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A small marine craft testbed for making future research and testing within au-
tonomous navigation in a coastal environment easily accessible

NOEL DANIELSSON
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Department of Electrical Engineering
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Abstract
This work has focused on the design and implementation of an unmanned surface
vehicle testbed platform called MARV. The purpose of this testbed is to make
it easier for both researchers and students to try out new navigation algorithms
for controlling a smaller vessel in a coastal environment. It has been developed
in collaboration with the Swedish Sea Rescue Society and is supposed to support
further research into how unmanned platforms can support their operations.
Both the hardware and software has been designed to allow for high level guidance
and control tasks to be tested on the platform. To verify functionality of the testbed
a demonstration implementation of waypoint following has been done. Successive
waypoint following has been achieved through two independent regulators for surge
and heading, receiving reference trajectories from a waypoint guidance system.
The waypoint following has been successfully tested both in simulation against a
model developed for the craft and also running directly on the hardware during sea
trials. This has also demonstrated the usability of the testbed for further research
focused on more advanced applications.
A large focus has been to create a modular and extendable system. This has been
done to not limit future research and allow for additions such as additional sensors
and more compute power to be added to the system as required.

Keywords: marv, marine autonomous research vehicle, rescuerunner, ssrs, swedish
sea rescue society, usv, unmaned surface vehicle, drive by wire, waypoint following,
underactuated control, testbed

v





Acknowledgements
We would like to thank the staff at Swedish Sea Rescue Society for providing us with
everything that we have needed from storing the personal watercraft to performing
test drives of the system. We especially appreciate the help that we have gotten
from Fredrik Falkman who has been our contact and made the cooperation between
SSRS and Chalmers a possibility. We would also like to thank Torsten Wik for his
time and interesting ideas during the project as our supervisor. At last we would
also like to express our gratitude to our examiner Petter Falkman for giving us this
opportunity to develop this platform from the ground up. With the hope that it
will accelerate the research and learning within the area and maybe one day also
aid SSRS in their mission.

Noel Danielsson and Viktor Lindström, Gothenburg, August 2021

vii





Contents

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 MARV System Description 3
2.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Yamaha WaveRunner . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Power Management . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Drive By Wire System . . . . . . . . . . . . . . . . . . . . . . 6

2.3.3.1 Databus . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3.2 Power Distribution Unit . . . . . . . . . . . . . . . . 7
2.3.3.3 Nozzle Control Unit . . . . . . . . . . . . . . . . . . 7
2.3.3.4 Throttle Control Unit . . . . . . . . . . . . . . . . . 7
2.3.3.5 Utility Control Unit . . . . . . . . . . . . . . . . . . 7
2.3.3.6 Radio Control Unit . . . . . . . . . . . . . . . . . . . 7
2.3.3.7 Operator Control Unit . . . . . . . . . . . . . . . . . 7
2.3.3.8 Autonomous Control Unit . . . . . . . . . . . . . . . 8

2.3.4 Navigation Sensors . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4.1 SBG Inertial Navigation System . . . . . . . . . . . 9

2.3.5 ROS 2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.5.1 ROS2 Bags . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5.2 Power Management . . . . . . . . . . . . . . . . . . . 11
2.3.5.3 Logger . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5.4 Heartbeat . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5.5 SBG ROS2 Driver . . . . . . . . . . . . . . . . . . . 12
2.3.5.6 SBG Interface . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5.7 Status Sender . . . . . . . . . . . . . . . . . . . . . . 12

ix



Contents

2.3.5.8 CAN Bridge . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5.9 Scenario Handler . . . . . . . . . . . . . . . . . . . . 12
2.3.5.10 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.6 Communication Examples . . . . . . . . . . . . . . . . . . . . 14
2.4 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Heartbeat and Unit State . . . . . . . . . . . . . . . . . . . . 15
2.4.2 12V Auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 The Dead Man’s Grip . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Physical System Placement and Wiring . . . . . . . . . . . . . . . . . 16
2.5.1 Front Mounting System . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Combined Control Unit . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Modularity and Future Possibilities . . . . . . . . . . . . . . . . . . . 18
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 User Friendliness and Stability . . . . . . . . . . . . . . . . . . 18
2.7.2 System Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.3 System Expansion and Maintenance . . . . . . . . . . . . . . . 19

2.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Dynamics Modelling 21
3.1 Reference Frames and Notation . . . . . . . . . . . . . . . . . . . . . 21
3.2 WaveRunner Physical Parameters . . . . . . . . . . . . . . . . . . . . 22
3.3 Manoeuvring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Strip Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Surge Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Thruster Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Turning Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Waypoint Following 33
4.1 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Surge Controller . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Heading Controller . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Guidance Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Derivation of All Variables . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Velocity Adaptation . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion 49
5.0.1 Evaluation of Q1 . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.0.2 Evaluation of Q2 . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.0.3 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

x



Contents

A Appendix 1 I
A.1 Full waypoint pseudo algorithm . . . . . . . . . . . . . . . . . . . . . II

xi



Contents

xii



List of Figures

2.1 The MARV testbed system overview, showing how every part of the
system is connected. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Yamaha WaveRunner personal watercraft, used as the platform
for the MARV testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The OCU. Showing the operator interface that is located on the orig-
inal glove box compartment directly in front of the operator. . . . . . 8

2.4 The ACU. Based on the REACH platform this unit is the on board
embedded Linux computer. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 The collection of ROS 2 nodes, dashed circles, running on the ACU
to provide higher level functions. The connecting arrows indicates
the main streams of topics. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 The Scenario Handler state behaviour. . . . . . . . . . . . . . . . . . 13
2.7 How a message propagates through from a Scenario to the Steering. . 14
2.8 How a message propagates through from the RCU to the Steering. . . 14
2.9 A rough placement of the physical enclosures of the system. . . . . . 16
2.10 The FMS before and after mounting in the WR. . . . . . . . . . . . . 17
2.11 The GNSS Base Station Unit. Built for being placed on the lead-

er/rescue boat, serving as a moving GPS base station. . . . . . . . . . 20
2.12 The application idea of the GNSS Base Station. . . . . . . . . . . . . 20

3.1 Body frame coordinate system . . . . . . . . . . . . . . . . . . . . . . 21
3.2 CG based on estimated components and modelled hull shell [5]. . . . 22
3.3 Coast down testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 The resulting coast-down points and regression polynomials. . . . . . 26
3.5 Coast down data compared with simulation . . . . . . . . . . . . . . 26
3.6 The simulated system response using the logged coast down data as

input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 The nonlinear and linear thruster force model, assuming a linear re-

lationship between throttle signal and steady state velocity. . . . . . . 28
3.8 The travelled path (position data) data used for tuning the turning

dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 A comparison between logging data and simulation output after tun-

ing both the sway and yaw angular velocity resistance polynomials. . 30

4.1 Surge controller block diagram . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Heading controller block diagram . . . . . . . . . . . . . . . . . . . . 36

xiii



List of Figures

4.3 In illustration showing the definition of all variables and relations
used in the waypoint algorithm. Refer to Section 3.1 for definition of
the body frame {b} and world frame {n}. . . . . . . . . . . . . . . . . 38

4.4 Showing the WaypointPlanner script’s map, including the different
components presented in the guidance algorithm. . . . . . . . . . . . 42

4.5 The waypoint navigation results, for both simulation and practical
test drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 The waypoint navigation results, showing only the simulation and
test drive results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 The waypoint navigation results, zoomed in. . . . . . . . . . . . . . . 44
4.8 A comparison between the waypoint reference velocity, guidance al-

gorithm generated reference velocity and resulting output for both
simulation and test drive. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 A comparison between the guidance algorithm generated heading ref-
erence and resulting heading for both simulation and test drive. . . . 46

4.10 A comparison with the guidance algorithm scenario implementation
bug, with and without. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiv



List of Tables

3.1 Notation for marine vessels [18] . . . . . . . . . . . . . . . . . . . . . 21
3.2 Mass of WR components. Positions relative to CO [5]. . . . . . . . . 22
3.3 Pose of thruster and reverse gate relative to centre of mass [5] . . . . 22
3.4 List of strip theory parameters . . . . . . . . . . . . . . . . . . . . . . 24
3.5 List of surge resistance parameters . . . . . . . . . . . . . . . . . . . 25
3.6 List of parameters for the thruster dynamics . . . . . . . . . . . . . . 27
3.7 List of turning dynamics tuning parameters . . . . . . . . . . . . . . 30

4.1 List of surge controller parameters . . . . . . . . . . . . . . . . . . . . 35
4.2 List of heading controller parameters . . . . . . . . . . . . . . . . . . 37

xv



List of Tables

xvi



Acronyms

ACU Autonomous Control Unit

CAN controller area network

CCU Combined Control Unit

CG centre of gravity

CO centre of origin

DB Databus

DbW drive by wire

DoF degrees of freedom

ECM Engine Control Module

EKF extended kalman filter

FMS Front Mounting System

GPS global positioning system

ICU Interface Control Unit

IMU inertial measurement unit

INS inertial navigation system

LQR linear quadratic regulator

MARV Marine Autonomous Research Vehicle

MCU MARV Communication Unit

NCU Nozzle Control Unit

NED north east down

OCU Operator Control Unit

PDU Power Distribution Unit

PIU Programming Interface Unit

RCU Radio Control Unit

xvii



Acronyms

REACH Rugged Extensible Autonomous Control Hardware

ROS Robot Operating System

ROS 2 Robot Operating System 2

RTK real time kinematic

SSRS Swedish Sea Rescue Society

TCU Throttle Control Unit

UCU Utility Control Unit

USV unmanned surface vehicle

WR WaveRunner

xviii



1
Introduction

In cooperation with the Swedish Sea Rescue Society (SSRS) several bachelor and
master theses have been arranged with the goal of creating an autonomous per-
sonal watercraft to support their sea rescue missions. The focus of this thesis has
been to develop and evaluate a testbed named Marine Autonomous Research Vehi-
cle (MARV) aimed at supporting further research in autonomous surface vehicles.
Previous project have been limited by not having a ready to go platform to test
their work within guidance, navigation and control. The aspiration is that having
access to a testbed with functioning hardware and software systems will accelerate
future developments.

1.1 Background
Personal watercrafts are useful for rescue operations as they are highly manoeuvrable
and have no exposed propellers that can injure people in the water. The main
motivation for the autonomy goal is that operating the vessel during rough sea
conditions is physically strenuous on the operator. This leads to rescuers arriving
at the scene tired from the drive there. The solution of carrying the watercraft on
board a lead boat has been evaluated but delays the arrival time to the destination.
Instead a concept has been proposed that allows the watercraft to autonomously
follow a lead boat with an operator taking over manual control at the destination. An
USV testbed would also open up possibilities for exploring other scenarios. One such
idea is using autonomous craft for unmanned assistance in non critical situations
such as boats becoming stranded.
This overall project has been under development for several years which means
that there is a substantial amount of previous results and lessons learned. The
architecture and much of the hardware design of the testbed builds upon the work
done in [1] and [2]. For dynamics modelling of personal watercraft, guidance and
control the work done in [3] has provided a solid reference. More recently the aspect
of wave disturbances and path planning to minimise the impact of waves has been
covered in [4]. Physical parameters for the WaveRunner (WR) craft have been
measured in [5] but have not been verified against real world test data.
A common aspect of the previous work is that only a short amount of time has been
used for physical testing at sea. Often the majority of resources have been needed for
developing and implementing the system and in some cases work has been limited
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1. Introduction

entirely to simulation.
Looking at the broader research done in the field of unmanned surface vehicle (USV)
[6] provides a good review of different course keeping control methods. The review
also shows that physical testing was uncommon with only six out of the twenty six
papers covered by the review conducting full scale trials. In [7] a good practical
approach is given to model and develop a controller for a personal watercraft similar
to the WR used for the MARV testbed. It covers aspect such as correlating output
power with throttle command which is usually not a consideration in more theoret-
ical work. A description and discussion of challenges related to successive waypoint
tracking is made in [8], with the under actuated control problem being of particular
interest given the thruster configuration of our test platform.

1.2 Purpose
The purpose of this project is to simplify the implementation and testing of future
navigation algorithms of small marine vessels. More specifically research focusing
on the area of search and rescue using an USV. The practical realisation of this is
through the following two research questions:

• Q1: What aspects are important when developing a testbed for further re-
search? That is, what aspects of the MARV system design are important to
consider to enable future work?

• Q2: What control and guidance methods are useful for practical successive
waypoint control during real world conditions?

The control and waypoint guidance is developed as a way to verify that the testbed
is working as intended and as an example implementation that can be referenced.

1.2.1 Scope
The thesis does not include the basic design and construction of the hardware re-
quired for control of the craft. It does however include system integration, testing,
logging implementation, ROS2 and scenario architecture.
The system should be as safe as possible and operate fully up to 10− 15 m/s. The
safety and function of the system above this limit is not taken into consideration.
The modelling and verification is done only in order to verify the system function.
It is also done only for positive surge velocity in order to avoid the behaviour when
the water jet is redirected by the bucket. The model is of maneuvering type which
excludes the behaviour that arise when traveling at low or zero velocity. The mod-
elling and control synthesis assumes calm waters and will such not take disturbances
into account explicitly.
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2
MARV System Description

The Marine Autonomous Research Vehicle (MARV) system, previously called the
Autonomous WaveRunner, is the added system which is installed in the Yamaha
WaveRunner (WR) platform. It consists of both hardware and software the makes
is possible to externally control the vessel via manual remote operation or au-
tonomously via the on-board computer. Together with the WR platform the system
makes up the MARV testbed.
This chapter aims at providing basic knowledge of the MARV system in order to
get started. It will provide an explanation of the purpose of the system, design
requirements and chosen system architecture.
For a deeper understanding and technical documentation the interested reader should
also take a look at the Github repositories [9]–[12], and the bachelor projects [1], [2].
The Github repositories contains the current circuit board design, manufacturing
files and software. While the bachelor project report describes the work that has
been previously done. It goes through the identification of problems and challenges
combined with design and construction of the first version of the control system,
which is the foundation for the MARV control system.

2.1 Purpose
The MARV system is supposed to make it easier for both researchers and students to
try out new navigation algorithms for controlling a vessel in a marine environment.
This should done by simplifying future expansion, maintenance and the interaction
with the system as much as possible. The user should not need any deep under-
standing of how the control commands are carried out and therefore be able to focus
more on what control commands to send.
It should also provide a safer way of using a personal watercraft as a test plat-
form. These vessels can achieve high speeds and are highly maneuverable. This is
preferable since the MARV can be used as an agile testing platform. Although the
versatility also increases the overall risk, in the worst case a malfunction can cause
accidents within seconds. Therefore the MARV control system should also have a
high focus on safety. It should constantly monitor the system for any deviation and
in that case immediately interrupt the current task. In this way the main risk is left
to the control algorithm itself which can also be limited by preventing it to perform
to harsh control commands.

3



2. MARV System Description

2.2 Design Goals

The purpose can be summarized into several important design goals which have
been taken into consideration when designing both the hardware and software in
the MARV testbed.

• User friendliness: The system should be as easy as possible to use for up-
coming projects. The user should not need to understand how the whole
system works, but only what is relevant for the task at hand.

• System safety: The system should be as safe as possible to use and precau-
tions should be taken in order to minimise risks.

• System expansion and maintenance: It should be easy to expand the
system and add more functions to or perform maintenance of existing units.

• Stability: The system should be stable and continue to operate without any
major issues.

A subjective evaluation of how the system has met these goals is presented in the
discussion at the end of this chapter.

2.3 System Architecture

The MARV control system consists of many different parts of hardware and soft-
ware that are interacting with each other. This makes it difficult to unambiguously
partition the system as different functionality overlaps. For the sake of providing
an overview of the primary system functionality it has been divided in the parts
that can be seen in Figure 2.1. A more detailed explanation of the units along with
examples how the communication is carried out will presented in this section.

2.3.1 Yamaha WaveRunner

The Yamaha WaveRunner VX Cruise HO is the personal watercraft that is used as
the testing platform. On this version the steering is mechanical while the throttle is
controlled by analogue signals. The choice of platform was based on that it shares
almost the same driveline as the SSRS Rescuerunner vessels. If future projects
results in a mature solution for autonomous control of these vessels, this would
simplify the adaptation of the system to work with the Rescuerunner. An image of
the WaveRunner can be seen in Figure 2.2.
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2. MARV System Description

MARV Testbed

Drive By Wire
System

RCU
(Radio Control Unit)

TCU
(Throttle Control

Unit)

UCU
(Utility Control Unit)

PDU
(Power Distribution

Unit)

OCU
(Operator Control

Unit)

NCU
(Nozzle Control

Unit)

ACU
(Autonomous
Control Unit)

SBG INS
(Inertial Navigation

System)

Auxiliary
Battery

DC-DC
Charger
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Sensors
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Power
Management
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External Input
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Foot 
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Figure 2.1: The MARV testbed system overview, showing how every part of the
system is connected.

Figure 2.2: The Yamaha WaveRunner personal watercraft, used as the platform
for the MARV testbed.
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2. MARV System Description

2.3.2 Power Management
The power system consists of a battery to battery charger and an auxiliary battery.
The charger charges the auxiliary battery from the WR’s main battery in a safe
way. It limits the current, prevents overcharging of the auxiliary battery and cuts
off the charging whenever the main battery voltage becomes too low. The auxiliary
battery is used for several reasons. It prevents voltage drop when starting the WR’s
engine which could otherwise shut down units due to the sudden decrease in voltage
level. It can also provide a high current for a short amount of time if needed.
The auxiliary battery is protected from fully draining by the Power Distribution
Unit (PDU). Although this is not the case if connecting external loads directly to
the auxiliary battery which needs to be taken into consideration if the system is
updated.

2.3.3 Drive By Wire System
The Drive by Wire (DbW) system is the main part of the MARV system. It in-
cludes all units that interact directly with the WR hardware and executes control
commands. It also handles power distribution, computation and features that makes
it easier for the operator to interact with the MARV system. Following is a brief
descriptions of each separate part.

2.3.3.1 Databus

The system is connected together by the Databus (DB) which is a combination of
both power and communication. The power distribution consist of both one 12V
supply that is continuously enabled and another called 12V Auto that is controlled
depending on the system mode. It is switched on or off depending on if the system
is in external or manual mode.
When in external mode the system is allowed to take control and can then carry
out control commands. This enables both power to stepper motor connected to the
handlebar shaft and power to the relays that switch over the throttle control.
When the manual mode is activated the MARV system has no way of controlling
the WR. The 12V Auto power is off which electromechanically disconnects control
signals and power to actuators, disabling the systems ability to carry out control
commands. Every unit can also sense the state of 12V Auto.
The communication part of the DB consists of a single CAN bus currently running
at 1 Mbit/s. This enables robust and distributed communication between all the
the units of the DbW system.
The previous system used two separate databuses with the Interface Control Unit
(ICU) in between. The ICU acted as a bridge between the two relaying incoming
steering commands to the correct low level unit responsible for carrying it out. For
this system the two databuses have instead been merged into one and the power
management feature moved directly to the PDU. This has been done since there
was no apparent advantage of having two buses, and the removal of the ICU reduces
the complexity of the system.
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2.3.3.2 Power Distribution Unit

The PDU provides power management for the DbW system. It contains the logic
when to enable or disable external mode but can not active it by itself. If a system
fault is detected external mode will immediately be disabled. Part of the power
management features are under voltage protection for the auxiliary battery and
electronically controlled fuses.

2.3.3.3 Nozzle Control Unit

The Nozzle Control Unit (NCU) controls the angle of the WR’s waterjet nozzle.
More practically it controls the stepper motor attached by a pulley system to the
steering handle. It also monitors the steering angle through an absolute angle sensor.
This unit can only control the system when in external mode.

2.3.3.4 Throttle Control Unit

The Throttle Control Unit (TCU) controls the throttle input to the WR’s Engine
Control Module (ECM). When in external mode this unit replicates the behaviour of
the analogue signals normally coming from the throttle controls on the handle. When
in manual mode the relays instead connects the handle throttle controls directly,
which disables any signals coming out of this unit.

2.3.3.5 Utility Control Unit

The Utility Control Unit (UCU) handles extra features that are useful. It has the
possibility to alert the operator if anything happens using the WR’s buzzer to play
different sound signals. There is also hardware that can read the paddle wheel which
senses the velocity through water. It also has an accelerometer on the circuit board,
for measuring acceleration up to 200g. If there are any non vital feature that needs
to be added in the future, then this is the unit to upgrade.

2.3.3.6 Radio Control Unit

The Radio Control Unit (RCU) allows the MARV to be remote controlled. It decodes
the incoming data from the built-in radio receiver and sends out both steering and
throttle commands on the DB. This units main purpose is for testing since it is
a good way of trying out the control of the system without overhead between the
commands and their recipient.

2.3.3.7 Operator Control Unit

The Operator Control Unit (OCU) is a unit that has two main functions. It acts as
the switch between manual and external mode. The operator can request to switch
mode using the OCU. The PDU then determines if the request is valid and if so
the mode is switched. It also contains an 2.7" oled display running a user interface
in which the operator can get information about the system status. It also has
many other functions which are to start and stop manual logging, start and stop
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scenarios (implemented navigation algorithms) and also shutdown and restart the
MARV system. A picture of the OCU can be seen in Figure 2.3.

Figure 2.3: The OCU. Showing the operator interface that is located on the original
glove box compartment directly in front of the operator.

In order to switch to external mode the operator has to hold the foot pedal and
press the blue button. If the request is accepted by the PDU then the mode will
switch which is indicated by the blue button lighting up and a sound signal being
played by the buzzer. Then to disable the system the operator only has to either
release the foot pedal or press the red button. A confirmation sound will then be
played by the buzzer and the blue light is turned off.

2.3.3.8 Autonomous Control Unit

The Autonomous Control Unit (ACU) is the on board embedded Linux computer.
It is currently based on an REACH unit [13]. It is purpose built in-house to be
both a robust and extensible platform for robotics and automation applications. It
is based around the Nvidia Xavier NX development board that has been enclosed
and passively cooled. It has four slots for expansion cards that can be used to
add different features. In this case two slots are currently in use to enable the use
of CAN bus and RS232 serial communication for communicating with the inertial
navigation system (INS) unit. This version of the REACH unit is constructed with
telemetry support which can be used for two way long range communication. It also
has support for connecting up to two Raspberry Pi cameras. The REACH unit has
has both an Ethernet port and WiFi accessibility. A picture of the ACU can be
found in Figure 2.4.
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Figure 2.4: The ACU. Based on the REACH platform this unit is the on board
embedded Linux computer.

On the ACU a collection of ROS 2 nodes are running. These provide the basic
high level functions for collecting sensor data, handling scenarios and more. These
functions are presented in detail in the ROS 2 nodes section.

2.3.4 Navigation Sensors
The navigation sensors part of the system includes any higher level sensors used for
navigation. It is possible to add sensors directly to the ACU like for the INS. This
can be done by creating an expansion card and installing in the REACH unit to
communicate with the required protocol. It is also possible to connect a sensor by
USB or install two Raspberry Pi cameras using an HDMI cable and the REACH
HDMI to CSI adapter.
If the sensor supports CAN bus they could also be added directly to the DbW
system, although this can affect stability and potentially the safety of the system.

2.3.4.1 SBG Inertial Navigation System

At the moment the only sensor is the SBG Ellipse2-D INS. This unit is both a
GPS receiver and IMU in the same package. Thus it is able to provide both the
position and orientation of the MARV. At the moment it gives a position accuracy
down to 1.2 meters [14]. It has RTK support which gives an accuracy down to
only a few centimeters. The INS is connected to the ACU using the RS232 serial
communication made possible by an expansion card installed in the REACH unit.
Everything from the IMU data to the GPS position can be read, both raw and
filtered through the Extended Kalman Filter (EKF). The filtered data is often more
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reliable since it combines measurements with a marine vessel motion model in order
to increase the accuracy. When running the system it is very important that the INS
has mostly full status. The most important status variables is the solution_mode,
which is the EKF filter status. This can vary from 0 to 4, where the last one
means that the EKF filter should be able to output a reliable navigation position.
On top of that the system should also show true heading_valid, velocity_valid and
position_status. These can all be found in SBG’s SbgEkfStatus message. They are
also presented on the status page of the OCU where the solution_mode can be seen
under EKF. The other variables can be seen under INS (HVP) where (HVP) stands
for heading, velocity, position. This value will show a sum that varies from 0 to
111. If the heading is valid it will add 100, if the velocity is valid it will add 10
and for the position it will add 1. When all these are true the navigation system is
fully operational. If the system does not manage to achieve full status it can help to
power cycle the INS. When the there is no connection with the INS the OCU will
show the status as -1.
The INS needs to be configured in order to work. This can be done using the SBG
Center application to set the output variables and frequency. The lever arms which
are the distances between the different components used by the INS must also be
set.

2.3.5 ROS 2 Nodes
On the ACU a collection of Robot Operating System (ROS) 2 nodes are running.
They provide several different high level functions in the system which enables au-
tonomous control and operator interaction to the MARV. The different nodes can
be seen as dashed circles in Figure 2.5.

Scenario
Handler

ROS Topics
SBG

Interface

Power
Management

Status
Sender

HeartbeatLogger

Scenario 
1...8

SBG ROS2
Driver

CAN
Bridge

DB
(Databus) Telemetry

SBG INS
(Inertial Navigation

System)

ACU
(Autonomous
Control Unit)

ROS Bags

Figure 2.5: The collection of ROS 2 nodes, dashed circles, running on the ACU to
provide higher level functions. The connecting arrows indicates the main streams of
topics.
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The nodes communicates with each other using topics (messages). The topics related
to the MARV system are divided into four main categories:

1. marv/nav/... contains everything going out from the SBG Interface node.
These contain everything that has to do with navigation which are for example
the pose and the extended Kalman filter status.

2. marv/status/... which contains status messages from the system. It can be log
data from the DbW system or other status messages coming from any ROS 2
node.

3. marv/ctrl/... which are the ones that can control the system in any way. These
are for example the throttle, steering and sound signal commands.

4. Other topics that originate from sensor drivers or other subsystems that are
not directly part of the MARV topic structure. These are for example the
messages coming from the SBG ROS 2 driver node. They contain the raw
topics coming directly from the INS.

2.3.5.1 ROS2 Bags

The ROS 2 bags logs the specified ROS topics which are messages sent in between
the nodes. These bags can either listen to specific topics or all available, hence the
unconnected arrows in Figure 2.5. This is the main way of logging what is hap-
pening in the system. Everything from the steering angle, battery voltage, throttle
command to position and orientation are sent as ROS topics that can be logged.
The data can then be extracted from the bags and used in for example MATLAB.
On Github there is a Jupyter notebook [15] with example scripts for extracting data
from the ROS bags. Any number of ROS bags can be started listening to different
combinations of topics.

2.3.5.2 Power Management

The Power Management node handles shutdown and reboot functions for the ACU.
It enables the the use of the power button to request a shutdown but it can also be
held down to force the power off. It also gives the possibility to cleanly shut down
or reboot the ACU by receiving commands from the OCU. This is important since
improper shutdown can corrupt data on disk. The ROS bags are also sensitive to
incorrect shutdown of the system.

2.3.5.3 Logger

The Logger keeps track of which logging interval that is currently active. The
system is always logging data since that is how the ROS bags work. For the sake
of simplifying the manual or automatic logging this node send a message with the
current interval that increases from zero by one every time the logging is started
or stopped. When not running it is simply sending -1 to indicate that it is not
activated. Note that the log marker count does not have persistence between node
restarts.
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2.3.5.4 Heartbeat

This node sends the current status of the ACU out on the DB. The status is displayed
on the OCU and can be changed for the ACU by publishing the state topic that the
node listens to.

2.3.5.5 SBG ROS2 Driver

The SBG ROS2 Driver node implements the communication protocol and functions
for communicating with the INS. This node is provided by SBG Systems which is the
manufacturer. In the configuration file the output and frequency of different data
topics can be set. These needs to match the settings in SBG Center configuration,
as they will only affect the ROS 2 side and not the INS itself.

2.3.5.6 SBG Interface

The SBG Interface node is a middle layer between the SBG ROS2 driver and the
rest of the nodes. It has several purposes. The first one is to simplify the output,
picking out the most wanted data and republishes it as new topics to the system
using standard ROS 2 topics instead of custom messages. It also transforms the
position data from geographical coordinates to local navigation coordinates by using
a reference position that needs to be set. Additionally it also sends out information
to the OCU about the INS status.

2.3.5.7 Status Sender

The Status Sender node is a temporary node that sends some debug information,
such as the position, status of INS and more, over the long range telemetry link.
This data can be received by the MARV Communication Unit (MCU) which has a
telemetry adapter attached to it.

2.3.5.8 CAN Bridge

The CAN Bridge node connects the ROS network to the DB. It simply maps together
and forwards messages both ways. This is done differently depending on how the
message is incoming. For ROS to CAN the bridge listens to the specified topics,
then looks up the CAN arbitration id, packs the message and then sends it. For
CAN to ROS the node checks which CAN arbitration id that the incoming message
has. Then it unpacks the data, packs it into a the corresponding ROS topic that
is then published. Every message that should pass in between the two must be
declared in the DBC file [16], found in the MARV-ROS repository [12]. The action
upon receiving or sending the message must also be implemented in the bridge.

2.3.5.9 Scenario Handler

The Scenario Handler takes care of running the user implemented navigation al-
gorithms, also called scenarios. It keeps track of which scenarios that have been
started, which one are running and also the status of the running scenario. It acts
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as a middle layer of safety between the scenario and the MARV. It also limits the
amount of commands that can be sent per second and it stops the scenario if it
does not behave as expected. The scenario handler allows the the scenarios to be
updated dynamically on the OCU, allowing the user to customise which scenarios
that are active. It also allows the user to send progress data, two variables and text
notifications to show in the OCU during execution.
The Scenario Handler switches state depending on what is happening in the system.
A flow chart of the behaviour can be seen in Figure 2.6 where the state is shown
within parenthesises.

scenario fault

Init
(No scenario

running)

yesIn manual
mode?

green button clicked

Wait for user to
request to start

sceanrio
(STOPPED)

Send request to
Scenario Handler

(REQ SENT) 
Wait 5s
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(Scenario not in init state)

no
(Scenario not responding)

Scenario in
INIT state?

Sending 0 thrust and throttle
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and pedal pressed

waited more than 30s
(Timed out)

Wait for user to
switch to

external mode
(WAITING)

red button clicked
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Scenario running
(EXECUTING)

Anything chnaged?

Switching to
external mode

Switching to 
manual mode
(STOPPED)
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red button clicked
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Figure 2.6: The Scenario Handler state behaviour.

2.3.5.10 Scenario

A scenario is a way of executing user written algorithms, such as waypoint following
or thrust controller testing. They need to follow the basic structure of a scenario
and inherit the scenario class function. This enables them to communicate with the
scenario handler.
A scenario needs to behave as expected. This means that a setup can be run on
startup but the node should not start by itself before getting the go ahead by the
scenario handler. For a lot of examples using the correct structure take a look at
the MARV-ROS repository [12]. The example structure can of course be modified
and used freely as long as the following requirements are met:

• Inherit the functions from the Scenario class, these enables the features to send
steering, throttle, scenario finished, update progress, data variables and more.

• Only initialize the necessary things at startup. This includes global variables,
publishers and subscribers that will not trigger when the node is not active
(started by the scenario handler). It also includes a timer that checks if the
scenario should start.
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• The Scenario state needs to be changed from stopped to init when a start is
requested in order to be able to start. It should also begin to send 0 deg steering
angle and 0 throttle commands, only then the PDU will allow switching to
external mode.

For the documentation of using the scenario class, take a look at the MARV-ROS
repository [12].

2.3.6 Communication Examples
When sending messages in the system the data will propagate through it using
different methods and protocols. There is no guarantee that every message will be
delivered but most of the functions do not require this. In Figure 2.7 an example of
how a message propagates from a Scenario to the WR’s steering.

Scenario
Handler

CAN
Bridge

Scenario 
1...8

DB
(Databus)

NCU
(Nozzle Control

Unit)
Steering

ACU

Figure 2.7: How a message propagates through from a Scenario to the Steering.

The message first begins as a ROS topic that are routed to the CAN Bridge node.
There it is converted into a CAN message and then sent out on the DB. The NCU
listens for the CAN messages and then executes the command to alter the steering
angle.
Another example can be seen in Figure 2.8 where the RCU is the sender. In this
case the message goes directly from the RCU out to the DB and then to the NCU.
This is why the RCU is a great way of debugging the basic functions, since there
are fewer involved subsystems.

RCU
(Radio Control Unit)

DB
(Databus)

NCU
(Nozzle Control

Unit)
Steering

Figure 2.8: How a message propagates through from the RCU to the Steering.

2.4 Safety

It has previously been mentioned that the safety is an important aspect of the MARV
control system. The WR requires both knowledge and sense to be handled in a safe
way. When autonomous control is introduced this is even more crucial. Therefore
the system has several layers of precautions in order to minimise the risk.
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2.4.1 Heartbeat and Unit State
Every control unit in the DbW system continuously sends their heartbeat state.
This is used to monitor the status of the unit. It can be either Not Connected (NC),
Error (ER) or Okay (OK). Whenever a unit is connected and working properly it
should be in OK state. From there on it can then switch to ER if something happens
that interrupts the original functionality. This transition must be user specified and
implemented in the program that is running since an error will not be detected
automatically. It is also possible that the unit ends up as NC state. This will only
occur if the connection to the unit is lost. The unit itself will not change it’s own
state to NC but other units on the bus will deem the unit to be in NC state if is
does not respond. Whenever a unit changes state from OK to ER or NC the user is
also notified by a popup on the OCU and a sound signal.
In order to start a scenario the PDU requires the state of the TCU and NCU to be
OK. It also needs the source unit of the commands to be in OK state. The source
can be either the ACU or RCU but not both at the same time. If these requirements
are not met then it is not possible to switch to external mode. In order to reset the
system a full restart should be made.
The PDU can change to ER state for different reasons. The first is if the heartbeat
is lost or changed to ER from any of the above mentioned units during execution in
external mode. Except for the ACU and RCU, where it only cares about the source
unit. Another reason is if the steering and throttle commands are suddenly stopped
in external mode then the PDU will enter error state.

2.4.2 12V Auto
As previously mentioned the 12V Auto power feature plays an important role. It is
simply a 12V power line that is controlled by the PDU. It is used for driving safety
critical functions such as the steering stepper motor and the relays that switches
between normal and autonomous control of the throttle signal. When this line is
turned off the system cannot affect the WR in any way. If the power goes out in
the MARV control system the control is immediately given to the operator. Mode
switching is completely electromechanical to be as safe as possible.
The 12V Auto power is only enabled by the PDU if all requirements are met. Except
for the state logic mentioned above the source must also send commands. For the
RCU the Radio Controller only needs to be active by being turned on to do this.
For the ACU the same basic requirements are needed. Although as mentioned under
the scenario handler and scenario logic, the scenario both needs to be in init state
and sending commands with 0 throttle signal and 0 steering angle.
In order to switch over to external mode and activate the 12V auto power the user
must as previously described under the OCU Unit hold both the pedal and press
the blue button. Then if either the pedal is released or the red button is pressed the
system will directly switch over to manual mode again. In this way it is possible to
switch of the system even if the user is not able to reach down to the OCU’s red
button.
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2.4.3 The Dead Man’s Grip

The system requires an operator to be on board at all times. This is both because
of the fact that is is not easy to only steer the vessel by radio control, but also if the
systems acts up. The WR has a normal dead man’s grip. This is required in order to
start and run the motor. If it is removed the motor will stop. This is the last layer
of security if the operator falls off or if the MARV control system malfunctions.
Despite the precautions taken above the operator needs to continuously monitor
the situation as the MARV system has not gone through any extensive testing of
the safety. It has however worked as expected during the initial testing and much
thought has gone into making it as safe as possible.

2.5 Physical System Placement and Wiring

The physical enclosures of the system units are placed in different areas on both the
inside and outside of the WR. A rough placement can be seen in the Figure 2.9.
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Figure 2.9: A rough placement of the physical enclosures of the system.

2.5.1 Front Mounting System

The Front Mounting System (FMS) is a modular mounting platform made up by
aluminum 2020 extrusions and fixture plates. It is located inside the front compart-
ment where it holds all the respective units seen in Figure 2.9. The whole structure
is damped by studded dampers in order to reduce vibrations. In Figure 2.10 is a
picture of the FMS when newly constructed and not yet installed, and then when it
is installed in the WR’s front compartment.
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(a) The FMS after construction has been
finished.

(b) The FMS mounted inside the WR’s
front compartment.

Figure 2.10: The FMS before and after mounting in the WR.

2.5.2 Combined Control Unit

The Combined Control Unit CCU is a physical enclosure for the PDU, TCU, NCU
and UCU. The CCU has been manufactured using an aluminium alloy enclosure to
allow effective transportation of heat. The connector cutouts are CNC milled to
allow for the use of non-circular connectors. Inside it has an aluminum fixture plate
which all the circuit boards are mounted to. The whole unit is made to be as stiff
as possible to minimize flexing that could otherwise damage electrical components.
Every on board unit can be selected and programmed using a single usb port. Using
the same port it is also possible to get serial data for all units simultaneously. This
is achieved by the Programming Interface Unit (PIU) that is also located inside the
CCU.

2.5.3 Wiring

All the units are connected together using different wires and wire gauges depending
on the application. Naturally the power management part therefore consist of thicker
wire of 6-4 mm2. For the DB a wire size of 0.75 mm2 is used and recommended if
the DB is expanded.
Most of the wires has been put together into cable harness assemblies, following a
guide of making motor sport grade cable harnesses [17]. This has been done using
mostly Deutsch connectors, shrink tubing for ingress protection, CAN bus cable and
quality wires. This should increase the durability of the system since it reduces the
risk of it getting damaged by the harsh environment over time.
The complete wiring diagram and specification can be found in the MARV-Hardware-
Electrical repository [10].
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2.6 Modularity and Future Possibilities
The MARV control system is built with a modular design in mind. It is possible to
switch out, upgrade and add new units to the existing architecture, as new needs
arise. This has mostly already been mentioned in this chapter but here are some
key points.

• The DB currently runs from the Front Compartment, up the RCU located
inside the hatch, then to the Glove Box where the OCU is located. From here
it is possible to extend the bus which provides both power and communication
for new units. It is also possible to extend the DB at other ends but then
a new cable harness needs to be manufactured. If any new units are added
to the DB, make sure that the system still functions as intended since the
communication is crucial for the both safety and performance of the system.

• The units inside the CCU can be switched out if any upgrade is needed. Al-
though they need to have the same dimensions, hole patterns and connector
placement in order to fit inside the enclosure.

• It is possible to add new navigation sensors by connecting them directly to the
ACU, either by a REACH expansion card or USB. The ACU is also prepared
for the use of two Raspberry Pi cameras. New sensors can also be added to
the DB as a new unit.

• The FMS is constructed using normal 2020 aluminium extrusions, with 5 mm
grove size. It can easily be extended but make sure to use fasteners of stainless
steel or aluminium since the environment is corrosive.

• If any new unit is added make sure to keep the same CAN message id structure
and unit state logic.

2.7 Discussion
Presented in this section is a subjective evaluation of the MARV system design goals.

2.7.1 User Friendliness and Stability
The MARV control system has become quite complex. It includes a lot of physical
units, many thousand lines of code, logic for both keeping the safety up and handling
different actions. Despite this it has been quite easy to create and run several
different scenarios. More than ten different scenarios has been created and tested,
everything from steering tests to waypoint control. The important thing has been to
keep the basic structure and abstractions. Testing out the scenario several times and
trying out the behaviour on land before even taking it on to a real test drive. This
is crucial as the scenarios are written in Python and some errors are only found
during runtime. An improvement here would be automated integration and unit
testing of the system to ensure that changes do not have corner cases that do not
get discovered by running a simple test scenario.
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The system itself has been operating as expected, with some deviations presented
further down. This means that the user should only need the basic knowledge in
order to operate it, as long as it works as expected. When problems do occur they
are usually bound to coding errors in the scenarios, or intermittent system errors
that are really hard find the source of. Although, these can mostly be fixed by a
full restart.
The CAN Bus Problem is a problem with CAN bus inside the DB. Despite the fact
that it is running with 1 Mbit/s units starts to generate error frames and then going
of bus at around 300 messages per second when all units are connected. When a
unit (RCU,ACU,TCU or NCU) goes of bus the PDU will detect this and switch
over to manual mode, thus stopping any active scenario. This number of messages
is not nearly at the limit of what it can handle but it seems to be due to the
fact that every DbW unit except for the ACU and PDU runs without an external
crystal. This probably causes timing issues on the bus, causing some units to report
messages as corrupt. It can be possible to fix this by adding an external crystal for
those units or by calibrating the internal oscillator. Currently a workaround has
been implemented by keeping the number of messages to a minimum and disabling
the PDU from transmitting (and thus not reporting any errors). This unfortunately
removes the possibility add new units to the DB at the moment, without risking
more instability. Although even if this still occurs the system can still be restarted
but it will of course interrupt the current task.

2.7.2 System Safety
The system safety functions have worked as expected during testing. The complexity
of the logic and single failure points have been kept to a minimum. The PDU is
responsible for the decision to enable switching to external mode but it is always
the operator that does the activation. The foot pedal which was introduced in this
version of the system has been used during testing to quickly stop the system and also
disable the system if the operator momentarily becomes unbalanced. The redundant
safety design used ensured that the CAN problems discussed never affected the safety
of the system.

2.7.3 System Expansion and Maintenance
Modifying or adding any unit to the DbW system is a challenge. It requires both
knowledge about electronics design, embedded programming and the system archi-
tecture. This is however possible but it has not been the main focus. The most
important thing is to be able to add new sensors and writing software on the ACU.
This requires knowledge about the sensors, different interfaces, ROS 2 and the ROS
2 node structure, which is reasonable.
When instead considering maintenance the system has not become any easier to
work with. This is mostly inherent to the system being installed in an inaccessible
area. The stepper motor and pulley system takes significant time to take out and
in. Each unit can however be disconnected and removed for any maintenance even if
some effort is required. Each and every cable is labelled and mostly keyed to only fit
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where it is supposed to. The system has also so far reached expectations regarding
robustness, which should minimise the need for maintenance.

2.8 Future Work
Previous projects that have been focusing on following a lead rescue boat. For this
purpose a GNSS Base Station unit has been constructed to act as a moving base.
It is built upon an extended REACH unit with an Nvidia Jetson Nano inside. The
unit can be seen in Figure 2.11.

Figure 2.11: The GNSS Base Station Unit. Built for being placed on the lead-
er/rescue boat, serving as a moving GPS base station.

It uses the Satlab UAV/RTK GPS unit with two antennas that can provide both
the position and heading. This unit has only been assembled and has no software
running on it. A protocol for communicating with the GPS device has to be written
or implemented in order for the unit to function properly. The telemetry communi-
cation between the WR and GNSS base station also needs to be implemented. This
can be done by sending data one way or by implementing a communication protocol
for handling two way communication. A block diagram of the application concept
can be seen in Figure 2.12.

Radio linkTelemetry TelemetryGNSS 
Base Station
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(Autonomous
Control Unit)
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SATLAB 
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Figure 2.12: The application idea of the GNSS Base Station.
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3
Dynamics Modelling

A dynamic model of the system has been developed to allow for both simulation of
the system and model based control design. The focus has been on a simple model
that is sufficiently accurate to be used for control design and waypoint guidance.

3.1 Reference Frames and Notation
Two reference frames are of interest for guidance, navigation and control. For control
design the body frame {b} is of main interest and the axes directions in relation to
the vessel are presented in Figure 3.1. The body frame is used for all forces, moments
and velocities unless otherwise noted. For navigation and guidance the north east
down (NED) frame {n} is used to describe positions and angles. The NED frame
rotates with the earth but is assumed to be inertial.

Figure 3.1: Body frame coordinate system

Table 3.1: Notation for marine vessels [18]

DoF Forces and
moments

Linear and
angular velocities

Positions and
Euler angles

1 motion in x (surge) X u x
2 motion in y (sway) Y v y
3 motion in z (heave) Z w z
4 rotation around x (roll) K p φ
5 rotation around y (pitch) M q θ
6 rotation around z (yaw) N r ψ
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3.2 WaveRunner Physical Parameters
Here estimated and measured physical parameters of the WR will be presented.
Earlier work has used methods such as 3D scanning and referencing technical doc-
umentation on the WR to accurately estimate relevant physical parameters [5].

Table 3.2: Mass of WR components. Positions relative to CO [5].

Component Mass Position (x, z)mm Size (x, y, z)mm
Fuel 52.5 kg (306,-460) (400,550,300)

Engine 110 kg (-494,-410) (500,250,450)
"Hull" 238 kg - -

Operator 80 kg - -
Total 480.5 - -

The mass of the components that contribute most to the vessel inertia has been
compiled in Table 3.2. Here the hull component refers to the remaining mass after
the engine and fuel has been subtracted. The distribution of the remaining hull
mass has been estimated as a model thin shell around the vessel as can be seen in
Figure 3.2a [5].

(a) Modelled hull based on 3d scan.

1645

360

(b) Estimated CG of vessel.

Figure 3.2: CG based on estimated components and modelled hull shell [5].
Calculated inertia tensor around CG based on hull and components, excluding op-
erator, listed in Table 3.2. The inertia tensor definition used is from [19, pp. 48-49].

Ig =

Ix Iy
Iz

 =

52.2
238.1

248.3

 kg m2 (3.1)

Table 3.3 describes the position of the thruster nozzel and the reverse gates that
allows the WR to redirect the water flow forward and to the sides [5].

Table 3.3: Pose of thruster and reverse gate relative to centre of mass [5]

.

Component (x, y, z)mm (φ, θ, ψ)°
Main nozzel (−1443, 0,−240) (180± 24, 0, 0)
Reverse gate starboard (−1563, 140,−240) (70, 0, 0)
Reverse gate portside (−1563,−140,−240) (−70, 0, 0)
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3.3 Manoeuvring model
A maneuvering three DoF model was chosen for the development of a dynamical
model of the craft. This limits the usefulness of the model to positive surge velocities
from around 3 to 12 m/s but also significantly reduces the modeling complexities.
Another simplification commonly seen in the literature is that the surge, sway and
yaw dynamics are assumed to be independent from each other [20]. The CO of the
body coordinates is also defined to coincide with CG of the vehicle. Water surface
currents are assumed to be small in relation to the vehicle velocity. The dynamics,
written using Fossen vectorial notation [19], then become

(MRB +MA)v̇ +D(v)v = τ (3.2)

with the state vector being defined as

v =
[
u v r

]T
. (3.3)

The rigid-body system inertia matrix is based on the vehicle mass m and inertia
around the z-axis Iz.

MRB =

m 0 0
0 m 0
0 0 Iz

 (3.4)

Combined with the mass contribution from the rigid body is the added mass matrix
which is due to the water close to the vessel moving with it. The added mass is
generally not constant during different operating conditions so additional scaling
constant kmv̇ and kmṙ have been introduced to allow for tuning of the theoretically
calculated added mass that affects turning dynamics.

MA = −

Xu̇ 0 0
0 Yv̇kmv̇ 0
0 0 Nṙkmṙ

 (3.5)

Non linear damping matrix where each element expresses the resistance in the prin-
cipal directions as a polynomial function of velocity in each direction respectively.

D(v) = −

Xu(u) 0 0
0 Yv(v) 0
0 0 Nr(r)

 (3.6)

External force inputs to the system are represented by the force and moment vector

τ =
[
X Y N

]T
. (3.7)

3.4 Strip Theory
To get a starting point for tuning strip theory was used to calculate a theoretical
value for the added mass [21]. The added mass calculation is based on the geometry
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of the submerged part of the vessel. Based on the work done by Bergholtz and
Hernvall the added mass in three DoF can parametrised [3].

−Xu̇ = m

20

−Yv̇ = Lπρa2

2

−Nṙ = mb3

30 + L3πρa2

24

(3.8)

The parameters presented in Table 3.4 are based on the 3d scans done in [5] and
a section was done at the centre of the vessel to determine proper dimensions for
the ellipse defined by a and b. The waterline was placed based on the vessel being
stationary in the water with buoyancy forces carrying the entire weight of the craft.

Table 3.4: List of strip theory parameters

Parameter Description Value
a Submerged depth 0.35 m
2b Width at waterline 1.10 m
L Total vessel length 3.35 m
ρ Salt water density [22] 1025 kg/m3

3.5 Surge Dynamics
To complete the surge dynamics component of the manoeuvring model the resistance
function Xu̇ needs to be defined. Looking at the expression complete expression

u̇(t) = − Xu(u)
m−Xu̇

u(t) + X(t)
m−Xu̇

(3.9)

and if there is no input force X(t) the only parts that remains are

u̇(t) = − Xu(u)
m−Xu̇

u(t) ⇐⇒ −Xu(u)u(t) = u̇(t) (m−Xu̇) . (3.10)

This means that if −Xu(u)u(t) = Fd, where Fd is the drag force polynomial, it is
possible to determine the dampening by a conventional coast-down test [23].
A coast-down test uses Newton’s law

F = ma = md(v)
d(t) (3.11)

in order to derive a curve of how much force is applied at a specified velocity. It is
simply done by releasing the throttle at a high velocity, thus not applying any input
force, and then logging the velocity and time during the reduction in velocity. Then
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the only forces present are the drag/dampening force by elements such as wind and
water.
The logged data can be seen in Figure 3.3, which shows three tries of first accelerating
up to around 15 m/s and then releasing the throttle lever. It also shows the log data
for one of the slopes of which the data can be used for the coast-down calculations.
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(a) Logged data during coast-down test-
ing.
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(b) The log data interval that is used for
coast-down calculations.

Figure 3.3: Coast down testing.

Choosing the interval with the largest decrease in velocity it is possible perform
numerical smooth robust differentiation as presented in [24] on the log data over
time. The dampening force is given as a point for each time interval which could
then be used to perform regression to acquire the dampening polynomials. Both
a first and a third degree polynomial are computed and shown together with the
points in Figure 3.4. The first degree polynomial is only derived using the interval
velocity ∈ [0, 10] m/s. This interval is specified since the model should be best in the
area in which the MARV control system will operate. The first degree polynomial
will later be used for controller design. The resulting polynomials are

F 1st
d = F ∗

d ≈ 146.4u and F 3rd
d ≈ 0.972u3 − 26.2u2 + 285.7u. (3.12)

Since Xu(u) = −Fd/u(t) this results in the resistance functions as seen in Table 3.5.

Table 3.5: List of surge resistance parameters

Parameter Description Value
X∗
u Surge resistance, linear −146.4

X3rd
u (u) Surge resistance, polynomial −(0.972|u|2 − 26.2|u|+ 285.72)

It is then possible to use the newly calculated X3rd
u (u) to simulate coast-down tests.

This is done picking out a coast-down logging data interval, inputting the initial
velocity into the simulation and then running the test. The comparisons for two
tests can be seen in Figure 3.5. The first is performed on the data used to calculate
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Figure 3.4: The resulting coast-down points and regression polynomials.

the polynomials and the other is fresh data. In this way the result should not be
biased.
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(a) Simulated coast-down result, using
the third slope that is also used for cal-
culating the polynomials.
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(b) Simulated coast-down result, using
the second slope to avoid bias since it was
not used for calculating the polynomials.

Figure 3.5: Coast down data compared with simulation

3.6 Thruster Dynamics
The thruster dynamics for the water jet is based on the jet discharge propulsion
formula described in [2]

Ft(t) = ρq (v2 − v1) kft (3.13)
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where Ft is the thruster force induced by an incompressible jet flow and kft is a
scaling factor for tuning. The variable q is the volume flow of water

q = Av2 =
(
d

2

)2

πv2 (3.14)

where d is the nozzle opening diameter, v2 is the water velocity out of the jet

v2 =
(

2 (p1 − p2)
ρ

)1/2

(3.15)

where p1 and p2 is the pressure before and after the water jet respectively, and at
last v1 is the jet (and vessel) velocity.
The pressure before and after the jet varies depending on both the vessel’s and wa-
ter’s velocity in relation to each other. This means that there are several parameters
at a time that affects the outgoing force. In order to simplify the expressions the
pressures based on the work in [2] are,

p1 = hρg + urelutr and p2 = hρg (3.16)

where h is the water jet’s submerged depth, g the gravitational constant, urel is a
constant for the relation between throttle signal utr and the resulting pressure before
the jet. In this way the pressure after the jet is kept at the constant pressure at h
water depth, while the pressure before the jet is the one that causes the propelling
force.
It is known that the Yamaha WaveRunner VX Cruise HO (High Output) model has
around 180 hp [5] and an assumed max velocity at around v = 25 m/s. With an
efficiency from the motor to the impeller of 0.8 [5] and a scaling factor of 0.75 [25]
for using low speed mode (L-MODE). This would provide the maximum force Ftm
as

Ftm = 180 · 736 · 0.8 · 0.75
25 ≈ 3180 N (736 is the conversion from hp to W ).

(3.17)
Using the parameters seen in Table 3.6 and assuming movement at maximum ve-
locity with the highest throttle signal (utr = 100), to solve the equation for the
constant unknown constant provides urel ≈ 8224.92.

Table 3.6: List of parameters for the thruster dynamics

Parameter Description Value
h Water jet submerged depth 0.35 m
g Gravitational constant 9.82 m/s2

d Nozzle diameter 0.08 m

For τ = Ft the manoeuvring model, surge dynamics and the thruster dynamics can
then be used for simulating the system response using the logged coast down data.
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Figure 3.6: The simulated system response using the logged coast down data as
input.

This gives the following results seen in Figure 3.6 when scaling down the thruster
force by a tuning factor of kft = 0.39.
Assuming that the velocity in steady state has a linear relationship to the throttle
signal it is then possible to derive a linear thruster force model. The linear polyno-
mial is derived using linear regression in the throttle signal interval utr ∈ [0, 60]%.
This interval is chosen since it is most likely that the MARV control system will be
limited to only use a maximum of 60−70%, for safety reasons. The results together
with the nonlinear thrust model are shown in Figure 3.7.
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Figure 3.7: The nonlinear and linear thruster force model, assuming a linear
relationship between throttle signal and steady state velocity.
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The linearized thruster force model becomes
F ∗
t (t) = Fkutr(t) (3.18)

where Fk = 18.7635 N is a constant thruster force per percent of throttle input.
The steering angle Ψ is defined to be positive when turning the handle to the left
and negative when turning it to the right. This leads to the following expressions
for the external input forces and moment

τ =

XY
N

 =

 cos(Ψ)Ft(t)
−sin(Ψ)Ft(t)
−sin(Ψ)Ft(t)l

 (3.19)

where l is the distance from main nozzle to centre of mass, seen in Table 3.3.

3.7 Turning Dynamics
The turning dynamics are not as easily determined as the surge and thruster dy-
namics. There is no simple test for planing vessels like the coast-down test in order
derive the turning behaviour. The approach is instead to perform a manual process
of iteratively trying out different values for both the damping parameters (Yv(v),
Nr(r)) and the added mass tuning parameters (kmv̇, kmṙ). By comparing simula-
tion output, sway and yaw, with the collected testing data and then evaluating the
results for each change it is possible to tune the parameters to yield a result that is
sufficiently accurate for control system design.
Several different intervals of data was used in order to avoid any biased parameters.
One of the travelled paths is seen in Figure 3.8 where the thought was to capture
as much as possible of the turning dynamics.
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Figure 3.8: The travelled path (position data) data used for tuning the turning
dynamics.
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Using the tuned parameters found in Table 3.7 the following velocity plots can be
seen in Figure 3.9. The surge velocity over the same data interval is also included
since it’s behaviour could also change on some occasions even though the parameter
Xu(u) was not modified during the process.
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Figure 3.9: A comparison between logging data and simulation output after tuning
both the sway and yaw angular velocity resistance polynomials.

Note in Table 3.7 that the expressions for resistance uses the absolute value of
the velocity when evaluating the polynomial and combines it with the sign of the
velocity.

Table 3.7: List of turning dynamics tuning parameters

Parameter Description Value
Yv(v) Sway resistance −(300|v|+ 20)
Nr(r) Yaw resistance −(1500|r|+ 130)
kmv̇ Added mass scaling in sway 0
kmṙ Added mass scaling in yaw 0.3
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3.8 Discussion
While some significant discrepancies remaining between the simulation and test
drive data the model was accurate enough for use in model based control design.
One reason for the inaccuracies could be the assumed independence of the sway and
yaw dynamics but also from mistakes done during the manual tuning process of the
turning parameters. The surge model was also assumed to be independent from the
turning dynamics and gave accurate results in both acceleration and coast down
testing. However, during sharp turning maneuvers this assumption breaks down
which can be seen in Figure 3.9 where the surge velocity is estimated significantly
higher in the simulation.
For improving the dynamics model a recommendation would be to not assume that
the states are completely independent. This would probably lead to a more accurate
simulation but only if the correct parameters can be identified which would become
harder to do manually when they are no longer independent from each other. Using
more advanced system identification methods as in [7] would help with accurate
identification based on the collected testing data.
Another aspect that could be looked at in future work is modeling for slow and even
reversed speeds. The current model is limited to positive surge velocities which is
enough for following waypoints but more precise navigation such as docking will
require models that also include thrust reversal.
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4
Waypoint Following

To evaluate the performance of the MARV control system together with the derived
model and control scheme, a waypoint following algorithm has been developed and
implemented as a scenario. The derivation of the controllers, guidance algorithm,
simulation and real test drive results is presented below.
To simplify the design process a decision was made to split the waypoint following
in two different subsystems. One guidance part that is responsible for trajectory
generation and a control system that follows the trajectory. This is a common way
to implement waypoint control and a similar method was used in [3].

4.1 Controller Design
Based on the independence of the surge and turning dynamics of the manoeuvring
model the decision was made to use separate controllers for following a heading
trajectory and a surge trajectory respectively. This has been a common control
strategy in previous work and has been used in [3] and [4]. Another contributing
reason is that the thruster configuration of the WR makes the system under actu-
ated. This makes it impossible to control the full state space of the system which
requires limiting the control to the surge and yaw state as discussed in [19].
The controller selection was also limited to linear controllers with the possible use of
gain scheduling if required. This made a model based controller an attractive choice
as it would make gain scheduling easier to implement if it became required. Based
on the overview of course keeping control done in [6] linear quadratic regulators
(LQRs) were selected for both the surge and heading controller. This choice was
supported by the navigation system supplying full state feedback negating the need
for designing observers.

4.1.1 Surge Controller
Separating out the surge dynamics from the maneuvering Equation 3.2 gives

u̇(t) = Xu(u)
m−Xu̇

u(t) + X(t)
m−Xu̇

(4.1)

where X(t) is the force from the waterjet thruster in the surge direction.
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Based on the thruster model in Eq. 3.18 that assumes proportionality between surge
speed and throttle input a linear approximation for thruster force is introduced as

X∗(utr(t)) = Fkutr(t). (4.2)

The full thruster force is assumed to lay in the surge direction which means current
steering angle can be disregarded.
A linear approximation of surge resistance is also developed in Section 3.5 by fitting
a linear curve against Xu(u) with focus on a good fit within the interval 0 to 10 m/s
which gives the linearised dynamics as

u̇∗(t) = X∗
u

m−Xu̇

u∗(t) + Fk
m−Xu̇

utr(t). (4.3)

After adding an augmented integral state the dynamics in Eq. 4.3 can be written is
state space form as

ẋu(t) =

 0 1
X∗
u

m−Xu̇

0

xu(t) +

 0
Fk

m−Xu̇

utr(t) (4.4)

where
xu(t) =

[∫
ue ue

]T
(4.5)

and the ue states denote surge error to allow reference tracking.
Based on the linear model, state cost matrix Qu and output signal cost Ru an
LQR is designed using MATLAB lqr function. Anti-windup of the integral state
is also added via the back calculation method presented in [26] with the feedback
connected according to Figure 4.1. Reference shaping is also applied using both a

Reference
Shaping

+

-

-

+

-

throttle
Saturation+

Figure 4.1: Surge controller block diagram

low pass filter, as recommended in [19], with the transfer function

ω2
u

s2 + ζuωus+ ω2
u

(4.6)

and with a rate limiter with a maximum velocity change ureflim per second.
A discrete version of the controller is also calculated using lqrd and corresponding
finite impulse response filters for the reference shaping. The integrator is approxi-
mated using the forward Euler method.
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Table 4.1: List of surge controller parameters

Parameter Description Value
Fk(uss) Throttle to force scaling 18.76 N/%
Qu LQR state cost matrix diag

([
300 1000

])
Ru LQR output cost 1
ωu Surge reference filter cut off frequency 3.6 rad/s
ζu Surge reference damping ratio 0.8

ureflim Surge reference rate limit ±1.5 m/s2

utrsat Saturation limit of throttle 70 %
Kaw Anit-windup feeback gain −3

4.1.2 Heading Controller
Based on the presented manoeuvring model in Section 3.3 the yaw dynamics can
written separately as

ṙ(t) = Nr(r)
Iz −Nṙkmṙ

r(t) + N(t)
Iz −Nṙkmṙ

. (4.7)

To apply linear control system design both the yaw resistance Nr(r) and moment
applied by the thruster N(t) need to be linearised. The moment applied by the
thruster is modeled as

N(t) = −sin(Ψ)Fss(uss)l (4.8)
based on Equation 3.19 but with the thrust Fss being the force required to maintain
a steady state surge velocity.
Linearising equation 4.8 around a steering angle Ψ of zero degrees and an assumed
steady state surge velocity uss gives

N∗(uss) = −lFss(uss)Ψ(t). (4.9)

A linear approximation of the resistance N∗
r is also found by applying polyfit to the

resistance polynomial focusing on a good fit in the interval of 0 to 0.6 rad/s as that
was the approximate range of angular velocities observed in the test drives.
Based on Equations 4.7 and 4.9 the yaw dynamics can now be written in linearised
form as

ṙ∗(t) = N∗
r

Iz −Nṙkmṙ
r∗(t)− lFss(uss)

Iz −Nṙkmṙ
Ψ(t). (4.10)

The state that needs to be controlled however is the heading angle ψ(t) which is
simply the integral of r(t). Combining the heading angle, with Equation 4.10 and
an additional augmented state providing integrated heading angle gives the system
on state space form as

ẋψ(t) =


0 1 0
0 0 1
N∗
r

Iz −Nṙkmṙ
0 0

xψ(t) +


0
0

− lFt(uss)
Iz +Nṙkmṙ

Ψ(t) (4.11)
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where
xψ(t) =

[∫
ψe(t) ψe(t) r(t)

]T
. (4.12)

Note that the two heading states have been expressed as error states that will take
a heading reference as input. The yaw state does not have a reference so here the
controller will instead act to drive this state towards zero.
Based on the state space model, state cost matrix Qψ and output signal cost Rψ an
LQR is designed using MATLAB lqr. Gain scheduling based on steady state surge
velocity was considered but the controller gains did not change significantly over the
speeds of interest so instead uss was set constant at 10 m/s.
The controller is complemented with saturation limiting the maximum and minimum
commanded steering angle Ψsat. To prevent the integral state from increasing a back
calculation anti-windup method presented in [26] has been used. The anti-windup
feedback gain Kaw has been tuned manually together with the LQR costs.

Reference
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steering
Saturation

Low Pass Filter

+

Figure 4.2: Heading controller block diagram

To prevent rapid changes in the controller input signal filtering to both rmeas and
ψref are applied. For the yaw measurement this is done with a first order low pass
filter with the transfer function presented in Figure 4.2. For the heading reference
a second order low pass filter, as recommended in [19], with the transfer function

ω2
ψ

s2 + ζψωψs+ ω2
ψ

(4.13)

is combined with a rate limiter allowing a maximum of ψreflim°/s. For the reference
shaping to be correctly applied the heading angle fist needs to be unwrapped and
then wrapped back to the interval [−π, π].
To allow for implementation in the MARV system the controller has also been dis-
cretized. For the LQR this was done through lqrd that uses the zero order hold
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method. The impulse response of the reference shaping filters was sampled to cre-
ate finite impulse response filters and the anti-windup feedback uses the forward
Euler method to approximate the integration.

Table 4.2: List of heading controller parameters

Parameter Description Value
N∗
r Linear yaw resistance 850 Nm/s

uss Steady state velocity in surge 10 m/s
Ft(uss) Constant force at steady state surge 1052 N/m
Qψ LQR state cost matrix diag

([
200 1 1

])
Rψ LQR output cost 100
ωψ Heading filter cut off frequency 3 rad/s
ζψ Heading filter damping ratio 2

ψreflim Heading reference rate limit ±20 °/s
ωr Measured yaw filter cut of frequency 10 rad/s

Ψsat Saturation limits of steering angle ±24°
Kaw Anit-windup feeback gain 5
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4.2 Guidance Algorithm
The algorithm builds upon the Pure Pursuit principle presented in [19, Fig 10.2].
This means that the MARV should always be heading straight towards the next
waypoint. When it has been reached it should then aim towards the next one, re-
peating this until it has completed the whole track. In order refine the travelled path
and make is safer for the operator to ride, the MARV should also adapt it’s velocity
depending on the current manoeuvre. In Figure 4.3 the variables and relations used
in the guidance algorithm can be seen,

x
x

x

MARV

Figure 4.3: In illustration showing the definition of all variables and relations used
in the waypoint algorithm. Refer to Section 3.1 for definition of the body frame {b}
and world frame {n}.

where hr is the reference heading angle to reach the next waypoint, hwp is the
reference heading vector to reach the current waypoint, S is the start point, p =
(x, y) is the vessel’s current position, he is the error in heading angle between the
vessel’s current heading and the reference heading, ψ is vessel’s current heading
(yaw angle), bn is the current bridge vector between the starting point and target
waypoint, bn+1 is the bridge vector between the target waypoint and next waypoint,
bv,n is the current bridge velocity, Wp,n is the target waypoint, Wp,n+1 is the next
waypoint, pwp,n is the target waypoint coordinates, rn is the waypoint radius, vc,n is
the waypoint velocity change radius and α is the angle between the current bridge
and the next bridge.
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4.2.1 Derivation of All Variables
Several variables are already known. The variables p, ψ are know since they are
gathered directly from the INS. While pwp,n, pwp,n+1, rn, bv,n, bv,n+1 and vc,n are
planned in advance and is a part of the waypoint path planning data. The last
known variable is S, which is set to be the previous waypoint, or the MARV’s
current location at the start. The rest of the variables are calculated as follows.
To begin with, the reference heading vector is

hwp =
[
hwp_x
hwp_y

]
= pwp,n − p (4.14)

and this provides the reference heading angle as

hr = atan2
(
hwp_y

hwp_x

)
. (4.15)

Then heading error is given by

he = ψ − hr where he must be wrapped and ∈ [−π, π]. (4.16)

Continuing with the current bridge vector which is given as

bn = pwp,n − S (4.17)

and then the next bridge vector in the same way

bn+1 = pwp,n+1 − pwp,n (4.18)

which makes it possible to calculate the angles between the bridges as

α = acos

(
bn · bn+1

|bn||bn+1|

)
. (4.19)

4.2.2 Velocity Adaptation
As mentioned the MARV should be able to adapt it’s velocity in order to improve
the travelled path. This is done in two ways.
The first way is to reduce the velocity if the current heading deviates to much from
the reference heading. This is useful since it is harder to correct larger reference
heading errors when the velocity is higher. This is both limited by the physical
system, where the stepper motor driving the pulley system is not strong enough to
overcome the forces presented at higher speeds. It is also because of the fact that
the higher the velocity, the longer time it takes for the reference heading error to
converge to zero. This is done by the following calculations.
First it is necessary to define an angle error tolerance, vdiff , which within the MARV
should travel at the the pre-planned current bridge velocity bv,n. Outside of this
tolerance the algorithm should reduce the velocity depending on how large he is.
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The reduction should at most lower the velocity to the minimum specified velocity
umin. The minimum specified velocity is needed since it is not possible to steer if
there it no movement.
The velocity should be the minimum if he = −π or π, since this means that the
MARV have to turn around. Using the nature of the sine function the velocity
reduction vred can be done in a smooth manner and is then calculated as

vred = sin (0.5|he| − vdiff ) (bv,n − umin) (4.20)

and the new velocity reference to use vr as

vr = bv,n − vred (4.21)

or else when within the tolerance simply as

vr = bv,n. (4.22)

The second action builds on the same idea but is now using the angles between
the bridges. The velocity should be reduced depending on how large the angle is
when the vessel is about to turn to the next waypoint. The larger the angle, the
less the vessel need to slow down. The extreme case is when the two bridge vectors
are parallel, pointing in the same direction. Then it should keep the current bridge
velocity. The opposite situation is when the angle is zero and they are pointing
in different directions. Then the velocity should be at the minimum. The turning
velocity is given by

vturn = sin (0.5|α|) (bv,n − umin) . (4.23)

When the vessel is inside the velocity change circle, |pwp,n − p| < vc,n the velocity
should be begin to reduce. This is done in a single reference step, from the current
bridge velocity to the turn velocity reference. It will take a certain amount of
time depending on the system’s dynamics for the velocity to be changed. This
also depends on the time it takes between the velocity reference change and system
response δt. When the vessel reaches the inner circle where |pwp,n−p| < rn it should
be at the turning velocity in order to be able to perform a correct turn. Since the
waypoint radius is pre-planned and known this only leaves the outer velocity change
radius to be calculated. Using the known surge rate limitation sr, defined in the
surge controller, it becomes

vc,n = rn + δtbv,n + v2
turn

2sr
. (4.24)

The expression is simply based on the normal distance formula when accelerating.
The new velocity reference is then set to

vr = vturn. (4.25)
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4.2.3 Algorithm
Combining the previously derived expressions it is now possible to present a pseudo
version of the guidance algorithm. Following is a simplified version of the pseudo
algorithm, the complete one can be found in appendix A.1. The difference is that
the full one also takes care of the edge cases that arise when on the last waypoint.

Algorithm 1: Simplified MARV waypoint pseudo guidance algorithm
initialise necessary variables;
while there are waypoints left do

set start position to the previous waypoint, if on first, set once to current
position;
calculate heading vector and angle, hwp and hr;
if reached last waypoint then

set finished state, stop the vessel;
else

calculate bridges and angle between, bn and bn+1, then α;
calculate turning velocity and change radius, vturn and vc,n;
if inside of velocity change radius vc,n then

lower vel ref, set to, vr = bv,n − vturn;
else

calculate heading error he;
wrap he to be ∈ [−π, π];
if outside of angle error tolerance, he > vdiff then

calculate the velocity reduction vred;
set vel ref, vr = bv,n − vred;

else
set vel ref, vr = bv,n;

if reached waypoint, i.e. within waypoint radius, rn then
keep track that the waypoint Wp,n has been reached, aim towards
the next waypoint;
calculate the next reference heading vector, pointing towards the
next waypoint, hwp_next = pwp,n+1 − pwp,n;
update the heading reference angle to point towards the next

waypoint, hr = atan2
(
hwp_next_y

hwp_next_x

)
;

if has previously been inside of the waypoint radius, and once again
outside of, rn then

reset the keep track variable, increase waypoint counter to target the
next waypoint.;
calculate the same hwp_next and hr as above.;
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4.2.4 Planning
In order to plan a path made of successive waypoint a Matlab script has been
written, the WaypointPlanner. The script can be found in the MARV-Software
repository [27]. It uses maps taken from Lantmäteriet’s map service [28] that has
been configured using the WaypointPlanner_ConfigureMap script, using parameters
such as the map image pixel density, scale and geographic coordinates reference
point. This provides a map that can used by the WaypointPlanner to plan a path
with points in the NED coordinate system. The script allows editing and exporting
functions for both the simulation and implemented scenario. An image of the map
and user interface can be seen in Figure 4.4. The script requires the user to enter
umin, δt, sr and vdiff parameters in order to correctly show the computed path.
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Figure 4.4: Showing the WaypointPlanner script’s map, including the different
components presented in the guidance algorithm.
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4.3 Results
Using the derived controllers, guidance algorithm and the following parameters
umin = 3.0 m/s, δt = 1.0 m, sr = 1.5 m/s2 and vdiff = 5.0°, the following results
are achieved. The path following is seen in Figure 4.5 for both simulation and a
practical test drive. The weather during the test drive presented wind of about
6− 8m/s up to 12 m/s in the gusts. There was also a fair amount of waves.
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Figure 4.5: The waypoint navigation results, for both simulation and practical
test drive.

Also showing only a comparison of the results without the planned path in Figure
4.6.
It can be seen that the two paths are close to each other. This means that, the
model, synthesised controllers and guidance algorithms works as they are supposed
to. There is however an apparent difference. Looking at Figure 4.7 is can be seen
that the simulation tends to overshoot a bit, deviating from the connecting bridges.
The test drive result tends to do the opposite by sometimes turning earlier.
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Figure 4.6: The waypoint navigation results, showing only the simulation and test
drive results.
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Figure 4.7: The waypoint navigation results, zoomed in.

Moving on to the results between reference signals and resulting output. In Figure
4.8 a comparison between the waypoint reference (bv), guidance algorithm output
(vr) vessel velocity can be seen for both simulation and test drive. The guidance

44



4. Waypoint Following

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8
Simulation

waypoint ref
algorithm ref
sim out

0 50 100 150 200 250 300 350 400 450
-5

0

5

10

15
Test drive

waypoint ref
algorithm ref
test drive

Time [s]

V
el

oc
ity

 [m
/s

]

Figure 4.8: A comparison between the waypoint reference velocity, guidance al-
gorithm generated reference velocity and resulting output for both simulation and
test drive.

algorithm during the test drive has sometimes given a higher vr than the current bv.
This has also lead to the system sometimes travelling faster than planned. The test
drive output spikes are caused due to post processing with re-sampling of data and
should be disregarded.
Looking at the same comparison for the guidance algorithm’s heading reference and
heading for both the simulation and test drive yields the results seen in Figure 4.9.
The angles are wrapped which causes the sudden changes between 180 and −180
degrees.
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Figure 4.9: A comparison between the guidance algorithm generated heading ref-
erence and resulting heading for both simulation and test drive.

The guidance algorithm velocity reference should not pass above the waypoint refer-
ence at any time. This was caused due to a scenario implementation bug where some
values came in as degrees instead of radians. This caused the velocity reduction vred
to be the maximum possible, as soon as the heading error he became larger than
the error tolerance vdiff . This caused the system to travel at umin velocity. In the
same way it causes the reference to be higher than the waypoint reference. Fixing
the bug and running the algorithm again using the recorded test drive data yields
the following result seen in Figure 4.10.
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Figure 4.10: A comparison with the guidance algorithm scenario implementation
bug, with and without.
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4.4 Discussion
Overall the results shows successful implementation of successive waypoint tracking
but some unexpected behaviour was detected which will be discussed in this section.
In the test drive the velocity varied more than expected. This can partly be due
to the implementation bug which lowered and increased the velocity reference in-
correctly. Another possible reasons is that the current velocity estimate propagated
high frequency disturbances to the surge controller leading to an unnecessarily ac-
tive throttle signal. During the test drive there was strong winds and high waves
which possibly contributed to large disturbances.
Another observed difference was the model tends to under-steer in low velocities
during large heading changes. This is somewhat expected based on the model tun-
ing results where sharp turns resulted in deviations from the recorded test drive
data. This could probably be significantly improved if a more complete model was
developed without the simplifications of independent state variables. The dynami-
cal model also over estimates the surge velocity in tight turns which can be seen in
Figure 3.9 which could explain the larger turning radius.
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5
Conclusion

This thesis has aimed to cover several parts related to the MARV testbed. It began
with the system description that was supposed to give an introduction to the system
as well as a basic understanding. It then continued on to the verification part
by creating a model the craft. The model were then used to synthesize the LQR
controllers, which together with the guidance algorithm successfully managed to
achieve waypoint following.

5.0.1 Evaluation of Q1
The successful behaviour of the system has been achieved by taking care of sev-
eral important design aspects which enables future work and therefore increases
the longevity of the platform. The most important aspect is the robustness which
ensures that the system performs as expected at all times. This is however not
something that is achieved in isolation. It is affected by the whole system which
includes a well planned architecture, stable communication, reliable safety mech-
anisms, robust hardware and functional software. It still remains to be seen how
the platform holds up over time but the verification shows an almost fully working
system.
On top of the robustness aspect it has been equally necessary to provide the future
users with an interface that is easy to understand with good abstractions. This is
because the system itself has become quite complex and hard to understand without
significant time investment. Time that can instead be used for the task at hand.
Another important aspect of the design has been to allow for complete logging of
system signals. This is important since it allows for a more thorough analysis of the
real behaviour of an algorithm and system dynamics. It is possible to go into the
details and compare data at specific times.
The last aspect is the system extensibility and modularity. The system must be
ready for more advanced research in the future. With a modular design methodology
it is possible to both add new units and sensors as needs arise. Depending on
how these additions are made the current system’s performance could be affected.
Because of the CAN problem it can be problematic to add new units directly to the
DbW system. This is something that need to be taken care of.
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5.0.2 Evaluation of Q2
For successive waypoint following during real world conditions it has been proven
that the derived model, controllers and guidance methods are functional. The mod-
ified and implemented pure pursuit guidance algorithm seemed to be applicable for
this area. The model and controllers do however have their drawbacks.
The derived model of the system is simplified and relies on several assumptions.
The two LQR controllers performed good enough for allowing successful maneuver-
ing of the craft. The turning dynamics model did however tend to under steer in
low velocities and the velocity controller over compensated the throttle signal for
disturbances in velocity changes.
In order to further improve the behaviour of the controllers a better model should
therefore be derived which captures a broader band of the real world behaviour,
including disturbances. Due to the system’s non-linear nature it may also be inter-
esting to try out gain scheduled or non-linear controllers.

5.0.3 Final Words
The testbed is designed with robustness and safety in mind and many precautions
has been taken in order to increase the quality of the outcome. It is really exciting
to see that it turned out as well as it finally did. Except for the minor issues that
can be improved it generally functions as originally envisioned. It still remains to
see how of the MARV platform will be used in the future. Hopefully it will help
accelerate and support further research within the area, and maybe even in the
future realise SSRS’s vision of a fully autonomous rescue vehicle.
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A. Appendix 1

A.1 Full waypoint pseudo algorithm

Algorithm 2: Full MARV waypoint pseudo guidance algorithm
initialise necessary variables;
while there are waypoints left do

set start position to the previous waypoint, if on first, set once to current
position;
calculate heading vector and angle, hwp and hr;
if reached last waypoint, i.e. on last waypoint AND within waypoint radius
rn then

set finished state, stop the vessel;
else if not on last waypoint then

calculate bridges and angle between, bn and bn+1, then α;
calculate turning velocity and change radius, vturn and vc,n;
if inside of velocity change radius vc,n then

lower vel ref, set to, vr = bv,n − vturn;
else

calculate heading error he;
wrap he to be ∈ [−π, π];
if outside of angle error tolerance, he > vdiff then

calculate the velocity reduction vred;
lower vel ref, set to, vr = bv,n − vred;

else
set vel ref, vr = bv,n;

if reached waypoint, i.e. within waypoint radius, rn then
keep track that the waypoint Wp,n has been reached, aim towards
the next waypoint;
calculate the next reference heading vector, pointing towards the
next waypoint, hwp_next = pwp,n+1 − pwp,n;
update the heading reference angle to point towards the next

waypoint, hr = atan2
(
hwp_next_y

hwp_next_x

)
;

if has previously been inside of the waypoint radius, and once again
outside of, rn then

reset the keep track variable, increase waypoint counter to target the
next waypoint.;
calculate the same hwp_next and hr as above.;

else
calculate he;
wrap he to be ∈ [−π, π];
if outside of angle error tolerance, he > vdiff then

calculate the velocity reduction vred;
set vel ref, vr = bv,n − vred;

else
set vel ref, vr = bv,n;
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