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Abstract

The aim of this thesis is to investigate the model order reduction technique proper generalized
decomposition (PGD). In particular, phase field modeling of damage will be considered. The general
idea of PGD is to approximate the unknown field as a finite sum of modes. These modes are typically
constructed in a multiplicative fashion based on functions of lower dimensionality, compared to the
original function. The main advantage, from this decomposition, is that the modes can be discretized
using much fewer degrees of freedom compared to a standard grid based method, such as the finite
element method (FEM). It is, therefore, of interest to investigate this approach as a mean to reduce
the computational cost.

There are a number of difficulties arising from a decomposition like this. Since the approximation is
non-linear in the unknowns, the resulting equations will be non-linear (even if the governing differential
equation is linear). The most common method to solve the non-linear PGD problem is to use a fix
point numerical scheme, which proved to be best suited in this study as well. Boundary conditions
and material parameters are some other difficulties that are discussed in the PGD setting.

In this thesis the PGD method is applied to a two field structural problem involving displacements
and a scalar phase field, in order to simulate damage evolution. The numerical examples studied
shows good agreement with a corresponding FEM solution (used as a reference solution), especially
for the elasticity problem. In contrast, for the coupled problem with both displacements and damage
as unknowns convergence issues were encountered and calls for further study.

The PGD method proved to be a useful tool to some extent; however, due to the additional
modeling complexities introduces by the method and convergence issues encountered, its suitability
for modeling progressive failure is currently uncertain.

Keywords: Proper generalized decomposition (PGD), Model reduction, Phase field damage
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1 Introduction

In the field of computational fracture mechanics (CFM) there are a number of different approaches to
simulate fracture and crack growth in materials. One such method is phase field modeling, where
a scalar field, d = d(x), is introduced to describe the state of the material. Some advantages with
this method is that crack branching is automatically accounted for and it is not necessary to track
the crack front. There is also no need to introduce a displacement discontinuity to describe the
crack. Instead the phase field models a diffuse crack, smeared out over a small length scale, l. This
means that the damage of the material is described as a diffuse transition, from fully intact to fully
damaged, within this length scale. When the length scale approaches zero the smeared crack will
result in a discrete crack. The length scale needs to be resolved when solving the equations and, when
modeling discrete cracks and localized damage which requires a very fine mesh1 the result is a large
system of equations. It is therefore of interest to investigate alternative solution methods with better
computational efficiency.

One potential way to increase computational efficiency is to use proper generalized decomposition
(PGD). PGD is a solution method which decomposes the unknown function(s) as a sum of products of
simpler component functions. For instance, an arbitrary scalar function f = f(x) can be decomposed
as

f(x) =

M∑
i=1

F ix(x) · F iy(y) · F iz(z) (1.1)

where M is the number of modes in the approximation and F ix, F iy, F
i
z are the three component

functions for mode i. Since the components of the decomposed function are only dependent on one
variable they are one dimensional. In a finite element setting, this means that they can be discretized
using a one dimensional mesh for each function. By using such a decomposition the number of
unknowns scales linearly with the number of dimensions, instead of exponentially like in grid based
approximations. In Figure 1.1 a domain Ω is discretized with a conventional grid (used for e.g.
finite elements) and a PGD grid. The conventional grid is three dimensional, while the PGD grid is
constructed of three one dimensional grids. Note that the original unknown was only one function
and by using the PGD approximation in Eq. (1.1) there are instead 3M (3 components×M modes)
unknown functions. These unknown functions are simpler in the sense that they are defined over
reduced domains.

x
yz

x
yz

x
yz

Ω

a) b) c)

Figure 1.1: Illustration of the different types of discretization; a) computational domain, b)
grid based discretization of Ω with 63 nodes (53 3D elements) and c) PGD discretization of
Ω with 3× 6 nodes (3× 5 1D elements).

1Assuming the finite element method is used to solve the system, which is a common approach.
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The PGD framework is relatively new and still under development and there are a number of
inherent difficulties related to such a decomposition. However, the method has successfully been
applied to a number of different problems. In [8] the method is described in detail, using the Poisson
equation as an illustrative example providing accurate results compared to analytical solutions. In
[14] PGD is used to analyze composite beams to resolve the transverse direction in a computationally
efficient way. In [5] PGD is applied to shell and plate geometries by separating the in-plane coordinates
(x, y) from the out of plane coordinate (z). Such a decomposition results in a problem with two
dimensional complexity, without neglecting the dependence of the out of plane direction. Another
interesting aspect of the PGD is to include the variation of some parameters as unknowns in the
original problem. The variation of parameters was for example studied in [5], where the angle of
selected plies in a composite were used as unknowns, and introduced as extra coordinates of the
problem. The effect is that the solution to the problem is obtained simultaneously for many different
angles. In [11] this property is used to optimize material parameters for a one dimensional heat
transfer problem.

Since phase field modeling of fracture generally leads to very fine meshes, PGD can be a way to
reduce the system to a smaller one. The purpose of this thesis is to investigate the possibility to
combine PGD with phase field modeling of damage. In the following chapters the theory behind
phase field modeling will be introduced, and how the PGD approximation of the unknown fields are
set up. Following this, a number of example cases are investigated and in the end the results are
discussed and some suggestions of further work is presented.
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2 Phase field modeling of damage

To simulate damage and fracture in the material a phase field, d, is introduced as a scalar damage
field with d(x) ∈ [0, 1]. This parameter describes the degradation of the stress in the material; d = 0
for the undamaged state and d = 1 for the fully damaged state. The introduction of the scalar field
will lead to a coupled, two-field, problem with the displacement field, u(x, t), and the damage field,
d(x, t), as unknowns. There are different formulations of phase field damage, see for example [1].
Many are based on the minimization of an energy functional, for which the elastic energy and crack
surface are minimized in the domain. This idea, with corresponding functional, was introduced in [9]
for discrete cracks. A regularization of the same energy functional was introduced in [7] where the
crack is described as a field parameter, which smoothly varies between the damaged and undamaged
state, over a length scale l.

The driving force of the damage field is an energy field, H, which are dependent on the displacements
from the equations of equilibrium. In return, the stress in the equations of equilibrium are degraded
based on the current damage field. Most formulations of phase field damage are similar, and the main
differences between the models are the definitions for the energy field and stress degradation. One
basic formulation is to simply degrade the full stress tensor, and use the total stored elastic energy as
driving force, i.e.  σ = (1− d)2 ∂ Ψ

∂ε
= (1− d)2 E : ε

H = Ψ(u)
(2.1)

where Ψ = 1
2ε : E : ε is the stored elastic energy and E the fourth order elasticity tensor. There are

two main problems with this formulation; a) the process is reversible such that a crack can heal b) a
crack will develop even if the material is loaded in compression. To stop cracks from healing, the
driving energy H can be replaced by a history field of the energy, defined for example as

H = H(t) = max
τ∈[0,t]

Ψ(τ) (2.2)

where t is the current time. With this definition the driving force cannot decrease, and thus a
developed crack will not heal. The formulation in Eq. (2.1) together with the history field in Eq. (2.2)
is called an isotropic formulation since it does not distinguish between compression and tension in the
material and that all stress components are degraded in the same way. In [13] another formulation
is proposed, which accounts for the loading type by splitting the elastic energy into a positive and
negative part. With this formulation, only the tensile stress is degraded as follows

σ = (1− d)2 ∂ Ψ+

∂ε
+
∂ Ψ−

∂ε
= (1− d)2 σ+ + σ−

H = max
τ∈[0,t]

Ψ+(τ)
(2.3)

where the positive and negative part of the energy is defined using a spectral decomposition of the
strain tensor

Ψ± =
1

2
ε± : E : ε± ε± =

3∑
i=1

< εi >± n
i ⊗ ni (2.4)

where < εi >± is the positive/negative part of the eigenvalues of the strain tensor, and ni are the
eigendirections of the strain. By adopting this model damage will be prevented from developing
due to compressive loading. A similar decomposition of the energy Ψ is proposed in [4] where the
decomposition of the energy is based on the volumetric and deviatoric part of the strain tensor.
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In this thesis the simpler, isotropic, formulation is used, where the stress is defined according to
Eq. (2.1) together with the history field in Eq. (2.2). The governing equations which are used to
obtain the displacement and damage fields are presented in more detail below.

2.1 Weak form of equations of equilibrium

For the displacement field, u, the equilibrium equations are solved. For a domain Ω with Neumann
boundary ΓN and Dirichlet boundary ΓD the strong form of equilibrium can be stated as

−σ(u) ·∇ = f in Ω (2.5)

t = t̂ on ΓN (2.6)

u = û on ΓD (2.7)

where σ is the stress tensor, f the body force and t̂ and û are prescribed values for the traction and
displacement on respective boundary, ΓN and ΓD. The solution to the equations of equilibrium is
found from the corresponding weak form, i.e. find u ∈ Uu such that

∫
Ω

[vu ⊗∇] : σ dΩ =

∫
Ω
vu · f dΩ +

∫
ΓN

vu · t̂dΓ ∀vu ∈ Vu (2.8)

Uu =
{
v | v ∈ H1(Ω),v = û on ΓD

}
(2.9)

Vu =
{
v | v ∈ H1(Ω),v = 0 on ΓD

}
(2.10)

where vu is a test function and H1(Ω) is the Sobolov space1 with functions whose gradients are square
integrable in the domain Ω. For brevity, the weak form of the equilibrium equation will be written as

au(u,vu) = `u(vu) ∀vu ∈ Vu (2.11)

where the functionals au(•, •) and `u(•) are introduced for the internal and external forces respectively,
defined as

au(u,vu)
def
=

∫
Ω

[vu ⊗∇] : σ dΩ (2.12)

`u(vu)
def
=

∫
Ω
vu · f dΩ +

∫
ΓN

vu · t̂dΓ (2.13)

The equations of equilibrium is coupled to the damage field via the stress tensor. The effective
stress in the material, σ, is expressed as

σ = (1− d)2 σ̂ = (1− d)2 E : ε (2.14)

where d is the damage field and σ̂ the linear elastic stress tensor, with E being the fourth order
elasticity tensor and ε = ε(u) the engineering strain tensor. Here it is clear that the damage field
degrades the elastic stress in the material; when d = 1 the material is fully damaged and the resulting
effective stress will be zero.

1H1 =
{
v |

∫
Ω
|v|2 + |v ⊗∇|2 dΩ <∞

}
4



2.2 Weak form of damage evolution

The equations used to model phase field damage originates from the minimization of the fracture
area, cf. [13]. In this thesis the governing equations for the damage field, d, is stated as

−l2∆d+ d =
2l

Gc
(1− d)H in Ω (2.15)

∇d · n = 0 on Γ (2.16)

d = d̂ = 1 in Λ (2.17)

where l [m] is a length scale, Gc [ J
m2 ] the fracture energy, H [ J

m3 ] the energy history field, Γ the outer
boundary of Ω and Λ is a (possible) initial crack surface within Ω. The damage field, d, is solved
from the weak form corresponding to Eq. (2.15), i.e. find d ∈ Ud such that

∫
Ω
l2 ∇vd ·∇d+ vdddΩ =

∫
Ω
vd

2l

Gc
(1− d)H dΩ ∀vd ∈ Vd (2.18)

Ud =
{
v | v ∈ H1(Ω), v = d̂ on Λ

}
(2.19)

Vd =
{
v | v ∈ H1(Ω), v = 0 on Λ

}
(2.20)

where vd is a scalar test function. Here it is assumed that the gradient of the damage field in the
normal direction of the boundary Γ is zero, which cancels the boundary integral from the partial
integration2. In Eq. (2.18) it is clear that the energy field H will be the driving force for damage
evolution, and since H is defined in such a way that it will not decrease, the damage will not decrease
either. For convenience Eq. (2.18) is rewritten with all terms involving the unknown d gathered on
the left hand side

∫
Ω
l2 ∇vd ·∇d+

(
1 +

2l

Gc
H
)
vdddΩ =

∫
Ω
vd

2l

Gc
H dΩ ∀vd ∈ Vd (2.21)

Ud =
{
v | v ∈ H1(Ω), v = d̂ on Λ

}
(2.22)

Vd =
{
v | v ∈ H1(Ω), v = 0 on Λ

}
(2.23)

The internal boundary, Λ, describing an initial crack within the domain may be modeled by
prescribing the damage parameter to a fully damaged state on Λ i.e. d = d̂ = 1. An initial crack may
also be achieved by prescribing the history field, H, along Λ, as suggested in [6]. Thus, the weak form
in Eq. (2.21) can be reformulated as

∫
Ω
l2 ∇vd ·∇d+

(
1 +

2l

Gc
H
)
vdddΩ =

∫
Ω
vd

2l

Gc
H dΩ ∀vd ∈ Vd (2.24)

H = Ĥ on Λ (2.25)

Ud = Vd =
{
v | v ∈ H1(Ω)

}
(2.26)

For brevity the weak form of the damage evolution is written as

ad(d, vd) = `d(vd) ∀vd ∈ Vd (2.27)

with the two functionals ad(d, vd) and `d(vd) defined as

2Cf. the traction term in the weak form of equilibrium, Eq. (2.8)
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ad(d, vd)
def
=

∫
Ω
l2 ∇vd ·∇d+

(
1 +

2l

Gc
H
)
vdddΩ (2.28)

`d(vd)
def
=

∫
Ω
vd

2l

Gc
H dΩ (2.29)

2.3 Solution method

The coupled problem can be summarized as; find u ∈ Uu and d ∈ Ud such that

au(u,vu) = `u(vu) ∀vu ∈ Vu (2.30)

ad(d, vd) = `d(vd) ∀vd ∈ Vd (2.31)

where the functionals are defined in the previous sections. This is a set of coupled non-linear equations
which needs to be solved to obtain the displacement and damage fields. One solution method, which
has proven to be more stable and robust compared to a monolithic solution, is presented in [13,
1, 4]. The method is called staggered solution scheme, since the two fields are solved individually,
considering the other field as fix. For a given time step, the damage field is first solved, keeping the
displacement field fixed. Next, the displacement field is solved, keeping the damage field fixed. The
procedure is described by the four steps in Box 2.1, where steps 2-4 needs to be iterated for each time
step, to reach a stationary point, since the two equations are coupled but solved in this decoupled
fashion. Before the damage field starts to develop, typically only one iteration is needed to reach a
stationary point. When the damage evolution starts, more iterations are needed, depending on the
choice of damage model and history field, as shown in [1].

1. For a time step n+ 1 the old fields are known; nu, nd and nH. Update prescribed loads for the

new time step n+ 1; n+1û,
n+1
t̂ and n+1f

2. Solve n+1d from Eq. (2.31) with known nH where nH = nH(nu)

3. Solve n+1u from Eq. (2.30) with the newly computed n+1d

4. Update history field: n+1H = n+1H(n+1u)

Box 2.1: Steps in the staggered solution scheme for solving the coupled system of equations
with displacement and damage field as unknown.
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3 Proper Generalized Decomposition

Proper generalized decomposition (PGD) is a numerical model reduction method that has risen in
popularity lately. Numerical model reduction methods are often appealing to increase computational
efficiency, and especially for computationally heavy problems. The main features of the PGD method
is outlined here, but a more extensive overview can be found in [8], which also discusses the relation
between PGD and other numerical model reduction techniques. First a general description of PGD
is given, and later also in a more specific context, related to solving the equations of equilibrium
together with a damage field as presented in Section 2.1 and Section 2.2.

There are different ways to apply a PGD discretization scheme. The general idea is to approximate
an unknown function defined in RN as a finite sum of modes. Each mode is approximated as a
product of component functions which, typically, are defined in a lower dimension e.g. RM where
M < N . This property is one of the main advantages of the method, and removes the so-called curse
of dimensionality. As an example, the unknown scalar field f defined in RN can be decomposed, in
the most general form of PGD, as a sum of M modes

f(x1, x2, . . . , xN ) ≈
M∑
i=1

F ix1
(x1) · F ix2

(x2) · . . . · F ixN (xN ) (3.1)

where, in this case, the component functions, F ixk(xk), are functions of only one dimension, i.e.
they are defined in R1. This means that the original problem, which is defined in RN has been
decomposed into N smaller problems defined in R1. As mentioned above, the number of modes and
the component functions are unknown a priori, which results in N ×M unknown component functions
to approximate the original function. These functions are simpler in the sense that they are defined
in a lower dimension than the original function. The unknowns are obtained by inserting the PGD
approximation into the governing differential equations, see Section 3.1.

The decomposition of the unknown function can be performed in many different ways, depending
on the application and governing equations. A problem defined in space and time, i.e. f = f(x, t),
can, quite naturally, be decomposed as

f(x, t) =
M∑
i=1

F ix(x) · F it (t) (3.2)

where the spatial coordinates, x, are separated from the time coordinate, t. Of course, the spatial
domain could be decomposed as well, which results in four component functions per mode as

f(x, t) =

M∑
i=1

F ix(x) · F iy(y) · F iz(z) · F it (t) (3.3)

For plate and shell geometries it is common to keep the in-plane coordinates together (x, y) and
separate the out of plane coordinate (z), see for instance [5, 12] for this type of decomposition.

For a vector valued function, the decomposition looks the same, but with vector valued component
functions. For example, the vector valued function f(x) = (f(x), g(x), h(x)) may be decomposed as

f(x) =
M∑
i=1

F i
x(x) ◦ F i

y(y) ◦ F i
z(z) (3.4)

7



where ◦ denotes the Hadamard product for element wise multiplication, i.e.

f(x) =

M∑
i=1

F ix(x)
Gix(x)
H i
x(x)

 ◦
F iy(y)

Giy(y)

H i
y(y)

 ◦
F iz(z)Giz(z)
H i
z(z)

 =
M∑
i=1

 F ix(x) · F iy(y) · F iz(z)
Gix(x) ·Giy(y) ·Giz(z)
H i
x(x) ·H i

y(y) ·H i
z(z)

 (3.5)

Henceforth, only the subscript is kept for brevity (on the component functions) to indicate its
dependence, i.e. F ix = F ix(x). We also introduce the notation •̃i to denote mode i of the PGD
approximation and the notation •n to denote the sum of all modes up to n. With these notations,
the approximation in Eq. (3.4) can be written in a more compact form as

f(x) =
M∑
i=1

F i
x ◦ F i

y ◦ F i
z︸ ︷︷ ︸

def
= f̃

i

=
M∑
i=1

f̃
i def

= fM (3.6)

3.1 Enrichment process

The unknown component functions are computed, one mode at a time, in a so called enrichment
process. In this section the steps to obtain the modes are described for a general case, using an
arbitrary weak form (Eq. (3.7)) with a PGD approximated solution, f ; a similar description can be
found in [15].

We start out from a general weak form; find f ∈ U such that

A(f, v) = L(v) ∀v ∈ V (3.7)

where A(•, •) and L(•) are functionals originating from the governing differential equation, f is
the unknown (scalar) solution to the problem, v is an appropriate test function and U and V
corresponding function spaces. We assume a separable domain, Ω, see Figure 3.1 which can be
separated as Ω = Ωx × Ωy × Ωz. We also define the boundaries of the sub-domains as: Γx, Γy and Γz.

x
yz

x
yz

Ω

Ωx

Ωy

Ωz

Figure 3.1: Computational domain, Ω, to the left and the corresponding separated domain
Ω = Ωx × Ωy × Ωz, to the right.

From the start, at enrichment step 1, no modes are known. After the first mode have been
calculated the approximation can be enriched with a second mode and so on. This means that at
enrichment step n there are n− 1 modes which are already computed, and an n:th mode are sought

8



to enhance the solution. At this enrichment step the approximation thus reads

fn(x) =
n−1∑
i=1

(
F ix · F iy · F iz

)
+ Fnx · Fny · Fnz = fn−1 + f̃n (3.8)

where the three components Fnx , Fny and Fnz are the three unknown functions which will enhance the
solution. They are obtained by solving the weak form (Eq. (3.7)).

For the weak form a test function v is also needed. The simplest, and most common, choice is to
use the variation of the unknown function itself, i.e.

v = vn = δ(Fnx · Fny · Fnz ) = δFnx · Fny · Fnz︸ ︷︷ ︸
vx

+Fnx · δFny · Fnz︸ ︷︷ ︸
vy

+Fnx · Fny · δFnz︸ ︷︷ ︸
vz

(3.9)

Inserting this test function in Eq. (3.7) gives three equations (assuming A(•, •) is bi-linear) from
which the new mode can be calculated, i.e. find f̃n = Fnx · Fny · Fnz ∈ U such that

A(f̃n, vx) = −A(fn−1, vx) + L(vx) ∀vx ∈ Vx (3.10)

A(f̃n, vy) = −A(fn−1, vy) + L(vy) ∀vy ∈ Vy (3.11)

A(f̃n, vz) = −A(fn−1, vz) + L(vz) ∀vz ∈ Vz (3.12)

where the function spaces are defined as

Vξ =
{
v | suff. reg., v = 0 on ΓDξ

}
ξ = x, y, z (3.13)

Note that Eqs. (3.10)-(3.12) are non-linear, since a multiplicative decomposition is used. This is
clearly one drawback associated with the PGD, and a suitable numerical method is needed to solve
for the new modes, see Section 3.2.

The approximation is enriched with new modes until a chosen convergence criterion is fulfilled.
Several criteria are mentioned in [8] to evaluate the influence of the new mode. The first criterion
compares the contribution of the new mode, f̃n, to the total solution, fn

ε(n) =
‖f̃n‖
‖fn‖

, ε(n) < ε̄ (3.14)

where ‖ • ‖ is a, for the problem, suitable norm and ε̄ a sufficiently small number. Another criterion
from [8] compares the new mode only to the first one, assuming the first mode has the largest impact
on the total solution

ε(n) =
‖f̃n‖
‖f1‖

, ε(n) < ε̄ (3.15)

In [2] a criteria based on the amplitude of the modes is used. They also use a slightly different
approach as they use the normalized modes as a basis, and re-calculate the corresponding amplitudes
after each new mode/base is found. When the amplitude for the new mode is below a threshold
the enhancement stops. Other criteria could of course also be used, and for instance based on some
quantity of interest depending on the problem at hand.

3.2 Alternating direction strategy

To solve the non-linear equations, in Eqs. (3.10)-(3.12), a suitable numerical scheme is needed to
obtain the components for the new mode. Newton’s method has been used in some cases, see for
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instance [2], where it successfully has been applied for a time and space dependent temperature
problem. The most common method, however, is a so called alternating directions strategy1. This
method has been shown to be more stable and more robust, see e.g. [3, 8], and is therefore used
for almost all PGD applications. In this thesis the alternating directions strategy is also used, since
some tests with Newton’s method did not give desired results. The alternating directions strategy is
an iterative process to solve for the unknown component functions. Using this method, all but one
component of the unknown mode is considered to be known. This results in a linearization of the
approximation, and the equations in Eqs. (3.10)-(3.12) will become linear. The steps to solve for the
unknown are presented in Box 3.1. The steps will be iterated until the three modes have reached a
stationary point, and Eqs. (3.10)-(3.12) are fulfilled. When the components of mode n are computed
the next enrichment step can start, where mode n+ 1 is sought to enhance the solution.

Note that the linearization described above does not only linearize the first argument of A(•, •),
but also the second (the test function). For e.g. Eq. (3.16) the test function, vx = δFnx · Fny · Fnz , is
linear, since Fny and Fnz are considered known.

– Given Fny and Fnz ; update Fnx such that

A(f̃n, vx) = −A(fn−1, vx) + L(vx) ∀vx ∈ Vx (3.16)

– Given Fnx and Fnz ; update Fny such that

A(f̃n, vy) = −A(fn−1, vy) + L(vy) ∀vy ∈ Vy (3.17)

– Given Fnx and Fny ; update Fnz such that

A(f̃n, vz) = −A(fn−1, vz) + L(vz) ∀vz ∈ Vz (3.18)

Box 3.1: Steps of the alternating directions strategy to iterate for the components of the new
mode for the example problem in Eq. (3.7).

3.3 Aspects of integration and application of boundary conditions
using PGD

Another advantage, apart from the reduced number of unknowns, with the PGD is that integrals
involved in the weak form can be evaluated on smaller domains. To be able to take advantage of this
property, the domain needs to be separable. To separate the spatial variables x, y and z the domain
Ω needs to be the Cartesian product of the subspaces Ωx, Ωy and Ωz, i.e. Ω = Ωx × Ωy × Ωz as
illustrated in Figure 3.1. If this is the case the integrals can be evaluated in the three one-dimensional
sub-domains, instead of the original three dimensional domain. Since the simpler integrals are much
cheaper to evaluate, this is a property that can save computational time. For a non-separable domain
the integrals can either be evaluated in the original domain, or by embedding the domain in a larger,
separable, domain, Ω̄, such that Ω ⊂ Ω̄. This procedure is illustrated for a non-separable, two
dimensional, domain Ω in Figure 3.2. This method was introduced in [10] and shows promising results
for some examples.

To be able to evaluate the integrals in the separated domains it is not enough that the unknown
function and the original domain is separated. Other parameters involved in the weak form, such as

1Also called fix-point method.
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Ω

x

y

Ω̄

Ω

x

y

Ω̄y

Ω̄x

Figure 3.2: Illustration of a non separable domain Ω embedded in the separable domain Ω̄
with the sub-domains Ω̄x and Ω̄y such that Ω ⊂ Ω̄ = Ω̄x × Ω̄y.

material parameters, must also be decomposed in the same way (or be independent of the decomposed
domains). For instance, for an elasticity problem, the elastic stiffness tensor, E = E(x, y, z), can be
approximated with PGD as

E(x, y, z) =
M∑
i=1

Eix(x) ◦ Eiy(y) ◦ Eiz(z) (3.19)

which can be done in a pre-processing step; however, if the stiffness changes with time this decom-
position needs to be performed in each time step. With everything separated, the integrals can be
evaluated in the smaller domain, which can save a lot of computational time.

Another difficulty with using PGD compared to FEM is applying boundary conditions. Neumann
boundary conditions can normally be included as usual in the boundary integral of the weak form,
and homogeneous Dirichlet boundary conditions can be dealt with by enforcing them on all of the
modes. Non-homogeneous Dirichlet boundary conditions, however, can not be enforced on all modes
since the approximation are constructed as the sum of all modes. To deal with this type of boundary
condition, a first mode can be constructed as described in [10, 8]. The mode is constructed in such a
way that it fulfills all Dirichlet boundary conditions (both homogeneous and non-homogeneous). The
following modes are prescribed to zero on this part of the boundary, which can be expressed as

f̃1 = f̂ on ΓD

f̃ i = 0 on ΓD i = 2, 3, . . . ,M
(3.20)

where f̂ is the prescribed value of the function f on ΓD. For simple cases, such a first mode can
easily be set up, but for complicated cases the first mode needs to be computed a priori, to fulfill the
Dirichlet boundary conditions.
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4 PGD formulation of governing equations

In this section the PGD method is applied to the governing equations presented in Section 2.1 and
Section 2.2. For the equations of equilibrium the displacement field is decomposed in the spatial
dimensions, and for the damage evolution the damage field is decomposed in the spatial dimensions,
as well. The procedure is much the same for both problems, the main difference being the governing
differential equation. The problem is first approximated using continuous modes, and then these
modes are discretized using one-dimensional finite elements. The solution procedure to obtain the
discrete modes are also presented.

4.1 PGD formulation of the equations of equilibrium

To solve the weak form of the equations of equilibrium, the unknown displacement field, u(x) =[
u(x) v(x) w(x)

]T
, is approximated using PGD. This field is decomposed into each spatial dimen-

sion and approximated as the sum of M modes as

u(x) =
M∑
i=1

U i
x(x) ◦U i

y(y) ◦U i
z(z) =

M∑
i=1

ũi = uM (4.1)

with the notation introduced earlier, cf. Section 3. Since the displacement field u is vector valued, we
obtain

U i
ξ(ξ) =

U iξ(ξ)V i
ξ (ξ)

W i
ξ(ξ)

 , ξ = x, y, z (4.2)

for each comonent ξ. Using the Hadamard product between the components, the approximation of
the displacement field can be written explicitly as

u(x) =

M∑
i=1

U ixV i
x

W i
x

 ◦
U iyV i

y

W i
y

 ◦
U izV i

z

W i
z

 =
M∑
i=1

 U ix · U iy · U iz
V i
x · V i

y · V i
z

W i
x ·W i

y ·W i
z

 =
M∑
i=1

ũiṽi
w̃i


︸ ︷︷ ︸

ũi

(4.3)

Each of the modes are now approximated as a product of three component functions, which are
functions of only one spatial variable; x, y or z. The fact that the components are one dimensional
makes it possible to use a one dimensional discretization for each component, and thus fewer degrees
of freedom are needed for the total approximation.

For the weak form of equilibrium, Eq. (2.8), the strain is needed. The strain is defined as the
symmetric part of the gradient of the displacement field u

ε = ε(u) = [u⊗∇]sym =
1

2
[(u⊗∇) + (∇⊗ u)] (4.4)

and by inserting the approximation from Eq. (4.1) the strain of the PGD approximated displacement
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field is obtained

εM (uM ) = [uM ⊗∇]sym =
M∑
i=1

[ũi ⊗∇]sym =

=
M∑
i=1

[
∂xU

i
x ◦U i

y ◦U i
z U i

x ◦ ∂yU i
y ◦U i

z U i
x ◦U i

y ◦ ∂zU i
z

]sym
=

=

M∑
i=1

[ [
∂xU

i
x U i

x U i
x

]
◦
[
U i
y ∂yU

i
y U i

y

]
◦
[
U i
z U i

z ∂zU
i
z

] ]sym

(4.5)

Note that, due to the decomposition of the displacement field u, the strain also is decomposed in
each direction. The strain can explicitly be written as

εM (uM ) =
M∑
i=1

∂xU ix · U iy · U iz 1
2(U ix · ∂yU iy · U iz + ∂xV

i
x · V i

y · V i
z ) 1

2(U ix · U iy · ∂zU iz + ∂xW
i
x ·W i

y ·W i
z)

V i
x · ∂yV i

y · V i
z

1
2(V i

x · V i
y · ∂zV i

z +W i
x · ∂yW i

y ·W i
z)

Sym. W i
x ·W i

y · ∂zW i
z


(4.6)

Following the solution method described in Section 3.1 and Section 3.2 it is convenient to split the
strain in two parts; one known part corresponding to all modes up to n− 1, and one unknown part
for mode, n

εn(un) =
n−1∑
i=1

[ui ⊗∇]sym

︸ ︷︷ ︸
known

+ [ũn ⊗∇]sym︸ ︷︷ ︸
unknown

= εn−1(un−1) + εn(ũn) (4.7)

For the weak form, a test function must be chosen. As described in Section 3.1 it is taken as the
variation of the unknown, n:th, mode

vu = δ(Un
x◦Un

y ◦Un
z ) = δUn

x ◦Un
y ◦Un

z︸ ︷︷ ︸
vux

+Un
x ◦ δUn

y ◦Un
z︸ ︷︷ ︸

vuy

+Un
x ◦Un

y ◦ δUn
z︸ ︷︷ ︸

vuz

= vux+vuy+vuz (4.8)

The gradient of the test function is also needed for the weak form

vu ⊗∇ = vux ⊗∇ + vuy ⊗∇ + vuz ⊗∇ (4.9)

The weak form can now be formulated in a PGD setting, with the n:th mode, ũn, as unknown

∫
Ω

[vu ⊗∇] : σ̃n dΩ︸ ︷︷ ︸
au(ũn,vu)

= −
∫

Ω
[vu ⊗∇] : σn−1 dΩ︸ ︷︷ ︸

au(un−1,vu)

+

∫
Ω
vu · f dΩ +

∫
ΓN

vu · t̂ dΓ︸ ︷︷ ︸
`u(vu)

∀vu ∈ V (4.10)

where σ̃n = σ̃n(ũn) is the stress due to the strain from mode n and σn−1 = σn−1(un−1) the stress
due to the strain of all known modes. By inserting the expression for the test function from Eq. (4.8)
and Eq. (4.9) three equations are obtained, from which the new mode can be solved, i.e.; find
ũn = Un

x ◦Un
y ◦Un

z ∈ Uu such that

au(ũn,vux) = −au(un−1,vux) + `u(vux) ∀vux ∈ Vux (4.11)

au(ũn,vuy) = −au(un−1,vuy) + `u(vuy) ∀vuy ∈ Vuy (4.12)

au(ũn,vuz) = −au(un−1,vuz) + `u(vuz) ∀vuz ∈ Vuz (4.13)
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where the function spaces are defined as

Vuξ =
{
v | v ∈ H1(Ω),v = 0 on ΓDξ

}
ξ = x, y, z (4.14)

The alternating directions strategy, described in Section 3.2, is used to calculate the components of
the new mode. The resulting steps to find the new mode, ũn, are presented in Box 4.1.

– Given Un
y and Un

z ; find Un
x such that

au(ũn,vux) = −au(un−1,vux) + `u(vux) ∀vux ∈ Vux (4.15)

– Given Un
x and Un

z ; find Un
y such that

au(ũn,vuy) = −au(un−1,vuy) + `u(vuy) ∀vuy ∈ Vuy (4.16)

– Given Un
x and Un

y ; find Un
z such that

au(ũn,vuz) = −au(un−1,vuz) + `u(vuz) ∀vuz ∈ Vuz (4.17)

Box 4.1: Steps of the alternating directions strategy to iterate for the components of the new
mode of the displacement field.

4.1.1 FEM approximation of the modes

Each component function of the PGD approximation is discretized using one dimensional finite
elements, in a standard fashion, as a linear combination of shape functions and nodal values as

U i
ξ(ξ) ≈ U i

ξ,h(ξ) =

NDOFS
ξ∑
k=1

N ξk(ξ) · {aiξ}k, ξ = x, y, z (4.18)

where N ξk is the tensorial shape function corresponding to degree of freedom k in the solution vector
aiξ and NDOFS

ξ is the number of degrees of freedom used for the discretization. The h index, indicating
the finite element discretization, is henceforth dropped since only the finite element discretized modes
are considered. We also introduce a short hand notation for the sum over the degrees of freedom and
write the discretized modes as

U i
ξ =

∑
k

N ξk · {aiξ}k, ξ = x, y, z (4.19)

Inserting Eq. (4.19) into the expression for mode i of the displacement in Eq. (4.1) gives

ũi(x) =
(∑

k

Nxk · {aix}k
)
◦
(∑

l

Nyl · {aiy}l
)
◦
(∑

m

N zm · {aiz}m
)

(4.20)

and thus the total displacement field, with M modes, is approximated as

uM =

M∑
i=1

(∑
k

Nxk · {aix}k
)
◦
(∑

l

Nyl · {aiy}l
)
◦
(∑

m

N zm · {aiz}m
)

(4.21)

The next step is to express the strain in terms of the FE approximated displacement field in
Eq. (4.21). To write the strain on separated form, as in Eq. (4.5), we define a second order tensor,
with derivatives of the shape functions as
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Bxk =
(
∂xNxk Nxk Nxk

)
(4.22)

Byl =
(
Nyl ∂yNyl Nyl

)
(4.23)

Bzm =
(
N zm N zm ∂zN zm

)
(4.24)

such that the strain tensor of the full solution from Eq. (4.5) can be written as

εM (uM ) = [uM ⊗∇]sym =

=
M∑
i=1

[(∑
k

Bxk · {aix}k
)
◦
(∑

l

Byl · {aiy}l
)
◦
(∑

m

Bzm · {aiz}m
)]sym

(4.25)

As stated in the previous section, it is convenient to split the strain in two parts, as in Eq. (4.7). This
gives

εn(un) = [un−1 ⊗∇]sym + [ũn ⊗∇]sym =

=

n−1∑
i=1

[(∑
k

Bxk · {aix}k
)
◦
(∑

l

Byl · {aiy}l
)
◦
(∑

m

Bzm · {aiz}m
)]sym

+

+

[(∑
k

Bxk · {anx}k
)
◦
(∑

l

Byl · {any}l
)
◦
(∑

m

Bzm · {anz }m
)]sym

(4.26)

The test function are discretized in the same way as the displacement field, cf. Eq. (4.20), such
that

vu =
(∑

k

Nxk · {δanx}k
)
◦
(∑

l

Nyl · {any}l
)
◦
(∑

m

N zm · {anz }m
)

︸ ︷︷ ︸
vux

+

+
(∑

k

Nxk · {anx}k
)
◦
(∑

l

Nyl · {δany}l
)
◦
(∑

m

N zm · {anz }m
)

︸ ︷︷ ︸
vuy

+

+
(∑

k

Nxk · {anx}k
)
◦
(∑

l

Nyl · {any}l
)
◦
(∑

m

N zm · {δanz }m
)

︸ ︷︷ ︸
vuz

=

= vux + vuy + vuz (4.27)

and the gradient of the test function
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vu ⊗∇ =
(∑

k

Bxk · {δanx}k
)
◦
(∑

l

Byl · {any}l
)
◦
(∑

m

Bzm · {anz }m
)

︸ ︷︷ ︸
vux⊗∇

+

+
(∑

k

Bxk · {anx}k
)
◦
(∑

l

Byl · {δany}l
)
◦
(∑

m

N zm · {anz }m
)

︸ ︷︷ ︸
vuy⊗∇

+

+
(∑

k

Bxk · {anx}k
)
◦
(∑

l

Byl · {any}l
)
◦
(∑

m

Bzm · {δanz }m
)

︸ ︷︷ ︸
vuz⊗∇

= vux ⊗∇ + vuy ⊗∇ + vuz ⊗∇ (4.28)

The FE discretized expressions are inserted in the weak forms of Eqs. (4.15)-(4.17) and the discrete
modes can be solved for.

4.1.2 Solution procedure for the discrete displacement field

To solve for the discrete displacement field, the equations in Box 4.1 are used. They are solved
consecutively until convergence for the new mode is reached. In this section the first step is presented
in more detail, using the FE discretized field from Section 4.1.1. Again, the first step reads

– Given Un
y and Un

z ; find Un
x such that

au(ũn,vux) = −au(un−1,vux) + `u(vux) ∀vux ∈ Vux (4.29)

where we recall the expression for the unknown mode, ũn, and the test function, vux as

ũn =
(∑

k

Nxk · {anx}k
)
◦
(∑

l

Nyl · {any}l
)
◦
(∑

m

N zm · {anz }m
)

(4.30)

vux =
(∑

k

Nxk · {δanx}k
)
◦
(∑

l

Nyl · {any}l
)
◦
(∑

m

N zm · {anz }m
)

(4.31)

Since, at this step, Un
y and Un

z are fixed, the only unknown is Un
x, and for the FE discretized case this

means that only anx is unknown. Since Eq. (4.29) should hold for all possible vux, or more specifically
for all δanx we can reformulate it as

Kux · anx = f
ux

(4.32)

where the components of the stiffness matrix Kux and force vector f
ux

are given by

{
Kux

}
kp

= au(vuxp,vuxk) (4.33){
f
ux

}
k

= −au(un−1,vuxk) + `u(vuxk) (4.34)

where the k:th and p:th test functions are defined as

vuxk = Nxk ◦
(∑

l

Nyl · {any}l
)
◦
(∑

m

N zm · {anz }m
)

(4.35)

vuxp = Nxp ◦
(∑

l

Nyl · {any}l
)
◦
(∑

m

N zm · {anz }m
)

(4.36)
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From Eq. (4.32) the solution vector anx can be solved, corresponding to the Un
x mode, by inverting

the stiffness matrix, i.e.

anx =
(
Kux

)−1 · f
ux

(4.37)

With this, the first step of Box 4.1 is completed, and next the solution vector for the Un
y mode is

solved etc. The steps are repeated until a stationary point is reached, and the new mode, ũn, is
solved.

A note on the integration

As the described in Section 3.3, using PGD allows for the integrals to be evaluated in the decomposed
domains. For the case of equilibrium, with constant elastic tangent stiffness matrix, the integrals to
calculate the stiffness matrix, and force vector, in Eq. (4.32) can be evaluated along the three one
dimensional domains. For example, component kp of the stiffness matrix Kux can be written as

{
Kux

}
kp

= au(vuxp,vuxk) =

∫
Ω

[vuxp ⊗∇] : E : [vuxp ⊗∇]sym dΩ = {E symmetric} =

=

∫
Ω

[
Bxk◦

(∑
l

Byl · {any}l
)

︸ ︷︷ ︸
Un

y,y

◦
(∑

m

Bzm · {anz }m
)

︸ ︷︷ ︸
Un

z,z

]
:E:

[
Bxp◦

(∑
q

Byq · {anz }q
)

︸ ︷︷ ︸
Un

y,y

◦
(∑

r

Bzr · {anz }r
)

︸ ︷︷ ︸
Un

z,z

]sym

dΩ =

=

∫
Ω

[
Bxk ◦Un

y,y ◦U
n
z,z

]
: E :

[
Bxp ◦Un

y,y ◦U
n
z,z

]
dΩ =

∫
Ω

Bxk :
[
Un

y,y �
[
Un

z,z �E�Un
z,z

]
�Un

y,y

]
:Bxp dΩ =

=

∫
x

Bxk :

∫
y

Un
y,y �

∫
z

Un
z,z � E �Un

z,z dz︸ ︷︷ ︸
Ez

�Un
y,y dy

︸ ︷︷ ︸
Ezy

:Bxp dx =

∫
x

Bxk : Ezy :Bxp dx (4.38)

where we have introduced the symbol � to denote a Hadamard like product for a second and fourth
order tensor1. Now the components of the stiffness matrix can be computed by evaluating a one
dimensional integral, since the integrals for Ez and Ezy can be calculated in a pre-process. This gives
a substantial increase in performance, simply because the one dimensional integrals are much cheaper
to evaluate, compared to a three dimensional integral.

1Element wise multiplication for the two closest indices; multiplication between a second order tensor A and a
fourth order tensor C gives another fourth order tensor D, A � C = D where the components of D are defined as
Dijkl = AijCijkl, no sum for i, j. Such that (A ◦B) : C = A : (B � C) and C : (A ◦B) = (C �A) : B
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4.2 PGD formulation of damage evolution

The PGD formulation of the damage field is similar to the equilibrium equations in Section 4.1, the
only difference being the governing equation and that the damage is a scalar field. For completeness,
the PGD formulation and FE discretization of the damage evolution is presented here.

The PGD damage field, decomposed in the spatial domains x, y and z, with M modes is written as

d(x) =

M∑
i=1

Di
x ·Di

y ·Di
z =

M∑
i=1

d̃i = dM (4.39)

where Di
x, Di

y and Di
z are scalar functions, in contrast to the displacement field in Eq. (4.1), which

has vector valued component functions. The next step is to set up the gradient of the damage field,
which is used in the weak form (Eq. (2.31)). The gradient of the PGD approximated damage field
becomes

∇dM = ∇
( M∑
i=1

Di
x ·Di

y ·Di
z

)
=

M∑
i=1

∂xDi
x ·Di

y ·Di
z

Di
x · ∂yDi

y ·Di
z

Di
x ·Di

y · ∂zDi
z

 =
M∑
i=1

∂xDi
x

Di
x

Di
x

 ◦
 Di

y

∂yD
i
y

Di
y

 ◦
 Di

z

Di
z

∂zD
i
z

 (4.40)

Similarly as for the displacement field it is, for the solution procedure, convenient to split the field
itself and its gradient into one known and one unknown part, cf. Eq. (4.7). For the damage field this
gives

dn = dn−1 + d̃n (4.41)

∇dn = ∇dn−1 + ∇d̃n (4.42)

A test function is needed for the weak form, Eq. (2.31), and as for the equilibrium equations it is
simply taken as the variation of the field itself. For the PGD damage field this gives

vd = δ(Dn
x ·Dn

y ·Dn
z ) = δDn

x ·Dn
y ·Dn

z︸ ︷︷ ︸
vdx

+Dn
x · δDn

y ·Dn
z︸ ︷︷ ︸

vdy

+Dn
x ·Dn

y · δDn
z︸ ︷︷ ︸

vdz

= vdx + vdy + vdz (4.43)

∇vd = ∇vdx + ∇vdy + ∇vdz (4.44)

The PGD approximated field, Eq. (4.39) can now be inserted in the weak form from Eq. (2.31), which
gives

∫
Ω
l2 ∇vd ·∇d̃n +

(
1 +

2l

Gc
H
)
vdd̃

n dΩ︸ ︷︷ ︸
ad(d̃n,vd)

=

= −
∫

Ω
l2 ∇vd ·∇dn−1 +

(
1 +

2l

Gc
H
)
vdd

n−1 dΩ︸ ︷︷ ︸
ad(dn−1,vd)

+

∫
Ω
vd

2l

Gc
H dΩ︸ ︷︷ ︸

`d(vd)

∀vd ∈ Vd (4.45)

By inserting the expressions for the test function, Eq. (4.43), and its gradient, Eq. (4.44) into Eq. (4.45)
three equations are obtained. From these equations the unknown mode can be found, i.e.; find d̃n ∈ Ud
such that

18



ad(d̃
n, vdx) = ad(d

n−1, vdx) + `d(vdx) ∀vdx ∈ Vdx (4.46)

ad(d̃
n, vdy) = ad(d

n−1, vdy) + `d(vdy) ∀vdy ∈ Vdy (4.47)

ad(d̃
n, vdz) = ad(d

n−1, vdz) + `d(vdz) ∀vdz ∈ Vdz (4.48)

with the function spaces defined as

Vdξ =
{
v | v ∈ H1(Ω), v = 0 on ΓDξ

}
ξ = x, y, z (4.49)

The alternating directions strategy is used to solve Eqs. (4.46)-(4.48) to obtain the new mode for
the damage field. In Box 4.2 the resulting steps to calculate the mode is presented, cf. Box 4.1 for
the equations of equilibrium.

– Given Dn
y and Dn

z ; find Dn
x such that

ad(d̃
n, vdx) = −ad(dn−1, vdx) + `d(vdx) ∀vdx ∈ Vdx (4.50)

– Given Dn
x and Dn

z ; find Dn
y such that

ad(d̃
n, vdy) = −ad(dn−1, vdy) + `d(vdy) ∀vdy ∈ Vdy (4.51)

– Given Dn
x and Dn

y ; find Dn
z such that

ad(d̃
n, vdz) = −ad(dn−1, vdz) + `d(vdz) ∀vdz ∈ Vdz (4.52)

Box 4.2: Steps of the alternating directions strategy to iterate for the components of the new
mode of the damage field.

4.2.1 FEM approximation of the damage field

The component functions of the damage field is approximated by one dimensional finite elements in
the same way as for the displacement field. Each component is thus approximated as

Di
ξ(ξ) ≈ Di

ξ,h(ξ) =
∑
k

Nξk(ξ) · {biξ}k, ξ = x, y, z (4.53)

where Nξk is the (scalar valued) shape function corresponding to the degree of freedom k in the
solution vector biξ. For the sum over the degrees of freedom the short hand notation introduced in
Section 4.1.1 is used, and the index h is dropped, since only the FE discretized components are used
henceforth. With this approximation, mode i can be written as

d̃i(x) =
(∑

k

Nxk · {bix}k
)
·
(∑

l

Nyl · {biy}l
)
·
(∑

m

Nzm · {biz}m
)

(4.54)

and thus the total damage field, including all modes, can be written as

dMh =
M∑
i=1

(∑
k

Nxk · {bix}k
)
·
(∑

l

Nyl · {biy}l
)
·
(∑

m

Nzm · {biz}m
)

(4.55)
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To express the gradient of the damage field, with FE discretized modes, we define the gradient of
the shape functions as

Bxk =

∂xNxk

Nxk

Nxk

 , Bxl =

 Nyl

∂yNyl

Nyl

 , Bzm =

 Nzm

Nzm

∂zNzm

 (4.56)

Note the difference from Eqs. (4.22)-(4.24), which are second order tensors. With Eq. (4.56), the
gradient of the damage can be written as

∇dM =
M∑
i=1

(∑
k

Bxk · {bix}k
)
·
(∑

l

Byl · {biy}l
)
·
(∑

m

Bzm · {biz}m
)

(4.57)

The test function, Eq. (4.43), are discretized in the same way as the damage in Eq. (4.54), which
gives

vd =
(∑

k

Nxk · {δbnx}k
)
·
(∑

l

Nyl · {bny}l
)
·
(∑

m

Nzm · {bnz }m
)

︸ ︷︷ ︸
vdx

+

+
(∑

k

Nxk · {bnx}k
)
·
(∑

l

Nyl · {δbny}l
)
·
(∑

m

Nzm · {bnz }m
)

︸ ︷︷ ︸
vdy

+

+
(∑

k

Nxk · {bnx}k
)
·
(∑

l

Nyl · {bny}l
)
·
(∑

m

Nzm · {δbnz }m
)

︸ ︷︷ ︸
vdz

=

= vdx + vdy + vdz (4.58)

and for the gradient in Eq. (4.44)

∇vd =
(∑

k

Bxk · {δbnx}k
)
·
(∑

l

Byl · {bny}l
)
·
(∑

m

Bzm · {bnz }m
)

︸ ︷︷ ︸
vdx

+

+
(∑

k

Bxk · {bnx}k
)
·
(∑

l

Byl · {δbny}l
)
·
(∑

m

Bzm · {bnz }m
)

︸ ︷︷ ︸
vdy

+

+
(∑

k

Bxk · {bnx}k
)
·
(∑

l

Byl · {bny}l
)
·
(∑

m

Bzm · {δbnz }m
)

︸ ︷︷ ︸
vdz

=

= ∇vdx + ∇vdy + ∇vdz (4.59)

The FE discretized damage, and corresponding test function, can now be used in Eqs. (4.50)-(4.52)
to solve for the new discrete mode.

4.2.2 Solution procedure for the discrete damage field

The discrete component functions for the new damage mode are obtained by solving Eqs. (4.50)-(4.52)
using the alternating direction strategy, similarly as for the displacement field, cf. Section 4.1.2. The
first step reads
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– Given Dn
y and Dn

z ; find Dn
x such that

ad(d̃
n, vdx) = −ad(dn−1, vdx) + `d(vdx) ∀vdx ∈ Vdx (4.60)

which, by inserting the FE discretized damage and test function from Section 4.2.1, simplifies to

Kdx · bnx = f
dx

(4.61)

where the components of the stiffness matrix Kdx and the force vector f
dx

are defined as

{Kdx}kp = ad(vdxp, vdxk) (4.62)

{f
dx
}k = −ad(dn−1, vdxk) + `d(vdxk) (4.63)

and the k:th and p:th test functions defined as

vdxk = Nxk ·
(∑

l

Nyl · {biy}l
)
·
(∑

m

Nzm · {biz}m
)

(4.64)

vdxp = Nxp ·
(∑

l

Nyl · {biy}l
)
·
(∑

m

Nzm · {biz}m
)

(4.65)

The system of equations in Eq. (4.61) can now be solved to obtain the solution vector bnx, corresponding
to component function Dn

x , by inverting the stiffness matrix, i.e.

bnx =
{
Kdx

}−1 · f
dx

(4.66)

The steps of Box 4.2 are iterated in this fashion, until a stationary point is reached, and the new
mode, d̃n, is found.
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5 Numerical examples

Some numerical example problems are solved and the results are presented here. First for elasticity
problems, without any damage field, and then for some cases with couples damage. To describe the
accuracy of the PGD approximated function, a FEM solution is used as a reference. To compare
these, an error measure is defined as

Ei• =

∫
Ω

(
‖ •i ‖ − ‖ •FEM ‖

)2
dΩ∫

Ω

(
‖ •FEM ‖

)2
dΩ

(5.1)

where •i is the approximated function with i modes, and •FEM the corresponding FEM solution for
the same problem, with the same mesh size. As will now be presented, the PGD and FEM solution
show quite good agreement.

5.1 Two dimensional elasticity

Two simple load cases can be seen in Figure 5.1. The two squares are loaded in the same way; with a
prescribed displacement at the top, and fixed displacement at the bottom. The second case also has
a hard inclusion in the middle, with stiffness ten times higher than the surrounding material. The
material is linear elastic with Young’s modulus E = 1 and Poisson’s ratio ν = 0.3 and plane strain
is assumed. The non-homogeneous Dirichlet boundary conditions in this example are, as described
previously, handled by a first mode, which fulfills them. For this case it is taken as

ũ1 =

(
U1
x(x) · U1

y (y)

V 1
x (x) · V 1

y (y)

)
=

(
1 · yL û
0 · 0

)
(5.2)

and the rest of the components will be zero at the Dirichlet boundary, i.e.

U iy(y = 0) = U iy(y = 1) = 0

V i
y (y = 0) = V i

y (y = 1) = 0
i = 2, 3, 4 . . . (5.3)

E1 = 1

E2 = 10

x

y

0.3

0.3

0.4

0.3 0.30.4

û = 0.5

x

y

1

1

û = 0.5

(b) Square with hard inclusion in the middle.(a) Square with homogeneous material.

E = 1
ν = 0.3 ν = 0.3

ν = 0.3

Figure 5.1: Example cases; (a) with homogeneous material and (b) with a hard inclusion in
the middle. Both loaded with a prescribed displacement at the top and fixed at the bottom.
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5.1.1 Case 1

The first case is solved with two different meshes; one with 20× 20 elements and one with 100× 100
elements. The difference, as defined in Eq. (5.1), between the PGD solution and the corresponding
FE solution is shown in Figure 5.2a for solutions containing up to 40 modes. As the figure shows, the
displacements corresponds well to the FE solution. Note that after 15 modes, the PGD solution is
not enhanced more, and the solution has thus converged. This means that the rest of the modes does
not contribute to the solution.

0 10 20 30 40

10−9

10−7

10−5

10−3

n modes

E

20× 20
100× 100

(a) Case 1.

0 10 20 30 40

10−9

10−7

10−5

10−3

n modes

E

20× 20
100× 100

(b) Case 2.

Figure 5.2: Difference between the PGD solution and the corresponding FEM solution for
the two cases in Figure 5.1, the difference is evaluated according to Eq. (5.1).

The component functions for the first 5 modes are plotted in Figure 5.3. Interesting to note is the
simple first mode, which fulfills the non-homogeneous boundary conditions.

5.1.2 Case 2

The second case in Figure 5.1 is more interesting since for this case the problem is not as smooth as
the first one, due to the inclusion. This case is also solved with two different mesh sizes; one with
20× 20 elements and one with 100× 100 elements. The difference between the PGD solution and a
FEM solution is plotted in Figure 5.2b for solutions up to 40 modes. For this second case more modes
are needed, around 25, before the rest of the modes does not contribute. The component functions
corresponding to the first five modes are plotted in Figure 5.4. The effect of the inclusion, with harder
material in the middle, is clearly seen from the modes.
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Figure 5.3: The normalized components to the first five modes for case 1 using a 100x100
mesh.
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Figure 5.4: The first five modes for case 2 using a 100x100 mesh.
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5.2 Three dimensional elasticity

The equilibrium equations are also solved in three dimensions. In Figure 5.5 a cantilever beam is
shown, which is subjected to a uniform volume load in the negative z-direction. The length to width
to thickness ratio is 10 : 1 : 1 and the beam is divided into cubic elements, with ratio 1 : 1 : 1. The
problem is solved for different meshes where the width/thickness sides are divided into N elements,
resulting in meshes with (10N ×N ×N) elements.

x
yz

L = 10

W = 1

T = 1f = (0, 0,−1)

x
yz

10N N

N

Figure 5.5: Cantilever beam with length L, width W and thickness T loaded with a uniform
volume load f , with a discretization using N elements along the thickness/width sides and
10N elements in the length direction.

The difference between the PGD solution and FEM solution, for a mesh with N = 5, is plotted in
Figure 5.6 for PGD solutions with up to 60 modes. The solutions corresponds well, and around 20
modes the solutions are indistinguishable from each other.

0 20 40 60
10−12

10−9

10−6

10−3

n modes

E

N = 5

Figure 5.6: Difference between the
PGD and FEM solution for the can-
tilever beam in Figure 5.5 for a mesh
with 100× 10× 10 elements.
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Figure 5.7: Solution time for solv-
ing the cantilever beam in Figure 5.5
for FEM and PGD. The times are
normalized with respect to the time
of the FEM solution for the coarsest
grid with N = 5.

It is of interest to compare the computational time of the PGD solution with the FEM solution.
The cantilever beam in Figure 5.5 is solved for a number of different meshes, with N = 5, 10, 15 and 20.
The time to solve each problem is presented in Table 5.1, and the times are normalized with respect
to the time for the FEM solution of the coarsest mesh. For the PGD solution, 20 modes are used,
which, from Figure 5.6, should be accurate enough. The relative time is also plotted in Figure 5.7.
Note that the time for the FEM solution increases exponentially, but the time for the PGD solution
increases linearly.
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Table 5.1: Solution time, degrees of freedom, and number of iterations for the cantilever beam
with different meshes N resulting in (10N ×N ×N) elements. The times are normalized
with respect to the time of the FEM solution for the coarsest grid.

N = 5 N = 10 N = 15 N = 20

FEM PGD FEM PGD FEM PGD FEM PGD

rel. time 1.0 4.6 8.3 11.4 29.4 17.4 72.7 21.6

DOFS 5 508 189 36 663 369 115 968 549 265 923 729

iterations - 757 - 916 - 924 - 869

5.3 Phase field damage

An example problem with phase field damage is shown in Figure 5.8. It is a square which is loaded
with a prescribed displacement in the y-direction at the top boundary. An initial crack, Λ, are also
included. The initial crack is inserted by prescribing the driving force, H along Λ, as described in
Section 2.2.

E = 1

x

y

1

1

v̂

Λ

ν = 0.3
Gc = 0.0001
l = 0.1

Figure 5.8: Square with initial crack, Λ, loaded with a prescribed displacement in the
y-direction at the upper boundary.

The resulting damage field for a mesh with 50× 50 elements, and 40 load steps, can be seen in
Figure 5.9 for both a PGD solution and a reference FEM solution. As seen in the figure, the field
shows good agreement in the beginning, but the evolution differs somewhat. For this case 10 modes
where used, which gave good correspondence with the finite element solution for the initial crack. It
is possible that more modes are needed to describe the damage field as damage evolves, which could
be one reason the fields does not agree fully after some time steps.

The convergence for the damage field has been a huge problem. Especially since a large number of
iterations are needed to find each mode. This means that the PGD solution cannot compete with the
corresponding FEM solution in terms of computational time.
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v̂ = 0 v̂ = 0.00875 v̂ = 0.0175 v̂ = 0.02625

Figure 5.9: Evolution of the damage for the example in Figure 5.8 for a PGD solution and
a corresponding FEM solution.
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6 Conclusions

In this thesis the model reduction technique PGD has been studied. It has been applied to two
different differential equations with varying results. For the elasto-static problem the method worked
quite well, and the solution agrees well with the finite element solution. However, some issues with
convergence were encountered, and a large number of iterations were sometimes needed. For larger
mesh sizes, the PGD is still faster than standard finite elements, provided that one dimensional
integration is used for the stiffness matrices and force vectors.

The final problem studied in this thesis was the coupled problem with displacement and damage
field as unknowns. For this application severe convergence problems where encountered, especially for
the damage field, for which the modes where harder to find. Although it is possible to describe the
damage with PGD, and get good agreement with the finite element solution for an initial damage
field, the evolution of the damage does not coincide. One explanation could be that the damage field
is not a very smooth field, and the force that drives the damage, the energy field, is not very smooth
either.

The PGD shows some promising results for some of the applications investigated in this thesis.
The main complication, for all of the investigated problems, is associated with the solution method
used to find the new modes, it takes many iterations for each mode to converge. Therefore, to obtain
a faster solution procedure, the stiffness matrices needs to be integrated in the lower domains in order
to compete with the standard finite element method for the types of problems studied here.

6.1 Future work

There are a number of topics regarding PGD that needs to be studied more. The first thing is the
solution method as indicated above. The alternating directions strategy, which is used in this thesis,
indeed proved to be more stable than Newton’s method for this application as well However, it is still
not very good, since the convergence rate is slow, and a (sometimes) large number of iterations is
needed to find each new mode. It also turned out to be quite sensitive to the provided initial guess.
This is another problem connected to the solution method, since it is hard to provide the solver with
an educated guess on the new mode. There seem to be no good methods developed to get a good
initial guess. But with a good initial guess the number of iterations decreases substantially.

Another complication with PGD, which also calls for further investigation, is the difficulties it
comes with, especially with regard to boundary conditions and varying domains. Connected to this is
also the use of internal variables, which needs to stored for the next time step. In this thesis this was
dealt with by integrating the full domain, and saving the variables in the integration points, as one
would do for a normal FE problem. However, this is not desired, since the property of integrating in
lower dimensions is wanted for computational efficiency.
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