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Abstract

Today's nautical charts are often based on inaccurate data, some that can originate as far back
as the late 1800's. New measurements are rarely done and when they are, they are done with
trained sta� at a high cost. The purpose of this project is to use the data from existing sonar
and GPS-units on recreational boats to interpolate a pro�le of the seabed. The project was
carried out in collaboration with another project where the focus was to develop a prototype
for storing and sending the measured data to a server. Due to lack of time no real data was
collected and instead elevation data from a mountain area was used.

Three methods for spatial interpolation were implemented, Inverse Distance Weighting (IDW),
Ordinary Kriging (OK) and Regularized Spline with Tension (RST). The parameters for the
algorithms were optimized for the given data set and the methods were compared with respect
to the interpolation error, the error propagation and the runtime. An indicator of the quality of
the output was also calculated as a function of the distance to the closest known point.

The data set was divided into four di�erent training sets with di�erent densities as well as a
validation set used for validating the results. In terms of interpolation error, IDW had the lowest
error at low densities of input data while RST had the lowest error for higher densities. When
comparing the error propagation IDW performed best for all densities except for the highest
where RST performed best. The parameters were however only optimized for low interpolation
error and the result from the error propagation can be improved. The runtime for IDW and
OK was very similar, which was expected since the methods are based on the same principle.
The runtime for RST was much lower and scaled better when the number of data points used
was increased.
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1 | Introduction

Data from bathymetry, the study of underwater depth of lakes or ocean �oors, is important in
many aspects. One of the most widespread use of the data is for producing navigation products
such as nautical charts. The data is also an important source for many Earth sciences. It
can provide information about the e�ects of climate changes and how, for example a natural
disaster such as a tsunami, will impact the ocean and coastline. Other applications is the use of
bathymetric maps to help determine where �sh and other sea life feed, live and breed. [2]

1.1 Background

The depth information on today's nautical charts in Sweden, but also in other countries, are
often inaccurate [3]. This is due to the fact that the data used often is taken from measurements
done in the late 1800's using contemporary methods. With the increasingly widespread use of
chart plotters (a marine GPS unit which contains a nautical chart), especially in recreational
boats, this has become a big problem. People rely blindly on their chartplotter and are ignoring
the safety distance. New survey of the sea depth are done regularly at the major sea lanes by the
Swedish Maritime Administration (Sjöfartsverket) with trained sta� at a high cost. At smaller
lanes however new measurements are rarely done and large errors can exist.

Today, modern boats of reasonably sizes are often equipped with a sonar. These often have
standardized interfaces, e.g. NMEA 801, for connection to the network. By connecting a device
with NMEA-interface, GPS, GPRS connectivity, memory and processing to the sonar, the depth
information can be stored in memory and at a suitable time be transferred to a server at the
agency or organization responsible for the data.

The purpose of this project is to analyse synthetic depth data, generated from elevation data,
and create pro�les of the seabed which in turn can be used for creating nautical charts. The
input data consists of a large set of data points where each data point consists of information
about the depth, position and time of measurement. Parallel with this project, another project
is carried out which main goal is to collect data.

1



1.2. AIM CHAPTER 1. INTRODUCTION

1.2 Aim

The aim of this thesis is to implement di�erent methods for spatial interpolation. These methods
are to be compared with respect to the error in the output as well as the error propagation.
Furthermore, the runtime of the algorithms and how they scale with the size of the input data
will be analysed. A system for handling changing water level will also be developed.

1.3 Limitations

The collection of input data and where the error in the input data arises from will not be
considered. Automated optimization of the parameters in the algorithms will not be focused
on. The output will be depth data and the creation of a nautical chart and a good visualisation
will not be considered.
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2 | Theory

This chapter aims to give the theoretical framework and knowledge that is used throughout this
thesis. An introduction to geometric theory of the earth is given at �rst. The theory of di�erent
interpolation methods follows. Finally a short introductions to genetic algorithms as well as
cross-validation is given which are two techniques that will be used.

2.1 Earth Geometry

The earth is usually approximated as an ellipsoid whose short axis stretches from the center of
the earth to the north/south pole while the long axis stretches from the center to the equator.
Below the coordinate system used as well as algorithms for distance measurements will be
explained.

2.1.1 Coordinate System

To specify a point on the surface of the Earth one uses a geographic coordinate system where the
most common type is to use the three coordinates latitude, longitude and elevation, see Figure
2.1(a).

The latitude, denoted φ, of a point is the angle between the equatorial plane and the straight
line through the given point and normal to the surface of a reference ellipsoid approximating the
shape of the Earth, see Figure 2.1(b). One consequence of using a line normal to the surface is
that it do not pass through the center of the Earth except at the poles and the equator.

The longitude, denoted λ, of a point is the angle, east or west, from a reference meridian to
another meridian going through the point. A meridian is half a great ellipse (an ellipse passing
through two points on a spheroid and having the same center as that of the spheroid) and the
reference meridian is set to be the meridian passing through the Royal Observatory in Greenwich,
London.

There are three main formats when denoting the latitude or longitude:

• "Degrees, minutes, seconds": 40◦ 26' 46"

• "Degrees, decimal minutes": 40◦ 26.767'

3



2.1. EARTH GEOMETRY CHAPTER 2. THEORY

• "Decimal degrees": 40.446◦

where there are 60 seconds in a minute and 60 minutes in a degree. To distinguish between
latitude and longitude one usually puts N or S for north or south after the latitude and W or
E for west or east after the longitude. Throughout this report the "decimal degrees" format
will be used.

2.1.2 Distance Measure

When performing spatial analysis there is need of distance measurement between two points,
given their latitude and longitude. To know the distance the radius is needed, but the radius
of the earth is not constant. The equatorial radius, Re, is approximately 6378.16 km while the
polar radius, Rp, is approximately 6356.78 km [4]. To simplify the calculations the Earth is
usually approximated as a perfect sphere instead, using a weighted mean for the radius, namely
R =

2Re+Rp
3 .

Instead of using the mean radius, the real radius can be calculated for any given latitude. Figure
2.1(b) shows an exaggerated cut of the earth in the shape of a quarter of an ellipse. In this
�gure two angles are shown. The �rst angle, θ, is the angle between a straight line, denoted
R in the �gure, between the center of the earth and a given point on the surface. The second
angle, φ, is the angle between a line normal to the surface at the given point and the equatorial
plane. This line is denoted f in the �gure and the angle φ is equal to the latitude of the given
point.

The ellipse can be parametrised using the angle θ with (Re cos θ, Rp sin θ) and the radius can
be computed using the Pythagorean theorem

R2 = R2
e cos2 θ +R2

p sin2 θ (2.1)

Given the latitude, φ, the radius R needs to be calculated. The �rst step is to �nd a relationship
between φ and θ. The tangent of the surface is (−Re sin θ, Rp cos θ) from the parametrisation
and the line f will be perpendicular to this, i.e. parallel with the normal. The normal can be
calculated by rotating the tangent 90 degrees which gives (Rp cos θ, Re sin θ). From this the
angle φ can be expressed by

tanφ =
Re sin θ

Rp cos θ
⇒ Rp

Re
tanφ =

sin θ

cos θ
= tan θ (2.2)

This is used to substitute θ in (2.1) by

cos2 θ =
1

1 + tan2 θ
=

1

1 +
R2
p

R2
e

tan2 φ
=

R2
e

R2
e +R2

p tan2 φ
=

R2
e cos2 φ

R2
e cos2 φ+R2

p sin2 φ
(2.3)

sin2 θ = 1− cos2 θ =
R2
p sin2 φ

R2
e cos2 φ+R2

p sin2 φ
(2.4)
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2.2. INTERPOLATION METHODS CHAPTER 2. THEORY
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Figure 2.1: (a): The de�nition of latitude, φ, and longitude, λ. By Peter Mercator via Wikimedia
Commons. (b): An exaggerated image of the earth as an ellipse. φ represents the latitude, Re
and Rp the equatorial and polar radius. R represents the radius at the given point.

and

R2 =
R4
e cos2 φ+R4

p sin2 φ

R2
e cos2 φ+R2

p sin2 φ
⇒ R =

√
(R2

e cosφ)2 + (R2
p sinφ)2

(Re cosφ)2 + (Rp sinφ)2
(2.5)

which gives the radius as a function of the latitude.

When calculating the distance of two points on the surface of the earth the Great Circle Distance
is usually used. However, when the distances are small (the points are less than 1km apart)
rounding errors usually occur due to the precision in the computer. Therefore the Haversine
formula is better [5] and will be used in this thesis. Using Haversine, the distance between two
points is given by

d = 2R arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))
(2.6)

where R is the radius and φ1,2 is the latitudes and λ1,2 is the longitudes. Due to the fact the the
radius of curvature of the earth is not constant the Haversine can have an error up to ±0.5%
[5]. But an accuracy in the distance of ±0.5% is more than enough for this application and a
more accurate method will be less computer e�cient.

2.2 Interpolation Methods

Spatial interpolation estimates values at unobserved locations in an area covered by existing
observation, called control points. Given N values of a studied phenomenon, zj , at points xj

for j = 1, . . . , N one wants to �nd a function Z(x) that ful�ls

5



2.2. INTERPOLATION METHODS CHAPTER 2. THEORY

Z(xj) = zj (2.7)

for j = 1, . . . , N [6][7].

Spatial interpolation methods can either be global or local. Global interpolation uses all available
control points while local interpolation only uses a sample of the control points in a local
area.

Another way to classify spatial interpolation methods is exact and inexact interpolation. Exact
interpolation predicts a value at the control points that are the same as the observed values
while the inexact interpolation may predict values for the control points that di�er from the
observed values.

A third classi�cation is deterministic interpolation as well as stochastic interpolation. In deter-
ministic interpolation one assumes that all the knowledge necessary to describe the system is
known. The system can for example be described by a physical model where phenomena results
from a process that minimises the energy. In stochastic interpolation one instead incorporates
a stochastic term in the interpolated values representing for example stochastic �uctuations in
the environment.

A list of methods for spatial interpolation along with their classi�cations can be seen in Table
2.1. Three of these are suitable for elevation studies [8] and they are described in the following
sections. These three methods are

• Inverse Distance Weighted (local, deterministic, exact)

• Ordinary Kriging (local, stochastic, exact/inexact)

• Regularized Spline with Tension(local, deterministic, exact)

Table 2.1: Examples of spatial interpolation methods and their classi�cation.
Global Local

Deterministic Stochastic Deterministic Stochastic
Trend surface (exact) Regression (inexact) Thiessen (exact) Kriging (exact)

Density estimation (inexact)
Inverse distance weighted (exact)
Splines (exact)

2.2.1 Inverse Distance Weighting

Inverse Distance Weighted, or IDW, is the most common methods in the familyWeighted Moving
Average methods (WMA). The general formula for a WMA is

ẑ(x0) =

N∑
i=1

λiz(xi) (2.8)

6



2.2. INTERPOLATION METHODS CHAPTER 2. THEORY

where z(xi) are the data values for the N points (x1, . . . ,xN) and ẑ(x0) is the estimate at x0.
The equation states that the value of an arbitrary point is a linear combination of the known
points where each point is weighted with λi. A condition to these weights are that they must
sum up to one

N∑
i=1

λi = 1 (2.9)

To make the algorithm more e�cient only a subset of the known points are used. The most
common approach is to select the subset is to either only look at points within a certain radius
or select the n closest points.

IDW speci�es how to select the weights in (2.8) according to

λi =
d−αi0∑N
i=1 d

−α
i0

(2.10)

where di0 denotes the euclidean distance between the point that is being interpolated and the
known point i. The α-parameter is chosen a priori and will determine the so called distance-
decay e�ect. Smaller α tends to yield estimates as an average of the known points z(xi). For
example if we let α→ 0 we get

λi = lim
α→0

d−αi0∑N
i=1 d

−α
i0

=
1∑N
i=1 1

=
1

N
(2.11)

and

ẑ(x0) =

N∑
i=1

1

N
z(xi) (2.12)

which is the de�nition of the average.

Larger values of α will instead give larger weights to the nearest point and decreasing weights
to points further away. If we let xj denote the nearest point to x0 and Li denote the distance
between xi and x0 we get min (Li) = Lj . Considering this and applying α→∞ we get

λi =

{
1 i = j (Lj = min (Li))
0 i 6= j

(2.13)

and
ẑ(x0) = z(xj) (2.14)

so the estimated value equals the value of the closest point. Usually one sets α to a value
between 1 and 3 [9]. When x0 = xi one sets λi = 1 and λj 6=i = 0.

The relative weight (before being normalized) can be seen in Figure 2.2 where we can see that
larger values of α increases the weights for small distances.

7
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Figure 2.2: The relative weight, λ, as a function of the distance for di�erent values of α in (2.10).

2.2.2 Ordinary Kriging

Kriging is a much more complex method than IDW but along with this comes a number of
advantages. Kriging is less susceptible to arbitrary decisions when implemented (such as search
radius, number of sample points e.t.c.) and it also provides an indication on the reliability of
the estimate. [10]

There exist various types of Kriging, the two most simple methods are Ordinary Kriging, referred
to as OK, and Simple Kriging. Ordinary Kriging is the original formulation of Kriging which
assumes that the mean of the measured property is unknown while Simple Kriging assumes that
the mean is known. The ordinary Kriging is by far the most widely used type [10] and it is also
the one that will be used in this thesis.

Before describing Ordinary Kriging algorithm, the variogram which is a central concept in this
method will be explained.

The Variogram

A variogram is a function describing the spatial dependence of a spatial stochastic process Z(x).
Assume that a property Z(x) at position x is a random variable with mean µ(x) and variance
σ2(x). Also make the assumption that two values Z(xi) and Z(xj) where xi and xj are near one
another also are related. The covariance function for the random variable is described by

C(xi,xj) = E[{Z(xi)− µ(xi)}{Z(xj)− µ(xj)}] (2.15)

where E denotes the expected value. Since only the realisation of Z(x) is given by the measure-
ment z(x) the mean will be unavailable and the equation lacks a solution.

8



2.2. INTERPOLATION METHODS CHAPTER 2. THEORY

Assume that the mean will be constant and that Z is a stationary process. The mean can be
estimated from repetitive sampling and µ(x1) and µ(x2) in (2.15) can be replaced with µ. Their
covariance will now only depend on the separation h = xi − xj and not their absolute position.
Using this (2.15) can be simpli�ed to

C(xi,xj) = E[{Z(xi)− µ}{Z(xj)− µ}] = E[{Z(x)}{Z(x + h)} − µ2] = C(h) (2.16)

where h, which is a vector in both distance and direction, is called the lag.

However, the assumption that the mean is constant usually does not hold and the covariance
can not be easily estimated. A solution to this is to only look at small lag distance where the
expected value of two values would be the same. When the expected di�erence is zero their
variance is de�ned as follows

E[{Z(x)− Z(x + h)}2] = var[Z(x)− Z(x + h)] = 2C(0)− 2C(h) = 2γ(h) (2.17)

where γ(h) is known as the semivariance at lag h and the function is called the variogram.

There exists di�erent methods for estimating the variogram from sampled data and the most
common is Matherhorn's [10] method of moments. When one have irregular sampled data the
plot γ(h) against h would be very scattered and hard to interpret if it would be calculated for
every lag existing in the data. Instead the separation between pairs of points are placed into bins
with limits in distance and direction. The semivariance is then estimated according to

γ̂(h) =
1

2m(h)

m(h)∑
i=1

{z(xi)− z(xi + h)}2 (2.18)

where z(xi) and z(xi + h) are measurements and m(h) is the number of paired comparison in
the same bin, de�ned by the lag h.

To summarize, instead of calculating the variance for each pair, pairs with similar lag are placed
into bins and the mean is calculated. The bigger the bins are, the more smooth will the variogram
be, but it will also result in a loss of detail.

To make use of the variogram a function has to be �tted to the sampled data to create a
continuous variogram. Instead of calculating a variogram-surface depending on both the distance
and the direction, the lags h are grouped using their directions where each group contains lags
with similar directions. By doing this it only remains to create one variogram in each group, or
direction, which only depends on the size of h, denoted h. This way N variograms are created
where each γi(h) with i = 1, . . . , N gives the variogram in a speci�c direction. Here N denotes
the number of directions used to discretize the directions between points.

The functions that are �tted must be reasonable in the sense that it can represent spatial
characteristics. Three of the most common variogram models for spatial interpolation [10] are
described below

• The stable exponential model

γ(h) = c0 + c
(

1− e−h
α

rα

)
(2.19)

9



2.2. INTERPOLATION METHODS CHAPTER 2. THEORY

• The spherical model

γ(h) =


0 h = 0

c0 + c
(

3h
2a −

h3

2a3

)
0 ≤ h ≤ a

c0 + c h > a

(2.20)

• The power model
γ(h) = c0 + c · ha (2.21)

where the parameters are optimized to �t the sampled data. There are three values of the
variogram describing the properties. The �rst one is the nugget that describes the variance at
zero lag. The second one is the range which gives the distance at which there no longer is any
correlation. The third one is the sill which is the maximum variance. [10]

The Algorithm

The estimate of z at x0 is denoted ẑ(x0) and is a weighted mean according to

ẑ(x0) =

n∑
i=1

λiz(xi) (2.22)

were, as in IDW, n is a subset, usually the local neighbourhood, of N . To ensure that the
estimate is unbiased the weights are made to sum to one and the expected di�erence between
two close points are assumed to be zero. The expected error is E[Ẑ(x0) − Z(x0)] = 0 and the
predicted variance is

var[Ẑ(x0)] = E[{Ẑ(x0)− Z(x0)}2] = 2

n∑
i=1

λiγ(xi,x0)−
n∑
i=1

n∑
j=1

λiλjγ(xi,xj) (2.23)

where γ(xi,xj) = γi(h). Each variogram, γi, represents a speci�c direction and which one to use
is determined by the direction of h = xj − xi. The functions γi is the function of the variogram
model that �ts the experimental semivariances best. The model with the best �t is de�ned as
the model with the lowest root mean square error when looking at distances smaller than the
range since points that are further away are assumed to have no correlation. See Appendix A
for the derivation of (2.23).

The goal is to �nd the right weights, that minimizes the variance between the true value and
the estimation. To achieve this the derivative with respect to λi is taken for i = 1, . . . , n and
set to zero

n∑
i=1

λiγ(xi,xj) + Ψ(x0) = γ(xj,x0) for all j (2.24)

with the constraint
n∑
i=1

λi = 1 (2.25)

10



2.2. INTERPOLATION METHODS CHAPTER 2. THEORY

where Ψ(xo) is the Lagrange multiplier which is introduced to achieve minimization. When this
is solved the weight can be inserted into (2.22) and the algorithm is completed. The system of
equations can also be written on matrix form, using the notation γ(xi,xj) = γij

γ11 γ12 . . . γ1n 1
γ21 γ22 . . . γ2n 1
...

...
. . .

...
...

γn1 γn2 . . . γnn 1
1 1 . . . 1 0




λ1

λ2

...
λn
Ψ

 =


γ10

γ20

...
γn0

1

 (2.26)

which, together with (2.22), de�nes the algorithm for the ordinary Kriging [10, 11].

2.2.3 Regularized Spline with Tension

The spline-method has a variational approach to the interpolation, which means that it tries to
maximize or minimize a certain function. When interpolating using spline one sets up a function
that describes the smoothness and then try to minimize this function to get a surface that is
as smooth as possible. Talmi and Gilat [12] suggested the following function for measuring the
smoothness in two dimensions

I2(z) =
∑
α

Bα

∫∫
Ω

[
∂|α|

∂xα1
1 ∂xα2

2

z(x)

]2

dx1dx2 (2.27)

where α = (α1, α2) is a multiindex with positive integers (α1 = 0, 1, 2, . . . and α2 = 0, 1, 2, . . .)
with |α| = α1 + α2.

The function (2.27) is a seminorm that includes derivatives of all orders with the nonnegative
weights Bα.

Given N numbers of a studied phenomena, the goal is to �nd a function z(x) that ful�ls

z(xj) = zj j = 1, . . . , N (2.28)

and minimizes I2(z). One special property of (2.27) is that it has an analytical, unique, solution
given by [12]

z(x) = T (x) +

N∑
j=1

λjR(x,xj) (2.29)

where T (x) is a trend function given by

T (x) =

N∑
l=1

alfl(x) (2.30)

where fk(x) is a set of linearly independent functions with zero smooth seminorm. R(x,xj) is
a radial basis function which depends on the choice of Bα. When the radial basis function is
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known the parameters al and λi is determined by solving a system of linear equations

z(xj) = zj (2.31)
N∑
j=1

λjfj(xj) = 0 (2.32)

for all j = 1, . . . , N .

One extension of Spline is the so called Thin Plate Spline, or TPS, which refers to the physical
analogy involving bending of a sheet of metal and forcing it through some points. The TPS only
includes the second order derivatives in (2.27) and gives good result but it has some drawbacks.
The major disadvantage is when there are rapid changes in the gradient which usually leads to
overshooting due to the plate sti�ness.

To overcome this drawback Mitasova [13] suggested a solution which suppress this sti�ness
by including the �rst derivative to the smooth seminorm. This method is called TSP with
tension where the tension parameter, ϕ, controls the sti�ness and lower values will simulate
the behaviour of a membrane while higher values will simulate a thin metal plate. When using
tension the weights Bα is determined according to

Bα =

{
0, |α| = 0

|α|!
α1!α2! ·

1
ϕ2|α|(|α|−1)!

, |α| > 0
(2.33)

The weights Bα decreases with increasing derivative order in (2.27) and ϕ controls how fast they
should decrease. The tension parameter is usually determined empirically.

There still remain some drawbacks in the TSP with tension and the major one is that the
functions are not su�ciently general and analysis of the surface can be hard. To overcome
this, the third derivative is included near the data-points which leads to the method called
Regularized Spline with Tension or RST. This method was tested by Ho�erka [14] and the result
indicated that it performed better than the standard methods when estimating elevation data.
However, the equations for the basis function and the derivatives are included which requires
more computational power to solve.

Regularized spline with tension includes derivatives of all orders and the corresponding interpo-
lation function is given by a constant trend function

T (x) = a1 (2.34)

and the basis functions

R(x,xj) = R(rj) = −
{

ln

[(ϕrj
2

)2
]

+ E1

[(ϕrj
2

)2
]

+ CE

}
(2.35)

which only depends on the distance rj between x and xj, i.e. a radial basis functions. Here, E1

is the exponential integral function and CE = 0.5772 . . .[4] is the Euler constant.
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To summarize, RST is given by

ẑ(x) = a1 +

N∑
j=1

λjR(rj) (2.36)

where the coe�cients a1 and λj are obtained by solving the following system of linear equa-
tions

a1 +

N∑
j=1

λj [R(xi,xj) + δijw] = zi, i = 1, . . . , N (2.37)

N∑
j=1

λj = 0 (2.38)

where w is a smoothing parameter and R is given according to equation (2.35).

Unfortunately, the system (2.37) will be very large if there are many data-points so a suggestion
by Mitashova [14] is to implement a segmentation of the algorithm.

To segment the algorithm a mesh is created where a parameter kmax < N determines how
�ne it should be. The cell size is selected such that the 3x3 neighbourhood for all cells have
a maximum of kmax measurements while being as large as possible. During the interpolation,
the interpolation point is put in the corresponding cell and the system of linear equations is
only solved using the data points in the 3x3 neighbourhood. This way, the number of linear
equations never exceeds kmax equations.

Another parameter, kmin < kmax, tells that if the 3x3 neighbourhood of an interpolation point
contains less than kmin data-points, the neighbourhood is increased until the number of data-
points no longer is below kmin. Since the system of linear equations only depends on the cell,
and not the position within the cell, it only has to be solved one time for each cell. This means
that the computational time will be proportional to N. The method is also very suitable for
strongly inhomogeneous data, for example clustered data.

Other features exist such as horizontal and vertical scaling as well as rotating of the coordinate
axis. By scaling the two horizontal axis di�erently di�erent parameters for the two di�erent
directions can be achieved. Furthermore, by rotating the two horizontal coordinates the direc-
tions of the di�erent parameters can be changed. By scaling the vertical axis the stability and
range of suitable parameters can be changed. [13] [14]

2.3 Genetic Algorithm

A genetic algorithm (GA) is a stochastic optimization algorithm that has been inspired by
natural evolution by mimicking features such as inheritance, mutation, selection and crossover.
Genetic algorithms belongs to the larger class of evolutionary algorithms (EA) which tries to
optimize problems using techniques inspired by biological evolution. In this thesis the genetic
algorithm will be used to �t a function to measured data. The problem to optimize will be the
minimization of the error between the �tted function and the sampled values.
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The base in a genetic algorithm is the individuals. Each individual has a set of chromosomes,
which in the most simple form consist of a string of bits. Each chromosome represents a variable
in the problem that is to be optimized. Together all the individuals form a population.

Initially each individual is initialised with random chromosomes that falls within the search space
of the problem (all the possible values for the variables). To optimize the problem the evolution
is started which consist of a loop in which a new generation is created in each iteration.

The �rst step in creating a new generation is to rank all the individuals based on how good they
are, which is decided by a �tness function that for example is the total error when trying to
�t a function to measured values. In proportion to their rank, pairs of individuals are selected
and their chromosomes is mixed. This step is called crossover and usually consist of randomly
selecting a point in the bit string representing the chromosomes dividing it into two parts. One
of the parts is then swapped with one of the parts from the other individual creating two new
individual. The chromosomes of the two new individuals is then mutated in which each bit with
a certain probability switches from 0 to 1 or from 1 to 0.

This is repeated until a completely new generation has been created which indicates one iteration
in the evolution loop. A common feature is called elitism in which the best individual in each
generation always survives without crossover or mutation and replaces the worst individual in
the new generation. [15]

2.4 Cross-Validation

Cross-validation is a technique that is used to validate a model and more speci�cally how the
result of a statistical analysis will generalize to an independent data set. The most common
application is when the goal is prediction. In many prediction problems a model is usually given
a data set from which parameters are tuned so that the model can predict the known data
set.

However problem arise when the model �ts the data set too good and are unable to be generalised
to an unknown previously not seen data set, this is called over�tting. Too overcome this cross-
validation is used. The form of cross-validation that will be used throughout this project consists
of dividing the known dataset into two di�erent sets, one called training set and one called
validation set. The training set is used for training and optimizing the parameters of the model
while the validation set is used as an unknown set on which the model is tested.

Hopefully, when starting to tune the parameters the performance of the model will increase on
both the training set and the validation set. After a while a certain point is usually hit where
more tuning of the parameters will increase the performance on the training set, but decrease
the performance of the validation set. When this point is hit the best parameters are found
since more tuning will make the model less general and perform worse when predicting values
from previously not seen data. If the tuning would be carried on over�tting would occur.

14



3 | Method

This chapter describes how the thesis was carried out. First of all the implementation of the
three interpolation methods will be described along with the algorithm that handles the changing
sea water level. Following this is a description of the data that was used as well as how the
parameter optimization and evaluation was performed.

3.1 Implementation

To get the distance between two points the Haversine formula was used according to

d = 2R arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))
(3.1)

The distance was calculated between all points so the number of evaluations of the Haver-
sine scales as

(
n
2

)
where n is the total number of data points. Increasing the performance of

the Haversine therefore had a big impact of the total runtime. To increase the performance
sin (θ2 − θ1) was approximated with (θ2 − θ1) since the di�erence in the latitude and longitude
of two points was small. Furthermore cos (θ2 − θ1) was approximated with cos (θ2 − θ1)) ≈ 1
which gave

d = 2R

√(
φ2 − φ1

2

)(
φ2 − φ1

2

)
+

1

2
(cos (φ2 + φ1) + 1)

(
λ2 − λ1

2

)(
λ2 − λ1

2

)
(3.2)

3.1.1 Inverse Distance Weighting

The IDW was implemented according to the theory and the two parameters, α and the number
of neighbours, was used as inputs to be optimized.
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3.1.2 Ordinary Kriging

When implementing the OK the number of neighbours and the number of variograms (i.e. the
number of directions) was used as inputs to be optimized.

One important step when implementing Kriging is the �tting of the variogram. This can be
done in a number of di�erent ways and the chosen method was to implement a genetic algorithm
for the �tting as suggested by Shaohua and Wentao [16]. Each of the three models, stable
exponential, spherical and power exponential, was �tted and the one with the lowest root mean
square error was chosen as the best variogram. The root mean square was only calculated from
the points shorter than the range of the variogram [16].

An important step is to choose a good bin length. Since irregular scattered data will be the source
the bin size was set to be the average distance between sampling points as Oliver concluded and
suggested [10].

3.1.3 Regularized Spline with Tension

When implementing the RST, kmax and kmin was �xed at kmax = 300, kmin = 100 which is
suggested by Mitasova [13]. The smoothing parameters and the tension was set as inputs to be
optimized. Horizontal scaling and rotating of the axis was not implemented, however vertical
scaling was implemented and evaluated.

3.1.4 Water Level Retrieval

To be able to account for changing water level over time a reference level as well as a source
providing historical data of the water level was needed. There is a determined reference for the
water level in Sweden from which the depth in the charts are given. Since 2005 the reference
level in Sweden is given by RH2000, (Rikets Höjdsystem 2000) [17] which was used.

Swedish Meteorological and Hydrological Institute, SMHI, provides historical data of the sea
level from 21 measurement stations around the coast of Sweden. The data consist of longitude,
latitude and measurements from when the station was installed to present time [18, 19]. The
data is given with RH2000 as reference which is the same as modern nautical charts. Since
the measurements are rather close, the water level can be approximated as a linear function
between two measurements. Given the position of a measurement the closest station on each
side (along the coast) was found. In Sweden the water level is approximately linear between
two stations and by interpolating between these two stations and in time the water level at an
arbitrary point could be found [18]. The positions of the stations can be seen in �gure 3.1(a)
and an example of output data can be seen in �gure 3.1(b).
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(a) (b)

Figure 3.1: (a): The position of the stations of SMHI. (b): An example of the water level at
di�erent stations.

3.2 The Data

Throughout this project no real data from sonar was available due to the fact that the prototype
was not yet ready and no data had been collected. There are also some legal aspect on collecting
sea level data. The Swedish Defence Force (Försvarsmakten) have to give permission to collect
data and another government authority has to give permission to store the data.

However, the algorithms developed can also be applied to elevation data. Elevation data from
NASA [1] over an area in Canada was used instead of data from sonars. The error in this
data, both in position and elevation, was considerably larger than those in data from a sonar
and GPS-unit. To handle this the data was scaled until a satisfactory error was achieved. The
elevation data was also translated so that the lowest value was at 0m and the elevation above
sea level was interpreted as depth. The surface of the original data can be seen in Figure 3.2(a)
while the transformed data can be seen in Figure 3.2(b). Speci�cations for the original data and
the transformed data can be seen in Table 3.1. In total, the data contains 7975 measurement
points in a grid with size 145× 55 (latitude×longitude).

From the data �ve di�erent sets with various sizes was created, see Table 3.2. The four largest
sets was used for the interpolation (training) while the smallest set was used for validation.

The three smallest training sets, S5, S10 and S20, can be seen in Figure 3.3(b)-3.3(d) and the
validation set in Figure 3.3(a).
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Figure 3.2: (a): The original elevation data from an area outside Fernie, Canada. The plot
shows the elevation above the sea level. (b): The translated data where the position is scaled
and translated according to Table 3.1. The plot represents the depth.

Table 3.1: Speci�cations for the original data set as well as the transformed. Plots of the data-set
can be seen in Figure 3.2(a) and 3.2(b).

Latitude
width (km)

Longitude
width (km)

Min.
elev. (m)

Max.
elev. (m)

Pos.
error (m)

Elev.
error (m)

Original 22.22 21.87 986 2166 50 30
Transformed 2.22 2.19 0 5.9 5 0.15

Table 3.2: The �ve di�erent data sets that were used. The sets S5, S10, S20 and S50 were
used for interpolation while S3 was used for validation. None of the points in S3 is in the other
four sets while S5 ∈ S10 ∈ S20 ∈ S50. Mean distance denotes the mean distance to the closest
neighbour in the same set and the size is the relative size to the original set. Plots of the sets
can be seen in Figure 3.3(a)-3.3(d).

Set Size Data points Mean distance (m)

S3 3% 239 76
S5 5% 399 59
S10 10% 798 43
S20 20% 1595 31
S50 50% 3988 20
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(a) Validation set, S3: 3% (b) Training set, S5: 5%

(c) Training set, S10: 10% (d) Training set, S20: 20%

Figure 3.3: (a): The validation set containing 3% of the original data. (b)-(d): The training
sets used for the interpolation. The depth is in meters and speci�cations for the sets can be
seen in Table 3.2.
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3.3 Parameter Optimization

To be able to make a fair comparison between the di�erent algorithms they all had to be
optimized. For IDW only two parameters had to be optimized, the number of neighbours and
the distance decay parameter α. For OK the number of neighbours as well as the number of
variograms, which determines the angle of each lag, was optimised. The RST method is much
more complex and contains a lot of parameters, for example the tension (ϕ), the smoothing (w),
kmax, kmin, vertical scaling e.t.c. But since the optimization was rather demanding only the
tree parameters with biggest impact on the error was optimized, namely the vertical scaling,
the tension and the smoothing [14].

To optimize the parameters a wide range of parameters was tested and evaluated. By narrowing
down at the best parameters a good range could be found. The parameter setting which gave
the smallest error using cross validation was considered to be the best set up. To minimize the
risk of over�tting, that is the risk that the optimal parameters only is the optimal for the given
evaluation set, a second validation set was used, S3b. This third set also contained 3% of the
original data, but di�erent from S3.

3.4 Evaluation

The quality of the output data will depend on a number of factors. These factors can be divided
into three groups:

• Accuracy, density and distribution of the source data

• The interpolation process

• Characteristics of the seabed

The �rst two of these can be considered to give errors while the third one can be seen as an
uncertainty [8], for example a smooth seabed tends to decrease the uncertainty. The only one of
these that can be a�ected was the interpolation process which is why the di�erent methods that
was implemented needed to be evaluated and compared. And even though two other groups
cant be a�ected they could still be analysed to see how they a�ect the error and uncertainty of
the output.

The error from the interpolation process can arise from two di�erent sources

• Error from the algorithm

• Error in the measured data propagating through the algorithm

The analysis is divided into two parts. In the �rst part the error from the interpolation process
is examined for di�erent data densities and distributions of the source data. In the second part
the error propagation for the three di�erent interpolation methods is examined.
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3.4.1 Error from the Interpolation

The error from interpolation was calculated for each of the four data-sets containing 5%, 10%,
20% and 50% of the original data. S3 was used for validation and considered to contain correct
data. The error was de�ned as the di�erence between the known value in S3 and an interpolated
value in at the same position. The maximum, minimum, mean and root mean square (RMS)
error was calculated for each data set for each of the three algorithm.

Before the error was calculated the parameters of the algorithms was optimized using the method
described in Section 3.3.

Finally the errors in all points was plotted against the distance to the closest neighbour. The
points was then divided into bins with a width of 10m. By placing points in each bin with 95%
of the datapoints below and 5% above and �tting a curve to these point an empirical curve
telling the error as a function of distance with 95% accuracy could be obtained. This was done
for all methods and set sizes.

3.4.2 Error Propagation

The error of the input data will propagate through the interpolation to the output. Therefore
it is important to keep a record of the accuracy and analyse the model to ensure satisfactory
accuracy in the output [20].

Each data point used for training had three variables: the latitude, the longitude and the depth.
And for a given latitude and longitude at an interpolation point there was one output parameter,
namely the estimated depth. A �rst order analysis of the uncertainty was done by linearising
the interpolation function and analyse how an error propagated.

Analytical Analysis

The analytical analysis was performed by linearising the algorithm and looking at how errors
would propagate. To evaluate the linearisation a simple set of synthetic data was used and the
result was compared with the result from a Monte Carlo simulation.

Numerical Analysis

To analyse how errors propagate through the algorithms numerically Monte Carlo simulations
was performed. A number of interpolations was made where the latitude, longitude and depth for
each point and interpolation was randomly changed within the interval of the uncertainty.

By comparing the maximum di�erence in each point between the interpolation from the original
data and the interpolation from the Monte Carlo simulations the maximum error of the output
given the uncertainty in the input data could be calculated.

A �tted curve describing the error as a function of distance to the closest points was done the
same way it was done for the error from the interpolation.
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3.4.3 Runtime

An important aspect when it comes to implementations of the algorithms is the runtime and
how they scale with increasing number of data points. Therefore a runtime comparison between
the algorithms was performed.
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In this chapter the results from the parameter optimization, the error from interpolation, the
error propagation and the runtime are presented.

4.1 Variogram Fit

Plots are produced for visual evaluation of the genetic algorithm and the �tting of the var-
iogram. An example can be seen in Figure 4.1(a)-4.1(c) along with the convergence of the
genetic algorithm in Figure 4.1(d)-4.1(c). The �gures illustrates the three types of variograms
used and each plot represents a variogram in a speci�c direction. For this example S50 is used
for the interpolation and in each case the given model is the one with the lowest root mean
square error for the given data. The genetic algorithm consisted of 100 individuals over 200
generations.

4.2 Parameter Optimization

An example of the parameter optimization using S20 for the interpolation and S3 for training
can be seen in Figure 4.2(a), 4.2(c) and 4.2(e). In each point S20 is used to interpolate the
values and the RMS error is calculated as the di�erence between this and the known value in
S3. A third set, S3b also containing 3% of the data points, di�erent from S3, is used to validate
the optimization which can be seen in Figure 4.2(b), 4.2(d) and 4.2(f).

For IDW the number of neighbours is varied from 1 to 15 and α from 1 to 5. The optimal
parameters found for the four di�erent training sets can be seen in Table 4.1.

The optimal OK parameters can be seen in Table 4.2 where the number of neighbours is ranging
from 1 to 15 and the number of variograms from 1 to 8.

For RST the smoothing is varied from 0 to 0.05 and the tension from 0.01 to 0.025. The result
can be seen in Table 4.3.
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Figure 4.1: (a)-(c): Examples of each of the three variogram models implemented. The vari-
ograms is created from S50 and �tted using a genetic algorithm. The lower horizontal dashed line
represents the nugget while the upper represents the sill. The vertical dashed line represents the
range. Note that the power model does not have any sill or range. (d)-(f): The corresponding
convergence for the genetic algorithm.

4.3 Error from the Interpolation

The parameters used for the evaluation is the optimised parameters which can bee seen in Table
4.1, 4.2 and 4.3.

The maximum (+), minimum (-), mean and root mean square error for the four di�erent data
sets for all three interpolation methods can be seen in Table 4.4.

In Figure 4.3 the RMS-error as a function of the density of data-points can be seen for the three
di�erent interpolation methods.

A visualisation, using a surf, of the result using S20 for the interpolation can be seen in Figure
4.4(a)-4.4(c) along with the correct surface from 100% of the original data in Figure 4.4(d).
Contour plots of the results using S20 can be seen in Figure 4.5(a)-4.5(c) along with the correct
contour in Figure 4.5(d). The absolute error, comparing the interpolated value and all the
known values, can be seen in Figure 4.6(a)-4.6(l).

An example of all the errors plotted against the distance to the closest point can be seen in
Figure 4.7 where the S5 was used for interpolation and the interpolation method used was
IDW.
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(a) IDW S3
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(b) IDW S3b
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(c) OK S3

1 2 3 4 5 6 7 8

0.24

0.25

0.26

0.27

0.28

0.29

0.3

#Variograms

R
M

S
E

 (
m

)

 

 

#Neighbours=1
#Neighbours=2
#Neighbours=3
#Neighbours=4
#Neighbours=5
#Neighbours=6
#Neighbours=7
#Neighbours=8

(d) OK S3b
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(f) RST S3b

Figure 4.2: An example of the optimization for the parameters where S20 was used for the
interpolation while S3 was used for training the optimization. A third set was used for validating
the result, S3b. The left hand side shows the optimization when S3 is used and the right hand
side shows the validation using S3b.

The �tted curve for all thee interpolation methods can be seen in Figure 4.8(a)-4.8(d) for the
four di�erent sets.
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Table 4.1: The optimal parameters for the IDW method that was found when using cross
validation with S3 as validation set. The number of neighbours was tested for 1 to 15 with step
1 while α was tested for 1 through 5 with step 0.5.

Training
set

α
Number of
neighbours

S5 2.50 6
S10 3.00 10
S20 3.50 8
S50 3.00 8
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Figure 4.3: The RMS-error for the three di�erent data sets using the 3%-set as validation.
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Table 4.2: The optimal values and the variogram models and their corresponding values found
for the OK method using S3 as validation. The number of neighbours was tested for 1 to 15
with step 1 and the number of variograms was tested for 1 through 8 with step 1. A genetic
algorithm was used to �t an exponential, power or spherical varigoram model to the data.

Training
set

Number
of

neighbours

Number
of

variograms
Model Range (m) Nugget (m2) Sill (m2)

S5 5 1
Exponential 712 0.00 1.08

S10 6 8
Exponential 958 0.16 1.14
Exponential 425 0.00 0.76
Exponential 886 0.13 1.06
Exponential 6025 0.37 3.00
Exponential 6025 0.37 4.19
Exponential 3844 0.35 2.56
Exponential 598 0.00 1.03
Spherical 560 0.05 1.27

S20 7 2
Exponential 548 0.11 1.04
Spherical 1677 0.18 1.18

S50 3 8
Exponential 1234 0.10 1.18
Exponential 457 0.00 0.70
Spherical 664 0.04 0.97
Exponential 5224 0.30 2.66
Power - 0.03 -
Spherical 2367 0.01 2.36
Exponential 695 0.00 1.01
Exponential 1087 0.08 1.32

Table 4.3: The optimal values for the RST-method found when the tension (ϕ) ranged from
0.010 to 0.025 with step 0.0005 and the smoothing (w) from 0 to 0.05 with step 0.01. S3 was
used for validation.
Training

set
ω ϕ

Vertical
scaling

S5 0.01 0.0100 1
S10 0.03 0.0195 1
S20 0.01 0.0225 1
S50 0.01 0.0240 1
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Table 4.4: The result for the error from the interpolation when using the 3%-set for validation.

Method
Training

set
Maximum

(+) error (m)
Minimum

(-) error (m)
Mean

error(m)
RMS

error (m)

IDW S5 1.3428 -0.9786 0.0429 0.3941
OK S5 1.2009 -1.0912 0.0273 0.4163
RST S5 2.8562 -1.1911 0.0196 0.4388

IDW S10 0.7540 -1.1082 0.0014 0.3053
OK S10 0.8630 -1.1235 -0.0035 0.3394
RST S10 0.9726 -0.9513 0.0003 0.2646

IDW S20 0.7807 -0.7175 0.0153 0.2318
OK S20 1.1837 -0.9550 0.0099 0.2510
RST S20 0.5584 -0.6766 -0.0034 0.1521

IDW S50 0.4052 -0.6429 0.0007 0.1084
OK S50 0.5344 -0.7053 0.0068 0.1295
RST S50 0.3733 -0.3230 0.0026 0.0929
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(a) IDW Surface (b) OK Surface

(c) RST Surface (d) A surf of the original data

Figure 4.4: (a)-(c): The resulting surface when using S20 for the interpolation. (d): The correct
surface created from 100% of the data. The depth is meters.
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(d) A contour of the original data

Figure 4.5: (a)-(c): The resulting contours when using S20 for the interpolation. (d): The
correct contours created from 100% of the data. The depth is in meters.
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(a) IDW S5 (b) OK S5 (c) RST S5

(d) IDW S10 (e) OK S10 (f) RST S10

(g) IDW S20 (h) OK S20 (i) RST S20

(j) IDW S50 (k) OK S50 (l) RST S50

Figure 4.6: The absolute error from the interpolation, in meters, calculated as the di�erence
between the known value and the interpolated value.
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Figure 4.7: The errors plotted against the distance to the closest neighbour using S5 and IDW.
All the points was placed in bins with a width of 10m. In each bin a point is placed which is
lovated above 95% of the points and a second degree polynomial is �tted to these points.
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(a) S5
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(b) S10
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(c) S20
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(d) S50

Figure 4.8: The error from the interpolation as a function of distance to the closest known point
for the di�erent training sets and interpolation methods.
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4.4 Error Propagation

This section is divided into two parts. In the �rst part the results from the analytical analysis is
presented for IDW and in the second part the numerical result for all methods is presented.

4.4.1 Analytical Analysis

The input-parameters to the IDW consists of x = xlat, y = xlong and z = depth for each of the
n closest neighbours. To simplify the notation the function is written as

ẑ(x0) = F (x) =

n∑
i=1

fi(xi) (4.1)

where ẑ(x0) is the estimate depth at x0 and

fi(xi) = fi(xi, yi, zi) =

[
(xi − x0)2 + (yi − y0)2

]−α2 zi∑n
j=1 [(xj − x0)2 + (yj − y0)2]

−α2
(4.2)

Linearisation of f(x) is equal to linearise the functions {fi} according to

fi(xi + δxi, yi + δyi, zi + δzi) ≈ fi(xi, yi, zi) +
∂fi
∂x

δx+
∂fi
∂y

δy +
∂fi
∂z

δz (4.3)

where the derivatives are evaluated in the point (xi, yi, zi). Assume that δxi, δyi and δzi are
independent random variables with zero mean and standard deviations σx, σy and σz. The
standard deviation in the estimated value can, for small deviations, be approximated as

σz =

√√√√ n∑
i=1

[(
∂fi
∂x

σx

)2

+

(
∂fi
∂y

σy

)2

+

(
∂fi
∂z

σz

)2
]

(4.4)

which will depend on the position of all the known points relative to the interpolation point,
their corresponding depth and the choice of the parameters n and α.

Empirical studies on depth data has shown that typical parameters is α = 2 and n = 8 but
the error will still depend on the position of all the known points relative to the position of the
interpolation point.

To test how well the linearisation and analytical analysis performs a simple data set is created
which can be seen in Table 4.5.

To evaluate the analytical analysis it is compared to a numerical Monte Carlo analysis of the
propagation. Two di�erent sets of uncertainties was used, in the �rst simulation σx = σy =
0.2, σz = 0.1 while in the second σx = σy = 2, σz = 0.1.

The analytical uncertainty in the output using the linearisation as well as an Monte Carlo sim-
ulation can be seen in Figure 4.9(a)-4.9(d). The error calculation using Monte Carlo simulation
was taken as the standard deviation in each point using 1000 independent simulations. In each

34



4.4. ERROR PROPAGATION CHAPTER 4. RESULTS

Table 4.5: Synthetic data used for the analysis of the error propagation.

Y-position (m) X-position (m) Depth (m)

0 0 2
0 10 2
10 10 2
10 0 2
5 2 3

simulation, each of the �ve points was randomly disturbed using a normal distribution with the
given standard deviation.

Analytical calculations was not performed on real data since it is shown that the linearisation
was not good enough to be used. Analytical calculations was not performed on the two other
methods, OK and RST, since they are too complex to linearise.
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(c) Monte Carlo, σx = σy = 0.2m,σz = 0.1m
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Figure 4.9: (a) and (b) shows the maximum error in the output using an analytical calculation.
(c) and (d) shows the corresponding errors using Monte Carlo simulations. Note the di�erent
scale in (b) and (d).
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Table 4.6: The result for the error from the interpolation when using the 3%-set for validation.
The maximum and mean over-/undershoot is given. Overshoot means that the algorithms
estimates a depth deeper then the correct value and undershoots a more shallow estimation.

Method
Training

set
Maximum
over. (m)

Maximum
under. (m)

Mean
over. (m)

Mean
under. (m)

RMS
error (m)

IDW S5 0.5147 0.5779 0.0906 0.0899 0.0982
OK S5 0.8438 0.9077 0.1129 0.1104 0.1399
RST S5 0.4990 0.4383 0.1163 0.1216 0.1299

IDW S10 0.3487 0.3516 0.0920 0.0927 0.0995
OK S10 0.7478 0.6620 0.0894 0.0898 0.1124
RST S10 5.2284 6.0708 0.1764 0.1604 0.3567

IDW S20 0.3984 0.4005 0.1016 0.1006 0.1092
OK S20 1.5905 1.4176 0.1223 0.1231 0.1535
RST S20 7.0000 2.3488 0.1385 0.1361 0.1627

IDW S50 0.3489 0.3279 0.0982 0.0982 0.1056
OK S50 1.2202 1.1133 0.1444 0.1435 0.1813
RST S50 0.4966 0.3670 0.0840 0.0842 0.0909

4.4.2 Numerical Analysis

A table containing the maximum-, minimum-, mean- and root mean square-error for all three
interpolation methods and data sets can be seen in Table 4.6. The result is based on the output
from 100 Monte Carlo simulations for each algorithm and data set. In each Monte Carlo simu-
lation the position of each data point was changed independently using a normal distrubution
with zero mean and σ = 5m. The depth of each data point was also changed using σ = 0.2m.
In each point the algorithm can overshoot or undershoot the correct value. Overshooting means
that the algorithm estimates a depth deeper than the correct value. Undershoot means that the
estimation is more shallow than the correct value.

In Figure 4.10 the RMS-error as a function of the density of data-points can be seen for the
three di�erent interpolation methods.

The uncertainty for the di�erent interpolation method and data sets was plotted against the
corresponding position which can be seen in Figure 4.11(a)-4.11(c).
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Figure 4.10: The RMS-error for the three di�erent data sets using the 3%-set as validation.
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(a) IDW S5 (b) OK S5 (c) RST S5

(d) IDW S10 (e) OK S10 (f) RST S10

(g) IDW S20 (h) OK S20 (i) RST S20

(j) IDW S50 (k) OK S50 (l) RST S50

Figure 4.11: The maximum error propagation, in meters, calculated as the di�erence between
the known value and the value from the Monte Carlo simulations. The square pattern in 4.11(f)
arises from bad parameters and from the fact that the input data was divided into a grid.
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The �tted curve for all three interpolation methods can be seen in Figure 4.12(a)-4.12(d) for
the four di�erent sets.
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(a) S5
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(b) S10

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Distance (m)

U
nc

er
ta

in
ty

 (
m

)

 

 

IDW
OK
RST

(c) S20
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(d) S50

Figure 4.12: The error as a function of distance to the closest known point for the di�erent
training sets and interpolation methods.

4.5 Runtime

The runtime of the di�erent algorithms as a function of the number of data points can be seen
in Figure 4.13. The runtime is taken as the mean over �ve simulations. Only the interpolation
process is considered, the time for optimisation is not represented. The program was tested on
a computer with a dual core 1.9 GHZ processor and 10 GB of ram.
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Figure 4.13: The runtime for the three diferent interpolation methods as a function of distance.
The time is taken as the mean over �ve di�erent runs.
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5 | Discussion

The following chapter contains a discussion of the results and suggestions for improvements.

5.1 Variogram Fit

A part from the root mean square error the genetic algorithm and the variogram �t was also
evaluated by visualisation. Samples were taken and in Figures 4.1(a)-4.1(f) it can be seen that
the algorithm converged and that the variogram �ts the sampled data below the range. There is
no need to �t the data above the range since the range determines at what distance data points
no longer are correlated. Improvements here can be to implement more variogram models.

5.2 Parameter Optimization

First of all, it can be seen in Figures 4.2(a)-4.2(f) that for all three methods the optimal pa-
rameters were the same for the two di�erent validation sets. This indicates that the parameters
should be able to be generalized to be the optimal parameters for the given area. It should
however be noted that data from another area can, and probably will, have di�erent optimal
parameters. The reason for this is for example that a mountain bottom is much less smooth than
a sand bottom. In future research more areas could be examined and the di�erent parameters
can be compared.

It should also be noted that the parameters was optimized for the smallest error in the inter-
polation method, not the smallest error propagation. Further work here could include �nding
a balance between parameter optimized for small interpolation error and small error propaga-
tion.

Overall the parameter optimization algorithm implemented is not very intelligent since it only
iterates over the given parameter space. A solution could be to look at the variogram and �nd
pattern in this to make a good guess on the choice of the parameters. In the end, the parameters
should only depend on the properties of the sea �oor, where some properties can be represented
by a variogram. The type of ocean �oor (sand, mud, bedrock, vegetation e.c.t.) could also be
used as input and indicate which parameters to use to speed up the process.
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When looking at the variogram, see �gure 4.1(a)-4.1(b), one can also notice a rather signi�cant
di�erence in di�erent directions. This indicates that the correlation between points is di�erent
depending on the direction. This motivates a change in scale for the two horizontal coordinates
in RST which gives di�erent parameters in di�erent directions.

For IDW it can be seen that when the number of neighbours is equal to 1, the RMSE is
independent of α which was expected since α tells how the neighbours should be weighted, and
if we only have one, α has no impact. The error curves are also rather smooth.

In OK on the other hand, the curves are not that smooth and one can �nd many local minima.
The most realistic number of variograms should be 2 since the variogram indicates in how many
di�erent directions di�erent properties exists. These two directions can for example be parallel
to the coast and perpendicular to the coast. The result however indicated that more variograms
should be used, up to 8 in two cases.

For RST the optimal parameters were very hard to �nd since there do not exist any general
range or limits for the parameters. It was however noted that the vertical scaling did not have
any impact on the error. When optimizing the RST parameters a lot of manual work was done
and trial and error was used to �nd good ranges for the parameters. Wrong parameters gave
a very unstable algorithm where the depth diverged for all points expect for the known points.
The vertical scaling is there to handle a large di�erence in scale in position and depth, but since
this is not the case the vertical scaling had no noticeable e�ect.

It can be noted that the smoothing parameter for RST is roughly the same for all densities.
The smoothing parameter tells how smooth the original surface should be, so this should be
density independent, which was shown. The tension parameter on the other hand increased
with increasing density. The tension controls the sti�ness and lower values will simulate the
behaviour of a membrane while higher values will simulate a thin metal plate. An explanation
to increasing tension with increasing density is that too sparse data can cause the algorithm to
overshoot if the sti�ness is too high. Therefore the tension is lowered to simulate a membrane
and reduce overshooting. When the density increases the risk of overshooting decreases and a
more sti� spline is suitable.

5.3 Error and Accuracy

It should be mentioned that the tables of error for the di�erent data sets and algorithm uses
one training set and one validation set. This can also be achieved with real measured data.
The plots with interpolation error against position however uses all known values in the whole
grid, which would not be possible with irregular scattered data which one would have in a real
situation.

For the interpolation error, Kriging performed the worst for all densities. The reason for this is
unknown but one explanation could be that the data was too sparse to create a good variogram.
It is suggested [10] that at least 100 di�erent bins should be available to create a good variogram.
Looking at the variograms created, too few bins was created for S5 and S10 due to too sparse
data.
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The Regularized Spline with Tension was proven to be best for all densities except for the lowest
one where Inverse Distance Weightning performed best. A reason for the RST to performe worse
at low densities is that too little information is available to create a good spline of the surface.
Instead the more simple IDW performs good since it simply takes an average between the closest
points which turns out to be the best guess.

When it comes to the error propagation a comparison was made between the analytical solution
and the Monte Carlo simulation and a signi�cant di�erence could be noticed. This di�erence
increased with increasing uncertainty in the input and in real data the uncertainty would be
even higher. The conclusion is that the linearisation is not good enough since Monte Carlo was
taken over a large number of simulations and can be considered correct. Due to this the decision
was made not to make a numerical analysis on the real data or the other methods.

When performing Monte Carlo simulations on the other methods and with the real data sets
only 100 simulations was performed. It was however determined that 100 simulations was more
than enough by trying di�erent number of simulations. Due to the larger number of data
points, good indications and convergence of the error propagation could be achieved after only
50 simulations. In Figure 4.10 it can be seen that there is a peak in the error for RST at 10%.
The reason for this is probably that the parameters was not optimised for low error propagation,
for example the smoothing parameter for this set was 0.03 while it was 0.01 for the other sets.
When looking at Figure 4.11(f) one can see large areas where that algorithm tends to overshoot
or undershoot the correct values. One can also see that the data is divided into a grid which
also is an e�ect of bad parameters. A better choice of parameters could prevent this by creating
a smooth transition between the cells and reduce the overall error. Overall, it could be noted
that the density had a very small impact on the error propagation.

It could also be noted that the plots of the errors against position looks rather similar for OK
and IDW, the error is spread out. The reason is that both of these use a sort of weighted average
over the nearest neighbours. In the RST on the other hand, the errors seem to be much more
clustered. The reason could be these these error clusters arises where the data points and errors
in them causes the spline to overshoot or undershoot the real values.

5.4 Runtime

In Figure 4.13 it can be seen that all algorithms seems to scale linearly with the number of data
points. However, RST increase much slower and is therefore the fastest algorithm for higher
number of data points. The main reason for this is that in the RST a grid was implemented and
the data divided which make the algorithm scale better. There are however still optimizations to
be done to all algorithms. For example a grid can be used in both OK and IDW as well by only
looking at the local area when searching for the closest neighbours. To improve runtime even
further for high densities close data points could be merged to reduce the number of samples.
Merging data points also have other advantages, for example reducing the uncertainty in the
speci�ed location.
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6 | Conclusion

The three methods Inverse Distance Weighting, Ordinary Kriging and Regularized Spline With
Tension was implemented and compared. It could be shown that for very sparse data the most
simple method, IDW, performed best while for more dense data the more complex method RST
outperformed both IDW and OK in terms of interpolation error.

For the error propagation IDW performed best in most cases. However, the parameters was not
optimized for this type of error which can give a biased result. By optimizing the parameters
for low error propagation a better result can be achieved.

It could also be noted that in terms of the runtime, the RST scales much better (it runs faster)
than the two other methods. This was expected from the theory since splitting the data into
di�erent regions was implemented in the RST.

From the theory and literature studies, RST is the most suitable for inhomogeneous and cluster
data [13]. When real data will be collected, this will most likely be the case and clusters will ap-
pear near harbours while more sparse data will be available at more hard to reach places.

Furthermore, water level data could be collected from SMHI and a system for compensation for
changing water level was developed. This was however only tested on synthetic data to verify
the algorithm.

6.1 Future Research

The RST algorithm still has a lot of parameters to be optimized. For example kmin and kmax re-
main to be examined. And as mentioned the variogram indicates di�erent properties in di�erent
directions. Therefore horizontal scaling should also be implemented and optimized. Along with
horizontal scaling, rotation of the axis also needs to be implemented to �nd the right directions
of the di�erent properties. To optimize over more parameters the optimization has to be made
more e�ective and intelligent. As suggested above, properties from the variogram as well as the
type of ocean �oor could be used to �nd good initial guesses for the parameters.

There are still much left to do in optimizing the speed of the algorithm. More clever algorithms
for �nding the nearest neighbours could be implemented by dividing the data into a grid with
suitable size. The speed can also be optimized by merging data points close by which also can
reduce the uncertainty.
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6.1. FUTURE RESEARCH CHAPTER 6. CONCLUSION

Future research also include testing the algorithms on real data, where real depth is represented
and correct values for uncertainties can be used. This also includes comparing the methods on
di�erent types of ocean �oors and areas. The hypothesis is that RST will perform best since
this is most suitable for irregular sampled data.
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A | Kriging Derivation

Derivation of (2.23):

var[Ẑ(x0)] = E[{Ẑ(x0)− Z(x0)}2] = 2

n∑
i=1

λiγ(xi, x0)−
n∑
i=1

n∑
j=1

λiλjγ(xi, xj) (A.1)

The variance can be written as

var[Ẑ(x0)] = E[{Ẑ(x0)− Z(x0)}2] +
(
E[Ẑ(x0)− Z(x0)]

)2

= E[{Ẑ(x0)− Z(x0)}2] + 0 (A.2)

since it is assumed that E[Ẑ(x0)− Z(x0)] = 0. Next is to show that

E[{Ẑ(x0)− Z(x0)}2] = 2

n∑
i=1

λiγ(xi, x0)−
n∑
i=1

n∑
j=1

λiλjγ(xi, xj) (A.3)

To make the notation simpler Z(xi) is denoted as Zi which gives

E[(Ẑ0 − Z0)2] = E

( n∑
i=1

λiZi − Z0

)2
 =

n∑
i=1

n∑
j=1

λiλjE[(Z − Zi)(Z − Zj)] (A.4)

By rewriting E[(Z − Zi)(Z − Zj)] according to

(E[Zi − Zj ])2
= (E[(Zi − Z) + (Z − Zj)])2

=

= (E[Zi − Z])2 + 2E[(Zi − Z)(Z − Zj)] + (E[Z − Zj ])2

the following can be derived

E[(Z − Zi)(Z − Zj)] =
1

2

[
(−E[Zi − Zj ])2

+ (E[Zi − Z])2 + (E[Z − Zj ])2
]

(A.5)

This is used to rewrite (A.4)

n∑
i=1

n∑
j=1

λiλjE[(Z − Zi)(Z − Zj)] = 2

n∑
i=1

λi
1

2
(E[Z − Zi])2 −

n∑
i=1

n∑
j=1

λiλj
1

2
(E[Zi − Zj ])2 (A.6)



APPENDIX A. KRIGING DERIVATION

by using the fact that
∑n
j=1 λj = 1. The expected value is replaced by the variogram according

to 2γ(xi, xj) = (E[Zi, Zj ])
2

E[(Ẑ0 − Z0)2] = 2

n∑
i=1

λiγ(x0, xi)−
n∑
i=1

n∑
j=1

λiλjγ(xi, xj) (A.7)

and (2.23) is shown.
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