

Institutionen för vattenbyggnad Chaimers Tekniska Högskola

Department of Hydraulics Chalmers University of Technology

Vågmodellering

ΞV

Tommy Ellison Mats Enmark

Examensarbete

1976 - 3

Göteborg 1977

CHALMERS TECHA HOGSKOLA Selaton V, Sphiloteket

Examensarbete i vattenbyggnad 1976:3

VÅGMODELLERING

av

Tommy Ellison

C

. Selection Mats Enmark

CHALMERS TERM, HOGSKOLA Seknow V, Louiloteket Program för examensarbete i vattenbyggnad

VÅGMODELLERING

Målbeskrivning

Målet för examensarbetet är att lära känna teorier för gravitationsvågens form och utbredning; Välja ut de formeluppsättningar som anses bäst beskriva vågor för olika förhållanden mellan vattendjup, våglängd och våghöjd.

Rent praktiskt skall arbetet resultera i en liten handledning för inställning av våggeneratorn i stora vågrännan på vattenbyggnadsinstitutionen.

Arbetets plan

a) Teorier för vågor och vågkrafter läses in.

Litteratur: Bergdahl: Något om vågkrafter. CTH, 1976.

Dean: Evaluation and development of water wave theories for engineering application. US Army 1974.

- b) Praktisk träning: att köra våggeneratorn, mätvagn, påfyllning och avtappning av vatten m m. Instrumentmakare Georg Nilsson.
- c) Uppställning av mätutrustning för vågmätning. Bryggor, skrivare. Eventuellt skall vi mäta trycket på bottnen av rännan också. HP-skrivaren disponeras april-maj. Instrumentmakare Bengt Carlsson.
- d) Vågbladet och våggeneratorn ställs in på teoretiskt sett bästa sätt för att generera en viss våg. Vågens form mäts och våggeneratorn justeras så, att en bra överensstämmelse med önskad våg erhålles. Mät endast i utgående vågtåg.
- e) Vågornas fashastighet och grupphastighet mäts. Jfr med teorier för olika L/d.
- f) Vågornas förluster mäts vid passage genom vågfiltret och relateras till frekvens- eller våghöjd. Vågornas förluster vid utbredningen i rännan mäts.

Göteborg 1977-02-24

Lars Bergdahl

CPRAN DISKOLA Suite distaket

INNEHÅLLSFÖRTECKNING

:

334

[4.2

	ſ	sid
1.	OM DETTA EXAMENSARBETES TILLKOMST	. 1
1.1	Bakgrund	. 1
1.2	Syfte	. 1
1.3	Tillvägagångssätt	1
2.	VÅGTEORIER	2
2.1	Gravitationsvågen	2
2.2	Vågkarakteristika	2
2.3	Linjärteori	5
2.4	Gerstners teori	8
2.5	Stokes´ teori 2:a ordningen	11
2.6	Knoidalteori	13
2.7	Solitärteori	16
2.8	Strömfunktionsteori	17
2.9	Giltighetsområde	
2.10	Jämförelse mellan de olika teorierna	20
3.	VÅGGENERERING	27
3.1	Principer	27
3.2	Våggeneratorn	29
3.2.1	Beskrivning	29
3.2.2	Mekanisk analys	31
3.2.3	Inställning med hjälp av diagram	32
4.	LABORATORIEFÖRSÖK	33
4.1	Utrustning	33
4.2	Utförande	36
4.3	Omfattning	37
4.4	Utvärdering	38
4.5	Mätfel	46
5.	TEORETISK INSTÄLLNING AV VÅGGENERATOR	47
5.1	Jämförelse mellan önskad och erhållen våghöjd	47
5.2	Teori lämplig för inställning av våggenerator	49

sid.

.

6.	VÅGFORM	50
6.1	Jämförelse mellan önskad och genererad vågform	50
6.2	Teorier lämp a de för analys av vågform	60
7.	VÅGENS ENERGIFÖRLUST VID PASSAGE GENOM	
	RÄNNA OCH FILTER	. 61
7.1	Rännförlust	61
7.2	Filterförlust	62
7.2.1	Sammanställning av uppmätta filterförluster	62
7.2.3	Försök till teoretisk härledning	63
8.	RESULTAT	68.
8.1	Generering av önskad våg	68
8.2	Förslag till förbättring av våggeneratorn	70
	LITTERATURFÖRTECKNING	71

BILAGOR

•

!

1. OM DETTA EXAMENSARBETES TILLKOMST

1.1 Bakgrund

Institutionen för vattenbyggnad förfogar över en provningsränna, försedd med en våggenerator, som utvecklats inom institutionen. Rännan har tidigare ej använts för något större forskningsarbete. Således har man ej haft behov av att utföra någon mera noggrann studie av de vågor som har genererats. Man har prövat olika inställningar på våggeneratorn till dess att önskad våg erhållits. Därvid har man i första hand fäst avseende vid våghöjd och våglängd, medan vågformen haft underordnad betydelse.

Inom en snar framtid startar ett forskningsprojekt där det är av största vikt att känna till vågformen. Samtidigt vore det önskvärt att slippa det iterativa förfarandet vid inställning av önskad våg.

1.2 Syfte

Målsättningen med detta examensarbete är att lära känna teorier för gravitationsvågens form och utbredning samt välja ut de teorier som bäst beskriver vågformen för olika förhållanden mellan vattendjup, våglängd och våghöjd. Arbetet skall även resultera i en handledning för inställning av våggeneratorn.

1.3 Tillvägagångssätt

Arbetet inleddes med studier av viss inom området tillgänglig litteratur, vilket möjliggjorde en jämförelse av vågformen enligt några olika teorier.

Första skedet av laboratoriearbetet ägnades åt att analysera våggeneratorn. Detta resulterade i att vi lärde oss ställa in våggeneratorn så att vågbladet beskrev den rörelse vi önskade.

Därefter utförde vi två mätserier, varvid vågkarakteristika registrerades. Utvärdering av dessa försök ledde till att vi kunde välja ut de teorier som bäst motsvarade våra önskemål. Med det statistiska materialet från mätserierna som underlag kunde vi även studera friktionsförlusterna vid vågrörelsens utbredning genom rännan.

Arbetet resulterar slutligen i en handledning som på ett enkelt sätt möjliggör inställning av önskad våg.

2. VÅGTEORIER

2.1 Gravitationsvågen

I detta arbete har vi studerat gravitationsvågor. Detta är den vågtyp som oftast är intressant i vattebyggnadstekniska sammanhang. I gravitationsvågen verkar huvudsakligen egenvikten som kraft. Vågtypen kan alstras på en mängd olika sätt. Vanligast är den vindgenererade typen, som byggs upp av de friktionskrafter och normaltryck som uppstår vid vindens kontakt med vattenytan. Andra bildningssätt är tidvatten, snabba lufttrycksförändringar och subakvatiska jordbävningar.

Gravitationsvågor kan indelas i transporterande och svängande vågor. Den transporterande vågen karakteriseras av att vattenpartiklarna förflyttas i vågens rörelseriktning. Förloppet beskrivs av SOLITÄR-teorin. I den svängande vågen sker ingen vattentransport i horisontalled. Vattenpartiklarna utför ungefär cirkel-eller ellipsformade banor. För denna vågtyp har ett flertal olika teorier utarbetats. Efter att ha studerat några av dessa har vi valt ut fem av dem för en vidare analys. LINJÄR-teorin är giltig för flacka vågor på djupt vatten. GERSTNERSteori gäller också på djupt vatten men möjliggör analys av brantare vågor. Flacka vågor på något grundare vatten beskrivs bäst av STOKESteori. KNOIDAL-teorin är användbar då vattendjupet minskar ytterligare. De nu nämnda teorierna beskrivs utförligt av Wiegel (1964).

En teori med större användningsområde än de övriga är STRÖMFUNK-TIONS-teorin, som behandlats av Dean (1974).

En kort presentation av berörda teorier följer i detta kapitel.

2.2 Vågkarakteristika

För att underlätta fortsättningen av detta arbete införes här några beteckningar och definitioner.

Fig. 2.1

Grundläggande definitioner.

LVY	=	Lugnvattenytans nivå					
В	=	Bottnens nivå					
Våglängd L	=	Horisontella avståndet mellan två på varandra följande vågtoppar [m]					
Våghöjd H	=	Vertikala avståndet mellan vågtopp och vågdal [m]					
Vattendjup d	#	Vertikala avståndet mellan lugvattenytan och bottnen [m]					
Vågperiod T	=	Tidsavståndet mellan två vågtoppar [s]					
Fasvinkel 0	=	$\frac{360 \text{ x}}{\text{L}}$ [grad]					
Våghastighet C	Ŧ	$\sqrt{\frac{gL}{2\pi} \tan h \frac{2\pi d}{L}} [m/s]$					
		g= 9,81 m/s ²					
		På grunt vatten d < $\frac{L}{20}$					
		$C \simeq \sqrt{gd}$					
		På djupt vatten d $> \frac{L}{2}$					
		$C \simeq \sqrt{\frac{gL}{2\pi}}$					

Grupphastighet Cg =
$$\frac{C}{2}$$
 $\left[1 + \frac{4 \pi d}{L \sin h \frac{4 \pi d}{L}}\right]$ $[m/s]$
Litet $\frac{d}{L} \Rightarrow Cg \simeq C$
Stort $\frac{d}{L} \Rightarrow Cg \simeq \frac{C}{2}$

Mellan C, L och T råder sambandet:

$$C = \frac{L}{T}$$

2.3 Linjär teori

Giltighetsområde:

$$\frac{H}{L} < 0,01 \ a 0,02$$

 $\frac{d}{L} > 0,5$

Fig. 2.2 Linjär teori

Vågform:

цю.

$$y = \frac{H}{2} \cdot \cos 2\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$

Partikelrörelsens form:

$$\begin{split} \tilde{\boldsymbol{\xi}} &= -\frac{\mathrm{H}}{2} \frac{\cosh 2\pi \, (\mathrm{y} + \mathrm{d})/\mathrm{L}}{\sinh 2\pi \, \mathrm{d}/\mathrm{L}} \quad \sin 2\pi \, (\frac{\mathrm{x}}{\mathrm{L}} - \frac{\mathrm{t}}{\mathrm{T}}) \\ \boldsymbol{\gamma} &= \frac{\mathrm{H}}{2} \frac{\sinh 2\pi \, (\mathrm{y} + \mathrm{d})/\mathrm{L}}{\sinh 2\pi \mathrm{d}/\mathrm{L}} \cos 2\pi \, (\frac{\mathrm{x}}{\mathrm{L}} - \frac{\mathrm{t}}{\mathrm{T}}) \end{split}$$

För djupt vatten d/L > 0,5 gäller:

$$\frac{\cosh 2\pi (y+d)/L}{\sinh 2\pi d/L} \cong \frac{\sinh 2\pi (y+d)L}{\sinh 2\pi d/L} \cong e^{-\frac{2\pi y}{L}}$$

Förenklingen ger:

$$\xi = -\frac{H}{2} e^{\frac{2\pi y}{L}} \sin 2\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$

$$\gamma = \frac{H}{2} \cdot e^{-\frac{2\pi y}{L}} \cos 2\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$

Amplitudernas storlek vid ytan resp. bottnen

Vattenytan y = 0:

$$\begin{cases}
\text{max} & \text{för } x = \frac{L}{4} \\
\end{cases}$$

$$\begin{cases}
\text{max} = -\frac{H}{2} e^{\circ} \sin \frac{\pi}{2} = -\frac{H}{2} \\
\end{cases}$$

$$\begin{cases}
\text{max} & \text{för } x = 0 \\
\end{cases}$$

$$\begin{cases}
\text{max} = \frac{H}{2} e^{\circ} \cos 0 = \frac{H}{2}
\end{cases}$$

Bottnen y = -d:

Djupt vatten d >0,5 L. Sätt y = -0,5 L.

6,

$$\begin{split} & \int \max = -\frac{H}{2} e^{\frac{-2\pi 0.5 L}{L}} \sin \frac{\pi}{2} \approx -\frac{H}{46} \\ & \int \max = \frac{H}{2} e^{-\pi} \cos 0 \approx \frac{H}{46} \end{split}$$

Partikelhastighet:

$$u = \frac{\pi H}{T} \frac{\cosh 2\pi (y+d)/L}{\sinh 2\pi d/L} \cos 2\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$

$$w = \frac{\pi H}{T} \frac{\sinh 2\pi (y+d)/L}{\sinh (2\pi d)/L} \sin 2\pi (\frac{x}{L} - \frac{t}{T})$$

Med samma approximation som tidigare erhålles för djupt vatten:

$$u = \frac{\pi H}{T} \cdot e^{\frac{-2\pi y}{L}} \cdot \cos 2\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$

$$w = \frac{\pi H}{T} \cdot e^{\frac{-2\pi y}{L}} \cdot \sin 2\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$

Hastighetskomponenternas maximala storlek vid bottnen respektive vattenytan.

Vattenytan y = 0:
$$u_{max}$$
 för x = 0, L
 v_{max} för x = $\frac{L}{4}$, $\frac{3L}{T}$
 $u_{max} = \frac{\pi H}{T} e^{\circ} \cos 0 = \frac{\pi H}{T}$
 $w_{max} = \frac{\pi H}{T} e^{\circ} \sin \frac{\pi}{2} = \frac{\pi H}{T}$

Bottnen y = -0, 5 L:

$$u_{\max} = \frac{\pi H}{T} e^{-\pi} \cos 0 = \frac{\pi H}{T^{23}}$$
$$w_{\max} = \frac{\pi H}{T} e^{-\pi} \sin \frac{\pi}{2} = \frac{\pi H}{T^{23}}$$

2.4 Gerstners teori

Giltighetsområde: 0,01 - 0,02 < $\frac{H}{L}$ < 0,125 $\frac{d}{L}$ > 0,5

Fig. 2.3 Gerstners teori

$$2r = H \implies r = \frac{H}{2}$$
$$2\pi R = L \implies R = \frac{L}{2\pi}$$
$$h_o = \frac{\pi \cdot H^2}{4 L \tanh \frac{2\pi d}{L}}$$

Vågform:

्राम्स

1.5

$$y = r \cdot \cos \theta_{R} + h_{o}$$
$$x = R \cdot \frac{\theta_{R} \cdot \pi}{180} - r \cdot \sin \theta_{R}$$

För givet värde på x erhålles $\theta_R^{}$ genom passning varpå y kan beräknas.

Fig. 2.4 $\qquad \theta_{\rm R} \mbox{ som funktion av fasvinkeln } \theta$

Partiklarna rör sig i cirkelformade banor med en radie som avtar med djupet:

$$r = \frac{H}{2} e^{\frac{-2\pi y}{L}}$$

Radiens maximala längd vid ytan resp botten:

Ytan y = 0:

$$r = \frac{H}{2} e^{0} = \frac{H}{2}$$

Bottnen y = 0,5 L ty d \geq 0,5 L på djupt vatten:

$$r = \frac{H}{2} e^{\frac{-2\pi L}{2L}} = \frac{H}{46}$$

Partikelhastighet:

$$u = \frac{\pi H}{T} \cdot e^{\frac{-2\pi y}{L}} \cdot \cos 2\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$
$$v = \frac{\pi \cdot H}{T} \cdot e^{\frac{-2\pi y}{L}} \cdot \sin 2\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$

Hastighetskomponenternas maximala storlek vid vattenytan respektive bottnen.

Vattenytan y = 0

$$u_{\max} = \frac{\pi H}{T} \cdot e^{\circ} \cdot \cos \circ = \frac{\pi H}{T}$$
$$v_{\max} = \frac{\pi H}{T} \cdot e^{\circ} \cdot \sin \frac{\pi}{2} = \frac{\pi H}{T}$$

Bottnen y = -0, 5 L:

$$u_{\max} = \frac{\pi H}{T} e^{-\pi} \cdot \cos 0 = \frac{\pi H}{T \cdot 23}$$
$$v_{\max} = \frac{\pi H}{T} \cdot e^{-\pi} \cdot \sin \frac{\pi}{2} = \frac{\pi \cdot H}{T \cdot 23}$$

2.5 Stokes teori. 2:a ordningen

Giltighetsområde: $\frac{H}{L}$ < 0,01 - 0,02

0,1 <
$$\frac{d}{L}$$

Fig. 2.5 Stokes teori

Vågform:

$$y = \frac{H}{2}\cos 2\pi \left(\frac{x}{L} - \frac{t}{T}\right) + \frac{\pi H^2}{4L} \left(1 + \frac{3}{2\sinh^2 \frac{2\pi d}{L}}\right) \operatorname{cot} h \frac{2\pi d}{L} \cos 4\pi \left(\frac{x}{L} - \frac{t}{T}\right)$$

1:a ordn.
tillskott 2:a ordn.

I tillskottet för 2:a ordningens teori ingår överhöjningen h_o.

$$h_{o} = \frac{\pi H^{2}}{4L} \operatorname{coth} \frac{2\pi d}{L} = \frac{\pi H^{2}}{4L \tanh \frac{2\pi d}{L}}$$

dvs samma uttryck som enligt Gerstners teori.

Partikelrörelsens form:

$$\begin{split} \eta &= \frac{1}{2} \operatorname{H} \cdot \frac{\sinh 2\pi (\mathrm{y} + \mathrm{d})/\mathrm{L}}{\sinh 2\pi \, \mathrm{d}/\mathrm{L}} \cos 2\pi \, (\frac{\mathrm{x}}{\mathrm{L}} - \frac{\mathrm{t}}{\mathrm{T}}) + \frac{3\pi \mathrm{H}^2}{16 \, \mathrm{L}} \, \frac{\sinh 4\pi \, (\mathrm{y} + \mathrm{d})/\mathrm{L}}{\sinh^4 2\pi \, \mathrm{d}/\mathrm{L}} \, . \\ &\cdot \, \cos 4\pi \, (\frac{\mathrm{x}}{\mathrm{L}} - \frac{\mathrm{t}}{\mathrm{T}}) + \frac{\pi \, \mathrm{H}^2}{8 \, \mathrm{L}} \, \frac{\sinh 4\pi \, (\mathrm{y} + \mathrm{d})/\mathrm{L}}{\sinh^2 2\pi \, \mathrm{d}/\mathrm{L}} \, . \\ &\int \int &= -\frac{1}{2} \, \mathrm{H} \, \frac{\cosh 2\pi \, (\mathrm{y} + \mathrm{d})/\mathrm{L}}{\sin h2\pi \, \mathrm{d}/\mathrm{L}} \, \sin 2\pi \, (\frac{\mathrm{x}}{\mathrm{L}} - \frac{\mathrm{t}}{\mathrm{T}}) \, + \\ &+ \, \frac{\pi \, \mathrm{H}^2}{8 \, \mathrm{L} \, \sinh^2 2\pi \, \mathrm{d}/\mathrm{L}} \, \left[1 - \frac{3}{2} \, \frac{\cosh 4\pi \, (\mathrm{y} + \mathrm{d})/\mathrm{L}}{\sinh^2 2\pi \, \mathrm{d}/\mathrm{L}} \right] \, \sin 4\pi \, (\frac{\mathrm{x}}{\mathrm{L}} - \frac{\mathrm{t}}{\mathrm{T}}) \, + \\ &+ \, \frac{\pi \, \mathrm{H}^2}{4 \, \mathrm{L}} \, \frac{\cosh 4\pi \, (\mathrm{y} + \mathrm{d})/\mathrm{L}}{\sinh^2 2\pi \, \mathrm{d}/\mathrm{L}} \end{split}$$

Partikelhastighet:

$$\begin{aligned} u &= \frac{\pi H}{T} \frac{\cosh 2\pi (y + d)/L}{\sin h 2\pi d/L} \cos 2\pi (\frac{x}{L} - \frac{t}{T}) + \\ &+ \frac{3}{4} (\frac{\pi H}{T}) (\frac{\pi H}{L}) \frac{\cosh 4\pi (y + d)/L}{\sin h^4 2\pi d/L} \cos 4\pi (\frac{x}{L} - \frac{t}{T}) \\ &= \frac{\pi H}{T} \frac{\sinh 2\pi (y + d)/L}{\sinh 2\pi d/L} \sin 2\pi (\frac{x}{L} - \frac{t}{T}) + \\ &+ \frac{3}{4} (\frac{\pi H}{r}) (\frac{\pi H}{L}) \frac{\sinh 4\pi (y + d)/L}{\sin h^4 2\pi d/L} \sin 4\pi (\frac{x}{L} - \frac{t}{T}) \end{aligned}$$

2.6 Knoidal teori

ويورونه

Giltighetsområde: 0,02 $\leq \frac{d}{L} < 0,1$

Fig. 2.6 Knoidal teori

 $y_t = koordinat från botten till vågdal.$

 y_s = koordinat från botten till vattenyta.

Vågform:

Den matematiska behandlingen är komplicerad men med hjälp av diagram, alternativt tabeller, kan vågformen tas fram.

Tillvägagångssätt: $\frac{L^2H}{a^3}$ beräknas.

Ur fig. 2.7 erhålles sedan $\frac{y_t}{H} - \frac{d}{H} + 1$ varur y_t kan lösas. I samma figur ges även k² som funktion av $\frac{L^2 H}{d^3}$.

Med värde på k² samt $\frac{x}{L}$ ger fig. 2.8

$$\frac{y_s - y_t}{H}$$

 $x_{i} \in \mathbb{C}$

 y_t och H är nu kända varför y_s kan beräknas. y erhålles sedan som y_s – d.

Fig. 2.7 Knoidalteorins karakteristiska storheter som funktion av $\frac{L^2H}{d^3}$

14.

-12 . . . 핀 -----..... -÷.E X • 0 .0 ł đ ----: : : ΞĘ 045 o to ----- <u>- - -</u> - ------+• E 1 ΞE 1 035) - 4-- : <u>: - -</u> 8 8 0,80 0,40 07E DRIN H D/20 E. .; KNOLDA 0,15 -----060 0,95 0,99 LIGT -----..... 2017 F Z 0 đ ••••• ÅGFORM 0,05 \geq 1111 1:1: 0Ú к Х-Х 060 020 a o 00 8 ċ. Ť ц. Ц. ____

15,

2.7 <u>Solitär teori</u> Giltighetsområde: $\frac{d}{L} < 0,02$

Vågform:

y = H · cos h⁻²
$$\left[\sqrt{\frac{3H}{4d^3}} \cdot \left(\frac{x}{L} - \frac{t}{T} \right) \right]$$

Partikelrörelsens form.

De banor som vattenpartiklarna beskriver är ej slutna vilket medför att den solitära vågen är transporterande.

Partikelrörelsens hastighet:

$$u = \sqrt{g \cdot d} \frac{H}{d} \frac{1}{\cosh^2 \left[\sqrt{\frac{3H}{4d^3}} \left(\frac{x}{L} - \frac{t}{T} \right) \right]}$$
$$w = \sqrt{3 g d} \left(\frac{H}{d} \right)^{3/2} \frac{y \cdot \tan h}{d \cosh^2 \left[\sqrt{\frac{3H}{4d}} \left(\frac{x}{L} - \frac{t}{T} \right) \right]}$$

2.8 Strömfunktionsteori

Giltighetsområde: $\frac{d}{L} > 0,02$

<u> 2</u>22

Fig. 2.10 Strömfunktionsteori

För beräkning av vågform, partikelhastigheter, accelerationer, tryck m m finns tabeller utarbetade av Dean (1974). Med värde på d/L samt H/L erhålles olika fall för vilka de sökta storheterna finns tabellerade i dimensionslös form. För kombinationer av d/L och H/L som ligger mellan de angivna fallen interpoleras rätlinjigt.

 $\mathcal{M}(p)$

Fig. 2.11 Tabellerade fall. (h = vattendjup).

2.9 Giltighetsom råde

De teorier som vi nu har presenterat har valts så att de omfattar ett så brett spektrum av vågor som möjligt.

Fig. 2.12

Rekommenderade användningsområden för de olika teorierna.

- A = Linjär teori
- B = Gerstners teori
- C = Stokes teori 2:a ordn.
- D = Knoidal teori
- E = Solitär teori
- F = Strömfunktionsteori

De ovan införda bokstavsbeteckningarna kommer i fortsättningen att ange vilken teori som avses.

2.10 Jämförelse mellan de olika teorierna

För att få inblick i hur de olika teorierna överensstämmer kommer vi här att, för några olika vågor, göra en jämförelse av vågform, partikelamplitud samt partikelhastighet. För detta ändamål har vi valt ut tre olika vågor. En typisk djuphavsvåg, en våg på intermediärt vattendjup och en våg på grunt vatten.

				TEORI						
d/L	HL	Р	Ļ	Н	A	В	С	D	E	F
1.0	0,05	0,8	0,8	0,04	Х	Х	Х			Х
0,2	0,05	0,6	3.0	015		Х	Х	Х		Х
0,05	0,015	0.4	8,0	0112				X	Х	Х

Tabell 2.1 Våg samt de teorier för vilka jämförelsen sker.

På grund av att den matematiska behandlingen av Knoidal-teorin är komplicerad, har vi inte beräknat partikelamplitud och partikelhastighet enligt denna teori.

Då vågen på grunt vatten är transporterande kan man inte tala om någon egentlig partikelamplitud, varför denna jämförelse ej gjorts.

e 4 1

Fig. 2.16 Horisontell partikelamplitud. Våg på djupt vatten.

Fig. 2.17 Horisontell partikelamplitud. Våg på intermediärt vattendjup.

Våg på djupt vatten.

Fig. 2.19 Maximal horisontell partikelhastighet. Våg på intermediärt vattendjup.

Våg på grunt vatten.

3. VÅGGENERERING

3.1 Principer

Att på konstgjord väg framställa en våg möter inga hinder. När ett föremål eller en människa kommer i kontakt med vatten alstras oftast vågor. De vågor man åstadkommer hemma i badkaret blir dock i allmänhet ej sådana att de kan användas för vetenskapligt bruk. För detta ändamål ställs vissa krav på vågorna. De skall helst ha samma form på läsidan som på lovartsidan. Vågformen får ej heller förändras i tiden utan bör vara stabil under en längre tidsperiod.

En enkel typ av våggenerator erhålles om en kropp cykliskt doppas i vattnet. Med denna typ av våggenerator kan endast vågor med liten bottenrörelse simuleras.

Fig. 3.1 Våggenerator bestående av en kropp som doppas i vattnet.

En annan metod att åstadkomma vågor är att låta ett blad svänga kring en fix punkt. Genom att ändra höjdläget för svängningscentrum kan olika vågtyper genereras.

Fig. 3.2 Våggenerator med svängande blad.

De våggeneratorer som vi har beskrivit ovan har vissa svagheter. För att man ska kunna generera en i förväg bestämd våg krävs att våggeneratorn kan efterlikna partikelrörelsen i den aktuella vågen. Då vattenpartiklarnas rörelser är svåra att efterlikna på mekanisk väg tvingas man till vissa kompromisser. Det viktigaste tror vi är att rätt partikelamplitud erhålles. En mindre hastighetsavvikelse har förmodligen inte så stor betydelse. Eftersom partikelamplituden ej avtar linjärt mot djupet, så kan ett rakt vågblad endast beskriva rätt amplitud i två punkter. Vi har försökt att erhålla rätt utslag vid botten respektive vid vattenytan.

3.2 Våggeneratorn

3.2.1 Beskrivning

Den utrustning vi använt oss av för att alstra vågor är en vidareutveckling av generatorn med svängande blad. En fördel med den använda generatorn är att vågbladet kan bringas att löpa parallellt med bottnen. Konstruktionen medger även att bladet kan utföra i det närmaste lika stora svängningar vid bottnen som vid vattenytan. Ytterligare en fördel är att man kan erhålla mycket stora amplituder.

Fig. 3.3 Våggeneratorn. Principskiss.

För i figuren redovisade parametrar och variabler gäller följande värden:

0,107	<	$m_{e} <$	0,476	[m]
0,417	<	e ₁ <	1,002	[m]
0,230	<	$e_2 <$	0,815	[m]

$$k_1 = 1,364 \text{ m}, k_2 = 0,260 \text{ m}$$

Vågfrekvensen kan regleras steglöst inom gränserna:

 $0,23 < T^{-1} < 1,16 [s^{-1}]$

Fig. 3.4 Våggeneratorn från sidan

Fig. 3.5 Våggeneratorn snett framifrån

3.2.2 Mekanisk analys

Vågbladets utslag beror på inställningen av excentriciteterna m_e , e_1 och e_2 (se fig. 3.3).

För givet värde på m_e samt för utslagen x på nivåerna 0,260 m och 0,600 m erhålles excentriciteterna e_1 och e_2 ur:

$$k_1 = 1,364 m$$
:
 $x(k_1) = m_e \cdot \frac{e_1}{0,798}$
 $k_2 = 0,260 m$:
 $x(k_2) = m_e \frac{e_2}{0,798}$

Således gäller:

х

e ge

$$(k) = m_{e} \frac{e_{2}}{0,798} + \frac{k - 0,260}{1,364 - 0,260} \cdot \frac{m_{e}}{0,798} (e_{1} - e_{2}) = = 1,253 m_{e} \left[e_{2} + \frac{k - 0,260}{1,103} (e_{1} - e_{2}) \right] k = 0,260 m: x (0,260) = 1,253 \cdot m_{e} \cdot e_{2} k = 0,600 m: x (0,600) = 1,253 m_{e} \left[e_{2} + \frac{0,339}{1,103} (e_{1} - e_{2}) \right] = = 1,253 m_{e} \left[0,307 e_{1} - 0,693 e_{2} \right]$$

Om e_1 och e_2 löses ut erhålles:

$$e_{2} = \frac{x(0,260)}{1,253 m_{e}} + 0,120$$
(1)
$$e_{1} = \frac{2,600}{m_{e}} x(0,600) - 0,693 x(0,260) + 0,120$$
(2)

För kompensation av förskjuten inställningsskala har 0,120 m adderats till e_1 och e_2 .
3.2.3 Inställning med hjälp av diagram

För ett erhålla utslagen x(0, 260) och x(0, 600) med givna värden på partikelamplituderna vid botten, x_B , respektive vattenytan, x_{svy} , har vi konstruerat ett diagram. Se bilaga 5.

När man nu önskar ställa in våggeneratorn så att dessa utslag erhålles, underlättas arbetet av att vi presenterat ekv.(1) och (2) i diagramform, bilaga 6. Här erhålles således värden på variablerna m_e, e₁ och e₂.

På grund av svårigheter att korrigera för vipparmens lutning erhålles inte alltid det önskade utslaget. Felet uppgår i ogynnsamma fall till ca 5 % men är i allmänhet försumbart.

Då vågbladet, enligt de flesta teorier, skall stå vertikalt när utslaget är noll måste man se till att motorexcentern står lodrätt samtidigt som vågbladet. Detta sker genom att motorns läge i längsled kan justeras.

4. LABORATORIEFÖRSÖK

4.1 Utrustning

Den i föregående kapitel beskrivna våggeneratorn är placerad i en försöksränna med längden 84 m, bredden 2 m samt maximalt 1 m vattendjup. Rännan är uppbyggd av 3 m långa sektioner. Väggarna är av glas och botten av målad stålplåt, vilket medför att friktionsförlusterna blir små.

Fig. 4.1 Försöksutrustning

Rännan är försedd med två reflektionsdämpande slänter. Bakom våggeneratorn finns en konvex-konkav träkonstruktion, som skall dämpa ut den bakåtgående vågen. I rännans motsatta ände är en annan typ av

reflektionsdämpare monterad, som är avsedd att i möjligaste mån förhindra reflektion av de inkommande vågorna. Den är uppbyggd av flera lager ståltrådsnät på en flack slänt.

Då det är möjligt att generera transporterande vågor, har man för att undvika snedställning av vattenytan i rännan, försett densamma med en returledning, som tar hand om bottenströmmen. Eftersom vågbladet ej kan efterlikna vattenpartiklarnas rörelse helt, uppstår en del mindre störningar på vattenytan. Dessutom sluter inte vågbladet tätt mot rännans begränsningsytor, vilket också ger upphov till krusningar på vattenytan. För att eliminera dessa störningar har ett filter konstruerats. Detta är uppbyggt av ett flertal aluminiumraster, som är placerade parallellt med rännans längdriktning. Vid försöken placerades filtret med centrum ca 18 m från vågbladet.

Fig. 4.2 Filter. Sträckmetall 3 x 10 mm. Delning 40 mm.

För registrering av vågformen har vi använt oss av tre elektriska motståndsgivare, vilka monterades på spetsmätare för att underlätta kalibre-

ringen. Givarna G₁ och G₃ applicerades på speciella tvärgående balkar 14 m respektive 50 m från våggeneratorn. Mellan dessa, 26 m, från vågbladet, sattes givare G2 på en rörlig vagn. Givarna kopplades till varsin kanal i en förstärkare, som i sin tur anslöts till en skrivare.

Fig. 4.3 Mätuppställning

Fig. 4.5 Förstärkare och skrivare

4.2 Utförande

Varje mättillfälle har inletts med att givarna sänkts ner i vattnet, varpå skrivaren kunnat kalibreras. Detta har tillgått så att, sedan lämplig skala valts, förstärkningen justerats så att rätt utslag erhållits på skrivaren, då givarna höjts och sänkts stegvis med hjälp av spetsmätarna.

Nästa moment bestod i att ställa in våggeneratorn. Först ställde vi in m_e, e₁ och e₂ varpå kontrollerades att rätt utslag av vågbladet erhölls. Därefter justerade vi varvtalet så att vågperioden blev den rätta. Då inställningsskalans gradering ej är tillräckligt distinkt, fick detta ske med hjälp av tidtagarur.

När så alla vågrörelser i rännan dött ut, kunde vi starta mätningarna. Eftersom skrivaren endast har två kanaler var vi tvungna att mäta i två omgångar. Först kopplades givarna G_1 och G_2 in, varvid vågformen före och efter filtret registrerades. Efter att vattnet på nytt lugnat ner sig uppmättes vågformen vid givarna G_2 och G_3 . Slutligen genererades en grupp av vågor som fick passera genom rännan, med givarna G_2 och G_3 inkopplade. Detta möjliggjorde att grupphastigheten kunde beräknas.

För att undvika störningar på grund av reflektion mot bortre slänten, har mätningarna avslutats innan första reflekterade våg hunnit fram till de inkopplade givarna.

Samtidigt som vågformen uppmättes tog vi även tiden det tog för en vågtopp att tillryggalägga 30 m. Mätningen skedde med tidtagarur och upprepades tre gånger.

4.3 Omfattning

Mätningarna har delats upp i två försöksserier. Den första försöksserien syftar främst till en kontroll av vilka vågteorier som lämpar sig bäst för inställning av våggeneratorn. De vågor som i verkligheten erhölls, analyserades sedan med avseende på vågformen och jämfördes med formen enligt olika teorier. På så sätt har vi kunnat bilda oss en uppfattning om de olika teoriernas giltighetsområden.

1		and the second statement of the second statement of the second statement of the second statement of the second			the second s
Våg	d/L	H/L	d	L	H
. 1	0,690	0.075	0.8	1.16	0,087
2	0,690	0,100	0, 8	1,16	0,116
3	0,600	0,075	0,8	1,33	0,100
4	0,600	0,100	0,8	1,33	0,133
5	0,500	0,050	0,6	1,20	0,060
6	0,500	0,075	0,6	1,20	0,090
7	0,500	0,100	0,6	1,20	0,120
8	0,200	0,050	0,6	3,00	0,150
9	0,200	0,075	0,6	3,00	0,225
10	0,200	0,100	0,6	3,00	0,300
11	0,150	0,040	0,6	4,00	0,160
12	0,100	0,012	0,4	4,00	0,048
13	0,100	0,025	0,4	4,00	0,100
14	0,080	0,012	0,4	5,00	0,060
15	0,080	0,020	0,4	5,00	0,100

Tabell 4.1 Omfattning av försöksserie I

Våg	d/L	H/L	d	L	н
1 2 3 4 5 6 7 8 9 10 11 12	0, 40 0, 30 0, 30 0, 25 0, 25 0, 25 0, 25 0, 20 0, 15 0, 10 0, 10	0,075 0,050 0,075 0,090 0,030 0,050 0,075 0,040 0,030 0,060 0,015 0,025	0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	1,502,002,002,002,402,402,403,004,004,006,006,00	0,1125 0,100 0,150 0,180 0,072 0,120 0,120 0,120 0,120 0,240 0,090 0,150
					0, 110

I försöksserie 2 har vi enbart intresserat oss för våghöjdsreduktionen genom filtret, varför vi endast använt oss av givarna G₁ och G₂.

Tabell 4.2 Omfattning av försöksserie II

4.4 Utvärdering

För att bestämma VÄGHASTIGHETEN beräknas ett medelvärde av de tider som vågen behövde för att tillryggalägga 30 m. Denna tid anges med standardavvikelse i resultatprotokollet.

GRUPPHASTIGHETEN kan bestämmas då skrivarpapperets matningshastighet, samt avståndet mellan de inkopplade givarna är kända.

VÅGFREKVENSEN erhåller vi genom att först mäta längden på var och en av tio hela perioder på skrivarpapperet. Därefter divideras papperets hastighet med dessa mätvärden varefter medelvärde och standardavvikelse beräknas. VÅGPERIODEN är sedan inversen av frekvensen.

VÅGLÄNGDEN kan nu beräknas som produkten av våghastighet och vågperiod.

VÅGHÖJDEN anges för var och en av de tre givarna som ett medelvärde med standardavvikelse. Dessa mätvärden grundar sig på fem mätningar. Vi har, i resultatprotokollet, kallat våghöjden vid givare G₁ för H₁ etc. Ur våghöjderna H₂ och H₃ har vi bestämt våghöjdens reduktion per längdmeter i rännan, RÄNNFÖRLUST. Med hjälp av denna, samt H₁ och H₂ kan sedan våghöjdsreduktionen genom filtret, FILTERFÖR-LUSTEN, beräknas. Nu kan vi även bestämma en OSTÖRD VÅGHÖJD, dvs den våghöjd som genererats. Rännförlusten och filterförlusten anges sedan i procent av den ostörda våghöjden.

Slutligen anges i resultatprotokollet d/L och H/L för den erhållna vågen.

För mätning av vågformen väljer vi, på skrivarpapperet, ut en representativ våg vid varje mätställe. Vågens läsida delas sedan in i tolv lika stora delar, varefter vattenytans avvikelse från lugnvattenytan mätes i dessa punkter. Därefter normeras vågformen genom att dividera med våghöjden.

På följande sidor följer ett exempel på en våg som utvärderats.

Vågorna i försöksserie I redovisas på detta sätt i bilaga 7.

sate.

.

: 80a.			VÂG: X
	ÖNSKAD VÅG	$\frac{d}{L} = 0.200$ $\frac{H}{L} = 0.075$	d = 0.6 m L = 3.00 m H = 0.225 m
		VÅGHASTIGHET: $C = \sqrt{\frac{qL}{2\pi}} \tan h^{-1}$	$\frac{2\pi d}{L} = 2.00 \text{ m/s}$
		$GRUPPHASTIGH$ $C_{G} = \frac{C}{2} \left[1 + \frac{1}{L} \right]$	$\frac{4\pi d}{\frac{4\pi d}{L}} = 1.41 \text{ m/s}$
		$VÅGPERIOD:$ $T = \frac{L}{C} = 1,50$	Ś
	INSTÄLLNING	TEORI: STOKE	2: A ORDN
	GENERATOR	PARTIKELRÖR Horisontell	ELSENS A AMPLITUD
		VID VATTENYT.	AN: X _{SVY} =0,119 m
	÷	VID BOTTEN	$X_{B} = 0.063 m$
nar Statu		$T^{-1} = 0.67$	SPARAMETRAR: s ⁻¹
		$e_1 = 0.971$ $e_2 = 0.52$	2

·

43. ~>> V= 1,25 cm/s \sim VÁG X 18,1 CM $C_g = \frac{1_{25}}{18,1} \cdot 24 = 1,66 \text{ m/s}$

	VÅG:X
RESULTAT	TID30m: 15,00 ± 0,06 S
	VÅGHASTIGHET: $C = 2,00 \text{ m/s}$
	GRUPPHASTIGHET: CG = 1.66 m/s
	$VÅGFREKVENS: T^{-1} = 0.67 \pm 0.01 5^{1}$
	VÅGPERIOD: T= 1.50 S
	VÅGLÄNGD: L=C·T=300 m
	VÅGHÖJD: $H_2 = 0.1532 \pm 0.0016 m$ $H_3 = 0.1524 \pm 0.0022 m$ RÅNNFÖRLUST: $h = \frac{H_2 - H_3}{24} = 0.3 \cdot 10^4 m/m$ $H_1 = 0.2198 \pm 0.0027 m$ $H_2 = 0.1510 \pm 0.0012m$ FILTERFÖRLUST: $\Delta h = H_1 - H_2 - 12 \cdot h = 0.0684 m$ OSTÖRD VÅGHÖJD: $H_0 = H_1 + 14 \cdot h = 0.2203 m$
	$\frac{h}{H_0} \cdot 100 = 0.01 \ \%/m$ $\frac{\Delta h}{H_0} \cdot 100 = 31.1 \ \%$
ERHÅLLEN VÅG	$\frac{d}{L} = 0,200$ $\frac{H}{L} = 0,073$

. Gran

44,

) 1955:

(

VÅG X

	6			Si	(7 3
X	Y	Y/H	У	УІН	У	YIA
0	0,1364	0,612	0,0882	0,577	0,0989	0,574
0,125	0,1244	0,558	0,0832	0,544	0,0846	0,547
0,25	0,0948	0,425	0,0708	0,463	0,0710	0,459
0,375	0,0612	0,275	0,0534	0,349	0,0516	Q333
0,50	0,0244	0,110	0,0312	0,204	0,0304	0,196
Q625	- 0,0072	- 0,032	0,0168	0,071	0,0086	0,056
0,75	-0,0292	-0,131	-0,0060	- 0,039	-0,0100	-0,065
0.875	-0,0474	-0,213	-0,0232	-0,152	-0,0278	-0,190
1,00	-0,0600	-0,269	-0,0390	-0,255	-0,0430	-0,278
1,125	-0,0706	- 0,317	-0,0498	-0,326	- 0,0534	-0,345
1,25	0,0790	-0,355	-0,0588	-0,385	-0,0606	-0,391
1,375	-0,0852	-0,382	-0,0634	-0,415	-0,0648	-0,419
1,50	-0,0864	-0,388	- 0,0646	-0,423	- 0, 0660	-0,426

4.5 Mätfel

Vid kalibrering av skrivaren har vi inte alltid kunnat justera utslagen till full överensstämmelse. Avvikelsen har dock varit mindre än en halv millimeter, inom vårt mätområde.

Mätning av vågen, på skrivarpapperet, försvårades av att kurvorna ej var tillräckligt distinkta. Exakta värden på vågformen var särskilt svåra att erhålla i vågens brantaste del. För att minska detta fel har vi mätt såväl till grafens under- som överkant och tagit medelvärdet av dessa mätningar. Felet torde i ogynnsamma fall uppgå till omkring en millimeter.

Vi har uppskattat att felen i de uppmätta värdena maximalt uppgår till:

vattendjup	$\frac{+}{2}$ mm
våghöjd	± 1 mm
vågfrekvens	± 0,01 s ⁻¹
våghastighet	± 0,05 m/s

5. TEORETISK INSTÄLLNING AV VÅGGENERATOR

5.1 Jämförelse mellan önskad och erhållen våghöjd

För att ta reda på vilka teorier som lämpar sig bäst för inställning av våggeneratorn, har vi i försöksserie I provat att ställa in efter Gerstners teori samt Stokes teori av andra ordningen. Anledningen till att vi valde dessa teorier var främst att deras rekommenderade giltighetsområde låg inom det område som är intressant att arbeta i. Dessa teorier har även använts för inställning utanför de rekommenderade områdena. Inställning med Gerstners teori utanför det rekommenderade områdena. Inställning med Gerstners teori utanför det rekommenderade området medförde att vågorna blev alldeles för höga varför dessa försök avbröts. Att inställning enligt de övriga studerade teorierna ej har skett beror på svårigheter att enkelt beräkna partikelamplituden och likheter med de som använts.

Fig, 5.1

Försöksserie I. Önskad våg.

Fig. 5.2 Försöksserie I. Erhållen våg.

De avvikelser som här kan iakttagas har främst två orsaker. Att d/L skiljer sig från de avsedda värdena beror enbart på svårigheten att ställa in rätt vågfrekvens. Effekten av den teori som använts vid inställning återspeglas alltså endast av H/L, men även L beror av vågfrekvensen varför vi här endast skall jämföra den erhållna våghöjden med den önskade.

Fig. 5.3 Den erhållna våghöjdens, H_o, avvikelse från den önskade våghöjden, H. Försöksserie I.

5.2 Teori lämplig för inställning av våggenerator

Av figur 5.3 framgår det att Stokes teori av andra ordningen, med godtagbar noggrannhet, medger inställning av de flesta vågor, som kan genereras. För branta vågor på mycket grunt vatten har dock stora avvikelser konstaterats. Vi anser emellertid nu att Stokes teori av andra ordningen väl lämpar sig för inställning av våggeneratorn, inom hela det område där det kan vara aktuellt att generera vågor.

Då beräkning av partikelamplituden enligt Stokes teori av andra ordningen är tidsödande, har vi i diagramform presenterat dessa funktioner. Diagrammen ger partikelamplituden som funktion av H och d/L. Se bilagorna 3 och 4.

6. VÅGFORM

6.1 Jämförelse mellan teoretisk och genererad vågform

Med utgångspunkt från de i försöksserie I erhållna värdena på våglängd och våghöjd, har vi beräknat teoretisk vågform med tillämpbara teorier. Därvid har vattenytans avvikelse från lugnvattenytan beräknats i samma tolv tjugofjärdedelspunkter som tidigare mätts. Efter att ha normerat dessa tal genom att dividera med våghöjden kan en jämförelse med den uppmätta vågformen ske. För detta ändamål beräknas skillnaden mellan uppmätt och teoretisk vågform, . För att lättare kunna kontrollera överensstämmelsen, beräknas därefter $\sqrt{\sum \mathcal{E}^2}$ och $\begin{bmatrix} \mathcal{E}_{max} - \mathcal{E}_{min} \end{bmatrix}$. Den förstnämnda parametern ger en uppfattning om den totala avvikelsens storlek. $\begin{bmatrix} \mathcal{E}_{max} - \mathcal{E}_{min} \end{bmatrix}$ anger i vilken grad den teoretiska vågformen är likformig med den verkliga.

Fig. 6.1 Exempel på teoretisk vågform med relativt god anslutning, men med avsevärd formskillnad.

<u>ia de la</u>

Fig. 6.2 Exempel på teoretisk vågform med liten formskillnad men med för stor överhöjning.

De teorier som har tagits upp för analys har för respektive våg valts så, att rimlig överensstämmelse kunnat förväntas. Detta innebär att teorierna endast tillämpats i eller i närheten av sina rekommenderade giltighetsområden.

I de fall då vågen varit mycket osymmetrisk har ingen jämförelse skett.

VÅG	ERHÅLLEN VÅG		ΤE	OR	[
NR.	d/L H/L	A	В	С	D	Έ	F
1	0,678 0,112	x	х	x			x
2	0,656 0,108	X.	х	x			x
3	0,530 0,078	x	х	х			x
4	0,523 0,082	x	х	Х			х
5	0,484 0,067	x	х	х			х
6	0,472 0,088	x	X	х			x
7	0,402 0,095	x	х	х			x
8	0,219 0,054	x	x	х			x
9	0,200 0,073	x	х	х			x
10	0,200 0,083	x	X	X.			x
11	0,154 0,042	x	х	x			х
12	0,096 0,010		x	x	x		
13	0,097 0,022		х	x	х		х
14	0,078 0,012		x	x	x		x
15	0,078 0,020		x	x	x		x

Tabell 6.1Teorierna som använts för analys i försöks-
serie I.

- A = Linjär teori
- B = Gerstners teori
- C = Stokes teori 2:a ordn.
- D = Knoidalteori
- E = Solitärteori
- F = Strömfunktionsteori

Fig. 6.3 Våg nr. 5 efter passage genom filtret.

Fig. 6.4 Våg nr 7 efter passage genom filtret

Fig. 6.5 Våg nr 9 efter passage genom filtret

k jera

睑隙

55,

Fig. 6.11 Teori med minst avvikelse. Givare 2.

56,

- -

seçõe

58,

6.2 Teorier lämpliga för analys av vågform

Vågteoriernas rekommenderade giltighetsområden bekräftas i stort sett av de utförda försöken. Vi har dock konstaterat att inga skarpa gränser mellan dessa områden existerar. Vi har exempelvis funnit att, för ett par vågor, linjärteorin givit bäst överensstämmelse, trots att vi inte kunnat generera någon våg inom det område där linjärteorin borde gälla. På grundare vatten visar emellertid linjärteorin mycket dålig överensstämmelse.

Gerstners teori, med rekommenderat giltighetsområde ner till d/L = 0,5, har givit mycket goda resultat ända ner till d/L = 0,15, vilket gäller speciellt vid givarna G_2 och G_3 . Före filtret har denna tendens ej varit lika tydlig.

Stokes teori av andra ordningen har också visat sig användbar inom ett större område än det rekommenderade. För de brantaste vågorna är dock överensstämmelsen markant sämre.

Knoidalteorin visar i huvudsak god överensstämmelse för d/L < 0, 1, det vill säga inom det område som rekommenderats. För de flacka vågorna gav teorin genomgående en för stor överhöjning.

Strömfunktionsteorin visade som väntat en större jämnhet än de övriga teorierna. Den gav sällan det bästa resultatet men är inte heller sämst utom i ett par fall.

Valet av teori för analys av vågformen beror av karaktären på det arbete som man ämnar utföra. Om man inte fäster så stor vikt vid att exakt rätt vågform erhålles, samtidigt som ett flertal olikartade vågor skall analyseras, väljer man lämpligen strömfunktionsteorin. I de fall då större noggrannhet önskas, bör man välja den av de övriga teorierna, inom vars giltighetsområde man arbetar.

7. VÅGENS ENERGIFÖRLUST VID PASSAGE GENOM RÄNNA OCH FILTER

7.1 Rännförlust

På grund av friktion förlorar vågen höjd under sin rörelse längs rännan. Denna energiförlust uppstår huvudsakligen vid rännans botten och väggar men även genom inre friktion. En våg på djupt vatten, utan partikelrörelse vid botten, påverkas främst av inre friktion. För vågor med stor bottenrörelse är det däremot friktionen mot botten som dominerar.

Våg nr.	d/L	H/L	Rännförlust (h/h _o)100
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ \end{array} $	0, 678 0, 656 0, 530 0, 523 0, 484 0, 472 0, 402 0, 219 0, 200 0, 200 0, 200 0, 154 0, 096 0, 097 0, 078 0, 078	$\begin{array}{c} 0, 112\\ 0, 108\\ 0, 078\\ 0, 082\\ 0, 067\\ 0, 088\\ 0, 095\\ 0, 054\\ 0, 073\\ 0, 083\\ 0, 042\\ 0, 010\\ 0, 022\\ 0, 012\\ 0, 020\\ \end{array}$	$\begin{array}{c} 0,08\\ 0,10\\ 0,06\\ 0,15\\ 0,12\\ 0,03\\ 0,13\\ 0,13\\ 0,01\\ 0,02\\ 0,02\\ 0,02\\ 0,12\\ 0,07\\ 0,08\\ 0,43 \end{array}$

Tabell 7.1 Rännförlust, i procent per meter ränna, för vågorna i försöksserie I

För de vågor som vi har analyserat kan någon entydig tendens beträffande energiförlusternas storlek ej konstateras. Detta har flera orsaker. Då försöksrännans begränsningsytor är mycket glatta blir förlusterna vid kontakt med dessa mycket små. Flertalet av de uppmätta förlusterna ligger dessutom inom vågornas variationsbredd. Vi har således ej haft möjlighet att utreda inverkan av de olika förlustkomponenterna. Då de uppmätta förlusterna i allmänhet är av storleksordningen en tiondels procent per meter torde de vanligen kunna försummas.

7.2 Filterförlust

7.2.1 Motiv till försöksserie II

Vid utvärderingen av vågorna i försöksserie I har konstaterats en markant höjdreduktion vid dess passage genom filtret. När vi sammanställde utvärderingen av dessa vågor fann vi att materialet var otillräckligt för vidare behandling. Därför utfördes ytterligare en försöksserie. Vågorna i försöksserie II valdes så att de på bästa sätt kompletterade vågorna i försöksserie I.

Våg nr.	d	Т	L	H ₁	H ₂	H ₂ /H ₁	d/L	H ₁ /L
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\end{array} $	0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	0,96 1,16 1,16 1,29 1,29 1,29 1,29 1,29 1,29 1,29 1,29	1,44 2,02 2,02 2,02 2,43 2,43 2,43 2,43 2,43 2,43 2,93 4,04 4,04 6,10 6,10 6,10	0,1140 0,0985 0,1339 0,1503 0,0750 0,1184 0,1552 0,1153 0,1160 0,2224 0,0768 0,1351 0,2330	0,0689 0,0713 0,0941 0,1051 0,0590 0,0894 0,1115 0,0894 0,0952 0,1618 0,0689 0,1141 0,1770	0,608 0,703 0,699 0,608 0,787 0,755 0,711 0,783 0,829 0,728 0,829 0,728 0,897 0,845 0,760	0,417 0,293 0,297 0,297 0,247 0,247 0,247 0,247 0,247 0,247 0,247 0,245 0,149 0,149 0,149 0,098 0,099 0,099	0,079 0,049 0,066 0,074 0,031 0,049 0,064 0,039 0,029 0,055 0,013 0,022 0,039

Tabell 7.2 Erhållen våg. Försöksserie II.

7.2.2 Sammanställning av uppmätta filterförluster

För att underlätta den fortsatta behandlingen använder vi oss till en början enbart av de vågor, ur bägge försöksserierna, som genererats på 0,6 m vattendjup.

I diagrammet kan konstateras klara samband mellan förlustens storlek och vågens läge i diagrammet.

7.2.3 Försök till teoretisk härledning

Då vågen passerar genom filtret sker en höjdreduktion på grund av friktion. Denna friktion verkar genom hela vattenprofilen. Förlustens storlek påverkas av flera faktorer. Vi antar att vattenpartiklarnas rörelse är turbulent, vilket medför att energiförlusten bör vara proportionell mot kvadraten på den resulterande partikelhastigheten, w.

 $h_f \sim w^2 = u^2 + v^2$

Här använder vi oss av maxhastigheterna enligt linjärteorin:

63,

Då den totala förlusten är summan av förlusterna i hela vågprofilen måste en ytintegration utföras.

Fig. 7.2 Integrationsgränser

Vi måste alltså ta hänsyn till att våglängden oftast inte sammanfaller med filtrets längds, dvs att vågens passertid genom filtret inte sammanfaller med vågperioden. För detta ändamål inför vi parametern t/T. Följande integral erhålles:

$$h_{f} \sim \int_{0}^{t} \int_{-d}^{t} \frac{\left(\frac{w t}{T}\right)^{2} dy \cdot dt}{\left(\frac{w t}{T}\right)^{2} dy \cdot dt} = \frac{\pi H^{2}}{T^{4} \cdot \sinh^{2} \frac{2\pi d}{L}} \int_{0}^{\frac{a}{L}T} t^{2} \int_{-d}^{0} \left[(\cosh^{2} \frac{2\pi (y+d)}{L} + \sinh^{2} \frac{2\pi (y+d)}{L} \right] dy dt = \frac{\pi H^{2}}{T^{4} \cdot \sinh^{2} \frac{2\pi d}{L}} \left[\frac{t^{3}}{3} \right]_{0}^{\frac{a}{L}T} \cdot \frac{L}{2\pi} \left[\sinh 2z \right]_{0}^{2\pi d/L}$$

65.

Vi får:

 ~ 12

$${}^{h}_{f} \sim \frac{H^{2} \cdot \sinh \frac{4\pi d}{L}}{T \cdot L^{2} \cdot \sinh^{2} \frac{2\pi d}{L}}$$

Efter att ha ritat upp de uppmätta förlusterna som funktion av värden erhållna med uttrycket ovan fann vi att ett klart exponentialsamband rådde. För att erhålla de konstanter som överför funktionen ovan till ett utseende som ger de verkliga förlusterna plottades samma talpar i ett dubbel-logaritmiskt diagram.

ust

Ekvationen för det härur erhållna rätlinjiga sambandet fick vi sedan genom anpassning med minsta kvadratmetoden. De sökta konstanterna kunde nu lätt erhållas varvid sambandet fick följande utseende:

$$\Delta h = 1,07 \quad \left[\frac{H_1^2 \sinh \frac{4\pi d}{L}}{T L^2 \sinh^2 \frac{2\pi d}{L}} \right]^{0,257} \approx 1,07 \sqrt{\frac{H_1^2 \sinh \frac{4\pi d}{L}}{T L^2 \sinh^2 \frac{2\pi d}{L}}}$$

글목의

Fig. 7.4 Teoretiskt beräknad filterförlust. Jämför fig. 7.1.

66,

Fig. 7.5 Resterande våghöjd efter passage genom filter. Teoretiskt beräknad. Uppmätt reduktion inritad.
8. RESULTAT

소승용

8.1 Generering av önskad våg

De för en våg karakteristiska storheter som är lättast att mäta i naturen är våghöjd och vågperiod. Om samtidigt vattendjupet är känt kan man avgöra vilken vågtyp som råder, t ex våg på djupt vatten. Vi har därför förutsatt att dessa storheter är kända.

Med utgångspunkt från dessa har vi upprättat ett schema som bör vara till god hjälp när man vill generera en viss våg. Se figur 8.1. I diagram 1, se bilaga 1, erhålles L och d/L som funktion av T och vågtyp.

Om man önskar utföra sina mätningar efter filtret, där vågens yta är blankare, måste man kompensera för filterförlusten. Därvid prövar man ett H, och H/L beräknas. Detta värde samt d/L ger sedan våghöjden efter filtret ur diagram 2, bilaga 2. Om denna höjd ej överensstämmer med den önskade väljs ett nytt H, varpå proceduren upprepas.

Diagram 3, bilagorna 3 och 4, ger sedan partikelamplituden vid botten och vattenytan, som funktion av H och d/L. Därefter sker en interpolation i diagram 4, bilaga 5, varvid vågbladets utslag på nivåerna 0,26 m respektive 0,60 m erhålles.

Inställningsparametrarna m_e, e₁ och e₂ fås sedan ur diagram 5, bilaga 6.

Nu återstår endast att ställa in dessa parametrar samt vågfrekvensen på våggeneratorn.

SCHEMA FÖR GENERERING AV ÖNSKAD VÅG

ere e

8.2 Förslag till förbättringar av våggeneratorn

En förutsättning för att de vågor som genereras skall erhålla rätt vågperiod är att varvtalet på den från växellådan utgående axeln kan ställas in med stor noggrannhet. Detta är för närvarande mycket svårt, beroende på att inställningsskalan har dålig precision samtidigt som visaren inte är tillräckligt exakt. På grund av detta har vi fått kontrollera inställningen med hjälp av tidtagarur, vilket är mycket tidsödande. Det vore därför önskvärt att våggeneratorn försågs med en noggrannare varvtalsräknare.

För att minimera felet på grund av vipparmens lutning bör denna stå vertikalt samtidigt som övre pistongen bildar rät vinkel med motorexcentern. Med nuvarande justeringsmöjligheter är detta ej alltid möjligt utan att vågbladet snedställs. Om vågbladets lutning kunde justeras utan att motorns läge rubbas, skulle denna inställning möjliggöras.

Då motorexcenterns läge vid inställningen är viktig vore det bra om motorn kunde frikopplas, så att excentern gick att vrida med handkraft.

LITTERATURFÖRTECKNING

- Bergdahl, Lars: Beräkning av vågkrafter. Rapport Serie B:1, 1977 Institutionen för vattenbyggnad, CTH, Göteborg.
- 2. Cederwall, Klas: Vågor. Intern skrift nr 10, 1968. Inst.f. vattenbyggnad, CTH, Göteborg.
- 3. Cederwall, Klas och Sjöberg, Anders: Hydraulik. Intern skrift nr 6, 1969. Inst.f. vattenbyggnad, CTH, Göteborg.
- 4. Dean, R.G. : Evaluation and development of water wave theories for engineering application. Special report no. 1, 1974. US Army, Corps of engineers.
- 5. Reinius, Erling: Hamnar och farleder. Stockholm 1973.
- 6. Wiegel, R.L. : Oceanographical engineering, Prentice Hall, 1964.

BILAGOR

··..

315 73 25 01 - 515 A3 b- 1 x 1 mm

Bil.1

. . . .

iii Ø

.

 $\left(\begin{array}{c} \\ \end{array} \right)$

.

H

© ESSEUTE 4442 Bil. 3

1. 17 Sec. 1

Bil. 4

mm f < f - d EA 212 - 10 22 ET

1111 1 × 1 · 4 EA 212 - 10 22 EC 212

Bil. 6

. -

					2	<u>}</u>	20 20	· · · ·	Q.0-	:	010		9 9		2	 	0]						
1							K	<u> </u>				~~	 		1			i							
								\sum		:				•			,	-							
91.02				 -			1		<u>\`</u>				1	i										040	5
							11		\bigcirc		<u> </u>			:		··i				-				-	
									\sum		$\overline{\ }$					ļ	ļ			••			· :		2
			1				H		\mathbb{N}	\square	\sum	\sum		:		1							1		5
			1					\sum	\sum	\sum	\sum	\sum	\sum				al e c	. * . <u>.</u>							
11.14	1					· ···			\bigcirc		\sum	$\overline{)}$		X									88		1
	-							N	\mathbf{X}	\sum	\sum	\sum			Z		ļ						4 <u>0</u>		
(Chināna) Generāta							·· :		\sum	\sum		$\overline{\}$	\mathbf{N}	\mathbf{i}	X	\sum			:	_i.			60		3
						· · · ·				\sum		Z	\sum	\sum	\sum	$\langle \rangle$	\sum	\sum				<u>-</u>	0		5
									; L.		\bigcirc	\sum	\sum	\sum	\sum	$\langle \rangle$	\sum		\sum				to S	- (ê.
							····			•);) }	\sum	\searrow			\sum				\sum	[D D	-	3
	+						· · · · ·						\sum	\sum	\sum		N.		\sum			\sum	Ć		
				ļ	. 5		:-	-	· · · · · ·					Ż			\sum								<u> </u>
	1								••••••••••••••••••••••••••••••••••••••				;		X		$\overline{\langle}$	\sum	\sum	\sum		\sum		X	5
	1				<u> </u>											\geq	R	\sum	\geq	\sum	\sum	\sum		N.	
	-			: :									. .					\geq		\sum		\sum	$\left \right\rangle$	N	<u>_</u> <
	+ ſ			<u> </u>]	<u> </u>														\geq	\sum	\geq	\leq		N	
	H	4)		ດ 										~			: 		\geq	\geq	\geq	\sum	N	
	-			- 12	60												· · · ·		 	<u> </u>		\geq		X	8
	-	1	1		< <			: -										:	1		:			N	
				^	}		N								V		<u> </u>	$\frac{1}{1 \cdot \sqrt{1}}$	<u> </u>	1				9	
	+	[1				····.		<u> </u>				\rightarrow	<u> </u>	<u> </u>	1.1	\- <u>-</u> -	<u>}</u>	:	 		đ	
				0	ž			O			<u> </u>	<u></u>	<u></u>	$\overline{\mathbf{A}}$	c	·∕{	-/0	α	<u>- /r</u>	X \					
			 	Æ	3			1	Ì		<u></u>	$\overline{}$	· ·	<u> </u>	· · ·									<u>G</u> TD	
чų,				×	<u></u>					<u> </u>					$\overline{}$						V				
				5	N 1		··· , 								<u> </u>	\downarrow	\rightarrow	<u> </u>		1	$\overline{\mathbf{N}}$			3	
	+							-			: ``	<u> </u>						<u> </u>	<u> </u>	+	1	+			
	Ĺ		N	<u> </u>							···· ;	+ X	<u></u>		<u> </u>	- `	<u> </u>	$\overline{1}$	11		+				\overline{D}
			下		1	2		1				• •								X	$\frac{1}{1}$	V		8	
en j		++		<u> </u>		90		· ···			· · · ·	· ··			· ····		·	·				1			
eriti. Si s	, È										::* 		· • ····			<u> </u>				\mathbf{h}	\\ \	++		9	
				5		4					.i	···· ·· ··				-\		×	\sum			$\uparrow\uparrow$		0	
	i.					<u> </u>		-	··· ··· ·						 ·				×.	X	1	1-1-	¥		
	-					20												\geq			$\frac{1}{1}$	1/1		8	
												·····	1	3		-				$\langle \rangle$	$\overline{\langle \cdot \rangle}$	$\overline{\Lambda}$	\mathcal{M}	<u>o</u>	
				^	(03)						1		1	gro/								$\overline{V}_{\overline{\lambda}}$	\overline{M}		
		+			847."			2- 5-	55		010		50		মূর		0.15		00			ð Ö			
	<u></u>		<u></u>	··		- f	L.									1	•				1				

mm 1 + 1 + 4 EA 215 - 10 52 EX 315

© ESSELTE 4442

Bil. 7

FÖRSÖKSSERIE I (60 sidor)

1

202 ⁴						
			VÅG: I:1			
., Х	ÖNSKAD VÅG	$\frac{d}{L} = 0,690$	d = 0.8 m L = 1.16 m			
tin C.		$\frac{H}{L} = 0,075$	H = 0,087 m			
^{ege}		VÄGHASTIGHET:	$\frac{2\pi rd}{1.35}$ m/s			
۲		GRUPPHASTIGHET:				
($C_{g} = \frac{C}{2} \left[1 + \frac{C}{2} \right]$	$\frac{4\pi d}{L} = 0.68 \text{ m/s}$			
		$T = \frac{L}{C} = 0,88$	5 S			
	INSTÄLLNING	TEORI: GERST	INER			
elese (AV VAG- Generator	PARTIKELRÖRELSENS HORISONTELLA AMPLITUD				
nest (VID VATTENYT.	AN: X _{SVY} =0,044 m			
		VID BOTTEN: $X_B = 0,000 \text{ m}$				
		INSTÄLLNING $T^{-1} = 1,16$ $m_e = A$	SPARAMETRAR: s ⁻¹			
		$\begin{array}{c} e_1 = 0.748\\ e_2 = 0.234 \end{array}$	3 +			

RESULTAT TID30m: 21,90 ± VÅGHASTIGHET: C GRUPPHASTIGHET: C	G . T.1
RESULTAT TID30m: 21,90 ± VÅGHASTIGHET: C GRUPPHASTIGHET: C	· · · ·
VÅGHASTIGHET: C GRUPPHASTIGHET: C	Q10 S
GRUPPHASTIGHET: C	= 1,37 m/s
4	g=0,87 m/s
VÅGFREKVENS: T-	$1 = 1,16 \pm 0,02 \overline{5}^{1}$
VÅGPERIOD: T=	986 5
VÅGLANGD: L=CT	= 1,18 m
(VÅGHÖJD: $H_2 = 0,0643 \pm 0,007$ $H_3 = 0,0616 \pm 0,007$ RÅNNFÖRLUST $h = \frac{H_2 - H_3}{24} = 1,17$ $H_1 = 0,1301 \pm 0,007$ $H_2 = 0,0686 \pm 0,007$ $H_2 = 0,0686 \pm 0,007$ $H_2 = 0,0686 \pm 0,007$ $H_1 = H_1 - H_2 - 12 \cdot h$ $OSTÖRD VÅGHÖTT H_0 = H_1 + 14 \cdot h = \frac{h}{H_0} \cdot 100 = 0,08 \%/7\frac{\Delta h}{H_0} \cdot 100 = 45,7 \%$	24 m 71 m 71 m 1.10^{-4} m/m 30 m 24 m 71 m
ERHÂLLEN $d = 0,678$ VÂG $H = 0,112$	· .

) (j

1

,

- 63

ese tet								
				VÅG: <u>I</u> :2				
		ÖNSKAD	$-\frac{d}{1} = 0,690$	d = 0.8 m				
		VAG	$\frac{H}{L} = 0,100$	L = 1,16 m H = Q116 m				
			VÅGHASTIGHET: C=√ <u>q⊥</u> tanh ⁻	$\frac{2\pi d}{L} = 1.35 \text{ m/s}$				
	(GRUPPHASTIGH	ET:				
	(•	$C_{G} = \frac{C}{2} \left[1 + \frac{4\pi d}{L \cdot \sinh \frac{4\pi d}{T}} \right] = 0,68$					
			VÅGPERIOD:					
			$T = \frac{L}{C} = 0,86$	S				
Ô		INSTÄLLNING	TEORI: STOKE	E 2:A ORDN.				
	· .	AV VAG- GENERATOR	PARTIKELRÖR Horisontell	ELSENS A AMPLITUD				
	· (VID VATTENYT,	AN: X _{SVY} =0,040 m				
가가 지수 가수 많이 가			VID BOTTEN	$X_{\rm B} = 0.002 {\rm m}$				
Mý Jir			INSTALLNING $T^{-1} = 1,16$ $m_e = A$ $e_1 = 0,68$ $e_2 = 0,23$	SPARAMETRAR: S ⁻¹ 7				

. *

۲

.

		VÃG: 1:2
	RESULTAT	TID30m: 21,90 ± 0,10 5
n jezer N		VÅGHASTIGHET: $C = 1.37 \text{ m/s}$
		GRUPPHASTIGHET: CG=0,83 m/s
		VÅGFREKVENS: $T^{-1} = 1,12 \pm 0,035^{1}$
tiku Jar		VÅGPERIOD: T= 0,89 S
(VÅGLÄNGD: $L=C T= 1,22 m$
	· · · · · · · · · · · · · · · · · · ·	VÅGHÖJD: $H_2 = 0,0613 \pm 0,0019m$ $H_3 = 0,0610 \pm 0,0050m$ RÅNNFÖRLUST: $h = \frac{H_2 - H_3}{24} = 1,3.10^4 m/m$ $H_1 = 0,1301 \pm 0,0018m$ $H_2 = 0,0625 \pm 0,0007m$ FILTERFÖRLUST: $\Delta h = H_1 - H_2 - 12 \cdot h = 0,0660m$ OSTÖRD VÅGHÖJD:
		$H_0 = H_1 + 14 \cdot h = 0.1319 m$ $\frac{h}{H_0} \cdot 100 = 0.10 \ \%/m$ $\frac{Ah}{H_0} \cdot 100 = 50.0 \ \%$
	ERHÅLLEN VÅG	$\frac{d}{L} = 0,656$ $\frac{H}{L} = 0,108$

•

-

- *---- G3

~..

•							
			VÅG: I:3				
	ÖNSKAD VÅG	$\frac{d}{L} = 0,600$ $\frac{H}{L} = 0,075$	d = 0.8 m L= 1.33 m H= 0.100 m				
		VÅGHASTIGHET: $C = \sqrt{\frac{q L}{2\pi}} tanh^{-1}$	$\frac{2\pi d}{L} = 1.44 \text{ m/s}$				
(GRUPPHASTIGHET:					
($C_{G} = \frac{C}{2} \left[1 + \frac{4\pi a}{L \cdot \sinh \frac{4\pi a}{L}} \right] = 0.94 \text{ m/s}$					
		VÅGPERIOD:					
		$T = \frac{L}{C} = 0.93 \text{ s}$					
	INSTÄLLNING	TEORI: STOKE	2:A ORDN,				
	AV VAG- GENERATOR	PARTIKELRÖR Horisontell	ELSENS A AMPLITUD				
(-	VID VATTENYT,	AN: X5VY=0,038 m				
		VID BOTTEN	$X_{B} = 0.002 \text{ m}$				
	•	INSTÄLLNING $T^{-1} = 1,08$ $m_e = A$ $e_1 = 0,67$ $e_2 = 0,23$	SPARAMETRAR: S ⁻¹				

1140) 		VÃG: I:3
	RESULTAT	TID30m: 19,83 ± 0,06 S
1. 19		VÅGHASTIGHET: $C = 1.51 \text{ m/s}$
		GRUPPHASTIGHET: CG = 0,78 m/s
		VÅGFREKVENS: $T^{-1} = 1,00 \pm 0,035^{-1}$
		VÅGPERIOD: $T = 1,00$ S
(:	VÅGLÄNGD: L=C·T=1,51 m
		$\begin{array}{l} VÅGHOJD: \\ H_2 = 0_10712 \pm 0_10009m \\ H_3 = 0_10695 \pm 0_10016m \\ RÅNNFÖRLUST: \\ h = \frac{H_2 - H_3}{24} = 0_171\cdot10^4 m/m \\ H_1 = 0_11166 \pm 0_10007m \\ H_2 = 0_10714 \pm 0_10004m \\ FILTERFÖRLUST: \\ \Delta h = H_1 - H_2 - 12 \cdot h = 0_10443m \\ OSTÖRD VÅGHÖJD: \\ H_0 = H_1 + 14 \cdot h = 0_11176m \\ \frac{h}{H_0} \cdot 100 = 0_106 \ \%/m \\ \frac{\Delta h}{H_0} \cdot 100 = 37_17 \ \% \end{array}$
	ERHÅLLEN VÅG	$\frac{d}{L} = 0,530$ $\frac{H}{L} = 0,078$

.

लेख. - रेख			
			VÅG: I:4
	ÖNSKAD VÅG	$\frac{d}{L} = 0,600$ $\frac{H}{L} = 0,100$	d = 0.8 m L = 1.33 m H = 0.133 m
		VÅGHASTIGHET: $C = \sqrt{\frac{9L}{2\pi}} \tan h$	$\frac{2\pi rd}{L} = 1,44 \text{ m/s}$
(GRUPPHASTIGH	ET:
($C_{G} = \frac{C}{2} \left[1 + \frac{1}{L} \right]$	$\frac{41 \text{Td}}{\frac{41 \text{Td}}{L}} = 0.84 \text{ m/s}$
		VÅGPERIOD:	
		$T = \frac{L}{C} = 0,9$	3 S
O_{i}	INSTÄLLNING	TEORI: STOKE	E 2:A ORDN.
	AV VAG- Generator	PARTIKELRÖF Horisontell	A AMPLITUD
([']		VID VATTENYT	AN: X SVY = 0,046 m
		VID BOTTEN	: $X_{B} = 0,003 m$
	·	INSTÄLLNING $T^{-1} = 1,08$ $m_e = A$ $e_1 = 0,732$ $e_2 = 0,25$	SPARAMETRAR: S ⁻¹

•

N

.

÷

• •		VÃG: I:4
	RESULTAT	TID30m: 19,80 \pm 0,10 S VÅGHASTIGHET: C = 1,52 M/S
		GRUPPHASTIGHET: CG=0,83 m/s
		$VÅGFREKVENS: T^{-1} = 0,99 \pm 0,03 \overline{5}^{1}$
		VÅGPERIOD: T=1,01 S
(VÅGLÄNGD: L=C·T=1,53 m
		VÅGHÖJD: $H_2 = 0,0798 \pm 0,0010m$ $H_3 = 0,0753 \pm 0,0010m$ RÄNNFÖRLUST: $h = \frac{H_2 - H_3}{24} = 1,9.10^4 m/m$ $H_1 = 0,1233 \pm 0,0004m$ $H_2 = 0,0786 \pm 0,0019m$ FILTERFÖRLUST: $\Delta h = H_1 - H_2 - 12.h = 0,0421m$ OSTÖRD VÅGHÖJD: $H_0 = H_1 + 14.h = 0,1260m$
		$\frac{\Delta h}{H_0} \cdot 100 = 33.4 \%$
	ERHÅLLEN VÅG	$\frac{d}{L} = 0,523$ $\frac{H}{L} = 0,082$

. مرید م

eg keç

. .

.

··..

ger dan di						
			VÅG: I:5			
	ÖNSKAD VÅG	$\frac{d}{L} = 0,500$ $\frac{H}{L} = 0,050$	$d = 0_{16}$ m L = 1,20 m $H = 0_{106}$ m			
		VÅGHASTIGHET: C=V <u>g⊥</u> tanh	$\frac{2\pi d}{L} = 1.37 \text{ m/s}$			
($GRUPPHASTIGH$ $C_{g} = \frac{C}{2} \left[1 + \frac{1}{L} \right]$	ET: $\frac{4\pi d}{1\pi d} = 0.71 \text{ m/s}$			
	_	$V^{A}GPERIOD:$ $T = \frac{L}{C} = 0.88$	3 S			
	INSTALLNING	TEORI: GERS	THER			
жар Солона и сталия Солона и сталия и стали	AV VAG- Generator	PARTIKELRÖR Horisontell	LELSENS A AMPLITUD			
(* *	VID VATTENYT.	AN: X _{SVY} =0,030 m			
	· .	VID BOTTEN	$X_{B} = 0,001 \text{ m}$			
		INSTÄLLNING T-1= 1,14	SPARAMETRAR: S ⁻¹			
		$m_{e} = A$ $e_{1} = 0,68$ $e_{2} = 0,23$	 O 			
: : ·		1				

٠

• •

.*	VÃG: I:5				
RESULTAT	TID30m: 21,56 ± 0,06 5				
	VÅGHASTIGHET: $C = 1,39$ m/s				
	GRUPPHASTIGHET: CG=0,78 m/s				
	VÃ G FREKVENS: $T^{-1} = 1,12 \pm 0,01 5^{1}$				
• •	VÅGPERIOD: T= 0,89 S				
	VÅGLÄNGD: L=C·T= 1,24 m				
	VAGHOJD: $H_2 = 0,0501 \pm 0,0004m$ $H_3 = 0,0476 \pm 0,0003 m$ RÅNNFÖRLUST: $h = \frac{H_2 - H_3}{24} = 1,0.10^4 m/m$ $H_1 = 0,0817 \pm 0,0006 m$ $H_2 = 0,0498 \pm 0,0009 m$ FILTERFÖRLUST: $\Delta h = H_1 - H_2 - 12 \cdot h = 0,0307 m$ OSTÖRD VÅGHÖJD: $H_0 = H_1 + 14 \cdot h = 0,0831 m$ $\frac{h}{H_0} \cdot 100 = 0,12 \frac{9}{0}/m$ $\frac{\Delta h}{H_0} \cdot 100 = 40,0 \frac{9}{0}$				
ERHÅLLEN VÅG	$\frac{d}{L} = 0,484$				
	$\frac{1+}{1-} = 0,067$				

(

ł

(

tisikus			
			VÅG: I:6
	ÖNSKAD VÅG	$\frac{d}{L} = 0,500$ $\frac{H}{L} = 0,075$	$d = 0_{16}$ m $L = 1_{120}$ m $H = 0_{109}$ m
		VÅGHASTIGHET: $C = \sqrt{\frac{g L}{2\pi}} \cdot tan h^{2}$	$\frac{2\pi d}{L} = 1.37 \text{ m/s}$
(GRUPPHASTIGH $C_{g} = \frac{C}{2} \left[1 + \frac{1}{1} \right]$	ET: $\frac{4\pi d}{4\pi d} = 0.71 \text{ m/s}$
		$V \stackrel{L}{\rightarrow} G PERIOD:$ $T = \frac{L}{C} = 0.88$	ð S
	INSTÄLLNING	TEORI: GERS	TNER
	AV VÅG- Generator	PARTIKELRÖR Horisonteli	A AMPLITUD
, (thatar		VID VATTENYT.	AN: $X_{SVY} = 0.045 \text{ m}$: $X_{P} = 0.002 \text{ m}$
an ann an Anna Anna Anna Anna Anna Anna		INSTÄLLNING T ⁻¹ = 1,14	SPARAMETRAR: S ⁻¹
		$m_{e} = B$ $e_{1} = 0,72$ $e_{2} = 0,24$	8 5
		1	

.

•

		Γ		
· ·		·	VAG: I:6	
	RESULTAT	TID30m: 21,13	$\pm 0, 12 5$	
		VÅGHASTIGHET: $C = 1.42$ m/s GRUPPHASTIGHET: $C_{c} = 0.80$ m/s VÅGFREKVENS: $T^{-1} = 1.12 \pm 0.025^{1}$		
		VÅGPERIOD: $T = 0,89$ S		
(• • •	VÅGLÄNGD: L=C·T= 1,27 m		
		$VÅGHÖJD: H_{2} = 0,0695 \pm H_{3} = 0,0678 \pm RÅNNFÖRLh = \frac{H_{2} - H_{3}}{24} H_{1} = 0,1112 \pm H_{2} = 0,0686 \pm FILTERFÖR\Delta h = H_{1} - H_{2} - 0.5TÖRD VÅGH_{0} = H_{1} + 14 + \frac{h}{H_{0}} + 100 = 0,03$ Ah - 100 = 37,8	$ \begin{array}{l} & \text{AGH}\ddot{0}\text{JD}: \\ & \text{H}_2 = 0,0685 \pm 0,0009 \text{ m} \\ & \text{H}_3 = 0,0678 \pm 0,0008 \text{ m} \\ & \text{R}\ddot{A}\text{NNF}\ddot{0}\text{RLUST}: \\ & \text{h} = \frac{\text{H}_2 - \text{H}_3}{24} = 0,3 \cdot 10^4 \text{ m/m} \\ & \text{H}_1 = 0,1112 \pm 0,0007 \text{ m} \\ & \text{H}_2 = 0,0686 \pm 0,0008 \text{ m} \\ & \text{H}_2 = 0,0686 \pm 0,0008 \text{ m} \\ & \text{FILTERF}\ddot{0}\text{RLUST}: \\ & \Delta h = \text{H}_1 - \text{H}_2 - 12 \cdot h = 0,0422 \text{ m} \\ & \text{OST}\ddot{0}\text{RD} \text{V}\dot{A}\text{GH}\ddot{0}\text{JD}: \\ & \text{H}_0 = \text{H}_1 + 14 \cdot h = 0,1116 \text{ m} \\ & \frac{h}{\text{H}_0} \cdot 100 = 0,03 \ \%/m \\ & \frac{\Lambda h}{\text{H}_0} \cdot 100 = 37,8 \ \% \end{array} $	
	ERHÅLLEN VÅG	$\frac{d}{L} = 0,472$ $\frac{H}{L} = 0,088$		

1.....

in de la composition Composition de la comp

				VÅG: I:7
		ÖNSKAD VÅG	$\frac{d}{L} = 0,500$	d = 0, 6 m L = 1,20 m
na sena Antonia Antonia			H = 0,100	H = 0,12 m
			VÅGHASTIGHET:	
			$C = \sqrt{\frac{q L}{2\pi}} tanh$	$\frac{2\pi d}{L} = 1,37 \text{ m/s}$
·	(GRUPPHASTIGH	ET:
	($C_{G} = \frac{C}{2} \left[1 + \frac{1}{L} \right]$	$\frac{41\Gamma d}{1.5 \sin h \frac{41\Gamma d}{L}} = 0.71 \text{ m/s}$
			VÅGPERIOD:	
	•		$T = \frac{L}{C} = 0, \vartheta$	8 S
		INSTÄLLNING	TEORI: GERS	TNER
2.245 	(AV VÅG- Generator	PARTIKELRÖF Horisonteli	RELSENS A AMPLITUD
	(VID VATTENYT	AN: X _{SVY} = Q060 m
	\ \		VID BOTTEN	: $X_{B} = 0,002 \text{ m}$
			$INSTÄLLNINGT^{-1} = 1,14Me = B$	SSPARAMETRAR: s ⁻¹
			$e_1 = 0.94$ $e_2 = 0.286$	7 7

			VĂG: I:7
	RESULTAT	TID30m: 19,73 VÅGHASTISHET	$\pm 0,06$ S : C = 1,52 m/s
		GRUPPHASTIGHE	$T: C_{G} = 0.91 \text{ m/s}$
		VÅGFREKVENS	$T^{-1} = 1,02 \pm 0,00 \overline{5}^{1}$
		VÅGPERIOD:	T= 0,98 S
(VÅGLÄNGD: L	$=C \cdot T = 1,49 m$
(($VÅGHÖJD: H_{2} = 0,0879 \pm H_{3} = 0,0835 \pm RÅNNFÖRI h_{3} = 0,0835 \pm RÅNNFÖRI h = \frac{H_{2} - H_{3}}{24} H_{1} = 0,1387 \pm H_{2} = 0,0844 \pm H_{1} = 0,1387 \pm H_{2} = 0,0844 \pm $	= $0,0017 \text{ m}$ = $0,0025 \text{ m}$ = $0,0025 \text{ m}$ = $1,8 \cdot 10^{-4} \text{ m/m}$ = $0,0012 \text{ m}$ = $0,0012 \text{ m}$ = $0,0010 \text{ m}$ = $0,0012 \text{ m}$ = $0,0010 \text{ m}$ = $0,0000 \text{ m}$ = $0,00000 \text{ m}$ = $0,0000 \text{ m}$ = $0,00000 \text{ m}$ = $0,00000 \text{ m}$ = $0,00000000000000000000000000000000000$
	ERHÅLLEN VÅG	$\frac{d}{L} = 0,402$ $\frac{H}{L} = 0,095$	

Hopson ---

			VÃG: I:7
		RESULTAT	TID30m: 19,73 ± 0,06 5
il ingen		· · ·	VÅGHASTIGHET: $C = 1.52 \text{ m/s}$
			GRUPPHASTIGHET: CG=0,91 m/s
			VÅGFREKVENS: T-1=1,02 ±0,00 51
	· •		VÅGPERIOD: T= 0,98 S
	(VÅGLÄNGD: L=C·T= 1,49 m
	((VÅGHÖJD: $H_2 = 0,0879 \pm 0,0017m$ $H_3 = 0,0835 \pm 0,0025m$ RÅ'NNFÖRLUST: $h = \frac{H_2 - H_3}{24} = 1,8 \cdot 10^4 m/m$ $H_1 = 0,1387 \pm 0,0012m$ $H_2 = 0,0844 \pm 0,0010m$ FILTERFÖRLUST: $\Delta h = H_1 - H_2 - 12 \cdot h = 0,0521m$ OSTÖRD VÅGHÖJD: $H_0 = H_1 + 14 \cdot h = 0,1442m$ $\frac{h}{H_0} \cdot 100 = 0,13 \frac{9}{0}/m$
		ERHÅLLEN VÅG	$\frac{H_{0} \cdot 100 = 36,9 \%}{\frac{d}{L} = 0,402}$ $\frac{H}{L} = 0,095$
			1

,

-

t ange		,		
				VÅG: I:8
		ÖNSKAD VÅG	$\frac{d}{L} = 0,200$ $\frac{H}{L} = 0,050$	$d = 0_{16}$ m $L = 3_{100}$ m $H = 0_{115}$ m
1999 - 1999 1999 - 1999 1997 - 1997			VÅGHASTIGHET: $C = \sqrt{\frac{gL}{2\pi}} \cdot \tanh^{-1}$	$\frac{2\pi d}{L} = 2,00 \text{ m/s}$
	($GRUPPHASTIGH$ $C_{G} = \frac{C}{2} \left[1 + \frac{1}{L} \right]$	ET: $\frac{4\pi d}{\frac{4\pi d}{L}} = 1.41 \text{ m/s}$
			$T = \frac{L}{C} = 1,5C$) S
		INSTÄLLNING AV VÅG- GENERATOR	TEORI: STOKE PARTIKELRÖR HORISONTELL	2:A ORDN. RELSENS A AMPLITUD
	(VID VATTENYT, VID BOTTEN	AN: $X_{SVY} = 0.077 \text{ m}$: $X_{B} = 0.044 \text{ m}$
			INSTÄLLNING $T^{-1} = 0.67$ $m_e = B$ $e_1 = 0.85$ $e_2 = 0.47$	SPARAMETRAR: S ⁻¹ 2

· ·

•

n Shi shi s				
			• • • • • • • • • • • • • • • • • • •	VÅG: I:8
		ÖNSKAD VÅG	$\frac{d}{L} = 0,200$	d = 0.6 m $l = 3.00 m$
			$\frac{H}{L} = 0,050$	H = 0,15 m
			VÅGHASTIGHET: C=√ <u>g⊥</u> tanh	$\frac{2\pi d}{L} = 2,00 \text{ m/s}$
	(GRUPPHASTIGH	ET: 4πd 7
	($C_{G} = \frac{1}{2} \left[1 + \frac{1}{2} \right]$	$sinh\frac{4\pi d}{L} = 1.41 \text{ m/s}$
	- -		$T = \frac{L}{C} = 1,50$	S
		INSTÄLLNING	TÉORI: STOKE	2:A ORDN.
	(AV. VÅG- GENERATOR	PARTIKELRÖR Horisontell	ELSENS A AMPLITUD
	(VID VATTENYT,	AN: $X_{SVY} = 0,077$ m
			VID BOTTEN	$X_{B} = 0.044 m$
			INSTÄLLNING $T^{-1} = 0.67$ $m_e = B$ $e_1 = 0.85$ $e_2 = 0.47$	SPARAMETRAR: S ⁻¹ 2 6

•

٠.

•

·

NSKAD Åg	$VÅG: I:8$ $\frac{d}{L} = 0,200$ $\frac{d}{L} = 0,050$ $\frac{d}{L} = 0,050$ $\frac{d}{L} = 3,00 \text{ m}$ $H = 0,15 \text{ m}$ $VÅGHASTIGHET:$ $C = \sqrt{\frac{9L}{2\pi}} \tan \frac{2\pi d}{L} = 2,00 \text{ m/s}$ $GRUPPHASTIGHET:$ $C_{G} = \frac{C}{2} \left[1 + \frac{4\pi d}{L \cdot \sinh \frac{4\pi d}{L}} \right] = 1,41 \text{ m/s}$
NSKAD Åg	$\frac{d}{L} = 0,200$ $\frac{d}{H} = 0,050$ $\frac{d}{H} = 0,050$ $\frac{d}{H} = 0,050$ $\frac{d}{H} = 0,15$
	VÅGHASTIGHET: $C = \sqrt{\frac{g L}{2\pi}} \cdot \tanh \frac{2\pi d}{L} = 2,00 \text{ m/s}$ GRUPPHASTIGHET: $C_{g} = \frac{C}{2} \left[1 + \frac{4\pi d}{L \cdot \sinh \frac{4\pi d}{L}} \right] = 1,41 \text{ m/s}$
	GRUPPHASTIGHET: $C_{g} = \frac{C}{2} \left[1 + \frac{4\pi d}{L \cdot \sinh \frac{4\pi d}{L}} \right] = 1.41 \text{ m/s}$
	÷
	VÅGPERIOD: $T = \frac{L}{C} = 1,50 \text{ s}$
ISTÄLLNING	TEORI: STOKE 2:4 ORDN.
V. VÅG- Enerator	PARTIKELRÖRELSENS HORISONTELLA AMPLITUD
	VID VATTENYTAN: XSVY = 0,077 m
	VID BOTTEN: XB =0,044 m
	INSTÄLLNINGSPARAMETRAR: $T^{-1} = 0.67 \text{ s}^{-1}$
	$e_1 = 0_1 852$ $e_2 = 0_1 476$
I	ENERATOR

e:

·			
1. 2752- 1			VÃG: I:8
	ja N	RESULTAT	TID30m: $15,23 \pm 0,38$ S VÅGHASTIGHET: C = 1,97 M/S
		,	GRUPPHASTIGHET: $C_G = 1.21$ m/s
			VÅGFREKVENS: $T^{-1} = 0.72 \pm 0.01 \overline{5}^{1}$
			VÅGPERIOD: T= 1,39 S
	(:	VÅGLÄNGD: L=C·T=2,74 m
			$VÅGHÖJD: H_2 = 0,1141 \pm 0,0005m H_3 = 0,1095 \pm 0,0013 m RÅ'NNFÖRLUST: h = \frac{H_2 - H_3}{24} = 1,9 \cdot 10^4 m/m H_1 = 0,1466 \pm 0,0005 m H_2 = 0,1130 \pm 0,0026 m FILTERFÖRLUST: ah = H_1 - H_2 - 12 \cdot h = 0,0213 m OSTÖRD VÅGHÖJD: H_0 = H_1 + 14 \cdot h = 0,1493 m \frac{h}{H_0} \cdot 100 = 0,13 \%/m \frac{Ah}{H_0} \cdot 100 = 21,0 \%$
		ERHÅLLEN VÅG	$\frac{d}{L} = 0_{1219} \\ \frac{H}{L} = 0_{1054}$

$$VÅG: I:9$$

$$VÅG: I:9$$

$$VÅG: I:9$$

$$d=0,6 m$$

$$L=3,00 m$$

$$H=0,225 m$$

$$VÅGHASTIGHET:$$

$$C=\sqrt{\frac{9L}{2\pi}} \tan h \frac{2\pi d}{L} = 2,00 m/s$$

$$GRUPPHASTIGHET:$$

$$C_{6} = \frac{C}{2} \left[1 + \frac{4\pi d}{L \sin h \frac{4\pi d}{L}}\right] = 1,41 m/s$$

$$VÅGPERIOD:$$

$$T = \frac{1}{C} = 1,50 S$$

$$INSTÄLLNING TEORI: STOKE 2:A ORDN.$$

$$AV VÅG-$$

$$GENERATOR$$

$$HORISONTELLA AMPLITUD$$

$$VID BOTTEN: X_{B} = 0,063 m$$

$$INSTÄLLNINGSPARAMETRAR:$$

$$T^{-1} = 0,67 s^{-1}$$

$$m_{e} = C$$

$$e_{1} = 0,974$$

$$e_{2} = 0,522$$

en jogen Konsen Marene Konsen Konsen

•

•		VÃG: I:9
RESULTAT	TID30m: 15,00 VÅGHASTIGHET GRUPPHÄSTIGHE	$\pm 0,00 \text{ S}$: C = 2,00 m/s T: C_G = 1,43 m/s
	VÅGFREKVENS: VÅGPERIOD: VÅGLÄNGD: L	$T^{-1} = 0.67 \pm 0.015^{1}$ $T = 1.50 \text{ S}$ $= C \cdot T = 3.00 \text{ m}$
	$VÅGHÖJD: H_{2} = 0,1532 = 10,1532 = 10,1524 $	= $0,0016 \text{ m}$ = $0,0022 \text{ m}$ _UST: -= $0,3 \cdot 10^4 \text{ m/m}$ = $0,0027 \text{ m}$ = $0,0012 \text{ m}$ = $0,0012 \text{ m}$ = $12 \cdot \text{h} = 0,0684 \text{ m}$ = $12 \cdot \text{h} = 0,0684 \text{ m}$ = $12 \cdot \text{h} = 0,0684 \text{ m}$ = $12 \cdot \text{h} = 0,2203 \text{ m}$
ERHÅLLEN VÅG	$\frac{d}{L} = 0,200$ $\frac{H}{L} = 0,073$:

(

. (

(

N,

,

97. j				,
·				
				VÅG: I:10
· : · ·		ÖNSKAD	$\frac{d}{L} = 0,200$	d = 0.6 m
		VAG	$\frac{H}{L} = O_1 100$	L = 3,0 m H = 0,3 m
			VÅGHASTIGHET:	
			$C = \sqrt{\frac{9L}{2\pi}} \tan h^{-1}$	$\frac{2\pi d}{L} = 2,00 \text{ m/s}$
	(GRUPPHASTIGH	ET:
	($C_{\rm g} = \frac{C}{2} \left[1 + \frac{C}{L} \right]$	$\frac{4\pi d}{\sinh \frac{4\pi d}{L}} = 1.41 \text{ m/s}$
			VÅGPERIOD:	
			$T = \frac{L}{C} = 1,50$	S
Ç		INSTÄLLNING	TEORI: STOKE	E 2:A ORDN.
C.	(AV VÄG- Generator	PARTIKELRÖR Horisontell	A AMPLITUD
3,23	(VID VATTENYT	AN: $X_{SVY} = 0.132 \text{ m}$
e e centra Al e e Al e e e e e e e e e e e e e e e e e e e	X		VID BOTTEN	$X_{\rm B} = 0.082 {\rm m}$
			INSTÄLLNING T-1= 0.67 me = C	SPARAMETRAR: + s ⁻¹

			VÅG: I:10
, graven		RESULTAT	TID30m: 15,00 ± 0,00 S
		,	VÅGHASTIGHET: C = 2,00 m/s
stas C			GRUPPHASTIGHET: CG=1,43 m/s
			VÅGFREKVENS: $T^{-1} = 0,67 \pm 0,01 \overline{5}^{1}$
	· ·		VÅGPERIOD: T= 1,50 S
	(VÅGLÄNGD: L=C·T= 3,00 m
		· .	VÅGHÖJD: $H_2 = 0,1678 \pm 0,0004 m$ $H_3 = 0,1668 \pm 0,0056 m$ RÅNNFÖRLUST: $h = \frac{H_2 - H_3}{24} = 0,4.10^4 m/m$ $H_1 = 0,2480 \pm 0,0035 m$ $H_2 = 0,1644 \pm 0,0015 m$ FILTERFÖRLUST:
			$\Delta h = H_1 - H_2 - 12 \cdot h = 0,0831 \text{ m}$ OSTÖRD VÅGHÖJD: $H_0 = H_1 + 14 \cdot h = 0,2486 \text{ m}$
din a	•		$\frac{h}{H_0} \cdot 100 = 0.02 \ \%/m$ $\frac{h}{H_0} \cdot 100 = 33.4 \ \%$
		ERHÅLLEN Våg	$\frac{d}{L} = 0,200$ $\frac{H}{L} = 0,083$

•

			VÅG: I:11
	ÖNSKAD VÅG	$\frac{d}{L} = 0,150$ $\frac{H}{H} = 0,040$	d = 0.6 m L = 4.00 m H = 0.00 m
			11 - 0146 MI
		$C = \sqrt{\frac{g L}{2\pi}} \tan h$	$\frac{2\pi d}{L} = 2.14 \text{ m/s}$
(GRUPPHASTIGH	ET:
($C_{G} = \frac{C}{2} \left[1 + \frac{1}{L} \right]$	$\frac{4\pi d}{\sinh \frac{4\pi d}{L}} = 1,70 \text{ m/s}$
		VÅGPERIOD:	
		$T = \frac{L}{C} = 1.85$	5 S
C	INSTÄLLNING	TEORI: STOKE	E 2:A ORDN.
C (GENERATOR	PARTIKELRÖR Horisontell	ELSENS A AMPLITUD
. (VID VATTENYT,	AN: $X_{SVY} = 0,104 \text{ m}$
		VID BOTTEN	$X_{B} = 0.071 \text{ m}$
		INSTÄLLNING $T^{-1} = 0_{15}L$ $m_e = B$ $e_1 = 0_{1960}$ $e_2 = 0_{1670}$	SPARAMETRAR: s ⁻¹

*

$V \tilde{A} G : I:11$ $RESULTAT TID_{30m}: 14,00 \pm 0,20 S$ $V \tilde{A} G H A STIGHET: C = 2,14 M$	1~
RESULTAT TID30m: 14,00 \pm 0,20 S VÅGHASTIGHET: C = 2,14 M	I _C
VÅGHASTIGHET: $C = 2,14$ m	le l
	\geq
GRUPPHASTIGHET: $C_G = 1.71 \text{ m}$'s
VÅGFREKVENS: T-1= 9,55 ±0,01	5 ¹
VÅGPERIOD: T=1,82 S	
VÅELÄNGD: L=C·T= 3,90 m	
$ \begin{array}{l} \sqrt{A}GH \dot{O}JD; \\ H_{2} = 0,1280 \pm 0,0009 m \\ H_{3} = 0,1274 \pm 0,0017 m \\ RA'NNFÖRLUST; \\ h = \frac{H_{2} - H_{3}}{24} = 0,3 \cdot 10^{-4} m/m \\ H_{1} = 0,1645 \pm 0,0009 m \\ H_{2} = 0,1282 \pm 0,0003 m \\ H_{2} = 0,1282 \pm 0,0003 m \\ FILTERFÖRLUST; \\ \Delta h = H_{1} - H_{2} - 12 \cdot h = 0,0355 m \\ OSTÖRD VÅGHÖJD; \\ H_{0} = H_{1} + 14 \cdot h = 0,1649 m \\ \frac{h}{44} \cdot 100 = 0.02 \%/m \\ \end{array} $	
$\frac{Ah}{H_0} \cdot 100 = 21,6 \%$ $ERHÅLLEN \qquad \stackrel{d}{=} 0,154$ $\frac{H}{L} = 0,042$	

,

				VÅG: I:12
	· ·	ÖNSKAD VÅG	$\frac{d}{L} = 0,100$ $\frac{H}{L} = 0,012$	d = 0, 4 m L = 4,00 m H = 0,048 m
		VÅGHASTIGHET: C=√ <u>g⊥</u> tanh	$\frac{2\pi d}{L} = 1.98 \text{ m/s}$	
	(GRUPPHASTIGH	ET: $\frac{4\pi d}{4\pi d} = 1.76 \text{ m/s}$
			VÅGPERIOD: $T = \frac{L}{C} = 2.1$	Sunh []
		INSTÄLLNING AV VÅG- GENERATOR	TEORI: STOKE	2:A ORDN
3. 337 	(PARTIKELRÖR Horisontell	ELSENS A AMPLITUD
5. 5. 4 5. 4	(VID VATTENYT. VID BOTTEN	AN: $X_{SVY} = 0,044 \text{ m}$: $X_{B} = 0,036 \text{ m}$	
		INSTÄLLNING T ⁻¹ = 0,4=	SPARAMETRAR: + s ⁻¹	
		·	$m_{e} = A$ $e_{1} = 0,62$ $e_{2} = 0,43$	5

54-31 K

r

			·
			VÅG: I:12
		RESULTAT	TID30m: 15,93 ± 0,06 S
	•		VÅGHASTIGHET: $C = 1,88$ m/s
			GRUPPHASTIGHET: $C_G = 1,66$ m/s
1			VÅGFREKVENS: T-1=0,45 ±0,0151
See C			VÅGPERIOD: T= 2,21 S
	(VÅGLÄNGD: L=C·T= 4,18 m
	(VÅGHÖJD: $H_2 = 0.0349 \pm 0.0004m$ $H_3 = 0.0336 \pm 0.0010m$ RÅNNFÖRLUST: $h = \frac{H_2 - H_3}{24} = 0.5 \cdot 10^{-4} m/m$
	($H_1 = 0.0410 \pm 0.0005 m$ $H_2 = 0.0338 \pm 0.0006 m$ FILTERFÖRLUST: $Ab = H_2 - 12 \cdot b = 0.0066 m$
स स स्टुर्स	($\begin{array}{l} OSTÖRD VÅGHÖJD: \\ H_0 = H_1 + 14 \cdot h = 0,0417 m \\ \frac{h}{H_0} \cdot 100 = 0,12 \%/m \\ \frac{\Delta h}{H_0} \cdot 100 = 45.0 \%/m \end{array}$
		ERHÅLLEN	$H_0 = 0.096$
•		VÅG	$\frac{H}{L} = 0.010$

.....

Þ

7

ſ

	·		
			VÅG: 1:13
	ÖNSKAD VÅG	$\frac{d}{L} = 0,100$ $\frac{H}{L} = 0,025$	d = 0,4 m L = 4,00 m H = 0,100 m
		VÅGHASTIGHET: C=V <u>g⊥</u> tanh	$\frac{2\pi d}{L} = 1.98 \text{ m/s}$
· ($GRUPPHASTIGH C_{G} = \frac{C}{2} \left[1 + \frac{1}{L} \right]$	ET: $\frac{4\pi d}{\sinh \frac{4\pi d}{1}} = 1.76 \text{ m/s}$
		$V \stackrel{\text{AGPERIOD:}}{T = \frac{L}{C} = 2_1 1^{4}$	5 S
	INSTÄLLNING	TEORI: STOK	E ZIA ORDN.
	AV VAG- GENERATOR	PARTIKELRÖF HORISONTELL	RELSENS _A AMPLITUD
ingel (* 1 1994) Norder Alla		VID VATTENYT VID BOTTEN	AN: $X_{SVY} = 0.093 \text{ m}$: $X_{B} = 0.075 \text{ m}$
		INSTÄLLNING T-1= 0,47	SPARAMETRAR: s ⁻¹
		$e_{1} = 0,94 \\ e_{2} = 0,624 \\ e_{3} = 0,624 \\ e_{4} = 0,624 \\ e_{5} = 0,624$	0

-- · · ·

		VÅG: I:13
	RESULTAT	TID30m: 16,03 ± 0,06 S
Ng se se se		VÅGHASTIGHET: $C = 1.87 \text{ m/s}$
C		GRUPPHASTIGHET: CG=1,58 m/s
		VÅGFREKVENS: T-1=0,45 ±0,02 51
		VÅGPERIOD: $T=2,21$ S
	(VÅGLÄNGD: L=C·T=4,13 m
		$\begin{array}{l} VÅGHÖJD: \\ H_2 = 0,0681 \pm 0,0007m \\ H_3 = 0,0666 \pm 0,0026m \\ RÅNNFÖRLUST: \\ h = \frac{H_2 - H_3}{24} = 0,6\cdot 10^4 \text{ m/m} \\ H_1 = 0,0866 \pm 0,0010m \\ H_2 = 0,0683 \pm 0,0008m \\ FILTERFÖRLUST: \\ \Delta h = H_1 - H_2 - 12\cdot h = 0,0196m \\ OSTÖRD VÅGHÖJD: \\ H_0 = H_1 + 14\cdot h = 0,0894 \text{ m} \\ \frac{h}{H_0} \cdot 100 = 0,07 \%/m \\ \frac{\Delta h}{H_0} \cdot 100 = 21,9 \% \end{array}$
	ERHÅLLEN VÅG	$\frac{d}{L} = 0,097$ $\frac{H}{L} = 0,022$

		·		,
			· · · · · · · · · · · · · · · · · · ·	VÅG: I:14
e C		ÖNSKAD VÅG	$\frac{d}{L} = 0,080$ $\frac{H}{L} = 0,012$	d = 0.4 m L = 5.00 m H = 0.060 m
			VÅGHASTIGHET: $C = \sqrt{\frac{9L}{2\pi}} \cdot \tanh^{-1}$	$\frac{2\pi d}{L} = 1.90 \text{ m/s}$
	(GRUPPHASTIGH $C_{G} = \frac{C}{2} \left[1 + \frac{1}{2} \right]$ VÅGPERIOD:	$\frac{4 \Pi d}{\frac{4 \Pi d}{L}} = 1,76 \text{ m/s}$
			$T = \frac{L}{C} = 2.6$	3 S
		INSTÄLLNING AV VÅG- GENERATOR	TEORI: STOKE	2:A ORDN.
	(PARTIKELRÖR Horisontell	ELSENS .A AMPLITUD
r gi H Hurt Haun L	(VID VATTENYT	AN: $X_{SVY} = 0,069 \text{ m}$: $X_{B} = 0,055 \text{ m}$
			INSTÄLLNING $T^{-1} = 0_{138}$ me = A	SPARAMETRAR: s ⁻¹
			$e_1 = 0,98$ $e_2 = 0,62$	4 6

·

		VĂG: 1:14
	RESULTAT	TID30m: 15,80 ± 0,10 S
		VÅGHASTIGHET: $C = 1,90 \text{ m/s}$
		GRUPPHASTIGHET: CG = 1,68 m/s
· · ·		VÅGFREKVENS: $T^{-1} = 0.37 \pm 0.00 s^{-1}$
		VÅGPERIOD: T=2,70 S
с		VÅGLÄNGD: L=C·T= 5,13 m
		$VÅGHÖJD: H_{2} = 0,0526 \pm 0,0008 m H_{3} = 0,0513 \pm 0,0003 m RÅNNFÖRLUST: h = \frac{H_{2} - H_{3}}{24} = 0,5 \cdot 10^{-4} m/m H_{1} = 0,0527 \pm 0,0004 m H_{2} = 0,0448 \pm 0,0008 m FILTERFÖRLUST: Ah = H_{1} - H_{2} - 12 \cdot h = 0,007 m OSTÖRD VÅGHÖJD: H_{0} = H_{1} + 14 \cdot h = 0,0603 m \frac{h}{H_{0}} \cdot 100 = 0,08 \%/m \frac{Ah}{H_{0}} \cdot 100 = 11,6 \%$
	ERHÅLLEN VÅG	$\frac{d}{L} = 0.078$ $\frac{H}{L} = 0.012$

•••

			VÅG: I:15
	ÖNSKAD VÅG	$\frac{d}{L} = 0,080$ $\frac{H}{L} = 0,020$	d = 0,4 m L = 5,00 m H = 0,100 m
in star i suma I		VÅGHASTIGHET: C=V <u>g⊥</u> tanh	$\frac{2\pi d}{L} = 1,90 \text{ m/s}$
($GRUPPHASTIGH$ $C_{g} = \frac{C}{2} \left[1 + \frac{C}{L} \right]$	ET: $\frac{4\pi d}{1} = 1,76 \text{ m/s}$
		$\nabla^{A}GPERIOD:$ $T = \frac{L}{C} = 2_{16}$	3 S
	INSTÄLLNING AV VÅG- GENERATOR	TEORI: STOK	E 2: A ORDN,
		PARTIKELRÖF Horisontell	A AMPLITUD
		VID VATTENYT.	AN: $X_{SVY} = 0,120$ m
		VID BOTTEN	$X_{B} = 0,102 \text{ m}$
		$\begin{vmatrix} INSTÄLLNING \\ T^{-1} = 0,36 \\ m_e = C \\ e_1 = 0,8 \\ e_2 = 0,62 \end{aligned}$	SPARAMETRAR: s ⁻¹ 61

1			
			VÅG: I;15
		RESULTAT	TID30m: 15,47 ± 0,06 S
··· _·	.•	an an the second se	VÅGHASTIGHET: $C = 1.94 \text{ m/s}$
in the second se		· · ·	GRUPPHASTIGHET: $C_G = 1.60$ m/s
			VÅGFREKVENS: T-1=0,38 ±0,0051
			VÅGPERIOD: $T=2,64$ S
	(VÅGLÄNGD: L=C·T= 5,12 m
			$\begin{array}{l} V\Berl{A}$
		ERHÅLLEN VÅG	$\frac{d}{L} = 0,078$ $\frac{H}{L} = 0,020$

· ··· ··· ·

r

-

.

