N

Time; 0:36:250
Lap™SijiL

I 90 km/h

Gravitron

A study of game development and its graphical effects

Bachelor Thesis, group 80

Daniel Andersson
Patrik Ingmarsson
John Martinsson
Viktor Runemalm
Adam Scott

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Author warrants that he/she is the author to
the Work, and warrants that the Work does not contain text, pictures or other material
that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Gravitron
A study of game development and its graphical effects

Daniel Andersson,
Patrik Ingmarsson,
John Martinsson,
Viktor Runemalm,
Adam Scott

(©Daniel Andersson, June 2014
(©Patrik Ingmarsson, June 2014
(©John Martinsson, June 2014
(©Viktor Runemalm, June 2014
(©Adam Scott, June 2014

Examiner: Arne Linde

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Goteborg

Sweden

Cover:

Shows one player in mid-air after entering a gravitational junction in Gravitron.
Department of Computer Science and Engineering

Goteborg, Sweden June 2013

Abstract

This bachelor thesis explores the possibilities of creating a visually pleasing game within a
limited timeframe of three months, and which graphical effects that may be crucial. The
game is influenced by the neon light city environments in TRON, and uses gravitational
shifts to incite excitement, hence the name Gravitron.

Many of the techniques sought after during this project are included in the final result.
Among these techniques, bloom, god rays, and screen space ambient occlusion are con-
sidered the most beneficial for the desired visual setting. The combination of a deferred
renderer and these graphical effects makes the luminous city environment in Gravitron
possible.

The project use XNA Game Studio 4.0, alongside C# with .NET, and the IDE used
is Visual Studio 2010/2013. An agile approach is adopted and the group deploys an
iterative development model.

Using the XNA framework gave the group some knowledge about graphics and its under-
lying structures. Unfortunately, this slowed down the development process. Tool-kits,
like Unity and Unreal Engine, could be used, if the progression of the game is considered
more important than the learning process.

Sammanfattning

Detta kandidatarbete undersoker mojligheterna att skapa ett visuellt tilltalande spel in-
om en tidsram om tre manader, samt vilka grafiska effekter som kan vara centrala. Spelet
influeras av den neonljusfyllda stadsmiljon i TRON och anvénder gravitationsskiftningar
for att skapa spédnning, ddrav namnet Gravitron.

Manga av de tekniker som efterfragas i detta projektet &r inkluderade i slutresultatet.
Bland dessa tekniker aterfinns: bloom, god rays och screen space ambient occlusion.
Dessa anses dven vara de mest givande for den miljon som efterlystes. Kombinationen av
en deferred renderer och dessa effekter gor den lysande miljon i Gravitron mojlig.

Projektetgruppen anvinder XNA Game Studio 4.0, tillsammans med C# med .NET,
och den IDE som anvénds ér Visual Studio 2010/2013. Gruppen anvinder en agil ut-
vecklingsprocess tillsammans med en iterativ utvecklingsmodell.

Anvindningen av ramverket XNA gav gruppen kunskap om grafikutveckling och dess
underliggande strukturer. Dessvirre bromsade detta utvecklingsprocessen. Verktygssat-
ser, som Unity och Unreal Engine, kan anvéndas, om utvecklingen av spelet anses vara
viktigare dn inldrningsprocessen.

Acknowledgements

We would like to thank Ulf Assarsson for being our mentor during this bachelor thesis,
and for his great supporting role during the writing process of this report. We would
also like to thank Erik Alveflo for consultation during the early development phase of
the game engine, and Uno Ullvén for his help with creating illustrations and figures.
We would like to show our gratitude to Magnus Gustafsson as he helped us with our
report.

A special thanks goes out to the guys that kept telling us that everything is awesome,
you know who you are. It has been very cool to be a part of a team.

Contents

1 Introduction

1.1 Background
1.2 Purpose
1.3 Problem Statement
1.4 Limitations e e e
1.5 Method e
2 Graphics
2.1 Deferred Rendering
2.1.1 Previous Work
2.1.2 Results e
2.1.3 Discussion e e e e
2.2 Post-Processing
2.2.1 Edge Detection Lo
2.2.2 Anti-Aliasing
2.2.3 Gaussian Blur
2.24 Motion Blur.
225 Bloom e e e e e
2.2.6 Screen Space Ambient Occulsion
227 GodRays
2.3 Shadows
2.3.1 Previous Work
2.3.2 Results
2.3.3 Discussion e
2.4 Particle System Lo
2.4.1 Previouswork e
2.4.2 Results e e e e
2.4.3 Discussion e
3 Results

CONTENTS

4 Discussion and Conclusion 44

ii

Introduction

The focus of this thesis will be on the graphical techniques used in this project. There-
fore, game logic and other underlying functionality of the game will not be thoroughly
explained and discussed. However, a brief presentation of the resulting gameplay will be
included in Chapter 3.

The thesis is carried out by students that have completed the computer graphics course
TDA361 at Chalmers University of Technology. It is assumed that the reader has the
same, or equivalent, amount of knowledge in the field of computer graphics.

1.1 Background

The video game industry today is already huge, however, it is constantly expanding and
growing rapidly. Games are everywhere and they are an important part of our daily life.
One prominent game market that has grown rapidly the last years is the indie scene.
Indie games are developed independently from any publisher, typically by small teams
testing new ideas and concepts.

To render a realistic picture, computer graphics simplifies and approximates reality. The
techniques that depict reality best requires a lot of computing power, which makes them
slow, and are therefore not suited for real-time applications. Because of this, the video
game industry uses even rougher techniques to achieve fast rendering at the expense of
adherence to reality.

The computational power of personal computers has improved tremendously in the last
couple of years, which has allowed a possibility of higher graphical authenticity. The
constant advances in the research area of graphics continuously raise the bar of what is

1.2. PURPOSE CHAPTER 1. INTRODUCTION

considered as good-looking games. The competitive environment in the game industry
drives the research in graphics forward. These two factors push each other in a self-
catalyzing way.

Since the computing power of the graphical processing units is evolving, the need to
optimize algorithms for smaller games becomes dispensable. Time can then be directed
towards increasing the amount of implemented visual effects as an alternative to micro-
managing every algorithm.

1.2 Purpose

The purpose of this project is to explore the possibility, with a team of five, to create a
game within the timeframe of three months, which is graphically pleasing and exciting.
The project will focus on achieving a visually exciting gameplay through a multitude
of graphical effects. By implementation and analysis of different graphical effects, the
group members intend to learn more about the underlying graphical techniques used to
render 3D graphics.

The goal is to take artistic influences from TRON: Uprising [1], which takes place in a
dark city environment with glowing light sources outlining most objects in its world, and
explore which graphical effects are suited for this visual setting. The group also wants
to achieve a unique gameplay element by introducing gravitational shifts. Therefore, the
name Gravitron will be used throughout the report when referencing to the game.

1.3 Problem Statement

Questions connected to the purpose of this project include:

e How far can a group of five reach with a time limit of three months in order to
create a TRON inspired racing game?

e Which graphical effects are suitable when creating a racing game set in a dark city
environment, with many glowing lights?

Suitability is an ambiguous term, and is in this project considered with regards to visual
appearance, efficiency and ease of implementation. In order to specify the latter question
of the above, the following sub-questions have been constructed:

e Which graphical effects are required to achieve the glowing lights?
e Which graphical effects are suited for use in a dark environment?
e Which graphical effects contribute most towards the visual goal set in the project?

e Which graphical effects can be used to enhance the sense of speed in a racing game?

1.4. LIMITATIONS CHAPTER 1. INTRODUCTION

1.4 Limitations

This project focuses on graphics and will use already existing and implemented effects
wherever possible. Therefore, the group will resort to existing frameworks when possible,
i.e., any relevant libraries, features or models that can be acquired will be used to save
time.

The project has a timeframe of roughly three months, which is a lot less than the regular
timeframe for game development. The largest asset for the group is the estimated 400
hours of work per individual, but it is also the largest limitation of the project. Therefore,
it is vital that this resource is managed with care.

A common problem in computer graphics is optimization; not all users have a high-
end graphics card, which makes it important that algorithms work for average cards,
and therefore, avoids any kind of redundancy. This project, however, will not focus on
optimizations, and, thus, target high-end systems with a lot of computing power.

Since the group wants a graphically aligned game, a racing game is chosen. A racing
game does not require many, if any, animations which can be time consuming to realize.
Instead the implementation and study of graphical effects is prioritized.

1.5 Method

One of the first important decisions a group has to make is how the group will be
composed. Two different constellations were considered, one with a fully democratic
group, and one with a group leader. This group has chosen a project leader that can keep
the project under supervision, as well as solve minor conflicts. Different responsibilities
are distributed between group members. Being responsible does not mean doing the
task alone, but rather making sure the task gets done.

The group adopts an agile approach and uses iteration cycles during the product de-
velopment (see Figure 1.1). At the end of each iteration the group strives to have a
working implementation of the product with increasing quality and complexion. This
method reduces early planning overhead, and enables planning in an iterative manner at
the end of each cycle. Taking on a whole project directly would be extremely difficult,
which leads to dividing the project into smaller parts. The subprojects are graphics,
game logics, and models. The process of modeling is quite time consuming, and pre
made models are used when possible. The models are modified to suit the needs of the
project.

The project uses XNA Game Studio 4.0, alongside C# with .NET, and the IDE used is
Visual Studio 2010/2013. JigLibX is chosen as the physics engine of the game. Func-
tionalities and effects are added as the project progresses, and therefore, a component
based design is chosen.

1.5. METHOD CHAPTER 1. INTRODUCTION

1. Specify new
requirements

5. Evaluate 2. Plan the
software next release

4. Release 3. Development
software and testing

Figure 1.1: An illustration of the iteration cycles used during the development of Gravitron.

A git repository is used, which allows the subprojects to be developed independently.
The group is split over the subprojects in teams of one to three persons, depending
on the work needed to reach the goals of the current iteration. To make everybody
equally incorporated in the whole project, the members rotate between the different
subprojects.

Graphics

This is the scientific main theory part of the report. Each section will start with an
explanation of the techniques that have been considered in the respective field, and
then, proceed with a description of how these techniques are used in Gravitron, followed
by results and a brief discussion.

2.1 Deferred Rendering

The standard rendering technique for most engines is forward rendering. Each object
is rendered once for each light to the back buffer. Lighting may also be calculated for
points not visible on the screen. In other words, if there are many dynamic light sources,
classic forward rendering should not be used [2].

An alternative technique is deferred rendering. As the name implies, lighting will be
applied after the geometry is drawn, similar to a post-process (see Section 2.2). This
way each object and light will only be drawn once, and since the lighting is drawn in
screen space, unnecessary light calculations for points that do not show up on screen are
avoided.

Since Gravitron is TRON-inspired, and uses dark environments with lots of lights cre-
ating contrasts, a deferred renderer is preferable.

2.1.1 Previous Work

Deferred rendering was introduced by Michel Deering et al. at SIGGRAPH 1988, al-
though they did not use the term deferred [3]. The modern form of deferred shading

2.1. DEFERRED RENDERING CHAPTER 2. GRAPHICS

that is used today was introduced by Saito and Takahashi in 1990, also without using
the term deferred [4]. The first game that used deferred shading was Shrek for Xbox,
shipped in 2001 [5].

The technique consists of mainly three steps (see Figure 2.1). The first step is to draw
the objects to a geometry buffer (G-buffer). The G-buffer must, as a minimum, con-
sist of the diffuse color, surface normal, and world coordinates for each pixel on the
screen [6]. Further possible information may be emissive color, specular power, and
specular intensity.

-

Figure 2.1: The stages of the deferred rendering pipeline. The geometry stage is the only
stage working with the 3D scene and all the subsequent stages operate with the information
derived from the 2D G-buffer.

In the second step, the contribution of the light sources is accumulated and blended
additively. The lights cannot have infinite reach so they are rendered as volumes: spot
lights as cones, point lights as spheres, and directional lights as quads or boxes. To
calculate lighting, the surface normal, position, and color of the pixel is read from the
G-buffer.

After the lighting stage, it is time to process the image before it is shown on the screen.
Since deferred rendering cannot use hardware anti-aliasing, a preferable post-processing
effect may be anti-aliasing (see Section 2.2.2). The last step is to write the image to the
back buffer.

To reduce some overhead, in terms of texture accesses when computing the lighting, in
conventional deferred shading, deferred lighting can be applied [7]. When using deferred
lighting, the diffuse and specular components are separated and stored in different light
maps. These light maps are combined with the color buffer in the G-buffer in a third
pass.

As further optimization, the depth can be stored instead of the world coordinates, which
can be recreated when they are needed. It is also possible to only store the x- and
y-coordinates, as the z-coordinate can also be recreated [8].

2.1. DEFERRED RENDERING CHAPTER 2. GRAPHICS

2.1.2 Results

The first stage of the deferred renderer is to create the G-buffer. The G-buffer of Grav-
itron consists of four render targets (see Figure 2.2): the diffuse buffer with the color
of the scene, the depth buffer for reconstruction of world coordinates, the normal buffer
where the surface normal for each pixel of the screen is stored, and an emissive buffer
which contains the emissive properties of the scene.

The diffuse, normal, and emissive buffers use a 32-bit ARGB pixel format, using 8 bits
per channel. However, a 32-bit float format, with 32 bits for the red channel, is used
for the depth buffer. In the diffuse buffer, the RGB-channels are the RGB-values of the
diffuse color of the pixel, and the alpha channel is used for specular intensity. Similarly,
the normal buffer contains the 3D-normal and specular power of the pixel.

(a) Diffuse buffer. (b) Depth buffer.

(c) Normal buffer. (d) Emissive buffer.

Figure 2.2: The G-buffer used in Gravitron. (a) The diffuse buffer contains the colors
of the scene. (b) In the depth buffer, the depth of the scene is stored. (c) The normal
buffer consists of the world-space normals, and (d) the emissive buffer contains the emissive
materials of the scene.

In the lighting stage, Gravitron makes use of deferred lighting. The lighting is calculated
according to the Blinn-Phong model and stored in light maps (see Figure 2.3), one for dif-
fuse lighting (see Figure 2.3(a)), and one for specular lighting (see Figure 2.3(b)).

2.1. DEFERRED RENDERING CHAPTER 2. GRAPHICS

(a) Diffuse Light Map. (b) Specular Light Map.

Figure 2.3: The light maps created using the information stored in the G-buffer (see
Figure 2.2), the depth for recreating the world-space position of the pixels and, the normal
for lighting computations. These maps only contain the lighting of the scene.

Lastly, the light maps and the diffuse buffer are combined (see Figure 2.4). The value
of the diffuse light map is multiplied with the value of the diffuse buffer in the G-buffer,
and then the value of the specular light map is added.

Figure 2.4: The final image after combining the light maps (see Figure 2.3), with the color
of the scene contained in the diffuse buffer (see Figure 2.2(a)).

In order to simplify the implementation of the bloom post-process (see Section 2.2.5),
the emissive color is rendered to a separate buffer, the emissive buffer. To do this,
the specular component is simplified to not contain material specific color, but only a

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

specular intensity and specular power.

2.1.3 Discussion

Deferred rendering is important to our game since it creates the opportunity to use a
vast amount of light sources. These light sources can contribute to achieving a TRON-
like environment, because of the contrast they create when put in an otherwise dark
scene. However, it may have been possible to solve the problem of many light sources
when using forward rendering too. One solution could be to cull away light sources at
a certain distance to reduce them to a manageable amount. This would probably also
allow a high count of light sources, but the users may experience the lights turn on and
off, which most likely would annoy them. To resolve this, we could have used heavy fog
to conceal the effect of unlit light sources, but that could have created an undesirable
atmosphere in the scene.

One disadvantage of using deferred rendering in the development of Gravitron is the
time it took to implement, which is one of our most valued resources. However, when
using forward rendering, part of the G-buffer would need to be rendered anyway for
the post-processing stage, which is half the work of implementing deferred rendering.
Therefore, we believe that deferred rendering is preferable in Gravitron.

2.2 Post-Processing

Post-processing is the technique of applying a set of desired effects to a scene after it
has been rendered into a texture. It allows for artistic alteration and modification of the
image, which may enhance the perceived quality, or create a certain setting.

FEach subsection in this section starts with a very brief explanation of why the effect is
important. It then proceeds with an overview of the available algorithms and techniques,
and ultimately ends with motivations of the projects implementation choices.

2.2.1 Edge Detection

In this project, edge detection is used to allow the ability of anti-aliasing (AA). The
standard AA solution, Multisample Anti-Aliasing (MSAA), is not suitable since a de-
ferred renderer is used [9]. The reader is referred to Section 2.2.2 for an explanation of
what anti-aliasing is and how it is performed.

Edge detection is a method used to find discontinuities in the discrete space of a digital
image. These discontinuities usually occur at edges. They are detected by approximating
the intensity gradient magnitude (g) of a pixel, and check if it is large enough to indicate

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

an edge. The approximation of g is achieved by analyzing variance in color, depth,
normals, or light intensity in the image.

Previous Work

There are two main approaches used for edge detection: the first one being the tem-
plate matching (TM) approach, and the second one being the differential gradient (DG)
approach [10]. The difference between the TM and DG methods is mainly how they
approximate g.

Both TM and DG use convolution masks to approximate the local intensity gradients
of an image [10]. The DG approach is more accurate, but is computationally expen-
sive. However, it only requires two convolution masks to be used, while TM usually
employs eight to twelve masks. For use in Gravitron, accuracy was chosen over perfor-
mance.

Basically, the masks are used as templates for a pixel neighborhood. The observant
reader will notice that the sum of all coefficients in a mask is zero (see Figure 2.5).
This means that when the mask is applied over a homogeneous pixel neighborhood the
output will be zero, resulting in no edges being detected. However, if the neighborhood is
heterogeneous the output pixel will not be zero and an edge could be present. Whether or
not the result is considered an edge depends on the magnitude of g and what thresholds
are set in the edge detector.

s ™
1 0 1
—Convolve—®= -1 0 1
1 0 1

- /

Haorizontal Pass

s N
1 1 1
——Convolve—» 0 0 O
1 -1 1

- S

Vertical Pass

Figure 2.5: An illustration of a two-dimensional convolution between an input image
(left) and the Prewitt masks (middle). The resulting edge detected image (right). The red
rectangles (left) is an example of where the masks could be placed during a convolution and
the green rectangle (right) is where the output pixel would be placed.

10

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

In this thesis, four of the most frequently used DG convolution masks have been con-
sidered. They are: the Roberts mask, the Sobel mask, the Prewitt mask and the Lapla-
cian [11, 12]. These masks can operate on the least amount of information available in
an image.

(a) The Roberts Masks. (b) The Sobel Masks.
101 [. 0 -1 0 1 -1 Il
G, 1 0 1| Gy | 00 0 G 1 d =1 1 & =1
_ 1 0 1 I_ 1 1 1 a -1 0 -1 -1 -1
(c) The Prewitt Masks. (d) The Laplacian Masks.

Figure 2.6: Four convolution masks frequently used for edge detection.

The most appealing aspect of the Roberts masks is their simplicity, that is, they are
quite small (see Figure 2.6(a)). They perform a simple 2D spatial gradient measurement
for each pixel in a given image [11]. However, they are very susceptible to noise [13],
and was thus discarded for use in Gravitron.

The Sobel, Prewitt and Laplacian methods work in much the same way. They ap-
proximate a 2D spatial image gradient using 3x3 masks (see Figure 2.6). According to
Acharjya et al [12], edges detected by the Laplacian are irregular and thick, whereas
edges detected by Prewitt and Sobel give much clearer results. They concluded that the
Sobel masks, on average, performs better than the Prewitt and Laplacian.

The initial edge detection shader of Gravitron took heavy influence from a shader pro-
posed by Agnius Vasiliauskas [14]. The appealing aspects of this shader were its ease
of implementation due to very accessible code and its low computational cost. It was
therefore implemented.

Since the only thing that differs in terms of implementation for the Sobel, Prewitt
and Laplacian edge detection techniques are the masks used, the choice was made to
implement a general edge detection shader that could handle generic 3x3 masks. The
implementation was as easy as adding a convolution method to the initial shader and
then use this instead of the approximation technique used before.

11

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

Results

The results, produced by the four edge detection techniques, proved to vary in quality
(see Figure 2.7). It is clear that the initial technique, as proposed by Vasiliauskas, is not
performing as well as the other three.

Taking a closer look at the Sobel, Prewitt, and Laplacian, one can see that the Sobel
seems to over detect the edges a little (look at the thick edges around the car and also in
the background of the car), while the Laplacian, on the other hand, seems to be under
detecting the edges, if only a little. The best performing method for our purpose, which
is to allow anti-aliasing, is the Prewitt masks. The goal is clear edges, which can be used
to calculate weights in the anti-aliasing pass.

The input image

Sobel Vasiliauskas

Step 1

The grayscaled image Prewitt Laplacian of Gaussian

Figure 2.7: The edge detection results using Sobel, Prewitt, the Laplacian and the simpler
shader written by Vasiliauskas. This is done in two main steps: in step 1, take the input
image and make a gray scale version of it, in step 2, perform the convolution between the
gray scale image and the masks, square the results, add them together, and then take the
square root of that sum which results in the final images seen at the end of their respective
arrows in this flowchart.

Using different threshold settings had a huge effect on the edge detection results (see
Figure 2.8). The thresholds are used to decide when a pixel should be marked as an edge
(black) in the output image. It can be observed that by increasing the span between the
lower threshold and the upper threshold, the amount of detected edges either increases
(see Figure 2.8(c)) or decreases (see Figure 2.8(d)). A span that is too large will result
in over detection of edges, and a span that is too small will result in under detection;
which thresholds that give the best edge detection quality are not known beforehand.

12

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

An empirical analysis with different thresholds had to be done in order to see which
settings that gave the best results. Threshold setting 1 proved to give the best quality
(see Figure 2.8).

(a) The input image. (b) The average intensity image.

(c) Threshold setting 1. (d) Threshold setting 2.

Figure 2.8: The results of different threshold settings. (a) The input image. (b) The
average intensity image. (c) The result of a lower threshold set to 0.1 and an upper threshold
set to 0.7. (d) The result of a lower threshold set to 0.25 and an upper threshold set to 0.4.

Discussion

The edge detector by itself does not really contribute to our visual goals, but it is used in
our anti-aliasing technique (see Section 2.2.2). One property that would have improved
our final implementation of the edge detector turned out to be the ability to detect
edges other than horizontal and vertical ones. We could have implemented a template
matching edge detector, as they use eight to twelve convolution masks, which could
have been used to further our capabilities of differentiating between edges. However, the
edges detected using our approach should be more accurate than those detected with a
template matching edge detector.

2.2.2 Anti-Aliasing

A frequently occurring problem when rendering a scene in computer graphics is under-
sampling. The scene must be sampled in order to get its discrete version to be displayed

13

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

on the screen. This often results in jagged contours of objects and is more formally
known as aliasing [15]. The method used to reduce aliasing is called anti-aliasing.

Previous Work

For more than a decade, the standard solution to anti-aliasing has been Multisample
Anti-Aliasing (MSAA) and Supersample Anti-Aliasing (SSAA) [16]. However, a de-
ferred renderer can not directly take advantage of the multisampled framebuffers used
by MSAA, which makes MSAA unsuitable for this project [9]. Supersampling is not
suited for real-time rendering because of its slow computational speed. Therefore, anti-
aliasing as a post-processing step must be considered.

Research of anti-aliasing as a post-processing technique has recently become popular in
both academia and the industry [9]. The recent Morphological Anti-Aliasing (MLAA)
method, proposed by Reshetov [17], inspired a burst of new real-time anti-aliasing tech-
niques that rival even MSAA in terms of quality and performance [9, 16].

The sought after attributes for anti-aliasing in this thesis are: the ability to perform in
real-time and preferably quality on par with MSAA. The MLAA technique previously
mentioned is designed to run on the CPU, and therefore, not suitable for real-time
graphics rendering [17]. However, many of the techniques that evolved from MLAA are
designed to run in real-time, and are thus, viable options in this project.

A quite modern MLAA based technique considered is Enhanced Subpixel Morphological
Anti-Aliasing (SMAA), and builds upon Jimenez’s MLAA. Jimenez’s MLAA in turn
is an evolution of the original MLAA technique proposed by Reshetov [17]. SMAA is
designed to run in real-time as a post-processing step and is believed to rival the anti-
aliasing quality of MSAA [16]. Source code and good documentation for SMAA is also
available, which is great for fast adaptation of the method.

Another technique considered was Directionally Localized Anti-Aliasing (DLAA), which
is a simplification of MLAA, basically removing the weight calculation step to make it
perform in real-time [9]. The simplicity of this method is intriguing and, thus, a viable
option for use in Gravitron. However, the method does produce blurrier results than
MSAA [16], which is not desired.

Other methods considered were Hybrid MLAA and Fast Approximate Anti-Aliasing
(FXAA). Hybrid MLAA turned out to be for use on the Xbox360, which is not the
target platform for this project, while FXAA, a cutting edge method being developed
by Nvidia, is yet to be released [9]. Because of this, neither of them is applicable in this
thesis.

Neither FXAA nor Hybrid MLAA was viable candidates, and will therefore not be
implemented. DLAA is a good option with the worst drawback being that it does not
produce high quality results. Finally, SMAA is the only technique of those considered

14

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

that performs in real-time and is believed to produce results of same quality as MSAA,
therefore it will be implemented.

Since all the considered techniques are some form of evolution of the MLAA method,
an explanation, albeit brief, is in order. The MLAA technique consist of three main
steps, in step 1, detection of edges, in step 2, calculation of weights, in step 3, blending
of neighboring colors [17].

Edge detection is performed in order to find the edges at which anti-aliasing is nec-
essary, which is accomplished by finding discontinuities between pixels in the image.
The reader is referred to Section 2.2.1 for a more thorough explanation of edge detec-
tion. The weights are then calculated by identifying predefined shapes around these
edges [17]. Finally, the weights are used to blend neighboring pixels in an intelligent way
(see Figure 2.9).

Figure 2.9: The image shows how the pixel C,p, contributes to the pixel Cyq using the
weight a, as calculated by MLAA. First, edges are detected (magenta lines). Predefined
shapes are then recognized using the detected edges. The shapes are used to try and recon-
struct the actual edge (the green line), which in turn allows calculation of the coverage area
for the considered pixels. The complete formula in this case is: ¢pew = (1—a)*Cotd +a* Copp,
where ¢, 1S the anti-aliased version of cg4.

The SMAA technique is quite complex and, therefore, a detailed explanation is consid-
ered out of scope for this thesis. It is, as previously stated, a method based on Jimenez’s
MLAA, which in turn is an evolution of MLAA.

Results

The adaptation of SMAA was harder than expected, even with the great source of pre-
made code and documentation. After an effort to port the SMAA technique into the
post-processing pipeline used in Gravitron, no positive anti-aliasing results were pro-
duced. However, anti-aliasing is not the most visually contributing effect in a graphical
application and, thus, not a priority for this project. Instead of putting numerous of
hours into debugging, the choice was made to fall back on a simple DLAA inspired
algorithm.

The DLAA inspired method used in Gravitron utilizes an edge detector that detects

15

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

horizontal and vertical edges using the Prewitt convolution masks, and marks them with
a unique color (see Figure 2.10). The anti-aliasing is achieved by sampling the detected
edges, and then perform a vertical or horizontal blend depending on the value sampled
(see Figure 2.10). This method does not produce results of high quality, but edges in the
final scene does look less jagged (see Figure 2.11). The horizontal blend is performed by
simply sampling the three neighboring pixels to the left and right of the pixel considered
for anti-aliasing in the scene. By averaging the sampled pixels, the final anti-aliased
pixel color can be achieved. The same approach is done for a vertical blend, with the
difference being that the pixels sampled are the three above and beneath the pixel.

‘ '

Figure 2.10: This figure illustrates the DLAA inspired anti-aliasing method used in this
thesis. It consists of two main steps: in step 1, vertical (blue) and horizontal (red) edges
are detected using Prewitt convolution masks, in step 2, a vertical or horizontal blend is
performed depending on the detected edge. The scene before anti-aliasing is shown to the
left and the resulting anti-aliased scene is shown to the right.

(a) The scene without anti-aliasing. (b) The scene with anti-aliasing.

Figure 2.11: Examples of anti-aliasing from Gravitron: without anti-aliasing (left) and
with anti-aliasing (right). Look at the edges of the car and the track. They are not as
jagged in (b) as they are in (a).

The edges in the anti-aliased scene (see Figure 2.11(b)) is not as jagged as those in
the original scene (see Figure 2.11(a)). However, a problem observed is that the edge
detector marks some edges as both horizontal (red) and vertical (blue) (see bottom left
edge in Figure 2.10), which can result in edges that look dithered instead of smooth.
Nevertheless, the overall impression of the scene is that edges look smoother, which is
the main purpose of the anti-aliasing technique.

16

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

Discussion

Our implementation of anti-aliasing ended up being quite basic, but its contribution to
the final product is visible and edges are perceived as less jagged. If we had managed
to adapt a more sophisticated anti-aliasing method, such as SMAA, we probably would
have been able to reduce the aliasing even further.

One thing we could have improved upon is the number of directions in which edges
can be detected in our edge detection algorithm. Our current edge detector only marks
horizontal and vertical edges. It would have been preferable to also be able to detect
diagonal edges, giving our anti-aliasing algorithm more blending freedom, which in turn,
most likely would have produced more convincing results. That being said, the imple-
mentation of our final anti-aliasing method ended up taking time that might have been
better spent on other, more visually prominent, features.

2.2.3 Gaussian Blur

Image smoothing is not a vital part of the game by itself, but it is an essential part of
achieving bloom (see Section 2.2.5). This can be done in several ways, and one effective
way of blurring an image is Gaussian blur, also known as Gaussian filtering or Gaussian
smoothing [18]. Gaussian blur is mostly used to reduce noise and remove details [19].
Generally in games, Gaussian blur (see Figure 2.12) is used to create heat haze, bloom,
or depth-of-field [20].

Previous Work

Major image blurring filters are mean, median, Gaussian and bilateral filtering. Bilat-
eral filtering preserves edges and is therefore not suitable for use in this project, since
the bloom effect requires blurred edges [21]. The median filter takes the median of
the values around the center pixel and replaces the center pixel with that value. The
median technique, however, is expensive to compute compared to mean and Gaussian
filtering [22].

Figure 2.12: An illustration of the Gaussian blur effect.

17

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

Gaussian filtering and mean filtering are similar, since both methods average pixels in
order to distort the image [23]. The Gaussian filter uses larger weights for the central
pixels when compared to the mean filter, which has uniform weighting. This means that
the weights of the Gaussian function is similar to a normal distribution curve (see Fig-
ure 2.13) [19]. Both effects are generated by a convolution between an image and a con-
volution mask (see Section 2.2.1 for more information about convolution masks).

1 —a?
G(z) = 5 202 (2.1)
1 —(@?+y?)
Glry) = 5—e > (2.2)

In Gaussian blur, the values of the convolution mask are calculated via Equations 2.1
and 2.2 (see above) [18]. In equation 2.1 and 2.2 the parameters z, and y is the distances
from the origin along their respective axis, and o is the standard deviation for the
Gaussian blur function. For efficiency, it is profitable to utilize the separable property of
Gaussian blur, and divide the process into two separate passes [19], one horizontal and
one vertical, where the order in which they are performed is interchangeable. The end
result is the same as using the two-dimensional convolution masks to convolve with, but
the two-dimensional operation requires more calculations.

Mean-filtering does not have this attribute, which makes it less appealing. The tech-
nique considered for implementation in Gravitron is therefore Gaussian blur, due to its
inexpensive computational cost.

The discretization of Gaussian blur is achieved by sampling the function at discrete
points, often at corresponding positions to the midpoints of each pixel. Point sampling
the function reduces the computational cost, but can give large errors for small filter
convolution masks [18]. For smaller convolution masks, accuracy can be maintained via
integration of the Gaussian function over the area of each pixel [19].

After the discretization of the continuous Gaussian values into the discrete values of the
convolution mask, the sum of the convolution mask will differ from one [19]. This will
result in the image becoming darker or brighter, but the distortion can be avoided by
normalization, that is, dividing each term by the sum of the terms of the convolution
mask.

18

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

Figure 2.13: An example of a Gaussian function with its center around the origin. The
values of the convolution mask are represented by the height and color, and show that the
coordinates closer to the origin are of greater value.

Gravitron does not include any effects solely using Gaussian blur. However, the results
of effects including Gaussian blur are presented in Section 2.2.5 and 2.2.6.

2.2.4 Motion Blur

One essential part when developing a racing game, making it distinct from other game
genres, is achieving a sense of speed. A great way to accomplish this is by using motion
blur. Motion blur is a technique used to simulate the naturally occurring phenomenon
of objects being perceived as blurry at high speeds.

Previous Work

There are two major and popular motion blur techniques: image space motion blur [24]
and post-process motion blur [25]. When using image space motion blur, the result
tends to look realistic and the implementation is simple in comparison to the post-
process alternative. However, this process can be expensive when rendering in real-
time. Rendering motion blur as a post-processing effect is the more efficient option, and
therefore, used in this thesis.

The post-processing technique that was chosen for this thesis was introduced in 2007
by Rosado [25]. The technique was selected partly because the article, in which it was
displayed, provided great example code. The pixel shader uses the value stored in the
depth buffer to retrieve the 3D-position for each pixel on screen. This 3D-position is

19

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

transformed with the previous and current view-projection matrix, in order to obtain
a measure of how each pixel has moved between the last two frames. The measure
corresponds to the pixels velocity, and will determine the direction in which that pixel
will be blurred (see Figure 2.14).

Results

When comparing the results without motion blur (see Figure 2.14(a)), with the results
with motion blur (see Figure 2.14(b)), it is clear that the motion blur effect contributes
to achieving a sense of speed. Since the car always will be moving at a constant speed,
relative to the camera, the surface of the car should never be blurred. A mask can be used
to make sure that no blur is performed in that area of the screen (see Figure 2.15).

160 km/R
1194 727 WS

f 17ghts: 29

(a) The scene without motion blur. (b) The scene with motion blur.

Figure 2.14: (a) The figure shows the scene without motion blur, (b) and how it changes
with motion blur.

Figure 2.15: Here, the texture used to mask the scene is shown. The black area informs
the motion blur shader where no blurring is necessary.

Discussion

Motion blur aids in achieving a sense of high speed in our game. We consider the effect
to be worth the time we put into the implementation. Motion blur might not make

20

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

the game achieve the desired TRON-look, but we do believe it does help make it a
better racing game, by increasing the sense of speed. Proper motion blur reflects how
we experience high speed movement in reality, and by not incorporating motion blur,
the movement of the car may be harder to percieve.

The method we chose is not the most accurate, but we regard it as the best option
for our game. However, when using the motion blur in Gravitron constantly, the scene
became over blurred and somewhat distorted. Instead, we believe that it is best used in
combination with speed boosts.

2.2.5 Bloom

As previously stated, the intention of the project is to create a game with influences
from TRON, which involves dark environments with many light sources. The standard
lighting model is not capable of capturing the phenomenon that the human eye produces
when looking directly into an intense light source, known as glare. In order to solve this,
several techniques exists, which are able to approximate this phenomenon and allow
glare to be reproduced in a real-time renderer.

Previous Work

Glare produces scattered light around bright regions, and can be reproduced with two
techniques, flare and bloom [26]. Flare can be described as the spikes and the halo
surrounding the light, while bloom refers to the loss of contrast in the proximity of the
light. The latter suits this project, since a vast amount of emissive materials are used in
Gravitron, and bloom is great for the highlighting of them.

Bloom for small, point-like objects can be produced by attaching a billboard with a
"glowy” texture [27]. However, bloom for larger objects with more complex shapes will
most likely become unnecessarily complicated if this method is used. The fact that the
project do not make use of any point-like objects, which requires bloom, is why billboards
will not be used to achieve this effect in Gravitron.

The method used to create bloom in Gravitron, is a post-process of the scene [27], which
suit our implementation of deferred rendering well. The post-process can be achieved in
three main steps (see Figure 2.16): in step 1, the emissive components of the original
image are rendered into a separate texture; in step 2, the texture is blurred, preferably
with help of Gaussian blur; in step 3, the blurred emissive texture is combined with the
original scene. The reader is referred to Section 2.2.3 for a more detailed explanation of
Gaussian blur.

21

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

(d) The final image with the

() Original image bloom effect active

(c) Blurred emissive render
taget

(b) Emissive render target

Figure 2.16: Rendering steps for adding bloom to the scene. (a) Contains the original
image, (b) shows solely the emissive parts of the scene. (c) Is the emissive parts after the
blur and (d) contains the final image after the blurred emissive image have been additively
blended into the original image.

Results

When comparing the image without bloom (see Figure 2.17(a)), alongside the image
with bloom (see Figure 2.17(b)), the visual contribution of the bloom effect becomes
apparent. Since our models make use of an extensive amount of emissive materials, the
effect makes a huge impact on the appearance of Gravitron, without it, the emissive
materials appears to be flat and dull.

22

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

(a) An image without bloom. (b) An image with bloom.

Figure 2.17: A comparison between (a) an image without bloom, and (b) an image with
bloom.

Discussion

One of the objectives of Gravitron was to create a dark city environment with many
bright light sources outlining the buildings. The bloom effect makes the emissive colors
in the scene look like neon lights, which greatly aids in achieving the artistic goal set in
this project.

We could probably have improved upon the "neon light effect” by adding white emissive
colors to it. A neon light is basically a white light source in a colored transparent
container. However, the team did not have any experienced 3D-modelers, and therefore
these changes were not prioritized.

Since the Gaussian blur method is not only used in our implementation for bloom, but
also for our screen space ambient occlusion (SSAO) effect (see Section 2.2.6), the effort
put into implementing the effects was significantly reduced. In addition, the emissive
render target was already pre-computed by our deferred shading implementation (see
Section 2.1).

2.2.6 Screen Space Ambient Occulsion

Ambient occlusion (AO) is a measure of how much of the hemisphere of a point is
occluded, and roughly corresponds to the amount of indirect illumination [28]. Even
though it is not a realistic phenomenon, since reflected light from the sky or other
objects is rarely homogenous, the scene feel more realistic by enhancing the perceived
depth in the image (see Figure 2.18).

23

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

(a) An image without SSAO. (b) An image with SSAO.

Figure 2.18: An illustration of the difference with and without Screen Space Ambient
Occlusion (SSAQ). The geometry of the car seems flat in the image without SSAO (a), but
in the image with SSAO (b) you can see the actual shape of the car.

Previous Work

There are several existing methods to compute AO, and the difference between them is
in the extent to which accuracy is traded for speed. The methods using ray tracing are
the most accurate, but they are also very slow, and are therefore not suitable for real-
time rendering. However, the results from such calculations can be used in real-time,
although it adds the limitation that the scene must be static [29].

A class of real-time methods, collectively known as screen space ambient occlusion
(SSAO), trades accuracy for a significant increase in performance. SSAQO, compared
to other AO methods, works on all types of scenes, is exceedingly faster, and simpler to
implement and integrate to existing rendering pipelines [30]. However, it is far from accu-
rate, and suffers from numerous quality issues. Despite that fact, due to its simplicity and
speed, SSAO has become popular in 3D games and other interactive applications.

The first version of SSAO was the "CryTek Screen Space Ambient Occlusion” [31]. Af-
ter came improvements and variations of it, such as "Approximating dynamic global
illumination in image space” [32] and "Multi-layer dual-resolution screen space ambient
occlusion” [33], which sought to increase quality and speed. A quite different approach
in screen space is Ambient Occlusion Volumes [34], which is analytical and produces
smooth and near ground truth results at impressing frame rates, but is still too slow for
usage in games.

The technique used in Gravitron is based on ”A Simple and Practical Approach to SSAO?”,
presented by José Marfa Méndez [35], and is desirable due to its simplicity and accessible
code. It samples randomly within a sphere surrounding the pixel, but all contributions
sampled behind the point, for which the occlusion is computed, will be discarded, i.e.,
only the samples that are sampled within the hemisphere will contribute to the ambient

24

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

occlusion term. The occlusion is calculated as seen in Equation 2.3, where n is the
normal of the occluded point and v is the vector between the occludee and the occluder.
Blurring is used to avoid the noise caused by sampling randomly.

max (0,7 - 0)

T+ ol 23)

Occlusion =

Results

There are three artistic control parameters, and their impacts of the AO were studied
empirically (see Figure 2.19). As can be seen in the top row, when the sample radius
parameter grows, the influence of an object increases, i.e., the car creates a larger contact
shadow. With a low value of the sample radius, corners in the scene becomes more
distinguished, which produces a more detailed AO (see Figure 2.19(a)). However, if the
value is too low, it will begin self-occluding, resulting in an overall darker image.

The middle row shows the effect of the intensity parameter, which determines the
strength of the occlusion. The impact of the last parameter, scale, is shown in the
third row, and it scales the length of the vector between the sample and the point for
which the occlusion is calculated. Values higher than one only results in a slightly fainter
AO (see Figure 2.19(i)). When scaled with a low value, the image begin to show "dark
halos” (see Figure 2.19(g)), which are prominent at the edges of the track. The images
in the middle column have the same parameter values, and are also thought of as the
result with the highest natural fidelity.

25

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

(a) Sample radius = 1 (b) Sample radius = 10 (c¢) Sample radius = 20
(d) Intensity = 0.5 (e) Intensity = 1 (f) Intensity = 2
(g) Scale = 0.3 (h) Scale =1 (i) Scale =2

Figure 2.19: Comparing different values of sample radius, intensity, and scale. The images
in the middle column have the same parameter values (sample radius = 10, intensity = 1,
scale = 1), and work as a reference. Each row shows the effect of individually changing one
of the parameters from its default value. These results are best viewed on a monitor with
high contrast, or a printed copy of the report.

When the SSAO, with the parameter values that produced the most accurate occlusion,
was applied to the final image, it produced no significant increase in perceived depth
(see Figure 2.20(a)). The tweaking of the parameters begun anew (see Figure 2.20). The
intensity was first increased, and the AO became more pronounced, but was still thought
of as vague (see Figure 2.20(b)). The sample radius was lowered and the corners of the
body of the car became visible (see Figure 2.20(c)), which brought out its shape.

26

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

(a) Sample radius = 10, Intensity = 1

(b) Sample radius = 10, Intensity = 2

(c) Sample radius = 2, Intensity = 2

Figure 2.20: The first pair of images shows the resulting AO with the default parameter
values. The desired increase in perceived depth is not achieved, which lead to the second pair
of images where the intensity parameter was increased. To emphasize the shape of the car,
the sample radius was reduced, which resulted in the final pair of images. The perspective
of these images slightly varies, but that is not an effect of SSAQO.

The configuration of sample radius = 2, intensity = 2, and scale = 1 produced the best
results and was therefore chosen as the SSAO configuration in this thesis. The effect
creates depth in the scene by darkening corners, and nooks, but the contact shadows is
nearly gone (see Figure 2.20(c)). However, Gravitron is desired to be fast paced and the
contact shadows between the car and the road should not be very noticeable anyway,

27

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

because the car will be in focus all the time, and therefore the visuals of the car was
prioritized. The geometry of the car looks more refined with our SSAO configuration
than without (see Figure 2.21).

(a) The scene with SSAO. (b) The scene without SSAO.

Figure 2.21: This figure illustrates the visual difference between a scene with SSAO (a)
and one without (b). It is clear that the geometric shape of the cars is more defined with
SSAO enabled.

The impact of the effect on the frame rate can be seen in Table 2.1. The time spent
calculating the AO is 0.32 ms when using the resolution 800x480, and 1.44 ms with
1920x1080, which implies that the time it takes for the AO to be computed increases
linearly with the resolution.

Without SSAO (fps) | With SSAO (fps) | Time (ms)
800x480 465 405 0.32
1920x1080 | 218 166 1.44

Table 2.1: Showing the frame rates for the resolutions 800x480 and 1920x1080 with and
without SSAO enabled, and the time in milliseconds spent computing the effect, using a
GeForce GTX 780.

Discussion

AOQO is important to create more pleasing graphics and is considered as one of the core
post-processes in Gravitron. The perceived depth is enhanced, which makes surfaces
seem less flat. However, in our current scene, we do not have a lot of complex geometry
that benefits of AO. Nevertheless, the shape of the car is greatly enhanced, and if we were
to update the scene with more complex geometry, such as detailed building structures,
the result of AO would be of greater significance.

Our implementation of SSAO required very little time, and has quite the impact on the
visual appearance of the game. Therefore, implementing the effect was well worth the

28

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

effort. The accuracy may be low, but the speed is not, and spending more computing
time for more accurate AO cannot be justified.

2.2.7 God Rays

When an object partly occludes the sun or another intense light source, there is a pos-
sibility that a phenomenon called light shafts will occur (see Figure 2.22). However,
this requires that the space, through which the light is transported, consists of a suffi-
cient amount of light scattering media, such as gas molecules or aerosols [36]. The god
ray effect approximates the phenomenon, and helps distinguish light sources with high
intensity in a scene - usually the sun.

Figure 2.22: Light shafts, here referred to as god rays, emerging between the buildings.

Previous Work

The very first occurrence of the effect, in computer graphics, was a modified shadow
volume algorithm [37]. However, the technique is not rendered in real-time, and is
therefore not considered for implementation in Gravitron.

Two methods that are efficient enough for real-time rendering are slice-based volume
rendering [38] and hardware shadow maps [39]. Due to the fact that both methods are
forward rendering techniques, none of them are suitable for this project.

Recently, an implementation of god rays as a post-process was proposed [36]. Since a
deferred renderer is used in this project, which provides a functional post-processing
pipeline, this is an interesting option. The post processing method can be described in
three steps (see Figure 2.23): first, the foreground objects are detected and masked out

29

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

by using the depth buffer; secondly, rays are generated and stored in a separate render
target; lastly, the rays are additively blended with the original image.

To generate the rays, the color value of each pixel is calculated by taking a number of
samples on a vector, from the screen space light position to the pixel. The combined
color of the samples on such a vector represents the color of the corresponding pixel.
However, no samples that are occluded will contribute to the final pixel color. The
sampling is described in Equation 2.4.

- ; L(s;, b;
L(s,0,¢) = exposure x Z decay' x weight x M, (2.4)
n
i=0

where s is the distance traveled through the media, 0 is the angle between the ray and
the light source, ¢ is the view location, n is the number of samples and L(s;, 6;) [36] is
the daylight scattering model. The exposure factor describes the overall intensity of the
rays, weight controls the intensity of each sample and decay smoothly attenuates the
light contribution of each sample as the distance to the light source increases.

30

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

) The original image. (b) Mask of the occluding object, stored in the
alpha channel.

) The god rays after sampling.) The final image with the god ray post-process
apphed

Figure 2.23: The pictures illustrate the procedure of creating the god ray effect as a post-
process. (a) Contains the original image, (b) shows an image with the foreground objects
masked out, (c¢) displays the original image after the sampling, and (d) is the sampled image
additively blended into the original image.

Results

There are a number of parameters (see Equation 2.4), that can alter the appearance of
the rays (see Figure 2.24). When comparing the different exposure values, one can clearly
see the impact of the parameter. With the low exposure values (see Figure 2.24(a)), the
god rays are barely seen, while the high exposure image (see Figure 2.24(c)), indicates
overexposure of the sky when looking straight into the light. When choosing an exposure
value in between (see Figure 2.24(b)), the result shows a balanced highlighting of the
light shafts, as well as a moderate exposure of the sky.

When analyzing the two images with a low number of samples per pixel (see Fig-
ure 2.24(d) and Figure 2.24(e)), the undersampling of the rays becomes apparent. This
makes the light shafts appear as segmented boxes, rather than smoothly faded rays.
When comparing the impact from a higher number of samples, the one with 80 samples
(see Figure 2.24(f)), indicates slightly less discrete rays, compared to the one with 40
samples (see Figure 2.24(b)). However, since the gain in quality is modest, the trade-off

31

2.2. POST-PROCESSING CHAPTER 2. GRAPHICS

in performance is not justified for Gravitron.

pIPE

a) Exposure = 0.2 b) Exposure = 0.5 c¢) Exposure = 0.8
) 10 Samples per pixel) 20 Samples per pixel) 80 Samples per pixel

Figure 2.24: A comparison of properties of the God Rays. The top row shows the results
of different exposure values, with a constant number of samples (40), while the bottom row
shows variation in number of samples, with a constant exposure value (0.5).

Discussion

The god ray effect gives the player the perception of a scene that is less static, which is
essential when it comes to games, and especially racing games. After careful observation,
the god rays may not provide any particular contribution to the TRON-feeling in the
game, but it does work well in our dark city environment. The light shafts beaming down
through the city skyline creates a contrast in the otherwise dark environment.

When it comes to visibility of the effect, the god rays are obscured by the large amount
of tall buildings that are present in the game, and are therefore not a common sight in
Gravitron. Although, this could easily be solved by thinning out the city skyline. We
could also have improved the aestethic aspect of the effect by adding more red color to
the god rays, as well as the sun, which probably would have created the feeling of a
sunset.

The amount of work required to implement the post-process effect was quite low. More
effort could have been spent on the implementation, mainly when it comes to the tweak-
ing of different parameters. In spite of this, we regard the overall results of the effect as
satisfying.

32

2.3. SHADOWS CHAPTER 2. GRAPHICS

2.3 Shadows

Determining if an object is mid-air or touching the ground is easy if a corresponding
shadow is apparent. Gravitron features jumps between platforms, and shadows aid the
player in determining where the car is and how to maneuver.

A shadow is the phenomenon when a space is occluded by an object in between the
light source and the space in question. There are three components required for shadows
to take form: a light source, an occluder and the shadowed object. The shadow can
be divided into three different parts: the umbra, penumbra and the antumbra (see
Figure 2.25) [40].

Light source Penumbra

¥ N

Umbra

(a) The umbra and the penumbra. (b) The antumbra and the penumbra.

Figure 2.25: The black area (umbra) represents where no light reaches, and the grey
area (penumbra) represents where some light reaches (a). Beyond the umbra extends the
antumbra (b), which just like the penumbra is partially occluded.

2.3.1 Previous Work

Ray-tracing computes shadows with high accuracy. However, since ray-tracing is not
suited for real-time rendering, it is not considered as a viable solution for use in this
project.

There are two commonly used groups of techniques for rendering shadows in real-time.
One of them, shadow volumes, uses the stencil buffer and the depth buffer, to create
shadows by extruding edges and calculating where the shadows are in the view frustum
of the camera. The shadows are calculated with either depth-fail or depth-pass [41]. The
other group of techniques, shadow mapping, is simpler. By only utilizing a depth buffer,
created from the point of view of the light source, and z-testing, shadows are created
quite efficiently [42].

Shadow volumes produces more accurate shadows, however, it is expensive in mesh-
heavy scenes because of the necessity of an edge detection algorithm [41]. Shadow
mapping, on the other hand, scales excellently with large scenes, does not require a lot

33

2.3. SHADOWS CHAPTER 2. GRAPHICS

of computational power, and is easy to implement. Shadow mapping does, however,
have problems with artifacts, and is limited to hard shadows without aid from other
techniques. Taking all of this into account, shadow mapping is the technique chosen to
render shadows in Gravitron.

Shadow mapping was introduced in 1978 [43]. The technique is performed by render-
ing the depth, as seen from the perspective of a light source, to a depth buffer (see
Figure 2.27). The depth buffer is then used when computing the lighting of the scene.
Lastly, screen space positions are translated to the view space of the light source. If
the z-coordinate is greater than the value in the depth map, the point is in shadow (see
Figure 2.26).

Depth = 0.0

Figure 2.26: This picture presents a light shining on two objects, which in turn casts
shadows. The depth values are normalized distances between the objects and the light
source.

2.3.2 Results

Gravitron uses one unique shadow map for each car, which follows the car (see Fig-
ure 2.28). The shadows are very simple, and due to the use of shadow mapping they
have some aliasing problems. However, the aliasing is not very noticeable while playing
the game, since the resolution of the shadow map is relatively high in comparison to the
area of the object casting the shadow.

34

2.3. SHADOWS CHAPTER 2. GRAPHICS

| S

Figure 2.27: The depth buffer used for rendering shadows in Gravitron. Darker colors
corresponds to points/objects closer to the light source.

Figure 2.28: The shadow cast by the car.

2.3.3 Discussion

The implementation of shadow mapping took more time than expected. First, a problem
with the directional light stopped the progress, and later a problem with the view-
projection matrix transformation to the shadow view space delayed the implementation.
Other than that, the implementation was straight forward and smooth.

35

2.4. PARTICLE SYSTEM CHAPTER 2. GRAPHICS

The result of the shadows in Gravitron is not very dominant, and prioritizing the imple-
mentation can be questioned. However, it does add a sense of perceived depth. Having
shadows under the car promotes the feeling of being in mid-air.

2.4 Particle System

Objects with fuzzy and irregular shapes are harder to visualize and are a recurring
problem when creating effects such as: fire, dynamic water, smoke, and snow. The
movement of these effects are usually perceived as random and chaotic. In games, particle
systems are often used to manage these objects. This section will describe the particle
effects that have been considered during this project and the integration with the game
engine.

2.4.1 Previous work

Particle systems were first introduced in 1983 and they create objects of primitive par-
ticles that move over time [44]. These particles have a lifetime, which is defined upon
their creation, and at the end of it, they are deleted. Non-deterministic variables are
used to create a random behavior, this gives the object a more irregular visual.

Different methods to realize a particle system was considered, either to create an entire
particle system from scratch, or to use an existing framework. The latter option was
chosen due to the limited timeframe, and that the performance of the particle system
would most likely be better.

There are two types of particle systems, one that is static and one that is animated.
A static particle system is distinct in the way that it renders the entire lifecycle of a
particle at once. This is often seen in the rendering of hair. In that example, a strand
of hair is the result of a particle being displayed in all its life stages at once.

An animated particle system goes through a lifecycle of a particle one step at a time.
This is useful when creating flowing effects such as water or fire. The animated particle
system was therefore deemed more appropriate for this project.

Particles are usually drawn as billboards or as point sprites. Billboards are a common
way to display textures in particle systems, and they consist of a quad with four vertices
marking the corners. Point sprites, on the other hand, only need one vertex in the
center to define its position. Only using one vertex means that less computations are
performed on the engine. However, larger particles will not be rendered when the center
is off screen. Since Gravitron needs large particles, a billboard based particle system is
required.

Two particle systems were considered: Dynamic Particle System Framework (DPSF) and
Mercury Particle System. Mercury Particle System is an open source project, and DPSF

36

2.4. PARTICLE SYSTEM CHAPTER 2. GRAPHICS

is not, but DPSF does provide great tutorials and code examples. Mercury Particle
system was discarded, since its developers stopped supporting it in 2013. Since the
developer of DPSF is still working actively with the particle system, that was chosen.
DPSF also seemed simple to integrate with the existing game engine, and it offered great
customizability for the particles.

2.4.2 Results

The particles are drawn in real-time as billboards. The different billboards originate
from png-files, which gives them a base that can be used for various effects. Upon the
initiation of the particles, different attributes are set. These attributes control where the
particles spawn, how they move, and how their appearance change over time. Several
different particle effects were created for this thesis and are featured below.

The initial idea of the game was to achieve a resemblance to the classic TRON-game,
where the vehicles have glowing tracks that appear behind them. The particle system
simulated this effect by creating a glowing tail that follows the car (see Figure 2.29(a)).

Another prioritized effect is rain. Rain can be costly for the processor, especially since
all the particle calculations for this thesis are computed in real-time on the CPU. In
order to decrease the computations, multiple raindrops are drawn per raindrop particle,
instead of separately (see Figure 2.29(b)).

The ability to prepare the player for the gravitational shifts in the game is important.
A spinning circle, or the "gravity circle”, was created for that purpose. Furthermore, its
rotational direction indicates which way the gravity will turn. This is the largest particle
that the system uses (see Figure 2.29(c)).

Smoke is a multi-purpose effect, and can be useful in almost every game. In this case,
it might be spawned from the engine, the exhaust pipe, and traps. Smoke clouds were
created, and can easily be adapted to any of these situations (see Figure 2.29(d)).

The game aims to have a futuristic appearance and aerial lights can contribute to this
(see Figure 2.29(e)). Basically, the effect consists of lights flying by above the track at
a random velocity in the opposite direction of the race. This effect also intensifies the
sense of speed.

Unfortunately, there are some problems integrating the framework into the final version
of the project, since it has trouble coexisting with deferred rendering. Due to some imple-
mentation restrictions, the particles cannot be trivially rendered into the G-buffer.

37

2.4. PARTICLE SYSTEM CHAPTER 2. GRAPHICS

(a) Glowing tracks gives the scene a more (b) The result of the rain effect.
TRON-resembling look.

(c¢) Gravity circle indicating gravity change. (d) The result of the smoke effect.

(e) The result of the aerial lights effect.

Figure 2.29: The figure shows the different particle system effects that were created for
this thesis.

2.4.3 Discussion

The framework was a great solution when used for controlling and customizing the parti-
cles the way we wanted to. At first this seemed like the preferable option, but we realized
our mistake when we tried to integrate it with deferred shading. Our results in the final
version would most likely have been better, if we had implemented our own particle
system. That would have given us full control of how the particles are drawn. However,
if we had implemented our own particle system, the amount of different particles would

38

2.4. PARTICLE SYSTEM CHAPTER 2. GRAPHICS

not have rivaled the amount of particles we achieved with DPSF. Although, we probably
would have had some that worked in our final version.

39

Results

The reader should now have a basic understanding of the individual contribution to the
visuals of each effect used in Gravitron. In this chapter, the combined results of the
techniques, explained and analyzed in Chapter 2, will be presented.

Gravitron is close to achieving the visual ambition set in this project (see Figure 3.1).
Neon lights, outlining models in the city environment, are enhanced using the bloom
effect (see the neon lights outlining the track and the buildings in Figure 3.1). It is also
visible that geometric shapes in the scene, mainly the cars, are enhanced by screen space
ambient occlusion (see the hood of the cars in Figure 3.1). The overall impression of the
scene is that edges look smooth, due to the anti-aliasing technique used in Gravitron.
However, from certain angles, edges can be perceived as dithered or over blurred.

In Gravitron, the player drives on a racing track in a gloomy city environment. The
track is split into four sections (see Figure 3.2), which are connected by what will be
referred to as gravitational junctions. A gravitational junction consists of a jump, which
triggers a gravitational shift, and a platform (see Figure 3.3). The gravitational shifts are
a part of the core game mechanics in Gravitron, and they bring an interesting element
to the game. Textured jumps with emissive arrows give the player an indication of the
direction in the upcoming gravitational shift.

The deferred renderer allows some artistic freedom regarding lighting of the game scenes.
One application of this is the spotlights that are attached to the car. This enables the
car to light up the environment, adding to the feeling that the car is actually part of the
scene (see Figure 3.4).

God rays, beaming down from above, in the dark city environment, brings life to the
scene (see Figure 3.5). This is an aspect in which Gravitron is lacking, due to the particle
system not making it into the final implementation. There are only a few moments in

40

CHAPTER 3. RESULTS

Figure 3.1: A scene from the final implementation of Gravitron. The figure shows the dark
environment in Gravitron with glowing outlines on the building and the track.

Figure 3.2: An overview of the race track used in Gravitron. The track is split into four
sections, one in each quadrant.

the game, when the god rays are clearly visible. Nevertheless, in those moments, they
enable brightness to be a part of the otherwise dark game.

Shadows cast by the car amplify the depth visualization of the scene, which further
incorporates the car with the environment. However, there are scenes when the shadows
are concealed due to the dark environment.

Motion blur intensifies the sense of velocity, in which the vehicle in the scene is moving

41

CHAPTER 3. RESULTS

(c) A car jumping to a platform. (d) A car jumping to the main track.

Figure 3.3: The figure shows the gravitational shift mechanics used in Gravitron. (a) The
cars at their starting position. (b) A gravity junction, consisting of a jump and a platform.
(c) The driver can choose a direction on the jump, guided by the arrows, which will trigger
a gravitational shift in that direction. (d) The player trying to jump back onto the main
track from a platform.

Figure 3.4: The car lights in Gravitron.

(see Figure 3.6). However, when using the motion blur in Gravitron at all times, the
blur can be perceived as excessive. Therefore, the final motion blur is preferably only
used with speed boosts.

42

CHAPTER 3. RESULTS

Figure 3.5: The god rays beaming down into an otherwise dark city environment.

Figure 3.6: The figure shows the motion blur used in Gravitron. Observe how the car gets
extruded in the opposite direction of its velocity.

43

Discussion and Conclusion

Our intention with this project was to explore which graphical effects are best suited
for a racing game set in a dark environment with a lot of glowing light sources. Of all
the post-processing effects implemented, we believe that bloom, screen space ambient
occlusion, and god rays, contributes the most towards the visual experience we were
trying to achieve. Bloom is the most prominent one, since it creates the impression of
emissive materials that are glowing.

A TRON-environment was used as inspiration for the glowing outlines of our models in
the game, and we believe that the models we have created aids in reaching our visual
goal. The combination of a deferred renderer and the graphical effects researched made
the luminous city environment in Gravitron possible.

The screen space ambient occlusion effect required very little time to implement. Nev-
ertheless, it still has an impact on the final visual appearance of the game that we are
satisfied with and, thus, an effect well worth its implementation time. Unfortunately, we
do not have a lot of complex geometry in the models that benefit from ambient occlusion.
If the models are updated with more complex geometry, the effects of ambient occlusion
will be even more significant.

Another effect that we believe is important for the game is motion blur, as it brings out
a sense of speed, which is vital in a racing game. We consider the final result of the
motion blur effect used in Gravitron to be a success, especially if combined with speed
boosts.

Shadows were given a lot of priority, but regrettably, the final result of the shadows is not
satisfying. Most of the time the shadows are not very noticeable, since the environment
that is used in Gravitron is very dark. In afterthought, we probably could have prioritized
shadows less and instead made it our priority to create new effects, or improve already

44

CHAPTER 4. DISCUSSION AND CONCLUSION

existing effects, with a greater visual impact.

The development model that we used allowed us to quickly dive into the development
phase, but turned out to be inadequate in some regards. We believe that an additional
step in the process, promoting a more thorough research of the techniques would have
improved the quality of our work. The method used, without this additional step, could
be better suited for a team more experienced in game development.

A question we asked ourselves at the start of this project was: "How far can a group of
five reach with a time limit of three months in order to create a TRON inspired racing
game?”. We feel the need to make it clear that this project does not represent how far
a group of five will reach, but rather, how far they can reach. That being said, in order
to reach further with our visual goal, some graphical effects could have received a higher
priority. The particle system, as previously stated, would probably have brought more
excitement to the game, and should most likely have been given more priority.

Finally, an important part of this thesis was to get an understanding of the underlying
techniques used in modern 3D-graphics rendering, therefore, XNA was used. If we had
used a development tool-kit, such as Unity or Unreal Engine 4, the game would most
likely have progressed further. Nevertheless, we have succeeded in creating a game which
contains some of the artistic elements and game features we set out to achieve.

45

Bibliography

[1] (2012) Tron: Uprising. [Online]. Available: http://www.imdb.com/title/tt1812523

[2] O. Olsson et al., “Tiled shading,” Journal of Graphics, GPU, and Game
Tools, wvol. 15, mno. 4, pp. 235-251, 2011. [Online]. Available: http:
//www.tandfonline.com/doi/abs/10.1080/2151237X.2011.621761

[3] M. Deering et al., “The triangle processor and normal vector shader: a
vlsi system for high performance graphics,” in SIGGRAPH ’88 Proceedings of
the 15th annual conference on Computer graphics and interactive techniques.
New York, USA: ACM, August 1988, pp. 21 — 30. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=378456.378468

[4] T. Saito et al., in SIGGRAPH 90 Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, August 1990.

[5] R. Geldreich. Gdc 2004 presentation on deferred lighting and shading. [Online].
Available: http://sites.google.com/site/richgel99 /home

[6] F. Policarpo et al. (2005) Deferred shading tutorial. [Online]. Avail-
able: http://nume.googlecode.com/svn-history/r12/trunk/monnezza/redsh/ogrel/
Deferred_Shading_Tutorial SBGAMES2005.pdf

[7] A. Lauritzen. (2010) Deferred rendering for current and future rendering
pipelines. [Online|. Available: http://bpsl0.idav.ucdavis.edu/talks/12-lauritzen_
DeferredShading_ BPS_SIGGRAPH2010_Notes.pdf

[8] S. Hargreaves et al. (2004) Deferred shading. [Online]. Avail-
able: http://http.download.nvidia.com/developer/presentations /2004 /6800_
Leagues/6800_Leagues_Deferred_Shading.pdf

[9] J. Jimenez et al., “Filtering approaches for real-time anti-aliasing,” in ACM SIG-
GRAPH Courses, 2011.

[10] E. R. Davies, Machine Vision, 3rd ed. Morgan Kaufmann, 2005.

46

http://www.imdb.com/title/tt1812523
http://www.tandfonline.com/doi/abs/10.1080/2151237X.2011.621761
http://www.tandfonline.com/doi/abs/10.1080/2151237X.2011.621761
http://dl.acm.org/citation.cfm?doid=378456.378468
http://sites.google.com/site/richgel99/home
http://nume.googlecode.com/svn-history/r12/trunk/monnezza/redsh/ogre1/Deferred_Shading_Tutorial_SBGAMES2005.pdf
http://nume.googlecode.com/svn-history/r12/trunk/monnezza/redsh/ogre1/Deferred_Shading_Tutorial_SBGAMES2005.pdf
http://bps10.idav.ucdavis.edu/talks/12-lauritzen_DeferredShading_BPS_SIGGRAPH2010_Notes.pdf
http://bps10.idav.ucdavis.edu/talks/12-lauritzen_DeferredShading_BPS_SIGGRAPH2010_Notes.pdf
http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[11]

N. Senthilkumaran et al., “Edge detection techniques for image segmentation —
a survey of soft computing approaches,” International Journal of Recent Trends
in Engineering, vol. 1, no. 2, pp. 250 — 254, May 2009. [Online|. Available:
http://ijrte.academypublisher.com /vol01/no02 /ijrte0102250254.pdf

P. P. Acharjya et al., “A study on image edge detection using the gradients,” In-
ternational Journal of Scientific and Research Publications (IJSRP), vol. 3, no. 12,
December 2012.

L. Davis, “A survey of edge detection techniques,” Computer Graphics and Image
Processing, vol. 4, no. 3, pp. 248 — 270, September 1975.

A. Vasiliauskas. (2010, June) Edge detection pixel shader. [Online]. Available:
http://coding-experiments.blogspot.se/2010/06 /edge-detection.html

T. Akenine-Moller et al., Real-Time Rendering, 3rd ed. Taylor & Francis Group,
2012.

J. Jimenez et al., “Smaa: Enhanced morphological antialiasing,” Computer Graphics
Forum (Proc. EUROGRAPHICS 2012), vol. 31, no. 2, 2012.

A. Reshetov, “Morphological antialiasing,” in Proceedings of the 2009 ACM Sympo-
stum on High Performance Graphics, 2009.

M. S. Nixon et al., Feature Extraction and Image Processing, 2nd ed. Academic
Press, 2008.

A. W. R. Fisher, S. Perkins et al. (2003) Gaussian smoothing. [Online]. Available:
http://homepages.inf.ed.ac.uk /rbf/HIPR2/gsmooth.htm

D. Rékos. (2010) Efficient gaussian blur with linear sampling. [Online]. Available:
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/

A. W. R. Fisher, S. Perkins et al. (Unknown) Bilateral filtering for gray and color
images. [Online]. Available: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_
COPIES/MANDUCHI1/Bilateral _Filtering.html

[22] ——. (2003) Median filter. [Online]. Available: http://homepages.inf.ed.ac.uk/rbf/

[23]

[24]

HIPR2/median.htm

——. (2003) Mean filter. [Online|. Available: http://homepages.inf.ed.ac.uk/rbf/
HIPR2/mean.htm

S. Green et al., “Stupid opengl shader tricks,” in Advanced OpenGL Game Program-
ming Course, 2003.

G. Rosado. (2007) Motion blur as a post-processing effect. [Online]. Available:
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html

47

http://ijrte.academypublisher.com/vol01/no02/ijrte0102250254.pdf
http://coding-experiments.blogspot.se/2010/06/edge-detection.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html

BIBLIOGRAPHY BIBLIOGRAPHY

[26]

[27]

[28]

[29]

[30]

T. Ritschel et al., “Temporal glare: Real-time dynamic simulation of the scattering
in the human eye,” Computer Graphics Forum, vol. 28, pp. 183-192, March 2009.

G. James. (2004) Real-time glow. [Online]. Available: http://http.developer.nvidia.
com/GPUGems/gpugems_ch21.html

D. Filion, “Principles and practice of screen space ambient occlusion,” in Game
Programming Gems 8, A. Lake, Ed. Cengage Learning, 2010, pp. 12-31.

M. Pharr et al., GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics. Pearson Higher Education, 2004.

F. Liu et al., “Multi-layer screen-space ambient occlusion using hybrid sampling,”
in Proceedings of the 12th ACM SIGGRAPH International Conference on
Virtual-Reality Continuum and Its Applications in Industry, ser. VRCAI
'13. New York, NY, USA: ACM, 2013, pp. 71-76. [Online]. Available:
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/2534329.2534335

M. Mittring, “Finding next gen: Cryengine 2,” in ACM SIGGRAPH 2007 Courses,
ser. SIGGRAPH ’07. New York, NY, USA: ACM, 2007, pp. 97-121. [Online].
Available: http://doi.acm.org/10.1145/1281500.1281671

T. Ritschel et al., “Approximating dynamic global illumination in image space,”
in Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games,
ser. I3D ’09. New York, NY, USA: ACM, 2009, pp. 75-82. [Online|. Available:
http://doi.acm.org/10.1145/1507149.1507161

L. Bavoil et al., “Multi-layer dual-resolution screen-space ambient occlusion,” in
SIGGRAPH 2009: Talks, ser. SIGGRAPH ’09. New York, NY, USA: ACM, 2009,
pp. 45:1-45:1. [Online]. Available: http://doi.acm.org/10.1145/1597990.1598035

M. McGuire, “Ambient occlusion volumes,” in Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 38D Graphics and Games, ser. 13D
’10. New York, NY, USA: ACM, 2010, pp. 12:1-12:1. [Online]. Available:
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1730804.1730984

J. M. Méndez. (2010) A simple and practical approach to ssao. [On-
line]. Available: http://www.gamedev.net/page/resources/_/technical /graphics-
programming-and-theory/a-simple-and-practical-approach-to-ssao-r2753

K. Mitchell. (2007) Volumetric light scattering as a post-process. [Online].
Available: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch13.html

N. L. Max, “Atmospheric illumination and shadows,” in SIGGRAPH ’86 Proceedings
of the 138th annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM, August 1986, pp. 117-124.

48

http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/2534329.2534335
http://doi.acm.org/10.1145/1281500.1281671
http://doi.acm.org/10.1145/1507149.1507161
http://doi.acm.org/10.1145/1597990.1598035
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1730804.1730984
http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/a-simple-and-practical-approach-to-ssao-r2753
http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/a-simple-and-practical-approach-to-ssao-r2753
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch13.html

BIBLIOGRAPHY

[38]

[39]

[40]

[41]

[43]

[44]

J. Mitchell. (2004) Light shafts: Rendering shadows in participating media. [On-
line]. Available: http://developer.amd.com/wordpress/media/2012/10/Mitchell
LightShafts.pdf

Y. Dobashi et al., “Interactive rendering of atmospheric scattering effects using
graphics hardware,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, 2002, pp. 99—

Cyberphysics. (2001) Shadows. [Online]. Available: http://www.cyberphysics.co.
uk/topics/light /shadow /shadow.htm

H. Yen Kwoon. (2002) The theory of stencil shadow volumes. [On-
line]. Available: http://www.gamedev.net/page/resources/_/technical/graphics-
programming-and-theory /the-theory-of-stencil-shadow-volumes-r1873

Microsoft. (2013) Common techniques to improve shadow depth maps. [Online].
Available: http://msdn.microsoft.com/en-us/library /windows/desktop/ee416324%
28v=vs.85%29.aspx

L. Williams, “Casting curved shadows on curved surfaces,” SIGGRAPH
Comput. Graph., vol. 12, no. 3, pp. 270-274, Aug. 1978. [Online]. Available:
http://doi.acm.org/10.1145/965139.807402

W. T. Reeves, “Particle systems - a technique for modelling a class of fuzzy objects,”
ACM Transactions on Graphics (TOG), vol. 2, no. 2, April 1983.

49

http://developer.amd.com/wordpress/media/2012/10/Mitchell_LightShafts.pdf
http://developer.amd.com/wordpress/media/2012/10/Mitchell_LightShafts.pdf
http://www.cyberphysics.co.uk/topics/light/shadow/shadow.htm
http://www.cyberphysics.co.uk/topics/light/shadow/shadow.htm
http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/the-theory-of-stencil-shadow-volumes-r1873
http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/the-theory-of-stencil-shadow-volumes-r1873
http://msdn.microsoft.com/en-us/library/windows/desktop/ee416324%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee416324%28v=vs.85%29.aspx
http://doi.acm.org/10.1145/965139.807402

	Introduction
	Background
	Purpose
	Problem Statement
	Limitations
	Method

	Graphics
	Deferred Rendering
	Previous Work
	Results
	Discussion

	Post-Processing
	Edge Detection
	Anti-Aliasing
	Gaussian Blur
	Motion Blur
	Bloom
	Screen Space Ambient Occulsion
	God Rays

	Shadows
	Previous Work
	Results
	Discussion

	Particle System
	Previous work
	Results
	Discussion

	Results
	Discussion and Conclusion

