IOONONNEEE
o
i

Synchronizer Bridge

Real Time Clock

LI
Lo EEEEE

]I | S

Evaluation of synchronization methods in
multi-clock domain systems

Master of Science thesis in Integrated Electronic System Design

Amit Kulkarni

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Goteborg, Sweden, June 2012

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Evaluation of synchronization methods in multi-clock domain systems
Amit Kulkarni

© Amit Kulkarni, June 2012.

Examiner: Lars Svensson

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Goteborg

Sweden
Telephone: + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden

Abstract

Modern SoC employ multi clock domains on the same die, this is because each block
of the system may require different clock voltage and frequencies which results to eco-
nomical benefits. Systems with embedded processors generally requires high speed clocks,
it becomes very difficult to maintain one global clock connected all sub blocks to meet
the speed requirement of the system. One way to overcome this difficulty is to employ
GALS clock system. In GALS clock system each block/island is locally synchronous and
connected to other blocks by an asynchronous interconnect system.

Synchronization bridge is required in between multiple clock domains to avoid the risk
of metastability to those signals which are prone to frequent transitions, and are propa-
gated between two multiple clock domains. In this project, the bridges are applied to the
Wishbone bus in which two clocks differs from each other, in frequency and phase. Fach
clock is separately applied for Wishbone Master and Wishbone Slave thus acts as two as
different clock domain systems w.r.t signals that are propagated between them.

Bridges such as two flip flop and locally delayed latching are designed and implemented.

The performance is evaluated and compared. Further the bridges are processed to stan-
dard VLSI place and route.

ii

Acknowledgement

First and foremost I would like to thank my examiner and supervisor for their help and
guidance throughout the thesis:

Examiner: Lars Svensson
Head of Division, Computer Engineering, Chalmers University of Technology,
Goteborg, Sweden

Supervisor: Ronan Barzic
Senior Discipline Manager AVR32 Mid-end, Atmel Corporation,

Trondheim, Norway

Further I would like to thank everyone at Atmel who has contributed to the ideas and
helped me with insightful feedback. My thanks also goes to Per Larsson-Edefors, Sally
McKee and the VLSI work group at Chalmers for their interest and feedback.

Special thanks to friends and family for their support.

iii

Preface

This report is the result of master thesis work carried out at Atmel Corporation, Trond-
heim Norway. The thesis also fulfils the partial requirement for the Master Degree
“Integrated Electronic System Design” at Chalmers University of Technology, Gothen-
burg, Sweden.

I would like to thank Akshay Vijayshekar, Hasan Ali and Kristoffer Koch for helping me
during crucial situations of my thesis. Their timely and good advice made the completion
of this thesis possible. Finally I would like to show my gratitude to program manager
Frode Sundal and all the members at MaxTouch team for providing me a lively and
motivating environment.

v

Contents

1 Introduction

1.1 Background
1.2 Problem Description
1.3 Thesis Outline o
1.4 Notation e e
1.4.1 Abbreviations
1.4.2 Abbreviations of Wishbone bus signals
1.4.3 Symbols
Wishbone Bus
2.1 Wishbone Bus Architecture
2.2 Wishbone Signals
2.2.1 SYSCON Module Signals
2.2.2 Signals common to Wishbone Master and Wishbone Slave
2.2.3 Master Signals
2.2.4 Slave Signals Lo
2.3 Classic Standard Single Read Cycle
2.4 Classic Standard Single Write Cycle
2.5 Classic Standard Block Read Cycle
2.6 Classic Standard Block Write Cycle
2.7 Wishbone Topologies
2.7.1 Point to Point Interconnection
2.7.2 Shared Bus Interconnection,
2.7.3 Crossbar Switch Interconnection
2.7.4 Data Flow Interconnection
Metastability and Synchronizers
3.1 Metastability and its effect L.
3.1.1 Metastability in flipflop
3.1.2 Effects of Metastability
3.1.3 Minimizing the problems of metastability
3.2 Two flip flop synchronizer unit
3.2.1 Reliability of a synchronizer

CONTENTS

3.2.2 Probability of failure distribution 23

3.3 MUTEX element as a synchronizer unit 24

4 Four-phase two flip flop synchronizer bridge 28

4.1 4-phase bundled-data protocol Lo 29

4.2 4-phase two flip-flop synchronizer L. 29

5 Four-phase two flip flop synchronizer bridge applied to Wishbone bus 31

5.1 Wishbone signals STB, ACK and 4-phase bundled-data protocol 32

6 Introduction to GALS and LDL Synchronizer 34

6.1 GALS wrapper e 34

6.2 LDL Synchronization 35

6.21 LDLinput port 35

6.2.2 LDL input port circuit oL 36

6.2.3 Timing assumptions for LDL input port 36

6.2.4 LDL output port circuit 37

6.2.5 LDL operating modes L. 38

6.2.6 LDL Performance and reliability 40

7 LDL synchronizer bridge applied to Wishbone bus 44
7.1 Optimizations in standard LDL synchronizer before applying to Wishbone

bus e 45

8 Verification of synchronizer bridge using GPIO IP core 48

8.1 Verification procedure: 49

8.1.1 Verification of standard Wishbone single read cycle: 49

8.1.2 Verification of standard Wishbone single write cycle: 49

8.1.3 Verification of standard Wishbone block read cycle: 49

8.1.4 Verification of standard Wishbone block write cycle: 51

9 Hardware 52

9.1 Netlist simulation o o 52

9.2 Area and Power estimation 52

9.3 Placeandroute 53

10 Results 60

10.1 Two flip-flop synchronizer 60

10.1.1 Casestudy 61

10.2 LDL synchronizer L 63

10.2.1 Casestudy 64

10.3 Performance comparison between two flip-flop and LDL synchronizer bridges 66

11 Conclusion and Future work 68

vi

CONTENTS

A Reset Synchronizer 71

vii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3

5.1
5.2
5.3

6.1
6.2
6.3
6.4

Classic single read cycle [3] L oL 7
Wishbone architecture [3] Lo Lo 8
Classic single read cycle [3] 0. 11
Classic single write cycle [3] oo 12
Classic block read cycle [3] oo 13
Classic block write cycle [3] oL 14
Wishbone Point to Point Interconnection [4] 15
Shared Bus Interconnection [4] L. 15
Crossbar Switch Interconnection [4] 16
Data Flow Interconnection [4] 17
Mechanical metastabilityo 18
Dflipflop 19
Inputs to D-flip flop with Setup and Hold time violation [6] 19
Output of D-flip flop with metastability [6] 20
Two flip flop synchronization unit [5] 21
Probability of failure distribution, .. 24
Tail of probability of failure distribution 25
MUTEX element [7] 25
MUTEX GIrCtit [7] . . o o o oooooeeee e 2
Input and output waveforms of MUTEX 27
Two flip flop 4 phase synchronizer bridge [5] 28
4-phase transition sequence [7] 29
Tx-FSM and STG used in 4-phase two flip flop synchronizer [5] 30
Two flip flop synchronizer applied to Wishbone bus 31
Two flip flop synchronizer applied to Wishbone bus 32
Two flip flop 4-phase synchronizer applied to Wishbone bus 33
GALS wrapper [1] 34
LDL input port with locally synchronous island [9] 36
LDL input port circuit [9] 37
LDL input port STG, async. controller and handshake signals [9] 38

viii

LIST OF FIGURES

6.5 LDL timing budget [9] L 38
6.6 LDL output port [1] 39
6.7 LDL output port STG [1] 39
6.8 LDL operating modes [1] [13] 41
7.1 LDL synchronizer bridge applied to Wishbone bus 44
7.2 Optimized LDL input port used for Wishbone bridge 45
7.3 Application of optimized LDL bridge to Wishbone bus 46
7.4 Optimized LDL synchronizer bridge 47
8.1 GPIO IP core architecture [17] 48
8.2 Verification architecture Lo 50
9.1 Floor plan for two flip-flop bridge with GPIO IP core 54
9.2 Ameobioic view classifies two flip-flop bridge and GPIO IP core 55
9.3 Layout of two flip-flop bridge with GPIO IP core 56
9.4 Floor plan for LDL bridge with GPIO IP core 57
9.5 Ameobioic view classifies LDL bridge and GPIO IP core 58
9.6 Layout of LDL bridge with GPIO IP core 59
10.1 Two flip flop 4-phase synchronizer applied to Wishbone bus 60
10.2 Optimized LDL input port used for Wishbone bridge 63
A.1 Reset synchronizer circuit [23] Lo 71
A.2 Reset signals with and without reset synchronizer 72

X

List of Tables

3.1

8.1

9.1
9.2

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Values used for plotting P(failure) vs S 24
Test cases for different master/slave clock frequencies. 51
Netlist simulation data L L0 53
Process parameters o 53
Clock configuration 61
Delay estimate 62
Comparison between theoretical and simulation data 62
Two flip-flop synchronizer bridge delay 63
Simulation data with LDL synchronizer bridge 65
Comparison between theoretical and simulation data 66
LDL synchronizer bridge delay 66
Bridge delay comparison for a typical case 67

Chapter 1

Introduction

1.1 Background

The demand for high speed in electronic devices forces the technology to use high speed
clock. The requirement for high speed in systems becomes increasingly difficult to main-
tain a single clock for whole system. One way to reduce this difficulty is to use the
GALS concept. In GALS system, the locally synchronous domains are connected to an
asynchronous interconnect system [1].

Typically in an integrated circuit, the locally synchronous islands are interconnected
with a high speed bus such as Wishbone or AMBA AHB/APB bus [2]. The interconnect
computer bus is a synchronous system which is driven by the system clock; the bus
ensures the correct data transmission between multiple locally synchronous islands.

1.2 Problem Description

In a multi-clock domain system, each domain has individual clock with different clock
parameters such as frequency and voltage. The data transfer between the clock domains
is asynchronous and is prone to metastability. Hence it is required to have a synchro-
nizer between clock domains to make sure that data transferred are safe by avoiding
metastability. The thesis was started to examine some different synchronizers drafted
in literature by implementing them. The most popular synchronizers such as single/two
flip-flop, clock stretching and LDL are being used in a typical multi-clock domain inte-
grated circuit. It is required to evaluate the different synchronizers, implement them and
perform standard VLSI place and route. Key parameters such as such as data latency,
hardware area and power are compared.

We performed this task considering Wishbone bus, and evaluate two synchronizers:

e 4 phase two flip-flop synchronizer

e LDL synchronizer

1.3. THESIS OUTLINE

1.3 Thesis Outline

The second chapter gives an overview of the Wishbone bus and its functions. The third
chapter gives the theory of metastability and synchronizer design methodologies. In
chapter four, standard four phase two flip-flop synchronizer bridge is introduced with
discussion of its working concept. Chapter five begins with the application of four
phase two flip-flop synchronizer bridge to Wishbone bus and some optimizations are
discussed. Chapter six gives a brief introduction to GALS and discusses the standard
LDL synchronizer. Chapter seven is dedicated to application of LDL synchronizer bridge
to Wishbone bus and some optimizations are discussed. Chapter eight describes the
complete verification of the synchronizer bridges. Chapter nine gives description of the
hardware of synchronizers, and layouts of the two synchronizers are being depicted.
Finally chapter ten is dedicated for the documentation of overall results and comparison
of key parameters.

1.4 Notation

1.4.1 Abbreviations

ACK Acknowledge
ACK+ Rising edge of Acknowledge
ACK- Falling edge of Acknowledge

AMBA AHB Advanced Microcontroller Bus Architecture
Advanced High Performance Bus

AMBA APB Advanced Microcontroller Bus Architecture
Advanced Peripheral Bus

a.k.a Also Known As

async. Asynchronous

CLK Clock

D flip-flop Data flip-flop

DVE Discovery Visualization Environment
E Enable

EDA Electronic Design Automation

etc. et cetera

FIFO First In First Out

FO4 Fan Out 4

GALS Globally Asynchronous Locally Synchronous
GPIO General Purpose Input Output

Hz Hertz

HDL Hardware Description Language

P Intellectual Property

kHz kilo Hertz

L Latched

LDL Locally Delayed Latching

1.4. NOTATION

MCC
MHz
MTBF
MUTEX
ns

ps
R-DATA
REGD
REGR
REQ
REQ+
REQ-
RXE

RZ
S-DATA
S-R Latch
SCC
SNT
SoC
STG
SYSCON
T
Tx-FSM
TXE
VCS

VI

VLSI
VO

w.r.t
WACK
WDATA

ACK_T
ACK_O
ADR_I()
ADR_O()
CLK_I
CLK_O
CYC.I
CYC_O
DAT.I()

Master Clock Cycle

Mega Hertz

Mean Time Between Failures
Mutually Exclusive

nano second

pico second

Received Data

Register Data

Register Receiver

Request

Rising edge of Request
Falling edge of Request
Receive Enable
Return-to-Zero

Send Data

Set - Reset Latch

Slave Clock Cycle

Sent

System on Chip

State Transition Graph
System Control

Time period

Transmitter - Finite State Machine
Transmitter Enable

Verilog Compiled code Simulator
Valid Input

Very Large Scale Integration
Valid Output

with respect to

Write Acknowledge

Write Data

1.4.2 Abbreviations of Wishbone bus signals

Acknowledge Input
Acknowledge Output
Address Input Bus
Address Output Bus
Clock Input

Clock Output

Bus cycle Input

Bus cycle Output
Data Input Bus

1.4. NOTATION

DAT_O()
RST_I
RST_O
SEL_I()
SEL_O()
STB.I
STB_O
TAGN_I()
TAGN_O()
WE_I
WE_O

1.4.3 Symbols

-
L
Dcrrer
Derria

DcerRrr2

DFF_LDLpeiay
DFF_LDLpejay:

DFF_LDLpejays

DF Fys

DFFgy

P(FF failure)
P

D

T

TQFFcycle

TorFsim

Data Output Bus
Reset Input

Reset Output
Select Input Bus
Select Output Bus
Strobe Input
Strobe Output

Tag data Input
Tag data Output
Write Enable Input
Write Enable Output

Metastability resolving time constant

Combinational logic

Asynchronous Controller Delay

Asynchronous Controller Delay of LDL bridge connected from
Wishbone master to slave

Asynchronous Controller Delay of LDL bridge connected from
Wishbone slave to master

Delay of a flip-flop that holds the output of LDL bridge
Delay of a flip-flop that holds the output of LDL bridge
connected from Wishbone master to slave

Delay of a flip-flop that holds the output of LDL bridge
connected from Wishbone slave to master

Delay in flip-flops present inside the two flip-flop bridge
connected from Wishbone master to slave

Delay in flip-flops present inside the two flip-flop bridge
connected from Wishbone slave to master

Sequential Logic

Clock Frequency

Data Frequency

Number of Wishbone master clock cycles

Number of gates

Number of Wishbone slave clock cycles

Probability of flip-flop failures

Probability of flip-flop entering metastability

Data

Time period of clock

Theoretical Time period for Wishbone single read/write cycle
with two flip-flop synchronizer bridge

Simulation Time period for Wishbone single read/write cycle

1.4. NOTATION

T2FFsynchronizer
T
Ts

TLDLcycle
TLDLsim

TLDLsynch'ronizer
TMUTEX

m/s
TMUTEXl

m/s

MUTEX?2
Tm/s

T

TWbmaster,clock
TWbsla'ue,clock:
Wb_master ejay
Wb_masterlgejqy
Wb_master2gejqy

Wh_slavegeiay
Wh_slavel gejay

Whb_slave2gelay

Y1

with two flip-flop synchronizer bridge

Time delay in two flip-flop synchronizer bridge

Time period of clock

Difference in Time delay of synchronizer bridges

Theoretical Time period for Wishbone single read /write cycle
with LDL synchronizer bridge

Simulation Time period for Wishbone single read/write cycle
with LDL synchronizer bridge

Time delay in LDL synchronizer bridge

Metastability Resolution time of MUTEX element

Metastability Resolution time of MUTEX element present in the

LDL input port connected from Wishbone master to slave
Metastability Resolution time of MUTEX element present in the

LDL input port connected from Wishbone slave to master
Window time period within which metastability can occur
Time period of Wishbone master clock

Time period of Wishbone slave clock

Time delay occurred in Wishbone master during active cycle
Time taken by the Wishbone master to detect ACK_I

and de-assert REQ_O

Time delay in Wishbone master to detect ACK_O being
de-asserted by slave

Time delay occurred in Wishbone slave during active cycle
Time taken by the Wishbone slave to detect STB_I and assert
ACK_O

Time take by Wishbone slave to detect falling edge of

STB_I and de-assert ACK_O

Locally delayed signal in LDL input port

Chapter 2

Wishbone Bus

This chapter introduces the basic concepts of Wishbone bus and gives a summary of its
architecture and topologies.

Wishbone bus is an open source communication bus that is used to establish the
communication between different blocks of an integrated circuit. The communication
is established by synchronous handshake signals of a standard Wishbone bus. The
communication is generic and can be applied between different kind of blocks of an
integrated circuit.

2.1 Wishbone Bus Architecture

Figure 2.2 shows the architecture of the Wishbone bus. It consists of standard “Master”
and “Slave” architecture which are connected to each other with a special interface called
“SYSCON”. In a typical integrated circuit, the Wishbone master and slave can be
connected with different topologies which is discussed in section 2.7. Thus they act as a
data exchange port between other blocks.

The master initiates the control signals to slave in order to start a bus cycle. The
slave decodes the signals and acts according to standard data transfer cycles. Two modes
of operation are supported supported :

e Classic Standard mode

e (lassic Pipeline mode

Classic Pipeline mode is considered to be out of scope in this project and hence we
mainly concentrate on Classic Standard mode of read and write cycles. In the following
sections, the details of the Wishbone signals are described.

2.2 Wishbone Signals

In the following, we classify the Wishbone signals into four different categories:

2.2. WISHBONE SIGNALS

S AVAVAR
ADR_O VALID

DAT | VALID
DAT O

WE_O

SEL O VALID

STB O _/ L
ACK_I -
CYCc_ O _/

TGA O VALID

TGD_| VALID
1660 VALID

Figure 2.1: Classic single read cycle [3]

e SYSCON module Signals
e Signals common to Wishbone Master and Wishbone Slave
e Wishbone Master Signals

e Wishbone Slave Signals

2.2.1 SYSCON Module Signals

SYSCON mainly generates two signals, RST_O and CLK_O. The RST_O is used to in-
struct the system reset to master as well as slave. The CLK_O provides the required

2.2. WISHBONE SIGNALS

SYSCON

RST.O CLK O

RST | > RST |
CLK| |[e———e—» CcLK
ADR_O() » ADR I()
DAT_I() DAT I()
fol s
& &
g DAT O() DAT O() g
g WE_O > WEI 3
2]
2 g
2 SEL_O() > SEL I() 2
STB O » STB.I
ACK | | ACK_O
CYC 0 > CYC_|
TAGN_I() | - TAGN_O()
USER
TAGN_O() »| DEFINED > TAGN_I()

Figure 2.2: Wishbone architecture [3]

clock to both master and slave thus keeps them in synchronous operation.

2.2.2 Signals common to Wishbone Master and Wishbone Slave

The following signals are common to both Master and Slave:

CLK_I: Clock input used to synchronize all the logical activities inside master and
slave. This signal is connected to CLK_O of SYSCON module.

RST_I: Reset input is used to trigger the system reset. This makes the Wishbone
bus to return to known working state. This signal is connected to RST_O of
SYSCON module.

DAT_I(): Data input bus is used to receive an array of data. The size of data is
determined by the port size defined during design of Wishbone bus.

DAT_O(): Data output bus is used to transmit an array of data. The size of data
is determined by the port size defined during design of Wishbone bus.

TAGN_I(): Tag data input bus is used to accept additional information regarding
the data, select lines etc.

2.2. WISHBONE SIGNALS

TAGN_O(): Tag data output bus is used to send additional information regarding
the data, select lines etc.

2.2.3 Master Signals

The following signals are manipulated by master:

ACK_l: Acknowledge input signal is used by master for normal termination of the
current bus cycle.

ADR_O(): Address output is used to send the address in the form of binary data, it
is generally used to point the address of the location where data has to be written
or read. Its port size is defined during design of Wishbone bus.

CYC_O: The Cycle output is used to indicate that valid bus cycle is in progress.
The signal is asserted as long as the current operation is still in progress.

SEL_O(): The Select output bus holds the binary data indicating the place of valid
data that is present in DAT_O and DAT_I.

STB_O(): The Strobe output signal is used to indicate the valid data transfer
cycle, it is used for qualifying the presence of valid data on data and select bus.

WE_O(): The Write Enable output signal is used to flag the current bus cycle is
of data write.

TGA_O(): The Tag Address output bus holds the additional information about
the address bus ADR_O.

TGC_O(): The Tag Cycle output bus holds the additional information about the
bus cycles.

2.2.4 Slave Signals

The following are the signals that are manipulated by slave:

ACK_O: Acknowledge output signal is sent by slave for normal termination of the
current bus cycle.

ADR_I(): Address input is used to accept the address in the form of binary data, it
is generally used to point the address of the location where data has to be written
or read by the master. Its port size is defined during design of Wishbone bus.

CYC_I: The Cycle input is used to detect that valid bus cycle is in progress. The
signal is asserted as long as the current operation is still in progress.

SEL_I(): The Select input bus holds the binary data indicating the place of valid
data that is present in DAT_O and DAT_I.

2.3. CLASSIC STANDARD SINGLE READ CYCLE

e STB_I(): The Strobe input signal is used to detect the valid data transfer cycle,
it is used for qualifying the presence of valid data on data and select bus.

e WE_I(): The Write Enable input signal is used to accept the current bus cycle is
of data write.

e TGA_I(): The Tag Address input bus holds the additional information about the
address bus ADR_O.

e TGC_I(): The Tag Cycle input bus holds the additional information about the bus
cycles.

2.3 Classic Standard Single Read Cycle

In single read cycle, only one chunk of data is fetched by master from slave. The chunk
size is predefined by designer and may be 8-bit, 16-bit, 32-bit, or 64-bit [3].

The bus cycle of classic single read is depicted in figure 2.3 and is self explaining.
The STB_O and ACK_I plays important part of handshake actions and ensures the the
required synchronization with slave. WE_O is always de-asserted throughout the bus
cycle to maintain the read activity.

2.4 Classic Standard Single Write Cycle

In single write cycle, only one chunk of data is written by master to slave. The chunk
size is predefined by designer and may be 8-bit, 16-bit, 32-bit, or 64-bit [3].

The bus cycle of classic single write is depicted in figure 2.4 and is self explaining.
The only difference compared to single read cycle is, WE_O is asserted at required period
and hence it ensures the write activity.

2.5 Classic Standard Block Read Cycle

In block read cycle, a complete block of data is read by master from slave. A group of
single chunks of data forms one block.

The bus cycle of classic block read is depicted in figure 2.5 and is self explaining.
The STB_O and ACK_I plays important part of handshake actions and ensures the the
required synchronization with slave. WE_QO is always de-asserted to ensure that complete
bus cycle is of only read activity. The CYC_O is asserted till complete block of data is
fetched.

2.6 Classic Standard Block Write Cycle

In block write cycle, only a complete block of data is written by master to slave. A
group of single chunks of data forms one block.

10

2.6. CLASSIC STANDARD BLOCK WRITE CYCLE

S AVAVAR
ADR_O VALID

DAT | VALID

DAT O

WE_O

SEL O VALID

STB O _/ L
ACK_I -
CYCc_ O _/

TGA O VALID

TGD_| VALID
1660 VALID

Figure 2.3: Classic single read cycle [3]

The bus cycle of classic block write is depicted in figure 2.6 and is self explaining.
The only difference from block read cycle is, WE_O is always asserted at right period to
ensure that complete bus cycle is of only write activity.

11

2.6. CLASSIC STANDARD BLOCK WRITE CYCLE

S AVAVAR
ADR O VALID
DAT |
DAT O VALID
WE_O /
- I—

SEL O VALID
STB O /

[
ACK_|
CYC_O /

[—
TGA O VALID
TGD O VALID
T6C O VALID

Figure 2.4: Classic single write cycle [3]

12

2.6. CLASSIC STANDARD BLOCK WRITE CYCLE

S AVAVAVAVAYE

VALID| VALID
ADR O

VALID! VALID
DAT_I
NAAMNAMNN
DAT_O
WE_O
SEL O VALID | VALID
STB O _/
ACK_|
CYCc O _/
TGA_ O VALID VALID
TGD_| VALID 5 VALID
! AN

16C.0 VALD VALID

Figure 2.5: Classic block read cycle [3]

13

2.6. CLASSIC STANDARD BLOCK WRITE CYCLE

TN AVAVAVANAVE
ADR O VALID VALID
DAT |

DAT O VALID VALID
WE_O _/

SEL O VALID VALID
STB_O _/

ACK_|

cYc_o _/

TGA O VALID VALID
TGD_O VALID VALID
— VALID VAL

Figure 2.6: Classic block write cycle [3]

14

2.7. WISHBONE TOPOLOGIES

2.7 Wishbone Topologies

Four different topologies that Wishbone adapts for communication interconnection are
discussed in the following sections:

2.7.1 Point to Point Interconnection

In point-to-point interconnection, single Wishbone master is connected to a single Wish-
bone slave directly and the data transfer takes place according to the handshake pro-
tocol [4]. This kind of interconnection is simplest and the data transfer follows the
handshake protocol. The configuration is depicted in figure 2.7 and figure 2.2.

Wishbone Wishbone
Master Slave
IP P
Core Core

Figure 2.7: Wishbone Point to Point Interconnection [4]

2.7.2 Shared Bus Interconnection

In shared bus interconnection, there exists multiple Wishbone master and Wishbone
slave. All of them share a common bus; the bus is accessible to single Wishbone master
at a time, the other Wishbone master has to wait until it gets the bus access; the bus
arbitration is done by the bus arbiter controller(not shown in figure). Once the Wishbone
master gets a grant, it initiates the bus cycle by targeting a particular Wishbone slave [4].
The configuration is depicted in figure 2.8.

Wishbone
Slave

Wishbone
Slave

Wishbone
Master

Wishbone
Master

IP
Core

IP
Core

P
Core

IP
Core

U

U

f

il

<

Shared Bus

>

Figure 2.8: Shared Bus Interconnection [4]

15

2.7. WISHBONE TOPOLOGIES

2.7.3 Crossbar Switch Interconnection

In crossbar switch interconnection, there exist multiple Wishbone master and Wishbone
slave. This topology is suitable for multicore SoC where a single master can access
multiple slaves. The crossbar switch supports parallel data transfer and hence multiple
master can access different slaves at a time. There exists a bus arbiter controller(not
shown in figure) that decides which master can have access to which slave; the complete
interconnect system can have concurrent interconnect and hence the data transfer is
faster compared to previous topologies [4]. The interconnection is depicted in figure 2.9.

Wishbone Wishbone
Master Master
P P
Core Core
“MA”" “mB”
F F
| |
| |
| |
! I
L Crossbar Switch |
e e 1
f T T
| I I
| I I
| I I
v ¥ ¥
Wishbone Wishbone Wishbone
Slave Slave Slave
P P IP
Core Core Core
“SA” “SB” “sc’

Figure 2.9: Crossbar Switch Interconnection [4]

2.7.4 Data Flow Interconnection

The data flow interconnection provides data access similar to the sequential data process-
ing. Each IP core contains both Wishbone master and Wishbone slave; the configuration
enables the interconnect to the next Wishbone master with Wishbone slave and hence
forming a sequential chain. The data flows from one IP core to the next IP core; the
data flow allows to support parallelism and hence data processing is fast [4]. The data
traffic is controlled by the handshake signals. The topology is shown in figure 2.10.

Henceforth all the discussion about Wishbone bus will be w.r.t point-to-point inter-
connection Wishbone topology.

16

2.7. WISHBONE TOPOLOGIES

le—

TOISEN
auoqusim

0-2100
dl

anels
3Uoqysim

>

TOISEN
auoqusim

g-0109
dl

ane|s
auoqysim

>

IERE
aUOqUSIM

v-8100
dl

ane|g
3UOqUSIM

|

>

Figure 2.10: Data Flow Interconnection [4]

Direction of flow

17

Chapter 3

Metastability and Synchronizers

This chapter mainly focuses on metastability and synchronizers. In this project it is
important to know the basics of metastability since it acts as a main challenge to over-
come during transmission of data between two different clock domains. Metastability
problems are common in digital circuits and we use synchronizers to overcome its effect.

3.1 DMetastability and its effect

Metastability is a state of logic in digital circuits which is indecision between logic-1
and logic-0. To explain more precisely, we present an analogy of golf trap as shown in
figure 3.1.

Position-0

Figure 3.1: Mechanical metastability

If the driving force is very little then the golf ball settles at the position 0 and if
the driving force is high then golf ball settles in position 1. However while transforming
from one position to another it requires to cross a small hill and if the ball stops in this
position then it cannot be predicted whether the ball falls into position 0 or position 1
and the ball is said to be in metastable state. Similarly if the output of a digital circuit
is changing from one state to another state and if the sampling of the logic occurs at the
time of transition then it result to an indecision state called a metastable state [5].

18

3.1. METASTABILITY AND ITS EFFECT

3.1.1 Metastability in flip flop

Metastability can occur in a flip flop because of violation of, setup or hold times. Consider
a D-flip flop shown in figure 3.2.

Input ——— D SET Q —— Output

Clock —C>

CLR 6

Figure 3.2: D-flip flop

The setup and hold times are shown in 3.3. If an asynchronous input data D, is
stable during setup and hold times, then the output Q, of a flip flop is stable and valid
as depicted in figure 3.4. If the same input data Dy changes during setup time then it is
a setup time violation and if the same input data D. changes during hold time then it
is a hold time violation.

Clock —/

Da >< Valid data
Setup time
Dy e
violation
Hold-time
D, o
violation

- Hold-time

Setup-time

Figure 3.3: Inputs to D-flip flop with Setup and Hold time violation [6]

19

3.1. METASTABILITY AND ITS EFFECT

Clock

Qa >< Valid data

Metastable
state
Qb or Qc
_ Metastability
delay
Normal
Propagation -~
time

Figure 3.4: Output of D-flip flop with metastability [6]

If any one of the violation occurs then there are four possibilities that can occur to
the output Q:

e The output Qp or Q. may oscillate between valid states for a long time and results
to metastability as shown in figure 3.4.

e The output Q may take a state, because of missing the valid state of input data.

e An increase in output propagation delay may occur and hence the next connected
element can see wrong value.

e The output Q may move to the correct state with small or no propagation delay.

It is seen that the probability of metastability occurrence is more as compared to other
possibilities. Complete explanation of metastability at circuit level of flip flop is given
in [5].

3.1.2 Effects of Metastability

Metastability may lead to malfunction in digital electronics circuits. It may lead to failure
of a logic and eventually causes malfunction of the whole system. It is not possible to
determine the active duration of metastability, hence it must be considered to be random
during simulation. It is a common situation in high complexity circuits with multiple
clock domains.

20

3.2. TWO FLIP FLOP SYNCHRONIZER UNIT

3.1.3 Minimizing the problems of metastability

There exist multiple approaches to overcome the metastability problem such as: design
of system by paying special attention to setup and hold times, use of low frequency
clock and use of synchronizers etc. The most feasible option to minimize the effects of
metastability is to use synchronizers. Synchronizers increases the probability of supply
of a stable data for sampling and gives sufficient time to resolve the metastability state
of a logic signal. However the synchronizers may fail to perform its intended function
and this leads to reliability calculation of a synchronizer.

3.2 Two flip flop synchronizer unit

Two flip flops connected back to back as shown in figure 3.5 can form a synchronization
unit, however it still does not form a complete synchronizer.

Output of the flip flop “F1” i.e Q1 may become metastable but it is sampled one cycle
later by flip flop “F2”. Assuming that one clock cycle is enough to resolve the metastable
state of Q1 we use this unit as synchronizer. The reliability of this unit can be derived
by suitable mathematical treatment as discussed in the following section.

Asynchronous _
input D1 Q1 » D2 Q2 ——»
F1 F2
A A
Clock

Figure 3.5: Two flip flop synchronization unit [5]

3.2.1 Reliability of a synchronizer

First we proceed to calculate the failure rate of a synchronizer. We use probability
treatment to calculate how likely a flip flop is in the situation to enter into metastable
state at the time of chance of switching of clock, and data are unknown. For a simple
model, we make an assumption that an asynchronous input to a flip flop is likely to
change at any point of time with an uniform distribution [5].

Let us assume “T},” is a window period defined around the sampling edge of the clock
such that if the data toggles within “T;,” period of time then the flip flop may encounter
metastability. If “IT.” defines period of one clock cycle and the data is assumed to be

21

3.2. TWO FLIP FLOP SYNCHRONIZER UNIT

changed in uniform distribution over “I..” then the probability of flip flop “P},,” entering
metastability [5] is:
T
P, = T“’ =Ty,.F. (3.1)
C
Equation 3.1 assumes that input data toggles at every clock cycle, which is not
realistic. Suppose data toggles with the toggle rate “Fj;”, then rate of metastability
changes:

Py = T Fo. Fy (3.2)

Let us assume “S” is the synchronization period, i.e the time period for resolving
the metastable state of the output of the flip flop. The actual failure of single flip flop
synchronizer occurs when:

e The flip flop has encountered metastability after sampling edge of the clock.
e The metastable output has failed to resolve after “S” period of time.

Above two events are independent of each other and hence we can multiply their
probability to achieve the probability of failure of flip flop failure:

P(FF failure) = P(enter metastable state) x P(time to exit metastability >)
P(FFfailure) = Ty.F,xer (3.3)

where “7”7 is CMOS technology node dependant constant and is estimated to have a
value of 10ps for a 28nm high performance CMOS technology [5].
The rate of failures with toggle rate of data as “F,” is given by:

P(failure) = T,y.Fe.Fy X e (3.4)
And the mean time between failure (MTBF) is given by:

s
erT

MTBF = ——— 3.5

Ty Fe.Fy (3:5)

Consider figure 3.5, suppose if Ql goes metastable then it is sampled by “F2” one
clock later hence, S = T,. A failure in two flip flop synchronizer is defined as Q2 being
metastable but if input D1 switches from logic-0 to logic-1 and switching is very closer
to the rising edge of the clock then there are six different outcomes [5] that may happen

to Q2:

e Valid data is being switched at first clock cycle and Q2 copies the same data in
second clock cycle.

22

3.2. TWO FLIP FLOP SYNCHRONIZER UNIT

e If the valid data after switching is missed by Q1 then, Q1 copies the valid data
after one clock cycle; and later Q2 copies the same value delayed by another clock
cycle. Thus there exist 2 clock delays to obtain valid Q2.

e “F1” enters metastability and its output Q1 remains low, after “S” period the
metastability is resolved so that Q1 goes high. Q2 copies the resolved logic, rising
to high during second clock cycle.

e “F1” enters metastability and its output Q1 remains low. After “S” period the
metastability is resolved so that Q1 goes low. Now the situation is same as case -
2 later Q1 is forced to high in second clock cycle and Q2 copies the same, rising to
high at third clock cycle.

e “F'1” enters metastability and its output Q1 goes high, after “S” period the metasta-
bility is resolved so that Q1 goes low hence a glitch appears on Q1 between first
and second clock cycle. However Q1 goes high at the start of second clock cycle
and finally Q2 copies the resolved logic, rising to high during third clock cycle.

e “F1” enters metastability and its output Q1 goes high. After “S” period the metasta-
bility is resolved so that Q1 remains high so that Q2 copies the same and rises to
high at second clock cycle

The main important point to note is that Q2 never(may be once in every MTBF)
become metastable in any of the cases discussed above. Q2 switches from logic-0 to logic-
1 in one or two clock cycle delay thus flip-flops “F1” and “F2” acts as a synchronizer unit.
However once in every MTBF, Q1 may switch very near to the sampling edge of flip flop
“F2” and thus causing metastability.

Connecting two flip flops does not form a complete synchronizer; this is because the
sender has to know how long D1 has to be kept high and did “F1” sampled it or not?
Synchronization fails if D1 is sampled when it holds a invalid value. Thus it is required to
use handshake signals such as Request a.k.a REQ and Acknowledge ACK. The details of
complete synchronizer built with two flip flop synchronizer unit is discussed in chapter 4.

3.2.2 Probability of failure distribution

Using equation 3.4, the probability of distribution can be analysed. Table 3.1 shows
the values that are w.r.t 28nm CMOS technology [5] and are used to get a negative
exponential plot which demonstrates P(failure) vs S.

Figure 3.6 shows the negative exponential curve and infers that, increase in metasta-
bility resolution time will decrease the probability of failure. The reciprocal of probability
of failure is MTBF.

Designers would decide the required MTBF of the synchronizer and then the maxi-
mum metastability resolution time can be derived. However the tail of the curve would
not meet zero reference line as shown in figure 3.7, this is because metastability reso-
lution time requires infinite length to completely resolve the metastability and is not
practical.

23

3.3. MUTEX ELEMENT AS A SYNCHRONIZER UNIT

Parameter Value
Ty 20 ps
F. 1 GHz
Fy 100 MHz
T 100 ps

Table 3.1: Values used for plotting P(failure) vs S

Metastability resolution time distribution

Probablility of failure| |

[
N
5

=
o

Probability of failure

-15 |

10

1 15 2 25 3 35 4 4.5 5
Metastability resolution time % 107°

Figure 3.6: Probability of failure distribution

3.3 MUTEX element as a synchronizer unit

MUTEX is a two port element as depicted in figure 3.8. It is a mutually exclusive element
whose main function is to resolve the contention between two inputs from independent
sources R1 and R2. Once contention is solved then the inputs are passed to corresponding
outputs G1 and G2 respectively such that only one output is active at any point of given
time. If only one request arrives first then the other request is blocked until the first
request is de-active [7].

If signals of both input arrives at the same time then, the device goes into metasta-
bility. To avoid metastability at the output, a metastability filter is employed [7]. The
complete circuit of MUTEX element is shown in figure 3.9.

The metastability filter composes of two inverters driven by the output of bistable
circuit. In figure 3.9, the top inverter of metastability filter connect to output G2. Before
the MUTEX flips, the output of bistable circuit x1 and x2 are held high. This drives G1

24

3.3. MUTEX ELEMENT AS A SYNCHRONIZER UNIT

x 102 Metastability resolution time distribution
14} Probablility of fgilure |
— — — Zer reference line
12
101
g
3 8r
5
S 6}
2
2 a4
g X: 6e-009
= Y: 1.751e-020
o
2 [
o 7777777777777777
_2 L
45
35 4 4.5 5 55 6 6.5 7 7.5

Metastability resolution time %107

Figure 3.7: Tail of probability of failure distribution

R1 —————— — G1

Mutex

R2 ———— —» G2

Figure 3.8: MUTEX element [7]

and G2 output to low.

Once the MUTEX flips, x1 or x2 will go low; suppose x1 goes low and x2 is still
high, then top inverter is in active hence G2 remains low while G1 goes high. This case is
depicted in Case-1 of figure 3.10. Similarly if x2 goes low and x1 is still high, then bottom
inverter is in active hence G1 remains low while G2 goes high, this case is depicted in
Case-2 of figure 3.10.

Suppose both inputs R1 and R2 goes high almost at the same time then x1 and x2
becomes metastable momentarily but the output G1 and G2 remains low (same as the
case of before MUTEX flips). The time taken to resolve the metastability is random
and once the MUTEX flips one of the output will be pulled high as shown in Case-3 and
Case-4 of figure 3.10.

The bottom line is G1 and G2 never become metastable and the contention is solved

25

3.3. MUTEX ELEMENT AS A SYNCHRONIZER UNIT

Bistable Metastability
filter

(@)

P1 N1

=

P2 N2

-

R2 ———— 2 X2 |

G1

Figure 3.9: MUTEX circuit [7]

between inputs R1 and R2. Assuming any one of the inputs to the MUTEX is clock
and another input is a data then the chances of metastability of the signals(inputs) is
zero. Hence MUTEX element can also be used as synchronizer unit. However use of
MUTEX element alone does not form a complete synchronizer but it can be used as a
main element of the synchronizer bridge. The synchronizer bridge built with MUTEX
element is described in chapter 6.

Two different synchronizer bridges - a 4 phase two flip flop synchronizer bridge [8]
and Locally delayed latching bridge [9], are investigated and discussed in next chapters.

26

3.3. MUTEX ELEMENT AS A SYNCHRONIZER UNIT

Case1l Case2
R1 E— R1
R2
R2
X2 —_— x2
x1
x1 _—
G1 —_—
G1
G2
G2 —
Case3 Case4
R1 —_— R1 —_—
R2 _— R2 _—
x1 _— x1 —/
x2 _— x2 _—
G1 G1
G2 G2
Metastability Metastability ——— -
delay delay

Figure 3.10: Input and output waveforms of MUTEX

27

Chapter 4

Four-phase two flip flop
synchronizer bridge

Synchronizer built with two flip flop synchronizer unit is depicted in figure 4.1. Flip flops
“F17, “F27, “F4”, and “F5” are the main synchronization unit while other components are
used to maintain 4-phase bundled-data transition sequence. Before understanding the
synchronizer, we first discuss the concept of 4-phase bundled-data handshake protocol.

———

TRANSMITTER RECEIVER

Clock domain | Clock domain Il

I
I
I
I
I
I
I
I
} Ll
REGD DATA

REQ

I

I

I

I

}

| F3 F2 | F1 ACK F7
} A3 =

| /\ /\ /\ /\
I

I

I

I

I

I

I

I

I

I

Figure 4.1: Two flip flop 4 phase synchronizer bridge [5]

28

4.1. 4-PHASE BUNDLED-DATA PROTOCOL

4.1 4-phase bundled-data protocol

The term “bundled” refers to control set of data signals(bundle) by the handshake signals.
Here the data signals use the normal boolean encoding to represent the data. Basically
these signals follow RZ level signalling [7]. Figure 4.2 describes the 4-phase bundled data
transition. As discussed in chapter 3, a complete synchronizer consists of handshake
signals such as REQ and ACK.

REQ

ACK

DATA >< Valid ><

Figure 4.2: 4-phase transition sequence [7]

e The handshake signal REQ makes a transition from low to high if and only if ACK
is low and the data to be transmitted between two different clock domain is stable.
This phase is first transition.

e Once the REQ is detected, the ACK makes a transition from low to high and this
forms another phase called second phase of transition.

e Next the REQ takes a transition from high to low after detecting ACK is at signal
level high. This is a third phase of transition.

e Finally the ACK transits from high to low after detecting REQ has made a transition
from high to low and the data can now change its value.

There exist other different kind of handshake protocols but they are considered as
out of scope in this project. More details on those protocols can be found in [7].

4.2 4-phase two flip-flop synchronizer

Figure 4.1 depicts complete architecture of 4-phase two flip-flop synchronizer. It consists
of Transmitter and Receiver; each is driven by separate clock. The synchronizer uses -
two flip flop synchronization unit.

29

4.2. 4-PHASE TWO FLIP-FLOP SYNCHRONIZER

The handshake signal crossing one clock domain to another has a high probability of
becoming metastable, hence two flip flops are provided to sample them and give enough
time of one clock cycle to resolve the metastability. The red connecting line in figure 4.1
should not be involved in any kind of logic. If required metastability resolution time is
more than one clock cycle, then additional flip flop can be added in between the two flip
flops.

Figure 4.1 shows the finite state machine used in transmitter and overall state tran-
sition graph of the synchronizer [8] [9)].

REQ+— > R2+

A2 =1 VI=18&&A2=0

m '

A2=0

Figure 4.3: Tx-FSM and STG used in 4-phase two flip flop synchronizer [5]

The REQ is asserted by transmitter if and only if there exist valid data on the bus and
VI is high. This occurs if the transmitter has completed its previous cycle i.e. A2 = 0.
VO is pulsed at the receiver side for every new data reception cycle. The SNT is pulsed
at the transmitter once the data is successfully transmitted i.e. A2 is received and thus
synchronized. These actions of the handshake signals resembles the 4-phase bundled-
data protocol and hence the name two flip flop 4-phase bundled-data synchronizer.

Thus the failure of two flip-flop synchronizer would occur once in every MTBF. This
failure causes the synchronizer to let the metastable state signals to pass into the systems.
This potential failure may lead to malfunction in the system once in every MTBF.

In the next chapter 5 we see how the two flip flop 4-phase synchronizer can be used
for the Wishbone bus whose master and slave are driven by two different clock domains
to synchronize the data and signal of Wishbone bus.

30

Chapter 5

Four-phase two flip flop
synchronizer bridge applied to
Wishbone bus

This chapter gives an overview and explains the application of two flip flop synchronizer
bridge to Wishbone bus.

Here, Wishbone master and Wishbone slave are driven by different clock domains
respectively so as to emulate multi-clock domain architecture. The synchronizer bridge
is placed in between Wishbone master and Wishbone slave so as to provide required
synchronization and make sure that Wishbone signals are synchronized and data is
transferred safely between multi-clock domain as shown in figure 5.1.

SYSCON SYSCON
CLK1 CLK2
RST1 :| |: RST2
RST_I RST_I
CLK_I > CLK.I
ADR_O() ADR_I()
DAT_I() DAT_I()
3 =
g z
g DAT_O() DAT_O() g
o
S WE_O WE._| 3
K] 178
g SEL O() SEL I() 3
STBO [o STB_I
ACK_| |«— Bridge ACK_O
cYc_o cye_l
TAGN_I() . TAGN_O()
TAGN_O() DEFINED TAGN_I()

Figure 5.1: Two flip flop synchronizer applied to Wishbone bus

31

5.1. WISHBONE SIGNALS STB, ACK AND 4-PHASE BUNDLED-DATA
PROTOCOL

5.1 Wishbone signals STB, ACK and 4-phase bundled-data
protocol

Wishbone signals STB and ACK acts as handshake signals between Wishbone master
and Wishbone slave resembling the 4-phase bundled-data protocol. After careful obser-
vation of Wishbone read/write (single/block) data cycles with the 4-phase bundled-data
protocol (figure 4.2). it can be interpreted that Wishbone STB and ACK follows the
4-phase bundled-data protocol and hence most of the components of a standard two flip
flop 4-phase synchronizer are being already embedded in Wishbone architecture. It is
just the two flip flops to be added between multi-clock domain signal transition to avoid
metastability. Hence the synchronizer reduces to just two flip flop connected back to
back as shown in figure 5.2.

Wishbone Master Wishbone Slave
Clock domain Clock domain
Wishbone signals
(wishbone master to slave)
Strobe
STB_O > 1 F2 STB_|
/\ /\
Wishbone master Wishbone slave
ACK_| Fa Fa e Acknowledge ACK_O
/\ A\
Wishbone signals
(wishbone slave to master)

Figure 5.2: Two flip flop synchronizer applied to Wishbone bus

The Wishbone STB and ACK signals are initiated only if the other signals of the
Wishbone bus are stable. Thus all other signals are safely transited between multi-clock
domains before the handshaking between Wishbone master and slave begins. Only the
Wishbone ACK and STB signals are prone to metastability and hence the two flip flops
are being added only to these paths as shown figure 5.2.

The MTBF calculation for the two flip flop synchronizer bridge will remain same as
discussed in chapter 3.

The complete block two flip flop 4-phase synchronizer used for Wishbone bus is shown

32

5.1. WISHBONE SIGNALS STB, ACK AND 4-PHASE BUNDLED-DATA
PROTOCOL

in figure 5.3.
Wishbone
Slave
RESET
Wishbone Wishbone
STB_O STB_|
Wishbone)
Master ng"a!:’(;”e
RESET
CLOCK
Wishbone Wishbone
ACK_| ACK O
Wishbone
Master
CLOCK

Figure 5.3: Two flip flop 4-phase synchronizer applied to Wishbone bus

33

Chapter 6

Introduction to GALS and LDL
Synchronizer

This chapter gives a brief introduction to GALS concept. GALS implementation is
another view on synchronization problem. It gives a model to SoCs for safe transition
of data between multiple clock domains.

6.1 GALS wrapper

GALS defines a self timed wrapper around local synchronous island in multi-core-SoCs
which are locally synchronous. Figure 6.1 shows the self timed wrapper. Locally syn-
chronous island is wrapped with input and output port driven with local clock generator.
The clock drives only those elements present in the wrapper. The input and output ports
has the port controllers responsible to generate handshake signals used for asynchronous
communication between other locally synchronous island core which will be wrapper
with GALS self timed wrapper.

(GALS self-timed D
wrapper
(" Input PORT) (Output PORT)
Data - Loca”y > Data
Synchronous
Handshake‘ | Port ! » Island - |' Port ‘l » Handshake
signals \@%J A “ \@rolep) signals
Local Clock
Generator
\§ /

Figure 6.1: GALS wrapper [1]

The input port latches the data at proper time when data is stable. The latching is
controlled by the input port controller with appropriate generation of handshake signals.

34

6.2. LDL SYNCHRONIZATION

The output port is responsible to send the data to other local island core. It takes
care of queuing and stalling the data when other local island core is slow or not ready
to accept the data.

There are different kinds of synchronizers designed w.r.t GALS definition, all of them
differ in the design of port controllers [1]:

e Stoppable clock generation
e LDL Synchronization

e Two clock FIFO synchronizer

This project is devoted to explore only LDL synchronizer. In the next section the LDL
synchronizer is explained.

6.2 LDL Synchronization

Locally delayed latching synchronizer is a zero latency synchronizer [9] which means the
time from the synchronizer to write a data word at output register of transmitter to
writing the same data into first register of the receiver is zero. The latency induced by
the multi-clock domains is unavoidable.

Two clock FIFO synchronizer would induce the data latency if the queue is empty
and affects directly to the system speed. Stoppable clock generation also costs the
latency delay induced by the clock tree distribution. However the LDL synchronizer is
considered as a zero latency synchronizer, and would provide a chance to sample the
correct data as soon as earliest possible sampling edge of the clock [9].

The LDL synchronizer has a GALS wrapper with input and output ports. In the
following section, the input and output ports are discussed.

6.2.1 LDL input port

Figure 6.2 shows the block diagram of LDL input port. It has a port controller and is
responsible for the generation of handshake signals that are necessary for the synchro-
nization. In this synchronizer the system clock is not affected by the synchronization
methods used, hence system clock is not delayed and is independent of the dynamic
scaling of system clock [10] [11] [12].

The asynchronous controller controls the latch L and input data latch Y1 of the
locally synchronous island. It also issues the Valid signal at every new data latch to the
port and thus prevents data hazards such as write-after-read [9].

Suppose if there is a conflict between REQ and clock Y. Instead of modifying REQ
or Y, controller delays the latching of data in “R1” by delaying the Y14 and Y1- is
unaffected. However the data is latched at the time of data arrival in “LATCH” with
help of signal L during acceptance of REQ at low phase of Y. The conflict between the
REQ+ and Y+ are resolved with help of MUTEX element present inside the controller.
The details of controller and synchronization procedure is explained in the section 6.2.2.
The timing assumptions for this synchronizer is explained in the next section.

35

6.2. LDL SYNCHRONIZATION

(" Input Port)

[Tnput :) Latch Data :) R1 @ R2 Oufput :)

4

A A
Y1 Do

Y
L Y
REQ (]
Valid_ Locally

Controller Synchronous
Island

Y

A

ACK

\. J
Y

BEREEY
i

Leaves
Figure 6.2: LDL input port with locally synchronous island [9]

6.2.2 LDL input port circuit

Figure 6.3 shows the complete details of LDL input port. The main part of this port
is MUTEX element which acts as a synchronizer unit. Its main job is to resolve the
metastability that would occur when there is conflict between REQ+ and Y+. The
Muller-C element is responsible to provide the input ASK’ to the MUTEX at every new
request ASK arrival from the asynchronous controller [9].

The output of the MUTEX element is being latched by asynchronous S-R Latch. If
the new REQ+ wins the contention then, L is set and the data is latched, thus providing
a Valid signal to the locally synchronous island. If Y+ wins the contention then the S-R
latch is reset and Valid is de-asserted meanwhile, Y1+ is delayed to latch the stable data
at “R1”.

Figure 6.4 shows the STG of asynchronous controller used in this input port. The
circuit of asynchronous controller and corresponding waveforms are depicted in the same
figure.

6.2.3 Timing assumptions for LDL input port

Figure 6.5 shows the timing budget assumption for the LDL synchronizer.Time allocated
to resolve the metastability is based on the MUTEX element. It is assumed that sufficient
time is allocated to resolve the metastability when the conflict between Y+ and REQ+

36

6.2. LDL SYNCHRONIZATION

(Input Port)
[Tnput :) Latch Da : R1 @ R2 T >
/\
t ols]|vaid] t D,)
R
REQ | LATCHED Locally
* Async.
Controller Synchronous
D Y1 Island
ACK = U
c
_|
- [
\ (P,
Y

Clock
Leaves

Figure 6.3: LDL input port circuit [9]

is imminent. The other time budgets are dedicated for time delay “Dcrrr” that occurs
for data latching in the port and it depends on the architecture of the asynchronous
controller and minimum width of high phase “HP” of clock which is enough to sample
the data at “R1”.

Y1+ is delayed by the controller until the time allocated for metastability expires.
Once the metastability is resolved, the data is stable and hence it is being latched by
“R1”.

6.2.4 LDL output port circuit

Figure 6.6 shows the output port of the LDL synchronizer. It requires an additional
circuit to be embedded within the locally synchronous island. The main function of the
output port is to provide the synchronization with incoming ACK signal from the LDL
input port of another locally synchronous island.

The required STG to be produced by the async.controller is shown in the figure 6.7.
The Dy, block at would provide the required digital logic for the pulse generation.

37

6.2. LDL SYNCHRONIZATION

REQ+ ———» ASK+ Latched

_¢1>—> ACK
ACK+ Latched+
! l ——
REQ- ASK-
ACK- Latched- REQ —D—> ASK
) B)

REQ

ASK

Latched

ACK

(©)

Figure 6.4: LDL input port STG, async. controller and handshake signals [9]

CLOCK
)

M/S Detre HP

Delay for Latching

Figure 6.5: LDL timing budget [9]

6.2.5 LDL operating modes

The main concern that LDL handles is the conflict between REQ and system clock Y
resulting in metastability. Figure 6.8 shows overall operation and operating modes of a
standard LDL bridge. Apparently four different cases must be discussed.

38

6.2. LDL SYNCHRONIZATION

Output Port

DATA DAT | DATA)
ouT v

R4
Synchronous A
Island
)
REQ —T—|REQ > R1 R2 » ROUT
R3
Async.
/A Port A2 | ACKIN
‘ Controller
A3
ACK
-+—ACK D ACK [« A1 A4
R2 L R1
Al T LA
7 i Y1 MUTEX
———
Y Y

Clock
Leaves

Figure 6.6: LDL output port [1]

R1+ A3+ R2+
Al+ «—— A4+ A2+

PN e

| Vo

A1- A4- A2-
Figure 6.7: LDL output port STG [1]

e No conflict: In case of no conflict between REQ+ and system clock Y+ then there
is no metastability. Also the signals such as REQ and ACK follows the 4 phase
transition as shown in figure 6.8 under “Conflict-1” column. The minimum time
period maintained by the REQ signal is same as the minimum time period required
to latch the data by the flip flop “R1” in figure 6.3.

39

6.2. LDL SYNCHRONIZATION

e Conflict between REQ+ and Y+, REQ+ wins : In column “Conflict-1" of figure 6.8,
there exist the conflict between REQ+ and system clock Y+ (marked with red
dots). The REQ has a normal time period. In this case, the MUTEX element
enters into metastability because of two input signals REQ+ and Y+ rising simul-
taneously. The MUTEX delays the signal Y14 so that the data latched by “R1”
is not metastable and the delayed width of Y1+ is enough to resolve metastabil-
ity after which MUTEX grants Valid [13] to locally synchronous island as shown
in figure 6.3. Thus the locally synchronous island receives the data which is not
metastable. This makes LDL synchronizer avoid metastable data entering into
locally synchronous island. This conflict is also the worst case(in terms of latency)
scenario of all the cases that would occur in LDL synchronization.

e Conflict between REQ+ and Y+, Y+ wins: In column “Conflict-2” of figure 6.8,
there exist the conflict between REQ+ and system clock Y+ (marked with red
dots). The MUTEX enters into metastable state. Suppose the MUTEX grants the
access to Y then the pulse width of Y1+ is not altered however, the latching of the
data in the input port by the latch is delayed. This causes the delay in stable data
appearing to locally synchronous island.

e No conflict with reduced cycle : Suppose REQ+ pulse appears much advance than
clock Y and at the proper time to sample REQ by Ythen latching of data in input
port is much quicker and also the latching of stable data in locally synchronous
island is quick since the delay of Y1+ is minimum compared to all above cases. Also
the local clock to the synchronous island in all above cases remain uninterrupted.

6.2.6 LDL Performance and reliability

In this section we discuss about the best case and the worst case of LDL synchronizer.
Later we also analyse the reliability of LDL.

e Best Case: The reduced cycle case is the best case that would occur in LDL
synchronizer. Here there is no conflict between REQ+ and Y-, thus the time
assumed for metastability resolution is zero and the controller delay is minimum,
however the required pulse width of the high phase should be maintained in the
implementation so that the high phase is enough to sample the data at “R1”. The
REQ+ is being sampled at the ideal instant of time and the difference between the
positive edges of Y and Y1 is minimum. The over all details are discussed in “No
conflict with reduced cycle” in section 6.2.5.

e Worst Case: Suppose there is a conflict between REQ+ and Y+, the REQ+ wins the
contention then there exist a delay in Y1+4. This delay includes the time required
for metastability resolution introduced by MUTEX element; if this time period is
too long then it contributes to the overall latency of data transfer. Also the time
given to combinational logic next immediate of “R1” is less compared to all cases.

40

6.2. LDL SYNCHRONIZATION

No Conflict-1 Conflict-2 No
Conflict-1 | ! Conflict-2
!
i
i
e
|
REQ :
|
i
ACK

DATA Data O | |

Data 3 \X Data 4

1
{
5
{
1
{
5
5 ||
l
{5

L - -

' |
Bitac Delayed Delayed Delayed
Clock Request Clock

Figure 6.8: LDL operating modes [1] [13]

The overall details are discussed in “Conflict between REQ+ and Y+, REQ+ wins”
in section 6.2.5.

Reliability Analysis
We define the following terms that are useful in reliability analysis:

e Resolution Latency: The metastable MUTEX element is said to be resolved if
the value stored in bi-stable circuit assigns to logic-0 or logic-1 and the output of
MUTEX is evaluated. The time spent on this work is called as resolution latency.
The resolution latency is unbounded and indeterminate.

o Fuailure: Failure is said to occur if the metastable MUTEX is not resolved within

predefined maximum time period “ TMUTEX>,

41

6.2. LDL SYNCHRONIZATION

e Safety: A circuit is said to be MTBF-Safe if the time for failure between two
successive failures exceeds the desired MTBEF.

e Minimum High Phase Clock: “T7T%” is defined as minimum high phase width of
clock required for flip flop to latch a data. The “T TH”’]}” is about three FO4 delay
of a inverter gate delay w.r.t its CMOS technology node.

Suppose we design a SoC with required MTBF of at least 100 years and which has K
= 100 synchronizers. To achieve this we need to have the MTBF of each synchronizer to
be at least K times the MTBF of SoC [14] i.e. the each synchronizer must have MTBF
of at least 100 x 100 = 10,000 years.

The shortest clock cycle for a digital IC built with standard EDA tools is about
100-160 FO4 inverter inverter gate delays [15]. Thus the high phase of a fastest clock
cycle is 50 FO4 inverter gate delays long.

The MTBF of the MUTEX element is given by [1]:

T MUTEX
m/s

e T
MTBF = ———— 6.1
T,.F..Fy (6.1)

To calculate the worst-case MTBF, we assume that the values, 7 = 1 FO4 inverter
gate delays and T,, = 2 inverter gate delays [16]. Also for worst-case MTBF analysis,
let F. = F4 and the clock cycle time period be T = 1007. This simplifies to,

1

F.=F;= 2
cT T 100 % 7 (6.2)
Hence MTBEF in terms of number of gate delays “N” is given by,
eN
MTBF = ——— XT (6.3)
2 X 156 X 100

For MTBF > 10000 years, and 101" < 7 < 10719, we calculate “ T%/USTEX” in terms
of “N” as,

eN
— X T > 104 (6.4)
2 % 1 X 1
100 100
41 < N < 43 (6.5)

We see that for a system clock of T = 1007, at least one half of the clock period
is needed to resolve the metastability to achieve above mentioned MTBF. And for the
slower metric clock T = 1607 it requires one fourth of the clock period to resolve metasta-
bility to achieve the same MTBF. This assumption is suitable for the SoCs that have a
system clock in terms of MHz.

The minimal high phase to be maintained in LDL synchronizer is given by [1] [13],

T)
5 — DCTRL — T%ETEX > T}jﬁpn (66)

42

6.2. LDL SYNCHRONIZATION

Also the controller delay must satisfy,

T ‘
Derrr < 37 Hp — Ty%[;[TEX (6.7)

Failure in LDL synchronizer can happen once in MTBF. However the failure can lead
to unknown delay during which the time taken to resolve the metastability is too high.
This failure cannot lead to induction of metastable signals into the system but if the
delay is too high then it may lead to system level malfunction.

43

Chapter 7

LDL synchronizer bridge applied
to Wishbone bus

In this chapter we discuss how the LDL synchronizer bridge can be applied to Wishbone
bus. Optimization in standard LDL synchronizer is required in order to make the LDL
bridge suitable to Wishbone bus. According to standard Wishbone bus, the Wishbone
master signals such as STB_O and ACK_I must follow 4-phase bundled data protocol.
The transition of these signals occurs only when other Wishbone signals are ready on
their respective bus.

The main observation we have to make here is the Wishbone signals such as strobe
and acknowledge signals undergo transition very frequently and hence they are prone to
metastability when they cross between multi-clock domains. Thus those signals are fed
into LDL synchronizer bridge as shown in figure 7.1.

SYSCON SYSCON
CLK1 CLK2
RST1 :| |: RST2
RST_I RST_I
CLK | | » CLK_|
ADR_O() ADR_I()
DAT_I() DAT_I()
3 =
17} [7Z)
£ DAT_O() DAT_O() g
g WE_O WE_| >
2 o
g SEL_O() SEL _I() 2
STB.O |—» STB_I
LDL bridge
ACK_| |e— ACK_O
cYc_o cyc_|
TAGN_I() ser TAGN_O()
TAGN_O() DEFINED TAGN_I()

Figure 7.1: LDL synchronizer bridge applied to Wishbone bus

44

7.1. OPTIMIZATIONS IN STANDARD LDL SYNCHRONIZER BEFORE
APPLYING TO WISHBONE BUS

7.1 Optimizations in standard LDL synchronizer before
applying to Wishbone bus

Before applying LDL synchronizer to Wishbone bus, it is required to make optimizations
in it in order to make LDL synchronizer suitable to Wishbone bus. Below are the
optimizations made:

e Removal of ACK signal in LDL synchronizer bridge: The Wishbone bus has 4-phase
bundled data protocol. Hence it is not required to have additional ACK signal of
a standard LDL synchronizer.

e Removal of output port in LDL synchronizer bridge: Since there is no dependency
on LDL input port ACK signal, it is not required to used output port in our
application to Wishbone bus. Hence only input port is used in LDL synchronizer
used for applying Wishbone bus.

e Removal of data register in LDL synchronizer bridge: The Wishbone bridge already
has the register to latch the data. Hence there is no need to have extra registers
which are present in standard LDL input port.

Considering all above optimizations, the LDL synchronizer input port reduces to a
simple synchronizer input port as shown in figure 7.2.

(N\

Optimized
LDL Input
Port

Wishbone
Master/Slave

REQ

\% Y Y (Wishbone
Master/Slave clock)

Clock
Leaves

Figure 7.2: Optimized LDL input port used for Wishbone bridge

The signal Y1 in figure 7.2 is still provided so that in future scope of this work,
if Wishbone interrupt, Wishbone error signals and other Wishbone extra signals are

45

7.1. OPTIMIZATIONS IN STANDARD LDL SYNCHRONIZER BEFORE
APPLYING TO WISHBONE BUS

suppose added then, if they are more prone to switching while crossing multi-clock
domain then, they have to be latched with a register separately with help of Y1.

The application of this optimized LDL bridge would make the synchronizer very
simple and would fit suitably for Wishbone bus. The overview of this application is
shown in figure 7.3.

Wishbone Master Wishbone Slave

|
Clock domain I Clock domain
|
|
Wishbone signals
(wishbone master to slave)
|
|
|
|
I Optimized
STB_O Strobe f > LDL input[— STB_I
I port
|
Wishbone master I Wishbone slave
|
Optimized !
1miz
[
ACK_| |l«—]LDL input I Acknowledge {5 o
port I
|
|
|
l
Wishbone signals
(wishbone slave to master)

|
|
|
|
Figure 7.3: Application of optimized LDL bridge to Wishbone bus

Figure 7.4 gives a complete Optimized LDL bridge that is used for synchronization
in multi-clock domain for Wishbone bus. In the next chapter we will give an overview
of verification process that we carried out in this project.

46

7.1. OPTIMIZATIONS IN STANDARD LDL SYNCHRONIZER BEFORE

APPLYING TO WISHBONE BUS

Wb_STB

Wishbone
Master
Reset

Wb_ACK

Wishbone
Master
Clock

Optimized LDL input|
port
(Master to Slave)

Optimized LDL input
port
(Slave to Master)

Figure 7.4: Optimized LDL synchronizer bridge

47

Wishbone
Slave
Reset

Wb_STB

Wishbone
Slave
Clock

Wb_ACK

Chapter 8

Verification of synchronizer
bridge using GPIO IP core

This chapter introduces to the verification process that we carried out in this project.
We used GPIO IP core made available by OpenCores to verify our designed synchronizer
bridges. The GPIO is a general purpose Input Output user programmable core which is
made up of bunch of registers. The block diagram of GPIO IP core is shown in figure 8.1.

GPIO IP core
® 2
> 3
<= [}
- R o =
53 @
=3 «Q
(Dg &
T3 o)
3 @
(2]
LAY
o o T
ys
a O
w
>
= C
3 X
.l =
=3

Figure 8.1: GPIO IP core architecture [17]

48

8.1. VERIFICATION PROCEDURE:

There exists a Wishbone slave which is a part of GPIO IP core [17] and we make use
of it to verify our synchronizer bridges. The Wishbone master is also provided in the
GPIO IP core as a part of verification accessory.

We used the following tools for simulation and debugging:

e HDL Simulator: Synopsys VCS [18]

e Debugging and Visualization: Synopsys DVE [18]

8.1 Verification procedure:

The Auxiliary input is not required for us hence we remove it and connect the Wishbone
master along with our bridges. The whole architecture of synchronizer bridge verification
is shown in figure 8.2.

The Wishbone master and GPIO core are driven by different clocks and thus emu-
lates multi-clock domain environment. The synchronizer bridge which we designed are
connected between Wishbone master and Wishbone slave(part of a GPIO core).

The test bench is placed at the top level which sets up the test environment as shown
in figure 8.2. It is required to verify standard Wishbone single read/write and standard
Wishbone block read/write cycles after insertion of synchronizer bridge, for different
variation of clock frequencies. This makes our verification complete.

8.1.1 Verification of standard Wishbone single read cycle:

The test bench generates a random data of suitable size (test vector) and writes it into
a register of GPIO core externally i.e. using “I/O interface” of GPIO core. Later the
test bench triggers the Wishbone single read cycle providing the address of the register
in which data was set externally before. Once the data is fetched by the test bench
through Wishbone master, it is given to comparator. The comparator compares the
random generated data and the fetched data from Wishbone master. If both data are
equal then Wishbone single read cycle works fine, hence the comparator gives the output
“OK”; if both data are unequal then the comparator gives the output “Not OK”. The
whole procedure is repeated with different test vectors. This makes the Wishbone single
read cycle verification complete.

8.1.2 Verification of standard Wishbone single write cycle:

The test strategy remains same for the single write cycle; the only difference is that the
single chunk of data is written into GPIO register via Wishbone single write cycle and
verified by reading the GPIO register using external “I/O interface” of GPIO core.

8.1.3 Verification of standard Wishbone block read cycle:

It is required to use more than one register of GPIO core for verification. The test bench
generates two different random data (test vectors) and writes them into two different

49

8.1. VERIFICATION PROCEDURE:

GPIO IP core
(%) -
Q ®
» O O le—p|Synchronizer | » 55| . O
o . = O [* >
c® Bridge @ O Py 2 =
[2] 33 (0] =25
= =) Q 7=
s 8 o B2
i g H2E[
@ >
33
2 o
Clock
domain
|
Clock domain I
A A
Test Bench
Comparator
A

Figure 8.2: Verification architecture

registers of GPIO core which has different address, the writing of data is done externally
using “I/O interface” of GPIO core. The test bench initiates the Wishbone block read
cycle by providing two address of the register within one active cycle. The Wishbone
master fetches the data one by one using different address under a single cycle, thus two
chunks of data forming one block. The fetched data and the generated data are applied
to comparator, if the data blocks are equal then Wishbone block read cycle works fine
hence comparator gives the output “OK”, if data block are unequal then comparator
gives the output “Not OK”. The whole procedure is repeated with different test vectors.
This makes the Wishbone block read cycle verification complete.

20

8.1. VERIFICATION PROCEDURE:

8.1.4 Verification of standard Wishbone block write cycle:

The test strategy remains same except that multiple block of data are written into GPIO
registers using Wishbone block write cycle and verified by reading the GPIO registers
data via external “I/O interface” of GPIO core.

All above test cases are repeated for both two flip flop synchronizer and LDL syn-
chronizer with multiple and different clock frequencies of Wishbone master and GPIO
core. If all the test cases are passed then the designed synchronizer is adaptive to the
Wishbone bus and hence proves the design is good enough to synchronize the data for
multi-clock domain.

Master Clock | Slave Clock | Test Count | Result (OK/Not OK)
250 MHz 10 MHz 20 OK
200 MHz 25 MHz 20 OK
100 MHz 75 MHz 20 OK
100 MHz 100 MHz 20 OK
75 MHz 125 MHz 20 OK
50 MHz 150 MHz 20 OK
25 MHz 200 MHz 20 OK
10 MHz 250 MHz 20 OK

Table 8.1: Test cases for different master/slave clock frequencies

Table 8.1 shows the regression test that was carried out individually for two flip-flop
and LDL synchronizer bridges to verify the behaviour level of the implementation. The
regression was carried out for both single and block read/write cycle of the Wishbone
bus with synchronizers.

The regression was also carried out for the verification of the netlist thus forming
netlist simulations with other clock frequencies that are suitable for 180nm CMOS tech-
nology library. The netlist simulation details are given in chapter 9.

o1

Chapter 9

Hardware

This chapter gives all the required details of the hardware that was synthesized after the
design of two flip-flop synchronizer and LDL synchronizer.

The RTL synthesis was carried out using Synopsis Design compiler [19] by performing
technology mapping with 180nm technology library. The synthesis includes the synchro-
nizer bridges included within the OpenCores GPIO IP core, hence the GPIO IP core was
also synthesized along with the synchronizer bridge. There exist one important synthesis
constraint for the LDL synchronizer:

e Synthesis of MUTEX and Muller-C element: The MUTEX and Muller-C element
are not synthesized since they are not part of a standard cell library. However
the MUTEX and Muller-C element is made as a black box and the functionality
is reflected from the behavioural design. Thus the design compiler treats both of
them as a simple black box during synthesis.

9.1 Netlist simulation

Once the netlist obtained after performing RTL synthesis of both synchronizers, they
were both subjected to simulation with the test bench as described in chapter 8. Table 9.1
gives the different configuration of clocks that were used to set up the netlist simulation.

The netlist simulations were carried out considering different process parameter vari-
ations called process corners [20]. The process corners used here are named as “min” and
“max”. The characteristics of these process corners are tabulated in table 9.2.

9.2 Area and Power estimation

Both synchronizer bridges were synthesized along with the GPIO IP core. It is obvious
that the area of the synchronizer bridges were too small compared to GPIO IP core since
the core has Wishbone slave and set of registers. However, the presence of hardware
constraints such as treating MUTEX and Muller-C element as a black box would cause
a constraint in estimating the area and power. The estimation will be genuine if and

92

9.3. PLACE AND ROUTE

Master Clock | Slave Clock | Test Count | Result (OK/Not OK)
100 MHz 25 MHz 20 OK
50 MHz 100 kHz 20 OK
10 MHz 30 kHz 20 OK
500 kHz 400 kHz 20 OK
400 kHz 500 kHz 20 OK
30 kHz 10 MHz 20 OK
100 MHz 50 MHz 20 OK
25 MHz 100 MHz 20 OK
30 kHz 30 kHz 20 OK
10 MHz 10 MHz 20 OK

Table 9.1: Netlist simulation data

Process corner | Voltage (v) | Temperature (degree Celsius) | Process type

max 1.6 100 slow
min 1.95 -40 fast

Table 9.2: Process parameters

only if there exist no hardware constraints. Comparison of area and power estimation is
also omitted because of the same reason.

9.3 Place and route

A standard place and route was carried on and resulting layouts are depicted in the
following figures.

93

9.3. PLACE AND ROUTE

Figure 9.1: Floor plan for two flip-flop bridge with GPIO IP core

54

9.3. PLACE AND ROUTE

Figure 9.2: Ameobioic view classifies two flip-flop bridge and GPIO IP core

95

9.3. PLACE AND ROUTE

Figure 9.3: Layout of two flip-flop bridge with GPIO IP core

o6

9.3. PLACE AND ROUTE

Figure 9.4: Floor plan for LDL bridge with GPIO IP core

Y

9.3. PLACE AND ROUTE

Figure 9.5: Ameobioic view classifies LDL bridge and GPIO IP core

o8

Chapter 10

Results

This chapter is dedicated to describe and interpret overall results obtained after imple-
mentation of the synchronizers. Equations are formulated according to the structure of
the implementation to calculate the delay expenditure that would occur during transfer
of data between multi-clock domain systems.

We estimate a formula for the delay expense that would occur during transfer of data
between multi-clock domain systems for each of the synchronizer. Next, the overall time
taken for Wishbone single read/write cycle is estimated. Later the complete theoretical
formulas are compared with the simulation results and are described in the following
sections.

10.1 Two flip-flop synchronizer

According to figure 10.1, single read/write cycle would experience a delay that has
affected the transition of STB_O and ACK_I as a point of Wishbone master perception.

Wishbone
Slave
RESET

Wishbone
STB_O

Wishbone
Master
RESET

Wishbone
STB |

Wishbone
Slave
CLOCK
Wishbone
ACK_O

Wishbone
ACK_I

Wishbone
Master
CLOCK

Figure 10.1: Two flip flop 4-phase synchronizer applied to Wishbone bus

e Delay introduced by two flip-flops while transferring the signal STB_O from master
to slave. Typically the expense would be two clock cycles of the Wishbone slave.
We denote this delay by “DF Fysg”

e Delay that would incur in Wishbone slave. This delay is the time taken to detect
the Wishbone strobe, process the request and finally acknowledge by asserting

60

10.1.

TWO FLIP-FLOP SYNCHRONIZER

ACK_O. We denote this delay by “Wb_slavelgeiay”.

Delay introduced by two flip-flops while transferring the signal ACK_I from slave to
master. Typically the expense would be two clock cycles of the Wishbone master.
We denote this delay by “DF Fgp”.

Delay introduced by the Wishbone master is the time taken to detect the ACK_I
signal and de-assert the STB_O . We denote this delay by “Wb_masterleq,”

Delay introduced by the Wishbone slave is the time taken to detect the STB_O
signal(de-asserted) and de-assert the ACK_O . We denote this delay by “Wb_slave2geiqy”.

Delay introduced by the Wishbone master is the time taken to detect the ACK_I
signal(de-asserted) after de-assertion of ACK_O by slave. We denote this delay by
“Wh_master2geq,”.

Considering all of the above factors, the estimation of the time to complete Wishbone
read/write cycle would be,

TQFFCyCle = DFFygs+ Wb,slcweldelay + DFFgp + Wb,masterldelay—k

(10.1)
Wh_slave2geiay + Wb_master2gejq,

Expressing equation 10.1 in terms of number of clock expense would result to,

Jr
'master_clock (102)

+m x Ty

TQFFCyCle =nXx TWbslave,clock + n X TWbslave,clock + m X TWb

m X Tywy +n X Ty

'master_clock slave_clock 'master_clock

The delay introduced by the two flip-flop synchronizer bridge is given by,

TQFFsynchTonizer =DFFys+ DFFgy (103)

Expressing equation 10.3 in terms of number of clock expense would result to,

TZFFsynchronizer =nx TWbslm:e,clock +m X TWbmasteLclock (104)

10.1.1 Case study

In this section we verify the formula 10.1 by calculating theoretically and the value
obtained from the simulation result. The clock configurations used are depicted in table

10.1.

Clock Domain | Input Clock | Time period (ns)

Wishbone master 10 MHz 100
Wishbone slave 32 kHz 31250

Table 10.1: Clock configuration

61

10.1. TWO FLIP-FLOP SYNCHRONIZER

This clock configuration matches with the real use case where the fast CPU (of clock
10 MHz) will try to access a real time clock peripheral (of clock 32 kHz) that keeps track
of time and date.

According to simulation, the total time taken to complete single read/write cycle is
TQFFSim = 375500 ns.

Table 10.2 gives the data estimation of the delay expenditure that would occur for
single read/write cycle. The delay in Wishbone master and slave cannot be estimated
and hence those delays are fetched from simulation.

Parameter Equivalent Clock Estimated Clock cycles
clock expense expense(ns) | values(ns)
DFF s 0 XTWh 0. ook 2 x 31250 62500 2 SCC
Wh_slavelgejqy 0 XTWh0me ciock 5 x31250 156250 5 SCC
DFF g m X Ty, oo | 2 x100 200 2 MCC
Wb_masterlgeay | ™ XTWb,, . 0ron ctoek 1 x100 100 1 MCC
Wh_slave2gejqy 0 XTWh0ne ctook 5 x 31250 156250 5 SCC
Wh_master2geiay | M XTWo,, . oror cioek 2 x100 200 2 MCC
Total > 375500 375500 5 MCC + 12 SCC

Table 10.2: Delay estimate

All the values in table 10.2 are plugged in the equation 10.1. The total delay obtained
is TorFeycte = 375500 ns which is same as Toppgin, as tabulated in table 10.3. Therefore
the estimated equation 10.1 is valid.

Parameter | Time for single read/write cycle (ns)

Taorreycle 375500

Table 10.3: Comparison between theoretical and simulation data

The delay introduced by the two flip-flop synchronizer bridge is calculated using
equation 10.3 and the value obtained after calculation is tabulated in table 10.4,

We observe that the total delay induced by the two flip-flop synchronizer bridge is
approximately equal to 2 clock cycles of the slowest clock i.e. Wishbone slave clock
since Twi,, oo voer > TWhanwe coer- Lhus for any clock configuration, the delay that
would occur is almost equivalent to 2 clock cycles of the slowest clock in the multi-clock
domain. This delay is unavoidable as per the synchronizer architecture hence it is one
of the major drawback of the two flip-flop synchronizer.

62

10.2. LDL SYNCHRONIZER

Parameter Delay (ns) | Clock cycles
DFF g 62500 2 SCC
DFF s 200 2 MCC

T2F Fsynchronizer 62700 ~ 2 SCC

Table 10.4: Two flip-flop synchronizer bridge delay

10.2 LDL synchronizer

Optimized
LDL Input
Port

REQ

LATCHED

Wishbone
Master/Slave

Y (Wishbone
Master/Slave clock)

Figure 10.2: Optimized LDL input port used for Wishbone bridge

The delay estimation of optimized LDL input port shown in figure 10.2 needs the

consideration of the following factors:

e The asynchronous controller delay introduces “Derrr” during processing of the
input signal REQ . This delay includes all the logic present in the controller except

Leaves

the metastability resolution time of MUTEX refer figure 6.2.

e The metastability resolution time T%I ZTEX ” is also introduced by the MUTEX
during the conflict of REQ+ and Y+ . This delay is random and has no fixed
amount of time, thus the MUTEX element grants the output only after a random

time “ Tn]‘f /Ié TEX» quring metastability.

e The delay introduced by a flip-flop “DFF” to capture the output of the S-R latch
as shown in figure 7.2. We denote this delay by “DFF_LDLgejqy”-

Above two factors are to be considered for only one input port but for the complete
LDL bridge shown in figure 7.3 and 7.4. It requires the same input port bridge to process

63

10.2. LDL SYNCHRONIZER

Wishbone ACK_I. Thus the delay caused by above factors has to considered for processing
Wishbone STB_O and ACK_I. It is also required to consider the delay introduced by the
Wishbone bus as given below,

e Delay that would occur in Wishbone slave. This delay is the time taken to detect
the Wishbone strobe, process the request and finally acknowledge by asserting
ACK_O. We denote this delay by “Wb_slavelgeiay”.

e Delay introduced by the Wishbone master is the time taken to detect the ACK_I
signal and de-assert the STB_O. We denote this delay by “Wb_masterlgeiqy”.

Considering all above factors the total time taken to complete Wishbone single
read /write cycle would be:

TrpLeyete = Dorriy + Tt P + DFF_LD Lyeiayy + Wh-slavel geiay + Dorrro+
Tn]zw/gTEXQ + DFF_LDLgejay2 + Wh_masterljeqy

(10.5)
Expressing in terms of clock expense would result in:
TLDLcycle = DcrRrry + T%/Ls]TEXl +n X TWbslave,czock +n X TWbslaue,clock (10 6)
Dorrez + Toys 72 4 m X Tt psier ctoee + 11 X TWhasser ctoe '

The total delay induced by the LDL synchronizer bridge is given by equation 10.7,

TLDLsynchronizer = DCTRLl + Tn]\l/[/[s]TEX1 + DFF,LDLdelayl‘f‘

(10.7)
Derrra + Ty, 75*? + DFF_LD Letays
Expressing in terms of clock expense would result in:
TLDLsynchronizer = DCTRLI + T%ZTEXI +n X TWbslave,clock—'— (10 8)

Dcorrrs + T%/ZTEXQ +m X Twyp

'master_clock

10.2.1 Case study

In this section we note the various delay expense from the simulation and use the formula
10.5 to calculate the total delay expense for Wishbone single read/write cycle. The
clock configurations used are tabulated in table 10.1. Most of the parameters used
in equation 10.5 are unpredictable because of random behaviour of MUTEX element
present in LDL synchronizer bridge. Also the chances of conflict occurrence at the input
of MUTEX is also random and is very less. However the minimum time delay introduced
by the MUTEX is the delay occurred only when there is no conflict and no metastability
can occur and is estimated to be equivalent to SR-latch delay. The maximum delay

64

10.2. LDL SYNCHRONIZER

introduced by the MUTEX is random and depends upon the probability of metastability
occurrence.

The occurrence of conflict between STB_O and Wishbone slave clock, ACK_O and
Wishbone master clock is unpredictable. For the chosen clock configuration, it was
possible to simulate the conflict between STB_O and Wishbone slave clock only and is
considered to be typical but not generic. For this typical case, the following data are
measured.

According to simulation, the total time taken to complete single read/write cycle is
Trprsim = 187703.79 ns.

We use the unpredictable values from the simulation data and the predictable values
such as delay in flip-flops are theoretically assumed.

Table 10.5 gives the data of the delay expenditure that would occur for single
read/write cycle.

Parameter Equivalent Clock Simulated Clock cycles
clock expense expense(ns) | values(ns)
Derria - - 0.37 -
T%ZTEXI } i} 9 i}
DFF_LDLgeqy1 0 XTWb 0. coon 1 x31250 31250 1 SCC
Wh_slaveljejqy 0 XTWh 0. ook 5 x31250 156250 5 SCC
Derrre - - 0.42 -
T%ZTEXQ } i} 1 i}
DFF_LDLgejay2 | ™ XTWb,,, . ron ctoor 1 x100 100 1 MCC
Whb_masterlgeiay | M XTwo,, oron cioek 1 x100 100 1 MCC
Total > 187703.79 | 187703.79 | ~ 2 MCC + 6 SCC

Table 10.5: Simulation data with LDL synchronizer bridge

Since there was no conflict between Wishbone ACK_O and the master clock, the
delay in MUTEX element of the LDL input port receiving ACK_O is minimum. Con-
sidering all the data tabulated in table 10.5, the total time consumed to complete one
read/write cycle is Trpreycte = 187703.79 ns. Again the estimated theoretical value and
the simulation value are same. Both values are tabulated in table 10.6.

The total delay induced by the LDL synchronizer bridge is tabulated in table 10.7.

65

10.3. PERFORMANCE COMPARISON BETWEEN TWO FLIP-FLOP AND LDL
SYNCHRONIZER BRIDGES

Parameter | Time for single read/write cycle (ns)

TrpLsim 187703.79
TLDLcycle 187703.79

Table 10.6: Comparison between theoretical and simulation data

Parameter Delay (ns) | Clock cycles
Derrin 0.37 -
MUTEX1

T 2 -

DFF_LDLgejay1 31250 1 SCC
MUTEX
TMUTEX2 2 -
DFF_LDLgejqy2 100 1 MCC
TLDLsynchr(mizer 31354.79 ~ 1 SCC

Table 10.7: LDL synchronizer bridge delay

10.3 Performance comparison between two flip-flop and
LDL synchronizer bridges

In case of two flip-flop synchronizer, two clock cycles of each clock domain are reserved
for metastability resolution. Hence the total time expense for single read/write cycle
would always experience the delay of minimum two clock cycles from each clock domain.
This would ensure that proper handling of metastable signals and it would never allow
the metastable signals to escape from bridge to the locally synchronous islands such as
Wishbone master/slave except once in MTBF. However there is no assurance that the
conflict can happen every time during transfer of STB_O and ACK_O; giving a scope to
avoid the unnecessary delay when the conflict is not imminent.

In case of LDL synchronizer, the data transferred from one clock domain to another
clock domain would experience a delay induced by MUTEX element, if and only if the
conflict between the data and the system clock is imminent. Hence the bottom line
is basically to avoid unnecessary delay every time when there is no conflict. Also the
conflict occurrence is comparatively less for the clock configuration (table 10.1) used.
Suppose if the conflict occurred, maximum delay expense would be one clock cycle
followed by the metastability resolution time caused by MUTEX. In the case study of
LDL synchronizer, the total delay induced by the LDL bridge is less than the delay
induced by the two flip-flop synchronizer bridge.

66

10.3. PERFORMANCE COMPARISON BETWEEN TWO FLIP-FLOP AND LDL
SYNCHRONIZER BRIDGES

Finally comparing the synchronizer bridge delays for a typical case study the values
and the difference is shown in table 10.8.

Synchronizer bridge type Parameter Delay (ns)
Two flip-flop synchronizer | Torpgynchronizer 62700
LDL synchronizer TrLDLsynchronizer | 31354.79
Difference Ts 31345.21

Table 10.8: Bridge delay comparison for a typical case

It can be noted that LDL synchronizer bridge is almost twice as fast as two flip-flop
bridge and this comparison applies to only a typical case given in case studies of both
synchronizers.

67

Chapter 11

Conclusion and Future work

The following conclusions have been drawn from the thesis work.

e Signals which are closely switching at the switching levels of the clock are prone
to metastability. The common scenario where the metastability can occur is data
transfer between multiple clock domains. They need proper synchronization meth-
ods to avoid the sampling of a signal with metastable state otherwise this may lead
to malfunction of electronic systems.

e We investigated the metastability occurrence that may happen within Wishbone
bus with different clock domain of Wishbone master and slave. We observe that
Wishbone signals such as STB_O and ACK_O follows the 4-phase bundled data
protocol. This create a scope to implement an asynchronous bridge that will pro-
vide synchronization to transfer the data between multi-clock domain.

e Two flip-flop synchronizer and LDL synchronizer were designed and they were
implemented with exploiting the scope of 4-phase bundled protocol behaviour in
Wishbone bus. The inherent property of Wishbone such as, all the signals(including
data) has to be stable before read/write cycle is initiated, will give an opportu-
nity to optimize the synchronizer architectures greatly that will contribute to the
hardware area and power consumption.

e These synchronizers can be used as a bridge between Wishbone bus where the
Wishbone master and slave are driven by different clock-domains. Frequently
switching signals such as STB_O and ACK_O which are more prone to metasta-
bility are synchronized and are treated properly to resolve the metastability that
will avoid the propagation of metastable values into Wishbone master/slave. The
verification of implemented bridges is performed using GPIO IP core.

68

e Two flip-flop synchronizer bridge will always induce a delay of two clock cycles of
each clock-domains irrespective to the metastable conditions. This is gives rise to a
MTBF-safe architecture at the cost of two clock cycles and hence the total latency
caused by two flip-flop synchronizer bridge is higher than LDL synchronizer bridge.

e The two flip-flop synchronizer can fail once in MTBF and has high potential to
inject metastable value into the system once in MTBF. This may cause system
malfunction.

e The LDL synchronizer bridge uses asynchronous circuit elements such as Muller-C
element and MUTEX element to resolve the metastability. This synchronizer will
not induce delay until the metastability is imminent. Therefore the total latency in-
duced by the LDL synchronizer bridge is on average lesser than two flip-flop bridge.

e The LDL synchronizer can fail due to induction of random delay of MUTEX ele-
ment. However the failure mode is different than that of two flip-flop synchronizer,
the LDL bridge would never inject a metastable value into the system but it may
take too long time to resolve the metastability during the conflict. Thus in real
time systems the use of this kind of synchronizer can lead to malfunction of the
system.

e The metastability can also occur in the systems which uses asynchronous reset. A
reset synchronizer is discussed in Appendix A.

Future work

e Design of MUTEX circuit: We used a behavioural model of the MUTEX
element in this project. This was a constraint in deciding the exact area and
power consumption of LDL synchronizer bridge. It is required to develop a typical
MUTEX element in the analog environment where the required transistor sizing
has to be done for the metastability filter.

Once the design of MUTEX circuit is done, it is required to analyse the feasible
maximum metastability resolution time it may take during the occurrence of con-
flict between its two input signals. After which the parameter “r” can be evaluated
which will help to calculate accurate MTBF of the LDL synchronizer. Also the
exact latency induced by the same synchronizer can be evaluated for different cases
of conflict.

69

e Design of Muller-C element: The Muller-C element used in this project is
also a behavioural model. Hence it causes constraints in implementation area and
power consumption evaluation. It is required to design a typical Muller-C element
in analog environment and can be analysed with its various parameters.

¢ Removal of a flip-flop in LDL synchronizer bridge: There exist one flip flop
inside the in the locally synchronous island such as Wishbone master/slave to hold
Wishbone STB_O and ACK_O after metastability resolution. Extra logic can be
added in the LDL synchronizer to create a required delay in STB_O and ACK_O
signals that would suffice to sample the same by Wishbone master/slave at the
cost of extra implementation area.

e Measurement of metastability in two flip-flop and LDL synchronizers:
A deep measurement for the metastability in digital circuits for 180nm technology
can be done by implementing suitable metastability measurement circuits. Those
circuits are discussed in [21]. Also the performance effect of the synchronizers with
metastability can be evaluated by special circuits discussed in [22].

70

Appendix A

Reset Synchronizer

In this section we discuss the application and importance of reset synchronizer used in
this project. As per Wishbone specification, the system reset used should be active high.
However use of synchronous or asynchronous reset is upto designer’s decision. We used
asynchronous reset for in the synchronizer bridges.

The system reset is to be driven by the reset synchronizer to avoid metastability that
may occur due to change of levels in system reset close to the switching levels of the
clock. It is common that reset is prone to metastability during its transition from high
to low asynchronously and clock is about to take its rising edge at the same instance of
time. To avoid the reset metastability problem we use reset synchronizer.

Reset

) Q > D Q —» System
reset

F1 F2

> —>

CLK

Y

Figure A.1: Reset synchronizer circuit [23]

The reset synchronizer circuit is depicted in figure A.1, it consists of two data flip-
flops with asynchronous set, connected back to back. They both have same clock but
the flip-flop “F2” has a clock inverted w.r.t “F1”. The asynchronous reset is driven by
the asynchronous reset signal.

The flip-flop “F1” input is always connected to the ground and hence “F1” always
gives the output as logic-0 for each clock cycle until asynchronous reset is asserted,

71

the same situation occurs in “F2” hence the system reset signal is always zero except
asynchronous reset is asserted.

Once asynchronous reset signal is asserted, logic-1 is propagated to the input of “F2”
at the rising edge of clock of “F1”. The system reset signal is asserted at the next
falling edge of the clock by “F2”. However at the de-assertion of the reset signal, the
synchronizer takes care of switching the system reset signal from high to low only at the
falling edge of the clock. This is illustrated in figure A.2

|
AW R AW W A
CLK |
Reset /
without

|

|

|

|

|

reset |
synchronizer |
|

|

|

|

|

|

\
\

Reset /
with

reset
synchronizer

Prone to !
Metastable |
|

|
|
Avoids
Metastable

Figure A.2: Reset signals with and without reset synchronizer

Thus the switching action from high to low of reset signal is restricted to the falling
edge of the clock only. This makes the reset signal to escape from metastable condition.

72

Bibliography

1]

[10]

R. Dobkin, R. Ginosar, and C. Sotiriou, “High rate data synchronization in GALS
SoCs,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 14,
no. 10, pp. 1063 —1074, oct. 2006.

A. Swain and K. Mahapatra, “Design and verification of Wishbone bus interface for
system-on-chip integration,” in India Conference (INDICON), 2010 Annual IEEE,
dec. 2010, pp. 1 4.

“WISHBONE System-on-Chip Interconnection Architecture for Portable IP Cores”.
OpenCores, 2010.

D. K. Mohandeep Sharma, “Wishbone bus architecture: A survey and comparison,”
International Journal of VLSI design Communication Systems (VLSICS) Vol.3,
No.2, vol. 3, no. 2, pp. 110 —111, april. 2012.

R. Ginosar, “Metastability and synchronizers: A tutorial,” Design Test of Comput-
ers, IEEFE, vol. 28, no. 5, pp. 23 —35, sept.-oct. 2011.

L. Davis. (2012, May) “Digital Logic Metastability”. [Online]. Available:
http://www.interfacebus.com/Design_MetaStable.html

J. Sparso and S. F. (eds), “Principles of asynchronous circuit design - A systems
perspective”. Kluwer Academic Publishers, 2001.

R. R. Dobkin and R. Ginosar, “Integrated circuit and system design. power
and timing modeling, optimization and simulation,” pp. 199-208, 2009. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-95948-9_20

R. G. Rostislav Dobkin, “Zero latency synchronizers using four and two phase pro-
tocol”, 2007.

G. Semeraro, D. Albonesi, S. Dropsho, G. Magklis, S. Dwarkadas, and M. Scott,
“Dynamic frequency and voltage control for a multiple clock domain microar-
chitecture,” in Microarchitecture, 2002. (MICRO-35). Proceedings. 35th Annual
IEEE/ACM International Symposium on, 2002, pp. 356 — 367.

73

http://www.interfacebus.com/Design_MetaStable.html
http://dx.doi.org/10.1007/978-3-540-95948-9_20

BIBLIOGRAPHY

[11]

[12]

[23]

W. Daasch, C. Lim, and G. Cali, “Design of vlsi cmos circuits under thermal con-
straint,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Trans-
actions on, vol. 49, no. 8, pp. 589 — 593, aug 2002.

L. Nielsen, C. Niessen, J. Sparso, and K. van Berkel, “Low-power operation using
self-timed circuits and adaptive scaling of the supply voltage,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 2, no. 4, pp. 391 -397, dec.
1994.

R. Dobkin, R. Ginosar, and C. Sotiriou, “Data synchronization issues in GALS
SoCs,” in Asynchronous Circuits and Systems, 200/. Proceedings. 10th International
Symposium on, april 2004, pp. 170 — 179.

R. Ginosar. (2012, May) “MTBF of a multi-synchronizer system on chip”. [Online].
Available: http://www.ee.technion.ac.il/ ran/papers/MTBFmultiSyncSoc.pdf

(2012, May) “International Technology Roadmap for Semiconductors (ITRS)”.
[Online]. Available: www.itrs.net

C. Dike and E. Burton, “Miller and noise effects in a synchronizing flip-flop,” Solid-
State Circuits, IEEE Journal of, vol. 34, no. 6, pp. 849 —855, jun 1999.

G. D. Damjan Lampret, “GPIO IP core specification”. OpenCores, 2003.

(2008, March) “VCS/VCSi user guide”. [Online]. Available: http://users.ece.
utexas.edu/ "patt/10s.382N /handouts/vcs.pdf

“Design C’ompiler® User Guide”. Synopsys®, June 2010.

N. H. E. Weste and D. Harris, “CMOS VLSI design : a circuits and systems per-
spective”, 3rd ed. Boston: Pearson/Addison-Wesley, 2005.

J. Zhou, D. Kinniment, C. Dike, G. Russell, and A. Yakovlev, “On-chip measure-
ment of deep metastability in synchronizers,” Solid-State Circuits, IEEE Journal
of, vol. 43, no. 2, pp. 550 —557, feb. 2008.

D. Kinniment, C. Dike, K. Heron, G. Russell, and A. Yakovlev, “Measuring deep
metastability and its effect on synchronizer performance,” Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, vol. 15, no. 9, pp. 1028 —1039, sept.
2007.

D. M. Clifford E. Cummings. (2002) “synchronous resets? asynchronous resets?
i am so confused! how will i ever know which to use?”. [Online]. Available:
http://www.engsoc.org/~jvd/docs/hdl/CummingsSNUG2002SJ_Resets.pdf

74

http://www.ee.technion.ac.il/~ran/papers/MTBFmultiSyncSoc.pdf
www.itrs.net
http://users.ece.utexas.edu/~patt/10s.382N/handouts/vcs.pdf
http://users.ece.utexas.edu/~patt/10s.382N/handouts/vcs.pdf
http://www.engsoc.org/~jvd/docs/hdl/CummingsSNUG2002SJ_Resets.pdf

	Introduction
	Background
	Problem Description
	Thesis Outline
	Notation
	Abbreviations
	Abbreviations of Wishbone bus signals
	Symbols

	Wishbone Bus
	Wishbone Bus Architecture
	Wishbone Signals
	SYSCON Module Signals
	Signals common to Wishbone Master and Wishbone Slave
	Master Signals
	Slave Signals

	Classic Standard Single Read Cycle
	Classic Standard Single Write Cycle
	Classic Standard Block Read Cycle
	Classic Standard Block Write Cycle
	Wishbone Topologies
	Point to Point Interconnection
	Shared Bus Interconnection
	Crossbar Switch Interconnection
	Data Flow Interconnection

	Metastability and Synchronizers
	Metastability and its effect
	Metastability in flip flop
	Effects of Metastability
	Minimizing the problems of metastability

	Two flip flop synchronizer unit
	Reliability of a synchronizer
	Probability of failure distribution

	MUTEX element as a synchronizer unit

	Four-phase two flip flop synchronizer bridge
	4-phase bundled-data protocol
	4-phase two flip-flop synchronizer

	Four-phase two flip flop synchronizer bridge applied to Wishbone bus
	Wishbone signals STB, ACK and 4-phase bundled-data protocol

	Introduction to GALS and LDL Synchronizer
	GALS wrapper
	LDL Synchronization
	LDL input port
	LDL input port circuit
	Timing assumptions for LDL input port
	LDL output port circuit
	LDL operating modes
	LDL Performance and reliability

	LDL synchronizer bridge applied to Wishbone bus
	Optimizations in standard LDL synchronizer before applying to Wishbone bus

	Verification of synchronizer bridge using GPIO IP core
	Verification procedure:
	Verification of standard Wishbone single read cycle:
	Verification of standard Wishbone single write cycle:
	Verification of standard Wishbone block read cycle:
	Verification of standard Wishbone block write cycle:

	Hardware
	Netlist simulation
	Area and Power estimation
	Place and route

	Results
	Two flip-flop synchronizer
	Case study

	LDL synchronizer
	Case study

	Performance comparison between two flip-flop and LDL synchronizer bridges

	Conclusion and Future work
	Reset Synchronizer

