strategy for the DecisionNet, describing the
choice of the loss function as well as how the gradient descent algorithm should be
carried out. Next, we will go through the strategy for random data sampling, thus
showing how the entire dataset is split into the train/validation/test sets. Finally,
5 different models for the DecisionNet will be chosen for training. These models are
all based on the architectures previously shown in Chapter 3.

Section 4.2 outlines different evaluation strategies, which can be performed either
quantitatively or qualitatively. Quantitative methods will be applied on the test set
of 1000 samples, in order to give a more objective and relatively unbiased evaluation
of the models. Qualitative evaluations, on the other hand, will be carried out by
visual inspections. The idea is to hand-pick a small set of relevant driving scenarios,
and then manually check how well the models perform on these scenarios.

Finally, all the results will be summarized in Section 4.3. Please also take a look at
our project website [10] for more extensive results.

4.1 Training of DecisonNet

4.1.1 Loss function
In supervised learning, the training of a neural network often requires a good loss
function, which typically is used to quantify the accuracy of the model with respect
to some ground-truth data. In the context of imitation learning, this is also known as
the imitation loss, since it measures how good the model is at imitating the human
expert driver. The imitation loss will be optimized during training, such that the
average loss decreases over time as training goes on, as this would imply that the
model is getting better, and the predictions are getting closer to the ground truth.

Since both the inputs and outputs of the DecisionNet are top-down views containing
the bounding box of the ego-vehicle, it makes sense to directly compare the model
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predictions, pixel by pixel, against the ground truth. Thus, the mean-square-error
loss (or MSE for short) would be a good candidate for the imitation loss.

Let W × H be the resolution of the top-down view, and tf be the total number
of future timesteps to be predicted. Let Bk(x, y) be the pixel that is located at
the spatial coordinates (x, y) of the predicted output at timestep k. Similarly, let
Bgt
k (x, y) be the corresponding pixel in the ground truth data, fetched from the first

channel that contains the bounding box of the ego-vehicle. Then the MSE loss can
be computed mathematically as:

LMSE = 1
tfWH

tf∑
k=1

W∑
x=1

H∑
y=1

(
Bk(x, y)−Bgt

k (x, y)
)2

(4.1)

4.1.2 Gradient descent
Gradient descent (GD), which often goes hand in hand with back-propagation, is one
of the most popular algorithms for optimizing a neural network. Training typically
begins with the random initialization of all learnable parameters. Next, we perform
a forward pass through the network to compute the loss with respect to the ground
truth, such that during back-propagation, the loss can then be propagated backwards
through all the layers in order to compute the partial derivatives of the loss with
respect to each of the parameters. These partial derivatives represent the steepest
slopes (or gradients) that can used for updating the parameters, thus guiding the
algorithm to descend towards a lower loss. This process should be repeated until
the loss function reaches convergence at some (hopefully global) minimum.

Let gk be the gradient with respect to the parameter θ during the iteration k. Then
a parameter update in the GD algorithm can be expressed mathematically as:

θk = θk−1 − α · gk (4.2)

Here, the constant learning rate (α) must to be chosen very carefully. If the rate
is too high, then there might a risk of over-shooting through the minimum, thus
preventing the algorithm from ever reaching a convergence. On the other hand, a
learning rate that is too low can substantially slow down the optimization, since less
ground of the loss function’s hyperspace can be explored.

To avoid the tedious process of tuning α, one idea is to train the DecisionNet with
an adaptive learning rate method, that can adapt α to each individual parameter
as the training goes on. One such method is called Adam [20], which is actually
a combination of Momentum and RMSProp [36]. The main idea of Adam is to
adapt individual learning rates according to the running averages of both the past
gradients and the squares of the past gradients. These mathematical operations are
summarized in Equation 4.3, which is just a modification of Equation 4.2 above.
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mk = β1 ·mk−1 + (1− β1) · gk
1− β1

k

vk = β2 · vk−1 + (1− β2) · gk2

1− β2
k

θk = θk−1 −
α

√
vk + ε

·mk

(4.3)

Following the recommendation from the original authors, the hyper-parameters are
set with the values of β1 = 0.9, β2 = 0.999, and ε = 10−8. The default learning rate
α is set to be 10−4. Note that this is only the initial value, as the rate will eventually
be adapted to each individual parameter during training. Parameter updates will be
done in mini-batches, with each mini-batch containing between 4 to 8 data samples,
as this is the maximum size that can fit in the memory of our GPUs.

4.1.3 Data split
As mentioned in Chapter 2, the collected data of high-way scenarios amounts to
approximately 150 hours of continuous driving. This data will be randomly shuffled,
and then split into the train/validation/test sets at the ratio of 90:5:5, thus giving
us 135 hours for the train set, and 7.5 hours each for the validation and test set.

In machine learning, an epoch usually refers to a training loop that passes through all
the data samples in the train set. With 135 hours, the train set corresponds to more
than 120000 non-overlapping 4-second driving sequences, and can even grow larger
if overlapping is used. Thus, going through each and every training example would
be infeasible, as that would take too long. Instead, for each loop, it is preferable to
randomly sample a small subset from the train set. This, of course, means that less
data will be used for each loop. But if the network is trained for long enough, the
entire train dataset can still potentially be observed. So for each training loop, the
idea is to configure the data pipeline such that it can produce:

• 4000 driving sequences, randomly sampled from the train set. As these samples
are different for every loop, the average training loss can fluctuate over time,
but should still generally decrease in a downward trend.

• 1000 driving sequences, randomly sampled from validation set. Note that the
random sampling should only be done once, in order to keep the same samples
for all the training loops. Otherwise, it would be difficult to compare which
set of parameters actually gives the best generalization towards unseen data.

The set of parameters that gives the lowest loss on validation set will be saved for
later evaluations. In order to save some time, only 1000 driving sequences will be
used for testing the models. These sequences are randomly sampled from the test
set, and hopefully can give a good representative for all scenarios we want to achieve.
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4.1.4 Models to be trained
Shown in Table 4.1 are 5 different models that have been chosen for training. These
models will be evaluated and compared against each other, in order to give an insight
into the pros and cons of different architectures and training methods.

Models Architecture Variant Data
Augmentation

Past
Motion
Dropout

M1 SNet-ConvLSTM-SNet Two-phase No No
M2 ENet-ConvLSTM-ENet Two-phase No No
M3 ENet-ConvLSTM-ENet Two-phase No Yes
M4 ENet-ConvLSTM-ENet Two-phase Yes No
M5 ENet-ConvLSTM-ENet One-phase Yes No

Table 4.1: Descriptions of 5 different models for the DecisionNet.

To make sure the output only contains pixels with values in the range of (0, 1), the
last layer of all models will be activated by ReluClip, which is similar to the ReLU
function in Equation 3.5, but with all values larger than 1 being capped at 1. This
appears to work quite well when training with the MSE loss presented earlier.

Data augmentation will only be performed for M4 and M5, using the strategies
described in Chapter 2.4. The top-down views will be rotated at some random angles
between (−10°, 10°) for all driving sequences in the train set. On the other hand,
only 10% of all training examples will be augmented with deceleration scenarios;
anything more than 10% will risk overfitting the network, causing the DecisionNet
to decelerate too often, even in undesireable situations. Note the data augmentation
will only be performed during training, and not during evaluation of the models.

Finally, it would also be interesting see if past motion dropout [3] can replace data
augmentation as a way to tackle deceleration scenarios. The main idea of this is to
hide the motions of the ego-vehicle from the past timesteps for 50% of the data, thus
forcing the network to pay more attention to the surroundings, instead of relying too
much on the past motions. Our hope is that this can teach modelM3 to decelerate
for a slow car, without the need to even perform data augmentation.

4.2 Evaluation strategies

4.2.1 Objective quantitative evaluations
Designing an objective evaluation strategy can be challenging, as it is difficult to
agree on what is considered to be the best driving behavior. The imitation learning
approach addresses this issue by simply assuming that the human expert driver
always gives the best driving behavior, and thus can act as the ground truth. With
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this in mind, we came up with two different metrics (MSE and MPD), that can
be used to objectively quantify how well the models can imitate the human expert
driver. These metrics will be computed on an unseen test set of 1000 samples.

The MSE metrics is calculated in exactly the same way as the MSE loss shown
earlier in Equation 4.1. It measures how well the model can imitate at the pixel
level, and thus also indirectly taking into account the shape and the orientation of
the bounding box of the ego-vehicle. However, one big problem with MSE is that
it does not have any unit of measurement, which means that it can be difficult to
interpret and visualize what a particular MSE score actually shows.

To address the problem with MSE, we introduce Mean Positional Deviations (or
MPD for short), which measures the average distance in meters of how far the
predicted positions deviate from the ground truth. For example, an MPD score of
2 meters means that on average, the model predicts the ego-vehicle to be 2 meters
away from where it is expected to be. The idea is to compute the deviation dt for
each future timestep t, and then take the average of all these deviations.

Figure 4.1: Illustration of how the positional deviation dt is computed in order to
figure out the MPD score. Image drawn not to scale.

To make it easier to extract the position of the ego-vehicle from the top-down view,
a simple idea is to fit an estimated bounding box around the actual bounding box of
the vehicle, as shown in Figure 4.1. This works because both estimated and actual
bounding box have the same center that represents the position of the vehicle.

In the case of inadequate training, it is possible that the model might predict the
vehicle to be in multiple places at once. Such predictions will result in a larger
estimated bounding box, and can potentially lead to a higher MPD score. And if
the model does not manage to predict anything at all, then we assume the vehicle
has stayed at exactly the same place, which will also lead to a higher MPD score.
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4.2.2 Evaluations by visual inspection

While MSE and MPD can give a very objective evaluation, these metrics can only
measure how good a model is at imitating the human expert driver. This is a huge
limitation, since not being able to imitate well does not automatically mean that the
model is bad. One way to address this concern is to extract a small set of scenarios
that can be used to manually evaluate the models by visual inspection. This set will
consist of 100 scenarios, which are divided into 4 different categories:

• Straight-lane scenarios, where the lanes appear to be straight on the TDVs.

• Curved-lane scenarios, where the lanes appear to be curved on the TDVs.

• Missing-lane scenarios, where the lanes are either half-missing or completely
missing from the TDVs. For these scenarios, we cannot expect the models to
give the same behavior as the ground truth. But it can be interesting to see if
the models can predict anything, or will fail completely due to missing lanes.

• Slow-speed scenarios, where the ego-vehicle appears to travel very slowly.

For each of the scenarios above, the main idea is to manually count how many
timesteps into the future that the model can successfully predict with a high level
of confidence. More concretely, a good prediction would mean that the model does
not output any erroneous behavior (such as decelerating unexpectedly, or crossing
to another lane for no reasons, etc.). The predicted bounding box of the ego-vehicle
should also be relatively sharp and clear on the TDVs.

As mentioned in Chapter 2.4, deceleration scenarios are particularly interesting to
test our models on. But since these scenarios are extremely rare in the dataset,
finding them would be very time-consuming. Instead, it might be much easier
to simply synthesize these scenarios from scratch. This is exactly the benefit of
using the top-down view for high-level data representation, since synthesizing such a
scenario would only require some simple plotting tools or libraries. Two deceleration
scenarios will be synthesized, each aiming at testing different things:

• Deceleration for a slow car : In the past timesteps of this synthesized scenario,
the ego-vehicle is set to travel at a very high speed. On the same lane, there
will an extra car in front that will move at a much slower speed. In this case,
the DecisionNet is expected to decelerate to avoid collision with the slow car.

• Deceleration for a decelerated car : Similar to the first synthesized scenario,
the ego-vehicle is also set to travel at a very high speed. However, in this
case, the extra car in front will move at a high speed in the past timesteps,
and will then decelerate to a much slower speed in the future timesteps. The
expectation here is that the DecisionNet should still be able to decelerate to
avoid collision with this decelerated car in front.
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4.3 Results
Video clips, that show the outputs of the models for each of the driving scenarios
listed in Table 4.4 and Table 4.5, can be found on our project website [10].

M1 M2 M3 M4 M5

MSE scores (×10−4) 6.55 3.12 2.98 2.76 2.42

Table 4.2: Pixel-wise MSE scores, obtained when evaluating the 5 models on the
test set of 1000 samples. The lower the score, the better the model.

M1 M2 M3 M4 M5

MPD scores (meters) 5.09 0.62 0.60 0.46 0.41

Table 4.3: MPD scores (in meters), obtained when evaluating the 5 models on the
test set of 1000 samples. The lower the score, the smaller the deviations are between
the predicted positions and the ground-truth positions.

M1 M2 M3 M4 M5

Straight-lane scenarios 8.2 24.6 24.6 24.6 24.9
Curved-lane scenarios 11.1 18.9 19.9 21.8 23.4
Missing-lane scenarios 17.2 17.8 17.8 20.1 21.3
Slow-speed scenarios 22.8 20.7 22.0 23.8 24.7

Table 4.4: Results showing the performance of the 5 models on the 4 categories
of extracted scenarios mentioned in Section 4.2.2. For each of the categories, this
table shows the average number of future timesteps that the models can successfully
predict. The higher the number, the better the model. Note that the maximum
number of future timesteps available is tf = 25.

M1 M2 M3 M4 M5

Decelerate for a slow car 7 7 7 3 3

Decelerate for a decelerated car 7 7 7 7 3

Table 4.5: Results showing the performance of the 5 models on the 2 deceleration
scenarios that were synthesized from scratch, as explained in Section 4.2.2. Here,
we use a binary criteria, where success (3) means that the ego-vehicle has managed
to decelerate to avoid a collision, and failure (7) means the opposite.
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5
Discussion

Looking at the results from Table 4.4, most models seem to perform very well on both
straight-lane and slow-speed scenarios. This is no surprise, because in a dataset that
contains mostly of high-way scenarios, the drivers will most likely find themselves
in situations where they either drive very fast along straight lanes, or very slowly in
a queue of busy traffic. On the other hand, curved-lane and missing-lane scenarios
seem to be a bit more difficult for the models, possibly because these scenarios are
relatively less abundant in our dataset.

Nevertheless, the performance of all models on the missing-lane scenarios seems to be
a lot better than our expectations. ModelM5 even managed to successfully predict,
on average, 21 out of 25 timesteps into the future. This shows the importance of also
including noisy data when training the models, as that would help the DecisionNet
to be more robust towards the imperfections of the data pipeline.

All in all, the results from Chapter 4.3 show thatM1 consistently performs worse
than other models, whileM5 gives the best performance. For the rest of this chapter,
the the focus will be on comparing the models directly against each other in order
to explain why we have such difference in the performance.

5.1 M1 versus M2

AlthoughM1 andM2 have exactly the same method of training, the performance
of M1 on the test set is much worse compared to M2. The MPD score of M1 is
5.09 meters, which is quite unacceptable. On the other hand,M2 only deviates 0.62
meters from the ground truth on average. This huge gain in performance is thanks
to the switch in the network architecture from SNet over to ENet.

Compared to our custom-made SNet, the ENet architecture is much deeper in the
number of hidden layers, thus packing more non-linearity that would allow the
network to learn more complex features from the input sequence. In addition to
the deep architecture, ENet also uses dilated convolutions to further expand the
receptive field, allowing the network to capture more surrounding context from the
input, while also covering a larger area of the resolution in the output.
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There is one peculiar observation, however. WhileM1 seems to fail on straight-lane
scenarios, it surprisingly performs very well on slow-speed scenarios. A theory is that
this could be due to the narrow receptive field of SNet. In straight-lane scenarios,
the ego-vehicle often travels very fast across the entire resolution of the top-down
views. This means that the small receptive field of SNet will make it harder for the
ConvLSTM to unroll its hidden states in order to reach the upper portion of the
top-down views. On the other hand, in slow-speed scenarios, most of the predictions
for the positions of the ego-vehicle will fall into the middle portion of the resolution,
thus allowingM1 to predict far into the future. However, this is only a hypothesis,
and more investigations will need to be done in order to confirm this.

As mentioned, switching from SNet over to ENet has given M2 a huge gain in
performance overM1. Unfortunately, however, this is not enough, asM2 still fails
on the deceleration scenarios shown in Table 4.5. This is a clear indication that the
training of the DecisionNet has to go beyond the pure behavior cloning approach,
which is exactly why later modelsM3 andM4 were introduced.

5.2 M3 versus M4

The first attempt at tackling the deceleration scenarios was to use past motion
dropout as in modelM3. As mentioned in previous chapters, the main idea behind
past motion dropout is to hide the past motion of the ego-vehicle. This is to force
the DecisionNet to pay more attention to the surroundings, such that when it sees a
slow-moving car in front, it would decelerate to avoid a collision. However, that did
not work as well as we had hoped. The reason is simply because while past motion
drop helps improve the general performance of the model, it cannot be used to help
the model learn about scenarios that are rarely seen during training.

In order to obtain more deceleration scenarios for the train dataset, M4 uses the
strategy described in Chapter 2.4 to augment the deceleration scenario based on the
real data collected. Such augmentation allows M4 to successfully decelerate for a
slow car, without ever having to collect more data.

Incidentally, augmentation also seems to helpM4 achieve a better performance on
other scenarios as well, and not just deceleration scenarios. The MSE and MPD
scores of M4 are a bit higher than those of the previous models. The same thing
is observed for its performance on the extracted scenarios. This indicates that the
rotation of the top-down views must have helped the model to be better at following
lanes, while the augmentation of deceleration scenarios also helped the model to pay
more attention to the surrounding cars, thus boosting the overall performance ofM4.

5.3 M4 versus M5

The last scenario we would like to tackle is the deceleration of the ego-vehicle to
avoid crashing into a decelerated car. Unfortunately,M4 did not manage to give a
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good prediction for this synthesized scenario. This is actually due to the limitation
of the two-phase variant of the DecisionNet, which is caused by the time-horizon
problem already described in Chapter 3.2.3. Since the model is not allowed to see
the situation on the roads beyond the present time step, there is no way for the
network to be able to predict that the car in front will decelerate in the future.

The limitation of the time-horizon problem can be addressed by using the one-phase
variant of the DecisionNet, as in modelM5. In this architecture, the model is also
allowed to observe the surrounding scenes in the future timesteps, simultaneously
as it is trying to predict the new positions for the ego-vehicle.

As can be seen from the results,M5 does not only perform well on the synthesized
scenarios, it also gives better performance thanM4 on other test scenarios as well.
This is no surprise, since M5 has access to more information about the future
timesteps, and thus can actively adjust the driving trajectory depending on what
it sees in the future. The only downside here is that instead of simply consuming
the null inputs as in the two-phase network in Figure 3.4, the one-phase variant in
Figure 3.5 will also have to process the inputs from the future timesteps as well,
thus increasing the overall computation time and memory consumption.
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Conclusion

This chapter aims to answer all the questions listed in Chapter 1.3, by summarizing
some of the most important findings in our thesis project:

• Using top-down views (TDVs) as high-level data representation makes it easier
to accurately capture the spatio-temporal information from the surrounding
environment. It is also quite straight-forward for the DecisionNet to encode its
driving decisions as part of the TDVs. This simplifies the problem a lot, and
also allows the output from one timestep to be re-connected as an input to the
next timestep, as we have done in the one-phase variant of the DecisionNet.

• A big challenge with plotting the TDVs is how to choose the correct coordinate
system. In Chapter 2.3, we have shown that careful calculations must be done
in order to convert the GPS and the Local coordinates into the Ref coordinate
system. Since the Ref coordinate system plots the the TDVs with respect to the
position of the ego-vehicle at the present timestep, this allows the DecisionNet
to learn how the ego-vehicle moves across the TDVs over time.

• ConvLSTM can be used as a way to simultaneously process both the spatial
and temporal information of the TDVs. The capability of ConvLSTM can
further be enhanced by adding more CNN layers as part of our custom-made
SNet architecture. However, as it turns out, SNet seems to be too shallow in
terms of the number of layers. Hence, it much better to replace it ENet, an
off-the-shelf architecture that is much deeper and more efficient.

• The time-horizon problem introduces a limitation that prevents the network
from seeing far beyond into the future. This even makes it impossible for the
DecisionNet to successfully predict for the synthesized scenario where the ego-
vehicle has to decelerate behind a decelerated car. Fortunately, a simple way
to solve this is to convert the encoder-decoder two-phase architecture into the
one-phase variant of the DecisionNet. The one-phase variant allows the model
to observe the situations on the road, simultaneously as it is trying to predict
the future trajectory of the ego-vehicle.
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• With 150 hours of data collected from the demonstrations of the human expert
driver, our findings show that imitation learning has given the models quite
a good performance on many high-way scenarios. However, it turns out that
the pure behavior cloning approach is not sufficient for tackling deceleration
scenarios that occur very rarely in our dataset. To address this problem, data
augmentation can be used to generate more data for these scenarios, as this
will allow us to teach the DecisionNet to slow down to avoid a collision with
the car in front. Note that such data augmentation would be impossible to
perform on the raw sensor data. This explains why using TDVs as high-level
data representation is so advantageous for imitation learning.

• Thanks to imitation learning, the performance of DecisionNet can be evaluated
by simply comparing its output directly against the ground-truth data from
the human expert driver. This is exactly the purpose of the MSE and MPD
scores, which can objectively quantify how well the models were able to imitate
the expert for the scenarios contained in the test set.

• One important thing to remember is that not being able to imitate well does
not automatically imply that the model is bad. For this reason, it is very
beneficial to also include evaluation by visual inspection, which would allow
us to manually judge the performance of the models ourselves. This type of
evaluation can either be done on a small set of scenarios extracted from the
dataset, or even on the scenarios that have been synthesized completely from
scratch. Note that without the usage of the TDVs, synthesizing a new scenario
would be extremely difficult, if not impossible.
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This chapter focuses on identifying some areas where later research can build upon.

7.1 Full system deployment
Our thesis has mostly been focusing on the development of the DecisionNet and
its interface when connecting to other modules. However, the modular pipeline in
Figure 1.2 cannot be completed without a proper controller.

Therefore, part of the future work should focus on developing a controller that can
consume the driving decisions from the DecisionNet, and then convert them into
low-level controls that can actually drive the ego-vehicle. This would also allow the
performance of the models to be tested in a simulated environment, or even on an
actual test car, using a closed-loop evaluation.

7.2 Adding more features and scenarios
Including only the lane markings and the bounding boxes of the vehicles greatly
hinders what the DecisionNet can actually imitate. Adding additional road features
(such as traffic lights, speed limits, street signs, etc.) can help the DecisionNet to
make more informed decisions on what driving actions to take. These new features
can be added simply as new channels in the input top-down views.

As of now, the DecisionNet is mostly limited to high-way scenarios, since those are
the only ones used for training. However, the future work should focus on tackling
more challenging scenarios that involve driving on busy streets of urban cities, as
it would be interesting to see how imitation learning can help the models to learn
about the complex interactions between different vehicles on the road.

7.3 Using of High Definition maps
One of the biggest challenges with the generations of the top-down views is how to
deal with noisy data coming from various on-board sensors. As previously shown in
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Chapter 2.2.1, noisy data can result in scenarios where lanes are completely missing
from the top-down views, making it difficult even for humans to navigate. To address
this limitation of the noisy on-board sensors, High Definition (HD) maps can be used
to equip the models with more precise information from the surroundings.

HD maps are actually pre-built maps containing highly precise digital models of the
road networks, with the error margin of only a couple of centimeters [18]. Such high
level of precision would help create more accurate top-down views, making it easier
to train and evaluate the DecisionNet. Note that there are challenges of working
with HD maps, too; and one particular problem is how to accurately self-localize
the ego-vehicle within this map environment [51]. All of these challenges must be
overcome if HD maps are to be considered for the future work.

7.4 Going beyond imitation loss
As mentioned in Chapter 4.1.1, the training of the DecisionNet has been relying
solely on the pixel-wise MSE loss. This loss allows the optimization algorithm to
compare the output top-down views directly against the ground-truth data, thus
measuring how well the models can imitate the human expert driver.

However, the authors of the Chauffeurnet paper [3] have argued that there are
benefits of going beyond the imitation loss. They have added, for examples, the
collision loss (which punishes the model in case of collisions), the on-road loss (which
prevents the vehicle from going off the road), and many others. These losses make
it easier to train the DecisionNet, since the models will now have an extra feedback
coming from the environment, instead of solely relying on the imitation loss to
imitate the behavior. Note that these losses can also be used as evaluation metrics
for the models as well, and thus should be considered for the future work.

7.5 Conditional imitation learning
So far, the DecisionNet has been outputting the driving decisions based solely on
the perceptual inputs. However, this would never work in practice, because driving
always requires some sort of intentions. For example, the action to switch lane to
overtake another car should only be performed if it is intentional to do so, because
alternatively, the vehicle would just need to slow down to stay in the same lane.

To take driving intentions into consideration, one way is to allow the DecisionNet to
also receive an extra input that represents the low-level commands, such as turn left
or turn right, speed up or slow down, etc. This is exactly the idea behind conditional
imitation learning [9]. Note that these low-level commands can come either from a
human passenger, or from an automatic route-planning module.
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A
Conversions of Coordinates

Problem Description:

Given two arbitrary x-y Cartesian coordinate systems, α and β, as illustrated in
Figure A.1. Suppose that their origins and orientations are known. Derive a formula
that can convert any arbitrary point P from α to β.

Figure A.1: Illustration of two arbitrary Cartesian coordinate systems, α and β.

(a) Translation from α to β′ (b) Rotation from β′ to β

Figure A.2: Illustration of linear transformations used to convert from α to β.
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A. Conversions of Coordinates

Solution:

The main idea is to introduce an intermediate coordinate system, called β′. Let
this coordinate system be centered at the same origin as β, but has the exact same
orientation as α. The advantage of using such intermediate coordinate system is
that the entire conversion from α to β can then be broken down into two smaller
steps of linear transformations, as shown in Figure A.2.

In the first step, translation can be applied on the entire α coordinate system, in
order to convert it to β′. This is possible because both α and β′ have the same
orientation. In the second step, the entire β′ coordinate system can then be rotated
about its own origin, thus completing the conversion to the targeted β coordinates.

List of some notations:

• Let A and B denote the two origins of α and β, respectively. Note that the
origin B is shared between both β and β′.

• Let Bα be the vector that describes the location of the origin B with respect
to the α coordinate system.

• Finally, let θ be the angular difference between the orientations of α and β.

Since Bα is known, translation from α to β′ can be done by the following equation:

Pβ′ = Pα −Bα (A.1)

Let r denote the distance between the origin B and the point P . Then according to
Figure A.2b, both Pβ and Pβ′ can be written as polar coordinates as follows:

Pβ′ =
[
r cosϕ
r sinϕ

]
and Pβ =

[
r cos(ϕ− θ)
r sin(ϕ− θ)

]
(A.2)

Expanding Pβ further would give:

Pβ =
[
r cos(ϕ− θ)
r sin(ϕ− θ)

]

=
[
r cosϕ cos θ + r sinϕ sin θ
r sinϕ cos θ + r cosϕ sin θ

]

=
[

cos θ sin θ
− sin θ cos θ

] [
r cosϕ
r sinϕ

]

=
[

cos θ sin θ
− sin θ cos θ

]
Pβ′

(A.3)
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A. Conversions of Coordinates

Equation A.1 and A.3 can be combined together to give the complete formula for
transforming any point P , from the α to the β coordinate system:

Pβ = RPβ′ = R(Pα − t)

where: t = Bα and R =
[

cos θ sin θ
− sin θ cos θ

] (A.4)
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