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Towards cavity optomechanics with integrated multi-element mechanical resonators

Johan Kolvik
Department of Microtechnology and Nanoscience
Chalmers University of Technology

Abstract

Cavity optomechanics describes the interaction between an intracavity light field and a
mechanical resonator. This mutual coupling allows for a means to optically control me-
chanical motion down to the quantum regime. Using an optomechanical device to observe
non-linear quantum effects, such as direct generation of non-classical states, requires the
strong single photon-phonon coupling regime, which is yet to be experimentally realized
for chip-based devices. Coupling light to the collective motion of an array of highly re-
flective mechanical resonators has been predicted to increase the coupling strength and is
therefore a promising way forward in achieving this goal.

In this thesis, I present the first steps towards realizing cavity optomechanics with multi-
element membrane-type resonators fabricated from an AlGaAs heterostructure. The op-
tical and mechanical properties of single- and double-layer resonators are characterized,
showing resonance frequencies in the 100 kHz regime and room temperature mechanical
quality factors of 104 at high vacuum. The reflectivity of the AlGaAs heterostructure is
measured to be > 95 % at telecom wavelengths. The membrane devices are subsequently
inserted as the back mirror of a 10 mm long Fabry-Pèrot-type cavity. This membrane-at-
the-edge geometry shows a cavity linewidth of 6.38(8) MHz, corresponding to a finesse of
2370(30). Finally, an experimental setup for characterizing optomechanical properties is
discussed, and its performance is analyzed in terms of cavity mirror impedance mismatch
and membrane clipping loss.

Keywords: Cavity optomechanics, AlGaAs heterostructures, Micro-mechanical resonators,
Optical measurement.
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optical (δâ) modes are coupled by the optomechanical coupling strength g.
The modes are coupled to environmental noise fields b̂in and f̂in through
couplings Γm, κ0, respectively. The optical field is also driven by δâin
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1. Introduction

1.1 Radiation pressure

Optomechanics is a field of physics that focuses on the interaction between a mechanical
resonator and the light field. This mutual interaction can for instance mediated by radia-
tion pressure. Radiation pressure is a force acting on a body shined on by a source of light
and originates from the momentum carried by the electromagnetic field. This momentum
can be derived classically through Maxwell’s equations. It can also be intuitively explained
by the quantum description of light and its energy carrying particle, the photon. A photon
carries the momentum p = hf/c which is given by its frequency f weighted by the speed
of light c and Plank’s constant h. An elastic scattering process where a photon reflects off
an object will thus transfer the momentum ∆p = h(f + f ′)/c where f, f ′ is the frequency
of the light before and after reflection, see Figure 1.1.

Figure 1.1: An incident photon of frequency f scatters on an object with mass m.
Momentum and energy is conserved in the elastic process which leads to the exchanged
quantities ∆p and ∆E.

The change in the momentum indicates that a force has been exerted on the object.
However, the interaction is very weak due to the magnitude of h and can thus be omitted
in all circumstances. The radiation pressure of the sunlight hitting earth has a magnitude
of about 10 pN/m2, meaning that the face of a typical smartphone experiences a radiation
pressure force equivalent to supporting a yeast cell against gravity. But even though
the interaction is weak, it can still be observed in systems at appropriate mass and time
scales. The first observation of the effect was made by Johannes Kepler as early as 1619
by studying the tails of comets in our solar system. The comets seemed to have two
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1. Introduction

Figure 1.2: A schematic of the canonical cavity optomechanical system. Laser light
is incident on a pair of mirrors forming a cavity. The back mirror of the cavity is
allowed to move and is held in place by a spring, its motion in time described by x(t).
The light that enters the cavity circulates between the mirrors and, through radiation
pressure, interacts with the back mirror.

different tails, one parallel to the comet velocity and one pointing away from the sun, as
if pushed by some invisible force [1]. It was not until the early 1900s, however, that the
effect would be experimentally shown in works done by Lebedev [2] and Nichols and Hull
[3]. In the late 20th century, research on controlling the motion of small objects with light
was gaining momentum. Starting in the 1970s, focused laser beams were utilized to trap
atoms and ions [4] and the ability to cool ions with laser sidebands was demonstrated by
Neuhauser in 1978 [5].

1.2 Cavity optomechanics

When increasing the mass of a mechanical object beyond the size of atoms and ions, the
effect of the radiation pressure is very weak. Therefore, to study how light can control
the motion of larger bodies, the intensity of the light field must be increased. This task
can be performed by a cavity that confines electromagnetic radiation into a small region
of space and enhances its intensity. Coupling this field to the mechanical motion thus
allows for the study of light-matter interaction beyond the scale of atoms and ions. The
interaction between an intracavity field and a mechanical resonator is described by cavity
optomechanics [6].

The canonical cavity optomechanical system is shown in Figure 1.2 in which a laser is
incident to an optical cavity, which is comprised of two mirrors. Crucially, the back
mirror of the cavity is allowed to move and is attached to a spring, forming the mechanical
resonator part of the system. In this configuration, photons entering the cavity are allowed
to travel back and forth between the mirrors and interact with the mechanical resonator
once every round trip. The strength of the radiation pressure exerted on the back mirror
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1.2. Cavity optomechanics

(b) (c)(a)

Figure 1.3: Examples of optomechanical systems. (a). GaAs photonic crystal pat-
terned micro-membrane. The figure shows the type of membranes studied in this
thesis. (b) GaAs micro-disc resting on a pillar serving as an optomechanical res-
onator. Optical and mechanical modes are co-localized within the disc and interact
through radiation pressure. Figure taken from [8]. (b). Lithium niobate (LN) op-
tomechanical crystal. As for the microdisc, the structure co-localizes mechanical and
optical fields that interact within the structure. Figure taken from [9].

is thus increased proportionally to the number of round trips that are allowed for each
photon before it is lost to scattering, absorption, or transmission. The movement of the
back mirror introduces another interesting interaction between light and matter. When the
back mirror is displaced, the resonance frequency is shifted which reduces the intracavity
intensity. Thus, a natural coupling between light and mechanical motion is realized, which
results in interesting static and dynamic phenomena [6]. The mentioned effects could, for
example, be used to cool mechanical resonators down to their quantum ground state of
motion [7].

The field of cavity optomechanics has seen a lot of activity since the first study of the
optomechanical interaction with a macroscopic mirror in 1983 [10]. In general, the work is
centered around performing studies of fundamental physical phenomena, such as observing
macroscopic mechanical quantum states or investigating novel sensing applications. To
achieve this, different types of highly isolated optomechanical systems which favor strong
light-matter interaction are investigated. Advances in microfabrication techniques in the
21st century have allowed for the realization of precise micromechanical systems with
promising optomechanical capabilities.

Figure 1.3 shows three types of realizations that are, among many others, used to study
cavity optomechanics. Panel (a) displays a micromechanical mirror which can serve as
the back mirror of an optical cavity, similar to the system presented in Figure 1.2. This
type of system has been investigated by several groups in the late 2000s and has been
used to demonstrate optomechanical cooling [11], [12]. Panel (b) shows a micrometer-
scale optomechanical resonator in which breathing mechanical modes in the micro-disc
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are coupled to a whispering gallery mode of the electromagnetic field. The coupling
can be understood by noting that light circulating in the disc exerts radiation pressure
against the resonator inner walls, pushing it outwards. Deformations in the disc increase
the effective length of the resonator which mediates the mutual light-matter interaction.
Micro-resonators have the advantages of high mechanical frequencies which allows for
sideband-resolved optomechanics as well as design solutions to minimize clamping losses
[8], [13]. Another realization is the optomechanical crystal (OMC) which trap optical
and mechanical energy into highly confined regions of space. A lithium niobate OMC is
shown in panel (c) of Figure 1.3. Silicon OMC’s has been used to cool nanomechanical
breathing motion to the quantum ground state [7]. The design also allows for interesting
photonic-phononic circuitry applications such as bidirectional optical to microwave photon
transduction which is crucial for quantum information technology [9], [14].

Figure 1.4: Comparison of different optomechanical systems utilizing micromechan-
ical membranes. (a) SiN membrane utilized in a membrane in the middle (MIM)
setup. Figure taken from [15] (b). Two SiN membrane deposited on each side of a
silicon wafer designed for multi-element MIM optomechanics. Photonic crystal pat-
terns increases membrane reflectivity for a given wavelength. Figure taken from [16]
(c). Double-layer GaAs membrane grown using molecular beam epitaxy (MBE) on a
distributed Bragg reflector (DBR) mirror forming a multi-element membrane at the
edge system. This geometry is studied in our group and allows for integrated on-chip
optomechanics devices.

Within the micromechanical membrane geometry, several works have investigated systems
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where the resonator is placed in the middle of an optical cavity leading to a dispersive
optomechanical coupling. This was demonstrated by Thompson et al. in 2008 and offers a
way to perform quantum non-demolishing measurements of mechanical resonator phonon
numbers [15], see panel (a) of Figure 1.4. In addition, theoretical work by Xuereb et al. in
2012 suggests that a stack of identical mechanical resonators placed within a high finesse
optical cavity has the potential to increase the optomechanical coupling strength by several
orders of magnitude [17]. This is of great interest since systems where the coupling strength
exceeds losses to the environment enter the realm of single-photon strong coupling. This
regime allows for the study of interesting single-photon statistics as well as quantum states
of motion for micromechanical systems [6].

1.2.1 Multi-element cavity optomechanics with GaAs membranes

With the promise of reaching strong optomechanical coupling strengths with multi-element
mechanical resonator stacks, several groups have investigated the phenomenon in recent
years. In 2018, two different works centered around double-layer mechanical resonators
were published. Piergentili et al. reported on two SiN membranes with tuneable separa-
tion in a macroscopic cavity for which they demonstrated an increase in optomechanical
coupling strength by a factor of 2.47 compared to the single-layer case [18]. A crucial
challenge with their system is the fact that two individual chips of SiN are glued together
to form the stack. This introduces an unwanted degree of freedom in mutual membrane
tilt. In addition, the reflectivity of the dielectric slabs is not high enough to create high
coupling strengths for multi-element stacks [19]. A solution to both of these problems was
presented by Gärtner et al. in the same year [16]. In their work, SiN membranes deposited
on either side of a 200 µm thick Si wafer were used in a membrane in the middle optome-
chanical setup, see panel (b) of Figure 1.4. The membranes were suspended by removing
the silicon between the membranes by wet etching from both sides of the chip. The re-
flectivity of the membranes was increased by perforating the membranes with a lattice of
holes which forms a photonic crystal. The crystal defines a photonic bandgap that restricts
the transmission of a certain wavelength effectively increasing the membrane reflectivity.
Similar to the work of Piergentili, an increase in optomechanical coupling strength to the
center of mass motion of a factor of 1.3 was demonstrated. However, the coupling to the
relative motion of the membranes was predicted to be increased by 120.

The aforementioned attempts at creating Membrane In the Middle (MIM) optomechanical
geometries with SiN membranes show that larger coupling between the electromagnetic
field and the center of mass and relative motion of a membrane stack is possible. How-
ever, to reach even higher optomechanical couplings, the gap between the membranes
in the multi-element stack requires fine-tuning in the nanometer range. To achieve this,
semiconductor heterostructures grown using Molecular Beam Epitaxy (MBE) can be uti-
lized which allow for precision growth of device and sacrificial layers. This is however
not compatible with SiN’s non-crystalline structure that doesn’t allow for MBE growth
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of consecutive layers. A solution to this problem, proposed by our group, is to use the
crystalline material GaAs for the membranes which can be grown by MBE. Additional
layers of AlGaAs can be added in between membranes which in turn are etched away with
hydrofluoric acid [20].

In this work, I present the characterization of an optomechanical system utilizing GaAs
membranes grown on top of a Distributed Bragg Reflector (DBR) forming a membrane at
the edge geometry, see panel (c) of Figure 1.4. This system uses the power of MBE-grown
heterostructures which has the potential to form a fully integrated on-chip optomechanical
system with the potential to reach high optomechanical coupling strengths.

1.3 Thesis organization

The work of this thesis is focused to developing a platform for optomechanical characteri-
zation of single- and double-layer micromechanical resonators. The structure of the thesis
aims to introduce the relevant concepts, both theoretical and experimental, that are used
here to investigate and analyze the optomechanical system. The chapters divide the thesis
into manageable pieces and are organized as follows:

Chapter 2. aims to make the reader familiar with the system under study by first in-
troducing the basics description of the optical and mechanical degrees of freedom which
together make up the optomechanical system. With understanding of the ingoing subsys-
tems, the optomechanical Hamiltonian is derived, and some system dynamics is explored
in terms of optomechanical damping and optical spring effect.

Chapter 3. presents the experimental techniques and setups used during the production
of this thesis. The techniques discussed are Pound-Drever-Hall cavity frequency lock-
ing and homodyne detection which enables sensitive readout of micromechanical motion.
These techniques are implemented in the optomechanical readout setup that was developed
during this work.

Chapter 4. covers the results of the thesis, categorized in three main parts. First,
the optical and mechanical properties of the micromechanical membranes are presented.
Secondly, the properties of optical cavities with integrated mechanical resonators are in-
vestigated. Lastly, the performance of the optomechanical readout setup is discussed.

Chapter 5. contains the conclusion of the thesis, which summarizes the presented work
and discusses the outlooks for the future of this project.
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2. Theory

In this chapter, the basic theory needed for understanding this thesis is presented. I
begin by introducing the optomechanical system which is studied in this work. To this
end, both the optical and mechanical subsystems are described, after which I introduce the
optomechanical Hamiltonian. Next, the concept of how the optomechanical interaction can
be increased through means of multi-element mechanical resonators is described. Finally, I
discuss the concept of using photonic crystals to increase the reflectivity of the mechanical
resonator. High membrane reflectivity is one requirement for reaching strong light-matter
interaction within the multi-element optomechanics framework.

2.1 Mechanical resonator

The harmonic oscillator is a fundamental physical concept with widely applicable mod-
elling capabilities, describing phenomena ranging from thermal baths to the electromag-
netic field. In this work, we will use it to model both the optical and mechanical sub-
systems. Starting with the mechanical resonator, an introduction to the classical and
quantum setting is given.

2.1.1 Classical description

The one-dimensional mechanical resonator in its simplest form is described by a point mass
m attached to a spring with force constant k, viscous damping Γm and time dependent
external force Fext(t). The resonance frequency of this system is defined by the mass and
force constant alone and is given by Ωm =

√
k/m. Another figure of merit is the quality

Figure 2.1: The classical mechanical resonator described by a point mass m attatched
to a spring with force constant k. The motion x is damped with viscous damping Γm

and driven by the external force Fext.
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2. Theory

factor Qm of the mechanical mode, given by

Qm = Ωm
Γm

(2.1)

which is a measure of the energy loss of the system. It is roughly corresponding to the
number of coherent oscillations performed by the system during the ringdown motion after
excitation by a delta pulse.

For this system, Newton’s equation of motion for the time dependent position x(t) of the
point mass reads

d2x(t)
dt2 + Γm

dx(t)
dt + Ω2

mx(t) = Fext(t)
m

. (2.2)

To explain the frequency response of the mechanical motion with respect to the external
force Fext we perform a Fourier transform of (2.2) defined by x̃(ω) =

∫∞
−∞ x(t) exp{−iωt}dt.

Solving the equation for x̃(ω) gives

x̃(ω) = F̃ext(ω)χ(ω) (2.3)

where χ(ω) is the linear response or susceptibility of the mechanical motion with respect
to the force Fext(t) and reads

χ(ω) = 1
m(Ω2

m − ω2 + iΓmω) . (2.4)

The susceptibility is a complex valued quantity with real and imaginary parts correspond-
ing to the system phase response to the external force. The real part is the in-phase
response, whilst the imaginary part describes the response which is π/2 out-of-phase with
the applied force [21]. By ergodicity, taking the square average of (2.3) over an ensemble of
trajectories x(t) with different initial conditions gives the power spectrum of the mechanical
motion describing the mechanical energy distribution as a function of frequency,

Sxx(ω) = 〈x̃(ω)x̃∗(ω)〉 =

∣∣∣F̃ext(ω)
∣∣∣2

m2((Ω2
m − ω2)2 + Γ2

mω
2) . (2.5)

This quantity is crucial when analyzing mechanical motion, telling us what frequency
components are present for a given dynamical system.

Consider a special case of the above system in which a mechanical resonator is in thermal
equilibrium with an external environment of temperature T and is not subject to any
additional external forces. The coupling to the environment will induce a stochastic flow
of energy between the resonator and the external thermal bath. This stochastic process
can be modeled by letting the resonator be subject to viscous damping Γth and time
dependent stochastic force Fth(t) [22]. The equation of motion thus becomes

ẍ(t) + Γthẋ(t) + Ω2
mx(t) = Fth(t)

m
, (2.6)
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which has the same form as (2.2). The stochastic nature of the thermally induced param-
eters Γth and Fth makes this problem similar to that of a particle experiencing thermal
Brownian motion, the difference here being the additional spring force term Ω2

mx(t) anchor-
ing the motion to the origin. To see how the thermal bath interacts with the mechanical
motion we make use of the expressions derived above along with results from statistical
physics.

Firstly, the fluctuation dissipation theorem states that [21]

Im[χ(ω)] = ω

2kBT
Cxx(ω) . (2.7)

which links the imaginary part of the susceptibility to the Fourier transform of the equal
time correlation function

Cxx(ω) =
∫ ∞
−∞
〈x(τ)x(0)〉 exp{iωτ}dτ . (2.8)

Next, for a stationary stochastic process x(t) 1, the Wiener-Khinchin theorem gives that

Sxx(ω) = Cxx(ω). (2.9)

Finally, we make use of (2.4) and (2.5) in conjunction with (2.7) to get an expression for
the Fourier transform of the thermal force∣∣Fth(ω)

∣∣2 = 2kBTΓthm, (2.10)

telling us that the bath interaction is independent of frequency2.

We can now approximate the power spectrum (2.5) by noting that around the mechanical
frequency ω ∼ Ωm we can write Ω2

m − ω2 = (Ωm − ω)(Ωm + ω) ≈ 2Ωm(Ωm − ω), yielding
a simplified form of the power spectrum is given as

Sxx(ω) ≈ kBT

2mΩ2
m

Γth
(ω − Ωm)2 + (Γth/2)2 . (2.11)

The above expression states that the power spectrum of the mechanical motion in thermal
equilibrium can be approximated as a Lorentzian at the resonance frequency Ωm with Full
Width Half Maximum (FWHM) given by the mechanical damping Γth. We emphasize
that the above describes a resonator with only one resonant mode Ωm. However, it is also
valid for a system with an arbitrary number of uncoupled modes given that Γth � ∆Ω
where ∆Ω is the smallest frequency spacing between individual oscillating modes.

From this analysis, another important result can be derived. By inverting the Fourier
transform in (2.9), and setting τ = 0 we see that

〈x2〉 =
∫ ∞
−∞

Sxx(ω)dω
2π , (2.12)

1A stationary stochastic process x(t) has time independent mean and second order moment [23].
2The white noise nature of the thermal force originates from the Markovianity of the bath dynamics
〈F (t− τ)F (t)〉 ∝ δ(τ).
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which states that the mean square value of the mechanical displacement can be obtained
by integration of the power spectrum. This is a powerful result which allows to study the
average mean displacement of a mechanical oscillation by observing its frequency response.
Solving this integral for the power spectrum (2.5) with thermal interaction gives [24]

〈x2〉 = kBT

mΩ2
m
, (2.13)

which is what we would expect when assuming equipartition for a mechanical resonator
coupled to a thermal bath at temperature T .

2.1.2 Quantum description

To describe the quantum mechanical nature of a mechanical resonator, one starts by
deriving its Hamiltonian. We consider a single, undamped, harmonic oscillating mode
with mass m described by the position x and momentum p, oscillating at frequency Ωm.
The energy of the system is given by

Hm = 1
2mΩ2

mx
2 + p2

2m . (2.14)

We now continue by promoting the coordinates to quantum mechanical operators x→ x̂,
p→ p̂ and invoke the canonical commutator relation

[x̂, p̂] = i~ . (2.15)

To find the eigenstates to this Hamiltonian we insert it into the Schrödinger equation

i~
d |ψ〉

dt = Ĥm |ψ〉 , (2.16)

which is most conveniently solved by introducing bosonic creation and annihilation oper-
ators

b̂† = 1
2xZPF

(
x̂+ i

mΩm
p̂

)
,

b̂ = 1
2xZPF

(
x̂− i

mΩm
p̂

)
,

[b̂, b̂†] = 1 ,

(2.17)

where xZPF is the zero-point fluctuation given by

xZPF =
√

~
2mΩm

. (2.18)

In this coordinate system we express the harmonic oscillator Hamiltonian as

Ĥm = ~Ωm

(
b̂†b̂+ 1

2

)
, (2.19)

where the operator b̂†b̂ = n̂b is the number operator for the quanta of oscillation in the
harmonic mode, also known as phonons. From (2.19) it is apparent that the energy
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eigenstates are simultaneous eigenstates of the number operator which indicates that the
number of phonons is a measure for the energy in an oscillating mode. Solving (2.16) in
the position basis gives a set of eigenstates obeying Ĥm |ψn〉 = En |ψn〉 with eigenenergies
En given by the creation operator [25]

|ψn〉 = (b̂†)n |ψ0〉 ,

〈x|ψ0〉 = 1
(2π)1/4√xZPF

exp
[
−1

4

(
x

xZPF

)2
]
,

En = ~ω
(
n+ 1

2

)
.

(2.20)

From the second line in (2.20) we see that xZPF defines the spatial extension of the quantum
mechanical ground state of the oscillator. Note that in this description we have considered
an isolated harmonic oscillator mode which does not interact with its environment. To
introduce a coupling to an environment one can, for instance, couple the system to an
ensemble of harmonic oscillators which is further explored in works such as [22].

2.2 Optical cavity

The second subsystem we look at is the electromagnetic field, which interacts with the
mechanics through radiation pressure. As discussed in Section 1.1, the radiation pressure
is usually omitted due to the small magnitude of the force. To increase the magnitude
of this interaction, we will make use of a Fabry-Pérot (FP) cavity which enhances the
strength of the electromagnetic field, from now on referred to as the optical field even
though microwaves can be utilized in optomechanical systems as well [26].

2.2.1 Classical description

We begin the classical analysis by considering two identical and perfectly reflecting mirrors
of negligible thickness that are facing each other at a distance L. The material in between
the mirrors is assumed to be homogeneous and is taken to be vacuum for simplicity. It is
assumed that the optical field inside the cavity is monochromatic and linearly polarized,
thus taking the form

E(r, t) = A(r)eiωt , (2.21)

where A(r) is the amplitude and ω is the single angular frequency of the light. Restricting
our analysis to one dimension, the cavity of length L defines the boundary conditions for
the electrical field E inside the cavity. With these assumptions, Maxwell’s equations for
the electric field (2.21) inside the cavity are simplified to a stationary Helmholtz equation
for the amplitude

∂2

∂x2A(x) + k2A(x) = 0 ,

A(0) = 0

A(L) = 0
(2.22)
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with k = ω/c. Given that kL = πn, where n is an integer, the solution describes a linear
combination of standing waves inside the cavity

A(x) =
∑
n

An sin
(
nπx

L

)
, x ∈ [0, L] and n = 1, 2, ... , (2.23)

with harmonic amplitudes An. This is equivalent to the classical ”particle in a box”
example. The three first standing wave solutions are visualized in Figure 2.2.

Figure 2.2: The stationary solutions to the perfectly reflecting mirror cavity presented
in (2.23) are electrical field amplitudes with fixed frequencies ωcav = πcn/L, n =
1, 2, ... . The first three harmonics are shown above.

The cavity thus acts as a spectral filter supporting only the harmonics of the resonant
frequency given by

ωcav = πcn/L . (2.24)

The spectral spacing between two adjacent cavity harmonics is called the Free Spectral
Range (FSR) and is given by FSR = c/2L .

In all realistic cases the cavity mirrors will not be perfectly reflecting, thus also having a
finite transmission T 6= 0 and other intrinsic losses, e.g., scattering and absorption. The
losses are modelled by the parameter β, which is defined as an attenuation per unit length
of propagation within the cavity. Because of the finite transmission it is possible to insert
power into the cavity with an external light source and thus populate the intracavity field.
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...

Figure 2.3: Optical cavity with imperfectly reflecting mirrors M1 and M2. The field
Ain is incident on the cavity and populates the intracavity amplitudes Ai with i =
0, 1, ... . The leakage of the intracavity field contributes to the reflected (transmitted)
amplitude Arefl (Atrans).

Consider the system presented in Figure 2.3. An incident light field of amplitude Ain

and angular frequency ω impinges on the left side of a cavity with mirrors M1 and M2.
The intensity reflection and transmission coefficients of the mirrors are assumed to be Ri,
Ti, respectively for i = 1, 2. The amplitude of the transmitted field into the cavity is
defined by the transmission coefficient of M1 and is given by A0 =

√
T1Ain. Now, the field

inside the cavity will start to circulate between the two cavity mirrors and be attenuated
by subsequent transmissions through the cavity mirrors. The following derivation closely
follows that of [27] where it is shown that for each roundtrip i of the cavity, the amplitude
of the field is multiplied by a roundtrip factor g(ω):

Ai = Ai−1g(ω) ,

g(ω) = gme−iδφ(ω) ,

gm =
√
R1R2e−Lβ .

(2.25)

The roundtrip factor g(ω) accounts for the amplitude attenuation via transmission and
internal losses through the factor gm and the cavity roundtrip phase difference through
δφ(ω) = (ω−ωcav)2L/c. The total amplitude inside the cavity is the sum of the roundtrip
amplitudes which can be evaluated as a geometric series:

Acav =
∞∑
i=0

Ai = A0

∞∑
i=0

g(ω)i = A0
1− g(ω) ,

∣∣g(ω)
∣∣ < 1 . (2.26)

The intensity of the field is given by the square of the amplitude

Icav = |Acav|2 = T1|Ain|2

(1− gm)2
1

1 + (2F/π)2 sin2(δφ/2)
, (2.27)

where F is the finesse of the cavity and is given by

F =
π
√
gm

1− gm
. (2.28)
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Considering equation (2.27) some important observations can be made. Firstly, at frequen-
cies ω ∼ ωcav the roundtrip phase difference is small i.e., |δφ| � 1, and we can expand the
second factor on the right hand side using a small angle approximation. This gives the
intracavity field intensity as a Lorentzian in frequency space centered around ω = ωcav,

Icav ≈
T1|Ain|2

(1− gm)2
(κ/2)2

(ω − ωcav)2 + (κ/2)2 . (2.29)

The parameter κ is the FWHM of the Lorenzian, often referred to as the cavity linewidth,
and is given by

κ

2π = c

2LF = FSR
F

. (2.30)

This means that the intracavity field does not vanish for nonzero cavity detunings, i.e.
∆ = ω−ωcav 6= 0. The allowed frequency range is centered around ω = ωcav with a width
defined by the cavity finesse F . Secondly, the intensity of the field at resonance (∆ = 0)
is proportional to the incident intensity Iin = |Ain|2 and approaches infinity when gm → 1,
allowing us to create strong intracavity fields with carefully chosen mirrors.

Turning our attention to the cavity reflection and transmission, the relevant amplitudes
are given by

Arefl = −
√
R1Ain +

√
T1R2e−2Lβ+iδφAcav,

Atrans =
√
T2e−Lβ+iδφ/2Acav.

(2.31)

By inserting the intracavity amplitude (2.26) and normalizing to the incident intensity we
get the following relations

Irefl
Iin

=
∣∣R1 − g(ω)

∣∣2
R1
∣∣1− g(ω)

∣∣2 ,
Itrans
Iin

= T1T2
∣∣g(ω)

∣∣2
R1R2

∣∣1− g(ω)
∣∣2 .

(2.32)

For the special case of a lossless symmetric cavity (R1 = R2, T1 = T2, β = 0) excited by
a resonant incident field we obtain g(ω) → Re−iδφ(ω). For this case, we can again invoke
a small angle approximation for the relative cavity reflection when ω ∼ ωcav giving

Irefl
Iin
≈ 1− (κ/2)2

(ω − ωcav)2 + (κ/2)2 , (2.33)

which is a useful result when analyzing cavity reflections. Additionally, we see that at
resonance, i.e. ω = ωcav, the lossless symmetric case gives Irefl/Iin = 0 and Itrans/Iin = 1.
For arbitrary R < 1 the highly reflective cavity is therefore totally transparent to the
incoming light due to the reflection destructively interfering with the back-transmission of
the intracavity field. If the cavity is not symmetric, there is an impedance mismatch be-
tween the mirrors which decreases the cavity resonance. In Figure 2.4 the cavity reflection
is calculated over two full FSRs at different impedance mismatches.
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Figure 2.4: a. Cavity reflection spectra at different levels of impedance mismatch.
For all traces R2 = 0.7. For R1 = R2 the symmetrical case is achieved and the
reflection vanishes for the resonant wavelengths. Note that the reflection spectra
retains its Lorentzian shape for non-zero impedance mismatches. b. Magnitude
of cavity resonance e.g., reflection spectrum minimum as a function R1 for fixed
R2 = 0.9. Impedance mismatch is more severe for higher reflecting mirrors.

2.2.2 Fabry-Pérot cavity architecture

We have seen that the FP optical cavity is comprised of two flat mirrors facing each other
at distance L. In practice, this configuration is not desirable due to the strict alignment
conditions required to prevent intracavity light leakage. To confine the optical field inside
the cavity, spherical mirrors are used to trap the light. Important to note is that spherical
mirrors can be modeled as perfect lenses with focal distance f = r/2 where r is the radius
of curvature of the mirror, see Figure 2.5. This means that a cavity can be modeled as an
infinite series of lenses which guides a certain spatial mode of light.

Having stationary ray paths inside the cavity using spherical mirrors puts restrictions on
the length of the cavity. A cavity, with mirror distance L and radii of curvature r1 and r2,
in which all light paths are closed loops is called stable and obeys the following condition
[28]

0 ≤
(

1− L

r1

)(
1− L

r2

)
≤ 1 . (2.34)

Special cases of stable cavities include

Concentric: r1 = r2 = L/2

Confocal: r1 = r2 = L

Hemispheric: r1 =∞, r2 = L .

(2.35)

In this work a hemispheric cavity is used and we will thus turn our focus to this special
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Figure 2.5: A spherical mirror with radius of curvature r focuses incoming light equiv-
alently to a spherical lens with focal distance f = r/2.

case of the FP cavity. When L→ r2 a perfect focus on the flat mirror is maintained by the
curved mirror due to the focus being at a distance 2f from the focusing element, where f
is the effective focal distance of M2. Of course, there is no perfect focus in practice and
it can be shown that the beam radius w for the focus on the flat mirror of a hemispheric
cavity satisfies [24]

w2 = Lλ

π

√
r2
L
− 1 . (2.36)

2.2.3 Cavity spatial modes

The waist radius w is the radial distance from the optical axis where the light intensity
has decayed by a factor of e−2. This is a parameter which describes the Gaussian nature of
propagating light rays. The electrical field of a Gaussian ray propagating in the z-direction
can be described by [27]

E(x, y, z) = E0
w0
w(z) exp

{
−x

2 + y2

w(z)2

}
exp

{
−ikz − ikx

2 + y2

2R(z) + iζ(z)
}
, (2.37)

where w0 is the beam radius at position z = 0, w(z) = w0
√

1 + (z/zr)2 with Rayleigh
range zr = πw2

0/λ, R(z) = z(1 + (z/zr)2) is the radius of curvature of the propagating
wavefront, k is the wavenumber of the light. ζ(z) = − arctan

(
z/zr

)
is the so called Gouy

phase which is a phase shift that accounts for the transverse confinement of the optical
mode. This is the fundamental spatial distribution of light field intensity and is the most
common output of single mode lasers and optical fibers. When the light field is not
strictly described by the precise transverse spatial distribution stated above it is called a
multimode field and it can be described by a linear combination of spatially orthogonal
optical modes. These optical modes arise from solving the paraxial wave equation in the
x, y-plane with defined boundary conditions [27]. A specific set of solutions is the so called
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Hermite-Gauss set

El,m(x, y, z) = E0Al,m
w0
w(z)Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

{
−x

2 + y2

w(z)2

}
×

exp
{
−ikz − ikx

2 + y2

2R(z) + iζl,m(z)
}
, l,m = 0, 1, 2... .

(2.38)

In this equation Hl(x) = (−1)l exp
(
x2
)

dl

dxl exp
(
−x2

)
are the Hermite polynomials and

Al,m are normalization constants. The Gouy phase is also dependent on the spatial mode
and is given by [29]

ζl,m(z) = −(2 + l +m) arctan z/zR . (2.39)

In Section 2.2.1 we have seen that the resonant condition of an optical cavity is that the
roundtrip phase difference δφ(ω) mod 2π = 0. Now, looking at the phase of an Hermite-
Gauss mode at the optical axis (x, y = 0) that is allowed to propagate within one cavity
roundtrip we get the condition for the resonance frequency

δφl,m = 2Lk − (ζl,m(0)− ζl,m(2L))

= 2ωl,mL
c

−∆ζl,m = 2πn

⇔

ωl,m = ωcav + FSR∆ζl,m .

(2.40)

Here ∆ζl,m = ζl,m(0) − ζl,m(2L) and ωcav = cnπ/L is the resonant frequency for a plane
wave inside the cavity. From (2.40) we see that the spectral seperation between two spatial
modes with Hermite-Gauss indices m, l and m′, l′ is defined by

∆ωm
′,l′

m,l = FSR
∣∣∣∆ζl,m −∆ζl′,m′

∣∣∣ , (2.41)

which originates from the difference in Gouy phase of the spatial modes. Another thing to
note is that the separation is independent of frequency and will be same for all harmonics.
This result is remarkable, not only does the cavity work as a spectral filter, allowing a
band of frequencies around the resonance to pass through, but in the process also acts as
a spatial filter by filtering out the resonant spatial mode. The phenomena is depicted in
Figure 2.6 where the transmission spectrum of an FP cavity with an incident multimode
field is shown. The amplitudes of the resonances is determined by the linear combination
of spatial modes in the incident field. To access only the fundamental Gaussian mode,
a perfect single mode field has to impinge with correct alignment and focusing which,
in practice, is performed by aligning a single mode laser output with a set of lenses and
mirrors. A measure of how well aligned the incident laser field is to a certain cavity mode
is the ratio of its transmission to the sum of transmission in all modes present in one FSR.
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Figure 2.6: The intensity transmission spectrum of a FP cavity with an incident
multimode field normalized to the incident intensity. Harmonics are separated by the
FSR whereas the separation between spatial modes with Hermite-Gauss indices m, l
and m′, l′ is defined by ∆ωm

′,l′

m,l . The amplitude of the resonances is determined by
the spatial composition of the incident field.

2.2.4 Quantum description

In Section 2.2.1, we introduced the optical cavity as a classical system with parameters
such as resonance frequency ωcav and linewidth κ. These parameters define the frequency
behaviour of an excitation within the optical field, not unlike how we viewed the mechanical
resonator in Section 2.1.1. The similarities between optical and mechanical resonances is
a motivation for thinking of the electromagnetic field as a harmonic oscillator. In fact, it
is not even necessary to consider a cavity to conclude that the electromagnetic field can be
quantized as harmonic oscillator modes with frequencies given by the relevant geometry.
The derivation showing how the electromagnetic field can be quantized is given in basic
quantum mechanics textbooks such as [25] and starts from Maxwell’s equations and ends
up in a quantum mechanical Hamiltonian describing the energy in the electromagnetic
field as

Ĥem =
∑
k,p

~ωk,p

(
â†k,pâk,p + 1

2

)
, (2.42)

where k and p is the wavenumber and polarization of the quantized modes with frequen-
cies ωk,p and bosonic operators ak,p and a†k,p obeying [ak,p, a

†
k′,p′ ] = δk,k′δp,p′ . As in the

mechanical system described above the bosonic operators govern the quantized energy in
the given mode, this time referring to photons. The number of photons in a given mode
{k,p} is given by the number operator n̂k,p = a†k,pak,p. As seen in the classical description,
the consequence of an optical cavity is a restriction of the allowed optical modes within
a geometry which will reduce the amount of terms in the sum of (2.42). Consider an op-
tical cavity of high finesse which adequately separates the cavity harmonics in frequency
space, allowing for approximating the modes as non-interacting. The energy in one of the
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2.3. Optomechanical coupling

Figure 2.7: Canonical optomechanical system. A laser is shined on an optical cavity
with resonance frequency ωcav and loss κ which is connected to a mechanical resonator
via the harmonic movement x of the back cavity mirror with frequency Ωm and
damping Γm.

resonances with frequency ωcav = cπ/L can thus be reduced to

Ĥo = ~ωcav
(
â†â+ 1

2

)
, (2.43)

which is the Hamiltonian we consider when exploring the dynamics of the optomechanical
system in the coming sections.

2.3 Optomechanical coupling

In this section, we discuss the optomechanical interaction between a cavity mode and a
mechanical resonator through radiation pressure. We begin by analyzing the energy of
the coupled system and derive the optomechanical Hamiltonian. Using the Hamiltonian,
the equations of motion for the coupled system are derived which allows for studying the
consequences of the coupling such as optomechanical cooling. Lastly, the optomechani-
cal system is expanded by introducing multi-element mechanical resonators, allowing for
stronger light-matter interactions.

2.3.1 Optomechanical Hamiltonian

We start off by introducing the Hamiltonian which governs the dynamics of the coupled
system. In this derivation we assume a single mechanical mode interacting with a single
optical mode which is an accepted approximation for high quality mechanical and optical
resonators. For now, we omit the coupling to the optical and mechanical environments
which makes us consider a closed system. The system under study is the canonical op-
tomechanical setup shown in Figure 2.7 where one of the end mirrors of an optical cavity
is allowed to oscillate with frequency Ωm. The length of the cavity now depends on the
position of the back mirror x. We assume that L is the cavity length at the rest position
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of the back mirror and thus have

L(x) = L+ x , (2.44)

where it is assumed that |x|/L� 1. Taking the first harmonic of (2.24) (n = 1), we have
that a shift in the cavity length will cause a shift in cavity resonance frequency

ω(x) = πc

L(x) = πc

L+ x
≈ ω

(
1− x

L

)
, (2.45)

where ω = πc/L is taken as the unperturbed cavity frequency. We are now ready to
formulate the basic optomechanical Hamiltonian by again promoting the position of the
mirror to a quantum mechanical operator x→ x̂. The Hamiltonian consists of the energy
in the optical and mechanical systems given in (2.19) and (2.43)

Ĥ = Ĥm + Ĥo = ~Ωmb̂
†b̂+ ~ω(x̂)â†â

≈ ~Ωmb̂
†b̂+ ~ωâ†â− ~

ω

L
x̂â†â ,

(2.46)

where we use (2.45) and omit vacuum fluctuations. In this Hamiltonian the last term
describes the nonlinear interaction between the two modes. From (2.17) we have that
x̂ = xZPF(b̂+ b̂†) which gives the interaction term the following form

Ĥint = −~g0(b̂+ b̂†)â†â . (2.47)

In this expression, g0 is the single photon-phonon coupling given in frequency units as

g0 = ω

L
xZPF . (2.48)

This coupling is a crucial quantity which describes the cavity frequency shift corresponding
to one zero point displacement of the mechanical resonator. When looking at parameters
relevant for the systems described in this thesis, i.e. Ωm ∼ 100 kHz, L ∼ 10 mm, m ∼ 0.1
pg, ω ∼ 200 THz, gives g0/2π ∼ 100 Hz. Reaching the strong single-photon-phonon
coupling regime, i.e. κ < g0 thus requires extremely low loss cavities.

Finally, we introduce an optical drive with frequency ωl which adds another term to the
Hamiltonian. Adding this term and going to a rotating frame3 that rotates at the laser
drive frequency gives the final optomechanical Hamiltonian [24]

ĤOM = ~Ωmb̂
†b̂− ~∆â†â− ~g0(b̂+ b̂†)â†â+ i~E(â† − â) , (2.49)

where E is related to the power P of the laser drive |E| =
√
Pκ/~ωl and ∆ = ωl − ω is

the cavity detuning.

3Ĥrot(t) = i~ ∂R̂(t)
∂t

R̂(t)† + R̂(t)Ĥ(t)R̂(t)† where R̂(t) = exp
(
iωlâ

†ât
)
.
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2.3. Optomechanical coupling

2.3.2 Linearized coupling and the Langevin equations

Given the optomechanical Hamiltonian (2.49) we are now ready to study the dynamics
of the system at hand. However, complications arise from the nonlinear nature of the
interaction which makes analytical treatment of the system cumbersome. To tackle this
we study the system by using a semi-classical approach in which the optical amplitude of
the cavity â is given by

â = α+ δâ . (2.50)

Here it’s assumed that the input field has a strong, time independent coherent amplitude
denoted α with only small time dependent fluctuations δâ where

√
〈δâ2〉 � |α|. In this

description α is a complex number but is without loss of generality taken to be real and is
connected to the intracavity photon number α = √ncav. Using this approach prevents us
from analyzing nonlinear quantum effects such as optomechanical parametric instability
[6].

Given this assumption, the interaction term can be simplified to [6]

Ĥint,lin = −~g0
√
ncav(δâ† + δâ)(b̂† + b̂) (2.51)

From this equation we see that the coupling is now dependent on the strength of the
intracavity field, therefore we define the optomechanical coupling strength as g = g0

√
ncav.

This interaction term describes four possible processes a system state can evolve according
to, described by the terms in (2.51)

δâ†b̂ transfer of phonon to photon,

δâb̂† transfer of photon to phonon,

δâ†b̂† creation of phonon and photon pair,

δâb̂ annihilation of phonon and photon pair.

(2.52)

Solving the Heisenberg equation for the uncoupled motion of the operators δâ and b̂ gives
[30]

δâ(t) = δâ(0)ei∆t ,

b̂(t) = b̂(0)e−iΩmt ,
(2.53)

which allows for invoking the rotating wave approximation for the terms in (2.52) when
the cavity detuning ∆ = ±Ωm. For red cavity detunings i.e., ∆ ≈ −Ωm, the last two
terms of (2.52) can be omitted due to fast oscillations exp

(
±i(∆− Ωm)

)
≈ exp(∓2iΩm).

For this detuning the interaction reads

Ĥint,BS = −~g(δâ†b̂+ δâb̂†) (2.54)

and is sometimes called ”Beam Splitter” interaction which describes two harmonic oscil-
lators exchanging energy quanta at the rate g.
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The linear nature of the presented Hamiltonian is not at first glance apparent due to
the field operator products in (2.52). However, the linearity will become clear when
studying the dynamics of the system. Due to the two quantum systems being in contact
with environments, the effects of the bath has to be taken into account. The evolution of
quantum operators under the influence of stochastic forces is neatly described by Langevins
equations which, for an operator Ô, is formulated [23]

∂Ô

∂t
= i

~

[
Ĥ, Ô

]
+ N̂ . (2.55)

where Ĥ is the system Hamiltonian and N̂ is the corresponding stochastic noise terms
for the operator Ô. In addition, the coupling to the environment will also open up a
channel for energy in the optomechanical system to dissipate. Regarding the quantum
system as open, input-output theory gives the rates at which dissipation and coupling to
external forces takes place [31]. The interaction between systems, external noise and drive
is depicted in Figure 2.8.

Noise

Drive

Figure 2.8: Schematic of the driven optomechanical system. The mechanical (b̂) and
optical (δâ) modes are coupled by the optomechanical coupling strength g. The
modes are coupled to environmental noise fields b̂in and f̂in through couplings Γm,
κ0, respectively. The optical field is also driven by δâin through the coupling κext.
Finally, the modes dissipate with rates Γm and κ = κext + κ0, respectively.

Now, taking the above system-environment interactions into consideration, we derive the
equations of motion for the linearized optomechanical system by inserting the optome-
chanical Hamiltonian with the linearized interaction (2.51) into (2.55).

δ̇â =
(
i∆− κ

2

)
δâ+ ig(b̂† + b̂) +

√
κexδâin +

√
κ0f̂in ,

˙̂
b =

(
iΩm −

Γm
2

)
b̂+ ig(δâ† + δâ) +

√
Γmb̂in .

(2.56)

These coupled differential equations model how the amplitudes of the mechanical and
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optical fields evolve in time. The coupling between the optical and mechanical field is
the optomechanical coupling strength g introduced above and is controlled by managing
the population of the intracavity field. The equations also describe how the modes of
interest are influenced by external fields being the input optical drive δâin and optical
(mechanical) noise fields f̂in (b̂in). Finally, added to these equations are also damping terms
−κδâ/2 (−Γmb̂/2) for the optical (mechanical) fields which is valid for small damping rates
Γm � Ωm [6].

2.3.3 Optical spring effect and optomechanical damping

With the results from the previous section in terms of the linear equations of motion,
we are now ready to look at the consequences of the optomechanical coupling. Solving
Langevins equations (2.56) is most conveniently done in the frequency domain by the
means of the Fourier transform, similar to Section 2.1.1. Firstly, we go to the classical
averaged version of (2.56) by expressing the second equation in terms of the position
operator x̂ = xZPF(b̂ + b̂†) and then taking the average 〈·〉. Utilizing that the vacuum
fluctuations and thermal bath noise has zero mean e.g. 〈âin〉 = 〈f̂in〉 = 0 gives

α̇ = (i∆− κ

2 )α+ iGx+
√
κexα ,

mẍ = −mΓmẋ−mΩmx+G~|α|2 .
(2.57)

with α = 〈δâ〉, x = 2xZPFRe{〈b̂〉} and G = ωcav/L is the optical frequency shift per unit
length. Note that in going between the equations for b̂ and x̂ we require Γm � Ωm. Finally
we can solve for the mechanical susceptibility in Fourier space yielding

χopt = 1
m(Ω2

m + 2ωδΩm(ω)− ω2 − iω(Γm + Γopt(ω))) , (2.58)

which has the same appearance as the unperturbed mechanical susceptibility (2.4) up to
two additional terms

δΩm(ω) = g2 Ωm
ω

(
∆ + ω

(∆ + ω)2 + κ2/2 + ∆− ω
(∆− ω)2 + κ2/2

)
,

Γopt(ω) = g2 Ωm
ω

(
κ

(∆ + ω)2 + κ2/2 −
κ

(∆− ω)2 + κ2/2

)
,

(2.59)

with quadratic dependence on the optomechanical coupling g. The terms in (2.59) are
responsible for two optomechanical phenomena known as optical spring effect and op-
tomechanical damping. Figure 2.9 visualizes the two terms at ω = Ωm for a range of
detunings ∆. The interaction is visualized in two different regimes: sideband resolved
(κ < Ωm) and sideband un-resolved (κ > Ωm) which visualizes the importance of these
ratios.

25



2. Theory

2 1 0 1 2
∆/Ωm

200

100

0

100

200
δΩ

m
 [H

z]

2 1 0 1 2
∆/Ωm

500

0

500

Γ
op

t [
H

z]

= 10Ωm = 0.1Ωm

Figure 2.9: Calculation of a. δΩm and b. Γopt with parameters g/2π = 1 kHz,
ω/2π = Ωm = 300 kHz and κ = 10Ωm (0.1Ωm) visualizing the un-resolved (resolved)
sideband regimes. In b., optomechanical damping (heating) is achieved for detunings
∆ = −Ωm (+Ωm).

The optical spring effect is an optomechanical shift in the frequency of the mechanical
mode. Intuitively, the force induced by the radiation pressure of the intracavity field
displaces the resting position of the mechanical resonator where the force constant of the
spring differs slightly, inducing a shift in the resonance frequency.

The nature of the optomechanical damping is a bit more intricate and originates from
an inherent delay in the optomechanical back-action due to the cavity decay rate κ. In-
tuitively, it can be understood as Stokes- and Anti-Stokes processes. For negative (red)
detunings the Anti-Stokes process dominates and photons are scattered into a higher en-
ergy state when interacting with the mechanical resonator which extracts energy from the
mode, resulting in an effective cooling. The opposite is true for positive (blue) detunings
where incident photons scatter into lower energy bands (Stokes process), depositing energy
into the mechanical mode which effectively heats up the system. The effective temperature
of the mechanical mode is connected to the damping rate through [24]

Teff = T
Γm

Γm + Γopt
(2.60)

where T is the unperturbed temperature. This can further be connected to the effective
phonon occupation in the mode according to the Bose-Einstein distribution

neff.phon = 1
exp

{
~Ωm/kBTeff

}
− 1 . (2.61)

The cooling phenomenon, known as sideband cooling, is not exclusive to this realization
of the optomechanical system and is used for example to reach ground states of motion in
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ion trap systems [32]. In the range of nano/micromechanics, this type of sideband cooling
has demonstrated close to ground state cooling of mechanical modes in both cryogenic
environments [7] and room temperature [33].

2.3.4 Optomechanics with multielement resonators

In the previous section, the optical spring effect and optomechanical cooling were intro-
duced having magnitudes proportional to g2 = ncavg

2
0. Thus by increasing the intracavity

photon number, i.e. increasing the optical pump power, the interaction gets more pro-
nounced. However, there are other reasons to increase the interaction for weak pump
fields. This is done by increasing the single photon coupling strength g0.

To see why this is important we remind ourselves that the single photon coupling strength
g0 = xZPF∂ωcav/∂x is a measure of how much the zero-point-fluctuations of the mechanical
mode affect the cavity frequency. Now, visualize a thought experiment where a stream
of photons with frequency ω is incident on an unoccupied optomechanical cavity with
resonance frequency ωcav = ω. The first photon reaching the cavity is resonant with
the optical mode and is allowed to enter. Inside the cavity the photon interacts with
the mechanical mode of the optomechanical system via the coupling strength g0. If the
optomechanical coupling is strong enough to displace the optical resonance frequency by
more than a cavity linewidth κ, the next incident photon is no longer resonant with the
cavity and is not allowed to enter. This effect is called photon blockade effect which is
a single-photon nonlinear optical effect [34], [35]. It allows for studying single photon
correlations with relevance in e.g. quantum information processing [36]. The photon
blockade effect is enabled by a quantum optomechanical system which acts non-linearly
i.e. enabling Gaussian input states to be mapped onto non-Gaussian output states. This
non-linearity also allows for using light to generate non-classical mechanical states such as
Fock-states and Schrödingers cat states. This is of fundamental physical interest in the
realm of micro-mechanics due to its large mass and length scales, but can also open doors
for novel ultra-sensitive sensing applications [6].
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Figure 2.10: (a) Proposed multi-element optomechanical system with N dielectric
membranes separated by d in a cavity of length L. (b) Depiction of collective me-
chanical modes to which the optical field is coupled to. (c) Stack reflectivity for N = 6
non-absorbing resonators as function of the seperation d (blue) and the single-element
reflectivity (dotted green). Figure taken from [17]

.

One proposed way of increasing the single-photon coupling strength g0 to be greater than
the cavity decay κ and thus enter the single-photon strong coupling regime is by using
multi-element mechanical resonators, introduced in 2012 by Xuereb et al. [17]. The sug-
gested setup is depicted in Figure 2.10 where a stack of N independent and identical
mechanical resonators is placed within a cavity and is collectively interacting with the in-
tracavity field. As opposed to other membrane in the middle approaches [15], the distance
d between individual resonators is such that the stack behaves transmissively for arbitrary
single element reflectivities R < 1 which allows for long range optomechanical interactions
in the stack.

The mechanical mode to which the intracavity field couples to is a collective motion of the
independent membranes of the stack called supermodes, examples of which are shown in
Figure 2.10(a). Due to the non-zero reflectivity of the membranes, the optical field strength
between the membranes is increased which enhances the optomechanical coupling to the
supermode. The coupling to a sinusodial supermode of a transmissive stack of N elements
is given by

gsin =

√√√√ N∑
j=1

(gj)2 , (2.62)

where gj is the coupling to the motion of the individual resonators.
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Figure 2.11: Optomechanical coupling strengths for different numbers of elements in
the transmissive stack normalized to the perfectly reflecting single element coupling.
The number of elements for the blue curve is optimized for high g0 at each R whereas
N = 2 (1) for the dot-dashed red (dotted yellow) curves. For R→ 1, N = 2 is enough
to achieve a several orders of magnitude increase of g0. Figure taken from [19].

The optimal number of elements N which yields the largest coupling of the transmissive
stack is dependent on the reflectivity of the individual membranes which is shown in Figure
2.11. The blue curve shows the optomechanical coupling to a stack with the optimal
number of membranes in the stack whereas dashed red (yellow) shows the coupling to
two (one) membranes. The graph is normalized to the coupling to a perfectly reflecting
back mirror of a canonical optomechanical system. For single-element reflectivities R→ 1,
N = 2 is enough to achieve a several orders of magnitude increase of g0 which can allow
for reaching the g0 > κ strong coupling regime in a high finesse optical cavity.

2.4 Photonic crystals

Achieving high optomechanical coupling rates by the means of multi-element mechanical
resonators requires either a large number of elements in the mechanical resonator stack,
high single element reflectivities or a combination of both [17]. While high reflectivities can
be achieved in stacks of alternating dielectric films (distributed bragg reflectors) [12] these
devices are several micro-meters thick which makes them hard to incorporate into mul-
tielement stacks. On the other hand, sub-micron dielectric films such as SiN membranes
provide stackable geometry but lack in reflectivity, R ∼ 0.4 [15]. However, using mod-
ern microfabrication techniques, thin dielectric films can be periodically patterned with
photonic crystals (PhC) allowing to create highly reflective nanometer-thin membranes by
engineering photonic band gaps in the desired wavelength range.

The fundamentals of propagating electromagnetic waves in photonic crystals are very sim-
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ilar to that of moving electrons in periodic potentials caused by atomic crystal structures.
When solving for the electron dynamics within an atomic lattice, the periodicity of the
boundary conditions is utilized to express solutions as Fourier expansions in reciprocal
space. This allows for finding dispersion relations for the electron propagation inside the
structure that most commonly are visualized as electronic band diagrams.

To understand how photonic band gaps emerge within periodic dielectric structures we
study a one dimensional photonic crystal by means of plane wave expansion (PWE). The
derivation given here is similiar to the one presented in [37]. The electric permittivity
ε(x) of the dielectric medium in which the equations are solved is assumed to have trans-
lational symmetry with lattice constant X i.e. ε(x + X) = ε(x). We start out with a
stationary version of Maxwell’s equations where the spatial distribution of the magnetic
field component H(x) is described by a Helmholtz equation similar to (2.22)

∂

∂x

1
ε(x)

∂

∂x
H(x) + ω2

c2 H(x) = 0 , (2.63)

the difference being the position dependent permittivity ε(x). We study the wave equation
for the magnetic field component due to it having a more convenient form as opposed to
when formulating the problem for the electric field. Assuming that the spatial extension
of the photonic crystal is infinite, (2.63) is equivalent with finding the eigenstate H(x) to
the operator Θ̂ = − ∂

∂x
1
ε(x)

∂
∂x with eigenvalue λ = ω2/c2. The boundary conditions of the

problem allow for invoking the Bloch theorem

H(x) = hk,n(x) exp(ikx) . (2.64)

This ansatz expresses the eigenfunction as a plane wave with wave vector k multiplied
by a lattice periodic function4 hk,n(x) for the specific wave vector k and energy state n.
Now, expanding the periodic functions ε(x) and hk,n(x) in the reciprocal lattice vectors
G = {gn}∞n=1,

1
ε(x) =

∑
g∈G

χ(g) exp{igx} ,

hk,n(x) =
∑
g∈G

hk,n(g) exp{igx} ,
(2.65)

allows for rewriting (2.63) as a matrix equation

M~hk,n = ω2

c2
~hk,n (2.66)

where

M =


Mg1g1 Mg1g2 . . .

Mg2g1 Mg2g2 . . .
...

... . . .

 , ~hk,n =


hk,n(g1)
hk,n(g2)

...

 ,
Mgg′ = χ(g − g′)((k+g′) · (k + g)) .

(2.67)

4meaning that the period is equal to that of the lattice hk,n(x+X) = hk,n(x)
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This equation is called the ”Master equation” for one dimensional PhCs. The solutions
to the master equation are the eigenvalues of M which give the dispersion relation ω(k).
The eigenvalue problem (2.66) can be truncated for a certain number of reciprocal lattice
vectors g and solved numerically [37].

Figure 2.12: Photonic band diagram of the 2D PhC structure shown in the left inset.
Dispersion relations for transverse magnetic (TM, red dashed) and transvers electric
(TE, blue) are shown for the k-path shown in the left inset, connecting the high
symmetry points of the Brillouin zone. A PBG is achieved for frequencies ∼ 0.4 c/a
[38]

.

The dispersion relation ω(k) holds information of the eigenenergies of the guided modes of
the PhC which restricts waves of certain frequency to a specific k-vector in the PhC. The
dispersion relation is most commonly visualized in a band diagram, an example of which is
shown in Figure 2.12. The band diagram allows for identifying photonic bandgaps (PBG)
where an incident electromagnetic wave of a certain frequency does not have an available
wave vector in the material below the light line. In effect the energy of the wave is not
allowed to pass into the PhC and must therefore be scattered. Photonic crystal engineering
therefore allows for creating nano-meter thin broadband reflectors for a desired frequency
range by carefully choosing photonic crystal patterns and lattice parameters [39]. The
choice of parameters is guided by simulations performed in a software called S4 which
combines rigorous coupled wave analysis and scattering matrix formalism to calculate
PhC reflectivities [20].
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3. Experimental methods

To study an optomechanical system, state of the art experimental equipment and tech-
niques are required, the principles of which will be discussed in this chapter. I begin by
introducing the techniques which allow for precise optical measurements of the system un-
der study. Next, the experimental setup is introduced, describing how micro-mechanical
resonators are incorporated into high finesse optical cavities. Finally, the measurement
setup is described.

3.1 Optical measurement and locking techniques

Several experimental techniques must be mastered to measure the relevant optomechanical
quantities such as κ, Ωm, Γm and g0. In this section, two techniques involving precise
control of a laser are presented, allowing for stable readout of the optomechanical system.

3.1.1 Cavity frequency locking

As seen in Section 2.2, to populate the intracavity field of an optical cavity, the frequency
of an incident laser must fall within the linewidth of the cavity resonance frequency. To
find the resonance, one simply scans either the laser frequency ωin or the cavity length L
over several free spectral ranges and looks for cavity transmission, as seen in Figure 2.4.
However, the cavity resonance frequency is highly sensitive to thermal and mechanical
noise, which makes stabilizing laser frequency at resonance paramount. In addition, the
narrow line width of high finesse cavities impose further limits to frequency matching.
Locking the laser frequency to the resonance of the cavity is a system control problem,
which can be solved by a simple feedback loop given an appropriate error signal.

Consider the block diagram presented in Figure 3.1. Here, the input of the loop is a
signal setting the laser frequency ω, which in this example is the control variable of the
problem. The laser passes through the system under study, producing an output which
is used to generate the error signal ε(ω). The error signal is processed by a Proportional
Integral Differential (PID) regulator before the result is added to the input signal, closing
the feedback loop. The job of the feedback loop is to regulate the control variable around
the desired value, which in this case is the cavity resonance frequency ωcav. The error
signal ε(ω) of a feedback loop is generally a function with a distinct slope at a desired
value. For this problem, we thus require

ε(ω) ∝ ω for ω ∼ ωcav . (3.1)
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Control
variable

System

Output

Error
signal

Input

PID

Figure 3.1: Block diagram of the system control problem to regulate the output fre-
quency of the laser. The control variable ω is fed an initial input signal before its
output gets sent to the system under study. The output of the system is used to gen-
erate an error signal ε(ω) which goes through a PID servo before closing the feedback
loop.

The linearity of the error signal around the desired value allows for systematic regulation
of the control variable to stabilize the system output. The problem is thereby reduced to
finding an error signal with the appropriate properties.

3.1.1.1 Side of fringe locking

The simplest form of an error signal generated as a cavity frequency response is the cavity
transmission/reflection shown in Figure 2.4. The apparent problem of using this signal
is that the condition (3.1) does not hold due to the signal having a local maximum at
ω = ωcav. However, the side of the cavity fringe can be seen as locally linearly proportional
to the frequency and a lock can therefore be found to a slightly detuned cavity resonance
frequency.

3.1.1.2 Pound-Drever-Hall locking

A more sophisticated method is required to lock the laser frequency to the center of the
cavity resonance. At first glance, the derivative of the transmitted signal should be able to
produce a signal that upholds the condition (3.1). The derivative can be accessed through
electronic derivation of the reflected signal, but has risks of introducing phase shifts and
electronic noise. Alternatively, sampling the derivative can be done through modulation
of the laser phase, this is called the Pound-Drever-Hall (PDH) technique and is briefly
introduced below. The following derivation follows closely that of [40].

We start out by looking at the amplitude reflection coefficient r of a symmetric, lossless
FP cavity with intensity reflection coefficient of the mirrors denoted by R. From (2.31) it
can be seen that

r(ω) = Arefl
Ain

=
√
R

e−iδφ(ω) − 1
1−R · e−iδφ(ω) . (3.2)
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3.1. Optical measurement and locking techniques

Measuring the intensity of the reflected signal, normalized to the incident intensity, gives
access to

∣∣r(ω)
∣∣2. As mentioned above, this signal is not an optimal error signal due

to it having a vanishing slope at ω = ωcav. However, we now look at the reflection
of a phase-modulated incident light field, which can be achieved by using an Electro
Optical Modulator (EOM). The amplitude of a phase modulated incident light field can
be expressed as

Ain(t) = A0eiωt+iγ sin Ωt , (3.3)

where A0 is the amplitude at t = 0, ω is the frequency of the light, γ is the modulation
depth and Ω is the modulation frequency. For small modulation depths γ, a small angle
approximation can be performed, which gives

Ain(t) ≈ A0eiωt(1 + iγ sin(Ωt)) = A0

[
eiωt + γ

2
(
eit(ω+Ω) − eit(ω−Ω)

)]
, (3.4)

which describes an electromagnetic wave of frequency ω modulated with sidebands at
frequencies ω + Ω and ω −Ω. Letting this signal reflect off the cavity will give each band
a reflection coefficient at the appropriate frequency, i.e.

Arefl = A0

[
r(ω)eiωt + γ

2
(
r(ω + Ω)eit(ω+Ω) − r(ω − Ω)eit(ω−Ω)

)]
. (3.5)

We now look at the intensity of the reflected signal by taking the square of (3.5)

Irefl/I0 =
∣∣Arefl/A0

∣∣2 =
∣∣r(ω)

∣∣2 + γ2

4
(∣∣r(ω + Ω)

∣∣2 +
∣∣r(ω − Ω)

∣∣2)+

γ cos(Ωt)Re
{
r(ω)r(ω + Ω)∗ − r(ω)∗r(ω − Ω)

}
+

γ sin(Ωt)Im
{
r(ω)r(ω + Ω)∗ − r(ω)∗r(ω − Ω)

}
+

2Ω terms.

(3.6)

The above expression consists of two DC terms, two terms oscillating at the modula-
tion frequency Ω and additional terms oscillating at twice the modulation frequency not
explicitly written out for convenience.

Turning our attention to the term r(ω)r(ω+Ω)∗−r(ω)r(ω−Ω)∗ , we look at the case when
the modulation frequency is large compared to the line width of the cavity, i.e. Ω > κ. In
this case, when the carrier wave is resonant with the cavity, the sidebands at ω ± Ω will
be totally reflected and hence r(ω ± Ω) ≈ −1, we thus have

r(ω)r(ω + Ω)∗ − r(ω)∗r(ω − Ω) ≈ −2iIm
{
r(ω)

}
. (3.7)

Therefore, the term proportional to cos(Ωt) in (3.6) can be neglected.
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Figure 3.2: Orange: Cavity reflection
∣∣r(ω)

∣∣2. The negative linear slope of the er-
ror signal around the cavity resonance frequency is used to stabilize the laser-cavity
system. Blue: Normalized Pound-Drever-Hall error signal for high modulation fre-
quencies Ω > κ.

Now, looking at the leftover term oscillating at the modulation frequency, plotted in Figure
3.2, we see that it successively produces a linear slope when ω ∼ ωcav and is thus a valid
error signal. This is the so called Pound-Drever-Hall error signal and can be extracted
by demodulation. Demodulation is performed by multiplying the cavity reflection output
with a signal oscillating at the modulation frequency, which produces a DC component
proportional to the error signal. Finally, the DC component is singled out with a lowpass
filter.

3.1.2 Homodyne detection

The micromechanical systems discussed in Section 3.3.1 exhibit oscillating motion with
amplitudes in the nm range. This motion has to be accurately monitored to examine the
mechanical properties of the optomechanical system. In this section, we discuss how the
motion of the micromechanical system can be mapped as phase noise on the optical field
and subsequently monitored using Homodyne Detection.

We remind ourselves of the canonical optomechanical system in Figure 2.7 where the
intracavity field impinges parallel to the motion of the back mirror of the cavity. Due to
the time-dependent displacement of the mirror x(t), the distance travelled by the light that
enters the cavity and reflects off the moving mirror will also depend on time. The difference
in path length is thus mapped onto the phase of the reflected field ∆φ(t) = 2kx(t), where
k is the wave vector of the incident light and the factor 2 accounts for the reflected wave
travelling the extra path length twice. This mapping allows for inferring the back mirror
movement by monitoring the phase of the reflected light.
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3.1. Optical measurement and locking techniques

To measure the phase of the light reflected off the optomechanical system, an interferomet-
ric system using a reference beam referred to as the local oscillator (LO) is used. We now
introduce a detection scheme that uses an LO with strong coherent amplitude to monitor
the phase quadrature of a signal beam. When the frequency of the LO is equal to that
of the signal beam the detection scheme is called homodyne detection (HD), otherwise we
refer to it as heterodyne detection.

D2

D1

99:1

50:50

DC
AC

Figure 3.3: Standard homodyne detection setup. The power output of a laser is split
on a 99:1 BS, sending 99 % to the LO arm and 1 % to the signal arm. The signal
arm interacts with the system under study while the LO picks up a phase φ before
they are recombined on a 50:50 BS and detected on PDs D1 and D2. The current
I−(t) is simultaneously monitored and used as error signal for locking to the phase
quadrature of the signal.

The standard HD setup is presented in Figure 3.3. The output of a laser diode is split on
a 99:1 beamsplitter (BS) sending 99% of the light to the LO arm and 1% to the signal
arm. The beams are redirected through separate paths, where the signal arm is allowed
to interact with the optomechanical system and the LO gathers a variable phase φ, before
being recombined on a 50:50 BS. The output of the 50:50 BS is detected with two photo
diodes (PD) D1 and D2. The complex amplitude of the signal (LO) arm before hitting
the 50:50 BS is denoted αsig(t) (αLO(t)) and are given by

αsig(t) = αsig + δXsig(t) + iδYsig(t) ,

αLO(t) =
(
αLO + δXLO(t) + iδYLO(t)

)
eiφ .

(3.8)

In this description, we assume that both arms have large and time-independent coherent
amplitudes αsig, αLO ∈ R compared to the associated amplitude and phase quadrature
noise terms δX, δY . In addition, due to the 99:1 BS we have

∣∣αsig∣∣� |αLO|. As discussed
above, the mechanical displacement noise of the optomechanical system is stored in the
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3. Experimental methods

phase noise of the signal arm δYsig(t), which therefore is the variable of interest.

To calculate the intensities on the two PDs we propagate the amplitudes of the signal and
LO arm through the 50:50 BS which gives [27]

αD1(t) = 1√
2

(αLO(t)− αsig(t)) ,

αD2(t) = 1√
2

(αLO(t) + αsig(t)) ,
(3.9)

where the minus sign in the first equation is picked up due to the reflected part of the
signal arm being assumed to reflect off a medium with high refractive index. Now, taking
the difference of the photo currents of D1 and D2 while only keeping terms proportional
to αLO due to the intensity difference between signal and LO arms we get

I−(t) =
∣∣αD2(t)

∣∣2 − ∣∣αD1(t)
∣∣2 = 2Re

{
α∗sig(t)αLO(t)

}
≈

2αLOαsig cos(φ) + 2αLO
[
cos(φ)δXsig(t)) + sin(φ)δYsig(t)

]
.

(3.10)

Looking at the above equation we see that there are DC and AC signal components.
The DC component and the amplitude quadrature noise of the signal arm is proportional
to cos(φ), whereas the signal phase quadrature is proportional to sin(φ). Therefore, by
setting the tunable phase difference φ = π/2 by locking to the phase for which the DC
signal component vanishes, the current I−(t) successfully monitors the phase noise of
the signal arm which, in addition, is proportional to the intensity of the strong LO arm.
Keeping the phase φ constant at the desired value is, once again, a system control problem
that can be solved by a PID feedback loop as discussed in Section 3.1.1.

3.2 Experimental measurement setups

To successfully readout membrane mechanics under cavity optical influence, the experi-
mental techniques described in Section 3.1 must be properly implemented while monitoring
of all relevant information. Simultaneously, the setup must be isolated from external noise
sources which may interfere with measurement outcomes. In this section, the experimental
setup aimed to accomplish this is presented. A more detailed explanation of the free space
optics part of the setup is given in Appendix ??.

3.2.1 Optical characterization of photonic crystal resonators

The optical response of the devices must be investigated in order to locate the wavelength
regime of maximal reflectivity. The relevant quantity to measure is the total device re-
flectivity, which defines the quality of an optical resonator formed with the devices. To
characterize the optical properties an additional setup is used which was designed in a
previous work done by Karim Elkhouly [41] and Sushanth Kini [20].

The measurement setup is presented in Figure 3.4 and is designed to monitor the inten-
sity ratio between the light reflected off the device under study and a reference beam.
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Figure 3.4: Schematic of the reflectivity measurement setup. A tunable laser is sent
through a Half Wave Plate (HWP) and PBS to split half of the incoming power to a
reference arm and half to the sample. Using a Quarter Wave Plate, the polarization
of the reflected light is rotated 90◦ allowing the reflection to be redirected to the
reflection arm. The power of the reference and reflected signals are picked up by two
PDs and subsequently monitored by a PC. Figure taken from [20].
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Wavelength-dependent reflectivity is recorded by varying the output wavelength of the
tunable laser. The results of measurements are normalized to the reflectivity of a sil-
ver mirror with a known reflectivity curve. For more information on the setup, see the
supplementary information of [20].

3.2.2 Mechanical characterization of photonic crystal resonators

Before investigating how coupling to an intracavity light field affects membrane mechan-
ics, the unperturbed system must first be fully understood. This is done by mechanical
characterization using homodyne detection, described in Section 3.1.2. The experimental
setup that accomplish this was developed in previous work done by Karim Elkhouly [41]
and Sushanth Kini [20].

The setup is presented in Figure 3.5 which adopts the homodyne detection technique to
read out mechanics of the micromechanical membranes while placed in a vacuum chamber
where pressures drop to ∼ 10−4 mbar. The device chips can be moved inside the vacuum
chamber by using a piezo-actuated translation stage, which allows for sub-micrometer
xyz-translations. Using the translation stage, the measurement laser can be focused on
the device where mechanics is to be measured. The homodyne signal is read by a balanced
photo diode and displayed on a spectrum analyzer (SA).

Figure 3.5: Schematic of the mechanical characterization setup. The measurement
laser is split up on a 99:1 beam splitter (BS) into signal and local oscillator arms.
The signal arm is focused down on the micromechanical membranes placed on a xyz-
translation stage in high vacuum (∼ 10−4 mbar) to reduce viscous damping. The
homodyne signal is generated by mixing the local oscillator and signal arms on a
50:50 beam splitter and reading with a balanced photo diode. The result is displayed
on a spectrum analyzer. Figure taken from [20].
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3.2. Experimental measurement setups

The measurement results are displayed as power spectral densities where the harmonic
motion of membrane eigenmodes are displayed as peaks in the spectrum, see Section
2.1.1. A typical spectrum is presented in Figure 3.6 where three different traces can be
seen. The blue trace represents the noise level of the SA, while the cyan curve shows
the electronic noise level in the detector amplifier circuit. Activating the laser output
and homodyne detection generates the orange trace, where three membrane mechanical
modes are visible above 500 kHz. Lower frequency peaks is assumed to originate from self
oscillations in the PID loop which stabilizes the length of the local oscillator arm.
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Figure 3.6: Typical noise power spectrums for the mechanical characterization setup.
The blue trace represents the noise level of the spectrum analyzer, while the cyan curve
shows the electronic noise level in the detector amplifier circuit. Activating the laser
output and homodyne detection generates the orange trace where three membrane
mechanical modes is clearly visible above 500 kHz.

3.2.3 Optomechanical readout

Presented in Figure 3.7 is the measurement setup performing optomechanical readout.
A continuously tunable telecom laser (Toptica CTL 1550-027126) outputs laser in the
1520-1630 nm wavelength range which is split into LO and signal arms by an in-line
50:50 BS. The signal arm is phase modulated in an in-line Electro Optical Modulator
(EOM, iXblue MPZ-LN-10) before getting coupled to free space for mode matching to
the cavity. The cavity reflection is redirected by an optical circulator and sent to readout.
The readout beam is first split on a Polarizing Beam Splitter (PBS) which, along with a
λ/2-retardation plate, allows for variable power distribution between the PDH and HD
loops. This is crucial for keeping the ratio between the LO and signal arms in the correct
range as discussed in Section 3.1.2.

41



3. Experimental methods
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Figure 3.7: Simplified schematic for the experimental setup used to probe the optome-
chanical system. Blue lines correspond to in-fiber laser propagation, whereas red lines
depict free space propagation. The laser output is immediately split up into signal
and LO arms for HD readout. The signal arm is phase-modulated before being sent
to the cavity. The reflection is split on a PBS for closing both the PDH and HD loops.
The phase noise of the signal arm is read out on a Spectrum Analyzer (SA). EOM =
Electro Optical Modulator, BPD = Balanced Photo Diode, BS = Beam Splitter.

The PDH loop is closed by detecting the laser power on a PD and feeding the output
to a mixer where it is demodulated by the signal generator driving the EOM (Keysight
33500B). The demodulated signal is fed to a PID which controls the laser wavelength
output (Toptica DLC pro) or the cavity piezo (Toptica Regulator PID110).

The other output port of the PBS is coupled back into optical fiber and is combined with
the LO on a Balanced Photo Diode (BPD) which converts the current I−(t) into a voltage.
The homodyne signal containing the phase noise of the signal arm is both monitored on
a Spectrum Analyzer (SA, Keysight MXA N9020B) and sent through a PID (Toptica
Regulator PID110) to control the in-line variable phase φ of the LO.

3.2.4 Cavity optical mode matching

As discussed in Section 2.2.3, a high finesse cavity operates as both a spatial and spectral
filter. This fact implies that for the cavity resonant mode to be excited by an external light
source, the spectral and spatial conditions of the cavity must be met. An input optical
field which deviates from the spatial mode of the cavity will be decomposed into the basis
modes of the cavity and therefore only part of the input power will be resonant with the
cavity at a given frequency (see Figure 2.6). For a single Hermite-Gauss mode input field
to be fully coupled to the corresponding cavity mode, perfect mutual alignment between
the modes is required. The alignment can be broken down into three conditions required
for the input optical field:

42



3.2. Experimental measurement setups

• optical axis transverse aligned to cavity optical axis,
• position of focus along optical axis matched to cavity resonant mode,
• size of focus matched to cavity resonant mode.

Failure to reach the above stated conditions will split the input power into several spatial
modes, thus wasting optical power [42].

M

f

Figure 3.8: Cavity mode matching setup. The input mode size at the cavity back
mirror is controlled with a telescope with magnification M and a focusing lens with
focal length f . The transverse and angular alignment of the input beam is controlled
with two adjustable mirrors.

To satisfy the above conditions of the resonant cavity mode, a mode matching setup is
used. The principles of the setup are presented in Figure 3.8. A single-mode output laser
that excites the fundamental Gaussian mode (2.37) is coupled to free space for further
mode manipulation. The coupling between single-mode fiber and free space is performed
by a Triplet Collimator (TC12APC-1550) which outputs a collimated beam with radius
1.135 mm. To achieve angular and transverse alignment of the input field two mirrors
mounted on sensitive adjustable mirror mounts are used. To match the radius of the
cavity resonant mode, calculated to be 25 µm, a telescope with magnification M = 3 is
used along with a focusing lens with f = 150 mm. The focal distance of the focusing lens
is lower bounded by the cryostat geometry that does not easily allow for additional optical
components in the sample chamber. With such a weak focusing lens, a large input beam
is required to achieve the desired focus at the cavity back mirror. This is not beneficial
due to risks of clipping losses on free space optical components. This can be avoided by
integrating a small diameter focusing lens that can fit inside the cryostat sample chamber
in a future setup.

3.2.5 Imaging

As discussed in previous sections, the size of the intracavity mode as well as the micro-
mechanical membranes are in the ∼ 10 µm range which sets the scale on the alignment
conditions when investigating a certain membrane on a chip. To decide on which device to
perform measurements, proper imaging has to be implemented which allows for monitoring
the intracavity mode. This is a challenge due to the samples being positioned behind the
incoupler mirror of the cavity. However, the anti-reflection (AR) coating of the incoupler
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mirror has its high reflectivity band in the telecom wavelengths and is thus partially
transparent in the visible spectrum. This allows for using a camera to monitor the devices
inside the cavity. To achieve good image quality inside the cavity on the µm range a

50:50

LED

CMOS

Figure 3.9: Imaging setup using Köhler illumination. A white light source (LED)
is collimated by f1 and subsequently focused by f2 onto the back focal plane of f3.
The focusing lens f3 collimates the image of the sample which is finally focused by
the objective lens f4 on the Complementary Metal Oxide Semiconductor (CMOS)
camera.

telescope with Köhler illumination is used, the principles of which is shown in Figure 3.9.
A white light LED is used to uniformly illuminate the sample inside the cavity. This is
achieved by first collimating the output of the LED with the lens f1 and then focusing on
the back focal plane of f3 using f2. This creates a collimated light beam which uniformly
illuminates the sample. The image of the sample is then collected by f3 and redirected
through the 50:50 BS into the objective lens which focuses the image on the objective.
The image is picked up by a Complementary Metal Oxide Semiconductor (CMOS) camera.
The magnification M of this setup is defined by the lenses f3 and f4 and is given by

M = f4
f3
. (3.11)

Because of the CMOS’ insensitivity to telecom wavelengths which is used for mechanical
readout, the optical mode inside the cavity is not visible on the images. To solve this issue,
an additional laser is used which helps with orientation on the sample chip. The laser is
inserted into the fiber path of the signal arm before being coupled to free space using
a wavelength division multiplexer. The additional laser is a 980 nm LED with variable
output power. Due to the extensive free space optical path, optimized for 1550 nm, (see
Appendix A) the orientation laser is heavily attenuated due to scattering and requires
high input power for the CMOS to pick up a readable signal.

In the current setup, the focusing lens f3 is multi-purposed, providing both focus for
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the imaging and the right mode matching conditions of the cavity coupling. Due to the
difference in wavelength, (telecom and visible) the optical components cannot be optimized
for all purposes. In this setup, the measurement setup is prioritized, and the lens f3 is
thus AR coated for 1550 nm, which will cause reflections in the visible spectrum. The
effective focal distance of the lenses will also vary between the arms due to the frequency
dependent index of refraction of the fused silica lenses. In addition, the 1550 nm optimized
incoupler mirror will induce aberrations in the image as well as additional reflections. The
effect of this is a partly compromised image quality with a lot of potential improvements
such as filtering the white light to reduce unwanted reflections.

3.3 Optomechanical system design

In this section, I introduce the designs of the optical and mechanical systems that are used
throughout all measurements. We first present the GaAs micromechanical resonators made
from AlGaAs heterostructures and finish with introducing the 10 mm long hemispheric
Fabry-Pèrot cavity in which the devices can be integrated to form the optomechanical
system.

3.3.1 Fabrication of high quality micromechanical resonators

The micromechanical systems used in this work are fabricated from AlGaAs heterostruc-
tures and are designed for high mechanical quality factors and optical reflectivities. The
manufacturing process begins by epitaxially growing an AlGaAs heterostructure on a
GaAs substrate using molecular beam epitaxy (MBE). Firstly, a sequence of AlGaAs,
GaAs layers are grown to create a Distributed Bragg Reflector (DBR) optimized for high
reflectance at telecom wavelengths. Next, a 730 nm thick AlGaAs sacrificial layer is grown
on top of the DBR. Lastly, the 100 nm device layer of GaAs is grown, which completes
the heterostructure. For wafers with double layer devices, another sequence of sacrificial-
/device layers is grown on top of the structure. The thickness of the sacrificial layer is
chosen to achieve a transmissive stack of reflectors [17]. Following the MBE, the PhC

Figure 3.10: The process used to fabricate the GaAs PhC membranes on an epitaxially
grown AlGaAs heterostructure. Courtesy of Sushanth Kini.

membranes are patterned onto the 100 nm thick GaAs layers. The finished devices are
circular, suspended GaAs membranes varying in size from 50 to 77 µm in diameter. The
devices are fabricated by the process shown in Figure 3.10. The wafer is first spin-coated
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with resist (red) on which the device patterns are exposed using electron beam lithography.
The first etching process is a Reactive Ion Etching (RIE) where the devices are etched
into the upper layers of GaAs. After etching, the top resist is removed with a chemical
remover (MICROPOSIT Remover 1165). Next, the sacrificial layers are removed with a
Hydroflouric (HF) acid based wet etch. Etch remnant salts such as AlF and AlHO on
the device is removed by cleaning the sample in potassium hydroxide (KOH). The last
fabrication step is drying the sample with CO2 critical point drying, which protects the
membranes from collapsing due to surface tension forces while drying. The PhC pattern
is optimized for a high reflectivity in the 1520-1540 nm wavelength range by choosing
appropriate PhC lattice constant and hole radius. The lattice has a square structure with
lattice constant a = 1081 nm and radius r = 455.5 nm.

Figure 3.11: a. Tilted SEM image of a 100 nm thick suspended GaAs membrane
attached to the surrounding substrate by eight tethers. b. Side view of a stack of
GaAs suspended double layer rectangular membranes with a vertical separation of
∼ 732 nm. Courtesy of Sushanth Kini and Anastasiia Ciers.

3.3.2 Optical cavity design

The optical cavity used during this work is a monolithic copper structure designed for
mechanical rigidity to provide stable optical resonances. A cross-section view of the cavity
is presented in Figure 3.12. The laser enters from the left and encounters the spherical
fused silica incoupler mirror. The left (right) side of the mirror is anti- (high) reflection
coated for telecom wavelengths. The total losses through transmission and scattering of
the high reflectivity coating for telecom wavelengths is ∼ 10− 20 ppm.

Next, the laser encounters the 5 × 5 mm2 AlGaAs sample containing a matrix of etched
membrane devices, see inset a. of Figure 3.12. The surface of the sample is on a distance
L = 9.84 mm from the incoupler mirror, which allows for calculating the spotsize of the
intracavity Gaussian mode according to (2.36). Given the radius of curvature r = 10 mm
of the incoupler mirror and a laser wavelength of 1550 nm, the radius of the intracavity
focus is calculated to w = 25 µm, which is in the same length scale as our devices. However,
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Figure 3.12: Cross-section view of the monolithic optical cavity design. The laser
input enters from the left and impinges on the Ø= 12.7 mm incoupler mirror (light
gray). The light entering the cavity focuses down on the sample chip (dark gray)
which is clamped to a copper adapter. The copper adapter is in turn glued along
with a ring piezo actuator (blue gray) to the cavity back wall. Insets: a. Optical
micrograph of device matrix b. Ring-piezo controlling the cavity length, length unit
= mm.
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3. Experimental methods

due to the Gaussian nature of the beam, clipping losses Lcl are introduced [43]

Lcl = e
−2 D2

(2w)2 , (3.12)

where D is the diameter of the membrane. For membranes studied the diameter is D ≈
80 µm which gives Lcl ≈ 6000 ppm. Note that this assumes that the field exceeding the
extent of the membrane vanishes, which most likely is not the case for our samples due to
the reflectivity of the underlying DBR. However, phase differences in the field reflecting
of the devices and sample substrate can induce similar losses.

The length of the cavity can be controlled electronically with the use of a piezo-electric
ring, see inset b. of Figure 3.12, that connects the sample adapter and the back of the
cavity. Connecting the piezo to a voltage source allows for scanning the cavity length by
up to ∼ 4 µm at room temperature.

The back wall of the cavity is clamped onto the body of the cavity with four M3 screws
with concentric springs. The springs keep the back wall fixed to the cavity along the
optical axis of the incoming light. However, extra screw clearance in the back wall allows
for transverse movement of the back wall, offering a way of choosing between devices on
sample chips.

The cavity is placed within an attoDRY800 cryostat to allow for high vacuum environ-
ments, which reduces viscous damping of the membrane mechanics caused by atmospheric
molecules. During experiments, the pressure in the chamber is ∼ 10−4 mbar. The cryostat
can also be used to cool down the optomechanical cavity to cryogenic temperatures of ∼ 4
K. This was however not the focus of this thesis.
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This thesis is centered on implementing the first steps towards realizing an optomechanical
system with micromechanical multi-element resonators. This chapter presents the mea-
surement results for the optical and mechanical properties of the devices. Furthermore,
I discuss the results gathered with the optomechanical setup. The performance of the
optomechanical system is analyzed and improvements are discussed.

4.1 Suspended photonic crystal structure resonators

The suspended GaAs membranes are an integral part of both the optical and mechanical
degrees of freedom in our optomechanical system. Thus individual membrane properties
must be well known before they are integrated into a macroscopic optical cavity for op-
tomechanical readout. In this section, the optical and mechanical characterization of two
devices are presented. Scanning electron micrographs of the considered geometries are
shown in Figure 4.1 . Panel (a) shows a Single-Layer (SL) device on top of a DBR mirror
whilst panel (b) depicts a Double-Layer (DL) device. The diameter of the devices are 77
µm for SL and 80 µm for DL, respectively. The DL device is not fabricated on top of a
DBR mirror and thus only has an underlying GaAs substrate. This is a crucial difference
between the two samples which will become apparent in the optical characterization of
the devices. Part of the characterization data was gathered before the start of this thesis
and is credited to Sushanth Kini and Anastasiia Ciers.

4.1.1 Optical characterization

As seen in Section 2.2.1, a high finesse optical cavity is formed from two highly reflective
mirrors. High finesse cavities show narrow linewidths κ which, along with high mechanical
frequency, would allow to reach the sideband resolved regime of optomechanics and achieve
efficient sideband cooling of mechanical modes. If sideband resolution is not achieved,
feedback cooling can be utilized to reach the quantum ground state of motion. Regardless
of sideband resolution, knowing the reflectivity of the devices is crucial to being able to
avoid impedance mismatch for the optomechanical cavity. Therefore, the reflectivity of
the devices considered for optomechaincal experiments is characterized. The reflectivity
spectrum is measured by methods described in Section 3.2.1.

The reflectivity spectra for the considered devices along with a DBR mirror reference sam-
ple are presented in Figure 4.2. Solid lines represent measured data, whilst dashed lines
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Figure 4.1: Scanning electron micrographs of the characterized device geometries. (a)
Single-layer circular membrane resonator on top of a DBR mirror. The diameter of
the device is 77 µm. (b) Double-layer circular membrane device with a diameter of 80
µm. Photonic crystal lattice parameters of the devices are lattice constant a ≈ 1080
nm and hole radius r ≈ 450 nm.

1520 1540 1560 1580 1600 1620
Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

iv
ity

1520 1530 1540

0.90

0.95

1.00

1450 1500 1550 1600
0.6

0.8

1.0

(b)(a)

Figure 4.2: Measured (solid) and simulated (dashed) reflectivity for three types of
samples. The Distributed Bragg Reflector (DBR, blue) reflectivity is shown as a
reference to the Single-Layer (cyan) on DBR. The Double-Layer (orange) device is
fabricated on a plain GaAs wafer and does not inherit any DBR characteristics. (a)
Zoomed in view of the boxed high reflectivity wavelength range of 1520-1540 nm. (b)
simulated reflectivity for an isolated PhC membrane with geometry matching the SL
device membrane.
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4.1. Suspended photonic crystal structure resonators

represent simulated data using S4. We note that an expected plateau-like characteristic
can be seen for the simple DBR mirror for wavelengths in the 1520-1540 nm range. How-
ever, the maximum of the DBR reflectivity plateau is shifted towards a lower wavelength
range that is not reachable for the used tunable laser. This is a design flaw of the DBR
and is attributed to inaccurate growth parameters for the DBR. The simulated spectra
capture the overall features of the DBR, but does not agree in magnitude. This can be
due to imperfections in the DBR grow or slight deviations in the refractive indices used
for simulation. The SL device retains a lot of the features of the underlying DBR, but has
a higher reflectivity for longer wavelengths due to extra reflection off the PhC membrane.
The simulation shows an additional feature in the spectrum at 1570 nm which is attributed
to PhC guided resonances caused by finite sized laser beam waists discussed in [20]. The
same feature is shown in the simulated spectrum presented in panel (b) of Figure 4.2
that depicts a spectrum for an isolated PhC membrane with equal lattice parameters as
the SL device. Lacking the features of the DBR, the DL device on GaAs substrate show
two broad dips at 1580 nm and 1615 nm, which can be explained by simulation. The
first is attributed to a Fabry-Pèrot cavity forming between the membranes at the given
wavelength, whilst the latter is caused by PhC guided resonances.

Due to the high reflectivity of the input mirror of the cavity (for details, see Section 3.3.2)
high reflectivity devices is required to avoid impedance mismatch in the mirrors. Attention
is therefore turned to the short wavelength range where high reflectivities are shown, see
inset (a) of Figure 4.2. With the used characterization setup, the measured performance of
the SL device and the reference DBR are indistinguishable in this wavelength range. The
DL device, however, show slightly lower reflectivities which can be attributed to the lack
of an underlying DBR mirror. Due to the superior reflectivity, the SL device is therefore
prioritized above the DL device when considering optomechanical effects.

To further increase the reflectivity of the devices, careful engineering of PhC patterns and
DBR parameters is required. From inset (b) we see that the wavelength of maximum
reflectivity for the PhC membranes is reached for λ = 1480 nm. Shifting that maximum
for both the PhC and the DBR into the wavelength range of the used laser might allow
for observation of even higher reflectivities. The simulations indicate that the actual
reflectivities are even higher than measured. However, the measurement setup does not
allow for well resolved reflectivity measurements in the ppm range, which would be required
to more accurately specify reflectivities in this range. This can for instance be solved with
a setup using a high finesse FP cavity. This will be discussed further in Section 4.2.2.

4.1.2 Mechanical characterization

The figures of merit for a mechanical resonator are the resonance frequency Ωm, the quality
factor Qm = Ωm/Γm and their product Qm · fm = QmΩm/2π. These parameters affect
the level of sideband resolution in the final optomechanical system, as well as the coupling
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Figure 4.3: Thermal mechanical noise power spectrum (NPS) for a single sus-
pended photonic crystal membrane showing three mechanical modes. Inset depicts a
Lorentzian fit to the mechanical mode with Ωm/2π ≈ 425 kHz, giving a quality factor
of Qm = 3.5 · 104.

to the thermal environment. The latter dictates how effective an optomechanical cooling
must be to reach a certain level of resonator phonon occupation at a given environment
temperature, see Section 2.3.3. We study the mechanical properties of the same single and
double-layer devices as in the previous section. The principles and experimental setup used
for the characterization are described in Chapter 2 of this thesis.

First, we study the thermal noise power spectrum (NPS) of the SL device, which is pre-
sented in Figure 4.3. In the spectrum, three mechanical modes are visible in the given
frequency range. The parameters of interested are extracted from the spectrum by fitting
a Lorentzian function (2.11) to the excitation peaks. The inset of Figure 4.3 shows a fit1

to the resonance with Ωm/2π = 425 kHz, which show the greatest quality factor out of
the three resonances with a value of Qm = 3.5 · 104 yielding Qm · fm = 1.48 · 1010 Hz.
This is on the lower end of Qm · fm products that have been achieved with on-chip micro-
membranes, where values surpassing 1012 Hz have been reached that allow to observe the
quantum mechanical regime of optomechanics at room temperature [6].

Next, the mechanical properties of the DL device are investigated. The presence of two
suspended membranes is apparent due to the increased number of mechanical modes in
the NPS presented in panel (a) of Figure 4.4. To confirm the presence of two independent
membranes, a mode tomography study is performed. The device is swept across the

1note the logarithmic y-scale

52



4.1. Suspended photonic crystal structure resonators

Figure 4.4: (a) Thermal mechanical noise power spectrum (NPS) for a double layer
photonic crystal membrane stack. The signals originating from the motion of the
bottom membrane are significantly weaker due to the reflection of the top membrane.
(b) Individually normalized mode tomography images of the first 7 modes from the
NPS in panel (a). The top (bottom) row corresponds to the modes of the top (bottom)
membrane.
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measurement laser in a grid and the thermal NPS is recorded at each point. For each
NPS, the mean square displacement for a chosen number of modes are calculated by
integrating the NPS according to Equation (2.12). Finally, the displacement data for each
mode is normalized and shown in a 2D plot presented in panel (b) of Figure 4.4. The
modes are labelled and connect each individual tomography map with the corresponding
mode in the NPS. Notably, multiple copies of the same spatial mode are present with
non-degenerate frequencies. Additionally, the second occurrence of the same spatial mode
is several orders of magnitude fainter in the NPS indicating that the signal is coming
from the lower membrane in the stack. The difference in frequencies between the same
spatial mode in the two membranes are most likely due to tensile stress differences in the
two membranes. This is caused by lattice constant mismatch between membrane and the
sacrificial layer which introduces stress. The resonance frequency of a circular membrane
with radius r and density ρ under isotropic stress σ can be modeled by [44]

Ωn,j = αn,j
r

√
σ

ρ
(4.1)

where αn,j are constants related to the mode (n, j). Note that this assumes that the forces
inside the membrane is dominated by stress. Using the ratio between the resonance fre-
quencies of two identical modes in the membranes, an estimation of the stress difference
between the membranes can be estimated under the assumption that all other parameters
are equal. Using the gathered data, we observe σbottom ≈ 1.13σtop. Additionally, using
(4.1), we can derive the maximum allowed stress difference between top and bottom mem-
branes for the resonance frequencies to match within their linewidths. Starting from the
constraint |Ωt − Ωb| < Γt yields

|∆σ|
σt

< 2Q−1
t . (4.2)

where σt (σb) is the isotropic stress of the top (bottom) membrane, ∆σ = σb − σt and is
only valid for a Qt � 1. This is interesting when considering multi-element optomechan-
ics which requires similar frequencies for all resonators in the stack. For this particular
DL device, this gives that the relative difference in stress between the top and bottom
membranes cannot surpass 57 ppm.

As previously mentioned, the Qm ·fm products of ∼ 1010 Hz presented for our membranes
does not allow for quantum optomechanics experiments starting at room temperature.
This is caused by excess loss mechanisms in the system, where clamping loss and thermoe-
lastic damping are the dominating ones [45]. Reducing losses without sacrificing optical
properties of the device is a great challenge tackled by several groups in the field. The
reduction of clamping losses in similar on-chip devices has seen great success for groups
using highly tensile-stressed SiN membranes [46], [47] presenting Qm ·fm products� 1012.
In addition, phononic crystal shielding of membranes has been reported to further reduce
losses in high frequency resonators [48], [49]. Reaching high tensile stress levels in our
devices is however limited by the small lattice mismatch between GaAs and AlGaAs. To
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counteract this, materials with large lattice mismatch relative to the AlGaAs sacrificial
layer such as InGaP can be considered. These membranes have shown to be feasible for
quantum optomechanics with Ωm/2π ∼ 1MHz and Qm · fm products of 2 · 1012 which
can offer an alternative route to multi-element optomechanics [50]. The increased me-
chanical frequency shown for InGaP devices is also beneficial for optomechanical sideband
resolution. With frequencies for our devices in the 100 kHz regime, high quality optical
cavities are required for sideband resolution putting additional constraints on the device
reflectivities, see Section 4.2.2.

4.2 Optical cavities

The macroscopic 10 mm long cavity presented in Section 3.3.2 offers a way to fully integrate
the AlGaAs samples presented in previous section into an optomechanical system. In this
section, we investigate the optical properties of the cavity with the SL device seen in
Figure 4.1 as back mirror. However, before inserting the devices, a symmetric cavity is
investigated to specify the properties of the input mirror which is kept constant for all
experiments.

Figure 4.5: (a) Typical cavity reflection signal as a function of applied piezo voltage.
The repeating pattern in cavity resonant modes indicate the free spectral range. (b)
CMOS images of cavity transmission at different cavity lengths. (c) Corresponding
Hermite-Gauss calculations according to (2.38) with indicated indices (l,m).
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4.2.1 Bare cavity

To isolate the properties of the input mirror we first study a symmetric cavity without
micromechaincal membranes. During these tests the back mirror is a flat fused silica mirror
provided by Layertec with identical HR coating as the input mirror (T ≈ 8 ppm). This
symmetric case is considered as a reference system when later analyzing the performance
of our fabricated samples. The back side of the flat Layertec mirror is anti reflection coated
for 1550 nm allowing for cavity transmission to be analyzed in addition to reflection. The
incoming laser at 1550 nm is mode matched to the intracavity mode while using the
cavity ring piezo to alter the cavity length. The reflection is recorded on a photodiode
and displayed on an oscilloscope. A typical cavity reflection as a function of applied
piezo voltage with partial mode matching is shown in panel (a) of Figure 4.5. When the
resonance condition of the cavity length is met, light is allowed to pass through, reducing
the reflected signal. The imperfections in mode periodicity seen between two FSR’s are
assumed to originate from non-linearities in the piezo displacement response. When a
mode resonance condition is fulfilled, the cavity transmission is picked up by a CMOS
camera which shows the spatial distribution of the intracavity field. Panel (b) of Figure
4.5 shows the captured cavity transmission at four different resonance conditions for the
cavity length. The Hermite-Gaussian spatial distribution of the intracavity field at each
resonance is observed and compared to the corresponding calculations of (2.38) in panel
(c) of the same figure.

4.2.2 Finesse characterization

As for the mechanical resonators characterized in Section 4.1.2, the optical resonator, i.e.
the cavity, has energy dissipation defined by the spectral linewidth κ of the resonant mode.
This is a fundamental parameter of the optomechanical system and must therefore be char-
acterized. The linewidth κ is found by observing individual modes in the cavity reflection
when scanning parameters such as laser frequency or cavity length. The frequency axis
scale in such measurements is found by modulating sidebands to the incident laser with a
well-defined modulation frequency. This can be achieved by phase modulation, as shown
in Equation (3.4). The separation between the carrier wave and the sidebands along with
the modulation frequency defines the frequency axis of the recorded signal. This principle
is presented in Figure 4.6 where the cavity reflection of a sideband modulated signal with
a modulation frequency of 25 MHz is depicted. With the frequency axis calibrated, the
cavity linewidth κ can be determined from (2.33) with a Lorentzian fit. Inset (a) in Figure
4.6 shows a measurement of piezo non-linearities. The relative position of the sidebands
to the carrier is plotted in time domain versus frequency domain. A linear fit indicates
that a linear relation between applied piezo voltage and displacement can be assumed for
the relevant voltage span. Note however that this can not be assumed for large voltage
spans, as indicated in panel (a) of a 4.5.
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Figure 4.6: Reflection frequency response of a cavity with an SL PhC membrane on
DBR as back mirror. The incident laser is phase modulated at 25 MHz, showing clear
sidebands to which the frequency axis is calibrated. A Lorentzian fit (not accounting
for the sidebands) is used to determine the linewidth κ. (a) Piezo linearity measure-
ment. Relative position of the sidebands plotted for time and applied modulation
frequency.

Using the presented analysis, the finesse of cavities with four different back mirrors are
determined:

1. Layertec HR coated fused silica mirror,
2. AlGaAs DBR mirror,
3. SL device substrate,
4. SL device.

Due to the lower reflectivity of the DL structure and time limitations, cavity properties
with DL devices were not investigated further. From the results in Section 4.1.1, the
fabricated AlGaAs device shows a high reflectivity for incident wavelengths in the 1520-
1540 nm band. Thus, for all following measurements involving the devices, the wavelength
is set to 1520 nm.

For the case of the bare cavity, equal reflectivities for the two mirrors are assumed. This
allows for an estimation of the incoherent surface losses L of the two mirrors. Assuming an
amplitude reflection of

√
R(1− L) for the intracavity field reflecting off both inner cavity

walls, the cavity roundtrip attenuation factor takes the form

gm = R(1− L) . (4.3)
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Using this expression in Equation (2.32) and fitting to the cavity resonance yields 1−R ≈
3.8 ppm and L ≈ 13 ppm for the Layertec mirrors. The high losses are attributed to
surface losses on the r = 10 mm curved mirror due to its large curvature (r = 10 mm).

The losses and reflectivities of the AlGaAs samples can in principle be found with the same
analysis when knowing the reflectivity and losses of the input mirror. This was however
not possible due to additional loss effects such as improper mode matching restricting
the (R,L) parameter space while fitting. However, assuming a lossless cavity allows to
calculate the reflectivity of the second mirror from Equation (2.28) which gives an estimate
of the reflectivity of the back mirror when neglecting any additional losses L. The results
of both finesse and reflectivity estimations are presented in Table 4.1 along with simulated
reflectivities for the DBR mirror and the SL device at λ = 1520 nm, taken for from Section
4.1.1.

The results show finesse values surpassing 103 for all configurations with linewidths in
the 1 MHz range for the AlGaAs samples. We observe a two orders of magnitude drop in
finesse for the AlGaAs samples compared with the reference cavity. This drop is attributed
to lower reflectivities on the AlGaAs samples. The finesse of the cavity formed with the
SL device shows a lower finesse than with the sample substrate. This is interesting due
to the sample substrate not being optimized in terms of reflectivity having additional
layers of unpatterned GaAs/AlGaAs on top of the DBR mirror. This decrease in finesse
can be attributed in part to excess clipping of the intracavity mode on the surrounding
substrate, see Figure 4.8. The reflection of this light can interfere destructively with
the light reflecting off the PhC membrane due to differences in phase change of the two
reflections. However, from the simulated reflectivity data, the reflectivity of the SL device
seem to perform better than expected. This can be explained by deviations between
simulation and reality in photonic crystal lattice parameters.

End mirror Layertec DBR SL sample substrate SL device
κ/2π [kHz] 80± 10 2053± 3 3700± 100 6380± 80
F 1.8 · 105 ± 0.2 · 105 7420± 10 4100± 100 2370± 30
1 - R [ppm] 3.4± 0.4 840 ± 4 1520 ± 40 2620 ± 10
1 - RS4 [ppm] − 831 − 4877
L [ppm] 13± 2 − − −
Irel [%] 40 6 1 0.5

Table 4.1: Cavity parameters for four different cavity configurations. Reflection and
incoherent surface losses for the Layertec mirror are estimated with Equation (2.32)
while a lossless cavity is assumed for the AlGaAs samples. The less informative model
gives a rough estimation for the sample reflectivities. For AlGaAs heterostructure
growth parameters, see Section 3.3.1.
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From an optomechanical viewpoint, the linewidth of the cavity observed for the SL PhC
membrane device does not allow for sideband resolution given mechanical frequencies in the
100 kHz range. This reduces the lowest phonon occupation accessible with sideband based
optomechanical cooling as seen in Section 2.3.3. However, even in the non-sideband re-
solved case, mechanical mode cooling can still be performed using feed-back cooling which
has been demonstrated by several teams. In the case of micromechanical membranes,
measurement based feedback cooling to the quantum ground state was demonstrated by
Rossi et al. in 2018 [51].

To achieve higher finesse for our system, the loss mechanisms discussed above must be
reduced. To reduce clipping losses, larger membrane designs can be considered. Using the
assumed values for the cavity mode waist w = 25 µm and membrane diameter D = 77 µm,
we estimate clipping losses Lcl = 8710 ppm from Equation (3.12). This value is considered
to be approximate since the waist size is highly sensitive for cavity lengths approaching
the radius of curvature for the cavity input mirror, see Equation (2.36). In the future, by
increasing the membrane diameter, a reduction of clipping loss can be achieved. Figure 4.7
plots clipping loss Lcl as function of device diameter D for three different intracavity mode
radii. To assure clipping losses L < 1 ppm for the current cavity mode size (w = 25 µm),
device diameters greater than 135 µm are required.

From the reflectivity results in Section 4.1.1 we see that the SL device gives similar re-
flectivity to the DBR mirror. The reflectivity measurement is performed with a spot size
of w = 4.6 µm and thus have negligible clipping losses. We can thus assume that by
avoiding clipping losses for the SL devices, performances equal to the DBR sample can be
expected. Additionally, increasing the reflectivity of the devices will also affect the finesse.
Shifting the point of maximum reflectivity for both the DBR and the PhC membrane into
the range of the laser will improve reflectivity of the stack, increasing the finesse of the
cavity.

4.3 Cavity frequency lock

With the mechanical and optical degrees of freedom characterized, attention is turned to
observe optomechanical effects. As discussed in Chapter 3, two PID servos are required for
the experimental setup. The purpose of the servos is to stabilize the output signal when fed
error signals generated by the optomechanical system. When done correctly, this allows
for stable and accurate readout. In this section, we discuss challenges encountered in the
laser-cavity frequency lock.

4.3.1 Cavity impedance mismatch

To successfully lock the laser frequency to the cavity resonance, an error signal with high
signal-to-noise (SNR) ratio is required. In both frequency locking schemes presented in
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Figure 4.7: Calculation of clipping losses for three waist sizes as function of device
diameter D. Cyan star indicates the approximate operating point for the SL device
cavity.

Section 3.1.1, the SNR of the error signal is in part defined by the SNR of the cavity
resonance signal. Parameters that limit the optical intensity of the cavity resonance are
scattering loss, improper mode matching and cavity mirror impedance mismatch. To
analyze these effects, we look at the relative reflected intensity on resonance

Irel = 1− Irefl
Iin

∣∣∣∣∣
ω=ωcav

. (4.4)

Here, Irefl and Iin are the reflected and input intensities respectively. The data for the four
cavity configurations are presented in Table 4.1. In theory, the lossless symmetric cavity
yields Irel = 100 %, however the symmetric HR Layertec cavity shows a resonance with
Irel ∼ 40 % explained by the internal losses L ≈ 14 ppm calculated in the previous section.
For the AlGaAs samples we see a large drop in resonance with Irel = 0.5 % for the SL
device. For this asymmetric case, impedance matching of the cavity mirrors is crucial in
yielding strong cavity resonances. Using equation (2.32) we calculate Irel for two mirrors
with reflectivities R1 and R2. The reflection of mirror one is fixed while R2 is swept over
several orders of magnitude, the results are shown in Figure 4.8.

We conclude that the impact of slight impedance mismatch of the cavity mirrors is stronger
for mirrors with high reflectivity. Thus, the reflectivity of the input mirror greatly con-
stricts the reflectivity range for the back cavity mirror in which a strong cavity resonance
is achieved. The drop in cavity resonance for the AlGaAs samples makes the error signal
used for frequency locking more susceptible to excess noise sources.

4.3.2 Laser intensity noise

One source of noise studied here is intensity noise inherent to the laser. Laser intensity
noise is lower bounded by shot noise which is a quantum effect that can be described
by the stochastic nature of photon occurrences on a measurement device such as a photo
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Figure 4.8: Cavity resonance for different impedance mismatch. The reflectivity R2

is varied over a logarithmic scale whilst R1 is fixed to the indicated values. Strong
resonance is achieved if 1 − R of the two mirrors are matched within one order of
magnitude.

diode. This noise is independent of frequency, i.e. white noise, and is linearly proportional
to the laser power P . However, excess intensity noise in the electric field of the laser scales
quadratically with P . This type of noise is commonly seen for laser outputs in lower
frequency regimes and originates from external sources such as electrical noise in the
injection current or relaxation oscillations.

For a steady state laser output, the optical power Popt(t) can be described by

Popt(t) = P̄opt + δPopt(t) (4.5)

where δPopt(t) is the power fluctuations around the mean value P̄opt. The statistics of the
optical power fluctuations are commonly studied relative to P̄opt by looking at the power
spectrum of the Relative Intensity Noise (RIN) defined as

SRIN(ω) = 2
P̄ 2
opt

∫ ∞
∞
〈δPopt(t)δPopt(t+ τ)〉e−iωtdτ . (4.6)

For a laser with frequency ωl and average power P̄opt operating at the shot noise limit we
have 〈δPopt(t)δPopt(t+ τ)〉 = ~ωP̄optδ(τ) due to the white noise statistics which gives the
RIN shot noise limit as

SRIN,SN (ω) = 2~ωl
P̄opt

(4.7)

Which serves as the RIN limit for laser light.
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When using a photodiode amplified by a transimpedance amplifier to measure the optical
power on an oscilloscope, the relation between optical power and measured voltage is linear
and is given by

V (t) = ηSGPopt(t), (4.8)

where S is the photosensitivity of the photo diode and G is the transimpedance gain and η
is photo diode efficiency. This relation allows us to study the RIN of the laser by measuring
the relative noise in the detected output voltage. We thus have

SRIN(ω) = 2
P̄ 2
opt

∫ ∞
∞
〈δPopt(t)δPopt(t+ τ)〉e−iωtdτ

= 2
V̄ 2

∫ ∞
∞
〈δV (t)δV (t+ τ)〉e−iωtdτ = SV V (ω)

V̄ 2 ,

(4.9)

where SV V (ω) is the NPS of the measured voltage signal V (t) = V̄ + δV (t). This can be
easily accessed by measuring the voltage output of the transimpedence amplifier with a
spectrum analyzer.

The RIN of the Toptica CTL1550 at an output of 1550 nm, injection curret at 200 mA and
detected optical power at the photo diode of 300 µW is presented in Figure 4.9 along with
the shot noise limit. The during measurement is Notably, the noise contains several sharp
peaks and increased noise towards lower frequencies. The excess noise in the spectrum for
low frequencies is attributed to electronic noise in the injections laser.

The results of the measurement show that the shot noise limit is reached for frequencies
above 300 kHz implying that excess classical noise will not interfere with homodyne mea-
surements of the membrane mechanics with frequencies above 300 kHz. Classical noise
will however interfere with the PID regulators that typically operates at frequencies lower
than 300 kHz.

4.4 Homodyne measurement of optical cavity output

With the aim of observing the motion of the micromechanical mirrors when coupled to
the intracavity field, the optomechanical cavity is integrated into the setup described in
Section 3.2.3. The input laser is first aligned to the cavity with the alignment mirrors.
Using the CMOS camera and the imaging setup along with the 980 nm alignment laser,
the intracavity mode is identified and placed on the sample of interest on the GaAs chip
by manually moving the back cavity mirror. The device used for this experiment is the SL
device discussed in previous sections. Next, the PDH error signal is generated by either
scanning the cavity length or the laser wavelength which allows for frequency locking the
laser to the cavity resonance. Mechanics of the back cavity mirror is detected by coupling
the cavity reflection to the homodyne measurement setup and observing the response
with the spectrum analyzer. As discussed in Section 4.3, the resonance of the cavity mode
when focusing on the micromechanical membranes is weak due to impedance mismatch and
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Figure 4.9: Laser intensity NPS of the Toptica CTL1550 at a laser output of 1550 nm
and injection current of 200 mA. The noise contains several sharp peaks and a larger
weight towards lower frequencies.
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Figure 4.10: (a) Oscilloscope picture illustrating DC drifts in the PDH error signal.
(b) Zoomed in view of the blue boxed area showing an amplified PDH signal.
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internal cavity losses. This decrease in SNR drastically affects the ability to obtain stable,
low noise cavity frequency locks. In particular, slow drifts in the DC level with comparable
amplitude to the error signal offset the set point, preventing stable locks. This is shown in
Figure 4.11. The observed DC drift is partly due to residual amplitude modulation (RAM)
in the EOM which is converted to a DC signal in the down modulation of the PDH loop.
The RAM of an EOM is highly dependent on the polarization of the input laser light
which is fixed to the preferred fiber axis by inserting an in-fiber PBS before the input to
the EOM. Due to excess polarization drifts in the fiber network connecting the laser output
to the EOM, the PDH error signal still experience slow drifts in set point. Turning to a
side of fringe locking scheme bypasses the drifts caused by polarization effects in the EOM
and allows for short locks of up to 20 s using the Toptica Regulator PID110 to stabilize
the cavity length, shown in Figure 4.11. During a cavity frequency lock, the displacement2.5 1.5 0.5 0.5 1.5 2.5
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Figure 4.11: (a) Oscilloscope picture illustrating side of fringe locking to the op-
tomechanical cavity. The right side of the sweep shows an unlocked state where the
PID scans the cavity length occasionally hitting cavity resonance. While locked, the
reflected signal is stabilized at the set point which is seen to the left side of the
oscilloscope sweep.

NPS of the back cavity mirror is recorded on the spectrum analyser. Readout of the
cavity back mirror displacement is confirmed by applying a calibration tone to the piezo
regulating the cavity length and observing the mechanical NPS before and after successful
cavity frequency lock. The calibration tone is observed on the spectrum analyzer solely
when the laser frequency is locked to the cavity resonance, indicating that the signal is
picked up from within the cavity. This is illustrated in Figure 4.12.

However, the mechanics of the membrane is not observed in the homodyne signal indicating
a loss of mechanical signal in the measurement setup. This loss can be caused by slight
misalignment in the intracavity mode focus on the device. In addition, due to the weak
magnitude of the cavity resonance, small amounts of the incident light field is allowed
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Figure 4.12: Noise levels of the homodyne readout when observing mechanical dis-
placements from within the cavity. A pure sinusoidal tone applied to the cavity piezo
is detected when the cavity is locked.

to interact with the mechanical system to pick up signal, lowering the sensitivity of the
measurement. This signal is further reduced when coupled into the in-fiber part of the
experimental setup where coupling efficiencies η were limited to 50 %.

4.5 Discussion

To be able to successively read out the mechanical motion of the membranes when placed
in the cavity requires improvement of the experimental parameters. This includes increases
in 1) cavity signal SNR, 2) stability of PID servo locks and, 3) accuracy in intracavity
mode focus on the device chips. The time constraints of this thesis did not allow for further
improvements of the system to successfully observe optomechanical interaction with the
single and double-layer mechanical resonators. However, several accessible solutions to
some problems encountered are available. The issue with weak cavity signals can be solved
by optimization the reflectivity and minimizing losses of the AlGaAs devices. Increasing
the radius of the membranes to 135 µm renders clipping losses negligible and should
bring the cavity response of the SL device closer to that of the DBR mirror. Therefore,
minimizing clipping losses can be expected to give an increase in finesse by a factor of at
least 3. In terms of reflectivity, the range of high reflectivity for both the PhC membranes
and the DBR back mirror is not available to the measurement laser as seen in Figure 4.2.
Shifting the wavelength of maximum reflectivity for the devices into the desired range will
cause a reduction of impedance mismatch and an increase in cavity signal strength. These
changes will cause improvements in both frequency locking capabilities and sensitivity in
mechanical readout. Another solution to solve the impedance mismatch of the cavity is
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to reduce the reflectivity of the cavity input mirror which however will result in a lower
cavity finesse.

To increase the mechanical properties of the membranes, new membrane and wafer designs
can be considered. The lack of high tensile stress in the GaAs membranes limits strain
engineering capabilities when designing the suspended membranes. The GaAs membranes
have been estimated to be under a homogeneous stress in the 10 MPa range [20] whilst
high stress SiN membranes reaching Qm · fm values of 1012 Hz have been reported to
have stress levels surpassing 1 GPa. Turning to InGaP devices, an estimation that stress
levels of over 1 GPa can be achieved for this material when grown on AlGaAs sacrificial
layers has been presented [50]. This makes this platform a promising way forward for
multi-element optomechanics. However, working with several layers of tensile strained
membranes will make frequency matching of the membrane mechanical modes challenging
as seen in Section 4.1.2. To solve this issue other frequency tuning parameters such
exploiting the piezoelectricity of the employed materials might have to be considered.

A limitation to the presented cavity design is the manual alignment of intracavity focus
on the device chips. The monolithic structure of the cavity and the choice of avoiding a
piezo actuated stage increases cavity stability which have caused struggle for groups in
the past [24]. However, the lack of a sub-micrometer actuated transverse movement of the
device chip severely limits the accuracy with which the cavity mode can be focused to the
membranes. This is a trade-off in limitations which might have to be taken into account
going forward.

Part of the noise observed during attempts of frequency locking to the cavity is caused
by mechanical or thermal drifts in the fiber network connecting the output of the laser
to the optomechanical measurement setup. Moving the laser closer to the setup will
allow bypassing part of the fiber propagation that might pick up polarization noise due
to vibrations or local drifts in temperature. This also reduces the amount of polarization
dependent components that is required to stabilize polarization drifts.

As a summary, the observed parameters of the optomechanical system when considering
the fundamental mode of the SL device is presented in Table 4.2. The single photon op-
tomechanical coupling g0 is calculated from Equation (2.48) by using the effective mass
of the fundamental mode calculated in [52]. Together with the measured results, esti-
mated parameter values for a membrane with increased size to account for clipping losses
is presented. Changes in the diameter of the membrane affect its mechanics by reducing
resonance frequency and increasing effective mass. The change in frequency can be es-
timated by using Equation (4.1) which gives Ωm ∝ 1/D. For an increase of membrane
diameter to D = 130µm a decrease in Ωm by a factor of 0.57 is expected. The effect of
increasing the membrane size on the quality factor of the mechanical mode is more com-
plicated and would require numerical simulations of the system. However, by adopting a
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Parameter SL device Modification

Mechanics
D [µm] 77 135
Ωm/2π [kHz] 425 242
Qm 3.5 · 104 106

Optics
1−R [ppm] 2620 840
Lcl [ppm] 8710 0.4
κ/2π [kHz] 6380 2053
F 2370 7420
Optomechanics
g0/2π [Hz] 234 177
Ωm/κ 0.06 0.1
C0 = g2

0/(Γmκ) 0.7 · 10−3 0.2

Table 4.2: Summary of the characterized optomechanical system utilizing a SL PhC
crystal on top of a DBR mirror. Measured values of important parameters are pre-
sented along with predicted values for the same device with increased membrane
diameter to account for clipping losses. Expected quality factor assumes an InGaP
material system as presented in [50].

material system such as InGaP on AlGaAs, quality factors exceeding 106 can be expected
[50].

Looking at the changes in system parameters for the two different membrane diameters
indicates the intricate coupling between the optical and mechanical degrees of freedom.
The optical properties are improved as clipping losses can be omitted whilst mechanical
frequency and optomechanical coupling are decreased. We therefore conclude that a more
significant change in cavity or chip design would have to be considered to take the next
step towards observing quantum optomechanical effects. This can potentially be achieved
with the DL devices studied in Section 4.1 that will offer a way to study multi-element
optomechanical coupling. The device was omitted for optomechanics in this work due to
its lower overall reflectivity which can be solved by successfully integrating DL devices
with an underlying DBR mirror.

67



4. Results

68



5. Conclusion

The work of this thesis has centered around designing, building and operating an experi-
mental setup with the purpose of performing characterization of optomechanical devices.
The working principle behind the setup relied on two experimental techniques, which were
individually implemented and tested. The first technique, homodyne detection, was im-
plemented to interferometrically read out the displacement of mechanical resonators, while
the Pound-Drever-Hall technique was used to match the frequency output of a laser to
the resonance condition of a Fabry-Pèrot-type cavity. Utilizing both techniques simulta-
neously is required to read out mechanical motion of micromechanical membranes inside a
Fabry-Pèrot cavity, which allows to study the mutual interaction between the mechanical
and optical degrees of freedom.

Before performing optomechanics experiments, the optical and mechanical subsystems
were characterized individually. The mechanical subsystem, made up of both single- and
double-layer photonic crystal membrane resonators, was characterized and showed reso-
nance frequencies in the 100 kHz regime and room temperature quality factors of 104 in
high vacuum environments. A mode tomography study was performed for a double-layer
device, showing clear independent movement of the two 100 nm thick GaAs membranes
with sub-micrometer separation.

The micromechanical membranes were fabricated from an AlGaAs heterostructure which
is to serve as the back mirror of a Fabry-Pèrot cavity. Therefore, optical properties of
the AlGaAs heterostructures were investigated and showed high reflectivities of > 95 %
for laser light with λ = 1520 nm. Devices with and without underlying distributed Bragg
reflectors (DBR) were investigated. This showed that an underlying DBR mirror is cru-
cial for high finesse cavity implementations as it drastically increases reflectivities in the
high reflectivity band of the DBR. This conclusion motivated the decision to prioritize the
single-layer devices which, unlike the double-layer devices, had underlying DBR mirrors
and showed clear membrane suspension.

The optical linewidth of a 10 mm long hemispheric cavity was investigated where the flat
back mirror was exchangeable, allowing for integration of the high reflectivity AlGaAs
heterostructures as back cavity mirrors. The optomechanical cavity formed with a single-
layer (SL) device on DBR showed a cavity linewidth of 6.38(8) MHz, corresponding to a
finesse of 2370(30). When analyzing the reflectivity of the cavity mirrors, a difference in
reflectivity on the order of 102 ppm was measured for the cavity input mirror and the SL
device chip. This implied severe impedance mismatch of the cavity mirrors, drastically
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reducing the achievable intracavity intensity.

With the optomechanics setup, experiments were performed to read out the mechanics
of the SL device while integrated into the Fabry-Pèrot cavity. It was confirmed that me-
chanical motion of the back cavity mirror was detected by picking up a homodyne signal
when driving the cavity piezo with a periodic. However, the mechanical motion of the SL
membrane was not detected in the homodyne detection spectrum. The lack of vibrating
membrane signature in the homodyne spectrum was attributed to loss of mechanical signal
in the setup, causing it to be exceeded by excess noise from the experimental setup. Signal
loss factors were identified as

• Impedance mismatch,
• Membrane clipping losses,
• Inaccuracy in cavity mode placement on membrane devices.

Impedance mismatch reduced the detectable cavity signature to less than 1 % to what is
expected for a symmetric cavity with equal reflecting mirrors, while clipping losses were es-
timated to reduce the detectable mechanical signal on the order of 103 ppm. The accuracy
in placing the intracavity mode on the devices was limited by not having a piezo-actuated
stage to move the device chips within the cavity. These challenges can be solved by increas-
ing membrane size and lowering cavity input mirror reflectivity. This will greatly increase
both the detectable cavity signature and fraction of intracavity light that interacts with
the membrane, which will increase the signal-to-noise ratio in the homodyne signal.

Looking forward, beyond achieving optical readout of intracavity membrane mechanics,
the optics and mechanics of the membrane devices can be improved to allow for sensitive
optomechanical systems in the future. Given the strict reflectivity condition imposed on
the device chips by the input cavity mirror, future double-layer devices should be fabri-
cated with underlying DBR. The mechanical quality factors of the membranes are in part
upper bounded by clamping loss, which can be reduced by using stress engineering and
dissipation dilution in highly stressed materials, such as InGaP on GaAs. However, this
can pose a problem for multi-element optomechanics which require arrays of resonators
with equal resonance frequencies. For stress dominated circular membranes with high
quality factors, the relative difference in membrane stress must be < 2Q−1 to ensure equal
resonance frequencies. This problem can be tackled by for instance using piezoelectric
properties of the used material system in order to actively and in-situ tune the mechanical
resonance frequencies.

By addressing the aforementioned challenges, the optomechanics setup presented in this
thesis will allow for a platform to investigate the properties of novel optomechanical sys-
tems in the future. This includes fully integrated on-chip optomechanical microcavities
with interesting applications in quantum limited sensing.
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A. Appendix - Free space optics setup

Presented in Figure A.1 is the free space optics part of the setup presented in Section
3.2.3. The setup is split up into three sections: Alignment, Detection, and Imaging. The
alignment and detection setups use the telecom measurement laser at telecom wavelengths
λ ∼ 1550 nm (depicted in red) whilst the imaging setup uses the white light output of a
Thorlabs MCWHF2 6200 K LED (depicted in blue).
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Figure A.1: Free space optics part of the optomechanics experimental setup. It con-
sists of three sections, Alignment, Detection and Imaging. The red beam path depicts
telecom measurement laser, whilst the blue beam path depicts white LED light used
for imaging. For detailed description, see main text. FPC = Fiber coupled polar-
ization controller, PBS = Polarizing beam splitter, FR = Faraday rotator, PDH =
Pound-Drever-Hall, HD = Homodyne detection.
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A. Appendix - Free space optics setup

The telecom laser is first coupled to free space with a Thorlabs TC12APC-1550 triple
triplet collimator, producing a beam with waist radius w = 1.13 mm. The free space
beam first encounters a polarizing beam splitter (PBS), which filters away the vertical
polarization component. Controlling the amount of light in each polarization state is
performed with a fiber-coupled polarization controller (FPC) before laser output. Next,
the beam travels through a Faraday Rotator (FR) and a half-wave plate, the purpose of
which is to rotate the reflected beam to vertical polarization. Lenses and mirror pair (1, 2)
now mode match the beam to the cavity before the beam hits an yttrium orthovanadate
(YVO4) crystal, which rotates the polarization of the input beam to the coordinate system
of the cavity. Finally, the beam is focused down on the back cavity mirror, where the
micromechanical membranes are placed.

The returning reflection is guided along the input path, but is reflected on the first PBS
due to the half-wave plate and FR. This beam now enters the detection part of the setup
and is first split up on a PBS. The reflection is directed to a photodiode (PD) which picks
up the raw reflection signal that is used for Pound-Drever-Hall locking. The transmission
of the PBS is mode matched with mirror pair (3, 4) to the input of a single mode optical
fiber, where the signal is led to homodyne detection of membrane mechanics.

The imaging setup follows the principles described in 3.2.5 to light up the interior of
the cavity and take images with a Chameleon®3 color camera (CMOS). Since the mirror
labeled 2 is designed for high reflectivity at telecom wavelengths, it is semi-transparent
for the white LED light used for imaging. The cavity focusing lens serves as objective lens
and produces a magnification of 3 on the CMOS camera.
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