
Stock Market prediction using Artificial
Neural Networks
Master’s thesis in Computer Systems and Networks

RAFAEL KONSTANTINOU

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Stock Market prediction using Artificial Neural
Networks

RAFAEL KONSTANTINOU

Department of Computer Science and Engineering
Division of Networks and Systems

Chalmers University of Technology
Gothenburg, Sweden 2017

Stock Market prediction using Artificial Neural Networks
RAFAEL KONSTANTINOU

© RAFAEL KONSTANTINOU, 2017.

Supervisor: Philippas Tsigas, Department of Computer Science and Engineering
Examiner: Marina Papatriantafilou, Department of Computer Science and Engi-
neering

Master’s Thesis 2017
Department of Computer Science and Engineering
Division of Networks and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Stock Market prediction using Artificical Neural Networks
RAFAEL KONSTANTINOU
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Stock market is one of the most competitive financial markets and traders need to
compute the financial workloads with low latency and high throughput. In the past,
people were using the traditional store and process method to calculate the heavy
financial workloads efficiently. However to achieve low latency and high through-
put, data-centers were forced to be physically located close to the data sources,
instead of other more economically beneficial locations. This is the main reason,
the data-streaming model was developed and it can process large amount of data
more efficiently. It was shown in studies that using data streaming we can solve the
options pricing and risk assessment problems using traditional methods, for example
Japanese candlesticks, Monte-Carlo models, Binomial models, with low latency and
high throughput.
However instead of using those traditional methods, we approached the problems
using machine learning techniques. We tried to revolutionize the way people address
data processing problems in stock market by predicting the behaviour of the stocks.
In fact, if we can predict how the stock will behave in the short-term future we can
queue up our transactions earlier and be faster than everyone else. In theory, this
allows us to maximize our profit without having the need to be physically located
close to the data sources.
We examined three main models. Firstly we used a complete random model using
a monkey trader. The name monkey trader comes from B.G. Malkiel’s claim, that
a blindfolded monkey throwing darts at a newspaper’s financial pages could select
a portfolio that would do just as well as one carefully selected by experts. It works
by choosing random actions at random moments. Secondly we used a feed-forward
artificial neural network (ANN) model and finally a model that uses Reinforcement
Learning(RL). Each of those models was applied on real stock market data and
checked whether it could return profit.

Keywords: Stock market, Artificial Neural Networks, Machine Learning.

v

Acknowledgements
I would like to thank my supervisor Philippas for all the support, advice and the
time that he spent to help me construct this work.

I also want to thank my examiner Marina for the cooperation and all the useful
comments and advice she gave me.

It would be a mistake not to thank all the professors and members of the department
that helped me with their teachings through my master program here at Chalmers.

In addition, I want to thank all my friends that were always by my side encouraging
me and supporting me.

Finally, I want to say a big "thank you" to my family that gave me the opportunity
to move in Sweden and study. Without them I wouldn’t be able to be the person I
am today.

Rafael Konstantinou, Gothenburg, June 2017

vii

Contents

List of Figures xv

List of Tables xvii

1 Introduction and Background Information 1
1.1 Motivation . 1
1.2 Goals and Limitations . 1

1.2.1 Goals . 1
1.2.2 Challenges and Limitations 2

1.2.2.1 The Nature of stock market prediction 2
1.2.2.2 Data collection . 2
1.2.2.3 How did we check the winnings? 2

1.3 Road-map . 3
1.4 Financial Information . 3

1.4.1 Information about the Stock Market 3
1.4.1.1 Stocks . 3
1.4.1.2 Shares of a Stock . 3
1.4.1.3 Stock Market . 4
1.4.1.4 Stock market prediction 4
1.4.1.5 Shareholders . 4
1.4.1.6 Options . 4

1.4.2 Financial Indicators . 4
1.4.2.1 Relative Strength Index (RSI) 4

1.4.2.1.1 The Momentum Oscillator Concept 4
1.4.2.1.2 Relative Strength Index Equation 5
1.4.2.1.3 Modified version of RSI 5

1.4.2.2 Moving averages . 5
1.4.2.2.1 Simple moving average (SMA) 5
1.4.2.2.2 Weighted moving averages(WMA) 6
1.4.2.2.3 Time-based separation of Moving average . 6

1.4.2.2.3.1 Long-Term Moving average 6
1.4.2.2.3.2 Intermediate-Term Moving average . 6
1.4.2.2.3.3 Short-Term Moving average 6

1.4.2.2.4 Moving average convergence divergence (MACD) 6
1.4.2.2.4.1 Basic Concepts 7
1.4.2.2.4.2 Exponential moving average(EMA) . 7

ix

Contents

1.4.2.2.4.3 MACD formula 7
1.4.2.2.4.4 Modified MACD 7

1.4.2.3 Channels . 7
1.4.2.3.1 Price channels 7

1.4.2.3.1.1 High channel 8
1.4.2.3.1.2 Low channel 8
1.4.2.3.1.3 Price channel usage 8
1.4.2.3.1.4 Channel Calculation 8

1.4.2.3.2 Moving Average trading channels 8
1.4.2.3.2.1 Channel Creation 8

1.4.2.4 Stochastic oscillator 9
1.5 Mathematical and Algorithmic Methods 10

1.5.1 Chain Rule . 10
1.5.2 Artificial Neural Networks . 10

1.5.2.1 Examples of activation functions 11
1.5.2.2 Types of Artificial Neural Networks 11

1.5.2.2.1 Feed-forward artificial neural network 11
1.5.2.2.2 Recurrent Neural network 11

1.5.2.3 Types of Learning Algorithms 11
1.5.2.3.1 Supervised Learning 11

1.5.2.3.1.1 Classification: 12
1.5.2.3.1.2 Regression: 12

1.5.2.3.2 Unsupervised Learning 13
1.5.3 Reinforcement Learning . 13

1.5.3.1 Elements of Reinforcement Learning 13
1.5.3.1.1 Environment 13
1.5.3.1.2 Agent . 13
1.5.3.1.3 Policy . 13
1.5.3.1.4 Reward Function 14
1.5.3.1.5 Value Function 14
1.5.3.1.6 Model of the Environment 14

1.5.4 Stochastic Gradient Decent 14
1.5.5 Backpropagation . 15
1.5.6 Overfitting . 16
1.5.7 Mean Absolute Percentage Error (MAPE) 16
1.5.8 Maximum Percentage Error 16
1.5.9 Cross Entropy Error Function 17
1.5.10 Tensorflow . 17

1.6 Problem Definition . 17

2 Datasets 19
2.1 Data Collection . 19
2.2 Data Processing . 19
2.3 Data Normalization . 20

2.3.1 Methods for input data normalization 20
2.3.1.1 Along Channel Normalization 20

x

Contents

2.3.1.2 Across Channel Normalization 20
2.3.1.3 Mixed Channel Normalization 20
2.3.1.4 External Normalization 20

2.3.2 Normalization Paradox . 21
2.3.3 Choosing a normalization constant 21

3 Prediction Models 23
3.1 Classification Feed Forward Artificial Neural Network 23

3.1.1 Architecture . 23
3.1.1.1 Input Layer . 23
3.1.1.2 Hidden Layers . 24

3.1.1.2.1 First Hidden layer 24
3.1.1.2.2 Second Hidden layer 24
3.1.1.2.3 Third Hidden layer 24

3.1.1.3 Output Layer . 25
3.1.2 Loss Function . 25

3.1.2.1 Cross entropy error 25
3.1.3 Train Batches . 25
3.1.4 Accuracy . 25

3.2 Regression Feed Forward Artificial Neural Network 26
3.2.1 Architecture . 26

3.2.1.1 Input Layer . 26
3.2.1.2 Hidden Layers . 26

3.2.1.2.1 First Hidden layer 26
3.2.1.2.2 Second Hidden layer 27
3.2.1.2.3 Third Hidden layer 27

3.2.1.3 Output Layer . 27
3.2.2 Loss Function . 27

3.2.2.1 Mean Squared Error 27
3.2.3 Adam Optimizer . 28
3.2.4 Train Batches . 28
3.2.5 Training accuracy . 28
3.2.6 Training Windows . 28

4 Trading Strategy 29
4.1 The monkey trader . 29

4.1.1 Our own blindfolded monkey trader 29
4.2 Simple Buy and Sell Strategy . 30

4.2.1 Profit . 30
4.2.2 Advantages and disadvantages 30

4.3 Decision based trading strategy . 30
4.3.1 Buy and Sell zones . 30

4.3.1.1 Zone calculation . 31
4.3.1.2 Zone usage . 31

4.3.2 Trading History . 31
4.3.3 Legal Actions . 31
4.3.4 Step Lock . 31

xi

Contents

4.4 Reinforcement Learning trading strategy 32
4.4.1 Inspiration . 32
4.4.2 Reinforcement learning in the stock market 32
4.4.3 Model architecture . 32

4.4.3.1 Simulation of the environment 32
4.4.3.2 The trading agent 33
4.4.3.3 Training . 33
4.4.3.4 Replay Memory . 33

5 Results 35
5.1 Monkey Trader . 35

5.1.1 Monkey Trader Simulation . 35
5.1.2 Monkey trader Discussion . 35

5.2 Classification Neural Network . 35
5.2.1 Training of the network . 36
5.2.2 Testing of the network . 36
5.2.3 Presentation of Results . 36
5.2.4 Discussion of Results . 37

5.3 Regression Neural Network with decision based trading strategy . . . 37
5.3.1 Stock Prediction Preliminary Results 37

5.3.1.1 Network Convergence, Overfitting and Early-stopping 38
5.3.1.2 Discussion of results 38

5.3.2 Buying and selling constant number of stocks 41
5.3.2.1 Training of the network 41
5.3.2.2 Testing of the network 41

5.3.2.2.1 Graphs of Stock A 42
5.3.2.2.2 Graphs of Stock B 44
5.3.2.2.3 Graphs of Stock C 46
5.3.2.2.4 Graphs of stock D 48

5.3.2.3 Discussion of Results 50
5.3.3 Capital, profit and number of stocks 51

5.3.3.1 Discussion of results 52
5.3.4 Buying and selling the max possible number of stocks 52

5.3.4.1 Discussion of Results 53
5.3.5 How much historical data do we need? 53

5.3.5.1 Discussion of Results 56
5.3.6 How often do we have train a new network? 57

5.4 Reinforcement Learning model and trading strategy 58

6 Conclusion 59
6.1 General Comments . 59
6.2 Limitations . 60
6.3 Future Work . 61

6.3.1 Test our existing models with more data 61
6.3.2 Advanced decision based trading strategy using different arti-

ficial neural networks . 61
6.3.3 Reinforcement Learning tuning 61

xii

Contents

6.3.4 Recurrent neural network mode. 61

Bibliography 64

A Appendix 1 I

xiii

Contents

xiv

List of Figures

1.1 Simple classification example . 12
1.2 Simple regression example . 12
1.3 Example of over-fitting. Blue line is the training error and red line is

the validation error. Figure taken from Wikipedia. 16

4.1 Decision tree example for the Agent 33

5.1 Stock Price prediction of ATCOA overfitting part A 39
5.2 Stock Price prediction of ATCOA overfitting part B 40
5.3 Stock Price prediction of ATCOA with early stopping 41
5.4 Winnings while doing transactions with different amount of stocks . . 42
5.5 Stock Price prediction of ABB and the winnings 44
5.6 Winnings while doing transactions with different amount of stocks . . 45
5.7 Stock Price prediction of SAND and the winnings 46
5.8 Winnings while doing transactions with different amount of stocks . . 47
5.9 Stock Price prediction of SKFB and the winnings 48
5.10 Winnings while doing transactions with different amount of stocks . . 49
5.11 Stock Price prediction of VOLVO and the winnings 50
5.12 Percentage increase on capital for LUPE stock with normal and ten

times more capital for a constant amount of stocks per transaction . . 51
5.13 Total winnings for LUPE stock with normal and ten times more cap-

ital for a constant amount of stock per transaction 52
5.14 Stock Price prediction of VOLVO. Training from 23rd of November

2016 to 16th of December 2016 . 54
5.15 Stock Price prediction of VOLVO. Training from 23rd of November

2016 to 13th of January 2017 . 54
5.16 Stock Price prediction of VOLVO. Training from 1st of February 2017

to 10th of February 2017 . 55
5.17 Stock Price prediction of VOLVO. Training from 16th of January 2017

to 10th of February 2017 . 56
5.18 Stock Price prediction of VOLVO. Training from 10th of November

2016 to 10th of February 2017 . 56

xv

List of Figures

xvi

List of Tables

5.1 Results of the classification Neural Network 37
5.2 Difference on percentage of winnings using constant and dynamic step

while Buying stocks . 53

xvii

List of Tables

xviii

1
Introduction and Background

Information

In this section we introduce the reader to this thesis and we explain the background
information and previous knowledge the reader should have to understand the rest of
this thesis. It is separated in 3 parts. In the first part we state the Motivation Goals
and Limitations of the tesis. In the second part there is all the information related
to the Economical field and the stock market. In the final part is the information
related to Algorithmic and Mathematical Methods.

1.1 Motivation
Predicting the movement of stocks in the competitive financial markets is a challenge
even for the most experienced day trader. Even in a fraction of a second the price of
a stock can change so drastically that the first one who is able to see it and act can
win huge amount of money while the rest have to face a financial disaster. Through
the years many experts used a variety of methods in order to try and predict the
unpredictable stock market and earn money.

1.2 Goals and Limitations
In this section we discuss the Goals and the Limitations of this thesis. We explain
in detail what we want to achieve through the thesis and what difficulties we had
to overcome to make it happen.

1.2.1 Goals
For the concept of this thesis we tried to predict the price of the stock in the short
term future and decide whether is better to buy, sell or hold our stocks. There is
no strict definition of short term future. It can be any interval from nanoseconds
until a few days. We decided that we will use 5-min intervals as our prediction time.
As the stock price depends on the time, time interval is a parameter that had to
be decided. We think that five minutes can be a good representation of short term
future. Also using a constant time interval simplifies the problem significantly. The
main objective is to maximize the profit by trying to increase the capital. Through
the years the economists investigated many different methods to try and find an

1

1. Introduction and Background Information

optimal way to predict the movement of a stock. Some of them are Japanese can-
dlesticks [9], Monte Carlo Models[4], Binomial Models[8, 6, 7], Black-Scholes formula
[7] and more. However instead of using those traditional methods we approached
the problem of predicting stock prices using machine learning techniques and specif-
ically Artificial Neural Networks [23]. Then we tried to come up with an optimal
trading strategy to maximize the potential profit. The main idea is to model a stock
trading day into five-minute intervals and using historical information of the stock
we tried to predict the stock price after five minutes. Also we tried to train and test
our model on historical stock data collected during the period of November 2016 to
June 2017 from The OMXS30 index of the Stockholm’s stock market.

1.2.2 Challenges and Limitations

1.2.2.1 The Nature of stock market prediction

Stock market is so complicated and many things can affect the change in a price.
Not only financial factors can influence the price of a stock. Things like news or
the general mood can affect the price in many ways positive or negative. If it was
possible to model the stock market with a function it would be a complex function
that lives in high-dimensional, maybe infinite dimensional, space. Imagine what
would happen if someone knew a away to calculate that function. That someone
would be able to profit by taking advantage of it. However the nature of the space
is so complicated that finding that function is an impossible thing to do. The real
challenge is to try and approximate that function using neural-networks in a way
that we can profit by applying it in the stock market. The focus of this thesis is to
try to approximate the stock market as good as possible and try to maximize our
profit.

1.2.2.2 Data collection

First difficulty we had to face was lack of free and accessible data. Although through
the internet someone can find numerous of historical data those are limited to day
prices. In order to implement our thesis we needed the history of all the transactions
each day. This type of data are available to public until midnight of each day. To
overcome this, we decided to collect the transactions ourselves. We created a script
that was collecting all the transactions at the end of each day.

1.2.2.3 How did we check the winnings?

An other difficulty we had to face was the way to determine winnings. We had two
different options.

1. Winnings is the difference between portfolio value plus the capital we have on
our possession and the initial capital.

2. Winnings is the sum of all the differences in price between sequential transac-
tions. For example if we bought a stock at price x and sold it at price y, then
the winnings are y-x.

2

1. Introduction and Background Information

1.3 Road-map

The Thesis is divided into four main parts.

Goal of the first part, chapter 2, is to introduce the reader to all the necessary back-
ground information that he needs to understand in order to be able to follow the
context of this Thesis.

The second part, chapters 3-5, states, explains and discusses the main research ideas
produced by the authors.

In the third part, chapter 6, we list all the experimental results, their explanation
and discussion.

The final part of the thesis, chapter 7, is the conclusion where we discuss and analyze
the whole project but also mention what we can work in the future.

1.4 Financial Information

In this section we introduce the reader to the Financial knowledge needed to under-
stand completely the context of this thesis.

1.4.1 Information about the Stock Market

1.4.1.1 Stocks

The stock of a company or an organization is described by the equity stock of its
owners. A single share of the stock represents partial ownership of the corporation in
ratio to the total number of shares. The stock of a corporation is divided into shares
and the total number of them is stated at the time of the company’s creation. The
existing shareholders can authorize the company to issue additional shares. In some
cases, each share of stock has a certain declared par value, which is a legal accounting
value and it represents the equity on the balance sheet of the organization. There
are also cases, where shares of a stocks are issued without having a par value.

1.4.1.2 Shares of a Stock

Shares represent a percentage of ownership in a business. A business may declare
different types of shares, each having different ownership rules, privileges, or share
values. The owner of the shares has a documented stock certificate that insures that
ownership of the stock. A stock certificate is a legal document that documents the
amount of shares owned by the shareholder, and other specifics of them, such as the
par value, if any, or their class.

3

1. Introduction and Background Information

1.4.1.3 Stock Market

The Stock Market is the aggregation of buyers and sellers of stocks, which represent
ownership claims on businesses. Most of the time, include securities listed on a
public stock exchange as but can also be traded privately. An example of private
trades, include shares of private companies which are sold to investors through
equity crowd-funding platforms. Not only common equity shares are listed in stock
exchanges but also shares of other security type e.g. corporate bonds and convertible
bonds.

1.4.1.4 Stock market prediction

Stock market prediction is the act of trying to determine the future value of a
company stock or other financial instrument traded on an exchange.

1.4.1.5 Shareholders

A shareholder is an individual or a company that legally owns a number of shares in a
joint stock company. Shareholders have special privileges that depend on the class of
their stock. Some of them are, right to vote on matters such as elections to the board
of directors, the right to share in distributions of the company’s income, the right to
buy new shares issued by the company and the right to access the company’s assets
during a liquidation of the company. However, shareholder’s rights to a company’s
assets are bound by the rights of the company’s creditors.

1.4.1.6 Options

According to J. C. Cox in his paper "Option pricing: A simplified approach." [8], an
Option is a security that grands the owner of the stock ability to trade in a fixed
number of shares of a specific common stock at a fixed price at any time on or
before a given date. The act of completing the transaction is known as exercising
the option. The fixed price is called the strike price and the date is known as the
expiration or maturity date. A call option gives the ability to buy the shares and a
put option gives the ability to sell the shares.

1.4.2 Financial Indicators
In this part we present the different financial indicators and oscillators used in this
thesis.

1.4.2.1 Relative Strength Index (RSI)

Relative strength index (RSI) is a momentum oscillator developed by J. Welles
Wilder in his book "New Concepts in Technical Trading Systems", 1978 [24].

1.4.2.1.1 The Momentum Oscillator Concept The momentum oscillator
measures the velocity of directional price movement. For example when the price of
a stock moves up exceptionally fast, at some point it is considered to be overbought.

4

1. Introduction and Background Information

In the same concept when the price goes down fast it is considered oversold. The
momentum oscillators are able to capture that and they are often characterized
by a line on a chart drown down in two dimensions. The vertical axis represents
the magnitude of the indicator movement. The horizontal axis represents time.
Momentum oscillators generally move very fast at market turning points and tent
to slow down as the market continues the directional move.

1.4.2.1.2 Relative Strength Index Equation To calculate Relative Strength
RS of the first day we need the closing prices of the 14 previous days.

1. Obtain the sum of UP closes for the previous 14 days and divide by 14
2. Obtain the sum for the DOWN closes for the previous 14 days and divide by

14
3. Divide the average UP close with the average DOWN close.

RS = Average of 14 day’s closes UP
Average of 14 day’s closes DOWN (1.1)

The initial RSI is calculated in the following steps
1. Divide 100 to RS+1
2. Subtract the result obtain above from 100

RSI = 100− [100
1 +RS

] (1.2)

From this point on we can use the previous calculated average UP and DOWN in
the calculation of the next RSI.

1. Multiply the previous average UP by 13 and add the today’s UP close and
then divide the total by 14

2. Multiply the previous average DOWN by 13 and add the today’s DOWN close
and then divide the total by 14

The steps to calculate the new RS and RSI are the same as the Initial’s one.

1.4.2.1.3 Modified version of RSI In this thesis we used a modified version
of RSI. Instead of calculating UP and DOWN averages every day we calculated
them every 5 minutes. The reason behind this is that we want to study the momen-
tum changes of a stock in the short term but the original RSI represents the daily
momentum changes.

1.4.2.2 Moving averages

According to Gerald Appel in his book "Technical Analysis: Power Tools for Active
Investors"[2], moving averages are used to deal with the noise of shorter-term price
variations in order to identify with higher precision the significant trends. We have
two types of moving averages.

1.4.2.2.1 Simple moving average (SMA)
This type of moving average treats all data in an equal way. Let x = (x1,xn) be

5

1. Introduction and Background Information

a subset of our data. Then the simple moving average of that subset is calculated
as,

SMA = 1
n

n∑
i=1

xi (1.3)

where, n is the window size of the average calculation.

1.4.2.2.2 Weighted moving averages(WMA)
This type of moving averages assign different weights to each data point. For exam-
ple, some weighted averages are assigning higher weights to more recent data and pe-
nalizing older data points by assigning them lower weights. Let again x = (x1,xn)
be a subset of our data and w = (w1, ..., wn) be the weights. Then the weighted
moving average of that subset is calculated as,

WMA = 1
n

n∑
i=1

xiwi (1.4)

where, n is the window size of the average calculation. There are many different
types of weighted averages and the main difference is on the way they calculate their
weights.

1.4.2.2.3 Time-based separation of Moving average
Moving averages can also be separated in three categories with respect to the market
trend we want to observe.

1.4.2.2.3.1 Long-Term Moving average
This type of moving average reflects the longer-term market trends. Those types
of averages are usually used to observe the behavior of the stock in the long term
and moderate the odds of an imminent market reversal increase. An example is the
200-day moving average.

1.4.2.2.3.2 Intermediate-Term Moving average
This type of moving average reflects the intermediate-term market trends. They
usually provide with entry points with in favorable, strongly rising stock market
cycles. When intermediate-term moving averages are in decline, selling opportunities
can develop. An example can be a 50-day moving average.

1.4.2.2.3.3 Short-Term Moving average
This type of moving average reflects the short-term market trends. They are usually
used with a longer-term average. When short-term moving average crosses with a
longer-term moving average, signals a shifting in momentum which means is time
for a strong action. An example of short-term moving average can be 10-day moving
average. They can also be used in day trading on, hourly, 30-minute, 15-minute and
even 5-minute bases to model intra-day trading.

1.4.2.2.4 Moving average convergence divergence (MACD) Moving av-
erage convergence divergence (MACD) is an indicator used in technical analysis of
stock prices and was developed by Gerald Appel [2]

6

1. Introduction and Background Information

1.4.2.2.4.1 Basic Concepts
MACD represents the difference of the short-term exponential moving average minus
the long-term exponential average. When market trends are improving, short-term
averages will rise more quickly than long term averages thus MACD lines will turn
up. Also when market trends are losing strength, short-term averages will tend to
flatten, falling below longer-term averages if declines continue.Then MACD lines will
fall below 0. Finally weakening trends are reflected in changes of direction of MACD
readings. During the course of price movements, short-term moving averages will
diverge and converge with longer-term moving averages and that’s why the indicator
is named moving average convergence divergence.

1.4.2.2.4.2 Exponential moving average(EMA)
Exponential Moving average is a weighted moving average. The Weight Multiplier
for n data-points is calculated as:

w = 2
n+ 1 (1.5)

EMA is calculated as following:
1. Calculate the simple moving average (SMA) using equation 1.3 for the chosen

number of time periods.
2. Calculate the weighted multiplier using equation 1.5
3. Calculate initial EMA as {EMA}0 = (C − SMA) · w + SMA
4. Calculate new EMA as {EMA}i = (C − {EMA}i−1) · w + {EMA}i−1

where, C is the closing price of the time interval.

1.4.2.2.4.3 MACD formula
MACD line is the subtraction of a 26-day EMA from a 12-day EMA. We calculate
EMA using the steps in 1.4.2.2.4.2 and MACD is given by the following formula

MACD = EMA12 − EMA26 (1.6)

1.4.2.2.4.4 Modified MACD
We introduced a modified version of MACD in this thesis. Instead of using daily
data we are using 5-min intervals as data-points to calculate short-term moving
average. The calculation is the same of the traditional MACD but with short-term
reference as we are interested in day trading and this is more suitable for the general
concept of this thesis.

1.4.2.3 Channels

There are two types of Channels used in stock trading. We discuss them in the
following parts.

1.4.2.3.1 Price channels Price channels are commonly used in stock trading
in order to discover trends to the stock price. They are separated in a high channel
and a low channel.

7

1. Introduction and Background Information

1.4.2.3.1.1 High channel High channels are calculated connecting the two
highest points of the chart in the stock price. It is commonly use in a time based
window, for example connect the two highest prices the last 10 days.

1.4.2.3.1.2 Low channel Low channels are calculated by connecting the two
lowest points of the chart in the stock price. In the same concept as the high
channels, low channels are commonly use in a time based window.

1.4.2.3.1.3 Price channel usage The price channel usage indicate the mo-
mentum change. If the actual price is between the channels and the high and low
channels are parallel it means that the stock price will follow a specific trend. When
the channels are going to converge (connect together) it signals a breaking point.
That means that the trader should either buy or sell. The same happens if the lines
are diverging (moving away) signaling an other breaking point. In addition when
the actual stock price moves outside of the channels it also signals a breaking point.

1.4.2.3.1.4 Channel Calculation Let xt1 and xt2 be the two highest (or lowest)
prices in out time window. Without loss of generality we assume t1 < t2. the line
x(t) that describes the channel is given by,

x− xt1 = xt1 − xt2

t1 − t2
· (t− t1) (1.7)

where, xt is the stock price at any given time t.

1.4.2.3.2 Moving Average trading channels The moving average trading
channels can be applied for both short time and long term treading. They are use-
ful and help us determine the following:

1. Whether the markets are showing increasing strength or are losing upside
momentum.

2. Whether forthcoming support and resistance levels are likely to develop.
3. Whether initial attempts to rally appear likely to develop a good follow-

through.
4. When it is safe to buy market weakness.
5. Where and when market retracements are likely to occur and whether the odds

favor subsequent recovery.

1.4.2.3.2.1 Channel Creation
Channels are created by drawing lines based on offsets by a predefined percentage
above and below the level of the moving average’s lines used. Those new lines act like
the boundaries of the moving average’s channels and the actual line of the moving
average becomes the center of the channel.

8

1. Introduction and Background Information

1.4.2.4 Stochastic oscillator

Stochastic oscillator is a momentum indicator that was developed by Gorge Lane
and uses resistance and support levels. The formula is given by:

K = 100 · (C − L14)
(H14 − L14) (1.8)

where,
• C is the closing price
• L14 is the low of the 14 previous intervals
• H14 is the high of the 14 previous intervals

The stochastic oscillator is given as the three period interval moving average of K

D = 1
3

3∑
i=1

Ki (1.9)

9

1. Introduction and Background Information

1.5 Mathematical and Algorithmic Methods

1.5.1 Chain Rule
According to [10] the definition of the chain rule is the following.
Let w = f(x, y, w, ..., v) be a differentiable function of a finite set of variables
{x, y, ..., v} and x, y, ..., v are differentiable functions of an other finite set of vari-
ables {p, q,, t}. Then w is a differentiable function of the variables p, q, ..., t and
the partial derivatives of w with respect to those variables is given by equations of
the form

∂w

∂p
= ∂w

∂x

∂x

∂p
+ ∂w

∂y

∂y

∂p
+ ...+ ∂w

∂v

∂v

∂p
(1.10)

1.5.2 Artificial Neural Networks
The main motivation behind artificial neural networks is the human brain and the
fact that the way it computes is completely different from a digital computer. The
brain is a complex nonlinear and parallel computer and has the capability to organize
its structural constituents to perform certain computations many time faster than
the fastest digital computer in existence today. The definition of a neural network
is given in [13].
A neural network is a massively parallel distributed processor made up of simple
processing units which has a natural propensity for storing experimental knowledge
and making available for use. It resembles the brain in two respects: Firstly knowl-
edge is acquired by the network from its environment through a learning process and
secondly interneuron connection strengths, known as synaptic weights, are used to
store the acquired knowledge. A learning algorithm, the procedure used to perform
the learning process, modifies the synaptic weights of the network in an orderly
fashion to attain a desired design objective.
The neuron is constructed by three basic elements.

1. A set of synapses or connecting links, each of which is characterized by a
weight or strength of its own. An input signal xj at the input of synapse j
connected to the neuron k is multiplied by the weight wkj.

2. An adder for summing the input signals, weighted by the respective synapses
of the neuron, also known as linear combiner.

3. An activation function for limiting the amplitude of the output of the neuron.
Example activation functions can be tanh, relu, sigmoid etc.

A neuron can also be described using mathematical terms.

uk =
m∑

j=1
wkjxj (1.11)

and
yk = φ(uk + bk) (1.12)

where x1, x2, ..., xm are the imput signals; wk1, wk2, ..., wkm are the synaptic weights
of neuron k; uk is the linear combiner output due to the input signal; bk is the bias;

10

1. Introduction and Background Information

φ(.) is the activation function and yk is the output signal of the neuron. The bias
bk is used to apply an affine transformation to the output uk of the linear combiner.

1.5.2.1 Examples of activation functions

• Linear Activation Function
φ(uk) = uk (1.13)

• Rectified Linear Activation Function

φ(uk) =
{
uk, uk ≥ 0
0, uk < 0 (1.14)

• Sigmoid Activation Function

φ(uk) = 1
1 + e−uk

(1.15)

• Hyperbolic Tangent Activation function

φ(uk) = euk − e−uk

euk + e−uk
(1.16)

where uk is the linear combiner output due to the input signal; φ(.) is the activation
function

1.5.2.2 Types of Artificial Neural Networks

1.5.2.2.1 Feed-forward artificial neural network : In this type of network
the information moves in one direction, forward, from the input units to the hidden
units (if there are any) and then to the output nodes. The connections cannot form
any circles or travel any other direction than forward.

1.5.2.2.2 Recurrent Neural network : In this type of network the connec-
tions are allowed to form directed cycles. Information can move in any direction
and RNNs can use their internal memory to process arbitrary sequences of inputs.
This can make RNN suitable to solve more advanced and difficult tasks but also to
have higher computational complexity than feed forward neural networks.

1.5.2.3 Types of Learning Algorithms

1.5.2.3.1 Supervised Learning : In this concept we provide to the network a
desired response to the training vector. The desired response represents the optimum
response of the neural network. Then the networks parameters are adjusted under
the influence of the training vector and the error signal. The error signal is a
function of the actual network response and the optimum desired output. The
network parameters are adjusted step by step and the procedure repeats until the
actual output of the network is close enough to the desired output. Supervised
learning is usually used for two tasks classification and regression.

11

1. Introduction and Background Information

1.5.2.3.1.1 Classification: is the task where we want classify our datapoints
into a specific number of classes. A classification example is when we cant to separate
data pointer whether they are above or below a curve:

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.1: Simple classification example

In the above figure the separator is the function 1
x
. We have two classes, the blue

and the red. The points that lie above the separator belong in the blue class and
points that lie below the separator belong in the red class. Main task of this problem
is to approximate the unknown separator function just by processing a finite number
of observations and try to simulate the same behavior in the general case.

1.5.2.3.1.2 Regression: is the task where we want to estimate relationships
between our datapoints. An example is function approximation, where we want to
find a function that can describe our datapoints.

0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 1.2: Simple regression example

12

1. Introduction and Background Information

In the above figure we have the red line where is a polynomial function that tries to
approximate points from the function the sin(x).

1.5.2.3.2 Unsupervised Learning : In this case we cannot provide the net-
work with the desired response to the training vector. Instead a task independent
measure of the representation of what the network has to learn and the network
parameters are optimized with respect to that measure. When the network is opti-
mized it can develop the ability to encode feature of the input and thus create new
classes automatically. Unsupervised learning is often used to create auto-encoders
and auto-decoders where we want our neural network to capture the important fea-
tures from our data, discard the not so important features and create a good data
representation in lower dimension.

1.5.3 Reinforcement Learning
According to R.S. Sutton in the book, "Reinforcement Learning: An introduction,
Volume 1" [22], Reinforcement Learning (RL) is a field of machine learning that was
originally inspired by behaviorist psychology. The object of Reinforcement learning
is learning what to do, how to map situations (states) into actions in order to
maximize a numerical reward signal. The learner(agent) is not told which action to
take but instead must explore and discover which actions yield the most reward by
trying them. However in the most challenging cases an action may affect not only
the immediate reward but also the states following and all subsequent rewards.

1.5.3.1 Elements of Reinforcement Learning

The main concepts of the reinforcement learning is the agent and the environment.

1.5.3.1.1 Environment The Environment E is a black box that the agent
doesn’t know how it works but can only observe its current state. The agent exper-
iments with it by taking some actions and observing the change in the numerical
reward. We also assume that the agent does not have the power to modify the
environment thus the change in the environment by doing an action is negligible.

1.5.3.1.2 Agent An agent A is a software agent that can react with the environ-
ment by observing the states and using action to change the agents environmental
state. The main reason and quest is to maximize a numerical reward.

In addition to those we can identify four other sub-elements to a reinforcement
learning system, a policy, a reward function, a value function and a model of the
environment.

1.5.3.1.3 Policy A policy defines the agent’s way behaving at any given time.
In other words a policy is a mapping from perceived states of the environment to
actions to be taken when the agent identifies those states. Usually a policy is a

13

1. Introduction and Background Information

simple function or a look-up table but there are cases where it can be an expensive
computation for example a search process.

1.5.3.1.4 Reward Function A reward function defines the goal in a reinforce-
ment learning problem. It actually maps perceived states and actions to a single
numerical value, the reward, indicating the inartistic desirability of the state. The
main objective of the agent is to maximize the total reward it receives in the long
run. The reward function is fixed and can be used as a basis for changing the policy.
Rewards determine the immediate, intrinsic desirability of environmental states.

1.5.3.1.5 Value Function In opposition to the reward function that indicates
what is good in an immediate sense, the value function specifies what is good in
the long run. It calculates the value of the state as the total amount of reward an
agent can expect to accumulate over the future starting from that state. Values
indicate the long-term desirability of states after taking into account the states that
are likely to follow, and the rewards available in those states.

1.5.3.1.6 Model of the Environment Model of the environment is non manda-
tory for Reinforcement learning models. It mimics the behaviour of the environment
and they are usually used for planning. With the term planning we mean a way of
deciding on a course of action by considering possible future situations before they
are actually experienced.

1.5.4 Stochastic Gradient Decent
In [5] the concept of Gradient Decent and Stochastic Gradient Decent is given. Lets
consider a superviced learning setup. An example z is a pair (x, y) of an input
x and a scalar y. We have a loss function `(ŷ, y) that measures the cost of pre-
dicting ŷ when the actual value is y and we choose a family Φ of functions fw(x)
parametrised by a vector w. We seek the function f ∈ Φ that minimizes the loss
Q(z, w) = `(fw(x), y). We would like to average over then unknown distribution
dP (z). Let E(f) =

∫
`(f(x), y)dP (z) be the expected risk that measure the gener-

alization performance and let En(f) = 1
n

∑n
i=1 `(f(xi), yi) be the empirical risk that

measure the training set performance.
Now to minimize the empirical risk En(fw) using Gradient Decent we need to
update the weights w after each iteration in the basis of the gradient of En(fw)

wt+1 = wt − γ
1
n

n∑
i=1
5wQ(zi, wt) (1.17)

where γ is an adequately chosen gain. When the initial estimate w0 is close enough
to the optimum and γ is sufficiently small this algorithm achieves linear convergence.

The Stochastic Gradient Decent is a simplification of the above. Instead of
computing the gradient of E(fw), each iteration calculates on the basis of a single
randomly picked example zt

14

1. Introduction and Background Information

wt+1 = wt − γt5w Q(zt, wt) (1.18)
To guarantee convergence we need ∑

t γ
2
t < +∞

1.5.5 Backpropagation
In [19] the authors present Backprobagation method to adjust the weights of con-
nections in the network in order to minimize a measure of the difference between
the actual output vector of the network and the desired output vector. The input
xj to unit j is a linear function of the outputs, yj, of the units connected to j and
the weights wi,j

xj =
∑

i

yiwij (1.19)

A unit has a real-valued output yj, which is a non-linear function of its total input

yj = 1
1 + e−xj

(1.20)

The total error E is defined as

E = 1
2

∑
c

∑
j

(yj,c − dj,c)2 (1.21)

where c is an index over cases (input-output pairs), j is an index over output units,
y is the actual state of an output unit and d is the desired state. To minimize E by
gradient decent it is necessary to compute the partial derivative of E with respect
to every weight of the network.
The method starts by computing ∂E

∂y
for each of the output units. For a specific c

and suppressing the index c gives

∂E

∂yj

= yj − dj (1.22)

Now we can apply the chain rule to compute ∂E
∂xj

∂E

∂xj

= ∂E

∂yj

∂yi

∂xj

(1.23)

Differentiating equation (1.20) to get the value of ∂yi

∂xj
and substituting in (1.23) we

get
∂E

∂xj

= ∂E

∂yj

yj(1− yj) (1.24)

This means that we know how a change in the total input x to an output unit will
change the error. As the total input is just a linear function of the weights on the
connections it is easy to compute how the error will be affected by changing these
states and weights. The derivative ∂E

∂wij
for a weight w for neuron i to j is given by

∂E

∂wij

= ∂E

∂xj

∂xj

∂wij

= ∂E

∂xj

yi (1.25)

15

1. Introduction and Background Information

and for the output of the ith unit the contribution to ∂E
∂yi

is simply,

∂E

∂yi

= ∂E

∂xi

∂xj

∂yi

= ∂E

∂xj

wij (1.26)

and thus if we take into account all the connections from a unit i we get

∂E

∂yi

=
∑

j

∂E

∂xj

wij (1.27)

1.5.6 Overfitting
Overfitting is the situation where the neural network learns the data-set so well that
it fails to distinguish noise and fail to generalize. We can identify overfitting using
a validation set while training. The moment when the validation error starts to
increase while the training error decreases, are the first signs of overfitting. A good
counter to that is early stopping. In the figure below you can see an example of
overfitting.

Figure 1.3: Example of over-fitting. Blue line is the training error and red line is
the validation error. Figure taken from Wikipedia.

Overfitting is an important factor when training neural networks. We need our
models to generalise and thus we should try to avoid overfitting. More information
about how we dealt with it is given in section 5.3.1.1

1.5.7 Mean Absolute Percentage Error (MAPE)
We define Mean Absolute Percentage Error (MAPE) as it is presented in [12]. It
is defined for forecasts made for periods 1 to N of single series. The forecast error
at any given time t is defined by et = At−Ft, where At is the actual observation at
time t and Ft the forecast made for period t. MAPE is given by

(MAPE) = 100
N

N∑
t=1
|At − Ft

At

| (1.28)

1.5.8 Maximum Percentage Error
We define Maximum Percentage Error (MXPE) for forecasts made for periods 1 to
N of single series. The forecast error at any given time t is defined by et = At − Ft,

16

1. Introduction and Background Information

where At is the actual observation at time t and Ft the forecast made for period t.
MXPE is calculated using the equation below

(MXPE) = 100 ·max
t
|At − Ft

At

| (1.29)

1.5.9 Cross Entropy Error Function
G.E. Nasr in the paper "Cross Entropy Error function in Neural Networks",2002 [18]
defines the cross entropy error function the following way

Em = 1
m

m∑
k=1

[tk · ln(yk) + (1− tk) · ln(1− yk)] (1.30)

where, tk represents the target value of the network (label) and yk is the actual
network value.

1.5.10 Tensorflow
TensorFlow™ is an open source software library for numerical computation using
data flow graphs. Nodes in the graph represent mathematical operations, while the
graph edges represent the multidimensional data arrays (tensors) communicated
between them. The flexible architecture allows you to deploy computation to one
or more CPUs or GPUs in a desktop, server, or mobile device with a single API.
TensorFlow was originally developed by researchers and engineers working on the
Google Brain Team within Google’s Machine Intelligence research organization for
the purposes of conducting machine learning and deep neural networks research, but
the system is general enough to be applicable in a wide variety of other domains as
well. [1]

1.6 Problem Definition
In this thesis we solved the trader’s dilemma on when to buy, sell or hold our stocks
in order to maximize our profit. Profit is defined as

P = C + Sprice · n− C0 (1.31)
where P is the profit, C the current capital, Sprice is the price of our stock and C0
the initial capital.
The lazy approach to the problem is to buy when the stock price is relatively low
and sell when the price is relatively high. However this way limit the times we can
buy and sell stocks to a few per year. Ideally we wanted to buy and sell stock as
often as possible taking advantage of the short term price variations, something that
allows us to increase our winnings even more. We can achieve this by predicting the
behaviour of the stock in the short-term future.
We can separate our problem into two smaller problems:

1. Predict the stock price in the short term future
2. Use a trading strategy to ensure maximum profit

We explain them in detail in chapters 3 and 4.

17

1. Introduction and Background Information

18

2
Datasets

2.1 Data Collection
To collect the data we created a script that was crawling the web to collect all the
daily transactions of the wanted stocks. We focus on collection data for the OMSX30
index of the Stockholm’s stock market, that holds the 30 most important companies
of Sweden. Each transaction had information about the time, name, traded volume
and price of the selected stock. We collected data from November 10, 2016 until May
31st , 2017. In April we started collecting data from other companies as well to check
if our model can generalize to stocks outside OMSX30 index. All the transactions
from each trading day was stored in a plain ASCII text file sorted by stock name.

2.2 Data Processing
We separated each trading day into five minute intervals and modeled it into a
vector xt = (ot, ct, ht, lt), where o is the opening price, c is the closing price, h is
the highest price and l is the lowest price at any given 5-min interval t. Then we
connected the trading days creating timeseries of sequential 5-min intervals for the
whole dataset. Then we proceeded to calculate the values of the financial indicators
and oscillators described above. Now each data entry is represented by a vector
xt = (ot, ct, ht, lt, rsit,macdt, stoct, hct, lct, avg1ht, avg3ht) where,

• o is the opening price
• c is the closing price
• h is the highest price during the time period
• l is the lowest price during the time period
• rsi is the strength relative index
• macd is the mean average convergence divergence
• stoc is the stochastic oscillator
• hc is the channel of the highest prices
• lc is the channel of the lowest prices
• avg1h is the last hour average
• avg3h is the last three hour average
• t is any given 5-min interval

19

2. Datasets

The data are stored in to a plain ASCII text file. We have one file for each stock.
In the same time the labels are created. The label at any given time t,is yt = ct+1,
where ct+1 is the closing price of the stock in the 5-min interval t+ 1.

In addition we had to normalize the data before we could be able to use them in
any prediction model. The answer to the question, "why normalization and how we
normalize our data?", is stated in the next section.

2.3 Data Normalization
According to Guoqiang Zhang, B. Eddy Patuwo, Michael Y. Hu, in the paper "Fore-
casting with artificial neural networks: The state of the art", 1998 [25] data normal-
ization is performed before the training process begins due to the fact that non-linear
activation functions tend to squash the output of a node either in (0, 1) or (−1, 1).
As a result we need a way to transfer the output of the neural network back to the
original data range. Even in the case we use a linear output function it is also stated
that normalizing the inputs as well as the outputs has many advantages. Some of
them are, to avoid computational problems, A. Lapedes and R. Farber, 1987 [15],
to meet algorithm requirements, R. Sharda and B. Patil, 1992 [20], or to facilitate
network learning, D. Srinivasan et al, 1994 [21].

2.3.1 Methods for input data normalization
We have four methods to normalize out input data and they are explained by E. M.
Azoff in his book, "Neural Network time series forecasting of financial markets" [3]

2.3.1.1 Along Channel Normalization

A channel is defined as a set of elements in the same position over all input vectors
in the training or test set. This normalization method performs column by column
normalization if the input vectors are put into a matrix. Each column is treated as
independent input variable, and it is normalized individually.

2.3.1.2 Across Channel Normalization

In this case the normalization is performed for each input vector independently.
In the case the input vectors are put into a matrix it can be seen as row by row
normalization.

2.3.1.3 Mixed Channel Normalization

In this case a mixture of both the above methods is used to achieve along and across
normalization.

2.3.1.4 External Normalization

In this case all the training data are normalized into a specific range.

20

2. Datasets

2.3.2 Normalization Paradox
We choose to use Along channel normalization as the input vector is constructed
in a way that each data point can be seen as an independent variable but when we
applied Along channel normalization the following thing happened.
Let xj = (..., hj, lj, ...) be an input vector and ch, cl are the normalization constants
for the columns of the high and low price respectively and thus cl ≤ ch and lj ≤

hj. In the case that 0 < cl < ch the normalized vector is ||xj|| = (..., hj

ch

,
lj
cl

, ...).
However if the stock was stable during the 5-min interval, which is really common,
we have the paradox, hj

ch

<
lj
cl

, that means the normalized highest price is less
than the normalized low price. The two vectors are correlated and as a result the
normalization affected the performance of the network.
The same thing can happen with the pair of the opening and closing price and thus
a stock that experience loses, (opening price is greater than the closing price), can
be seen as a winning stock after the normalization, (closing price is greater than
the opening), if the difference in the normalization constants is high enough. As a
result of this observation all the input data that are correlated are normalized with
the same normalization constants.

2.3.3 Choosing a normalization constant
The normalization constant is going to be used in order to transfer the output of
the neural network from the interval (0,1) to a subset of real positive numbers. We
don’t want it to bound the output of the network in a way that will prevent it to
predict the stock price in the case the stock increases. For example lets say that a
stock in day A has a stock price of 150 SEK. We want to predict the price in day
B lets assume that the opening price is 160 SEK. If the normalization constant is
161 then the network wont be able to predict any price over 161. In the likely case
that the stock price keeps increasing we face the danger of wrong prediction due to
bad normalization. On the other hand if we use a huge number as a normalization
constant for example 107 while the stock price is 150 SEK, we squish the input
vectors to zero making it harder for our network to converge. As a result we have
to choose the normalization constant in a way that we don’t penalize out network
and make it harder to converge.

21

2. Datasets

22

3
Prediction Models

We approached the stock market prediction with two different models. First model
tries to solve a classification problem and the second model tries to solve a regression
problem.

3.1 Classification Feed Forward Artificial Neural
Network

Main concept of this model is to try and classify our input data into three categories
characterizing the stock movement in the next 5 minutes. Those classes are:

• First class consists of the stocks that their price will rise the following 5 min-
utes.

• Second class consists of the stocks that their price will drop with in the fol-
lowing 5 minutes.

• Third class consists of the stocks that their price will remain the same within
a threshold ε.

3.1.1 Architecture
We created a 5 layer feed-forward artificial neural network, with three hidden layers,
an input layer and an output layer.

3.1.1.1 Input Layer

Input layer constitutes of eleven neurons, one for each data point. The input is a
vector in the form xt = (ot, ct, ht, lt, rsit,macdt, stoct, hct, lct, avg1ht, avg3ht) where,

• o is the opening price
• c is the closing price
• h is the highest price during the time period
• l is the lowest price during the time period
• rsi is the strength relative index
• macd is the mean average convergence divergence
• stoc is the stochastic oscillator
• hc is the channel of the highest prices
• lc is the channel of the lowest prices
• avg1h is the last hour average

23

3. Prediction Models

• avg3h is the last three hour average
• t is any given 5-min interval

The input is normalized in the interval (-1,1). The only neuron that can be negative
is the MACD data-point.

3.1.1.2 Hidden Layers

We have three hidden layers. Each hidden layer has a number of neurons and an
activation function. The number of neurons in each layer is a hyper-parameter that
should be optimized. We used exhaustive search using different number of neurons
in each layer and came up with a setup that gives good results. It is important
to note that with probability one there is an other setup that can provide better
results.

3.1.1.2.1 First Hidden layer The first hidden layer consist of 8 neurons and
has a hyperbolic tangent (tanh) activation function. The weights that connect
the input layer with the first hidden layer are initialized using a random normal
distribution. Let x be the input vector and w1 , b1 are the weight matrix and the
bias vector respectively. Then the values of the first hidden layer h1 is given by

h1 = tanh(w′1 · x+ b1) (3.1)

where, tanh is defined in section 1.5.2.1

3.1.1.2.2 Second Hidden layer The second hidden layer consist of 15 neurons
and has a hyperbolic tangent (tanh) activation function. The weights that connect
the input layer with the first hidden layer are initialized using a random normal
distribution. Let h1 be the first hidden layer vector and w2 , b2 are the weight
matrix and the bias vector respectively. Then the values of the first hidden layer h2
is given by

h2 = tanh(w′2 · h1 + b2) (3.2)

where, tanh is defined in section 1.5.2.1

3.1.1.2.3 Third Hidden layer The third hidden layer consist of 5 neurons
and has a hyperbolic tangent (tanh) activation function. The weights that connect
the input layer with the first hidden layer are initialized using a random normal
distribution. Let h2 be the second hidden layer vector and w3 , b3 are the weight
matrix and the bias vector respectively. Then the values of the third hidden layer
h3 is given by

h3 = tanh(w′3 · h2 + b3) (3.3)

where, tanh is defined in section 1.5.2.1

24

3. Prediction Models

3.1.1.3 Output Layer

Output layer has three neurons and each one represents a class. The result is a three
dimensional vector and the dominating dimension is selected to be the class of the
data input. Let h3 be the third layer vector and w4, b4 the weight matrix and bias
vector respectively. Then the output neuron value is given by

y = sigmoid(w′4 · h3 + b4) (3.4)

where sigmoid, is defined in section 1.5.2.1

3.1.2 Loss Function
3.1.2.1 Cross entropy error

Cross Entropy error between two probability distributions is defined in the book
"Deep Learning" [11] as follows:
If the distributions p and q are discrete,

E(p, q) = −
∑

p(x) log q(x) (3.5)

3.1.3 Train Batches
We input data into the neural network in train batches in order to speed up the
training process. The size of the train batch is a hyperparameter we had to opti-
mize. Feeding each data point separately and applying corrections on the neuron
connectors every single time is really a time consuming. We can achieve almost the
same result many times faster if we apply corrections based on the average error
when we pass trough whole batch of data.

3.1.4 Accuracy
To calculate the accuracy, A of our neural network we used the following method.
If the class of the datapoint was the same as the dominating dimension of the out
vector then the prediction was correct and the accuracy was set to 1. If the class
of the datapoint was different from the dominating dimension the prediction was
wrong and the accuracy was set to 0. The training accuracy is defined as the sum
of all the partial accuracy multiply it by 100 to get the percentage and divide it by
the total number of datapoints.

A = 100
n

n∑
i=1

Ai (3.6)

25

3. Prediction Models

3.2 Regression Feed Forward Artificial Neural Net-
work

We decided to go with a feed-forward artificial neural network solving a regression
problem. Basic hypothesis is that the stock price prediction is a high dimensional
non linear function and we tried to approximate it using a simple feed forward
artificial neural network. The details are explained below.

3.2.1 Architecture
We created a 5 layer feed-forward artificial neural network, with three hidden layers,
an input layer and an output layer.

3.2.1.1 Input Layer

Input layer constitutes of eleven neurons, one for each data point. The input is a
vector in the form xt = (ot, ct, ht, lt, rsit,macdt, stoct, hct, lct, avg1ht, avg3ht) where,

• o is the opening price
• c is the closing price
• h is the highest price during the time period
• l is the lowest price during the time period
• rsi is the strength relative index
• macd is the mean average convergence divergence
• stoc is the stochastic oscillator
• hc is the channel of the highest prices
• lc is the channel of the lowest prices
• avg1h is the last hour average
• avg3h is the last three hour average
• t is any given 5-min interval

The input is normalized in the interval (-1,1). The only neuron that can be negative
is the MACD data-point.

3.2.1.2 Hidden Layers

We have three hidden layers. Each hidden layer has a number of neurons and an
activation function. The number of neurons in each layer is a hyper-parameter that
should be optimized. We used exhaustive search using different number of neurons
in each layer and came up with a setup that gives good results. It is important
to note that with probability one there is an other setup that can provide better
results.

3.2.1.2.1 First Hidden layer The first hidden layer consist of 15 neurons and
has a hyperbolic tangent (tanh) activation function. The weights that connect
the input layer with the first hidden layer are initialized using a random normal

26

3. Prediction Models

distribution. Let x be the input vector and w1 , b1 are the weight matrix and the
bias vector respectively. Then the values of the first hidden layer h1 is given by

h1 = tanh(w′1 · x+ b1) (3.7)

where, tanh is defined in section 1.5.2.1

3.2.1.2.2 Second Hidden layer The second hidden layer consist of 25 neurons
and has a hyperbolic tangent (tanh) activation function. The weights that connect
the input layer with the first hidden layer are initialized using a random normal
distribution. Let h1 be the first hidden layer vector and w2 , b2 are the weight
matrix and the bias vector respectively. Then the values of the first hidden layer h2
is given by

h2 = tanh(w′2 · h1 + b2) (3.8)

where, tanh is defined in section 1.5.2.1

3.2.1.2.3 Third Hidden layer The third hidden layer consist of 15 neurons
and has a hyperbolic tangent (tanh) activation function. The weights that connect
the input layer with the first hidden layer are initialized using a random normal
distribution. Let h2 be the second hidden layer vector and w3 , b3 are the weight
matrix and the bias vector respectively. Then the values of the third hidden layer
h3 is given by

h3 = tanh(w′3 · h2 + b3) (3.9)

where, tanh is defined in section 1.5.2.1

3.2.1.3 Output Layer

Output layer has only one neuron and represents the prediction value of the stock.
It has a sigmoid activation function thus the output is the interval (0,1).Then we
multiply the output with the normalization constant and as a result we get the
predicted stock price. Let h3 be the third layer vector and w4, b4 the weight matrix
and bias vector respectively. Then the output neuron value is given by

y = sigmoid(w′4 · h3 + b4) (3.10)

where sigmoid, is defined in section 1.5.2.1

3.2.2 Loss Function

3.2.2.1 Mean Squared Error

In order to train our Neural network we need a Loss function. We used Mean
Squared Error(MSE) as our loss function and it is defined as:

MSE = 1
n

n∑
i=1

(xi − yi)2 (3.11)

27

3. Prediction Models

We used Mean Square Error(MSE) instead of Mean Error (ME) as it is computa-
tionally cheaper. Also from basic calculus when a function f has a sup(inf) at a
point x then the function f 2 has a sup(inf) at the same point x. Note that with f 2

we don’t mean function composition (fof) but we just square the output of function
f . As a result we can optimize our neural network by minimizing MSE.

3.2.3 Adam Optimizer
We used Adam optimizer to minimize the error of our neural network. According
to D. P. Kingma in the paper "Adam: A method of stochastic optimization" [14],
Adam optimizer is a computational efficient algorithm gradient-based optimization
of stochastic objective functions. The method uses and combines the advantages
of two other popular optimization methods. Those are the ability of AdaGrad to
deal with sparse gradients and the ability of RMSProp to deal with non-stationary
objectives. An other advantage of Adam, is that it requires less memory.

3.2.4 Train Batches
We input data into the neural network in train batches in order to speed up the
training process. The size of the train batch is a hyperparameter we had to opti-
mize. Feeding each data point separately and applying corrections on the neuron
connectors every single time is really a time consuming. We can achieve almost the
same result many times faster if we apply corrections based on the average error
when we pass trough whole batch of data.

3.2.5 Training accuracy
To calculate the accuracy of our neural network while testing we used Mean Absolute
Percentage Error (MAPE). We defined MAPE in section 1.5.7. We have a validation
set that we consistently use to check how our neural network is behaving in order
to use early stopping and avoid overfitting.

3.2.6 Training Windows
During training and testing our neural network a few important questions raised
about the training. Questions that we need to investigate in depth. We list those
questions below:

1. Do we have to train each stock separately or we can train them all together?
2. How much historical data we need to train our Neural network with?
3. Does the training and the testing has to be continues?
4. Do we have to retrain our network when we have new data or is it enough to

train once and use it forever?
5. If we have to retrain our network how often does it have to happen? Daily,

weekly, monthly?
We investigated those questions separately and we discuss them in depth in section
5.

28

4
Trading Strategy

We created a Neural Network that is able to successfully predict the stock movement
in the next five minutes but we also need to come up with a trading strategy that
can help us maximize profit when we buy and sell stocks. In this chapter we present
and discuss the different trading strategies.

4.1 The monkey trader
According to B. G. Malkiel in his book "A random walk down Wall Street" [16], a
blindfolded monkey throwing darts at a newspaper’s financial pages could select a
portfolio that would do just as well as one carefully selected by experts. We wanted
to test this statement by using our own monkey trader. However instead of using
an actual monkey throwing darts we modified the experiment a bit.

4.1.1 Our own blindfolded monkey trader
Our own "blindfolded monkey trader" is just a script written in python that decides
what he will do by randomly choosing his action from a set of legal actions. The
probability of selecting an action follows a uniform distribution. The set of allowed
actions is S = {Buy, Sell,Hold}. However each time the trader makes a decision
he considers a subset S ′ of S that holds all the possible actions. For example the
trader cannot sell if he holds 0 stocks and then S ′ = {Buy,Hold}.
The probability of the trader selecting an action is given by

P (x = θ) =

1
|S ′|

, θ ∈ S ′

0, otherwise
(4.1)

The simulation starts with the trader having an initial capital and every five minutes
he randomly chooses an action from the set of legal actions S ′. The simulation ends
after a set number of steps. Then we check whether the trader’s capital is increased
or decreased.

29

4. Trading Strategy

4.2 Simple Buy and Sell Strategy

We used the neural network described above in section 3.2. The output of the
network is the predicted price of the stock after 5 minutes. In this strategy we start
with a number of stocks and each 5-min interval we have two options:

• Sell stocks now and buy them after 5 minutes if we predict that the stock price
will drop.

• Buy stocks now and sell them after 5 minutes if we predict that the stock price
will rise.

4.2.1 Profit
We calculate the profit as the following way:

• If we sell now and buy later, the transaction profit(tp) is the difference between
the current price and the future price, cp− fp.

• if we buy now and sell later, the transaction profit(tp) is the difference between
the future price and the current price, fp− cp.

The total profit of the simulation (p) is the sum of all the transaction profits

p =
∑

i

tpi (4.2)

4.2.2 Advantages and disadvantages
The main advantage of this is that we can identify the profit created by transaction
to transaction. Also we maximize the number of transactions as every interval as
we are buying and selling. However, the main disadvantage by maximizing the
total number of transactions is that most of the time we are doing unnecessary
transactions. When the stock price follows a monotonic trend then there is no
reason buying and selling in the intermediate steps. In addition to this if the trader
is required to pay a fee during transactions this strategy may not be that good and
the winnings experience significant cut due to the transaction fees.

4.3 Decision based trading strategy

In order to improve our profit we need to find a more profitable strategy than those
we described above. Thus we introduce the reader to our decision based trading
strategy and its basic elements.

4.3.1 Buy and Sell zones
Buy and sell zones are custom indicators that can help us decide whether to buy or
sell our stocks. To calculate them we use moving averages and basic theory from
linear algebra.

30

4. Trading Strategy

4.3.1.1 Zone calculation

We calculate buy and sell zones with the following steps.

1. Calculate the moving average of the high price H.
2. Calculate the moving average of the low price L.
3. Now we have the interval (L,H) ⊂ R.
4. Use the inversible linear transformation f to map [L,H] to the interval [0,1]
f(L) = 0 and f(H) = 1.

5. We have the interval (a, b) ⊂ [0, 1] as the normalized buy and sell zone. For
example (a, b) is (0.3, 0.7).

6. Use the linear transformation f−1 on the interval (a, b) and expand it to
(B, S) ⊂ [L,H].

7. B is the buy zone and S is the sell zone.

4.3.1.2 Zone usage

The way we use the zones is simple. If the prediction of the stock price is greater
than the sell zone then we sell our stocks. If the prediction of the stock is lower than
the buy zone then we buy stocks.

4.3.2 Trading History
In order to ensure profit we introduce trading history. For a short time window we
store our transactions in the sell and buy history accordingly. When we sell a stock
we check if the price is higher that the buy history. When we buy a stock we check
if the price is lower that the sell history. After the time window passes we reset the
trading history. The reason is that we don’t want the trader to do a transaction
that is going to be unprofitable. However we want to prevent cases like monotonic
behavior of the stock curve where not acting will have disastrous effect. An example
of that is when the stock price is dropping and we hold the stock because we bought
it higher. A better way of action would be to sell it now and buy it again when it
starts to stabilize again at a lower price.

4.3.3 Legal Actions
When an action is decided we check if we can actually do that action. For example
our strategy decides to sell but unfortunately we don’t own any stocks. We can
easily conclude that the action "Sell" is not a legal action and as a result we have
to change the action to "Hold". The main use for the set of legal actions is to make
sure we prevent any unorthodox scenario from happening.

4.3.4 Step Lock
In the case aggressive stock price slopes we want to make sure we take the correct
decisions in order to minimize loses and maximize potential winnings. This is used as
a fail-safe mechanism in the cases of extreme value changes due to external factors.

31

4. Trading Strategy

Some of those are the announcement company’s quarter results, a terrorist attack or
an accident to company’s facilities etc. Step lock works by not allowing the trader
to actually trade even if all the other conditions of an action is met.

4.4 Reinforcement Learning trading strategy
The stock market and the trader’s dilemma can be perfectly modeled as a Reinforce-
ment Learning problem. We have the stock market as our Environment, and our
trading agent that has a list of legal actions over the environment {Buy, Sell,Hold}.
The trading agent does not have enough power to affect the stock market by per-
forming an action. The state is the stock price and history and the agents portfolio.
The main objective of the trader is to maximize the reward which in this case is the
value of the portfolio plus the owned capital.

4.4.1 Inspiration
The inspiration for this trading strategy was Deep-mind’s paper "Playing Atari
games with Reinforcement Learning "[17]. In their paper they created an agent that
was able to outperform human players while playing Atari games Using Q-learning
models. We can easily use the same concept and try to create our own agent to
be able to observe and learn how to invest in the stock market using the same
fundamentals.

4.4.2 Reinforcement learning in the stock market
As we mentioned above the stock market is the Environment, our trading software
is the agent that can act over the environment. The agent experiments with the
environment and learn what actions will maximize his reward. Why is the stock
market a perfect match for a Reinforcement Learning agent? The answer is rather
simple. An action, for example buying a stock, can affect the agent’s reward in the
long term as the price can grow or fall after some time. The ability of the agent
to be able to learn through buying and selling can in theory produce some amazing
results.

4.4.3 Model architecture
This model is consisted by a simple simulation of the environment, and two different
neural-networks that act as the agent. Complementary we have a replay memory
that stores all the past simulations with the states and the actions.

4.4.3.1 Simulation of the environment

This is a script written in python that returns to the agent the state of the stock
market at any given time. It behaves like the stock market and feeds information to
the agent. The information that the Environment can feed to agent is in the format
we stated in section 2.2.

32

4. Trading Strategy

4.4.3.2 The trading agent

The agent is consisted by two neural networks. The agent asks the environment for
its state and receives a vector with the information as stated in section 2.2. Then
the agent passes the information through the first neural network that will predict
the price of the stock after 5 minutes. This neural network is the same as the one
described in section 3.2.
Now the agent has the predicted price and wants to decide on what to do. In general
the agent needs to calculate the potential reward of each action in the long term.
However this is a spanning tree that grows exponentially as time passes.

Agent

Buy

Sell

Buy

: :

Hold

: :

Hold

Sell

: :

Hold

: :

Hold

Buy

Sell

: :

Hold

: :

Hold

Buy

: :

Hold

: :

Figure 4.1: Decision tree example for the Agent

To overcome this exponential complexity we try to approximate the long term reward
using a neural network that takes as input the current state and approximates the
long term reward for each possible action. After that the agent picks the most
rewarding action.

4.4.3.3 Training

Those two neural networks can be trained separately or together. We could use the
already trained Neural network for the stock prediction and focus completely on
training the reward approximation network or we could train both of them at the
same time. To make our life easier in training and help our network to converge we
used replay memory.

4.4.3.4 Replay Memory

Replay Memory is a buffer that stores the data points we already used for train
together with the Environmental state and selected action. Occasionally during the
training the agent samples over the replay memory and uses the sample to train the
network.

33

4. Trading Strategy

34

5
Results

In this chapter we present all the major results we got from our experiments.

5.1 Monkey Trader
In this section we list and discuss the experiments we did with the monkey trader.
We explained how the monkey trader works in 4.1.1. We only run the experiment
once in order to see if the claim of B.G. Malkiel can be confirmed.

5.1.1 Monkey Trader Simulation
We used data from the ABB stock starting from 11th of November 2016 to 13th
of December 2016. The trader randomly decides whether to buy, sell or hold the
stocks. When the simulation ends we say that the simulation is profitable if the
total value of the holding stocks plus the current capital is higher than the initial
capital. We run the same simulation 1000 times. The surprising result was that the
monkey trader was able to profit 734 out of 1000 simulations. This result actually
completely confirms B. G. Malkiel’s claim that a blindfolded monkey throwing darts
at a newspaper’s financial pages could select a portfolio that would do just as well
as one carefully selected by experts [16]. The average winnings of the monkey trader
was 0.36% of the initial capital, maximum winnings was 1.21% of the initial capital
and maximum loses was -1.25% of the initial capital.

5.1.2 Monkey trader Discussion
The above results clearly state that the claim of B. G. Makiel is confirmed. We were
able to simulate a simple trading strategy without the need of having any financial
knowledge and for 73.4% of the simulations the trader was able to increase its initial
capital. However the total amount of winnings vary from -1.25% to 1.21%. This can
be interpreted as it is most likely for someone to win by randomly selecting actions
but the losses can be higher. This result can be used as a baseline to compare how
our proposed models and strategies can compare to a completely random one.

5.2 Classification Neural Network
In our first attempt to train a neural network we used the first model we defined in
section 3.1. We trained and tested the classification neural network model and we

35

5. Results

present the results below.

5.2.1 Training of the network

We trained our neural network with data that we collected. The procedures we
followed to collect and process our data are explained in section 2.2. We separated
our training data into two sets, a train set and validation set. We used the training
set to train our network and used the validation set during training in order to
forward pass the network and detect overfitting. In the cases that we observed
overfitting we proceed with stopping the training process.

5.2.2 Testing of the network

To test the accuracy of our network we used data that we collected that chrono-
logically come after the data collected from the training set. Then we passed the
testing set through the network and calculated the accuracy using the procedure we
defined in section 3.1.4

5.2.3 Presentation of Results

Unfortunately we were unable to train this neural network and have convincing
results. In all the cases the neural network was diverging and the accuracy of
correct classification was slightly over 50%. Maximum accuracy achiever was 62.5%
and minimum accuracy was 51.2% The main results are presented in the table below.

It is important to note that the gap that you can see between the training and
the testing in not important as the stock market was closed most of the days due
to Christmas holiday. Also the three working days during the two weeks holiday
period can be considered as special days and do not follow the pattern of a normal
trading day. For that reason we decided not to include those days in the training
and testing.

36

5. Results

Table 5.1: Results of the classification Neural Network

Stock Symbol Training Period Testing period Accuracy
ABB 10/11/2016-23/12/2016 10/1/2017-13/2/2017 51.465%
ALFA 10/11/2016-23/12/2016 10/1/2017-13/2/2017 54.691%
BOL 10/11/2016-23/12/2016 10/1/2017-13/2/2017 59.973%
GETI-B 10/11/2016-23/12/2016 10/1/2017-13/2/2017 57.824%
KINV 10/11/2016-23/12/2016 10/1/2017-13/2/2017 61.031%
NOKI 10/11/2016-23/12/2016 10/1/2017-13/2/2017 53.002%
SAAB-B 10/11/2016-23/12/2016 10/1/2017-13/2/2017 55.151%
SCA-B 10/11/2016-23/12/2016 10/1/2017-13/2/2017 60.823%
SECU-B 10/11/2016-23/12/2016 10/1/2017-13/2/2017 59.062%
SHB-A 10/11/2016-23/12/2016 10/1/2017-13/2/2017 61.048%
SWMA 10/11/2016-23/12/2016 10/1/2017-13/2/2017 51.289%
TEL2 10/11/2016-23/12/2016 10/1/2017-13/2/2017 62.554%
VOLV-B 10/11/2016-23/12/2016 10/1/2017-13/2/2017 53.096%

5.2.4 Discussion of Results
We can easily observe that the accuracy of the network is below expectations. Some-
one can argue that the results are random. Our approach and hypothesis for this
model is that we can classify the input into three classes characterizing the stock
movement. We would consider this model good if the accuracy was over 90%. How-
ever it was not possible to achieve this and we decided to look for different models.
Due to the random nature of the results we decided not to proceed with the simu-
lation of the market in later state. We have to note that this was our first attempt
to predict the stock movement and the methods described in sections 4.2 and 4.3
were considered in a later state. Also the simulation of the stock market was imple-
mented yet. By the time we implemented those models and the way to calculate our
winnings we have already discarded this model and we thought there was no reason
to return back to this method and test whether the initial capital would increase
and by what percentage.
However there is the possibility that with a bit different architecture and activation
functions someone can achieve better results and reach higher accuracy.

5.3 Regression Neural Network with decision based
trading strategy

In this Section we present and discuss the various results we get from out experi-
ments using the regression Neural Network and the decision based trading strategy.

5.3.1 Stock Prediction Preliminary Results
After the bad results we got from the classification we shifted our focus on the
regression model. Our first approach was to try and predict the stock price of

37

5. Results

ATCOA. The training process used data from 10th of November 2016 until 23rd of
December 2016. To test our network we used data from 10th of January 2017 to
20th of January 2017. The input data were processed and normalized in the way we
described in sections 2.2 and 2.3 respectively. To calculate the performance of our
network we used Mean Absolute percentage Error(MAPE) defined in section 1.5.7.

5.3.1.1 Network Convergence, Overfitting and Early-stopping

We considered the network to be converged or close to convergence when MAPE
for the validation set was below 0.07%. What this actually means is that when we
predict a stock price the expected error of the prediction will be 0.07%. If the stock
price is 100 SEK then the prediction will be in the range of 99.93 SEK and 100.07
SEK. This is acceptable as the stock price minimum change is 0.1 SEK.
Over-fitting is explained in section 1.5.6 and it is usually countered by early-stopping
the training process. In the following figures we present our results.
Although MAPE error is below 0.1% we can easily identify over-fitting by using
Maximum Percentage Error (MXPE). We defined MXPE in section 1.5.8. If MXPE
is way higher than MAPE then it means that our neural network is either overfitting
or the stock prediction is not converging to the stock curve because we need more
data in order to do it. Overfitting can easily identified on the curves above at the
points where the blue line explodes.

5.3.1.2 Discussion of results

We can easily observe that the regression Feed Forward Neural Network Model
can successfully predict the future stock price of ATCOA stock price. However we
have to be careful about over-fitting by occasionally forward pass the validation set
through the network to see if we should stop the training processes. After those
amazing results we are should come test our various trading strategies. We can

38

5. Results

Figure 5.1: Stock Price prediction of ATCOA overfitting part A

39

5. Results

Figure 5.2: Stock Price prediction of ATCOA overfitting part B

40

5. Results

Figure 5.3: Stock Price prediction of ATCOA with early stopping

actually get a good enough fit of our prediction in the stock price curve.

5.3.2 Buying and selling constant number of stocks
The first experimental approach after implementing the decision based trading strat-
egy was to buy and sell constant number of stocks each transaction. However the
question raised though is what is the optimal number of stocks we should buy and
sell? To solve that we decided to run the trading strategy from 1 stock to the max-
imum amount we can buy and sell. For all the experiments the initial capital is set
to 30000 SEK.

5.3.2.1 Training of the network

To train the network we used data from 10th of November until 23rd of December
2016. Data were processed and normalized with the methods explained in section
2.2 and 2.3 respectively. Train data ware randomly separated into a training and a
validation set. The reason for the validation set was to regularly testing the accuracy
of the network and prevent overfitting.

5.3.2.2 Testing of the network

To test the network we used data from 9th of January until 10th of February 2017.
The testing process was consisted by two steps.

1. Forward pass of the network with the testing data and calculate MAPE and
MXPE.

2. Simulate the transactions and the trading at the stock market by buying and
selling a constant amount of stocks. Calculate the winnings after the simula-
tion.

41

5. Results

Note we repeat step 2 for all the possible amount of stocks, as we want to find
the optimal amount of stocks to trade. Below we present the total winnings in
comparison to the total amount of stock we bought or sold each time.

We present below the graphs for some of the stocks.

5.3.2.2.1 Graphs of Stock A In the figures below you can see the winnings
in comparison to the number of stocks in each transaction for the stock of ABB.
First figure shows the numerical winnings in SEK and the second figure shows the
percentage increase of the initial capital.

Figure 5.4: Winnings while doing transactions with different amount of stocks

42

5. Results

The figures below show the stock prediction and a snapshot of the winnings for a
specific number of stocks. We also show where each transaction happens.

43

5. Results

Figure 5.5: Stock Price prediction of ABB and the winnings

5.3.2.2.2 Graphs of Stock B In the figures below you can see the winnings
in comparison to the number of stocks in each transaction for the stock of SAND.
First figure shows the numerical winnings in SEK and the second figure shows the
percentage increase of the initial capital.

44

5. Results

Figure 5.6: Winnings while doing transactions with different amount of stocks

The figures below show the stock prediction and a snapshot of the winnings for a
specific number of stocks. We also show where each transaction happens.

45

5. Results

Figure 5.7: Stock Price prediction of SAND and the winnings

5.3.2.2.3 Graphs of Stock C In the figures below you can see the winnings
in comparison to the number of stocks in each transaction for the stock of SKFB.
First figure shows the numerical winnings in SEK and the second figure shows the
percentage increase of the initial capital.

46

5. Results

Figure 5.8: Winnings while doing transactions with different amount of stocks

The figures below show the stock prediction and a snapshot of the winnings for a
specific number of stocks. We also show where each transaction happens.

47

5. Results

Figure 5.9: Stock Price prediction of SKFB and the winnings

5.3.2.2.4 Graphs of stock D In the figures below you can see the winnings in
comparison to the number of stocks in each transaction for the stock of VOLVO.
First figure shows the numerical winnings in SEK and the second figure shows the
percentage increase of the initial capital.

48

5. Results

Figure 5.10: Winnings while doing transactions with different amount of stocks

The figures below show the stock prediction and a snapshot of the winnings for a
specific number of stocks. We also show where each transaction happens.

49

5. Results

Figure 5.11: Stock Price prediction of VOLVO and the winnings

5.3.2.3 Discussion of Results

From the figures above we are able to conclude that the profit we make depends on
the leftover unused capital after each transaction. For example lets assume we can
buy 100 stocks with the initial capital we have. If our buy step is 60 stocks then we
will have 40% of our initial capital unused thus we will have reduced winnings. It is
important to understand that sometimes buying 50% of the max amount of stocks
that we can buy with the initial capital, can behave better than buying 100% as
it gives us the chance to react on mistakes. For example if the price of the stock
increases we might not be able to buy stocks at all at that point. A good example
can be seen in figure 5.5 where the trader cannot buy stocks when the price is over
one specific point.

Our main conclusion is that instead of buying and selling a constant amount of stocks
we should try to minimize the unused capital and to do that we should buy the max
possible amount by recalculating the stock number depending on our current capital
and the stock price. For more information refer to section 5.3.4.

50

5. Results

5.3.3 Capital, profit and number of stocks

The next experiment we conducted we wanted to find out if there is a relationship
between the initial capital, the profit and the number of stocks we buy and sell. For
that reason we conducted simulations on LUPE stock with normal capital (30000
SEK) and with ten times more initial capital (300000 SEK). You can see the results
in figures below.

Figure 5.12: Percentage increase on capital for LUPE stock with normal and ten
times more capital for a constant amount of stocks per transaction

51

5. Results

Figure 5.13: Total winnings for LUPE stock with normal and ten times more
capital for a constant amount of stock per transaction

5.3.3.1 Discussion of results

We observe that there is a linear dependence between the winnings, step and initial
capital. With ten times more capital and step the winnings is ten times more than
the initial capital, see figure 5.13. The percentage of the winnings over the initial
capital remains the same. Ten times more capital and 10 times the step, results to
the same percentage of winnings. This is visible in figure 5.12

This observation is very important because it shows that it is enough to simulate
only for specific initial capital as we can map the dependence of winnings between
different initial capitals and different step.

5.3.4 Buying and selling the max possible number of stocks
In order to maximize the profit of our network we realized that we have to buy the
max amount of stocks that we can minimize the unused capital. The amount of

52

5. Results

stocks that we are going to buy each time is the integer fraction of the division of
current capital with current stock price and the unused capital is the remainder of
the division. When we are selling, we sell all the stocks we have in our possession
unless we have a reduced selling occasion. We will present our results in the table
below.

Stock name Percentage Difference on winnings
ABB 0.465%
ALFA 0.528%
INVB 0.159%
SAND 0.386%
SKFB 0.764%
SAAB 0.972%
TELIA 0.822%
VOLVO 0.382%

Table 5.2: Difference on percentage of winnings using constant and dynamic step
while Buying stocks

5.3.4.1 Discussion of Results

In the table 5.2 we can clearly see that buying the maximum possible number of
stocks was able to increase the winnings for all the stocks. The average increase was
0.560%, smallest increase was 0.159% and the highest was 0.972%. We expected that
the winnings would increase and the reason this happens is that we minimize the
amount of unused capital when we buy stocks and as result our winnings increase.

5.3.5 How much historical data do we need?

We tried training our network by using different intervals to see how does the volume
of data affect the training process. For each of the graphs below the training hap-
pened on a different time interval but the testing took place from 13th of February
2017 until 10th of March 2017.

53

5. Results

Figure 5.14: Stock Price prediction of VOLVO. Training from 23rd of November
2016 to 16th of December 2016

Figure 5.15: Stock Price prediction of VOLVO. Training from 23rd of November
2016 to 13th of January 2017

54

5. Results

Figure 5.16: Stock Price prediction of VOLVO. Training from 1st of February 2017
to 10th of February 2017

In the Figures above we can easily see that MAPE and MXPE while testing are
really big. However the errors while train and validation are really low and the
neural networks converged.

In figures 5.14 and 5.15 we can see that our prediction follows the trend of actual
price but the error is high. Those two experiments have one thing in common. The
training set is chronologically long time before the testing set and also the stock
price had a 20% increase in price in between. However the training in figure 5.16
used data just before the testing and still we had high error. The reason is that we
did not use enough data for the network to generalize.

This method tries to approximate the function that models the stock market. If
the train data and the test data have a huge difference in the stock price then the
testing will have huge error. Also if we train the neural network with a low amount
of data we will still have high error.

Furthermore in figure 5.17 we can see that MAPE is low and specifically below
0.07%. However the MXPE is high and to be precise we can identify the points in
the figure where the prediction is wrong and the blue line diverges from the red line.

Finally in figure 5.18 we can see that the blue curve fits the red line almost perfectly.
The main difference between figures 5.17 and 5.18 is that we used more data to train
the network in figure 5.18

55

5. Results

Figure 5.17: Stock Price prediction of VOLVO. Training from 16th of January
2017 to 10th of February 2017

Figure 5.18: Stock Price prediction of VOLVO. Training from 10th of November
2016 to 10th of February 2017

5.3.5.1 Discussion of Results

Through the experiment we were able to conclude that the more data we have to
train our network with, the better results we get. Also an important factor is the

56

5. Results

quality of the data we have.

What we mean with that? For example if we have data for one year and the stock
price increase by 50% within a single night then we will have similar results as in
figures 5.14 , 5.15 and 5.16. The reason for that is when we try to approximate the
behavior of a function we do it with in the range of our data. We basically have no
idea what happens outside of that range because we don’t have information about
the behaviour of the function there. As a result when the stock price diverges from
that range our trained neural network error will increase.

As a result of the observation above a new questions rise.
1. What do we do when the stock price moves out of the train range?
2. Is it possible to prevent situations like above?
3. How long can a trained neural network be used and perform with low error?

We concluded that the neural network can be used as long as the stock price remains
in the trained range. The moment the stock price moves outside the trained range
we will start observing increase on the testing error. We can deal with this by
training a new network, add more recent data to the train set and this is something
that will expand neural networks trained range and it will able to predict the price
with low error. We can prevent this problem by occasionally training a new network
every fixed time and adding the recent data to the new train set.

5.3.6 How often do we have train a new network?
We tried three experiments with retraining the neural network. Those are listed
below:

1. Train the network once and run the simulation.
2. Train a new network at the end of every week by include new data in the train

set.
3. Train a new network at the end of every day and include the new data in the

train set.

In the initial training set we had data from 10th of November 2016 until 10th of
February 2017. The testing took place from 13th of February until the 10th of
March 2017. We were able to run this simulation only with the VOLVO stock and
the main reason is the 3rd option we had to train twenty neural networks which is
something that takes so much time.

We were able to see an increase of 0.3% in the winnings by retraining our network at
the end of each week. However by training each day we did not see any significant
increase in winnings from training each week.

The need to retrain our network comes when the testing price range diverges out

57

5. Results

from the testing price even if it is every day, every week or every month. We are
treating stock market prediction as a function approximation and when the data
points are in the training range we can identify huge error. We should consider
retraining our network with including more recent data in the train set only when
the stock price is close to the bounds of the training range. This concept it is
explained in section 5.3.5

5.4 Reinforcement Learning model and trading
strategy

We managed to create a prototype of the environment and the agent using tensor-
flow. We also run few simulations for a couple of weeks trying to train the agent.
However we didn’t have the time to tune the Reinforcement Learning trading strat-
egy so we left it as future work. There was a high amount of hyper-parameters that
we needed to optimize and due to time limitation we decided we will look it in the
future. The preliminary results were promising and we believe that this model has
the potential to surpass any other model came up with.

58

6
Conclusion

6.1 General Comments
We were able to come with a way to successfully predict the stock market and in
combination with a good trading strategy we were able to profit from stock trading
using historical data. The reason we used historical data and not real time data
for testing was time efficiency but also the ability to compare models and trading
strategies using the same testing data.

How would the model behave with real-time data?
We treated our historical data as real time data. We can use the same methods and
be able to predict the stock price in real time. We can achieve this by collecting the
transactions in real time and converting them into 5-min intervals and just passing
them forward to our network, point by point. One of the goals of this thesis was that
we should be able to utilize the stock market on real time and all the simulations
were done in way that would make it easy to transition from historical to real time
data.

Also the prediction models can easily work with different time intervals as well. We
choose 5-min intervals as a representation of short term-trading. Just by changing
the way we process our data input to a different time interval we can train a network
that predicts the stock price on a different time gaps. We can train our network
based in 2-min, 10-min, 30-min intervals or even try 1-hour or 2-hour intervals and
it should be able to predict the stock price with the same accuracy.

The average winnings in our experiments were about 8% increase of the initial
capital with in a month of testing. As an investment it can be characterized as
really profitable. However the neural network cannot predict sudden changes in the
price that happen during the time that the stock market is closed. An example is
when a company or their direct competitors announce their term results. Those
kinds of events can skyrocket the stock price or make it lose considerable value.

59

6. Conclusion

6.2 Limitations
The main limitation we had during this thesis was the time constraints due to the
lack of available data. We had to wait at least three months to run experiments as
we had to collect our own data. Also trying to train a neural network takes quite
long. If we were lucky a neural network would converge in a couple of hours but
sometimes could take up to 15 hours. Especially in the Reinforcement Learning
(RL) models training would take quite a few days. The whole process it was a trial
and error in order to come up with the optimal hyper parameters and we had to
train numeral different networks just to be able to select them.

Another limitation we have to face was the computing power. To train complex
models like Reinforcement Learning and Recurrent neural networks, someone would
need GPU clusters in order to speed up the training process. However we did
not have this computing power and we were not able to investigate in depth those
models.

60

6. Conclusion

6.3 Future Work
Finally we talk about the work we can do in the future expanding the work done in
this thesis.

6.3.1 Test our existing models with more data
We have to test the existing methods with more data as the keep coming. We want
to ensure that the results we got it is not just a random event that happened as
result of the time period. We have to test with even more data as time passes and
make sure that our model can generalize.
An other thing we can do is check how our model works with stocks outside the
OMSX30 index. We can try train and evaluate out model with stocks that belong
to smaller companies that do not have as many transactions as the big ones. In that
case we will be able to see if we can expand our work to other stocks and maybe
even other stock markets as well.

6.3.2 Advanced decision based trading strategy using dif-
ferent artificial neural networks

The concept behind this idea is that we will have few neural networks trained in
different time intervals. For example, we can have the prediction of the stock price
in 5-min, 10-min and 30-min intervals. Using this information we can decide when
is the best time to place our action. If we know how the stock will move with in
the next thirty minutes we will be able to increase our profit even more. The more
information we have, the more profit we can achieve.

6.3.3 Reinforcement Learning tuning
Reinforcement learning is one of the most promising areas of machine learning. The
perfect way that stock market can be modeled with RL makes it one of the best
ways to maximize our profit. The initial results were promising, although much
more work is needed for the model to be ready for use. The time and the computing
power limitation were the main reason that we left Reinforcement learning as future
work.

6.3.4 Recurrent neural network mode.
We can also explore a model using recurrent neural networks. Stock market can be
modeled as time series and traditional methods tried to approximate them. Most
famous traditional models are the Monte Carlo models. It was shown by studies
that time series can be approximated effectively using recurrent neural networks.
Some applications of them are text classification, text-to-speech, speed-to-text and
even translation from a language to another. We could easily use those models and
try to approximate stock movement by treading stocks as a time-series problem.

61

6. Conclusion

Time limitations and computational power constrains were the main reasons we
did not have time to develop a prototype and test a recurrent network model. In
contrast to feed forward networks, recurrent neural networks are more complicated
and computationally more expensive to compute. We believe that it is possible to
increase the performance of our presented models but we might check this out in
the future.

62

Bibliography

[1] Information about tensorflow.
[2] G. Appel. Technical Analysis: Power Tools for Active Investors. FT Press,

illustrated edition edition, 2005.
[3] E. M. Azoff. Neural network time series forecasting of financial markets. John

Wiley & Sons, Inc., 1994.
[4] A. Bernemann, R. Schreyer, and K. Spanderen. Pricing structured equity prod-

ucts on gpus. In High Performance Computational Finance (WHPCF), 2010
IEEE Workshop on, pages 1–7. IEEE, 2010.

[5] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[6] R. Breen. The accelerated binomial option pricing model. Journal of Financial
and Quantitative Analysis, 26(02):153–164, 1991.

[7] N. Chriss. Black Scholes and beyond: option pricing models. McGraw-Hill,
1996.

[8] J. C. Cox, S. A. Ross, and M. Rubinstein. Option pricing: A simplified ap-
proach. Journal of financial Economics, 7(3):229–263, 1979.

[9] B. Detollenaere and P. Mazza. Do japanese candlesticks help solve the trader’s
dilemma? Journal of Banking & Finance, 48:386–395, 2014.

[10] J. H. George B. Thomas, Maurice D. Weir. Thomas’ Calculus, Multivariable
(12th Edition). 12 edition, 2009.

[11] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[12] P. Goodwin and R. Lawton. On the asymmetry of the symmetric mape. Inter-
national journal of forecasting, 15(4):405–408, 1999.

[13] S. Haykin. Neural Networks - A Comprehensive Foundation, Second Edition.
Prentice Hall, 2 edition, 1998.

[14] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[15] A. Lapedes and R. Farber. How neural nets work. In Proceedings of the 1987 In-
ternational Conference on Neural Information Processing Systems, pages 442–
456. MIT Press, 1987.

[16] B. G. Malkiel. A random walk down Wall Street. W. W. Norton, revised and
updated edition, 1999.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

63

http://www.deeplearningbook.org

Bibliography

[18] G. E. Nasr, E. Badr, and C. Joun. Cross entropy error function in neural
networks: Forecasting gasoline demand. In FLAIRS Conference, pages 381–
384, 2002.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[20] R. Sharda and R. B. Patil. Connectionist approach to time series prediction:
an empirical test. Journal of Intelligent Manufacturing, 3(5):317–323, 1992.

[21] D. Srinivasan, A. Liew, and C. Chang. A neural network short-term load
forecaster. Electric Power Systems Research, 28(3):227–234, 1994.

[22] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, vol-
ume 1. MIT press Cambridge, 1998.

[23] J. L. Ticknor. A bayesian regularized artificial neural network for stock market
forecasting. Expert Systems with Applications, 40(14):5501–5506, 2013.

[24] W. J. Wilder. New Concepts in Technical Trading Systems. Trend Research, 1
edition, 1978.

[25] G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural
networks:: The state of the art. International journal of forecasting, 14(1):35–
62, 1998.

64

A
Appendix 1

I

	List of Figures
	List of Tables
	Introduction and Background Information
	Motivation
	Goals and Limitations
	Goals
	Challenges and Limitations
	The Nature of stock market prediction
	Data collection
	How did we check the winnings?

	Road-map
	Financial Information
	Information about the Stock Market
	Stocks
	Shares of a Stock
	Stock Market
	Stock market prediction
	Shareholders
	Options

	Financial Indicators
	Relative Strength Index (RSI)
	The Momentum Oscillator Concept
	Relative Strength Index Equation
	Modified version of RSI

	Moving averages
	Simple moving average (SMA)
	Weighted moving averages(WMA)
	Time-based separation of Moving average
	Long-Term Moving average
	Intermediate-Term Moving average
	Short-Term Moving average

	Moving average convergence divergence (MACD)
	Basic Concepts
	Exponential moving average(EMA)
	MACD formula
	Modified MACD

	Channels
	Price channels
	High channel
	Low channel
	Price channel usage
	Channel Calculation

	Moving Average trading channels
	Channel Creation

	Stochastic oscillator

	Mathematical and Algorithmic Methods
	Chain Rule
	Artificial Neural Networks
	Examples of activation functions
	Types of Artificial Neural Networks
	Feed-forward artificial neural network
	Recurrent Neural network

	Types of Learning Algorithms
	Supervised Learning
	Classification:
	Regression:

	Unsupervised Learning

	Reinforcement Learning
	Elements of Reinforcement Learning
	Environment
	Agent
	Policy
	Reward Function
	Value Function
	Model of the Environment

	Stochastic Gradient Decent
	Backpropagation
	Overfitting
	Mean Absolute Percentage Error (MAPE)
	Maximum Percentage Error
	Cross Entropy Error Function
	Tensorflow

	Problem Definition

	Datasets
	Data Collection
	Data Processing
	Data Normalization
	Methods for input data normalization
	Along Channel Normalization
	Across Channel Normalization
	Mixed Channel Normalization
	External Normalization

	Normalization Paradox
	Choosing a normalization constant

	Prediction Models
	Classification Feed Forward Artificial Neural Network
	Architecture
	Input Layer
	Hidden Layers
	First Hidden layer
	Second Hidden layer
	Third Hidden layer

	Output Layer

	Loss Function
	Cross entropy error

	Train Batches
	Accuracy

	Regression Feed Forward Artificial Neural Network
	Architecture
	Input Layer
	Hidden Layers
	First Hidden layer
	Second Hidden layer
	Third Hidden layer

	Output Layer

	Loss Function
	Mean Squared Error

	Adam Optimizer
	Train Batches
	Training accuracy
	Training Windows

	Trading Strategy
	The monkey trader
	Our own blindfolded monkey trader

	Simple Buy and Sell Strategy
	Profit
	Advantages and disadvantages

	Decision based trading strategy
	Buy and Sell zones
	Zone calculation
	Zone usage

	Trading History
	Legal Actions
	Step Lock

	Reinforcement Learning trading strategy
	Inspiration
	Reinforcement learning in the stock market
	Model architecture
	Simulation of the environment
	The trading agent
	Training
	Replay Memory

	Results
	Monkey Trader
	Monkey Trader Simulation
	Monkey trader Discussion

	Classification Neural Network
	Training of the network
	Testing of the network
	Presentation of Results
	Discussion of Results

	Regression Neural Network with decision based trading strategy
	Stock Prediction Preliminary Results
	Network Convergence, Overfitting and Early-stopping
	Discussion of results

	Buying and selling constant number of stocks
	Training of the network
	Testing of the network
	Graphs of Stock A
	Graphs of Stock B
	Graphs of Stock C
	Graphs of stock D

	Discussion of Results

	Capital, profit and number of stocks
	Discussion of results

	Buying and selling the max possible number of stocks
	Discussion of Results

	How much historical data do we need?
	Discussion of Results

	How often do we have train a new network?

	Reinforcement Learning model and trading strategy

	Conclusion
	General Comments
	Limitations
	Future Work
	Test our existing models with more data
	Advanced decision based trading strategy using different artificial neural networks
	Reinforcement Learning tuning
	Recurrent neural network mode.

	Bibliography
	Appendix 1

