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Digital Audio Interface Jitter
FREDRIK SINKKONEN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Jitter is the short-term deviation of a digital signal from its ideal position in time.
Some common issues know to produce jitter in currently used digital audio inter-
face formats were examined and multiple implementations of a Universal Serial Bus
(USB) audio interface were designed with the intention of creating a device free from
interface jitter. Using the three standardized clock synchronization mechanisms in
the USB protocol for isochronous transmissions and a selection of suitable clock
sources, USB audio class devices were created for which jitter measurements then
were performed. The results were compared with jitter audibility thresholds from
three studies containing listening tests. While all implementations were functionally
acceptable, their jitter results did differ. For the two isochronous synchronization
modes of USB that require a continuously adjustable clock source on the receiving
side of the interface the jitter issue consists of two parts. Periodic adjustments of the
clock signal are in itself a source of jitter and the way in which an adjustable clock
source is constructed is another. The initial core idea was that a USB audio inter-
face using isochronous transfers coupled with the asynchronous clock synchroniza-
tion mode and a fixed frequency clock source would be able to provide an interface
in which no additional jitter on top of the inherent jitter level of the source clock
would be added by the transfer of data over the interface. The two fixed frequency
clocks that were used did however not perform any better than the results of the
best adjustable clock source and when they were attached to the test system their
jitter levels increased even further. Analysis of the jitter measurements point in
the direction of asynchronous mode being preferable for lowest possible jitter levels
but the results are not completely unambiguous and jitter levels below the lowest
recorded hearing thresholds were also achieved with one of the other synchronization
modes for isochronous USB transfers.

Keywords: Asynchronous, Audio, Clock, DAC, Digital, Interface, Jitter, PSoC,
S/PDIF, USB.
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Terms and Abbreviations

This section lists terms and abbreviations that are used throughout the thesis.

ADC Analog-to-digital converter

AES/EBU Digital audio transfer interface standard for professional use created
by the Audio Engineering Society (AES) and the European Broad-
casting Union (EBU). Interchangeably sometimes called AES3.

API Application programming interface

ASRC Asynchronous sample rate converter

BMC Biphase mark code

CD Compact disc

CDF Cumulative distribution function

CRC Cyclic redundancy check

DAC Digital-to-analog converter

DC Direct current

DMA Direct memory access

DSI Digital system interconnect

FF Fixed frequency

FIFO First in, first out

GUI Graphical user interface

I2C Inter-integrated circuit

I2S Inter-IC sound

IAD Interface association descriptor

IC Integrated circuit

IDE Integrated design environment
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IEC International Electrotechnical Commission

IMO Internal main oscillator

LSb Least significant bit

MCKL Master clock

MSb Most significant bit

NRZI Non return to zero invert

PDF Probability density function

PID Packet identifier

PLL Phase-locked loop

ppm Parts-per-million

PSoC Programmable system-on-chip

Red book The compact disc digital audio specification is printed in a book
that has a red cover. Hence the term “Red book” refers to regular
CD audio format.

S/PDIF Sony/Philips digital interface. Digital audio transfer interface stan-
dard based on AES/EBU and intended for consumer audio prod-
ucts.

SCK Serial clock

SD Serial data

SOF Start-of-frame

SWD Serial wire debug

TIE Time interval error

TX Transmit

UART Universal asynchronous receiver/transmitter

UDB Universal digital block

USB Universal Serial Bus

VCO Voltage controlled oscillator

WS Word select

XO Oscillator

XTAL Crystal
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1
Introduction

This chapter introduces the topic of the thesis and gives an explanation as to why
it was selected. It starts out with a brief description of the background and mo-
tivation for the thesis subject, followed by scope and delimitations along with the
requirements for the intended hardware and software build. Lastly, an overview of
the structure of the rest of the report is provided.

1.1 Background and Motivation
Digital audio data can be created by sampling and quantizing an analog sound wave
by the use of an analog-to-digital converter (ADC). The number of bits used for
each sample will determine the resolution, or how accurately the amplitude of the
analog signal can be represented in digital form, and the sampling frequency will
as described by the sampling theorem [1] effectively put an upper bound on the
frequency range that can be sampled and stored digitally by the ADC. To play back
the digitally stored audio, the digital audio data can be fed together with a clock
signal that matches the sampling rate into a digital-to-analog converter (DAC),
which then consequently converts the digital signal to an analog one that can be
sent to a speaker, usually first passing through an amplifier.

A digital signal is less susceptible to interference than what an analog signal is, so
there is a motive in trying to keep the audio in the digital domain for as long as
possible before eventually having to convert it to analog format so that it becomes
audible. This sometimes means that it will be necessary to transfer the digital signal
between different audio devices, creating a need for a robust transfer protocol and a
digital audio interface that will keep the audio data intact during the transfer. Any
bit errors introduced into the audio data could severely degrade the sound quality,
so they must be avoided. Most digital audio interfaces can be considered reliable
when it comes to this characteristic [2], but it is not only the audio data itself which
must be preserved in the transfer process; the clock signal, which is sent in parallel
with the audio data into the DAC must also remain unaffected by the transfer from
one device to another, as small timing errors in the clock signal, defined as jitter [3]
can lead to subtle but still audible effects [4]. This is however something which at
times has been neglected.

The AES/EBU interface [5] created for professional use by the Audio Engineer-
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ing Society (AES) and the European Broadcasting Union (EBU), and its equivalent
counterpart for consumer audio devices, the Sony/Philips digital interface (S/PDIF)
[6], standardized in IEC 60958 [7] by the International Electrotechnical Commission
(IEC), both exhibit weaknesses in how the clock signal is handled [2]. Universal
Serial Bus (USB) has over time gained popularity as a dedicated digital audio inter-
face, but its characteristics when it comes to jitter performance in the clock signal
depend largely on how the interface is implemented [8]. A separate clock signal is
not per se sent for USB audio, but there is still a need to keep the clocks at both
sides of the interface synchronized. Historically, for audio companies recognizing
the problem with jitter being introduced into the clock signal by AES/EBU and
S/PDIF, the selected course of action has often been to keep using that same digital
audio interface design which introduces the jitter in the first place, and then with
various methods [9] try to remove or reduce the jitter from the clock signal again
once the transfer of the digital audio data has been completed. The result of this
approach has often been added hardware complexity and increased development and
manufacturing costs, while it still remains questionable if the jitter has been removed
or diminished to sufficiently low levels. A better approach it seems would be to use
an audio interface design which does not introduce interface jitter into the clock
signal to begin with. In theory, such an interface can be created utilizing a USB
audio device class AudioStreaming interface [10] configured to run in asynchronous
synchronization mode [8, 9].

1.2 Scope and Delimitations
The aim for this project is to see how digital audio interfaces can be implemented and
then try to build a digital audio interface which does not add jitter to the clock signal
in the process of transferring digital audio from one device to another. The interface
should also be able to transfer the digital audio data reliably without bit errors or
significant delay in the signal path. This is to be accomplished by implementing
a USB audio device class AudioStreaming interface using a Cypress programmable
system-on-chip (PSoC) development board and microcontroller. The build requires
both hardware and software design in order to produce a testing platform. Jitter
measurements are also to be performed and presented but no listening tests or any
other kind of auditory assessment regarding jitter and its impact on audio quality
will be made.

1.3 Functional Requirements
The interface should fulfill the following functional requirements:

• Support standard Red Book 2-channel Compact Disc (CD) audio data as
input; 16 bits per sample at a sample rate of 44.1 kHz.

• Use inter-IC sound (I2S) output format for the received audio data so that it
can be sent to a DAC to be converted to analog and played back.
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• Follow interconnect and interface standards so that the test device can be
plugged into an audio source without need for special ports, cables, drivers or
software.

No additional USB audio functions except for the necessary AudioControl and Au-
dioStreaming interfaces and their associated endpoints will be implemented in the
USB module.

1.4 Outline
The rest of the thesis is organized as follows. Chapter 2 contains theory about jitter
audibility, statistics, and the taxonomy of jitter types. A large part of the chapter is
also devoted to a walkthrough of the relevant audio interface formats and their char-
acteristics. In Chapter 3, the common design layout for all implementation modes
and the specifics for each one of them are described. The clock configuration is being
examined in detail while other parts of the system setup are treated in a more gen-
eral sense. Chapter 4 shows the functional results for the different implementation
modes together with measurements of the jitter levels, presented both in numbers
and visualized as histograms. The results and their validity are then evaluated. The
report ends with Chapter 5 containing a summary of the findings and sustainability
and environmental considerations. A listing of the device descriptors used for the
synchronous, asynchronous and adaptive mode USB audio interfaces can be found
in Appendix A, programmed register settings for the external clock generator board
are located in Appendix B and in Appendix C are histograms from the period and
cycle-to-cycle jitter measurements.
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2
Theory

This chapter starts out by defining what jitter is and the possible causes to its
existence in a system. Then follows an introduction to statistical theory and a
characterization of the different jitter types. An overview of previous work related
to jitter audibility testing and audibility threshold theory is presented and we will
also get more acquainted with a selection of some commonly used audio interface
formats. Particular attention is being paid to some of the possible sources of jitter
often being associated with the AES/EBU and S/PDIF interfaces. The chapter
ends with a look at clock generation with phase-locked loops (PLLs) and fractional
dividers.

2.1 Jitter
The following section of this chapter defines what is meant by jitter, it introduces
some statistical terminology for jitter distributions and it also characterizes the dif-
ferent kinds of jitter that we may encounter. Conducting listening tests of any
kind is out of scope for this thesis but results and observations from auditory assess-
ments made in other studies are presented and one purely theoretical jitter audibility
threshold model is also provided.

2.1.1 Definition of Jitter
Jitter can be defined as the short-term time displacement a digital signal has relative
to its ideal position in time [3, 11]. Let us start by viewing an ideal square wave
clock signal with 50 percent duty cycle for which each clock cycle starts at the rising
edge of the signal at time 1τ , 2τ , 3τ etc. If the clock signal is affected by jitter, the
rising and falling edges can be offset from their ideal positions in time as visualized
by the shaded areas in Figure 2.1. This offset of a signal compared to an ideal
reference point in time is called the time interval error (TIE). Depending on the
context, we may choose to compare an examined signal to an ideal reference like we
do in Figure 2.1, or if no reference signal exists, we can instead look at the rising
clock edges and compare their time of occurrence from one clock cycle to the next.
In Figure 2.2 we see an example of the latter where the period jitter Pn for clock
cycle n is the difference between two consecutive rising edges of the signal. Another
commonly used measure that does not require a reference signal is the cycle-to-cycle

5



2. Theory

jitter denoted by C and it can be calculated by measuring the difference between
two consecutive period jitter values as shown in Figure 2.2. Cycle-to-cycle jitter is
usually expressed as an absolute value and not in terms of negative numbers.

It is worth to note that jitter only is the short-term time deviation in a signal, and
that deviation over a longer period of time instead is defined as drift or wander. This
could for example typically be the accumulated time deviation between a reference
clock and a second free running clock that are in sync at start but where the jitter
in the free running clock then causes it to become more and more out of sync with
the reference as more and more clock cycles go by.

1τ 2τ 3τ

TIE 1 TIE 2 TIE 3

Time
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Ideal clock signal
Clock signal with jitter

Figure 2.1: Jitter assessment for a clock signal having a reference.
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C1 = |P2 − P1|
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Solitary clock signal

Figure 2.2: Jitter assessment for a solitary clock signal.
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2.1.2 What Causes Jitter?
Although jitter is seen as a shift in the time domain, it is often caused by a distur-
bance in the voltage domain. In Figure 2.3 we see how noise of amplitude ∆V can
create a difference in the voltage level for a rising signal edge and give rise to jitter
of size ∆t as it makes the signal reach the threshold level of the signal transition at
a different point in time than expected.

Threshold level
∆t

∆V

Time

A
m
p
li
tu
d
e

Signal with noise added
Signal without noise
Noise level

Figure 2.3: Visualization of how noise in the voltage domain can produce jitter.

There are many possible causes for voltage noise. It can originate from sources
external to the signal path. Examples of this are 50 Hz to 60 Hz interference from
the fundamental power line frequency, switching power supply noise and capacitive
or inductive crosstalk from other cables or signal paths. Noise can also arise from
sources within the signal path. Internal thermal noise caused by electrical compo-
nents, shot noise appearing due to fluctuations in the flow of electrons or holes in
semiconductors, burst noise and 1/f noise occurring in electrical components due to
material imperfections are examples of this. Any kind of variation in voltage level
can lead to jitter.

2.1.3 Probability Theory for Jitter Distributions
As we from Chapter 2.1.1 now know how to define jitter looking at one clock cycle
at a time, we will introduce two terms from probability theory and statistics which
will aid us when handling longer series of jitter measurements. The first one is the
cumulative distribution function (CDF) [3, 12]. Looking at the transition times of
the rising edges of a clock signal that is affected by jitter, we can create a function
which indicates the probability of the signal having reached its high state at a certain
point in time relative to the ideal transition time of the clock signal. This function
is called the CDF and a theoretical example is displayed in Figure 2.4. Before τ1, a
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long time ahead of the ideal transition time for each edge, none of the rising edges
have reached the high state and the probability of a state transition having happened
is zero. As we move past τ1 and closer to the ideal transition time τi for each edge,
more and more state transitions are starting to happen. In our theoretical example
in Figure 2.4, the number of state transitions happening before the ideal transition
time τi has for simplicity been set equal to the number of state transitions happening
after the ideal transition time τi, and more state transitions are also happening closer
to the ideal transitions time τi than further away from it. This does not necessarily
need to be true for an actual series of real world jitter measurements, but it gives
us a feasible model which we can work with to understand probability theory for
jitter distributions. As we move past the ideal transition time τi towards τ2 in our
example, fewer and fewer new state transition happen the further away from τi we
get, while the probability of a state transition having happened, the CDF, continues
to rise and it reaches its maximum value when we cross τ2, at which point all rising
edge state transitions for the theoretical measurement series have already happened.
The CDF is a monotonic increasing function, meaning its value will never decrease
but instead it will either always remain constant or increase as the function variable
increases, and the CDF will go from 0 → 1 when time increases from τ1 → τ2.

τiτ1 τ2

0

1

Time

C
D
F

Figure 2.4: Theoretical example of a cumulative distribution function for a clock
signal with ideal transition time at τi.

The probability density function (PDF) [3, 12] is the second term from probability
theory and statistics that we will introduce in this section. Let us first consider the
probability for a signal transition to happen at time τp. The probability of a signal
transition happening exactly at an arbitrary point τp in time is zero as that would
require the the transition to take place within an infinitely small time span, but if
we instead look at a small time bracket from τp - γ to τp + γ as in Figure 2.7, then
the probability for a transition to happen within that time range can be expressed.
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The mathematical relation between the CDF and the PDF is

CDF (t) =
∫

PDF (t)dt (2.1)

τiτ1 τ2

0

Time

P
D
F

Figure 2.5: The probability density function corresponding to the cumulative
distribution function in Figure 2.4.

τ1 τp τi τ2

0

Time

P
D
F

Figure 2.6: The probability density function from Figure 2.5 divided into time
brackets with an arbitrary point in time τp selected.
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τp − γ τp τp + γ

0

Time

P
D
F

Figure 2.7: A closeup of the probability density function in Figure 2.6 around the
arbitrarily selected point in time τp.

Figure 2.5 displays the PDF corresponding to the CDF in Figure 2.4. From Equa-
tion 2.1 we also realize that choosing to look at the PDF for a single point in time
τp instead of a time interval τp - γ to τp + γ will give us an integration interval
ranging from τp to τp, and the result of

∫ τp
τp

PDF (t)dt will therefore be 0, so we need
to express the probability of a signal transition happening at τp as the probability
of it happening during a time interval τp - γ to τp + γ and not at an exact single
point in time. When dealing with any real world measurement series, we will often
organize our measurements to fit into predefined time brackets like we have done in
Figure 2.6 for the theoretical PDF from our example.

2.1.4 Jitter Types
Jitter is often characterized as belonging to one of two categories, being either
random or deterministic. The main difference between the two is that random jitter
is unbounded, i.e. the jitter can in theory take on any value while deterministic
jitter is bounded and therefore only has a limited range of values it can assume.
Depending on the source of the deterministic jitter and its characteristics, it is often
being specified further as belonging to one of a number of subcategories of its main
jitter type. These subcategories of deterministic jitter are presented along with
random jitter in more detail in the following sections. Looking at the plotted PDF
for a measurement series may help us identify which jitter type we are dealing with
so that we can try to determine its cause. The total jitter at any given moment is
the sum of all jitter components that happen to be present at that point in time and
jitter in any real world measurement is likely to be a composite of multiple jitter
types of different origins rather than of just one single type.
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Total jitter

Random jitter Deterministic jitter

Periodic
Data

dependent
Duty cycle
distortion

Bounded
uncorrelated

Figure 2.8: Jitter components contributing to total jitter.

2.1.4.1 Random Jitter

The most important properties for random jitter [3, 11] is that the jitter is un-
bounded and that the PDF for the majority of cases of can be represented by a
normal distribution [12]:

f(x) = 1
σ

√
2π

e− (x−µ)2

2σ2 (2.2)

By selecting the mean value µ for the normal distribution to our ideal transition
time t = 0 for the function and setting the standard deviation σ to 1, we can simplify
the general expression for the normal distribution in Equation 2.2 to

PDFrandom(∆t) = e− ∆t2
2

√
2π

(2.3)

also replacing the variable x with ∆t. A graph of the PDF for random jitter with
ideal transition time 0 and standard deviation σ = 1 is displayed in Figure 2.9. All
the internal types of noise listed in Chapter 2.1.2 belong to random jitter.
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Figure 2.9: Probability density function for random jitter.
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2.1.4.2 Periodic Jitter

Periodic jitter [3, 11] is jitter which repeats with a certain time interval. It is
however totally uncorrelated to any clock or data signal in the system and the
maximum frequency at which the jitter appears must be less than half the data
rate in order for the jitter to be considered to be periodic and not data dependent.
Periodic jitter can often be assumed to have a sinusoidal waveform, and for more
complex cases the periodic jitter can be decomposed into a discrete Fourier series
consisting of multiple sinusoidal waveforms that can be treated separately. The PDF
for sinusoidal periodic jitter can be written

PDFperiodic,sinusoidal(∆t) =


1

π
√

a2−∆t2 |∆t| ≤ a

0 |∆t| > a

(2.4)

and its graphical representation is displayed in Figure 2.10.
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Figure 2.10: The probability density function for a sinusoidal periodic jitter dis-
tribution.

2.1.4.3 Data Dependent Jitter

Data dependent jitter [2, 3, 11] is as the name implies a type of jitter which is
dependent on the data pattern that precedes the time at which the jitter manifests
itself. There are multiple mechanisms that contribute to this jitter type and they
are all related to the signal level being offset in relation to the threshold level which
denotes the signal transition. It can be due to reflections in the signal path caused
by an impedance mismatch or because the signal transition begins from a voltage
level lower or higher than expected on behalf of the signal not having had time to
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settle from the previous signal transition. Bandwidth limitations and asymmetrical
slew rates may also affect the rise and fall times of the signal. Any reflections on
the signal path will die out within a limited amount of time, resulting in just the
most recent data pattern having an affect on the signal level and jitter. The PDF
for data dependent jitter can be represented by

PDFdependent(∆t) =
N∑

j=1
{pj × δ(∆t − tj)}, where

N∑
j=1

pj = 1 (2.5)

In Equation 2.5, δ(∆t − tj) is the Dirac delta function[13], which has the properties

δ(x) =


∞, x = 0

0, x ̸= 0
and

∫ ∞

−∞
δ(x)dx = 1 (2.6)

The graphical representation of the PDF for data dependent jitter will typically
have just a few discrete vertical asymptotes, which do not necessarily all have the
same height as some data patterns causing the jitter could be more frequent than
others.
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Figure 2.11: Typical probability density function for data dependent jitter.

2.1.4.4 Duty Cycle Distortion

The duty cycle defines how much time a digital signal spends in the high state versus
how much time it spends in the low state. For an ideal clock signal the ratio would
be 50/50 as the signal alternates back and forth between high and low, spending
exactly the same amount of time in each state. Deviation from this ideal scheme,
whether it is caused by an offset signal amplitude, asymmetry in rise and fall times,
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or an offset threshold level for the signal transition is called duty cycle distortion
[3, 11]. The PDF for duty cycle distortion will look like the two equally tall peaks
in Figure 2.12, if both rise and fall transitions are included, and mathematically the
PDF can be expressed as

PDFduty(∆t) = δ(∆t − a)
2 + δ(∆t + a)

2 (2.7)

where δ(∆t ± a) is the Dirac delta function from Equation 2.6.
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Figure 2.12: Probability density function for duty cycle distortion.

2.1.4.5 Bounded Uncorrelated Jitter

Bounded uncorrelated jitter [3, 11] covers any deterministic jitter which does not fit
into any of the other three categories of deterministic jitter that have been presented
in this chapter. The sources for this type of jitter can be many and the variety of
causes does not make this category of jitter lend itself to making any particular
generalizations about it. We will therefore just settle for using it to categorize
any bounded jitter which is not periodic, data dependent or caused by duty cycle
distortion.

2.1.5 Audibility of Jitter
An important question that we should ask ourselves is, “How much jitter can be
tolerated before it starts to affect the sound quality?” In order to give a proper
answer, we would need to ask subsequent questions such as, “What frequency range
does the audio affected by jitter have?” and “What type of jitter is the audio signal
being affected by?” Studies by Benjamin and Gannon [14] and Ashihara et al. [15]
have shown that jitter will be more audible in source material that has more high
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frequency content than one consisting of lower frequencies. This is because the effect
of jitter on an audio signal not only is proportional to the amount of timing error
in the signal, but also to the overall slope of the curve of the audio signal being
affected. As is visualized in Figure 2.13, the same amount of timing error ∆t on two
sine waves of same amplitude but different frequencies will produce a bigger offset
a2 in the amplitude on the signal with a steeper slope compared to the amplitude
offset a1 on the signal with a more gentle slope, so the distortion is more likely to
be audible when playing high frequency audio content.

a1
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Figure 2.13: The size of an amplitude error caused by a timing error depends on
the slope of the signal.

For the question regarding the type of jitter affecting the audio signal, one of the
first well known studies on this subject conducted by Manson [16] back in 1974
found the hearing threshold for sinusoidal jitter to be a little bit lower than for
random jitter. The mentioned studies by Manson [16], Benjamin and Gannon [14]
and Ashihara et al. [15] all include listening tests by which their respective jitter
audibility thresholds are determined, but none of them do in subjective terms express
how the test participants experienced jitter to affect the sound or what made the test
subjects pick out the tracks with jitter and distinguish them from the ones without
it. We can however note that most selected test tracks contained high frequency
source material as jitter audibility is greater for higher frequencies. Tracks with
solitary elements and sparse sound like a single instrument were also favored in
place of more complex tracks with a multitude of sound sources as that also made
it easier to detect the added jitter.

Returning to the study from 1974 by Manson [16], it set the limit at which jitter
could only be heard by less than 5 % of the listening audience for sinusoidal jitter
with frequency above 2 kHz to 35 ns, and for random jitter the same limit was
determined to be 50 ns. For sinusoidal jitter with frequency lower than 2 kHz, the
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tolerance threshold proposed by Manson increases linearly as the frequency of the
jitter is lowered. Test tracks consisting of piano and glockenspiel were selected to
provide the most critical material out of a range of tracks auditioned by experienced
listeners. All tests were conducted in one room using the same speaker system and
the test participants were all described as having previous experience of assessing
sound quality. During the listening tests which were carried out one person at a
time, the test subject was allowed to control the listening level and was also given
a control from which the jitter level in the recording could be adjusted and then
another one by which the addition of jitter could be turned off completely. The
test subject was then asked to find the threshold level for jitter audibility using
the controls available. Jitter was added to the audio signal by passing it through
two sample-and-hold units and then reclocking it in the second one by applying
a control signal which perturbed the clock signal to simulate both random and
sinusoidal jitter depending on the setting. Low-pass filters were also added before
and after the described jitter addition circuit to comply with the sampling theorem.
With the study being conducted nearly 50 years ago, tape recordings were used as
source material and playback was done in monophonic audio. Surely some advances
in both recording and playback technology have been made since, but whether using
stereo playback instead of mono would make the jitter audibility threshold limits
any lower is debatable. Small variations in timing in the microsecond range between
what the left and right ear registers can be picked up by the hearing system to
provide spatial information [17]. Given that the added jitter necessarily does not
affect both channels equally, any disturbance caused by the jitter could possibly be
picked up more easily if the audio was to be played back in stereo. On the other
hand the jitter threshold levels found were way below the microsecond range and
any added complexity in the source material makes it more difficult to distinguish
a track with added jitter from the original, in which case adding an extra channel
possibly could have made the recorded audibility threshold for jitter even higher.

In 1998 Benjamin and Gannon [14] also conducted a study where they performed
listening tests in order to try to determine the jitter audibility threshold. As the
audibility of jitter was found to greatly depend on the dynamic variation in the
frequency spectrum of the examined audio, a lot of effort was put into finding source
material where the effects of jitter would be easy to hear. Based on the criteria of
having plenty of frequency content at 1 kHz or above, minimal frequency content
between 400 Hz and 1 kHz, long sustain and low noise floor, this resulted in the
majority of test tracks consisting of one note from a single instrument.

During the initial phase of creating the listening tests it was discovered that there
was a learning effect taking place where the person being subjected to the jitter
audibility testing up to a certain degree was able to increase their ability to hear
the effects of jitter, thus lowering the jitter audibility threshold in successive tests.
A learning phase was therefore added for all test participants prior to the listening
tests used to determine the jitter audibility threshold in order to let the test subject
to get familiar with the source material, controls, and test procedure to not have the
threshold value decrease while the real tests were being carried out. Any intended
test participants who had severe difficulties distinguishing the distortion caused by
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jitter during the training phase were excluded from the final testing.

After the training phase, testing began with solitary sine wave tones of frequencies
4 kHz, 8 kHz and 20 kHz as source material to which sinusoidal jitter then was added.
The jitter level was at first increased and the test subjects were asked to indicate
when they were able to hear the resulting distortion. Then the jitter level began
to slowly decrease until the test subject indicated that they were no longer able to
hear the distortion caused by the jitter. The process was then repeated a couple of
more times for all three sine wave frequencies and the top, bottom and calculated
average level was recorded for each participant. Table 2.1 lists the range of calculated
average threshold levels for the test participants.

Audio frequency Jitter frequency Jitter audibility threshold
4 kHz 2 kHz 40 ns to 150 ns
8 kHz 5 kHz 5 ns to 25 ns

20 kHz 17 kHz 7 ns to 14 ns

Table 2.1: Range of calculated jitter audibility thresholds for all test participants
when playing sine wave tones with added sinusoidal jitter.

In the next part of the listening test, the earlier selected audio source material was
played back to the test participant. Now given access to control the level of sinusoidal
jitter added to the source material as well as having the ability to switch between the
audio signal with added jitter and one with without at will, the test participant was
asked to adjust the controls until the threshold level for jitter distortion audibility
had been reached. Table 2.2 shows the recorded threshold ranges for the participants
for each test track.

Test track Jitter frequency Jitter audibility threshold
1: One note, single instrument 1.70 kHz 50 ns to 270 ns
2: One note, single instrument 1.85 kHz 32.5 ns to 110 ns
3: One note, single instrument 1.70 kHz 20 ns to 310 ns
4: Synthesized music recording 1.53 kHz 112 ns to 370 ns*

*Not all test participants were able to find an audibility threshold for track 4.

Table 2.2: Range of jitter audibility thresholds recorded for all test participants
when playing program material with added sinusoidal jitter.

The audibility threshold for the jitter added to the higher frequency sine waves
was slightly lower than it was for any of the other more regular program material
and the results for the program material can be considered to be on par with what
Manson [16] found for sinusoidal jitter added to the selected program material in
his study. The same audio equipment was used for all the listening tests and a set
of headphones instead of speakers were selected to reproduce the audio recordings
in the study. The jitter was added to the source material by running the signal
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through a jitter modulator to which a function generator was connected, through
which the jitter level could be controlled. Measurements on the audio system used
in the listening experiments indicated that the jitter levels inherent in the system
itself were way below any of the audibility thresholds recorded during testing and
should not have any influence on the test results according to the authors.

A third study including jitter audibility testing was also conducted by Ashihara et
al. [15] in 2005. In it, random jitter was simulated in software by creating new
sample values by interpolation after which the interpolated values were shifted to
the ideal sampling points in time. An anti-aliasing filter was also added to make sure
the sampling theorem was still satisfied. The test subjects, all consisting of people
with backgrounds in different audio fields were asked to audition source material of
their own selection using their own audio equipment. Only a computer with a digital
audio interface was provided as signal source and three controls, A, B and X were
given from which the playback of the source material could be controlled. Selecting
X always set the original source material without any added jitter to be played back.
One of the controls A and B was randomly set to also select the original non-jittered
source material while the other control selected the source material with the added
random jitter. The test subject was informed of this setup, asked to listen to the
selected source material for a couple of minutes and then at the end decide which
one of the controls A and B played back the same version as control X.

The test started with plenty of jitter being added to the source material and the test
was run multiple times under the same conditions. The test subject was allowed
to proceed to the next step where the jitter level was halved once 75% or more of
the attempts were correct. If too many incorrect answers were given, the test was
aborted and the final successfully determined jitter level was recorded. Table 2.3
shows the results from the listening test. None of the test subjects were able to
audibly distinguish the next level of random jitter after 500 nanoseconds. The
recorded jitter audibility threshold level being a bit higher in this study than in the
ones previously presented does however not come as a big surprise as only random
jitter was used and more importantly, the program material in the previous studies
was tailored to maximize the audible effects of jitter while more “normal” music
likely was used here as the participants were allowed to pick their own listening
material.

Random jitter Audibility among test participants
2 µs 100 %
1 µs 48 %

500 ns 26 %
250 ns 0 %

Table 2.3: Proportion of test participants that were able to hear the effects of
random jitter added to self selected source material.

In all three studies mentioned so far, listening experiments were used to determine
the threshold limits for jitter audibility. The lowest recorded threshold values from
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any of the studies were in the single digit nanosecond range, noted when sine waves
of high frequency were used as program material. Using recordings of solitary real
instruments as program material increases the threshold to tens of nanoseconds and
using even more varied and complex source material sends the threshold limit into
the range of hundreds of nanoseconds.

2.1.5.1 A Theoretical Jitter Audibility Model

An idea commonly presented is that jitter levels below the quantization noise floor
will be inaudible [14, 15, 18]. In Figure 2.14, quantization with low resolution
has been used to show an example of an analog signal and its quantized digital
counterpart. The horizontal grid lines indicate the digital levels available that can
be assumed and the vertical grid lines mark the sampling interval points. Any real
audio application is likely to use a much higher resolution to produce a smoother
digitalized waveform that more closely resembles the analog signal, but even then,
there will still be a least significant bit (LSb) size in the digital representation of the
audio signal that together with other system parameters sets the level of the noise
floor. For a DAC with a resolution of N bits, the total number of values that can
be represented is 2N and the LSb is 1/2N of the total representable range.

Time

A
m
p
li
tu
d
e

Analog signal
Quantized signal

Figure 2.14: Analog sine wave and the resulting waveform after quantization in
low resolution.

To find a relation between all the system parameters and the quantization noise
floor, we can start by considering a sine wave:

y(t) = Asin(2πft). (2.8)

The rate of change for the curve is
dy(t)

dt
= 2πfAcos(2πft). (2.9)
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At t = 0 the rate of change will have its maximum value as the slope for the sine
wave will be the steepest there. The limit lim

t→0 cos(2πft) = 1, and we are left with
(

dy

dt

)
max

= 2πfA. (2.10)

If the full range of a converter is used to present a sine wave of amplitude A, then
the interval from 0 up to the highest representable digital level will be of magnitude
2A. We know that the LSb is 1/2N of the total representable range, so we multiply
the expression with 2A. For any signal, the rate of change multiplied by the amount
of time during which the change occurs will determine the new level of the signal.
The LSb can therefore also be expressed as the the rate of change dy/dt multiplied
by the amount of time tj it takes to reach the new level when the rate of change is
at its maximum. Rearranging the first expression a bit we then have

tj
dy

dt
= LSb = A

2N−1 . (2.11)

Substitution in Equation 2.10 with Equation 2.11 gives us

A

tj2N−1 = 2πfA. (2.12)

After rearranging Equation 2.12 we have an expression for tj which corresponds to
the time of one LSb:

tj = 1
2πf2N−1 . (2.13)

For any timing jitter to fall below the quantization level floor, it would need to be
equal to less than half a LSb, so any result to Equation 2.13 needs to also be divided
by a factor of 2. For a 16-bit converter with maximum sampling frequency of 20 kHz,
the jitter level should therefore be lower than tj/2 = 121 ps for it to fall below the
quantization noise floor and be inaudible.

2.2 AES/EBU and S/PDIF
The physical appearance and the electrical characteristics of the two interfaces are
different as the for professional use intended AES/EBU [5] interface uses balanced
XLR connectors while the more consumer oriented S/PDIF [6] uses either a coax-
ial cable with RCA connectors or an optical wire with TOSLINK connectors, but
beneath the dissimilar exterior they both use the same data transfer protocol. The
audio data and the clock signal are transferred along the same data line, combined
into one bit stream using biphase mark code (BMC). Data is transferred in blocks
consisting of 192 frames, every frame is divided into multiple subframes, one for
each audio channel, and each subframe contains 32 bits of data. Figure 2.15 shows
the structure of the transfer scheme including the placement of the data fields inside
a subframe.
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Frame 1 Frame 2 ... Frame 192

(a) Block

Subframe 1 Subframe 2 ... Subframe n-1 Subframe n

(b) Frame

Preamble Auxiliary Audio sample word V U C P

0 4 8 28 29 30 31

(c) Subframe

Figure 2.15: Data structure of AES/EBU and S/PDIF. The contents of a) an
audio block, b) a frame and c) a subframe.

Bit no. Subframe field Usage
0–3 Preamble Indicates the start of a subframe. The field spec-

ifies if it is a) the first subframe within a frame,
b) the first subframe in a block, c) any other sub-
frame.

4–7 Auxiliary bits Used to add auxiliary information or can be as-
signed to carry an extra 4 bits of audio data, ex-
tending the audio sample word size from 20 to
24 bits.

8–27 Audio sample word The bits used to carry the audio data sent with
LSb first.

28 Validity bit Indicates if the audio sample word contains valid
audio data or not.

29 User data bit Can be used to carry any user defined data.
30 Channel status bit Used to indicate type of interface, sample rate,

copy permission and other settings. The mean-
ing of the bit is dependent on the frame number
within the block in which it is transmitted. All
subframes within a frame carry the same channel
status bit.

31 Parity bit Used to detect errors in the transmitted data.

Table 2.4: Description of subframe data fields.

2.2.1 Biphase Mark Code
The clock signal and the audio data together with all other parts of the subframe
are for the AES/EBU and S/PDIF interfaces sent along the same data line using
biphase mark encoding [19], also known as Differential Manchester encoding. For
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each bit of data that is sent, at least one signal transition is guaranteed to happen.
If the data bit is a “0”, the encoded signal sent to the receiver will switch polarity
once at the start of the time slot, and if the data bit is a “1”, the signal will change
polarity twice, once at the start and once in the middle of the time slot for that bit.
The only part of the subframe data that is allowed to violate this condition is the
first part containing the preamble bits. It only has three valid bit sequences used
for indicating the placement of the subframes in the data stream. The reason for
this is to ensure so that no other data in the subframe can contain the same bit
sequence as the preamble, throwing off the synchronization of the data that is being
transmitted. An example of BMC is shown if Figure 2.16.

Clock

Data

BMC

+

-

0 1 1 0 0 0 1 0

Figure 2.16: Biphase mark code timing diagram.

2.2.2 Clock Recovery

After data has been transmitted, the receiver will need to recover the clock signal
and separate it from the rest of the encoded data and there are some problems that
can arise in the recovery process. A study by Dunn and Hawksford [2] done relatively
soon after AES/EBU and S/PDIF were started being used widely points out many
of the known problems with the interfaces’ characteristics; the most significant one
being that jitter can be dependent on the data pattern in the transmission. Due
to bandwidth limitations, the rise and fall times of the transmitted signal will be
limited. This can cause the signal to begin the transition from high to low or vice
versa from a voltage level depending on the previous data pattern as the signal has
not had time to settle from the previous transition due to the limited bandwidth.
Dunn and Hawksford [2] created a simulation model of a bandwidth limited trans-
mission channel using a passive low pass filter, which despite its simplicity showed
a generally good agreement with measurements conducted on real systems.
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R

CVin Vout

Figure 2.17: First order passive low pass filter used to simulate bandwidth limited
transmission channel.

The voltage Vout over the capacitor in Figure 2.17 is

Vout = Vin

(
1 − e− t

RC

)
+ V0e

− t
RC , (2.14)

where Vin is the amplitude of the non-filtered signal and V0 is the voltage level
from which the signal transition begins. Using the filter to simulate a bandwidth
limited transmission line with time constant τ = RC of 100 ns between a S/PDIF
transmitter and receiver gives the graph in Figure 2.18. Looking just at the first
eight bits of the subframe in Figure 2.19, we can more clearly see that for each
signal transition the starting voltage is different and that it depends on previous
signal transitions. The consequence of this is that the time when the threshold level
at 0 V will be reached at a signal transition will vary depending on the previous
bit pattern and as we have seen before, a shift in voltage level can create timing
jitter. This is shown in Figure 2.20 where bits four and five of the subframe are
displayed and the difference between the signal edge and the bandwidth limited
signal is inconsistent from signal transition to signal transition. The threshold level
0 V crossing time is given by the equation

t = RC ln
(

1 +
∣∣∣∣ V0

Vin

∣∣∣∣) . (2.15)

Solutions to help lessen this issue with data dependent jitter include using data
patterns in the auxiliary bits and user bits which are less prone to creating jitter [2]
and to only use the first bits in the preamble to lock on to the signal and to create
a local clock from only that bit sequence instead of using every transition in the
whole subframe to generate it [20].

V−

0

V+
PREAMBLE AUX AUDIO WORD V U C P

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 2.18: Transmission of one subframe over bandwidth limited channel.
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PREAMBLE AUX

0 2 4 6 8

V−

0

V+

Figure 2.19: First eight bits of the subframe.

3 4 5

V−

0

V+

t1 t2

Figure 2.20: Bits four and five of the subframe.

2.2.3 Asymmetric Slew Rates
Another thing that can cause jitter in AES/EBU and S/PDIF interfaces is slew rate
imbalance, giving asymmetric rise and fall times for the signal. Dunn and Hawksford
[2] presented the formula shown in Equation 2.16 for the amount of jitter tj per signal
transition that is created by an asymmetry in the slew rates. Vd is the driving voltage
of the transmitter, VSR+ is the slew rate in the positive direction and VSR− is the
slew rate in the negative direction.

tj = |Vd|
2

∣∣∣∣∣ 1
|VSR+|

− 1
|VSR−|

∣∣∣∣∣ (2.16)
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A visualization of a signal response with symmetric versus asymmetric slew rates
is shown in Figure 2.21. The slew rate limited response with symmetric rise and
fall times will cross the threshold level at 0 V at times τ1 and τ3 instead of at τ0
and τ2 like the ideal square wave does, but the time difference τ3 − τ1 = τ2 − τ0, so
this does not present a problem. The falling signal edge for the slew rate limited
response with asymmetric slew rates will on the other hand cross the threshold level
at τ4 instead of at τ3 as the falling edge only has half the rate of change per time
unit compared to the rise time and τ4 − τ1 ̸= τ2 − τ0, so the slew rate asymmetry
introduces jitter into the signal. One solution suggested to solve the issue is to let
the receiver rely on signal transitions in one direction only, effectively removing the
need for the slew rates to be even.

τ0τ1 τ2τ3τ4

V−

0

V+

Threshold

Time

V
ol
ta
ge

Ideal square wave
Slew rate limited, symmetric
Slew rate limited, asymmetric

Figure 2.21: Symmetric versus asymmetric slew rate response to an ideal square
wave.

2.2.4 Transmission Lines
A model for a transmission line used for high frequency signals [1, 19, 21] is shown
in Figure 2.22. The parameters, resistance R, inductance L, capacitance C and
conductance G are per length unit of transmission line. For a S/PDIF interface
using a coaxial cable to transfer audio, the same model can be applied.

R L R L R L R L

1

G
C

1

G
C

1

G
C

1

G
C

Figure 2.22: Cascaded network model for high frequency transmission line.

25



2. Theory

The transmission line has a characteristic impedance of

Z0 =
√

R + sL

G + sC
(2.17)

with s being the frequency operator, for a sine wave often denoted by jω. Let us
now attach a load with impedance ZL to the transmission line and then apply a
voltage pulse of size Vi to the other end of the line as depicted in Figure 2.23. What
then happens when the voltage reaches the load depends on the impedance ZL of
the load. For a perfectly matched system where the transmission line impedance Z0
is equal to the load impedance ZL, the whole voltage pulse Vi will continue into the
load, but if the impedances differ, a part of the voltage will be reflected back along
the transmission line. Equation 2.18 gives the reflection coefficient ρ of the system.

ρ = Vreflected

Vincident

= ZL − Z0

ZL + Z0
(2.18)

When the voltage pulse Vi in Figure 2.23 is applied, it will start to move along the
transmission line towards the load with the propagation velocity

v = c
√

ϵrµr

, (2.19)

where c is the speed of light, ϵr is the permittivity and µr is the permeability for the
transmission line. Equation 2.18 gives the ratio between the incident voltage and
the reflected voltage. If for example the load impedance ZL and the transmission
line impedance Z0 are severely mismatched with the load impedance ZL being twice
the size of the transmission line impedance Z0, then the reflection coefficient ρ is
0.33 and the amplitude of the reflected voltage pulse is one third of the amplitude of
the applied voltage Vi. For a more tightly matched system where the transmission
line impedance Z0 and the load impedance ZL only differ by 1 %, the amplitude
of the reflected voltage pulse at the load end will still be around 5 mV per 1 V of
applied voltage Vi. Figure 2.24 shows the voltage on the transmission line before it
has reached the load and after a part of it has been reflected.

ZLZ0Vi

Figure 2.23: Transmission line with load attached.
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Load
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(a) Approaching the load.
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Vi + Vref

(b) Reflected voltage at the load.

Figure 2.24: High frequency voltage pulse applied to a transmission line.

The transmitting side of the system where the voltage pulse Vi originates from does
also have an impedance of its own and the same reasoning applies to that end of the
circuit, so if there is an impedance mismatch between the transmitting side and the
transmission line, then a part of the voltage pulse first reflected at the load end will
be reflected once again when it reaches the transmitting side. A pulse can therefore
be reflected several times between the transmitter and receiver sides if both ends
have an impedance different from the transmission line impedance Z0. In reality, any
such voltage pulse bouncing back and forth is likely to diminish quickly as |ρ| < 1
for any case except a completely open or fully shorted circuit end. We know from
Chapter 2.1.2 that voltage noise can lead to timing jitter, so even small reflections
due to impedance mismatching between the transmission line and the load on high
frequency transmission lines, in our case the coaxial cable connecting the transmitter
and the receiver and the transmitter and receiver units themselves, can cause issues.
Proper impedance matching in the audio chain between the transmitter, receiver
and the cable connecting them is therefore necessary.

S/PDIF and AES/EBU signals being transmitted in coaxial cables are also affected
by other attributes of the transmission channel apart from the impedance. Dielectric
losses and the skin effect where a high frequency signal travels mainly along the
surface of the conductor only penetrating a short distance into the core of it are
some examples of things that could be expected to affect the voltage level and rise
times of the signal. Both are dependent on the material parameters of the cable
and on the frequency of the signal being transmitted, but as the frequency for the
clock signal being sent is expected to stay the same, then all signal transmissions
should be affected to an equal extent in which case no new variable jitter would be
added to the signal. Optical channels also have their own share of issues that could
be expected to affect a signal propagating through the optical wire such as pulse
dispersion and limited bandwidth in the transmitter and received components but
we will not go any further into if and how that might impact a digital audio signal
being transmitted.
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2.2.5 FIFO Buffers
One attempt at solving the interface jitter issues of AES/EBU and S/PDIF has been
to insert a first in, first out (FIFO) buffer between the receiver chip and the DAC
in the converter and to then reclock the data coming out of the FIFO buffer. It has
been used by some audio manufacturing companies, but there are some drawbacks
to this method. The introduction of a buffer in the audio chain will undoubtedly
delay the audio signal. This might be acceptable up to certain degree if the audio
only is used for music playback, but if the transmitted audio stems from a video
stream, then the audio and video can become noticeably out of sync unless the
buffer is small. A delay could also cause problems if the audio system would be
used for communication in a telephone type of manner, as that would make the
communication disruptive and less smooth.

The purpose of the added FIFO is to reclock the signal with a clock that has less
jitter than the one arriving from the transmitter, so two clocks, the one supplied by
the transmitter feeding the audio data into the FIFO and a second one supplied by
the receiver moving data out of the FIFO will be running freely, not synchronized to
each other. The clocks will essentially be running at the same rate but any difference
or variation at all in the clock rates will make the clocks start drifting apart and
this must be remedied by having a large enough buffer size to accommodate for the
drift between the clocks so that the FIFO buffer does not underrun or overflow. If
we have a system with 44.1 kHz sample rate, then one new audio sample will arrive
every 22.68 µs for each audio channel. A normal oscillator (XO) like for example
the one used to generate the external clock to our DAC in Figure 3.12 can have a
frequency stability rating of ±100 parts-per-million (ppm), which means that the
clock could in the worst case be off by one in every 10 000 samples compared to an
ideal clock. If we have two clocks with the same frequency stability rating running
side by side where both clocks have maximum deviation from the ideal frequency
but in opposite directions, then the sample rate could be off by up to 8.82 samples
per second. In an hour that amounts to 31 752 samples, so if we fill the FIFO buffer
up half-way before we start extracting data from it, then it would need to be able
to fit 63 504 samples for each audio channel to guarantee uninterrupted playback
for one whole hour. The delay caused by the FIFO buffer would in that case be
0.72 s at the start of playback. While not ideal, this could be acceptable for audio
playback, but in other applications such as video streaming, the delay between the
video and the audio would just be too big unless otherwise adjusted.

Another option that has been tried together with a FIFO buffer is to use an asyn-
chronous sample rate converter (ASRC). The average incoming data rate is first
measured and then the audio data signal is resampled by the ASRC to match the
rate of the clock which extracts the data from the FIFO buffer and hands it over to
the DAC. In this way the buffer will not need to be so large as the ASRC will adjust
the audio samples by interpolation so that the average data rate for the audio data
going into the FIFO is the same as the date rate coming out of it, and the buffer
will therefore not overflow nor underrun even though the clock rates at the input
and output of the buffer might be slightly different. The use of an ASRC could
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however give other undesirable audible effects depending on how well it has been
implemented. Including not only a FIFO but also an ASRC in the design also adds
to the complexity of the device.

2.3 Universal Serial Bus

The next section in this chapter will mainly focus on the parts of USB which are of
relevance for the thesis like the transfer protocol structure, the device descriptors, the
isochronous transfer modes and other audio and timing related subjects. With there
being multiple versions of the USB specification, Universal Serial Bus specification
revision 2.0 [22] is the version that the coming sections will comply with; this simply
because it is the most appropriate version considering the hardware that will be
used in the construction part of the project. In the specification there are several
attributes declared that make USB suitable to be used as a dedicated audio interface.
Among other things, guaranteed bandwidth and low latency for audio are listed as
key points. The implementations in the hardware construction part of the thesis
project are done using a “full-speed” device as defined by the USB 2.0 specification.
Subsequent revisions of the specification [23, 24] supporting SuperSpeed devices
do introduce some new concepts, but they are of no use for us here. Time units
are for example handled differently. Full backward compatibility to USB 2.0 is
however guaranteed for any full- or high-speed device connected to a host port using
SuperSpeed. Whenever mentioning the USB specification going forward, revision 2.0
is what is being intended unless explicitly stated otherwise.

2.3.1 Network Topology

A USB system is controlled by a single host, polling the bus to which devices are
connected. Devices can be grouped into different classes, such as for example the
audio device class. The communication channels between the host and a device are
called pipes, they can carry messages or stream data, and they are connected to
endpoints at the device and at the host. At a minimum a device must implement
at least one bidirectional message pipe called the default control pipe, which is
connected to the control endpoints of the device. Capabilities added to a USB
system for example in the form of an audio interface are called functions, so from
our point of view we can use the terminology for device and function interchangeably.

The network topology of USB has a tree-like structure. At one end, there is the
controlling host at which the root hub resides. Devices or other hubs can be con-
nected to the root hub, and in extension more devices and hubs can be connected
to a hub which is connected to the root hub as displayed in Figure 2.25. In order
to not violate the specifications set for timing, no more than six additional levels
following the root hub layer can be connected together.

29



2. Theory

Host

Root hub

Tier 2 deviceTier 2 hub

Tier 3 device Tier 3 hub

Tier 4 deviceTier 4 hub

Tier 5 device Tier 5 hub

Tier 6 deviceTier 6 hub

Tier 7 device

Tier 3 device

Tier 5 deviceTier 5 device

Tier 7 device

Figure 2.25: USB topology.

2.3.2 Connecting a Device to the Bus
When a device is connected to the bus, the host will need to discover and configure
it before it can perform any function. The process of configuring and enabling the
device is called enumeration, and it is done by performing a number of steps through
which the device state is altered until configuration has completed. At first, the hub
to which the device has been connected will set the device to the powered state
and report to the host that its status has changed. This will cause a query to be
sent from the host to the hub to find out what caused the change. Once the host
knows that a device has been attached, it will send a reset command and have the
port to which the device is attached to set to enabled. After the device has been
reset, it will go into the default state during which the host can communicate with
it using the default address. Following steps in the configuration process will assign
a unique address to the device, causing it to go into the address state, and finally
into the configured state once the host has read all the configuration information
in the device’s descriptor table and has assigned a configuration value to it. In the
configured state, all endpoints described in the device’s descriptor table have been
enabled and the device is ready for use.
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Figure 2.26: Device state changes during enumeration process.

2.3.3 Descriptors
A device reports its capabilities and settings to the host upon request through its
descriptors. The host can also change some of the device settings by altering the
values in the device’s descriptor table by device requests. A device has exactly
one main device descriptor that contains general information about the device and
it also lists one or more possible configurations of the device in the underlying
configuration descriptors. A configuration descriptor will in turn list one or more
interface descriptors, and each interface descriptor will then list one or more end-
point descriptors. When a configuration descriptor is requested by the host, it will
be returned by the device accompanied by any underlying interface and endpoint
descriptors. Interface and endpoint descriptors cannot be requested on their own.
Alternative settings for the interfaces may be provided by having multiple configu-
ration descriptors. The default control endpoint is not listed among the endpoint
descriptors as it must be implemented by all USB devices as a control pipe with
predefined settings. Endpoint descriptors declare among other things the direction
of the endpoint, if it is a control, isochronous, bulk or interrupt endpoint and what
type of synchronization it uses. Endpoints are unidirectional, but two endpoints
with the same endpoint number can be created with opposite data directions. A
feedback endpoint associated to a single isochronous endpoint is expected to have
the same endpoint number as the isochronous endpoint, and in case multiple end-
points are using the same feedback endpoint, then the endpoint number used for
feedback should be the same as for the isochronous endpoint with the lowest end-
point number associated to it. A high-speed device can also have a device_qualifier
descriptor and an other_speed_configuration descriptor. The device_qualifier de-
scriptor is similar to the device descriptor, but instead of providing information
about the device for the current speed setting, it will show device information for
the alternative speed setting. Requests for the device_qualifier descriptor will there-
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fore for a device running in high-speed return the full-speed information and for a
device running in full-speed it will be the other way around. In the same way the
other_speed_configuration descriptor will return a configuration descriptor of the
alternative speed setting that the device is not currently using. An optional string
descriptor can be included to provide information in readable Unicode text format
for all devices. Figure 2.27 shows the overall structure of the descriptor table and
example descriptors for the audio device implementations used in the construction
build are provided in Appendix A.

Device descriptor

Configuration descriptor(s)

Interface descriptor(s)

Endpoint descriptor(s)

Figure 2.27: Configuration, interface and endpoint descriptor structure.

2.3.4 Device Classes and Device Requests
The descriptors on the device are made accessible to the host by replies to device
requests sent from the host to the default control pipe of the device. Device requests
can be of standard type, which are supported by all devices, or they can be class
or vendor specific. Device requests are used to either fetch values from a device
descriptor or to manipulate the values in them. The prefixes “GET” and “SET”
are used in the request name to indicate if a request is meant to retrieve or change
the descriptor data that is being referenced. The only standard device requests that
do not use the two mentioned prefixes are the CLEAR_FEATURE request, which
is used to switch off on-off toggle values and the SYNCH_FRAME request, which
is used to synchronize the host and the device when the size of the transferred
data varies within a frame. A device request transaction will follow the pattern
for a control transfer with an initiating SETUP packet, an optional data packet
depending on the request type, and a closing handshake like depicted in Figure 2.35
in Chapter 2.3.10.2. If a device receives an invalid or unsupported request, it should
respond appropriately and signal the error by setting the packet identifier to STALL
either in the following data packet or the next status transaction. The USB audio
device class is an extension of the USB standard, so a USB audio class device will
have a number of extra descriptors containing information about the device’s audio
capabilities and it will also on top of the standard device requests support requests
from the USB audio class specification. Software on the host communicating with an
audio class device can use the standard audio class driver provided by the operating
system, but it is also possible to load an external driver specific to the device and
use that one instead of the generic driver.
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2.3.5 Transfer Types
Most transactions on the bus consist of three interactions: 1) The host sends a
“token packet” with parameters to set up a transaction with one of the connected
devices. 2) An attempt to transfer the requested data is made, either in the direction
from the device to the host or from the host to the device. 3) The receiver of the
data sends a “handshake packet” to indicate if the data was transferred successfully
or not.

There are four types of data transfers that can take place:

Data transfer type Usage
Control transfer Used for device configuration, commands and status re-

quests.
Bulk transfer Non-periodic transmission of non-time sensitive data, usu-

ally sent in larger chunks.
Interrupt transfer Transmission of smaller amounts of time sensitive data

that must be delivered reliably.
Isochronous transfer Periodic transmission of real-time data with minimal de-

lay.

Table 2.5: Data transfer types for USB.

We will not make any use of the bulk transfer mode or the interrupt transfer mode
in any USB audio class devices described in this thesis and therefore no time will be
spent on expanding the discussion around those subjects. Isochronous data transfer
is the transfer mode used by USB audio devices to move audio data, so that is of
most interest to us. Control transfers are also to some degree used by USB audio
devices for supportive functionality.

2.3.5.1 Control Transfers

Control transfers allow the host software to configure and control device functions
using the default control pipe of the device. Additional message pipes for control
transfers used for other device specific purposes can be defined but are not obligatory.
Requests to alter the device settings can be either standard, device class, or vendor
specific. Error free message delivery is guaranteed for this transfer type and bus
access is granted in a best effort manner. Time is reserved for control transfers on
the bus, but that time reservation is shared between all the connected devices and
it is not limited to a single device.

2.3.5.2 Isochronous Transfers

The characteristics of the isochronous transfer mode makes it the most suitable of
the USB transfer types for transmission of data like audio which is consumed in
real-time. USB guarantees periodic access to the bus for isochronous data transfers
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with an upper bound on the maximum allowed latency. The latency of the trans-
mitted data will depend on the amount of buffering that is done at each stage in
the transmission chain. No retransmissions are made for any data lost in transmis-
sion errors, but the receiver can still discover if a transmission error has occurred
by keeping track of start-of-frame (SOF) count, expected delivery interval, cyclic
redundancy check (CRC) field of packets and if it is a high-speed high bandwidth
device, then also the packet ID sequencing can be used. The number of transmission
errors occurring is however expected to be low enough to not cause any problems.
As a side note, a recommended bit error rate of less than or equal to 10-12 for a
high-speed receiver is mentioned as a design guideline in the section for electrical
characteristics in the USB specification.

2.3.6 Time Units

For full-speed devices, USB divides time into units of 1 ms called frames. High-
speed devices are able to use a narrower time span of 125 µs called a microframe.
Each new frame is defined by the host sending out a SOF packet every 1 ms ±0.5 µs
that devices can use for synchronization. The same generation rate of SOFs for
microframes is set to 125 µs±0.0625 µs by the USB specification.

2.3.7 Bus Access Period

A device using isochronous transfers must at the time of being connected to the
bus inform the host software of its desired bus access period so that bandwidth can
be allocated to accommodate the required data rate. This is done by setting an
appropriate value in the bInterval field of the device’s standard endpoint descriptor.
Valid values for isochronous endpoints are between 1–16 and the formula

I = (2bInterval−1)F (2.20)

expresses the desired polling interval in frames or microframes. F is the frequency
of one frame or microframe depending on the speed of the connected device, so for
a high-speed device F is 125 µs and for a full-speed device it is 1 ms. For a high-
speed high bandwidth device up to three transactions can take place during one
microframe, but the host may not always be able to fulfill the desired access interval
of the device. Figure 2.6 shows the packet ID sequencing depending on the number
of packets sent to the high-speed high bandwidth device during a microframe. By
keeping track of the bit sequence in the packet ID field of the received packet, the
device can detect if a packet is missing and if that is case then all data sent during
that same microframe should be treated as incomplete.
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Number of transactions per microframe 1st packet 2nd packet 3rd packet
1 transaction DATA0
2 transactions MDATA DATA1
3 transactions MDATA MDATA DATA2

Table 2.6: Packet ID sequencing for a high-speed high bandwidth device receiving
isochronous data from host.

2.3.8 Endpoint Buffering

Before creating, configuring and allocating bandwidth to an isochronous stream
pipe for a device, the USB host software will calculate the amount of time that the
isochronous transactions are going to take to make sure that the needs of all devices
sharing the bus can be accommodated. When data is sent through an isochronous
stream pipe, it is first accumulated in a memory buffer and then transmitted in
larger chunks in the form of packets. There must also be a buffer at the endpoint
receiving the packets that can hold them until the device is ready to process them.
As a rule of thumb, the recommendation is that the size of the buffers at both
endpoints should be large enough to be able to fit twice the amount of data that can
be sent during one frame for a full-speed device, or one microframe for a high-speed
device. The larger the buffers are, the bigger the latency in the audio chain is. An
appropriate buffer size Bsize can be obtained by the formula

Bsize = 2S


Fs

FSOF

I

 , (2.21)

where Fs is the sample rate frequency of the system, FSOF is the frequency of the
USB clock, I is the polling interval from Equation 2.20 and S is the sample size of
the device.

2.3.9 Prebuffering Delay

The way in which USB processes isochronous data through the buffers at each of the
endpoints when it is transferred from source to sink will inherently add a delay. At
the source, data will be accumulated and buffered during frame X for a full-speed
endpoint until the SOF for frame X+1 is transmitted. The data in the buffer from
frame X will then be sent during frame X+1 to the buffer at the sink endpoint. First
when the SOF for frame X+2 appears can the sink start processing the data that
was accumulated during frame X at the source. Figure 2.28 displays the buffering
delay. The same applies for a high-speed endpoint, but instead of frames the time
unit used is microframes.
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Frame number

Data accumulated at source

Data sent on bus

Data processed at sink

F1 F2 F3 F4
... Fx

D1 D2 D3 D4
... Dx

− D1 D2 D3
... Dx−1

− − D1 D2
... Dx−2

Figure 2.28: Delay induced due to prebuffering at endpoints.

2.3.10 Transfer of Data
Data is sent on the bus using non return to zero inverted (NRZI) encoding with the
LSb first. The polarity of the NRZI encoded signal changes for every data bit that
is “zero” and remains the same for every data bit that is “one”. Like biphase mark
encoding used by S/PDIF and AES, NRZI has the same benefit of only having a
small DC component. A separate signal line for a clock is likewise also not needed as
the receiver can create the sample clock by itself. As a long series of data containing
nothing but ones produces a NRZI encoded signal that has no transitions from high
to low or vice versa until the next “one” in the data appears, extra bits are inserted
into the NRZI encoded data to guarantee that a signal transition happens at least
every 7th bit. This is enough to ensure that the receiver can lock on to the signal.
Any inserted extra data bits used for this purpose are discarded when received.

Data

NRZI

1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0

Figure 2.29: Example of NRZI encoded data.

2.3.10.1 Packet Types

Packets sent on the bus can be divided into three categories:

• Token packets

• Handshake packets

• Data packets

36



2. Theory

The following token packet types exist:

PID name Description
IN Request of device to host data transaction.
OUT Request of host to device data transaction.
PING For checking if high-speed control or bulk transfer endpoints are

ready to accept more data.
PRE Preamble to initiate low-speed transaction.
SETUP Sent to control endpoint of device to initiate data transfer.
SOF Indicates the start of a new frame.
SPLIT Sent to high-speed hub to initiate or end low- or full-speed trans-

action.

Table 2.7: USB token packets.

The four types of handshake packets defined are:

PID name Description
ACK Confirmation of successfully received data.
NAK Sent to indicate that data cannot be sent or received.
NYET Sent to indicate that a high-speed endpoint is not ready for new

data yet or that a hub has not yet completed a split transaction.
STALL Reply to indicate that a control pipe request cannot be supported

or that an endpoint has halted.

Table 2.8: USB handshake packets.

Data packets can be of type DATA0, DATA1, DATA2 or MDATA. There is not any
difference between them other than their PID name which depends on the order
that the packets are sent in. The DATA0 and DATA1 PIDs are alternated for every
other frame sent to slow-speed endpoints, and for full-speed endpoints the usage of
the different data packet PIDs are shown in Table 2.6.

2.3.10.2 Packet Fields

Every packet on the bus starts with a SYNC field of eight bits for full-speed and
32 bits for high-speed endpoints. The first bits of the field are set to create as many
signal transitions as possible to enable the clock synchronization. The last two bits
of the SYNC field mark the transition from the synchronization sequence to the rest
of the packet. Following the SYNC field is the packet identifier field (PID). It is
included for all packet types and it specifies what kind of packet it is that is being
transmitted. The continuation of the packet after the PID depends on the packet
type and the PID. Table 2.9 lists the packet fields defined in the USB specification.
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Packet field Size Description
SYNC 8 or 32 bit Synchronization of incoming data with the lo-

cal clock.
PID 8 bit Defines the packet type. The last four bits are

one’s complement of the first four bits to be
used as error control. If the bit sequence in
the first four bits does not match any of the
predefined values or if any of the last four bits
fail to match the values in the first part of the
field, then the whole packet is disposed.

Address 6 bit Defines the source or the destination of the
packet.

Endpoint 4 bit Defines the source or destination endpoint
number to be used.

FrameNumber 11 bit Used in SOF packets for identification. The
value is incremented for each new SOF packet
sent and reset once the maximum representable
value has been reached.

Data 0 to 1024 byte The field containing the requested data.
CRC 5 or 16 bit Cyclic redundancy check for transmission er-

rors for all fields except SYNC and PID. 5 bit
length for token packets and 16 bit for data
packets. Catch-all for single and double bit er-
rors.

Table 2.9: USB packet fields.

The packets that one will typically encounter and make use of when a device with an
isochronous full-speed OUT endpoint like the audio class device in the construction
build is being used under normal operating conditions are the token packets with
the OUT and SOF PID and the various data packet PIDs. These packet sequences
are presented a bit more thoroughly in the next section. The SYNC field initiating
every packet has been excluded from Figure 2.31 to 2.38.

An isochronous transaction of data from the host to a device consists of two steps; 1)
First the host sends a token packet on the bus with the OUT PID, and the address
and endpoint number of the device. This is received by the default control endpoint.
2) The host sends the data to the device and it is received by the isochronous
OUT endpoint. Other data transfer types will often also include a third step where
successful transfer of data is confirmed by returning an ACK to the sender, but
that part does not exist for the isochronous transfer type due to its nature of being
suited for real-time data where a failed or missing transmission rather is ignored than
being sent again. An isochronous IN data transaction has the same appearance but
in the first step the host sends a token packet with the IN PID instead and then the
direction of the data packet in the second step is reversed.
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Host Device

1. Token OUT packet

2. DATAx packet

Figure 2.30: Isochronous USB OUT transaction sequence.

PID=OUT ADDRESS ENDPOINT CRC5

8 7 4 5

Figure 2.31: USB OUT token packet.

PID=DATAx DATA CRC16

8 0-1024B 16

Figure 2.32: USB DATAx packet.

The start-of-frame token packets sent once every 1 ms may also be used by an
isochronous audio class device for synchronization purposes and the transaction con-
sists of a single packet sent from the host, then being received and used if needed
or ignored by the full-speed devices connected to the bus. The packet is composed
of the packet fields SYNC, PID, FrameNumber and CRC. The FrameNumber field
is incremented for each new SOF sent every 1 ms, but the seven additional SOF mi-
croframes sent every 125 µs to high-speed devices for tighter tolerances within that
same frame all use the same frame number as the first SOF packet in the frame.

Host Device

Token SOF packet

Figure 2.33: USB SOF packet transaction sequence.

PID=SOF FrameNumber CRC5

8 11 5

Figure 2.34: USB SOF packet.
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Control transfers will happen less frequently for an isochronous audio class device
but they are still needed in order to initialize and configure the device when it
is attached to the bus and for changing settings mid operation. An example of
a control transfer transaction is when the host fetches the device descriptor in the
configuration phase during the enumeration process described in Chapter 2.3.2. Any
control transfer will consist of two or three transactions; 1) a token packet sent from
the host to the device, 2) an optional data packet sent in either direction, and 3) a
handshake packet sent to confirm success or to report failure. The “get descriptor”
request has three transaction stages and they are shown in Figure 2.35. First the
host sends a SETUP token packet which is received by the default control pipe of
the device. The device request type and its parameters are embedded in the values
of the PID field bits. The requested device descriptor is then sent back to the
host using the default control pipe. Upon the descriptor having being successfully
received by the host, an ACK is sent back as confirmation to the device.

Host Device

1. Token SETUP packet

2. DATAx packet

3. Handshake ACK packet

Figure 2.35: USB control transfer sequence.

PID=SETUP ADDRESS ENDPOINT CRC5

8 7 4 5

Figure 2.36: USB SETUP packet used in a control transfer.

PID=DATAx DATA CRC16

8 0-1024B 16

Figure 2.37: USB DATAx packet used in a control transfer.

PID=ACK

8

Figure 2.38: USB ACK handshake packet used in a control transfer.

40



2. Theory

2.3.11 Isochronous Synchronization Types
An isochronous endpoint will after being connected to the bus inform the host of the
data rates it supports through its device descriptors. For isochronous data transfers,
the USB specification presents three standardized endpoint synchronization types
to choose from:

• Adaptive

• Asynchronous

• Synchronous

2.3.11.1 Synchronous

Synchronous mode devices use the SOF token packets that are generated every
1 ms for full-speed and high-speed endpoints or alternatively the microframe SOFs
generated every 125 µs for high-speed endpoints as a reference to which the internal
clock of the device is synchronized by the use of a phase-locked loop. Both fixed
and continuously programmable data rates can be supported.

2.3.11.2 Adaptive

Adaptive mode devices adjust their internal clocks by monitoring the data rate of
the sink or source endpoint to which they are connected. For an adaptive sink
endpoint the data rate can be determined by averaging the number of data samples
received over a period of time. An adaptive source endpoint receives feedback from
the sink to determine the appropriate data rate that should be used. Data rates can
be either fixed or variable.

2.3.11.3 Asynchronous

The internal clock of an asynchronous mode device is generated by a source external
to the USB and it is not synchronized to any clock that is part of the USB system.
Both fixed or continuously programmable data rates can be used. An asynchronous
sink endpoint needs to provide feedback to the source through a separate isochronous
IN endpoint in order to keep the transfer data rate at a sufficient level. For an
asynchronous source endpoint the data rate can instead be determined directly from
the number of samples that are transmitted during a frame and a separate endpoint
for feedback is therefore not needed for an asynchronous source. The data rate is
always controlled by the device operating in asynchronous mode and not by any
source or sink connected to it.

2.3.12 Explicit Feedback
To avoid underflow and overflow of the buffers at either end of the communication
channel, feedback of the desired data rate for an isochronous device sometimes
needs to be provided. Under some circumstances this can be managed implicitly
by observing the data rate of a stream when multiple isochronous pipes related to
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each other send data in both directions, but for a single isochronous asynchronous
endpoint consuming data, feedback needs to be provided explicitly to the source
through a dedicated feedback endpoint. The same approach must be taken when a
single adaptive source endpoint sends feedback to the sink to which it is connected
to. To provide an accurate enough measure for the data rate calculation used in
the feedback, the USB specification dictates that the measurement period Tmeas

expressed in frames or microframes for the data rate must be at least the length of
one second. However, if the sampling rate Fs of the device is derived from a master
clock of higher frequency than the sampling rate, then the measurement period may
be reduced by that same clock multiple without losing accuracy. Equation 2.22 can
be used to calculate the measurement time that is needed at a minimum to provide
a data rate calculation of sufficient accuracy.

Tmeas = 2K

2P
= 2K−P (2.22)

For a device in which the sampling rate Fs is not derived from a higher frequency
master clock, P = 0 and Equation 2.22 can be simplified to Tmeas = 2K . The SOF
packets generated for such a full-speed endpoint appear every 1 ms, so the frequency
of the data rate calculation should be at least 1 kHz. Selecting K = 10 will give a
Tmeas value which meets that criterion. For a high-speed endpoint with a SOF rate
of 125 µs, the frequency is 8 kHz, which translates to K = 13 being enough to meet
the set demand.

In a device that does derive its sampling rate clock Fs from a master clock with
higher frequency Fm,

Fm = 2P Fs (2.23)
and by rewriting the expression, the binary logarithm of the clock multiple in Equa-
tion 2.24 will give the value of P .

P = log2

(
Fm

Fs

)
(2.24)

By counting clock cycles of the master clock instead of the sampling clock that is
derived from it, the accuracy of the data rate calculation can be sustained even
though the measurement period is shorter and an updated data rate value is now
generated every Tmeas frame or microframe. It is of no use to update the value more
often than once a frame or microframe depending on the device speed or to use a
slower clock than the sampling clock itself for the calculation, so the range of P is
0 ≤ P ≤ K.

The desired data rate value uses 10.10 format for full-speed endpoints and 12.13
format for high-speed endpoints. This means that both the integer part and the
fractional part is represented by 10 bits each for the full-speed endpoints, and that
the integer part for the high-speed endpoints is represented by 12 bits, accompanied
by a 13 bit fractional part. To fit these bits into full bytes, full-speed endpoints
use left-justified 10.14 bit representation, where the extra four bits can be used
to improve precision or else they must be set to zero. A high-speed endpoint will
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instead use 16.16 bit representation where the binary point is placed between the
second and the third byte. The first four bits of the first byte for the integer part
will always be zero and the last three bits of the fractional part can be used to
improve accuracy or else they must also be set to zero.

Integer part Fractional part Frac extra

0 10 20 24

1st byte 2nd byte 3rd byte

Figure 2.39: Feedback format for full-speed endpoint.

0 0 0 0 Integer part Fractional part Frac e.

0 4 16 29 32

1st byte 2nd byte 3rd byte 4th byte

Figure 2.40: Feedback format for high-speed endpoint.

2.3.13 The Audio Device Class
This next section describes some of the main concepts of the audio class definition
version 1.0 [10] which is the version of the definition that was used in the differ-
ent project implementations. Some of the changes and updates in the subsequent
revision 2.0 of the audio class definition [25] which was also under consideration
are briefly discussed at the end of the section. A USB audio class device will typ-
ically contain one Audio Interface Collection group consisting of one AudioControl
interface and one or more AudioStreaming interfaces. Settings like volume and the
configuration of AudioStreaming interfaces are handled through the AudioControl
interface which uses the default control pipe of the device. AudioStreaming inter-
faces are used to transport audio data from sender to receiver. In addition to the
AudioStreaming interface type, a MIDIStreaming interface type for transmission
of audio in MIDI format also exits and can be part of an Audio Interface Collec-
tion group. Interfaces follow a consecutive numbering scheme and AudioStreaming
interfaces are always placed before MIDIStreaming interfaces in the collection. Au-
dio functions of devices belong to a function category. Some examples of function
categories are converters, microphones and speakers.

2.3.13.1 Clocks, Time and Synchronization

As presented in Chapter 2.3.8, the internal delay of a function receiving isochronous
data will depend on the size of the internal buffer for incoming data, but for an audio
device, the total delay of the device may also depend on if the audio data needs to
be decompressed or processed in other ways after it has been received. This also
needs to be taken into account when determining the total delay of a device.
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2.3.13.2 Entities

There are two different kinds of entities called “terminals” and “units” in the audio
class revision 1.0 by the use of which a USB audio class function can be described
and presented to a host:

• Terminals
– Input terminal
– Output terminal

• Units
– Extension unit
– Feature unit
– Mixer unit
– Processing unit
– Selector unit

Terminals represent the entry and exit points into and out of the audio function for
an audio signal, and an input or output terminal is represented by a single input
or output pin. Multiple audio channels are grouped together in an audio channel
cluster with a predefined channel ordering and the audio data for all channels in
the same cluster enters and leaves the audio function through the same input and
output pins. Input and output terminals are described by class-specific terminal
descriptors but some parameters closely related to the terminals are also found in
the endpoint and AudioStreaming interface descriptors.

Units are the main elements that describe the internal operation of the audio func-
tion and the properties of units are reported to the host through class-specific unit
descriptors. The USB audio class specification revision 1.0 defines no less than five
different types of units that can be combined and together they cover most of the
functionality that any ordinary audio device can be expected to have. As an ex-
ample there is a selector unit that can be used to alternate between different audio
sources. By sending control requests to the AudioControl interface, a host can de-
termine which of the audio inputs the selector unit in the audio device is using at
the moment and it can also have the device switch to a different audio source input.
Like for all the other unit types, the selector unit only has one single output pin,
but the number of input pins can be many.

2.3.13.3 Audio Class Descriptors

The combination of terminal and unit descriptors express how the parts inside the
audio function and the entry and exit points are connected together. There are also
other class-specific descriptors belonging to the USB audio class that exist alongside
the standard USB descriptors described in Chapter 2.3.3. The device descriptor
of an audio class device will in itself not indicate that the device belongs to the
USB audio class; instead it will point the host towards the interface descriptor level
where the device class information for the audio device can be found. Likewise, the
device_qualifier descriptor will do the same. The format of the configuration and
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the other_speed_configuration descriptors of an audio class device are the same as
for any other USB device.

For the AudioControl interface, which must be part of an audio class device, there
are two interface descriptors; the standard USB interface descriptor, and a class-
specific interface descriptor. The class-specific interface descriptor defines the audio
function category and what version of the audio class specification the audio function
is compatible with. It also ties all the unit and terminal descriptors inside the audio
function together. The unit and terminal descriptors do not have to be presented
in a particular order. They follow next after the class-specific interface descriptor
in the descriptor table and their total combined length is included in the descriptor
length value reported by the class-specific interface descriptor. Each of the unit and
terminal descriptors report their own descriptor lengths and what type of descriptor
it is like any other descriptor does, but the rest of the descriptor content can vary
greatly.

The AudioControl endpoint itself does not have any endpoint descriptors as it exists
for all devices and uses the default control pipe for its communication. It is possible
to have an additional interrupt endpoint through which the audio device can report
status updates to the host, but it does not have any class-specific endpoint descriptor
as the information provided by the standard interrupt endpoint descriptor is enough.

After the entity descriptors and the interrupt endpoint descriptor, if an inter-
rupt endpoint exists, follows the AudioStreaming interface descriptors. Each Au-
dioStreaming interface has one standard and one class-specific interface descriptor.
The standard descriptor lets the host know that the interface is an AudioStreaming
interface, it sets the interface number, and it also defines how many endpoints there
are. The class-specific descriptor specifies the terminal to which the interface is con-
nected, the types of formats that are supported, and the channel setup. There are
also class-specific AudioStreaming format descriptors that contain details such as
the sample rate and bit resolution for the data formats being used by the interface.

The endpoints of the interface have both a standard AudioStreaming isochronous
endpoint descriptor and a class-specific one. The standard descriptor determines
the direction of the endpoint, its synchronization type, and the maximum packet
size that the endpoint can use. Information about how quickly the endpoint can
lock on to a clock signal and what audio controls it supports are found in the class-
specific AudioStreaming endpoint descriptor. If the interface uses a synchronization
mode that includes a synchronization endpoint, then there will also be a standard
endpoint descriptor for the synchronization endpoint but no class-specific one.

There is also an audio channel cluster descriptor that lists the number of channels
in the audio cluster and defines the speaker positions for each of the channels using
a bitmap field with predefined speaker placement positions. The audio channel
cluster descriptor will never appear on its own as it always is part of either the
input terminal descriptor, the mixer, processing or extension unit descriptors, or
the AudioStreaming descriptor.
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2.3.13.4 Audio Class Requests

The information and settings related to a unit or other entity that can be controlled
through the AudioControl interface are the currently selected value and the range
of available values that are allowed to be used, consisting of the minimum and max-
imum settings along with the resolution. The range values are always references
together in an array in the AudioControl requests. For the selector unit mentioned
in Chapter 2.3.13.2, the range array consisting of [MINIMUM, MAXIMUM, RES-
OLUTION] would be [1,n,1], where n is the number of inputs for the selector. The
controls that a unit has and which can be manipulated by sending AudioControl re-
quests are listed in the unit’s descriptor. Each of the units have an individual entity
number through which they can be identified and addressed so that AudioControl
requests coming in through the control pipe can reach the correct unit.

In addition to AudioControl requests there are two other types of audio class specific
requests, namely AudioStreaming requests and memory requests. AudioStreaming
requests are used to handle the interface and endpoint descriptor settings for an
AudioStreaming interface and memory requests gives access to a memory-mapped
interface for any kind of unit, entity, interface or endpoint belonging to the audio
function.

2.3.13.5 Audio Class Definition 2.0

Version release 2.0 [25] of the USB audio class definition includes a third entity
type called the clock entity. This allows clock domains inside the audio device to
be described. Due to this addition, a clock pin is also added to each of the input
and output terminals. Clock entities come in three different forms; there are clock
sources, clock selectors and clock multipliers. A clock source can be any internal
or external clock that is used as sampling clock inside the audio function. Clock
selectors are used to switch between clock sources in the same way a selector unit
can be used to alternate between different audio inputs. A clock multiplier entity
is used to generate new clock signals from a clock source. The output from the
clock multiplier is formed by multiplying the signal fed into the unit by the fraction
P/Q, where both P and Q are integers in the range [1,216 − 1]. The generated clock
at the output of the multiplier unit is synchronized with the input clock source
and both clocks do therefore belong to the same clock domain. An audio device
defined by a set of device descriptors and revision 1.0 audio class descriptors can
still include one or multiple clock entities, but there is not any way to describe the
clocking structure through the descriptor table. The most significant change from
version 1.0 to version 2.0 of the audio class definition is perhaps the added support for
high-speed device operation, but many other smaller changes like adding a sampling
rate converter unit and an effect unit, or changing some of the attributes of the
already existing units are also introduced. Version 2.0 of the audio class definition
is not backwards compatible with version 1.0. A version 3.0 of the USB audio class
definition does also exist and version 4.0 [26] was even release no too long ago,
adding even more bells and whistles. These newer releases of the specification will
however not be discussed as they are not being considered as viable options for any
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of the synchronization mode implementations in the thesis project.

The new clock entities and units introduced in release 2.0 of the USB audio class
definition are listed below.

• Clock entities
– Clock multiplier
– Clock selector
– Clock source

• Units
– Sampling rate converter unit
– Effect unit

2.4 Inter-IC Sound
Inter-IC sound, more commonly known as I2S is a serial bus developed by Philips
Semiconductors [27]. It is primarily intended to standardized communications be-
tween integrated circuits (ICs) used in audio applications. The communication
channel consists of three separate lines:

• Serial clock (SCK)
• Word select (WS)
• Serial data (SD)

The SCK supplies the system with a controlling reference clock, WS indicates if the
left or right channel is to be transmitted, and SD contains the audio data that is
to be transferred. Each bus has a controlling unit governing the SCK and WS and
then one or more clients nodes are connected to the controller. The controlling unit
can be either the transmitter, the receiver, or an external source. Figure 2.41 shows
a setup in which the transmitter controls the data flow, and this is the configuration
that we will be using in the construction project of this thesis. The direction of the
arrows indicate the direction of the data flow.

Transmitter
(Controller) Receiver

WS

SCK

SD

Figure 2.41: I2S transmitter and receiver pair with the transmitter having the role
of the controller.

The transmitter alternates between the audio channels in the system depending on
the state of WS, sending out a sample for the right channel when WS is high, then
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switching to the left channel when WS goes low and so on. This data pattern is
illustrated in Figure 2.42. Data is transmitted with the most significant bit (MSb)
first. The I2S specification [27] does not define any values to which SCK and WS
are limited, so as long as both the transmitter and the receiver are operating within
their timing constraints, the sample rate and the word length or number of bits
used for data representation can be selected freely. The word length does also not
have to match for a transmitter and a receiver in a system. For a setup where the
transmitter is controlling the transmission like the one in Figure 2.41, the receiver
will ignore the least significant bits of the transmitted data if it uses a smaller word
length internally than the transmitter does, and for a receiver using a word length
larger than the transmitter’s, the bits missing in the transmitted data are set to
zero internally in the receiver.

SCK

WS

SD LSb MSb LSb MSb

Left channel Right channel Left channel

Figure 2.42: I2S interface timing diagram.

The I2S bus being constructed to connect ICs located nearby each other inside
the same unit or device, often even on the same circuit board, does not have a
standardized connector type to connect ICs in two separate units together with a
cable. This has however not stopped some audio manufacturers in the past from
creating their own solutions to allow two ICs in separate devices to be connected
together using I2S. The objective for such solutions has often been to overcome the
interface jitter issues attributed to S/PDIF by simply replacing it with I2S instead.
Due to the lack of standardization for this type of external connection, devices
from different manufacturers may however not be compatible. Three wires instead
of only one for S/PDIF need to be used to connect two separate devices together
with I2S, the number of audio channels that can be transmitted is limited to two
while S/PDIF can handle up to eight channels, and the I2S bus will also omit any
other information such as the S/PDIF control word settings as it is designed to only
transfer audio data.

2.5 Frequency Synthesizers
A frequency synthesizer incorporating a phase-locked loop [19] can be used to gener-
ate a new clock signal with an operating frequency that is higher than the frequency
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of the signal from which it is being derived, all the while being able to keep both
signals synchronized, even when the original signal fluctuates a bit. Frequency syn-
thesizers can be found in all kinds of audio applications, including ones featuring
recovery and generation of clock signals from S/PDIF and USB audio interfaces.
The main building blocks consists of a phase detector, a voltage controlled oscillator
(VCO), a low pass filter, and a frequency divider. The principle of operation is
that an external clock signal with frequency fIN from which the new clock is to be
derived from is attached to one of the inputs of the phase detector. It will first take
a little bit of time for the PLL to lock on to the external signal. Once being in the
locked state, the external clock signal and the feedback from the loop can be consid-
ered to be the equal. The phase detector being fed both the external signal and the
feedback from the loop will compare the external clock and the feedback from the
PLL. If a phase difference exists between the two, then a voltage proportional to the
size of the phase difference will be output and run through the low pass filter, after
which the remaining direct current (DC) component then is passed on to the VCO.
The VCO has a base frequency at which it operates when no voltage is applied to
its input, but once a phase difference is detected which gives rise to a voltage differ-
ence proportional to it, the applied voltage will make the VCO modulate its output
frequency so that the clocks remain synchronized. The frequency divider makes it
possible to generate output clock frequencies fOUT that are multiples of the external
clock signal fIN being fed into the PLL.

fIN
Phase
detector

Low pass
filter

Voltage
controlled
oscillator

fOUT = N · fIN

N divider

Figure 2.43: Block diagram of a phase-locked loop.

2.6 Fractional Dividers
With an integer-N divider the frequencies that can be produced from a high fre-
quency source clock are limited to full integer multiples of the original clock fre-
quency. To create other output frequencies from the same source, a fractional-N
divider [28] can be used. As a trivial example, let us assume that we have a source
clock of frequency FIN = 12 MHz and that we want an output clock of frequency
FOUT = 5 MHz. The source clock needs to be divided by 2.4 to form the wanted
output frequency, so solely integer division will not suffice. We can write the divider
as the fraction

(
2 + 2

5

)
and set N = 2, K = 2 and F = 5 in Equation 2.25 to get

the correct output frequency FOUT when FIN is 12 MHz.

FOUT = FIN(
N + K

F

) (2.25)
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There is however no rising or falling clock edge to indicate exactly when 2 + 2
5 of

the source clock signal has been reached and therefore no simple way to just divide
FIN by 2.4. What fractional dividers do is to divide the source clock by N for a
certain number of clock cycles followed by a division of N + 1 for another number
of clock cycles. This way the average frequency of the output clock becomes FIN

divided by
(
N + K

F

)
, even though the actual frequency will alternate between FIN

N

and FIN

N+1 . To illustrate the procedure, Figure 2.44 shows the example of 12 MHz
divided by 2.4. We can see that by the time the input signal with a frequency of
12 MHz has reached 12 full clock cycles, the output signal with a frequency of 5 MHz
will have completed five full cycles, and it is effectively the result of dividing the
input signal by 2.4. To get the desired output, a division of the input signal by
N + 1 can be performed K times followed by a division of N done F − K times.
A classic design that can be realized easily in hardware is to have an accumulator
that starts at zero and then adds N to its count each time a full clock cycle of
the output clock has completed. When the accumulator reaches F it overflows and
this indicates that the next divider value should be set to N + 1. If there is no
overflow, the divider value to be used is N . This accumulator pattern is what is
used in Figure 2.44. The accumulated count for each completed output clock cycle
is: 0, 2, 4, (↑ 1), 3, (↑ 0), 2, 4, (↑ 1), 3, (↑ 0), 2, 4 and so forth, so there is a repeating
pattern of two divisions by N , one division by N + 1, one division by N and then
one more division by N + 1, after which the cycle starts over. The downside to
this is that it creates spurious signals that will give rise to periodic jitter. A more
novel approach that often goes by the name of delta-sigma fractional-N divider is
to randomize the N and N + 1 dividers instead of using an accumulator while still
keeping the same ratio of K cycles of N +1 division plus F −K cycles of division by
N . We will not get into the details of the mathematics involved in PLL design but
it is possible to use fractional-N dividers in place of integer dividers in a feedback
loop.

12MHz

5MHz

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.44: Example of fractional division by 2.4.
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System Design and

Implementation

The following chapter presents the hardware and software selected to be used in
the project and the design decisions made, reconnecting with the theory concepts
described in Chapter 2.

3.1 Hardware Selection
An interface of USB type was selected to be used for the hardware build as it satis-
fies all the criteria set, while still being manageable from a design and construction
perspective. Other interface types and technologies that can carry digital audio data
were considered and excluded as viable options due to different reasons including
but not limited to reliability, limited bandwidth, availability and design complexity.
The test interface was constructed using a PSoC 3 microcontroller unit [29] mounted
on a CY8CKIT-001 PSoC development kit board [30], both produced by Cypress
Semiconductor Corporation, which was acquired and is now since 2019 owned by In-
fineon Technologies AG. The development kit also includes the MiniProg 3 combined
programmer and debugger which was used for programming the PSoC device. A
programmable clock generator from Adafruit [31] equipped with the Si5351A chip
[32] from Silicon Laboratories Inc. was used as an external clock source and an
Adafruit I2S stereo decoder [33] featuring the UDA1334A DAC chip [34] from NXP
was used as an external converter for the digital audio signal. The PSoC device does
as the name implies not only offer a microcontroller but it also includes a number
configurable universal digital blocks (UDBs) that can be used to realize analog or
digital peripherals so that external components do not need to be used. Both the
clock generator and the DAC chip from Adafruit can also be made to work without
attaching any other external electrical components than the ones already mounted
to the circuit boards and support for logic levels ranging from 3.3 V to 5 V further
add to the user-friendliness when including them in a design. A clock generated
by an external crystal oscillator and an external fixed rate clock board was briefly
used for testing at the end of the project. The external crystal required a couple of
external capacitors to be connected to it but other than that, all other components
needed for the project could be constructed in the PSoC Creator integrated design
environment (IDE) software.
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3.2 Development Environment
The designs for the PSoC 3 microcontroller were created in the PSoC Creator IDE.
It includes everything needed for writing and compiling code and creating schematic
designs. It also has programming and debugging support for PSoC 3 microcontroller
units when attached to a device through the MiniProg 3 combined programmer and
debugger. Debugging in the IDE by connecting the MiniProg 3 to the serial wire
debug (SWD) port on the PSoC microcontroller board was however of limited use as
real-time observation of variables are not possible when fast paced communication
like the isochronous transmissions of the USB protocol needs to be upheld without
interruptions. The IDE has a well documented component catalog with anything
from simple logic gates to more complex peripherals for communication and signal
processing that can be included in a design. Configuration of component settings
can often be altered both through graphical user interface (GUI) dialog boxes or
code pre-build, or through application programming interface (API) calls in the
code during run-time. It is also possible to create your own custom components if
the ones provided by the library are insufficient or unsuitable for your design.

3.2.1 Monitoring of Device Operation
As previously mentioned, the MiniProg 3 debugger cannot be used to monitor vari-
ables in real-time in the PSoC Creator IDE without disrupting the ongoing com-
munication over USB between the host and the PSoC device. Fortunately there are
other communication channels that can be used instead. During testing, the LCD
which is part of the PSoC development kit was used for direct monitoring of vari-
ables. Alongside this, logging of values was done by connecting the PSoC device to a
host terminal through the RS232 serial interface using UART. Using either of these
two methods does however affect the performance of the rest of the application that
is being run on the PSoC system, so some care must be taken regarding how API
calls are being made to display or send data variables. For logging over UART, the
data sent to the receiving terminal was minimized to single byte comma separated
hex values, all sent with a time interval between the transmissions so that no long
resource consuming data bursts were created. Likewise, excessive updating of the
LCD may lead to problems elsewhere in the design, so the update interval and the
amount of data sent to be displayed on the LCD was also limited. Both monitoring
methods still provided sufficient throughput and some of the longer measurement
series logged over UART even turned out to have so many data points that the
whole measurement period could not be plotted in full by the PGFPLOTS package
without first decimating the data.

3.2.2 The PSoC Clock System
PSoC 3 has a highly configurable clock network [35] where signals can be routed
across the chip to be used as clock sources where needed. Figure 3.1 shows the sig-
nificant parts of the PSoC 3 core clocking network. Part of the core PSoC clocking
network configuration are also the internal low-speed oscillator and the 32 kHz ex-
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ternal crystal oscillator blocks, but they have been left out of Figure 3.1 as they are
not directly intertwined with the rest of clock network and as no use were made of
them during the project. The MHz range external crystal (XTAL) oscillator block
was also not used in any of the different synchronization implementations but it has
still been included in Figure 3.1 as it is more closely interconnected with the rest
of the core clocking network. The internal main oscillator (IMO) which normally
is used as the main clock source for the PSoC device can only be run at the fixed
clock rates listed in Table 3.1. A clock running at 48 MHz with at least ±0.25 %
accuracy is needed for the USB block to function correctly. The only valid option
for the IMO frequency setting when used as source for the USB block is to set it
to 24 MHz which then together with the IMO doubler option produces the 48 MHz
USB clock, at the same time trimming the IMO to an accuracy of ±0.25 % using the
USB SOFs from the host as reference. This further limits the configuration options
for the source clocks. The PLL can create clock frequencies from its input clock
with a ratio of P/Q, where 4 ≤ P ≤ 256 and 1 ≤ Q ≤ 16. The clock outputs of the
master clock and the bus clock can be divided individually by any integer. External
signals can be routed in through the PSoC pins to be used as source clock in the
digital system interconnect (DSI) block.

IMO clock frequency Accuracy
3 MHz ±1 %
6 MHz ±2 %
12 MHz ±3 %
24 MHz ±4 %*

48 MHz ±5 %
62.5 MHz ±7 %
*±0.25 % when trimmed by USB SOFs.

Table 3.1: The fixed frequencies at which the IMO can be operated at.

IMO DSI

PLL Master clockUSB

Bus clock

XTAL

Bus clkIMO out Master clkPLL outXTAL out

Figure 3.1: The PSoC core clocking network.

53



3. System Design and Implementation

With the many different clocks in the PSoC system, it will sometimes be necessary to
deal with signals crossing over from one clock domain to another. To avoid problems
with metastability [36] that can arise when unsynchronized signals are used together
in the same digital circuit, the system has supporting features for synchronization
that can be used at different stages in the signal path. Synchronization does however
come with the cost of routing delays and the reference clock which the signal is
to be synchronized against needs to have a frequency that is at least double the
frequency of the signal being synchronized, so it may not always be possible to
perform synchronization while satisfying all other system parameters.

When a project is built, the PSoC Creator IDE will generate a static timing analysis
report which will alert the designer of any possible timing violations that are found
in the current setup. Timing violations do occur from time to time but there are
ways to resolve them. Depending on the type of timing issue, it can sometimes
be enough to just decrease the frequency of a clock source if the rest of the design
allows for it or to change the system parameter for the operating temperature range
if the timing violation is minor and the circumstances allow for a narrower range to
be selected. In other cases more extensive changes need to be made to the design in
order to meet all timing requirements.

3.3 Implementation
The synchronization modes were implemented in the same chronological order in
which they are presented, starting with asynchronous mode, followed by adaptive
mode and finishing with the synchronous mode implementation. They all share a
common basic structure but differ in clock source selection and other design specific
details.

3.3.1 Common Design Layout
Figure 3.2 shows the overall layout of the different physical building blocks used in
the project build. Most DACs need to have a high frequency master clock connected
directly to one of its inputs but the Adafruit I2S stereo decoder DAC board can be
set to work with only the three standard I2S output signals, SCK, WS and SD
connected to it. This is the setting that has been used, which is why there is no
direct connection from the external clock to the DAC in Figure 3.2 like one might
have expected. The use of an external clock source was not only a prerequisite for
having access to a high quality master clock, it was also necessary in the initial
phase of the construction because the clock off of which the I2S component is run
must have an operating frequency of 2 ·FS · tW S where FS is the sample frequency of
the audio signal and tW S is the word select period of the I2S component. To create
a source clock of suitable frequency for the I2S component for 44.1 kHz audio using
only the IMO and the PLL together with an integer-N divider is not possible due to
the limited choice of fixed IMO frequencies and the rather narrow P/Q ratio range
of the internal PLL. There is an option in the I2S component settings to either have
the input clock for the I2S component synchronized to the system clock or to use it
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without synchronization. In the end it was found best to have the I2S component’s
input clock sourced from the system master clock so that they both belong to the
same clock domain to avoid problems with metastability.

Host
computer PSoC 3 DAC Amplifier / Speaker

External
clock

USB I2S

Figure 3.2: Layout of the audio path and the physical entities.

Audio data coming from a host computer or other playback device first arrives at the
USB endpoint buffer of the PSoC. Data cannot be sent directly from the endpoint
buffer to a peripheral so it needs to be moved into main memory before it can be
transferred to the I2S component. The combined buffer space for all USB endpoints
is limited to a total of 512 bytes, although USB packets of up to 1023 bytes in size
can be handled when using automatic endpoint buffer management mode with direct
memory access (DMA). For comparison, an ordinary USB data packet for 2 channel
audio with 44.1 kHz sample rate and 2 byte bit-depth will usually be either 176 or
180 bytes in size. Transmission of data in synchronous and adaptive mode follows
the transfer sequence shown in Figure 3.3 consisting of nine 44 byte packets followed
by one packet of 45 bytes to produce the 44.1 kHz sample rate. Those numbers are
for one single audio channel with a bit depth of eight bits, so for our two channel
audio with 16 bits per sample we need to multiply everything by four. Asynchronous
mode will in general use the same transfer scheme but may need to adjust it slightly
to match the clock rate of the device receiving the audio stream.

176 bytes 176 bytes ... 176 bytes 180 bytes

Frame N Frame N+1 Frame N+8 Frame N+9

Figure 3.3: General transfer sequence for USB audio transmissions.

Data was stored in main memory in the form of a circular buffer consisting of a
number of evenly sized memory chunks. Each chunk was connected to a transaction
descriptor belonging to a DMA channel connecting the memory buffer to one of the
I2S component’s transmit (TX) registers. The transaction descriptors were chained
together wrapping around from the end to the start of the circular buffer. Data
received by the USB endpoint was transferred into main memory one packet at a
time using a second DMA channel but the USB packet size is not constant so the
data transferred into the main memory buffer is not of the same size as the memory
chunks in the buffer and the data going out of it. Each time the DMA channel used
for transferring data out of the circular buffer to the I2S component has completed
moving one whole memory chunk, an interrupt service routine (ISR) is invoked to
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update the parameters of the buffer. There are also other interrupt service routines
used in the different synchronization mode implementations and most of them are
related to the operation of the USB component. They are all set to have the same
priority level so they can be considered to be mutually exclusive. The course of
action varies a bit from one ISR to another but in order to follow sound design
principles some effort was taken to make the execution time of the interrupt service
routines as short as possible, sometimes only setting a flag to be checked later.

USB endpoint buffer RAM buffer I2S
DMA DMA

Figure 3.4: Audio data transfer path inside the PSoC device.

During audio playback the device is in one of three defined main operation modes;
normal, underflow or overflow. In some cases other intermediate brief transitional
operation mode states were also used when passing from one main operation mode
to the next. The underflow and overflow states are there to safeguard in the event of
an error happening that would make the audio data buffer in main memory either
entirely run out of audio data or be completely filled so that no new audio data
could be inserted into it without overwriting the audio data already present. During
normal operation none of these two states are expected to be reached but there needs
to exist a recovery mechanism so that audio playback can resume normally in the
event that an error should happen. In the underflow state the DMA channel for
transfer of data from main memory to the I2S component and the I2S component
itself are disabled, only to be enabled again once the buffer in main memory has
been filled up with data to half its total size. Depending somewhat on the audio
playing, this will usually result in a very audible clicking sound. If the circular
buffer is about to overflow, the operation mode will instead switch to the overflow
state and the audio data in all incoming UBS packets will be discarded until half
the circular buffer has been consumed. The effect this has on the audio playback is
less intrusive than what happens when the device goes into the underflow state, but
it is usually still noticeable. During development the occurrences of both these two
error states were tracked by printing the operation mode changes on the LCD.

The device descriptors in the implementations use version 2.0 of the USB specifica-
tion and the audio device class descriptors use version 1.0 of the audio device class
definition. Our target device is a full-speed device and we do not need any of the
additional features provided by the subsequent audio device class definitions. Using
any of them would add more complexity without any real benefit for the current
implementations and in addition, native support for the audio device class 2.0 or
later is not always something you can count on when it comes to some older host
operating systems. The configuration settings in the PSoC Creator IDE for the
USB component has support for the audio device class definition version 1.0 and it
also appears to have partial support for the newer audio device class 2.0 definition,
but for example not all descriptor types for version 2.0 are included, so effort would
have to be put into making everything fully compatible with the audio device class
version 2.0 definition.
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Many of the USB device and audio class descriptors used in the different synchro-
nization mode implementations are identical. It is only the standard OUT endpoint
descriptor, the class-specific AudioStreaming endpoint descriptor and the additional
IN endpoint descriptor used in the asynchronous mode implementation that differ
significantly between the different synchronization modes. Relevant parts of the
descriptor table for the asynchronous, adaptive and synchronous mode implementa-
tions are listed in Section A.1, A.2 and A.3 of Appendix A.

3.3.2 Asynchronous Mode Implementation
In the first asynchronous mode implementation a clock signal with a frequency
being a multiple of the clock needed for the I2S component was routed through
an input pin into the DSI block in the clocking network. This external clock was
then fed into the PLL where it was multiplied to generate a master and a bus
clock of high enough frequency to operate the design without issues. Development
versions where the external clock generator was used to create the higher master
clock frequency directly without using the internal PLL were also tried but in order
to limit electromagnetic noise emission it was found best to use a lower frequency
external clock signal and let the higher frequency master clock be generated inside
the PSoC. The IMO running at 24 MHz was used as source for the USB clock.

The Adafruit Si5351 clock generator board [32] selected to be the first external clock
source for the asynchronous mode implementation can be used to create up to three
output frequencies simultaneously. Operating frequencies are set by programming
the device registers through the I2C interface. This can be done by using the PSoC
as it has an I2C peripheral in its component catalog. To successfully proceed with
the configuration we need to know the register mapping and how the data sent to
the device should be formatted. All transactions are initiated by the master device
which in our case is the PSoC. Read and write operations can be done either one
register at a time or by reading or writing multiple consecutive registers in a burst.
Each transaction begins by setting an initiating start condition, followed by the
default 7-bit address of the Si5351 chip and a bit which indicates if it is a read or
write operation that is about to be performed. After the device has acknowledged
this first transmission, the registry value to be accessed is sent and then follows the
actual data transfer portion of the transaction. For a write operation the controlling
device will send either one or multiple bytes followed by the stop condition. Each
byte sent is acknowledged by the receiver before the next one is transmitted. A
read operation is done in two separate steps separated by start and stop conditions.
The first transmission sequence selects the register to be read and the second one
reads the data from it. Figure 3.5 displays an I2C single register write operation and
Figure 3.6 shows how a burst write operation to two consecutive registers is carried
out.

S Device Address 0 A Register A Data A P

Figure 3.5: I2C single register write operation.
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S Device Address 0 A Register A Data A Data A P

Reg Reg+1

Figure 3.6: I2C burst write operation to two consecutive registers.

The list of registers that need to be modified in order to configure the output fre-
quencies of the Si5351 board can be found in Section B.1 of Appendix B. The
registry values used to create the 2.8224 MHz external clock signal were produced
by the Skyworks ClockBuilder Pro software and programming of the clock generator
registers was done following the steps in Figure 3.7.

Disable outputs by writing 0xFF to reg 3.

Power down output drivers by writing 0x80 to registers 16–23.

Set load capacitance to 10 pF by writing 0xD2 to register 183.

Set interrupt masks by writing 0x53 to register 2.

Configure PLL, multisynth and other parameters by writing reg-
isters 4, 7, 15–23, 26–33, 42–49, 90, 91, 149–155 and 162–165 with
the values from the register map generated by ClockBuilder Pro.

Soft reset the PLLs by writing 0xAC to register 177.

Enable the first clock output by writing 0xFE to register 3.

Figure 3.7: Programming procedure for the Adafruit Si5351 external clock gener-
ator board.

For collection of the input data used in the calculation of the feedback value, a
design with two counter components connected to each other was created. One of
the counters keeps track of the I2S component’s input clock and the other one counts
the number of SOF occurrences. Each time the SOF count reaches 16 it starts over
again from zero and a capture of the current source clock count for the I2S component
is triggered. This consequently also causes an interrupt service routine to be invoked,
setting a flag to indicate that a new clock value has been captured and that it is
ready for use. The selected length of 16 SOFs for the measurement period originates
from Equation 2.22 in Section 2.3.12. For our full-speed device we have K = 10 and
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with the help of Equation 2.24 we can determine that P = 6 for an audio sampling
frequency of Fs = 44.1 kHz and the source clock Fm = 2.8224 MHz used in the I2S
component.

We could select some other clock in the system that is in sync with the I2S input
clock to be the source from which we calculate our feedback value, but the sensible
valid interval is essentially limited to P being in the range [0,K]. At the lower end of
the interval we have P = 0 which corresponds to using the audio sample frequency
Fs directly and it gives a measurement period of 1 s for the counter. At the other end
of the spectrum we have P = K which would lower the measurement period down
to 1 ms for a more frequent feedback interval, and that would require the measured
clock signal to have a frequency of at least 1024 · Fs according to Equation 2.23.
The PSoC master clock is sync with the I2S component’s input clock and it does
meet this higher range limit criterion, so there is room for adjustment of the update
interval in both directions, but to keep things as simple as possible the I2S clock with
an update interval of 16 ms corresponding to a P value of six was selected as the
starting point. The general recommendation for selection of P is to use larger values
as more frequent updates will result in better control and may allow for a smaller
buffer to be used without risking underflow or overflow. Setting P = K should
however be avoided as that could make SOF-to-SOF jitter effects more noticeable,
so the design guidelines state that it is better to select a slightly lower P value so
that the measurement period extends over at least two SOF cycles.

As the I2S component’s input clock has a frequency of 2.8224 MHz, this will result in
a capture value in the counter component of approximately 45 158.4 clock cycles for
each measurement period of 16 frames. The captured value will be an integer, so let
us assume that 45 158 is what has been captured. The feedback value sent back to
the host should indicate how many samples the device consumes during a frame. To
relate the captured value from the counter to the actual data rate we need to divide
it by the number of frames in the measurement period which is 16, multiplied by the
multiplication factor of the I2S input clock relative to the audio sample frequency Fs,
which is 64. The value captured by the counter thus needs to be divided by 1024.
Let us now remind ourselves of the format of the feedback array for a full-speed
device shown in Figure 2.39 in Section 2.3.12. The feedback consists of an integer
part and a fractional part. For the integer part we can simply perform the division
and then by bitwise operations mask and shift the result into the correct locations in
the first two bytes of the feedback array. Both the numerator and denominator are
integers, so no floating point operations are needed for the calculation. Figure 3.8
shows the feedback value array with the integer bits populated with the result of
the counter capture value of 45 158 divided by 1024.

0 0 0 0 1 0 1 1 0 0 Fractional part Frac extra

0 10 20 24

1st byte 2nd byte 3rd byte

Figure 3.8: Feedback array with integer part populated.
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For the the fractional part, a solution was also selected that does not require any
resource consuming floating point operations to be performed. The calculation of
the fractional part is done in very much the same way as a manual calculation
of the fractional bit values would have been carried out. After performing the
integer division by 1024 of the captured counter value of 45 158 in the example, the
remainder left is 102. If we were to calculate the first bit of the fractional part
in the feedback array by hand, we would first compare the value of the remainder
102/1024 = 0.099609375 with the value for the first fractional bit which is 2−1 = 0.5.

... 24 23 22 21 20 2−1 2−2 2−3 2−4 2−5 ...

Integer part Fractional part

Decimal point

Figure 3.9: Bit values around the decimal point in the feedback array.

Since the remainder is not equal to or larger than the bit value, the first bit in the
fractional part would be set to zero. We then move on to compare the remainder with
the next bit, which has the value 2−2 = 0.25, and since 0.099609375 is not equal to
or larger than the bit value for the second bit, also the second bit is set to zero. The
third fractional bit has the bit value 2−3 = 0.125 and it is therefore also set to zero.
It is first when we reach the fourth bit of the fraction that the remainder is bigger
than the bit value of 2−4 = 0.0625. We now set the fourth bit to 1 and subtract
the bit value from the remainder leaving 0.099609375 − 0.0625 = 0.37109375. Then
we continue in the same way only now comparing 0.37109375 instead of the original
remainder, and we do this until we have gone through the rest of the fractional bits
setting them to either one or zero.

If we return to the beginning again and look at the expression for the first fractional
bit comparison, we notice that instead of comparing 102/1024 with 0.5 it is possible
to multiply both sides of the expression and instead get 102/512 ≥ 1. We can
therefore instead do an integer comparison between 102 and 512 and conclude that
if 102 ≥ 512, then the first fractional bit should be set to one and the value of
the denominator should then also be subtracted from the numerator, but since this
expression does not hold true, the first bit is set to zero and we move on to the
second fractional bit for which we need to divide the denominator with two once
more before we do the comparison. This same procedure then continues for the rest
of the fractional bits. The resulting bit values are displayed in the rightmost column
of Table 3.2 and in Figure 3.10 the feedback array has been populated with the same
fractional bit values.
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Fractional bit Numerator Denominator Bit value
1 102 512 0
2 102 256 0
3 102 128 0
4 102 64 1
5 38 32 1
6 6 16 0
7 6 8 0
8 6 4 1
9 2 2 1

10 0 1 0

Table 3.2: Calculation of the fractional bit values.

Integer part 0 0 0 1 1 0 0 1 1 0 Frac extra

0 10 20 24

1st byte 2nd byte 3rd byte

Figure 3.10: Feedback array with the fractional part populated.

Putting it all together, we have the complete feedback array in Figure 3.11. The
value is precisely 44.099609375 so there is no rounding error and we arrive at the
result without using floating point operations. No use is made of the four extra
fractional bits as no more precision can be had, so they are set to zero.

0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

0 10 20 24

1st byte 2nd byte 3rd byte

Figure 3.11: The complete USB feedback array.

The feedback value is then loaded into the endpoint buffer for the USB IN endpoint
to be sent to the host each time a new value has been has been calculated every 16th

SOF. An IN endpoint providing feedback for a single isochronous OUT endpoint
should have the same endpoint number as the OUT endpoint but different direction
to comply with the USB specification. The PSoC device does however only allow
for an endpoint number to be used in one single direction, so it is necessary to
select a different endpoint number for the feedback IN endpoint than what the
AudioStreaming OUT endpoint is using. The USB specification does also declare
that in the case of multiple data endpoints sharing the same feedback endpoint,
the feedback endpoint should always have an endpoint number equal to or lower
than any of the the data endpoints for which it is providing feedback. The most
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logical choice was therefore to set the feedback IN endpoint number to one and the
AudioStreaming OUT endpoint number to two, even though only feedback for one
single endpoint was being provided. One other thing to mention about the feedback
endpoint is that the USB protocol uses little endian ordering, so the byte order of
the feedback array needs to be reversed before it is sent to the host.

The asynchronous mode implementation was then later tried with other clock sources.
The Si5351 clock board using the ClockBuilder Pro generated register map was first
replaced by an external oscillator for which the circuit diagram is shown in Fig-
ure 3.12. A second test was then conducted using a fixed frequency (FF) clock
board driven by a 11.2896 MHz crystal oscillator mounted on it. Later on, after the
two other USB synchronization mode test designs had been completed, the asyn-
chronous mode implementation was then also tried with the Si5351 clock board using
the manually generated multisynth integer mode register map, and finally also a test
with the design using the PSoC IMO coupled with a custom fractional component
was conducted. The results of the different tests are presented in Chapter 4.

X1

C2C1

V+ CLK OUT

Figure 3.12: Crystal oscillator circuit used for generating external clock.

3.3.3 Adaptive Mode Implementation
An adaptive mode sink should adjust its internal clock to match the data rate of
the source that it is connected to. We can use much of the same basic design from
the asynchronous mode device for the adaptive mode implementation, but we now
need to be able to adjust the master clock of the device on the fly instead of running
it at the same rate like in the asynchronous mode implementation. To determine
if a feasible solution can be built using the Adafruit Si5351 clock generator, we
must first find out a little bit more about its inner workings. In the asynchronous
mode implementation the register map with the frequency settings for the external
clock generator was generated by the ClockBuilder Pro software and programmed
at startup into the device to remain constant during its operation. Now we would
need to generate multiple configurations to match the variations in the data rate
which to some extent can be done, but preferable would be if the values that set
the frequencies of the clock outputs could be calculated during operation to have
a better degree of accuracy than what a set of fixed configurations can provide.
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Another problem is that when programming a new configuration into the clock
generator by following the process described in Figure 3.7, the resetting of PLLs and
disabling and enabling of the clock outputs will cause interruptions in the sound. As
it however turns out, it is possible to update the output frequencies during operation
without having to go through the whole programming procedure. By only changing
configuration settings that apply to the later synthesis and output stages, there
is no need to restart the PLLs or to disable the clock outputs. The Si5351 is in
fact designed in a way so that the switch from one frequency to another can be
done seamlessly by starting the first clock cycle of the new frequency setting right
at the end of a clock cycle of the previous frequency setting which will make the
transition completely glitch-free [37]. Configurations generated by the ClockBuilder
Pro software do have a tendency to use different register settings in all of the clock
configuration stages including the ones for the PLLs even for frequencies which are
closely related and could be switched between by only updating the parameters in the
later stages of the synthesis. Using ClockBuilder Pro to produce the configurations
that we need now is therefor not the best option.

Oscillator

PLL A

PLL B

Multisynth 0

Multisynth 1

Multisynth 2

R0

R1

R2

CLK0

CLK1

CLK2

XTAL

Figure 3.13: Si5351 block diagram.

A block diagram for the clock path inside the Si5351 is shown in Figure 3.13. The
clock source is an external 25 MHz crystal driving the oscillator block from which the
clock signal then is routed into the two PLLs. Both can be configured individually to
act either as integer or fractional multipliers of the XTAL frequency. The frequency
of a PLL is set by selecting parameters m, n and d in the equation

FP LL = FXT AL

(
m + n

d

)
(3.1)

where the value for
(
m + n

d

)
must be within the range 15–90. The documentation

[38] is not crystal clear on all the fine details but it appears as if d in the fraction
n
d

has a maximum value of 1 048 575, so its range should then be 1 ≤ d ≤ 1 048 575
and presumably the range of n would then be 0 ≤ n ≤ d. There exists an integer
only mode setting for each of the PLL blocks which can be enabled to improve
jitter performance when the sum of

(
m + n

d

)
is an integer and not a fraction. The

output clocks from the PLLs can be routed to any of the multisynth blocks where
the clock frequency is divided and the output frequency Fmult from a multisynth
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block is determined by

Fmult =
FP LL

a +
b

c

(3.2)

where a + b
c

is in the range of 8–2048 with discrete values 4 and 6 also accepted
outside the given range. Valid values for the multisynth for b and c are presumably
0 ≤ b ≤ c and 1 ≤ c ≤ 1 048 575. On top of this there is also an additional R divider
value by which the PLL clock frequency FP LL can be divided further to generate an
even more fine grained output frequency. Valid values for the R divider are 1, 2, 4,
8, 16, 32, 64 and 128. Putting all this together we have

FOUT =
FXT AL

(
m +

n

d

)
(

a +
b

c

)
R

(3.3)

where FOUT is the output frequency from the clock generator. It is now time to find a
set of variables that can produce our wanted output frequency FOUT of 2.8224 MHz.
Lets us start by writing the output frequency as a fraction:

2.8224 · 106 =
(

2 + 514
625

)
· 106. (3.4)

If we put the numerical values for the the output frequency FOUT and the oscillator
frequency FXT AL into Equation 3.3 we then get the expression

(
2 + 514

625

)
· 106 =

25 · 106
(

m +
n

d

)
(

a +
b

c

)
R

. (3.5)

Dividing both sides with FXT AL and then simplifying the left hand side by removing
the factors of ten to the power of six leaves us with

(
2 + 514

625

)
25 =

(
m +

n

d

)
(

a +
b

c

)
R

. (3.6)

The numerators on the left and right hand sides both have the same format. We
could start out by setting m = 2, n = 514 and d = 625 would it not be for the fact
that this would put

(
m + n

d

)
outside the permitted range of 15–90, so a little bit

of adjustment is needed before we can proceed. Multiplying the numerator with for
example eight gives us

8 ·
(

2 + 514
625

)
=
(

22 +
362
625

)
(3.7)
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which is inside the permitted range. Multiplying the denominator with the same
number we then have

8 · 25 =
(

a +
b

c

)
R. (3.8)

A simple solution to Equation 3.8 is to set R, b and c equal to one, after which a
then can be determined to be 199. The choice of b = 1 and c = 1 will also let us use
the integer mode setting for the multisynth which produces less jitter compared to
the fractional mode setting. Fractional mode is however still used in the generation
of the PLL clock. We now have a complete set of variables for Equation 3.3 that will
produce FOUT = 2.8224 MHz and we can proceed with the creation of the registry
values that need to be programmed into the clock generator to set the desired output
starting frequency.

PLL A was selected to be used as the source for multisynth 0, which through the R0
divider is used for the creation of the clock signal at the CLK0 output. The settings
for PLL A reside at registers 26–33. Table 3.3 shows the registry mapping for the
PLL A configuration settings.

Register Register contents
26 MSNA_P3[15:8]
27 MSNA_P3[7:0]
28 Bits [7:2] reserved & MSNA_P1[17:16]
29 MSNA_P1[15:8]
30 MSNA_P1[7:0]
31 MSNA_P3[19:16] & MSNA P2[19:16]
32 MSNA_P2[15:8]
33 MSNA_P2[7:0]

Table 3.3: PLL A settings in the register mapping.

Register values for one of the PLLs can be calculated by the use of:

MSNA_P1[17 : 0] = 128 · m +
⌊
128 · n

d

⌋
− 512 (3.9)

MSNA_P2[19 : 0] = 128 · n − d
⌊
128 · n

d

⌋
(3.10)

MSNA_P3[19 : 0] = d (3.11)

The settings for multisynth 0 are found at registers 44–51 and Table 3.4 shows the
register mapping. R0_DIV is the setting for the extra R divider through which the
clock signal passes on its way to the CLK0 output and MS0_DIVBY4 is used to
indicate if a divider value of four is used in the multisynth.
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Register Register contents
42 MS0_P3[15:8]
43 MS0_P3[7:0]
44 Bit [7] N/A & R0_DIV[2:0] & MS0_DIVBY4[1:0] & MS0_P1[17:16]
45 MS0_P1[15:8]
46 MS0_P1[7:0]
47 MS0_P3[19:16] & MS0_P2[19:16]
48 MS0_P2[15:8]
49 MS0_P2[7:0]

Table 3.4: Multisynth 0 settings in the register mapping.

The register values for the multisynth 0 registers can be determined by

MS0_P1[17 : 0] = 128 · a +
⌊
128 · b

c

⌋
− 512 (3.12)

MS0_P2[19 : 0] = 128 · b − c

⌊
128 · b

c

⌋
(3.13)

MS0_P3[19 : 0] = c (3.14)

When using integer mode for the multisynth, Equations 3.12, 3.13 and 3.14 can be
simplified to

MS0_P1[17 : 0] = 128 · a − 384 (3.15)

MS0_P2[19 : 0] = 0 (3.16)

MS0_P3[19 : 0] = 1 (3.17)

The Si5351 chip on the clock generator board will be programmed at startup using
the procedure described in Figure 3.7. Values for PLL A and multisynth 0 in registers
26–33 and 44–51 are generated using the methods described in this chapter and for
the other remaining registers the values listed in Section B.1 of Appendix B that
were used for the asynchronous mode implementation are used here again. During
operation when the clock frequency needs to be adjusted, we are only going to
update the register values for multisynth 0 which can be done without having to
disable the CLK0 output and the PLL does not have to be reset either, so switching
clock frequencies should not result in glitches in the music playback.

To follow the data rate so that the clock frequency of the I2S component can be
updated to match it, we can monitor the buffer fill level of the audio buffer in the
PSoC RAM. Updates can be done either at fixed time intervals using for example a
count of the SOF pulses as trigger, or we can choose to make adjustments only when
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the buffer fill level has drifted some predefined distance away from the center of the
buffer. We should avoid making unnecessary frequency switches, but presumably it
is better to make multiple smaller frequency adjustments instead of making one big
frequency jump as the former will allow us to follow the data rate more closely and
it should be less likely to be noticed.

3.3.4 Synchronous Mode Implementation

In the synchronous mode the connected USB audio device must synchronize its
sample clock to the USB start-of-frame frequency. It is normally done by the use of
a programmable PLL. In our hardware we have the internal PLL in the PSoC and
the two PLLs inside the Si5351 on the clock generator board. The Si5351 mounted
on the Adafruit external clock generator board is the A version of the chip which
lacks a clock input, so there is no way to feed an external clock signal into one of
its internal PLL blocks. There is a version C of the Si5351 which does have an
external clock input, but it only accepts signals that are within the range 10 MHz
to 100 MHz, so the 1 kHz SOF signal would not be possible to route directly into
that version of the chip either. The same goes for the PSoC PLL which only accept
input signals in the range of 1 MHz to 48 MHz. There is thus no way to feed the
SOF clock directly into any of the PLLs in our hardware. Another clock of higher
frequency which follows the SOF generation rate must therefore instead be selected
to be routed into one of the PLLs. If we count the number of cycles for the selected
high frequency clock during each SOF period, then we can determine a variable that
describes the relation between the SOF and the high frequency clock that we choose
to feed into the PLL. Using the 24 MHz IMO as an example, if the host clock and
the local clock both are running at the exact same pace, then the clock count during
one SOF will read 24 000, but if the local clock is a little bit faster, then the counter
might read for example 24 001 instead. To match the local clock frequency to the
current SOF rate we need to multiply the local clock with the ratio of the local clock
frequency divided by the counter value for the SOF period multiplied by 103. What
the host side perceives to be one full SOF would then be matched by a local clock
rate of 24 · 106

24 001 · 103 = 23 999 000.04 Hz.

The design decision to use the internal PLL of the PSoC in favor of the PLL blocks in
the Si5351 chip was then made. This allowed for the external clock generator board
to be removed completely from the design. A fractional divider was however still
needed to be able to create the clock frequencies necessary, so a custom fractional
divider component was designed in Verilog and implemented using the PSoC digital
building blocks. With the USB block of the PSoC needing a 24 MHz reference clock,
the clock source to generate the 2.8224 MHz clock for the I2S component was selected
to be the IMO set to 24 MHz. This is also the only IMO setting that can produce
a clock of high enough accuracy to run the USB component, so there was no other
option available. To get the correct starting frequency for the I2S component, the
IMO clock needs to be divided by the fraction
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24000 · 103

2.8224 · 106 = 8 + 7104
14112 = 8 + 74

147 . (3.18)

This is our starting value and the value that will be used when the counter capture
is exactly 24 000. The custom fractional divider component uses the accumulative
method described in Chapter 2.6 to create a new clock which then is fed into the
PSoC PLL. With N = 8, K = 74 and F = 147 put into Equation 2.25 it means that
the input clock would need to be divided 74 times by nine and 73 times by eight to
produce the correct output frequency. Should the captured value instead be 24 001
or 24 002, then the fractions to use for the calculations will become

24001 · 103

2.8224 · 106 = 8 + 7109
14112 (3.19)

and
24002 · 103

2.8224 · 106 = 8 + 7114
14112 = 8 + 3557

7056 . (3.20)

The smallest common denominator for the fractions produced by any capture value
near the starting frequency is 14 112, so that will be the actual F value that we
will be using. Calculating a couple more plausible clock capture values by hand, it
becomes apparent that for each ±1 that is registered by the counter, the value of K
will increase or decrease by five. In reality this means that five more division cycles
will now use a divider value of nine instead of eight or vice versa. This will also
make the total period of all the divide by eight plus all the divide by nine cycles five
input clock pulses longer or shorter. The attribute of the full division cycle being
of a length that varies along with the captured clock values is rather non-wanted.
It was therefore decided to update the K value using a fixed time interval instead
of running it one full cycle at a time. The output clock from the fractional divider
component will therefore not be fully precise to the SOF rate but it should provide
a good enough approximation. There is also a second reason to why this approach
was taken and that is because using larger numbers in the Verilog code will consume
many UDB blocks up until the point where there are none left, so by being able to
skip the variable that keeps track of the total cycle count, the design can be made
to fit on the PSoC 3 without consuming all the digital building block resources.

A problem with the design that became apparent was the fact that to divide a
clock by an uneven number, the switch from high to low in the output signal must
then be made on a falling edge of the source clock. The recommendation in the
documentation [39] from Infineon is to not use the negative edges as a trigger in
Verilog as it can cause timing and synchronization problems. To work around this
issue, the positive edges of a source clock with double the frequency can instead be
used but our only possible IMO setting was to run it at 24 MHz. Instead the output
frequency can be divided in half as it still will be a multiple of the I2S component
clock and the frequency will still be over the 1 MHz minimum PLL input clock
limit. What we are going to do here is to divide the input clock K = 7104 times by
N + 2 = 18 and F − K = 7008 times by N = 16. The actual fraction of 24 000 · 103
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divided by 1.4112 · 106 is
(
17 + 96

14112

)
and it would have resulted in division of the

input clock F = 96 times by N + 1 = 18 and F − K = 14 016 times by N = 17.
Comparing the total number of input clock cycles needed to complete a full set of
both of these two division cases, it is clear that the amounts are equal. Using the
dividers N = 16 and N + 2 = 18 instead of the more common parameter selection
of N = 17 and N + 1 = 18 should therefore be possible as long as the number of
times we divide by each is correct.

The setup through which the clocks in the system are generated is shown in Fig-
ure 3.14. It is not possible to start directly with the pictured configuration as the DSI
block has not been fully configured when the system starts. The IMO was therefore
set to be the initial input signal for both the PLL and MCKL blocks. Once the DSI
block getting its clock from the fractional divider component is up and running, the
PLL can then be stopped and reconfigured to use the DSI signal as its input. After
also changing the P

Q
ratio of the PLL, it can be started again and used as the input

signal for the MCKL block. The output frequency from the fractional divider is
initially set to 1.4112 MHz and the PLL block then multiplies this by 40 to produce
the master clock running at 56.448 MHz. Part of the fractional divider component
is also a control register that allows us to adjust the output frequency to match the
SOF rate.

IMO
(24MHz)

Fractional
divider

PLL (x40) MCKL

Figure 3.14: Clock configuration for the synchronous mode implementation.
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4
Results

The results from the different synchronization mode implementations are presented
in this chapter. This includes plots from data logged over UART, jitter histograms
based on oscilloscope measurements, and other observations gathered during testing
and development.

4.1 Functional Results
Functional results for the implementations are presented in the following subsections.
The plots are generated from data logged from the PSoC device over UART.

4.1.1 Functional Results for Asynchronous Mode
When first taking a look at the communication between the host and the PSoC
device during normal operation, it was noticed that most of the feedback values
were slightly below the expected average of 44.1 kHz. Calculation of the feedback
value for exactly 44.1 kHz by hand using the method listed in Section 3.3.2 gives
the result {0x0B, 0x06, 0x66}, but the packets captured by the Wireshark network
protocol analyzer software were mostly containing feedback values of {0x0B, 0x06,
0x50}, and {0x0B, 0x06, 0x40}. Later by the use of an oscilloscope the external clock
generator was confirmed to run a bit slower than what the configuration values used
would suggest.

In one of the earlier versions during development, the counter component that was
used to capture the clock count of the I2S clock was configured to be reset and
restarted after each captured value. This caused it to miss some of the clock pulses
on its count input so that the captured value was not accurate all the time and the
buffer fill started drifting away from the center of the buffer, eventually leading to
the buffer running out of data. Letting the counter run continuously looping over
the terminal count and then comparing the most recently captured count value to
the previous one instead of resetting the counter for each capture turned out to work
much better with the buffer fill then staying consistently between 45 % and 55 %.
Figure 4.1 shows a logged playback session of 4 hours in length where the buffer fill
stays perfectly at half the buffer size. The total buffer size for the audio buffer in
the PSoC RAM was set to 5120 byte during this test.
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Figure 4.1: Buffer fill level during four hour long playback session using asyn-
chronous mode.

Judging by the logged data, the total size of the buffer in the PSoC RAM would
only need to be around 10 % of its current size. Making the buffer smaller would
decrease the buffering delay, but keeping the bigger buffer adds a bit of safety margin
against buffer underrun and overrun conditions. For the bigger buffer size to be most
useful, the design should then also include a mechanism that steers the buffer fill
level back towards the middle of the buffer if it gets offset from it due to an error,
and that can be done by adjusting the feedback value sent back to the host. It
was found easiest to add or subtract a constant from the counter capture value of
approximately 45 158, gradually increasing or decreasing the adjustment value the
further away from the center of the buffer that the buffer fill level gets. Table 4.1
shows the selected adjustment profile that was used.

Buffer fill level Capture value adjustment
>90 % -3

80–90 % -2
60–80 % -1
40–60 % 0
20–40 % +1
10–20 % +2

<10 % +3

Table 4.1: Adjustment of the capture value depending on buffer fill level.

72



4. Results

In Figure 4.2 we see the slowly accumulating error created by resetting the I2S clock
counter instead of letting it run continuously, which then eventually leads to the
buffer reaching the underflow state. In Figure 4.3 is the same test run again, now
with the capture value being adjusted depending on the buffer fill level. As can
be seen, the buffer fill level first starts to drift away from the middle of the buffer
as the error accumulates, but once it reaches the first adjustment level of 40 % the
drifting stops and the lowest levels of the buffer fill value do not go much below the
40 % mark. With some adjustment and a bit of tighter control, the buffer fill level
could be pushed back closer to the center level of the buffer space, but we can now
conclude that protection against errors can be had using a simple method that does
not require much in terms of computing performance. The test also revealed that
the buffer space is not being used to its full potential. The device is set to go into the
operational underflow mode when the I2S component has completed transmitting a
chunk of audio data and the next full chunk is not yet available in the RAM buffer.
With the buffer in RAM divided into only ten data chunks, underflow will essentially
occur when there still is around 10 % of the RAM buffer left unused. The plot shows
that underflow happened slightly before the 10 % buffer fill mark was reached, but
this is not unexpected as the values were logged at intervals and were thus not
precisely following the buffer fill level. We do not want to start transmission of the
next buffer chunk before all of the audio data is in the RAM buffer even if most of the
time the missing data would get populated before it is due for transmission. What
we can do is to increase the number of chunks in the RAM buffer. Doubling them
would put us closer to only 5 % of the buffer not being utilized and by quadrupling we
would be down to 2.5 %. Up to 128 transaction descriptors are available in the PSoC
so running out of them should not be an issue. Trying both of these two suggested
configurations while keeping the same total buffer size by making the buffer chunks
smaller by the same amount that their numbers increased with showed that dividing
the buffer into 40 memory chunks with accompanying transaction descriptors was
too much for the PSoC to handle performance wise, but using 20 worked out fine.
Figure 4.4 shows a test run with the accumulating error again with our increased
number of buffer chunks but still the same total buffer size. We now get below the
10 % buffer fill mark before underflow occurs and the short range top to bottom
variation of the buffer fill level has also gone down a bit. Running a test session
without the accumulative error again shows in Figure 4.5 that we now only use
around 5 % of the total buffer size of 5120 bytes when increasing the number of
buffer chunks from ten to twenty. In Figure 4.4 it can be seen that the starting
value of the buffer fill level has been shifted slightly below the 50 % mark only as a
result of changing the data chunk size and the number of buffer elements. A small
adjustment to the compare value of the buffer fill level at which the audio playback
starts needed to be made to get the buffer fill level to center closer to half the buffer
size. The buffer fill level in Figure 4.5 does still appear to be a little off center even
after the adjustment as it is difficult to divide the 5 % top to bottom range evenly
on both sides of the 50 % mark with the accuracy of the logging being ±1 %. It
is up to the designer to decide if a smaller buffering delay or added safety against
buffer underflow and overflow should be prioritized or some combination thereof
when selecting the size of the RAM buffer.
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Figure 4.2: Accumulative error without correction of buffer fill.
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Figure 4.3: Accumulative error with correction of buffer fill.
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Figure 4.4: Accumulative error without correction and with increased number of
buffer chunks.
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Figure 4.5: Increasing the number of buffer chunks to twenty for asynchronous
mode.
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4.1.2 Functional Results for Adaptive Mode
When the buffer level has drifted away from its equilibrium state close to the center
of the buffer, the clock frequency of the Si5351 needs to be updated to better match
the data consumption rate. The same update interval of once every 16th SOF that
was used for the feedback value in the asynchronous mode case was also used here
as the monitoring interval for the buffer fill level and the total buffer size was also
the same, split into ten memory chunks of 512 bytes each. Choosing to adjust the
clock by only changing the variable a in the multisynth settings and keeping b, c
and R constant using the values from Section 3.3.3 results in a minimum adjustment
step size of around 0.5 % of the total frequency, which is an unnecessary big jump in
frequency. Multiplying the numerator and denominator of Equation 3.6 with some
other value than eight would make it possible to place the variable a closer to the
middle of the valid range for

(
a + b

c

)
of 8–2048, giving a minimum frequency step size

of around 0.1 % for adjustments while still keeping the multisynth in integer mode.
A normal feedback value update for the frequency adjustment in the asynchronous
mode implementation was however only around 0.002 % of the sample frequency, so
to keep things comparative and similar, the decision to opt for a switch from integer
to fractional mode for the multisynth was made even though this meant there would
be more jitter in the output signal from the clock generator board. To get to the
same adjustment level size here in our adaptive mode implementation we can keep
the variables a = 199 and R = 1 unchanged in Equation 3.6 and set b and c to 250.
Adjusting b by ± 1 will then give us a frequency jump size in the same ballpark as
for the asynchronous mode case.

Updating the clock generator settings for the multisynth using dynamically gener-
ated values during runtime turned out to be difficult as the PSoC 3 had a hard
time keeping up with the flow of audio data and any other operations it had to
perform when at the same time now also having to calculate new values and up-
date the register map. Even using only the simplified formulas in Equations 3.15,
3.16 and 3.17 for integer mode and only updating the multisynth registers where
the value changed still resulted in audible distortion and consequently failure be-
cause the PSoC 3 could not handle the added workload. There is not much else
that can be optimized without making more far-reaching alterations to the design
and doing things like switching off logging of data would make it difficult to verify
any results. Therefore it became necessary to use a lookup table with pregenerated
register values for the clock adjustment of the multisynth block.

In the tests for asynchronous mode it was noted that the external clock generator
frequency was a bit slower than the host clock, and it was the same here for both the
integer and fractional mode multisynth settings generated by manual calculations
for the adaptive synchronization mode. Figure 4.6 shows how the buffer fill level
with the multisynth set to integer mode drifts off from the center of the buffer until
it overflows due to the frequency difference between the host clock and the clock
produced by the external clock generator board, if no frequency adjustments are
made. In Figure 4.7 the buffer fill level starts to drift, but then it gets pushed
back towards the middle of the buffer by the frequency adjustments. The same
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test runs with the multisynth set to fractional mode are displayed in Figure 4.8
and Figure 4.9. In Table 4.2 the clock adjustment levels for both the integer and
fractional multisynth mode test runs are shown and the calculated register values
are listed in Section B.2 of Appendix B.

Buffer fill level Adjustment in integer mode Adjustment in fractional mode
>90 % -2.0 % -0.008 %

80–90 % -1.5 % -0.006 %
70–80 % -1.0 % -0.004 %
60–70 % -0.5 % -0.002 %
40–60 % No adjustment No adjustment
40–30 % +0.5 % +0.002 %
30–20 % +1.0 % +0.004 %
20–10 % +1.5 % +0.006 %

<10 % +2.0 % +0.008 %

Table 4.2: Clock frequency adjustment based on buffer fill level.

We can now establish that the external clock frequency updates are working as
expected, keeping the buffer fill level within the buffer limits. The frequency switches
also appear to be glitch-free as no audible distortion in connection with the register
writes could be detected when listening to the audio playback. A simple method
with fixed frequency levels was selected to minimize the computational work needed
to update the clock generator registers, but ideally a method that would guide back
the buffer fill level even closer to the center of the buffer would be preferable. Here
we simply stop the progression of the drift and for testing purposes this is enough
as it keeps us within the buffer limits while also letting us view how the frequency
adjustment size affects the buffer fill level. With the main goal to make the frequency
jumps as small as possible and also remembering that the feedback values from which
the frequency adjustment levels in the fractional mode setting were calculated from
are only feedback values and not the actual frequency adjustments that the host
makes to the clock, one could presume that the frequency adjustment levels could
be made smaller than the 0.002 % that was used here with the multisynth set to
fractional mode. How low you can go depends on other parameters such as how
stable the host clock is and on the selected update interval for the register writes,
so no in-depth tests were done to find a lower limit frequency adjustment range.
Minimizing the time between frequency adjustments was of secondary priority and
some testing using an update interval other than once every 16th SOF was tried
with the conclusion that there is room to increase or decrease the update interval if
necessary, at least when continuing to use the same frequency adjustment levels as
before. Focus was now instead directed at seeing how the frequency adjustments of
the external clock generator board affected the jitter levels.
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Figure 4.6: Buffer fill level for USB in adaptive mode with the multisynth in
integer mode without clock adjustment.
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Figure 4.7: Buffer fill level for USB in adaptive mode with the multisynth in
integer mode and clock adjustment activated.
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Figure 4.8: Buffer fill level for USB in adaptive mode with the multisynth in
fractional mode without clock adjustment.
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Figure 4.9: Buffer fill level for USB in adaptive mode with the multisynth in
fractional mode and clock adjustment activated.
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4.1.3 Functional Results for Synchronous Mode
An initial test of the custom fractional divider component with the 24 MHz IMO
used as input resulted in an output frequency of around 1.4 MHz as expected. The
frequency reading on the oscilloscope fluctuated a bit so giving a more exact fre-
quency number was difficult but when replacing the external clock source with the
clock generated by the custom fractional divider setup described in Figure 3.14 in the
asynchronous mode implementation, feedback values between {0x0B, 0x06, 0x30}
and {0x0B, 0x06, 0x70} were observed. This is in line with the nominal feedback
value of {0x0B, 0x06, 0x66} for the audio sample frequency 44.1 kHz. Following
the clock generation chain backwards, a more exact reading of the output frequency
from the fractional divider component referenced to the host clock would then be be-
tween 1.411 093 75 MHz–1.411 218 75 MHz which can be compared with the wanted
nominal value of 1.4112 MHz. With the initial frequency set up, it was then time
test how the component would respond to frequency adjustments made by writing
updated values to the control register in the fractional divider. The control register
is made available for CPU writes by API calls and the size of one control register
is 8 bits. When monitoring the variation of IMO clock cycles counted during a
SOF, the amount stayed within the range 24 000±16. One single control register is
therefore enough to communicate the change in frequency if only the deviation from
the nominal frequency is reported. Having confirmed the fractional divider com-
ponent functioned correctly, the synchronous mode design was then implemented
incorporating the custom fractional divider component.

Figure 4.10 shows a test run of the synchronous mode implementation and for ref-
erence in Figure 4.11 is a test run of the same design with the frequency updates
turned off. The update interval was set to once per SOF and the same buffer size as
before was configured using 10 buffer chunks of 512 bytes each. The update interval
was set lower than in the other two synchronization mode implementations simply
because the 16 bit counter used in all the designs would not have been large enough
for the IMO clock at 24 MHz if the capture interval would have stayed the same
at once every 16th SOF. Looking at the plot in Figure 4.10, the buffer fill level is
fairly consistent but it does decrease even if just by a little as time goes by. The
rate of change appears to be around 1 % per hour and if that number is correct and
consistent, then the buffer should run out of data in approximately two days time if
music is being played continuously and no other compensation is applied. The cause
of this discrepancy has not been determined but possible reasons could be that clock
cycles of the IMO are missed by the counter due to synchronization issues, or that
using a fixed length update period instead of running one full set of N and N + 2
clock cycles at a time produces a small error that accumulates over time. Using a
fixed length update period was necessary to limit the number of UDB blocks used
for the fractional divider component. Otherwise it would not have been possible to
make it fit in the implementation without exceeding the number of available UDB
blocks as some of the other peripherals also need access to them.

In Figure 4.11 where the frequency adjustments have been turned off, the first part
of the plot looks a bit inconsistent. From around 30 minutes up until the end of the
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measurement series, the host clock is consistently faster than the clock generated
by the PSoC, resulting in many buffer overflow conditions. Both clocks are however
much closer in frequency in the first part of the plot, giving rise to the slightly strange
looking behavior. Any particular reason as to why the frequency deviation varies
and which of the clocks if not both it is that is changing in frequency has not been
determined. Dependency to temperature and supply voltage in clock generation
circuits and other factors such as host system load level may possibly affect the
clock frequencies and the generation rate of SOFs.

The range given for SOF generation in the USB specification is 1.0 ms±500 ns, so a
bit of variation can be expected. Figure 4.12 shows the number of IMO clock cycles
registered by the counter component in the PSOC per SOF during a typical test
run of the synchronous mode implementation. If we assume that the clock in the
PSoC is totally accurate, then all the registered SOFs would have arrived within the
interval 1.0 ms±700 ns, but most likely the PSoC clock will have fluctuated a bit so
the SOFs may very well have been received within the interval presented in the USB
specification. Needless to say, there is going to be variation in the arrival times of
the SOFs, so using them to synchronize the device clock to the host clock as is done
in synchronous mode USB is expected to result in added jitter.
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Figure 4.10: Buffer fill level for USB in synchronous mode with frequency updating
turned on.
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Figure 4.11: Buffer fill level for USB in synchronous mode with frequency updates
turned off.
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Figure 4.12: PSoC IMO clock pulses registered per SOF.
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4.2 Jitter Measurements
Jitter measurements for all three USB synchronization modes are presented in this
section along with comparisons and discussion of the results. The collected data
comes from digital real-time oscilloscope measurements, out of which period and
cycle-to-cycle jitter histograms then were created. The oscilloscope used for mea-
surements had a bandwidth of 100 MHz, 1 GSa/s sample rate and 10k sample depth,
so it was possible to use it to measure any of the signals in the different implementa-
tions but for some of the signals with higher frequencies, the measurements became
somewhat coarse as the smallest sample interval that can be used for data export
is 1 ns. The clock signals going into and coming out of the I2S component inside
the PSoC being on the slower side regarding frequency were selected as suitable for
doing comparisons as they are present in all implementations and have the same
nominal frequencies in all of them. It is also presumable that jitter present in any
higher frequency signal from which the I2S clocks are being sourced will propagate
down the line to the slower clock signals [14].

To get the best resolution, measurements were done using the lowest possible sample
interval. For the WS signal which is the lowest frequency audio clock in the system
with a frequency of 44.1 kHz, this meant setting the sample interval of the oscillo-
scope to 4 ns to be able to capture at least one full clock cycle. In retrospective it
may seem a bit excessive to produce measurement series where one clock cycle is
composed of more than 5600 sample points, but tests where longer sample intervals
were used produced jitter values for the WS signal that were much higher than with
the 4 ns sample rate. The downside to just capturing one clock cycle at a time as
in Figure 4.13a apart from having to perform more measurements is that only the
period jitter can be extracted from the measurement as cycle-to-cycle jitter calcu-
lations require at least two full consecutive clock cycles. With cycle-to-cycle jitter
values being presented for the SCK output and I2S input clock signals and all three
clocks being derived from the same source clock, not producing any cycle-to-cycle
jitter measurements for the WS signal was decided to be an acceptable trade-off for
a more reliable period jitter measurement.

The frequencies of the SCK and the I2S input clocks are 1.4112 MHz and 2.8224 MHz
respectively, so even with the oscilloscope set to the smallest possible sample interval
of 1 ns, the minimum number of captured clock cycles per measurement will be 14
for the SCK and 28 for the I2S input clock. This results in around 700 sample points
being captured per full clock cycle for the SCK signal and 350 for the I2S input clock,
which should be plenty to give a reliable reading. Figure 4.13 shows an example
each of a measurement of the SCK and WS output clock signals and Figure 4.14
contains an example of a measurement series of the I2S component input clock.

Measurements were then repeated for each signal until a sufficient amount of clock
cycles had been collected to be able to get a sense of the jitter distributions. The
period time P was calculated from the exported data using the rising edge 0 V cross-
ings as start and end points for the period and intersection of the signal with V=0
was found by linear interpolation of the closest sample points. The period values for
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each of the signals were then collected in bins and plotted as histograms with the
period P being rounded off to the nearest bin value. Cycle-to-cycle jitter was also
calculated from the period values in accordance with the example in Figure 2.2 and
plotted in histogram form for the I2S component input clock and the SCK output
clock signals. Histograms for each synchronization mode and clock source used are
presented in Appendix C.
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(a) I2S WS output signal.
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(b) I2S SCK output signal.

Figure 4.13: Capture of one measurement each for the I2S output signals.
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Figure 4.14: Capture of one measurement for the I2S input signal.

4.2.1 Discussion of Measurement Results
A summary of the period peak-to-peak and peak cycle-to-cycle values can be found
in Table 4.3 with corresponding graphical representations in Figure 4.15 and Fig-
ure 4.16. We can start by comparing the measured values to the jitter hearing
threshold levels presented in Chapter 2.1.5. The lowest reported threshold level
in any of the three examined studies was the 5 ns average value for the 8 kHz sine
tone with added sinusoidal jitter in the study from Benjamin and Gannon [14]. All
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measurement values where the Adafruit clock generator board with the Si5351 chip
was used as clock source are clearly below 5 ns and the jitter levels created by the
clock generator board for those designs would therefore be expected to be inaudible
regardless of the type of audio content played.

There is however one additional thing to consider for the USB adaptive mode mea-
surements and that is that what has been captured by the oscilloscope possibly only
is the jitter reading for one single clock adjustment level. If the clock at the host
side is reasonably stable, then the PSoC will likely after an initial adjustment phase
alternate back and forth between the two adjustment levels which are closest to
the clock frequency of the host clock. For a period of time, the device clock will
stay at one of the adjustment levels until the buffer level has drifted far enough
for the clock to have to be readjusted. In the USB adaptive mode implementation
with the external clock generator board in multisynth integer mode the difference
between two adjustment levels is 0.5 %, which translates to a difference of 1.77 ns
for the 2.884 MHz I2S input clock. The same number for the adaptive mode USB
implementation with the multisynth in fractional mode which has adjustment levels
of 0.002 % is around 70 ps. The implementation with the smaller adjustment inter-
vals using the fractional multisynth mode will likely be switching between the levels
more often than the implementation with longer distances in between, but 70 ps is
not much in relation to the total measured jitter of the clock generator board, so it
is difficult to tell if values from more than one adjustment level have been captured
during the limited time measurement values were collected.

For the design using the integer multisynth mode, the difference between two adja-
cent adjustment levels is comparable to the size of the total inherent jitter for the
clock generator board in the USB asynchronous mode case, so it appears as if only
values from one single adjustment level were captured during the adaptive mode
measurements. Figure 4.17 shows one single measurement series each from two ad-
justment levels located next to each other, and when viewing it, it becomes clear
that when an adjustment is made, then the total jitter will increase approximately
to the size of the inherent jitter of the clock generator board plus the size of the
adjustment, making the total jitter become a function of the size of the adjustment
level for the adaptive mode USB implementations. For the implementation with
the multisynth in integer mode, the total jitter during normal operation would then
be expected to increase more than twofold compared to the measurement results.
The adjustment level size can be decreased but only down to around 0.05 % due to
the parameter limits of the Si5351 in multisynth integer mode, which would equal
a clock adjustment of 0.177 ns for the I2S input clock. This could put the results
for the SCK and WS clocks in adaptive and asynchronous USB mode very closely
together. The 70 ps difference between two adjustment levels for the USB adaptive
mode implementation with the multisynth in fractional mode should however be
small enough to not make any significant difference to the results in Table 4.3.

An unexpected thing was that the external XO and the external fixed frequency
clock board performed worse than the Si5351 clock generator board which includes
a fractional divider. The unsatisfying results with the external XO was first thought
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to be caused by difficulties in finding correct values for the capacitors in the circuit
in Figure 3.12 as also parasitic capacitances from the rest of the circuitry must be
included in the total [40], but when later testing the same design with the external
XO replaced by the fixed frequency clock generator board, the results were on par
for both clock sources. The external fixed frequency clock board is marketed as a
clock upgrade for consumer audio products and it has a jitter measurement rating of
less than 2 ps, which is nowhere near any of the measurement results produced with
it connected to the PSoC. We should remember that the smallest possible sampling
interval of the oscilloscope used was 1 ns and that we with the use of interpolation
can get a little below that limit, but the measurements listed in Table 4.3 for the
external XO and the fixed frequency clock generator board are around 20 ns.

One thought was that the voltage regulator on the CY8CKIT-001 PSoC development
board or interference from other components could have something to do with the
discrepancy between the specification and the test results and when using a battery
pack as power source with no other components connected to the clock board, peak-
to-peak period jitter levels of less than 1 ns were observed using the oscilloscope.
Looking at the shape of the waveforms of the jitter plots for both the external XO
and the fixed frequency clock board, it does seem plausible that there could be some
duty cycle distortion taking place. Figure C.8 and C.13 displaying the period jitter
for the SCK output signals are examples of this. Possible causes for duty cycle
distortion could be that there is a slew rate imbalance, or that the threshold level
that marks the signal transition has been offset [11].

A second thing that stood out was the measurement results for the synchronous
mode USB using the PSoC IMO as clock source through the custom made fractional
divider component. With all the other implementations, the I2S input and SCK
and WS output clock measurements were much closer in magnitude, but for the WS
output clock in synchronous mode, the jitter was more than 25 times larger than
for any of the other two measured signals in the same design. Tests were therefore
then later run again in which roughly the same numbers were confirmed once more,
so there was no obvious temporary error in the system during the test that could
explain why the WS period jitter differed so greatly from the other two measured
clocks. There was suspicion of that the captured data for the I2S input clock and
the SCK output clock were not giving the complete picture for this measurement.
All three clocks are after all derived from the same clock source, so one would expect
them to produce jitter readings of similar magnitude, even though the measurements
of the clocks were not performed simultaneously. The clock generated by the IMO
through the fractional divider component was then also tried in the asynchronous
mode design where it showed similar results, but the magnitude of the SCK clock
jitter had now grown the be somewhere in the middle between the I2S and WS clock
readings due to there being outliers of larger magnitude, such as for example the
most deviant measurement value in Figure C.19 which more than doubled the cycle-
to-cycle peak jitter for the SCK signal. The most extreme values tend to increase in
size with the number of sample points in the measurement series [11] when there is
Gaussian unbounded jitter, so to make the results comparable, one hundred sample
points each were collected in all of the measurements listed in Table 4.3.
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USB mode Clock source Signal Jitter type Value
Asynchronous Si5351 (fractional) I2S in Period pk-pk 1.86 ns
Asynchronous Si5351 (fractional) I2S in Cycle-to-cycle pk 1.86 ns
Asynchronous Si5351 (fractional) SCK Period pk-pk 1.15 ns
Asynchronous Si5351 (fractional) SCK Cycle-to-cycle pk 0.95 ns
Asynchronous Si5351 (fractional) WS Period pk-pk 2.23 ns
Asynchronous External XO I2S in Period pk-pk 21.6 ns
Asynchronous External XO I2S in Cycle-to-cycle pk 21.4 ns
Asynchronous External XO SCK Period pk-pk 20.6 ns
Asynchronous External XO SCK Cycle-to-cycle pk 20.1 ns
Asynchronous External XO WS Period pk-pk 20.9 ns
Asynchronous External FF clock I2S in Period pk-pk 21.2 ns
Asynchronous External FF clock I2S in Cycle-to-cycle pk 21.0 ns
Asynchronous External FF clock SCK Period pk-pk 20.3 ns
Asynchronous External FF clock SCK Cycle-to-cycle pk 19.8 ns
Asynchronous External FF clock WS Period pk-pk 22.4 ns
Asynchronous PSoC IMO I2S in Period pk-pk 3.75 ns
Asynchronous PSoC IMO I2S in Cycle-to-cycle pk 3.75 ns
Asynchronous PSoC IMO SCK Period pk-pk 22.7 ns
Asynchronous PSoC IMO SCK Cycle-to-cycle pk 21 ns
Asynchronous PSoC IMO WS Period pk-pk 75.6 ns
Asynchronous Si5351 (integer) I2S in Period pk-pk 1.10 ns
Asynchronous Si5351 (integer) I2S in Cycle-to-cycle pk 1.00 ns
Asynchronous Si5351 (integer) SCK Period pk-pk 1.50 ns
Asynchronous Si5351 (integer) SCK Cycle-to-cycle pk 1.50 ns
Asynchronous Si5351 (integer) WS Period pk-pk 2.48 ns
Adaptive Si5351 (integer) I2S in Period pk-pk 1.14 ns
Adaptive Si5351 (integer) I2S in Cycle-to-cycle pk 0.92 ns
Adaptive Si5351 (integer) SCK Period pk-pk 1.40 ns
Adaptive Si5351 (integer) SCK Cycle-to-cycle pk 1.05 ns
Adaptive Si5351 (integer) WS Period pk-pk 1.70 ns
Adaptive Si5351 (fractional) I2S in Period pk-pk 1.92 ns
Adaptive Si5351 (fractional) I2S in Cycle-to-cycle pk 1.73 ns
Adaptive Si5351 (fractional) SCK Period pk-pk 1.70 ns
Adaptive Si5351 (fractional) SCK Cycle-to-cycle pk 1.30 ns
Adaptive Si5351 (fractional) WS Period pk-pk 3.91 ns
Synchronous PSoC IMO I2S in Period pk-pk 1.55 ns
Synchronous PSoC IMO I2S in Cycle-to-cycle pk 1.55 ns
Synchronous PSoC IMO SCK Period pk-pk 2.25 ns
Synchronous PSoC IMO SCK Cycle-to-cycle pk 1.50 ns
Synchronous PSoC IMO WS Period pk-pk 56.8 ns

Table 4.3: Period peak-to-peak and cycle-to-cycle maximum values from the jitter
measurements.
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Figure 4.15: Period peak-to-peak jitter for the I2S component input and SCK and
WS output clocks for each of the implementations.
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Figure 4.16: Cycle-to-cycle peak jitter for the I2S component input and SCK
output clocks for each of the implementations.
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Figure 4.17: Period histogram for two adjacent adjustment levels for the I2S
component input clocks in USB adaptive mode with the multisynth set to integer
mode.

The Si5351 clock signal in the asynchronous synchronization mode design used the
ClockBuilder Pro generated register map for the fractional multisynth mode imple-
mentation while the USB adaptive synchronization mode design used the manually
generated register values for its multisynth fractional mode test, so a direct compar-
ison between the two might not be totally fair as one would expect the ClockBuilder
Pro generated registry settings to be optimized for low jitter performance while
the manually created registry mapping only is concerned with getting the correct
frequency and adjustability for the clock. In multisynth integer mode the Si5351
clock used the exact same registry mapping for both the asynchronous and adaptive
mode implementation and it did actually perform a bit better for the slower WS
clock and in the cycle-to-cycle jitter measurement for the SCK clock in adaptive
mode. This could be caused by natural variation and measurement uncertainty but
we should not rule out the possibility that there could be something in the design
of the asynchronous mode implementation adding one more USB endpoint with its
own DMA channel and interrupt service routine that could have an impact on clock
generation timing inside the PSoC, which could be why it performed worse than
the adaptive mode implementation before the clock adjustments were also taken
into account. All measurements listed in Table 4.3 were done individually, so for
example the I2S input clock and the WS output clock for one implementation are
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from different measurement series and they are therefore not directly related to each
other even if they were conducted around the same time using the same design.

With the synchronous mode implementation using an update interval of once per
SOF and the asynchronous mode implementation coupled with the IMO clock as
source being updated every 16th SOF, some additional testing was done to see if the
frequency of the clock updates could have any impact on the jitter measurement
results. Increasing the update interval in steps did not appear to give rise to any
obvious pattern where the measured jitter would increase or decrease along with
the update frequency but the measured values did vary quite a bit between the
different measurement series and in some, both the period and the cycle-to-cycle
jitter for the SCK output clock in synchronous mode did now also go above 20 ns as
in the asynchronous mode measurement. A few outliers that extended way beyond
the rest of the measurement values is what once again caused the increase in the
period peak-to-peak and cycle-to-cycle peak jitter levels for the SCK output clock
signal. As previously mentioned, an equal amount of samples should be used to keep
the comparison against the other measurements fair, but it is debatable if a larger
sample size than 100 samples for each of the signals should have been used. Tests
with larger sample sizes for the I2S input clock signal for the fixed frequency clock
board and the Si5351 clock board did not make any bigger difference in the peak
jitter values but the designs including the fractional divider component seem to be
prone to giving rise to more and larger outliers which did not get registered with a
shorter sample length.

In an attempt to look at the effect on the I2S clocks of the adjustments made to the
fractional divider settings, the asynchronous mode design was run with the fractional
divider using no adjustment at all and also with the two outmost adjustment levels
at ±16 needed to match the most extreme values of the SOF variation. Figure 4.18
shows this in which 1000 samples for each setting were collected. The main volume
of data points is located between 352 ns and 356 ns just like all the measurement
values in the shorter series for the same signal displayed in Figure C.16. There are
however now clusters of values outside that range which did not get registered in
the shorter measurement series for the I2S input clock.

Unlike the plot in Figure 4.17 for the adjustment levels in adaptive mode using
the Si5351 clock generator, Figure 4.18 does not show a simple linear dependence
between the registered jitter levels and the settings of the fractional divider com-
ponent. Both the setting with no level adjustment of the fractional divider at all
and the setting where +16 was added have similar measurement ranges from around
252 ns up to 373 ns while the setting of -16 ranges from 343 ns to 356 ns. The na-
ture of the design using the fractional divider component does not allow us to make
the same straightforward kind of statement of how clock adjustments affect the I2S
clocks like for the adaptive mode implementations using the Si5351 board as clock
source. The clock chain that leads to the I2S input clock consists of the IMO, the
fractional divider component, the PLL, the master clock, and a final divider to get
the correct clock multiple. As for the color scheme of Figure 4.18, the vertical bars
are semitransparent, so red on top of blue does for example result in purple.
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Figure 4.18: Period histograms with and without clock adjustments for the I2S
component input clock in USB asynchronous mode using the IMO together with the
fractional divider as clock source.

Returning to the results from the studies in Chapter 2.1.5 in which listening tests
were conducted, for single note instruments threshold levels down to a couple of
tens of nanoseconds were recorded and for normal music the lowest threshold levels
increased to be in the hundreds of nanoseconds. For the external XO, the external
fixed frequency clock board, and the clock generated from the PSoC IMO through
the custom fractional divider we are crossing the line into the territory of that first
threshold level, so for audio with sparse sounds, jitter could possibly be within the
audible range for the mentioned implementations. For normal and more complex
music there should be too much of a masking effect [14] for jitter of the measured
magnitude to be heard in any of the test implementations.

The semilog plot in Figure 4.19 displays the range of period jitter peak-to-peak
values from Table 4.3 measured for the three I2S clocks in each implementation,
comparing the results to the lowest jitter audibility thresholds for each program
material audio type determined by the listening tests listed in Chapter 2.1.5 and
also with the theoretical jitter audibility model from Chapter 2.1.5.1. Jitter type,
methodology and other parameters differ between the three audibility tests, so any
comparison between the threshold limits in Figure 4.19 themselves should be done
with this in mind.
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Figure 4.19: The range of period jitter peak-to-peak values for all three I2S com-
ponent clocks compared to the theoretical jitter audibility model and the jitter
audibility thresholds determined by listening tests.

4.2.2 Start-of-Frame Jitter

The oscilloscope at hand cannot be used for proper jitter measurements of the SOF.
A measurement series for the SOF signal is shown in Figure 4.20. The SOF pulses
arriving at τ, 2τ, 3τ etc. are precisely evenly spaced apart by 2500 samples and
there is not enough resolution to get a good reading of the jitter levels this way.
SOF jitter is expected to be within approximately ±500 ns according to the USB
specification. The sampling interval in Figure 4.20 is 0.4 µs and the sample depth is
10 000 samples, giving a total measurement time of 4 ms. SOF packets are sent once
per 1 ms and at least one full period is needed the to compare the arrival times of
two consecutive SOF packets. Even if the sampling time interval is made shorter,
there is no way to get anywhere near the expected range of SOF jitter presented in
the USB specification while still fitting one full SOF period in the 10 000 samples
as the SOF pulses are approximately 1 ms apart. What we can do instead is to do a
TIE measurement using the PSoC IMO clock as reference. As already concluded in
Chapter 4.1.3, the measured variation in SOF arrival time was 1.0 ms±700 ns. Here
is now also a histogram presented for the SOF variation in Figure 4.21. It has been
derived directly from the data for the registered IMO clock pulses per SOF shown
in Figure 4.12. As can be seen, the SOF jitter seems to predominantly be of random
type, but there are also two small peaks at minus six and minus ten IMO samples
per SOF, possibly indicating that there also are other types of jitter involved.
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Figure 4.20: Start-of-frame packets received by the PSoC USBFS component.
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Figure 4.21: Histogram of SOF arrival time variation referenced to IMO clock
data from Figure 4.12.
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5
Conclusion

This chapter contains a summary of the findings from the measurement results and
tests. A paragraph considering sustainability issues is included at the end.

5.1 Summary of Results
One of the goals with the thesis was to try to construct a digital audio interface
that would not produce any interface jitter in the process of transferring the audio
signal between two devices. With the USB audio device working in asynchronous
synchronization mode, the expectation was for the jitter to be as low as the inherent
jitter of the clock used as master clock on the device side of the interface. Tests
did however show that when attaching a clock with a jitter specification way below
the lowest recorded audibility test thresholds for jitter in different program source
materials, the measured jitter did in some cases increase to levels above the lowest
jitter audibility thresholds when the clock was connected to the test system and the
audio device was operating in asynchronous mode.

Designs for all three standard USB audio synchronization modes were implemented
and tested, which in itself was a great learning experience. All three synchroniza-
tion mode implementations are working from a functional point of view, but the
expectation of USB asynchronous mode outperforming adaptive and synchronous
mode in terms of jitter due to not having to adjust the internal clock of the device is
not directly obvious by looking at the period peak-to-peak and cycle-to-cycle peak
jitter measurements alone. Many of the clock signal measurements with for exam-
ple the Si5351 clock generator board with the multisynth in integer mode as source
display worse jitter readings in asynchronous mode than for the same clock source
counterpart in adaptive mode. That is however before the clock adjustments of the
adaptive mode are included as they do not always get registered during the limited
measurement time.

If we compare the adaptive and asynchronous mode implementations using the
Si5351 clock generator board, we can see that for the designs with the multisynth
in fractional mode the I2S input clock measurements are around the same levels,
but for both the SCK and WS clocks, the jitter levels of the asynchronous mode
implementation are noticeably lower. The two different USB synchronization mode
implementations do however not use the same register mapping for the Si5351 clock
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source with the multisynth set to fractional mode, which possibly could have some
effect on the results. It is not totally clear whether the periodic frequency adjust-
ments of the clock in adaptive mode with the Si5351 multisynth set to fractional
mode have been captured in the measurement results, but if they have not, then
a fair presumption is that the jitter of the adaptive implementation would further
increase just by a tiny fraction of the current jitter value.

The same two synchronization mode implementations with the Si5351 as clock source
and the multisynth set to integer mode share the same fundamental registry mapping
for the source clock, and by further tests it was determined that the clock level
adjustments of the adaptive mode implementation did not get registered during the
limited time measurements were conducted. When viewing the numbers in Table 4.3,
the results for the I2S input clock and the SCK output clock period jitter are not
far apart, but for the SCK output clock cycle-to-cycle and the WS period jitter the
adaptive mode implementation does show lower jitter measurement levels than the
asynchronous mode implementation. When the frequency level adjustments then
also are included in the results for adaptive mode USB, the jitter will increase for
each new clock adjustment level that is reached. The increase is expected to be
approximately the same as the registered measurement value for each clock signal
adjustment, for example then doubling the jitter level if the clock alternates between
two clock adjustment levels as expected. This still makes asynchronous mode the
better choice of the two if low jitter is the topmost priority, even though only looking
at the jitter measurements alone would make it seem as if the opposite is true.

In the comparison of the synchronous and the asynchronous mode USB using the
IMO coupled with the fractional divider component as clock source, the registered
measurement results once again showed higher jitter readings for the asynchronous
mode implementation. It was however also determined that a much longer series
of measurements made the peak values grow a lot higher than in the shorter series
used for comparison, so the results in Table 4.3 should in this case be treated as less
reliable. The effects on jitter by the clock adjustments made to the fractional divider
component in synchronous mode are not as clear as for example in the adaptive mode
case with the Si5351 clock board operating with the multisynth in integer mode, so
it is difficult to say exactly how much of a difference they make. As the designs
including the fractional component in its current form show WS clock results way
above any of the other implementations and the I2S input and SCK output clock
peak values are expected to also increase with longer measurement time, there is
less use in trying to precisely determine which one of the two implementations using
the fractional divider is better or worse than the other.

A property of the USB asynchronous mode design is that not having to make any
clock adjustments on the fly allows for a fixed frequency clock to be used as clock
source, something which is not possible when the device operates in adaptive or
synchronous mode. A fixed frequency clock should in theory be able to perform at
the same level or better than any similar clock design also including a fractional
divider if given the correct conditions. It was a little bit disappointing to see that
neither of the two fixed frequency clock sources that were tried performed anywhere

96



5. Conclusion

near the best results of the Si5351 clock board in the tests conducted. More effort
would need to be put into ensuring that the working conditions of the fixed frequency
clocks are being optimal.

There are varying opinions on jitter and its effect or lack thereof on audio quality.
Theoretical jitter audibility threshold models like the one in Chapter 2.1.5.1 will
usually place the threshold level below a couple of hundreds of picoseconds or even
lower while the lowest recorded levels in the listening tests in Chapter 2.1.5 for
different jitter types and source material never went below a couple of nanoseconds.
In the different USB synchronization mode implementations using different clock
sources there are some designs which land above and others where all clocks have
jitter levels below the auditory assessed threshold values. The sample rate interval
limit of the digital oscilloscope at 1 ns did not allow for more accurate measurements
than the ones in Table 4.3, including interpolation of the sample points closest to
the signal transition level, so no meaningful comparison with the theoretical jitter
audibility threshold could be made.

5.1.1 Sustainability and Environmental Considerations
Using the PSoC IMO as clock source coupled with the custom fractional divider
component removes the need for an external clock source. Fewer hardware compo-
nents is desirable from a sustainability perspective, especially when it also reduces
the total cost of a built device. In this case using the internal clock as source in the
current configuration produced enough jitter to place the device performance above
the lowest measured audibility threshold, making it unsuitable when audio quality
is the top priority. For devices where other parameters are of more concern, using
the internal clock of the PSoC could be an acceptable trade off. Replacing the exter-
nal fractional clock divider with the internal custom fractional divider component
is essentially replacing hardware with software, and that is what the PSoC system
is all about. The components used in the designs, the counters, clock dividers, the
USB block etc. would all have needed to be constructed using many separate exter-
nal components if it would not have been for the programmable UDB blocks of the
PSoC, making it a flexible and resource saving solution.
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A
USB Descriptors

A.1 Asynchronous Mode USB Descriptor Table
The USB descriptor table for the asynchronous mode implementation is provided
in this section for reference. String descriptors and system generated settings and
dispatch tables and have been omitted.

/*******************************************************************
* Device Descriptor
*******************************************************************/
/* Descriptor Length */ 0x12u,
/* DescriptorType: DEVICE */ 0x01u,
/* bcdUSB (ver 2.0) */ 0x00u, 0x02u,
/* bDeviceClass */ 0x00u,
/* bDeviceSubClass */ 0x00u,
/* bDeviceProtocol */ 0x00u,
/* bMaxPacketSize0 */ 0x08u,
/* idVendor */ 0xB4u, 0x04u,
/* idProduct */ 0x51u, 0x20u,
/* bcdDevice */ 0x00u, 0x00u,
/* iManufacturer */ 0x05u,
/* iProduct */ 0x0Au,
/* iSerialNumber */ 0x00u,
/* bNumConfigurations */ 0x01u
/*******************************************************************
* Configuration Descriptor
*******************************************************************/
/* Config Descriptor Length */ 0x09u,
/* DescriptorType: CONFIG */ 0x02u,
/* wTotalLength */ 0x70u, 0x00u,
/* bNumInterfaces */ 0x02u,
/* bConfigurationValue */ 0x01u,
/* iConfiguration */ 0x00u,
/* bmAttributes */ 0x80u,
/* bMaxPower */ 0x32u,
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/*******************************************************************
* Standard AudioControl Interface Descriptor
*******************************************************************/
/* Interface Descriptor Length */ 0x09u,
/* DescriptorType: INTERFACE */ 0x04u,
/* bInterfaceNumber */ 0x00u,
/* bAlternateSetting */ 0x00u,
/* bNumEndpoints */ 0x00u,
/* bInterfaceClass */ 0x01u,
/* bInterfaceSubClass */ 0x01u,
/* bInterfaceProtocol */ 0x00u,
/* iInterface */ 0x07u,
/*******************************************************************
* Class-Specific AudioControl Interface Descriptor
*******************************************************************/
/* AC Header Descriptor Length */ 0x09u,
/* DescriptorType: AUDIO */ 0x24u,
/* bDescriptorSubtype */ 0x01u,
/* bcdADC */ 0x00u, 0x01u,
/* wTotalLength */ 0x1Eu, 0x00u,
/* bInCollection */ 0x01u,
/* baInterfaceNr */ 0x01u,
/*******************************************************************
* Input Terminal Descriptor
*******************************************************************/
/* AC Input Terminal Descriptor Length */ 0x0Cu,
/* DescriptorType: AUDIO */ 0x24u,
/* bDescriptorSubtype */ 0x02u,
/* bTerminalID */ 0x01u,
/* wTerminalType */ 0x01u, 0x01u,
/* bAssocTerminal */ 0x00u,
/* bNrChannels */ 0x02u,
/* wChannelConfig */ 0x03u, 0x00u,
/* iChannelNames */ 0x00u,
/* iTerminal */ 0x00u,
/*******************************************************************
* Output Terminal Descriptor
*******************************************************************/
/* AC Output Terminal Descriptor Length */ 0x09u,
/* DescriptorType: AUDIO */ 0x24u,
/* bDescriptorSubtype */ 0x03u,
/* bTerminalID */ 0x02u,
/* wTerminalType */ 0x02u, 0x06u,
/* bAssocTerminal */ 0x00u,
/* bSourceID */ 0x01u,
/* iTerminal */ 0x00u,
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/*******************************************************************
* Standard AudioStreaming Interface Descriptor, Alternate Setting 0
*******************************************************************/
/* Interface Descriptor Length */ 0x09u,
/* DescriptorType: INTERFACE */ 0x04u,
/* bInterfaceNumber */ 0x01u,
/* bAlternateSetting */ 0x00u,
/* bNumEndpoints */ 0x00u,
/* bInterfaceClass */ 0x01u,
/* bInterfaceSubClass */ 0x02u,
/* bInterfaceProtocol */ 0x00u,
/* iInterface */ 0x08u,
/*******************************************************************
* Standard AudioStreaming Interface Descriptor, Alternate Setting 1
*******************************************************************/
/* Interface Descriptor Length */ 0x09u,
/* DescriptorType: INTERFACE */ 0x04u,
/* bInterfaceNumber */ 0x01u,
/* bAlternateSetting */ 0x01u,
/* bNumEndpoints */ 0x02u,
/* bInterfaceClass */ 0x01u,
/* bInterfaceSubClass */ 0x02u,
/* bInterfaceProtocol */ 0x00u,
/* iInterface */ 0x09u,
/*******************************************************************
* Class-Specific AudioStreaming General Interface Descriptor
*******************************************************************/
/* AS General Descriptor Length */ 0x07u,
/* DescriptorType: AUDIO */ 0x24u,
/* bDescriptorSubtype */ 0x01u,
/* bTerminalLink */ 0x01u,
/* bDelay */ 0x0Eu,
/* wFormatTag */ 0x01u, 0x00u,
/*******************************************************************
* AudioStreaming Format Type I Descriptor
*******************************************************************/
/* AS Format Type I Descriptor Length */ 0x0Eu,
/* DescriptorType: AUDIO */ 0x24u,
/* bDescriptorSubtype */ 0x02u,
/* bFormatType */ 0x01u,
/* bNrChannels */ 0x02u,
/* bSubframeSize */ 0x02u,
/* bBitResolution */ 0x10u,
/* bSamFreqType */ 0x00u,
/* tLowerSamFreq */ 0x44u, 0xACu, 0x00u,
/* tUpperSamFreq */ 0x44u, 0xACu, 0x00u,
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/*******************************************************************
* Standard OUT Endpoint Descriptor
*******************************************************************/
/* Endpoint Descriptor Length */ 0x09u,
/* DescriptorType: ENDPOINT */ 0x05u,
/* bEndpointAddress */ 0x02u,
/* bmAttributes */ 0x05u,
/* wMaxPacketSize */ 0xC0u, 0x00u,
/* bInterval */ 0x01u,
/* bRefresh */ 0x00u,
/* bSynchAddress */ 0x81u,
/*******************************************************************
* Class-Specific AudioStreaming Endpoint Descriptor
*******************************************************************/
/* Endpoint Descriptor Length */ 0x07u,
/* DescriptorType: CS_ENDPOINT */ 0x25u,
/* bDescriptorSubtype */ 0x01u,
/* bmAttributes */ 0x01u,
/* bLockDelayUnits */ 0x00u,
/* wLockDelay */ 0x00u, 0x00u,
/*******************************************************************
* Standard IN Endpoint Descriptor
*******************************************************************/
/* Endpoint Descriptor Length */ 0x09u,
/* DescriptorType: ENDPOINT */ 0x05u,
/* bEndpointAddress */ 0x81u,
/* bmAttributes */ 0x11u,
/* wMaxPacketSize */ 0x03u, 0x00u,
/* bInterval */ 0x01u,
/* bRefresh */ 0x04u,
/* bSynchAddress */ 0x00u,
/******************************************************************/

A.2 Adaptive Mode USB Descriptors
Most descriptors in the adaptive mode implementation are identical to the descrip-
tors used for the asynchronous mode presented in Section A.1. Due to there not
being any IN endpoint providing feedback, there is also no standard IN endpoint
descriptor in the descriptor table for the adaptive mode implementation. Side effects
of this are that the number of endpoints reported by the bNumEndpoints parameter
in the standard AudioStreaming interface descriptor changes from two to one and
that the wTotalLength field of the configuration descriptor also must be updated as
removal of the standard IN endpoint descriptor shortens the total length for all the
descriptors by nine bytes. The bmAttributes field in the standard AudioStreaming
endpoint descriptor is the parameter that decides the synchronization mode. Only
the descriptors that differ from the ones used in the asynchronous mode implemen-
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tation have been included in this section and all fields that have a different value
have been highlighted with yellow. The rest of the descriptors are identical to the
ones used in the asynchronous mode implementation.

/*******************************************************************
* Configuration Descriptor
*******************************************************************/
/* Config Descriptor Length */ 0x09u,
/* DescriptorType: CONFIG */ 0x02u,
/* wTotalLength */ 0x67u , 0x00u,
/* bNumInterfaces */ 0x02u,
/* bConfigurationValue */ 0x01u,
/* iConfiguration */ 0x00u,
/* bmAttributes */ 0x80u,
/* bMaxPower */ 0x32u,
/*******************************************************************
* Standard AudioStreaming Interface Descriptor, Alternate Setting 1
*******************************************************************/
/* Interface Descriptor Length */ 0x09u,
/* DescriptorType: INTERFACE */ 0x04u,
/* bInterfaceNumber */ 0x01u,
/* bAlternateSetting */ 0x01u,
/* bNumEndpoints */ 0x01u ,
/* bInterfaceClass */ 0x01u,
/* bInterfaceSubClass */ 0x02u,
/* bInterfaceProtocol */ 0x00u,
/* iInterface */ 0x09u,
/*******************************************************************
* Standard OUT Endpoint Descriptor
*******************************************************************/
/* Endpoint Descriptor Length */ 0x09u,
/* DescriptorType: ENDPOINT */ 0x05u,
/* bEndpointAddress */ 0x02u,
/* bmAttributes */ 0x09u ,
/* wMaxPacketSize */ 0xC0u, 0x00u,
/* bInterval */ 0x01u,
/* bRefresh */ 0x00u,
/* bSynchAddress */ 0x00u ,
/******************************************************************/

A.3 Synchronous Mode USB Descriptors
The situation is almost exactly the same for the synchronous mode descriptor table
as it is for adaptive mode, therefore only the descriptors that differ from the list-
ing of the asynchronous mode descriptor table presented in Section A.1 are shown
here. The only difference between the adaptive mode and the synchronous mode
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descriptors is the bmAttributes field in the standard OUT endpoint descriptor which
determines the synchronization mode of the endpoint. Everything else is the same
and as there also is no IN endpoint for feedback in synchronous mode, therefore there
is no standard IN endpoint descriptor and any change in the descriptor table related
to it not existing applies in the same way for the synchronous mode descriptors as
it does for adaptive mode. Field values differing from the asynchronous descriptors
have been highlighted with yellow.

/*******************************************************************
* Configuration Descriptor
*******************************************************************/
/* Config Descriptor Length */ 0x09u,
/* DescriptorType: CONFIG */ 0x02u,
/* wTotalLength */ 0x67u , 0x00u,
/* bNumInterfaces */ 0x02u,
/* bConfigurationValue */ 0x01u,
/* iConfiguration */ 0x00u,
/* bmAttributes */ 0x80u,
/* bMaxPower */ 0x32u,
/*******************************************************************
* Standard AudioStreaming Interface Descriptor, Alternate Setting 1
*******************************************************************/
/* Interface Descriptor Length */ 0x09u,
/* DescriptorType: INTERFACE */ 0x04u,
/* bInterfaceNumber */ 0x01u,
/* bAlternateSetting */ 0x01u,
/* bNumEndpoints */ 0x01u ,
/* bInterfaceClass */ 0x01u,
/* bInterfaceSubClass */ 0x02u,
/* bInterfaceProtocol */ 0x00u,
/* iInterface */ 0x09u,
/*******************************************************************
* Standard OUT Endpoint Descriptor
*******************************************************************/
/* Endpoint Descriptor Length */ 0x09u,
/* DescriptorType: ENDPOINT */ 0x05u,
/* bEndpointAddress */ 0x02u,
/* bmAttributes */ 0x0Du ,
/* wMaxPacketSize */ 0xC0u, 0x00u,
/* bInterval */ 0x01u,
/* bRefresh */ 0x00u,
/* bSynchAddress */ 0x81u ,
/******************************************************************/
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Register Maps for Si5351

B.1 Register Map Generated by ClockBuilder Pro
Presented in Table B.1 are the register values generated by the Skyworks Clock-
Builder Pro software that were used to program the Adafruit Si5351 clock generator
board in the asynchronous mode implementation, setting the clock frequency of the
first output clock port to 2.8224 MHz.

Register Register Value
2 0x53
3 0x00
4 0x20
7 0x00

15 0x00
16 0x0F
17 0x8C
18 0x8C
19 0x8C
20 0x8C
21 0x8C
22 0x8C
23 0x8C
26 0x02
27 0x71
28 0x00
29 0x0F
30 0xFE
31 0x00
32 0x00
33 0x62
42 0x00

Register Register Value
43 0x04
44 0x00
45 0x9D
46 0x60
47 0x00
48 0x00
49 0x00
90 0x00
91 0x00

149 0x00
150 0x00
151 0x00
152 0x00
153 0x00
154 0x00
155 0x00
162 0x00
163 0x00
164 0x00
165 0x00
183 0xD2

Table B.1: Register values generated by ClockBuilder Pro for the Adafruit Si5351
clock generator.
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B.2 Manually Generated Register Values

Listed in this section are the manually generated register values that were used in
the adaptive mode implementation. The PLL A settings are located at registers 26–
33 and the multisynth 0 settings reside at registers 42–49. To activate the integer
mode setting to improve jitter performance for the multisynth 0 block, the 7th bit
of register 16 must be set to 1. The value in register 16 used in the adaptive mode
implementation was therefore changed from 0x0F to 0x4F when integer mode for
multisynth 0 was activated. Other than that, all other register values used in any of
the adaptive mode implementations remained the same as in the ClockBuilder Pro
generated asynchronous mode implementation register map presented in Table B.1.

Register Register Value
26 0x02
27 0x71
28 0x00
29 0x09
30 0x4A
31 0x00
32 0x00
33 0x56

Table B.2: Manually calculated register values used in adaptive mode for the
Adafruit Si5351 clock generator PLL A block.

Registers
42 43 44 45 46 47 48 49

Clock adjustment Register value
+2.0 % 0x00 0x01 0x00 0x64 0x00 0x00 0x00 0x00
+1.5 % 0x00 0x01 0x00 0x63 0x80 0x00 0x00 0x00
+1.0 % 0x00 0x01 0x00 0x63 0x00 0x00 0x00 0x00
+0.5 % 0x00 0x01 0x00 0x62 0x80 0x00 0x00 0x00

No adjustment 0x00 0x01 0x00 0x62 0x00 0x00 0x00 0x00
-0.5 % 0x00 0x01 0x00 0x61 0x80 0x00 0x00 0x00
-1.0 % 0x00 0x01 0x00 0x61 0x00 0x00 0x00 0x00
-1.5 % 0x00 0x01 0x00 0x60 0x80 0x00 0x00 0x00
-2.0 % 0x00 0x01 0x00 0x60 0x00 0x00 0x00 0x00

Table B.3: Manually calculated register values used in adaptive mode for the
Adafruit Si5351 clock generator multisynth 0 block with the integer bit set.
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Registers
42 43 44 45 46 47 48 49

Clock adjustment Register value
+0.008 % 0x00 0xFA 0x00 0x62 0x02 0x00 0x00 0x0C
+0.006 % 0x00 0xFA 0x00 0x62 0x01 0x00 0x00 0x86
+0.004 % 0x00 0xFA 0x00 0x62 0x01 0x00 0x00 0x06
+0.002 % 0x00 0xFA 0x00 0x62 0x00 0x00 0x00 0x80

No adjustment 0x00 0xFA 0x00 0x62 0x00 0x00 0x00 0x00
-0.002 % 0x00 0xFA 0x00 0x61 0xFF 0x00 0x00 0x7A
-0.004 % 0x00 0xFA 0x00 0x61 0xFE 0x00 0x00 0xF4
-0.006 % 0x00 0xFA 0x00 0x61 0xFE 0x00 0x00 0x74
-0.008 % 0x00 0xFA 0x00 0x61 0xFD 0x00 0x00 0xEE

Table B.4: Manually calculated register values used in adaptive mode for the
Adafruit Si5351 clock generator multisynth 0 block with the fractional bit set.
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C
Jitter Histograms

This section lists the period and cycle-to-cycle jitter histograms created from the
digital oscilloscope measurements for all the different design implementations. Im-
ages are organized firstly by USB synchronization type and secondly by clock source,
with each set of plots belonging to a particular design having its own color scheme.

C.1 Asynchronous Mode Jitter Histograms

C.1.1 Asynchronous Mode with Si5351 Integer Multisynth
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Figure C.1: I2S component input clock period jitter histogram for asynchronous
mode USB with the Si5351 multisynth set to fractional mode.
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Figure C.2: I2S component input clock cycle-to-cycle jitter histogram for asyn-
chronous mode USB with the Si5351 multisynth set to fractional mode.
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Figure C.3: I2S SCK signal period jitter histogram for asynchronous mode USB
with the Si5351 multisynth set to fractional mode.
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Figure C.4: I2S SCK signal cycle-to-cycle jitter histogram for asynchronous mode
USB with the Si5351 multisynth set to fractional mode.
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Figure C.5: I2S WS signal period jitter histogram for asynchronous mode USB
with the Si5351 multisynth set to fractional mode.
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C.1.2 Asynchronous Mode with External Crystal Oscillator
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Figure C.6: I2S component input clock period jitter histogram for asynchronous
mode USB using the external XO as source clock.
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Figure C.7: I2S component input clock cycle-to-cycle jitter histogram for asyn-
chronous mode USB using the external XO as source clock.
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Figure C.8: I2S SCK signal period jitter histogram for asynchronous mode USB
using the external XO as source clock.
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Figure C.9: I2S SCK signal cycle-to-cycle jitter histogram for asynchronous mode
USB using the external XO as source clock.
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Figure C.10: I2S WS signal period jitter histogram for asynchronous mode USB
using the external XO as source clock.

C.1.3 Asynchronous Mode with Fixed Frequency Clock
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Figure C.11: I2S component input clock period jitter histogram for asynchronous
mode USB using the external fixed frequency clock board as source clock.
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Figure C.12: I2S component input clock cycle-to-cycle jitter histogram for asyn-
chronous mode USB using the external fixed frequency clock board as source clock.
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Figure C.13: I2S SCK signal period jitter histogram for asynchronous mode USB
using the external fixed frequency clock board as source clock.
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Figure C.14: I2S SCK signal cycle-to-cycle jitter histogram for asynchronous mode
USB using the external fixed frequency clock board as source clock.
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Figure C.15: I2S WS signal period jitter histogram for asynchronous mode USB
using the external fixed frequency clock board as source clock.
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C.1.4 Asynchronous Mode with Custom Fractional Divider
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Figure C.16: I2S component input clock period jitter histogram for asynchronous
mode USB using the IMO as source clock together with the fractional divider com-
ponent.
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Figure C.17: I2S component input clock cycle-to-cycle jitter histogram for asyn-
chronous mode USB using the IMO as source clock together with the fractional
divider component.
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Figure C.18: I2S SCK signal period jitter histogram for asynchronous mode USB
using the IMO as source clock together with the fractional divider component.
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Figure C.19: I2S SCK signal cycle-to-cycle jitter histogram for asynchronous mode
USB using the IMO as source clock together with the fractional divider component.
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C. Jitter Histograms
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Figure C.20: I2S WS signal period jitter histogram for asynchronous mode USB
using the IMO as source clock together with the fractional divider component.

C.1.5 Asynchronous Mode with Si5351 Integer Multisynth
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Figure C.21: I2S component input clock period jitter histogram for asynchronous
mode USB with the Si5351 multisynth set to integer mode.
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Figure C.22: I2S component input clock cycle-to-cycle jitter histogram for asyn-
chronous mode USB with the Si5351 multisynth set to integer mode.
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Figure C.23: I2S SCK signal period jitter histogram for asynchronous mode USB
with the Si5351 multisynth set to integer mode.
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Figure C.24: I2S SCK signal cycle-to-cycle jitter histogram for asynchronous mode
USB with the Si5351 multisynth set to integer mode.

22,675

22,675.25

22,675.5

22,675.75

22,676

22,676.25

22,676.5

22,676.75

22,677

22,677.25

22,677.5

0

2

4

6

8

10

12

14

16

18

20

I2S WS output clock period (ns)

R
eg
is
te
re
d
o
cc
u
rr
en
ce
s

Figure C.25: I2S WS signal period jitter histogram for asynchronous mode USB
with the Si5351 multisynth set to integer mode.
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C.2 Adaptive Mode Jitter Histograms

C.2.1 Adaptive Mode with Si5351 Integer Multisynth
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Figure C.26: I2S component input clock period jitter histogram for adaptive mode
USB with the Si5351 multisynth set to integer mode.
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Figure C.27: I2S component input clock cycle-to-cycle jitter histogram for adaptive
mode USB with the Si5351 multisynth set to integer mode.
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Figure C.28: I2S SCK signal period jitter histogram for adaptive mode USB with
the Si5351 multisynth set to integer mode.

0 0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1 1.1

0

2

4

6

8

10

12

14

16

18

20

22

24

I2S component SCK output clock cycle-to-cycle variation (ns)

R
eg
is
te
re
d
o
cc
u
rr
en
ce
s

Figure C.29: I2S SCK signal cycle-to-cycle jitter histogram for adaptive mode
USB with the Si5351 multisynth set to integer mode.
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Figure C.30: I2S WS signal period jitter histogram for adaptive mode USB with
the Si5351 multisynth set to integer mode.

C.2.2 Adaptive Mode with Si5351 Fractional Multisynth
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Figure C.31: I2S component input clock period jitter histogram for adaptive mode
USB with the Si5351 multisynth set to fractional mode.
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Figure C.32: I2S component input clock cycle-to-cycle jitter histogram for adaptive
mode USB with the Si5351 multisynth set to fractional mode.
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Figure C.33: I2S SCK signal period jitter histogram for adaptive mode USB with
the Si5351 multisynth set to fractional mode.
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Figure C.34: I2S SCK signal cycle-to-cycle jitter histogram for adaptive mode
USB with the Si5351 multisynth set to fractional mode.
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Figure C.35: I2S WS signal period jitter histogram for adaptive mode USB with
the Si5351 multisynth set to fractional mode.
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C.3 Synchronous Mode Jitter Histograms

C.3.1 Synchronous Mode with Custom Fractional Divider
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Figure C.36: I2S input clock period jitter histogram for synchronous mode USB
using the IMO as source clock with the fractional divider component.
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Figure C.37: I2S input clock cycle-to-cycle jitter histogram for synchronous mode
USB using the IMO as source clock with the fractional divider component.
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Figure C.38: I2S SCK signal period jitter histogram for synchronous mode USB
using the IMO as source clock with the fractional divider component.
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Figure C.39: I2S SCK signal cycle-to-cycle jitter histogram for synchronous mode
USB using the IMO as source clock with the fractional divider component.
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Figure C.40: I2S WS signal period jitter histogram for synchronous mode USB
using the IMO as source clock with the fractional divider component.
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