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Abstract
This thesis describes the process of constructing a platform with all the requirements
for electrical controlling with the aid of sensor-fusion. The goal is to have a final
product where a control algorithm for the system can be implemented.

The system is made up of a Raspberry pi 3 model B, 2 Parallax standard servo mo-
tors, an Adafruit servohat, a picamera and a Raspberry sensehat. By interlinking
these different components a suitable foundation for controlling the game has been
constructed.

The programming language used is python version 2.7 and it’s combined with the
vision detecting program openCV. In order for the controlling of the system to work
the ball position as well as the path needs to be acquired.

The finished result is a functioning platform where a basic control algorithm has
been implemented to show the possibilities of the system as well as the advantages
of a gyroscope.
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Sammanfattning
Den här rapporten beskriver processen för konstruktionen av ett elektroniskt styrt
labyrintspel, detta med hjälp av ett gyroskop och en visionkamera. Målet är att
slutprodukten ska vara en färdig plattform där en regleralgoritm ska kunna imple-
menteras.

Systemet består av en Raspberry pi model 3 B, 2 Parallax standard servo motorer,
en adafruit servoHat, en picamera samt en Raspberry senseHat. Genom att länka
samman dessa komponenter så ska ett lämpligt fundament för reglering av processen
konstrueras.

Programmeringspråket som används är Python version 2.7 vilket komplementeras
med openCV för möjligheten till bildbehandling. För att regleringen av processen
ska vara möjlig så krävs det att bollens position samt väg är känd.

Resultatet är en fungerande platform där en grundläggande regleralgoritm har blivit
implementerad för att visa systemets möjligheter samt gyroskopets fördelar.
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1
Introduction

1.1 Background

Broccoli is a consulting firm that works mainly in the hardware- and software de-
velopment industry. In addition to working with consultants they also focus a lot
of their time on education and development of new techniques and products.
If you should speak about an technology that is under constant development, vision
technology is the one. Vision technology is definitely here to stay which makes
it more important to f ind new innovating ways of implementing it. Broccoli is
interested in developing their own version of a so called “labyrinth game”. They
want to investigate the possibilities of solving the controlling of the system with
different parameters than the ones that are most commonly used in similar setups.

1.2 Purpose

The purpose of this project is to investigate if the controlling of a labyrinth game can
be solved with different parameters than the ones that are already used in similar
setups today. By researching what different gyroscope setups, as well as actuators,
can be implemented for the system a study will be made on the most suitable setup
for the specific project.
First a suitable gyroscope, as well as actuators, will be chosen. Then a Raspberry
pi micro computer will be used for the implementation of these components. Lastly
a control algorithm will be implemented to show the possibilities of the system.
This project also serves as an update to two earlier thesis projects done at Chalmers
that both revolved around building a electronically controlled labyrinth game. These
projects where done with technology that is now quite outdated and this project will
look into what is possible with the help of modern computing and vision systems.
It might seem overconfident to both build a platform and controlling it in the same
project but much of the newer equipments available today cuts down on both the
cost and time needed to set up the hardware and software required. It should also be
mentioned that inspiration has been taken from a project found on instructables.com
[20].
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1. Introduction

1.3 Questions to research
• Is it possible/suitable to control a system of this magnitude with a raspberry

pi?
• How accurate does the actuators need to be for controlling the system?
• Is a gyroscope a suitable complement to a vision setup?
• Is openCV a suitable software for object tracking?

1.4 Limitations
The project will be limited to constructing a functioning electrically controlled
labyrinth game with the implementation of a simpler controlling algorithm. A goal
is to construct demo program that will use controlling algorithms.

The controlling algorithm will focus on getting the ball from one position to another.
This will be done on a flat surface without the maze.

2



2
Background Material

2.1 The labyrinth
The labyrinth game used in this project is a brio labyrinth game with the measure-
ment 350x300(mm)[9].

Figure 2.1: The labyrinth game (Authors image)

2.2 Actuators; Servomotors
The actuators used in this project are two Parallax standard servomotors.[5] They
are servos that are commonly used in educational programming, such as basic stamp.
The Parallax standard servos require a power supply of 4-6 volt and communicate
through PWM at a 50Hz update frequency. They are very fast and precise which
meets the requirements for the actuators.

Figure 2.2: The servo (Authors image)
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2. Background Material

2.3 An overview of the Raspberry Pi
The RPI is a single board computer the size of a credit card, and the version of the
RPI that is used in the project is the RPI 3 model B. It’s a perfect micro computer
for teaching the basics of computers science but also an easy to use platform for
all kinds of projects. The main programming language that is used for the RPI is
Python, and has a syntax which allows users to express different kinds of codes in
less lines than one would do in similar programming languages like C++ or Java[1].

Figure 2.3: The RPI (Authors image)
The RPI 3 model B can run several different OS, all from Windows 10 to Ubuntu.
The OS used in this project is Raspbian which is a custom version of Linux for
the RPI and is recommended by the Raspberry foundation itself. Rasbian has a
high reputation within the Linux community for having high quality, this being the
reason it was chosen.
The RPI 3 model B is equipped with a 1,2 GHz 64-bit quad core processor, wire-
less Local Area Network, Bluetooth, full High Definition Media Input (HDMI), 40
General-purpose input/output (GPIO) pins, 1 GigaByte Random Access Memory,
4 USB ports and several other handy components. [11]

2.3.1 HAT’s
HATs, also known as “hardware attached on top”, is one of the many different
accessories that can be equipped to the RPI. There are different kinds of HATs that
all have different intended purposes.
They are mounted on top of the RPI, connected to the 2x20 signal pins located on
the board. [1]
In this project a servo HAT as well as a sense HAT are the ones that has been used.

4



2. Background Material

2.3.1.1 The Sensor HAT

The sensor HAT is a board card that can be added onto the RPI. For this project
its main task is to sense the angle of the plane, the roll and pitch, which then is
represented in the code as the actual position of the plane.
It is equipped with a 8x8 Light Emitting Diode (LED)-display, a 5 button joystick
as well as several other useful functions[2]:

• Humidity sensor
• Accelerometer
• Magnetometer
• Temperature sensor
• Barometric pressure
• Gyroscope

Figure 2.4: The sense HAT (Authors image)

2.3.1.2 The Servo HAT

The servo HAT is an accessory for the RPI that is used to control dc servomotors
with very high precision, something that the RPI struggles with otherwise. It can
control up to 16 servos with 12 bit precision and only uses two of outputs on the
I2C[3].
The servo HAT has two separate power supplies. The VCC, which is the 3.3V that
comes from the RPI pins, powers the PWM chip as well as determines the I2C
logic[8]. The second is the 5V which powers the servos. The reason for this separate
power supply is that servomotors can spike a lot and having a separate power supply
protects the RPI from these spikes.
If the current peek from the servos is high, there is a spot on the HAT which a
capacitor can be soldered on, this was done for this project.

Figure 2.5: The servo HAT (Authors image)

5



2. Background Material

2.3.2 The PiCamera
The picamera is an easy to use, high definition camera built for the RPI and has
several useful functions that can be accessed through the picamera python library.
It is attached to the RPI with a 15cm ribbon cable to the Camera Serial Interface
(CSI) port.[4]

Figure 2.6: The picamera (Authors image)

2.4 The RPI Software
This section will introduce the software tools that was used in the project. All of
them are supported and well integrated by the RPI system.

2.4.1 Raspbian (Linux)
The RPI is commonly delivered without a pre-installed OS so choosing an OS is up
to the user. It is although recommended to buy an Secure Digital (SD) card with
either NOOBS or Rasbian on it. Rasbian is a version of Linux that is optimized for
usage on the RPI and is recommended by the RPI itself. Rasbian comes with many
useful programming tools pre-installed like Python, Scratch and Java. This makes it
so that all the needed programming languages are available already at first startup
of the RPI. NOOBS is an operating system installer that contains Raspbian as well
as other operating systems that can be downloaded and installed. It is for example
possible to use Windows or os-x on the RPI although it is not really optimized and
as easy to use for programming on the RPI.

2.4.2 OpenCV
OpenCv is an open source free-to-use library of programming functions that is avail-
able for several different programming languages such as C++ and Python as well
as for many different platforms like Windows, Linux and Android.
OpenCv stands for Open Source Computer Vision and it has several appropriate
applications for picture and video analysis. The library was developed by Intel’s
russian software team led by Gary Bradsky and Vadim Pisarevsky and was first
released in 2000.[10] The library is still under constant development and the version
used in the project was OpenCv 3.0.0 which was released in June 2015. Although

6



2. Background Material

OpenCV is often used on the RPI platform it is not really straight forward to install
right away. There are a lot of tutorials available on the web on how to do it but it
still takes a lot of trial and error before it works. Most installations also take up to 3
hours to make. Some things to look into is which version of Rasbian that the tutorial
is made for and which RPI it is done on. Once a functioning version of OpenCV is
installed on the RPI all the useful functions for vision-programming are available in
the Python code after importing the libraries. One thing to add about OpenCV is
that it requires some other libraries in order to use all the functions available. One of
them is Numpy which is a tool for scientific calculations and numerical operations.
All OpenCV array structures is done in Numpy.

2.4.3 Python
As mentioned before the Rasbian build of RPI comes with two versions of Python
already installed. Python version 2 and 3 are very similar and for the most part
indistinguishable. There are a few libraries that are not yet supported for version 3 so
that is the only reason that this project was mainly done in version 2. Programming
anything that makes use of the pins as input and outputs on the RPI is almost always
done through Python. But that doesn’t mean python is restrictive. It is a widely-
used high-level programming language that can mostly serve the same purpose as
similar languages like C/C++. The main difference between Python and C/C++ is
that python is very emphasized on efficiency and more easily readable code that can
be expressed in fewer lines. An example of this is how you can construct a simple
for-loop in C/C++ and in Python. This is in C/C++:

#inc lude <iostream>
us ing namespace std ;

i n t main ( )
{

f o r ( i n t b = 10 ; b < 16 ; b = b + 1 )
{

cout << " value o f b : " << b << endl ;
}

re turn 0 ;
}

And this is the same thing in Python:
f o r b in range (10 , 1 6 ) :

p r i n t " Value o f b : %d" % ( a )
Both these codes will print out:

va lue o f b : 10
value o f b : 11
value o f b : 12
value o f b : 13

7



2. Background Material

va lue o f b : 14
value o f b : 15

It is easy to see that the python demands much fewer lines to execute the same thing
as the C/C++ code. Python does not use curly braces { } to control the flow of the
code but relies simply on white-space indentations. This is already an implied way
for people to write code especially in the C/C++-languages so that you get a code
that is easier to read and understand.
One downside to Python is that it is slower[10] than C/C++. But it is also possible
to combine Python code with C/C++. That way computationally intensive codes
can be written in C/C++ and then made into python modules through wrapping
and imported into python code. OpenCV makes use of this feature to make the
complicated C/C++ algorithms run faster in the background while the main code
is written in simple, easy to understand, but slower Python-code.

8



3
Methodology

This chapter explains the approach that has been taken for this project.

3.1 Pilot study
In order to be able to take on the task of creating a sensor as well as a vision aided
labyrinth game some research had to be made. This to ensure that the task was
possible and could be done within the time frame.
Before the project could get started some research had to be done to choose a suitable
platform, hardware and software. This was done by setting up requirements and
afterwards doing a study to decide the best option for the project.

3.2 Documentation
The documentation during the project has been done in a Google drive map which
can easily be accessed by both members of the group. Here everything from the
daily blog to the excel document that describes a plan for every week of the project
can be found.

3.3 Coding
The coding during the project has been done "step by step". By not focusing on
coding the final product from the start instead the coding has been done by focusing
on each required task and later on combining them. This with the intention of saving
time as well as getting a better understanding.

3.4 Material
• LATEX
• Google Drive
• Python
• OpenCV
• Simulink
• Photoshop
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4
The pilot study

4.1 Platform
The requirements for the construction platform was the following:

• An easily built platform but not on the cost of the end result
• The possibility to implement a camera above the labyrinth
• The possibility to implement a gyroscope
• The possibility to implement two actuators on the steering knobs

By taking these requirements into consideration, a study was made about how the
platform was to be built. A lot of the more time consuming constructions were
discarded because they were unnecessarily complex. Instead the decision was made
to build a wooden platform that had the necessities needed for the project.

Figure 4.1: The platform (Authors image)

4.2 Hardware
The different hardware component used in the project is probably the most vital
decision that was to be made initially. This decision sets a lot of the limitations as
well as the possibilities.
In order to make proper decisions, a study had to be made, where the different
requirements varied depending on the component.
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4. The pilot study

4.2.1 Requirements for the actuators
• High precision
• Affordable
• High speed

After these requirements were set the Parallax standard servo motors were chosen.

4.2.2 Requirements for the computer
• Powerful enough for image processing
• Affordable
• Useful accessories
• Easily installed

After these requirements were set the RPI 3 model B was the micro computer that
was chosen.

4.3 Software
When the decision was made to use the the RPI 3 a study about what software
programs that were going to be used in the project was made. The study was made
based on two different requirements:

• The software needs to be able to process images
• It must be a widely used software with a good reputation from the general

community
After taking these requirements into consideration in our research the decision was
made to use a coding language called Python as well as combining this with a image
processing program called openCV.

12
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Hardware system implementation

5.1 Getting the servos to work

5.1.1 Installing the servo Hat
Once the servo HAT is attached to the RPI there is some configuring that needs to be
done. The first step is to type sudo apt-get install python-smbus in the terminal,
this adds the I2C support for python. When that is done the python library needs to
be imported. This is done by writing git clone https github.comadafruitAdafruit-
RaspberryPi-PythonCode.git, cd AdafruitRaspberryPi-PythonCode and
cd Adafruit_PWM_Servo_Driver in the terminal. How this library is im-
ported in the Python code is explained in the subsection 5.1.3.

5.1.2 The servo control logic
This section explains how the servo motors is controlled with the help of the imported
Python library for PWM-controlling. Note that this section assumes that the reader
has some basic knowledge about PWM.
It’s known that the servo HAT communicates with a 12-bit protocol[3] and the servos
work out of a 50Hz frequency[5]. So the servomotor needs a new signal every 20
milliseconds and the length of this signal determines which position it will be set to.
The Adafruit PWM code library can set the length of this signal as a 12-bit number
with 0 being no signal and 212 (4096 bits) being 20 milliseconds if a frequency of
50 Hz has been set. The length of this signal that the servomotor requires can be
found in the data-sheet 5.1. The servomotors goes to the minimum-position when
given a signal of 0.75 milliseconds and maximum-position when given a signal of
2.25 milliseconds.

Figure 5.1: Positioning times (Credit to Parallax for the rights to use this image)

To set the length of the signal, the number of bits then needs to be calculated for
setting a minimum, center and maximum position. So the equation 5.1 shows how
many bits that is required to get a signal of one millisecond:

212[bits]
20[ms] = 204.8[bits/ms] (5.1)
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It’s now possible to calculate the amount of bits that needs to be set to get the
servos in different positions, as shown in equation 5.2, 5.3 and 5.4:

Minimumposition : 0.75 ∗ 204.8 = 153.6[bits] (5.2)

Centerposition : 1.5 ∗ 204.8 = 307.2[bits] (5.3)

Maximumposition : 2.25 ∗ 204.8 = 460.8[bits] (5.4)

The figure below 5.2 further illustrates how this applies to the positioning of the
servomotor.

Figure 5.2: The servo logic with the servo Hat (Authors image)

5.1.3 A code example
A code that moves the servo to the center position could look like figure 5.3:

Figure 5.3: Example code (Authors image)

In the first line of the code thePWM function from theAdafruit_PWM_Servo_driver
library is imported. The third to fifth line then sets which address is going to be
written to, what frequency is going to be used as well as the desired position. Then,
on the seventh line, the pwm.setPWM function is used to choose the desired
position of the servo. The function takes three arguments, the channel for which
servomotor will be set, the time (number of bits) for when the signal will go high
and then time for when the signal will go low again. Argument two is for the sake
of simplicity set to zero so that the signal always starts at a high flank. This way
the third argument can be the number of bits that directly sets the length of the
signal.
The PWM signal would then look something like figure 5.4.
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Figure 5.4: The PWM (Credit to Parallax for the rights to use this image)

5.2 The SenseHat

The SenseHat is all about sensing the environment. It is actually especially made
for the AstroPi-mission to make measurements of the environment inside the in-
ternational space-station (ISS)[15]. This section will explain the logic and how to
access the gyroscope in the Sense HAT.

5.2.1 Accessing the gyroscope

There is a library of functions available on the RPI for accessing each sensor and
the display on the SenseHAT. This library can be installed on the RPI just by
typing sudo apt-get install sense-hat into the command window. With the help
of this library the orientation values from the gyroscope can easily be accessed.
The command is called get_orientation_degrees and it will return a dictionary
data type with the gyroscopes pitch, yaw and roll-values. A dictionary is a data
type commonly used in python that works like a list but with a name for each
element as well as a value. To get the pitch value from the dictionary, just type
get_orientation_degrees["pitch"]. Pitch, Yaw and Roll are values that are used to
describe the orientation of an object in space. Pitch and Roll are the values that
are being used in this project.
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Figure 5.5: The pitch, yaw and roll logic. (Credit to Rasberrypi.org for giving out the
rights to use this illustration)

5.2.2 Implementing the gyroscope

The senseHAT was attached on the long side of the labyrinth directly to the center
plane so that the gyroscope has the same inclination as the plane itself. So if the
gyroscope works as intended it could be implemented for a better controlling of the
labyrinth. Some possible applications are the following:

• It could record the path of the ball by inclinations over time. Therefore if the
ball gets through the labyrinth successfully, it could possibly be recorded and
played out with the same results each time.

• The gyroscope makes more accurate equations possible on how a ball behaves
in inclined planes.

• A fault in the attachment of the servomotors on the labyrinth knobs makes it
so that the plane and the servomotors becomes oblique if enough pressure is
put on the planes. Sometimes the servomotors have to be re-calibrated and
reattached so that the starting position correspond to the plane being a flat
surface with no inclination. This can be worked around by using the gyroscope
to calibrate the servomotors instead each time the code starts to start out from
a flat surface.

• The servomotors can further be controlled by the gyroscope so that an incli-
nation can be requested by the code and the gyroscope can guide the motors
to actualize the plane into this position.
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Figure 5.6: The mounting of the SenseHat on the labyrinth (Authors image)

5.2.3 Problems with gyroscope inaccuracy
To get an accurate value from the gyroscope the get_orientation_degrees needs
to be addressed/updated frequently. The sensor HATs library-code needs to do a lot
of measurements in order to get the right value for the environmental sensors. So if
the rest of the main code takes up a long time and the gyroscope is only addressed
once in the main loop the values becomes unreliable. In most of the codes used in
this project the loop takes up at least 30 milliseconds which is too slow to accurately
measure orientation. The solution to this issue is solved by creating a separate class
and a technique called thredding[12]. This creates a separate loop which pulls values
from the gyroscope in the background while running the main code. When using
this method, orientation-values becomes reliable and accurate. See appendix D for
the code that was created to solve this problem.

5.3 Stacking HATs
One big reason to use RPI in a project like this is the possibility it has for using
multiple modules together and controlling them by a method called "stacking". The
two main modules that are being stacked in this project are the servo HAT and the
sense HAT. The camera module is also being used in conjunction with the HAT-
modules but this module will basically work no matter what you stack on top of the
RPI. The RPI and the different modules communicate with the help of a previously
mentioned protocol called I2C which makes "stacking" possible. Once I2C-Kernel
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support is activated the RPI can automatically recognize what modules are being
stacked on top of it. The servo HAT takes up two I2C addresses when attached.
You can look up which these addresses are by typing "sudo i2cdetect -y 1" into the
command window. Something like this will then show up:

0 1 2 3 4 5 6 7 8 9 a b c d e f
00 : −− −− −− −− −− −− −− −− −− −− −− −− −−
10 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
20 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
30 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
40 : 40 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
50 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
60 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
70 : 70 −− −− −− −− −− −− −−

These are the I2C-addresses and, as you can see, the addresses 0x40 and 0x70 are
being used up by the servo HAT. If the only sense HAT is mounted on the RPI and
the same command is run something like this will show up:

0 1 2 3 4 5 6 7 8 9 a b c d e f
00 : −− −− −− −− −− −− −− −− −− −− −− −− −−
10 : −− −− −− −− −− −− −− −− −− −− −− −− 1c −− −− −−
20 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
30 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
40 : −− −− −− −− −− −− UU −− −− −− −− −− −− −− −− −−
50 : −− −− −− −− −− −− −− −− −− −− −− −− 5c −− −− 5 f
60 : −− −− −− −− −− −− −− −− −− −− 6a −− −− −− −− −−

The addresses of interest is 0x70 and 0x40, and that they aren’t occupied when the
sense HAT is mounted. This means that the two modules could be stacked on top
of each other without signals colliding and disturbing each other. So the servo HAT
was mounted directly on top of the RPI and the Sense HAT was then mounted on
top of that. When then starting up the RPI and running the I2C-detect command
this showed up:

0 1 2 3 4 5 6 7 8 9 a b c d e f
00 : −− −− −− −− −− −− −− −− −− −− −− −− −−
10 : −− −− −− −− −− −− −− −− −− −− −− −− 1c −− −− −−
20 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
30 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
40 : 40 −− −− −− −− −− 46 −− −− −− −− −− −− −− −− −−
50 : −− −− −− −− −− −− −− −− −− −− −− −− 5c −− −− 5 f
60 : −− −− −− −− −− −− −− −− −− −− 6a −− −− −− −− −−
70 : 70 −− −− −− −− −− −− −−

The servo HAT worked as intended but the Sense HAT did not function properly.
This is because the position 0x46 should be a so called UU-index position. So the
RPI is not running the correct Sense HAT initiation upon start-up because it does
not recognize the module when stacked on top of the servo HAT. With the help of a
forum-thread on the Raspberry website [16] it was discovered that you can force the
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RPI to recognize and initialise the Sense HAT even when being stacked. There is
a text-document called config.txt in the boot-folder of the RPI that can be edited
to change the start-up sequence. If the line toverlay=rpi-sense is added here the
RPI will recognize the Sense HAT again. After rebooting the RPI and running the
I2C-detect command it will now show this:

0 1 2 3 4 5 6 7 8 9 a b c d e f
00 : −− −− −− −− −− −− −− −− −− −− −− −− −−
10 : −− −− −− −− −− −− −− −− −− −− −− −− 1c −− −− −−
20 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
30 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
40 : 40 −− −− −− −− −− UU −− −− −− −− −− −− −− −− −−
50 : −− −− −− −− −− −− −− −− −− −− −− −− 5c −− −− 5 f
60 : −− −− −− −− −− −− −− −− −− −− 6a −− −− −− −− −−
70 : 70 −− −− −− −− −− −− −−
The functions of both hats worked identically as when they where mounted sepa-
rately on top of the RPI after doing this.
Because the Sense HAT needed to be attached directly to the labyrinth-game it
could not be stuck on top of the RPI. Therefore a flat cable was connected between
the servo HAT and the Sense HAT so that the Sense HAT could be on a separate
location.

Figure 5.7: The flat cable connection between the servo HAT and the Sense
HAT(Authors image)
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6
Vision System

6.1 Requirements of the Vision System
With the help of tools like openCV, setting up a vision system on any device that
has C/C++, Python or Java and a camera attached to it has become much more
straightforward in recent years. There are several OpenCV functions that can be
implemented into this project. The most important thing is to find the position of
the ball inside the labyrinth-game. Preferably in a frame-rate that makes precise
controlling possible. Other interesting inquiries that will be explored if time allows:

• Is it possible to find the black lines indicating the path that the ball is supposed
to take and use it as a guideline in a program to steer the ball through the
maze?

• Is it possible to map out the different holes and use their coordinates to avoid
that the ball to falls into them?

• Is it possible to map out the perimeters of the game such as the outer frame
and the position of the walls inside the maze? Could that information be used
in a meaningful way?

• Is it possible to map out earlier positions of the ball both with position and
time in order to figure out velocity and acceleration?

• Could the inclination of the planes be calculated with the help of the gyroscope
so that a predicted path of the ball could be mapped out in openCV?

6.2 Vision System setup

6.2.1 Installing the camera
In order for a vision system to be set up on the RPI one first needs to have some sort
of camera attached. Either a USB-Webcam or a camera module that is designed
especially for the RPI system. The RPI camera is quite straightforward. First open
a Linux terminal window, install the camera through the apt-get install command
and then enable camera module inside the RPI-config. A more detailed explanation
for this can be found online at raspberry Pis own website.

6.2.2 Installing openCV; first try
Once a functioning camera was installed and tested, OpenCV needed to be installed.
This was done by following a tutorial on a blog about vision technology[14]. All the
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tutorials on how to install OpenCV involves downloading a zip-file from the OpenCV
website, unpacking it, installing and building the Librabries on the RPI. The first
tutorials way to use OpenCV in Python involved opening Python through a virtual
environment inside the terminal in order to have access to all the OpenCV functions.
The main goal when one knows that OpenCV works with Python is to inside a
python prompt type import cv2 without getting any error messages. That only
worked if the Python-program was first accessed through the virtual environment.
A big problem was though that this method of running openCV on Python took up
almost all the RPIs processing power when running just an OpenCV test program.
A program that where to run all the modules required at the same time and OpenCV
could possibly be too strenuous on the RPI. So the decision was made to start over
with another way of installing OpenCV on the RPI.

6.2.3 Installing OpenCV; second try
After removing every trace of the previous installation another tutorial was followed[13].
One major difference between this method and the first was that the installation
was done by controlling the RPI remotely through a separate computer using an
ssh server. Using the graphic interface on the RPI takes up unnecessary processing
power which is needed since during the build-phase of the installation almost all
processing power available is being used on the RPI and overheating is a possibil-
ity. After this installation was done an OpenCV code was tested in Python. No
virtual enviroment was necessary this time. The program ran much more smoothly
with just about 20 percent of the RPIs processing power. This method of installing
OpenCV is therefore recommended over the first.

6.3 Importing the RPI Camera into OpenCV
The OpenCV developers have made it very straightforward to import video and
pictures from a camera that is connected to the device, as long as that camera is
a web-cam connected via USB. The RPI camera is not a web-cam so all the useful
functions for importing video in OpenCV cannot unfortunately be used, at least not
directly. The RPI Camera does although have a set of its own functions which can
be addressed in a similar way for recording or streaming video that can then be used
in OpenCV. In order to use the RPI camera in the code one needs to first import the
modules at the top of the code. These are called PiCamera and PiRGBArray.
PiCamera and PiRGBArray are both classes that have multiple functions within
them. The functions used in the code are the following:

• PiCamera.resolution: modifies the resolution of the camera. The piCamera
can support a resolution of maximum 1920x1080 and can then use a framerate
of 1 to 30 frames/second. The values are assigned as a tuple of 2 values like
for example: PiCamera.resolution = (640,480).

• PiCamera.framerate: modifies the frame-rate that the camera will capture
video at.

• PiCamera.hflip/vflip: Flips the picture recorded horizontally or vertically.
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• PiRGBArray(Picamera(), size=(320, 240)):This is a way to get a faster
access to the stream by using the usual JPEG-type data that the Picamera
class uses. OpenCV uses bgr-type data anyway for processing images. Usually
stored in a variable called rawCapture.

• piCamera.capture_continuous(rawCapture,format="bgr",use_video_port=True):
(BGR = Blue Green Red) This starts a camera-stream which can later be ac-
cessed in the code.

To get a frame from the stream for each repetition in the program, the code should
look something like this:

. . . i n i t i a t i o n . . .

camera = PiCamera ( )
camera . r e s o l u t i o n = (640 , 480)
camera . f ramerate = 33
camera . v f l i p = True
rawCapture = PiRGBArray( camera , s i z e =(640 ,480))

# Camera warm−up time
time . s l e e p ( 0 . 1 )

f o r frame in camera . capture_continuous ( rawCapture ,
format="bgr " , use_video_port=True ) :

img = frame . array

. . . r e s t o f the code . . .
The for-loop that started at the end of the code becomes the main-loop for using
the camera stream and the img-variable is the latest frame. This frame is where
the OpenCV functions can be applied. To show the captured frame on the screen
just use the function cv2.imshow("windowname",img) to create a window that
shows the current frame. This will show the stream created in the for-loop in that
window frame-by-frame.

6.4 Fixing the frame-rate
One problem with using the Picamera()-method though is that the frame-rate on
the stream that is processed in the for-loop is dependant on the speed of the code
and not the frame-rate set for the Pi camera. If the code is for example slower than
the frame-rate of the stream, there will be a blocking of frames gathered from the
stream that the code cannot keep up with. This will create a slow and inaccurate
stream and might also create untrustworthy results from the OpenCV calculations.
The issue comes because the stream-capture and the image-processing-code are both
handled in a single main thread of the program. If these two are different threads
that don’t interfere with each other the frame-rate of the stream becomes radically
faster. The camera stream is handled in its own thread from which the image-
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processing gathers the latest frame from whenever it needs.

The frame-rate issue could easily be spotted by the naked eye when running a
code for identifying the balls position and steering it toward a chosen point on the
labyrinth. The frame-rate could sometimes be so bad that the ball would be on
other side on the board from where it where in the latest frame shown. To find
what caused this problem, the speed of the code-execution was examined for each
lap of the for-loop. The code-execution varied between 80 and 100 milliseconds.
So the frame-rate used by the code was therefore between 10 and 12,5 frames per
second. In order to get a functional vision system this issue needed to be addressed.

There is a package of python-tools available called Imutils that is created by Adrian
Rosebrock of the pyimagesearch website. He has a tutorial on how to improve the
frame-rate of the RPI camera for usage in openCV[12]. In the Imutils package
there is a python-class called PiVideoStream() that can be used instead of the pi-
Camera() class. The command PiVideoStream().start() starts a stream from the
RPI camera in a separate thread from the main programs thread. The command
PiVideoStream().read() will now get the latest frame gathered from the stream.

This method of streaming from the RPI camera greatly improves the frame-rate.
The codes execution cycle time did go down to about 30 milliseconds or less which
means that it shows a much more desired frame-rate of about 33 frames per second.

6.5 Image proccessing

Object detection is a task that is very important, with the downside of being very
difficult, when it comes to vision technology. OpenCV has several useful ways of
detecting different objects in an image, two of them explained in the subsections
6.5.1 and 6.5.2.

6.5.1 Circular pattern recognition

One of these ways of detecting an object in an image is to do this by detecting certain
patterns, in this case a circular pattern. This is done by using a extraction technique
called theHough Circle Transform[17], which is a product of the originalHough
Transform[18].
The basics of hough transform is to, by given a set of edge points, find aligned points
in images that create, in this case, a circle. It uses an algorithm that looks for these
edge points in an image and how many of them are aligned for certain objects.
This method of detecting a circle is very complicated and requires time consuming
algorithms, which slows down the code. The method was therefore not used for this
project.
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6.5.2 Color recognition
6.5.2.1 Colour recognition with openCV in python

Color recognition in openCV is really about filtering out the unwanted colors and
making them black while the colors that are interesting will be white. The recognition-
functions needs stark contrasts for it to work effectively. The key function for filter-
ing out color is called cv2.inRange() and it filters out colors by working with the
so called HSV-scale.
The HSV-scale is a three dimensional way to represent colors with. HSV stands
for Hue, Saturation and Value. To put it simply the variable of interest here is the
Hue, since it represents the entire color-scheme while the Saturation is the purity
of the color and Value is the brightness. This is more thoroughly explained on
Wikipedia.[21]
TheCv2.inRange()-function takes three arguments, the picture that the mask will
be applied on, the lower HSV-scale limit and the upper HSV-scale limit. The HSV-
scale is represented as a cylinder with Value being its height, saturation its radius
and Hue is the circle around represented as a degree. So the argument for Hue in
the Cv2.inRange()-function is in this case a number between 0 and 180 degrees as
can be seen in the figure below 6.1. While the arguments for Saturation and Value
are both numbers between 0 and 255.

Figure 6.1: the Hue value scale (Authors image)

To explain how this would work in python a example code has been constructed,
see figure 6.2

Figure 6.2: Color recognition code (Authors image)
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The first step of the code is to set the lower and upper color limit, colorlower
and colorupper. In the code example 6.2 the Hue limit i set between 50 and
100 so the Cv2.inRange()-function will therefore filter out all the color except
green and bright blue, as seen in figure 6.1. The Saturation is set between 86 and
255(maximum) so it filters out any color with Saturation below 86 which is basically
just white. Similarly, the function only filters out Value that is below 6 which is
basically just black.
Lets take an image as an example, see figure 6.3

Figure 6.3: Color recognition code (Authors image)

When image 6.3 is read it is then converted to be within the modified HSV scale
with the openCV function cv2.cvtColor. This function basicly allows the user to
work with the HSV color scale.
To then be able to mask out the color of interest the function Cv2.inRange(),
as previously mentioned, uses the lower and upper color limit to then get a image
where the color of interest is marked with a white color and the rest is black, as seen
in figure 6.4.

Figure 6.4: First mask (Authors image)

26



6. Vision System

In the image there is now a white round object, in the blue circle which represents
the detected ball, and a bit of white ’noise’, in the red circle. The white noise is
removed by using the openCV function cv2.erode and the result of it is shown in
figure 6.5.

Figure 6.5: Second mask (Authors image)

This image is then enhanced with the openCV function cv2.dilate and the result of
it shown in figure 6.6.This is now the final mask that is used for finding the position
of the ball in the game.

Figure 6.6: Third mask (Authors image)

It is now possible to use the OpenCV-function cv2.findContours() with the mask
that has been created. This function is called findball() and can be found in the
appendix C C. OpenCV uses the contrast between the black and the white and maps
out the cohesive white areas of the picture and returns a list of pointers to these.
The code now checks if at least one white area has been found and then it gets the
coordinates to the largest one. It then draws an enclosing circle around the white
area and maps out the exact coordinates to the center of this circle. These center
coordinates are now used in the rest of the code as the balls position. The result of
this can be shown in figure 6.7
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Figure 6.7: The final image with the marked ball (Authors image)

Because you mask out the object of interest color recognition works a lot faster then
circular pattern recognition, this being the reason it was used in this project. A
code was created which only is to find and map out the ball and this code was able
to project a stream that showed the balls position accurately while still running at
about 30 frames per second. The speed of the calculations are quick and maybe for
importantly consistent in speed.
In the final code, the picture taken from the camera has a resolution of 300x350
and the position coordinates that is calculated are then one coordinate in x and y
of these 300x350 pixels. The function that creates a circle around the contours of
the ball and then takes the circles center-position as the balls position are pretty
accurate as to being the actual balls center-position. This would be more of an issue
if the object for color-recognition wasn’t a round shape.

6.6 GUI features and user inputs
OpenCv has a wide range of tools for gathering user input. Many of these where
used in the project in order for creating more user-friendly and interactive programs.
It is possible for example to mark a point in the picture and to draw out circles,
lines and paths from where the mouse is clicked. The fuctions that where used in
the project where these:

• cv2.setMouseCallback() This function tracks the mouses movements and
actions inside a window that has been created. It calls to an interrupt-function
whenever an event inside the window takes place. From inside this function
three parameters can be read; the x-and-y position of the mouse cursor and
what type of event that triggered the interrupt. These events can be that the
mouse moved or that a mouse-button was pushed. So the function is very
useful to be able to mark a position in the frame and get its exact coordinates
for future calculations.

• cv2.getTrackbarPos(), cv2.createTrackbar() These functions are used
to set up and to read values from a Trackbar that is created in a separate
window. It is possible to create multiple trackbars inside the same window,
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all with different names and value-ranges. The function can be used in a
very similar way to cv2.setMouseCallBack() in that it can trigger an interrupt
function whenever a value is changed. cv2.getTrackbarPos() can also be used
directly in the code just to read the current value set on the trackbar, see
figure 6.8.

• cv2.circle(), cv2.line() and cv2.rectangle() These are straightforward
functions that can draw something on a frame or a picture. Basically uni-
versally used to show that the program has found a ball or some other shape,
see figure 6.9.

Figure 6.8: The trackbar (Authors image)

Figure 6.9: The circle and line commands in action (Authors image)
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7
Coding and controlling

7.1 The main code
In this section the code will be explained, please refer to appendix A for the code
and appendix B for a flowchart of the code.

7.1.1 Importing libraries
Many functions that are used in the code needs to be imported into the file with the
help of libraries. There are also classes that are imported into the project like the
PWM-class, PiVideoStream-class and the orientationstream-class that was created
for this project.

7.1.2 Declaring variables
Many variables are used as globals in the code like the variable for the balls position,
the chosen position and the length between those two. There are also other constant
values that are being declared like the Servos maximum and minimum position and
the upper and lower limits for the HSV-scale color mask. It is also here in the code
where the camerastream and gyroscopestream is initialized.

7.1.3 Creating functions/subroutines
To make the main code shorter some parts of it was instead put into subroutines.

7.1.4 Main loop part 1; Getting a frame and finding the ball
Since the camera-stream is running in the background it is now possible to grab the
latest frame from it and put it into a variable called image. This image will be
converted into an HSV-image since the OpenCV-functions always uses HSV. After
applying two more filters to the image, the balls shape can be spotted with the
help of cv2.findContours() and its center-position can be found with the help of
cv2.moments(). This center-position is now the actual value of the position of the
ball in the labyrinthgame. This is called ballposition in the code. This variable
along with the set-value chosenpoint-variable is converted from pixel-form into
metric-form in the function pixeltometric().
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7.1.5 Main loop part 2; Controller 1
If a chosen position has been set and the ball has been found, the first controller will
calculate a distance between the ball and the chosen position which then will act as
the error-value for the first controller. This will be explained further in the control-
ling section7.2. Other variables like for example old_distx, sumx and h will also be
explained further in the controlling section since they are needed for creating a func-
tioning PID-controller. The controller function itself is the function called get_ux
and get_uy. The resulting variable that is returned from the controller is the set
value for the inclination of the planes which is called bor_roll and bor_pitch. The
list of the set and actual values is also updated here so that they can be plotted out.

7.1.6 Main loop part 3; Controller 2
This controller is explained in greater detail in the gyro-servo-control section.7.2.6
The actual value for the inclination of the planes are gathered from the gyroscope-
stream and translated into a number between -6 and 6 degrees. Then the plot-list
of this controller is updated and the error-value distp and distr for the controller
is calculated. The output-control-value Servosetpitch Servosetroll to the servo-
motors are then ramped up proportionally to the calculated error-value.

7.1.7 Main loop part 4; set the servos and showing the cur-
rent frame

The last thing that happens in the main loop is that the servo motors are updated
with the control value from the second controller. The window is also being updated
with the latest frame gathered at the start of the loop with both the balls and the
set-position marked out.

7.2 The logic behind the controlling
Even though this projects main focus has not been to analyze and create the best
system for controlling possible, this chapter will go through what possibilities there
is for controlling and what has been tried. The different methods for controlling
was taken from the course book in dynamic systems[19] the main purpose for the
controlling in an automated labyrinth-game is to simply get the ball rolling in the
direction and to the destination that is requested. In the logic that was used in the
testing programs a two dimensional coordination plane was used to represent the
board of the game. The y-axis is the long side of the board the x-axis is the short
side. This way the servomotor that manipulated the pitch-value of the plane could
move the ball two-dimensionally along the y-plane and the roll-manipulating servo
could move the ball along the x-axis. So if the ball was in a position (x1,y1) and
it is requested to go to a position (x2,y2) it should need to travel a distance of 4x
along the x-axis and 4y along the y-axis.
This simple logic is the cornerstone for the controlling that has been done in this
project. Each servo that controls the inclination (pitch and roll) for the plane are
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viewed as separate controllers that handle the balls position along the x and the
y- axis. To make it simple this text will now on focus on one of the axis since the
logic for the other is the same but with different parameters. So the calculated
distance 4x will become the error-value e(k) which is the difference between the
measured position-value for the ball and the set position-value. This is the basis for
the controlling algorithm.

Figure 7.1: How the distances are calculated (Authors image)

7.2.1 Proportional controlling; method 1
The first controlling algorithm that was tested was a simple proportional controller
that takes the error calculated (e(k)) and multiplies that by a proportional coefficient
K and puts it out to the servomotors. This way, if the error is large, the servomotors
will be given a large output from the controller and vice versa. The first value that
was tried for the controller was calculated by taking the maximum output to the
servomotors and diving that by the maximum length of the error. The reasoning
behind this is that the maximum inclination of the plane will only happen if the ball
is at the opposite end of the labyrinth. As mention in the hardware implementation
chapter, the output value to the motors is a number between 153 and 512 with
307 approximately being the neutral position. This interval was cropped of to be
a number between 157 and 457 to secure the labyrinth own mechanisms from the
servo motors. The length of the labyrinth-platform is 240x220 mm. So putting
these numbers together the control algorithms output to the servomotors looked
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something like this:

ServoMotor − x = 307 + 150 ∗ e(k)/220

ServoMotor − y = 307 + 150 ∗ e(k)/240
This controlling-method was tested and recorded one axis at the time and the results
can be seen in the figure 7.2. Note that the time axis in these plots are the time
that it takes to run through the code, so in figure 7.2 for example the time axis
shows the 250 first laps in the code. These laps are about 30-40 milliseconds each.
It can be seen that the controlling the very fast and inaccurate. From this test it
was concluded that a more complicated controlling method was required. Note that
the time value for the x-axis on these plots are the time that it takes to loop through
the code. These are unfortunately not consistent and fluctuates between 50 and 30
milliseconds a lap. The y-axis represents the position of the ball in the image.

Figure 7.2: Plotting of the y-axis-actual-value change over time (Authors image)

7.2.2 Proportional controlling; method 2
Another code was created in this project when finding implementations for the
gyroscope. In this code the user requests a specific inclination of the planes which
then will be actualized with the help of the gyroscope guiding the servomotors to the
correct position. This code was combined together with the proportional controller
explained in the section above to make a code with two different controllers working
together. The first controller works in a similar manner as before but it calculates
an inclination between -6 and 6 degrees instead of a motor-output between 157 and
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457. This then becomes the set-inclination-value for the second controller that uses
the gyroscope to guide the servomotors to the correct position. How the second
controller works by it self is explained in more detail in section 7.2.6.

Figure 7.3: How the two controllers interact while using method 2 (Authors image)

The second method ramps up the value of the servomotors output while the first
method always put the servomotors to an exact value in each loop of the code. The
second method results in a much less "jerky" controlling of the servo motors. Since
the second method gave a more favorable controlling behaviour, all the controllers
that are discussed from here on out in this chapter will be using the second method
by default.
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Figure 7.4: Plot of the P-controller using method 2. Green is the set value and blue is
the actual value. (Authors image)

7.2.3 Adding Derivative controlling; PD-controller

To make the controller more stable a derivative term was added. the function for a
PD-regulator looks like this:

u(k) = K[e(k) + TD
e(k)− e(k − 1)

h
] (7.1)

Where u(k) is the control value, K is the proportional term, e(k) is the latest error
value calculated, TD is the derivative term, h is the timesample length and e(k-1) is
the previous error calculated. Below is how this controller worked. Take note that
the system is more slow but stable and that there is a steady-state error at the end.
For Roll the values where K = 0.5 and TD = 1.3 and Pitch K = 0.6 and TD = 1.5.
These values where not calculated or taken from any scientific method but where
simply tested many times over until a favorable result was reached.
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Figure 7.5: Plot of the PD-controller using method 2 (Authors image)

7.2.4 Adding Integral controlling; PI-Controller

An integral term in the algorithm will be proportional both to the magnitude of
the error and the duration of the error. It is a part of the equation that will stack
up over time if the error is consistent for a long time to eliminate any steady-state
error. This is the way a PI-regulator function looks:

u(k) = K[e(k) + h

TI

k∑
i=1

e(i)] (7.2)

To get the sum of all the previous errors into the code, they where saved in a list and
then added together. The list was capped to be a maximum of 50 values and the TI

was for both Roll and Pitch 1.4. The K value was unchanged from the PD-regulator.
A PI-controller was tested and the results can be seen below. They are very similar
to the results of a P-controller so they are not very efficient for detecting whether
the integrated factor solved the steady-state error. The controlling is very irregular
and unstable. The abrupt spikes at the tops of the curves in the plot are simply the
ball hitting the edge of the game.
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Figure 7.6: Plot of the PD-controller using method 2 (Authors image)

7.2.5 PID-controller

The function for a PID-controller looks like this:

u(k) = K[e(k) + TD
e(k)− e(k − 1)

h
+ h

TI

k∑
i=1

e(i)] (7.3)

This is the controller where the Integrative term could be put to the test. It is
also the controller where the most tests where done. The list length of errors for
the integrative part where changed to 300 and TI was enlarged to 7. This way the
Integrative part of the equation would not have much significance at first but add up
over time to counteract steady-state error. The rest of the values for Roll the values
where K = 0.5 and TD = 1.3 and for Pitch K = 0.6 and TD = 1.3. The time-axis
was also extended since the controller had a very long settling time.

Figure 7.7: Plot of the PID-controller using method 2 (Authors image)
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7.2.6 The Gyroscope-Servomotor Controller
The controller that communicates between the gyroscope and the servomotors is a
proportional controller where the actual value is given from the gyroscope and the
servomotor gets the control value. The controller was first created in a separate
program where the user can set an inclination for both pitch and yaw between -6
and 6 degrees. The interval between -6 and 6 degrees is the maximum and mini-
mum inclination value when running the servomotors between their maximum and
minimum position. The plot of the set and actual value in this code can be seen in
figure 7.8.

Figure 7.8: Plot of the P-controller, green is set value and blue is actual value (Authors
image)

This controller is, unlike the other controllers that was created in this project, very
fast and accurate. It is though unfair to compare the controllers since the the balls
position is very hard to make accurate while the servomotors are relatively simple
to get to a set position. In figure 7.9 is the plot of the second P-controller and how
it works with the PID-controller.

Figure 7.9: Plot of how the 2nd controller works when the 1st controller is using PID-
controlling. (Authors image)
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8
Results

8.1 Research results

At the start of the project there where some questions put down to do some research
on. Here is the results and conclusions that where made during the procedure of
this project.

8.1.1 Possibilities for controlling the system with the help
of the RPI and all its modules

The RPI is certainly a powerful little computer. Even when running the most
computering heavy program that takes use of all the modules and the complicated
algorithms that runs in the background when using numpy and OpenCv the RPI
uses about 30 -40% of its processing power. There where however some issues with
the speed at which the code ran sometimes. When the code needed to do multiple
things like updating the frame, calculating ball position, setting the position on the
motors, gathering the gyroscope values etc. in the same loop of the main program,
there where definitely some issues with speed. The frame-rate for example needs to
be consistent for the controlling to work properly. This can be solved by working
with multi-threaded programming, so it is not necessarily the hardwares fault that
the code runs too slow. Though the algorithms used for finding objects in the image
were fast enough to be sufficient for this system.

8.1.2 The accuracy of the actuators that are needed

The actuators that where used in the project are servomotors. The choice where
inspired by a project that was done on the website instructables.com[20]. The direct
benefit with using these servomotors is that they have an internal logic that make
them simple to set a required position in a range of 180-degrees with. They are also
quick and accurate enough for controlling the labyrinthgame. The tact of the servo-
motors can be illustrated when running the program which set a specific inclination
for the plane. When running this program the entire platform can be tilted and
the servomotors and the gyroscope will still keep the plane itself as a flat surface.
The issue is sometimes though that the servomotors are too quick and react to the
slight change in the code. This can be worked around by creating a more moderate
controller.
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8.1.3 OpenCV as a suitable software for vision program-
ming

OpenCV is possibly one of the most vital parts of the entire project. It takes a little
while to install and figure out how it works but once you get the hang of it it is very
effective and straightforward. It quickly finds the ball with the help of the color-
recognition tools when working in a room with adequate lighting. When running in
a room with different lighting, the code did need some calibration though. Not only
does OpenCV have the tools necessary for processing and finding objects in image
but it packs a lot of useful functions on top of that. It can set up the camera-stream
itself, gather user inputs with a bunch of different methods and showing the frames
in a window with the help of a single line of code.

8.1.4 The implementation of a gyroscope in combination
with a vision camera

The gyroscope does not help with the same part of the controlling process that the
vision camera has. But it definitely can be used to control the inclination of the
planes as well as record the inclinations over time during the controlling process.
So it makes for a more complete system over all. The code that directly sets the
inclination of the planes really shows how accurate and useful the gyroscope is. It
can, as mentioned before, keep the plane flat even when the entire platform is being
tilted.
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9
Conclusion

9.1 Strengths

A functioning platform has been constructed that can control the ball with some
precision.
At the start of the project we had two previous bachelor thesis’s as our inspiration.
One where a platform for controlling of the system and one for developing the
control-algorithm to get the ball through the maze. These where used with quite
outdated technology by today’s standard and we wanted to see what was possible
with more modern tools.
We managed to both build the platform and implement a control-algorithm in one
thesis-project. We also managed to successfully implement two sensors instead of
one, the vision sensor and the gyroscope. This opens up a lot of opportunities when
it comes to testing and constructing a more precise controlling of the system since
both the planes inclination and balls position can be recorded and calculated.
Even though the platforms construction is very basic this is something we consider
a strength. The simplicity of the way it is constructed has made it a very cheap
project to build as well as time saving without adventuring on the performance of
the final product. This is a testament to how much technology has improved while
the cost for it has been reduced.

9.2 Weaknesses

During the project quite few weaknesses has shown themselves but the ones that
would be considered the biggest are:

• Servo motors limitations of accurately controlling the labyrinth game
• The issue that the code runs too slow and creates lag, creating an irregular

controller and frame rate drops.
• The irregular surface of the platform
• The standard IDLE-program for running Python code on the RPI has no func-

tion for monitoring values for variables in the code, making troubleshooting
difficult.

These are all issues that can be fixed but haven’t because of time constraints.
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9. Conclusion

9.3 Development opportunities
For the labyrinth game to be able to navigate itself through the maze there is a
couple of things that needs to be done:

• The system needs to be tested in order for a more accurate control algorithm
to be implemented

• The issue with frame rate drops needs to be fixed
There is also room for other kinds of development opportunities such as the imple-
mentation of yet another sensor.
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A
Appendix 1

The resulting code that can control the balls position on a flat surface.
User puts in a destination for the ball and the code calculates a control
value for the servomotors with the help of the vision-camera and the
gyroscope.

from OrientStream import o r i en ta t i on s t r eam
#Imports the gyroscope stream c l a s s
from imu t i l s . v ideo . p iv ideost ream import PiVideoStream
#Imports the v ideo stream code
import matp lo t l i b . pyplot as p l t
#Imports p l o t t o o l s
from c o l l e c t i o n s import deque
#Imports deque
import numpy as np
#Imports math t o o l s
from picamera . array import PiRGBArray
#Imports the camera array
from Adafruit_PWM_Servo_Driver import PWM
#Imports the a d a f r u i t PWM c l a s s
from picamera import PiCamera
#Imports the PiCamera from the picamera l i b r a r y
from sense_hat import SenseHat
#Imports the SenseHat v a r i a b l e from the sense_hat l i b r a r y
import argparse
#Imports the argparse
import imu t i l s
#Imports the pyimagesearch b l o g l i b r a r y
import time
#Imports time func t i on s
import cv2
#Imports openCV

bor_pitch=0
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bor_ro l l=0
minus_pitch = False
minus_rol l = Fal se
l i s t l e n g t h = 600
#Sets the l i s t l e n g t h f o r the i n t e g r a t e d va lue
p l o t l eng th = 120
#Sets the l i s t l e n g t h f o r the p l o t
pwm = PWM(0 x40 )
#Chooses the adress f o r the se rvoha t communication
servo_channel_pitch = 4
#Chooses p i t c h to be on pin 4 on the se rvoha t
servo_channe l_ro l l = 5
#Chooses p i t c h to be on pin 5 on the se rvoha t
pwm. setPWMFreq(50)
#Chooses the f r e q to 50Hz
o_s = or i en ta t i on s t r eam ( ) . s t a r t ( )
#S t a r t s a stream fo r the gyroscope
time . s l e e p ( 0 . 1 )
colorLower = (50 ,86 , 6)
#Chooses the lower co l o r l i m i t (HSV s c a l e )
colorUpper = (100 , 255 , 255)
#Chooses the upper co l o r l i m i t (HSV s c a l e )
chosenpo int=None
chosenmetr icpos = None
met r i cba l l po s = None
b a l l p o s i t i o n = None
ServoMin = 157 # Min pu l s e l e n g t h out o f 4096
ServoMid = 307
ServoMax = 457 # Max pu l s e l e n g t h out o f 4096
Se rvo s e tp i t ch= ServoMid
#S t a r t s the se rvo s in cen te r p o s i t i o n
S e r v o s e t r o l l= ServoMid
#S t a r t s the se rvo s in cen te r p o s i t i o n
#kamera in i t i e r i n g
cv2 . namedWindow( ’ image ’ , cv2 .WINDOW_NORMAL)
#Opens up the window " image "
r e s = (300 ,350)
#Sets the r e s o l u t i o n o f the frame
f ramerate = 33
#Sets the fram ra t e
Pistream = PiVideoStream ( res , f ramerate )
#Videostream i n i t i a t i o n
Pistream . camera . v f l i p = True
#V e r t i c l y f l i p s the camera image
Pistream . camera . h f l i p = True
#H o r i s o n t a l l y f l i p s the camera image
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vs = Pistream . s t a r t ( )
#Sta t s the pis tream
time . s l e e p ( 1 . 0 )
cx = −1
cy = −1
t = 0
y_axis = [ ]
y_borvarde = [ ]
l i s t x = [ ]
l i s t y = [ ]
l i s t_ar_x = [ ]
l i s t_ar_y = [ ]
l i st_bor_x = [ ]
l i st_bor_y = [ ]
l i s t _ r o l l = [ ]
l i s t_p i t c h = [ ]
l i s t_bo r_ro l l = [ ]
l i s t_bor_pi tch = [ ]
for i in range (0 , l i s t l e n g t h ) :

#Creates a " l i s t l e n g t h " long l i s t f o r the in t eg raded e f f e c d
l i s t x . append (0 )
l i s t y . append (0 )

for i in range (0 , p l o t l eng th ) :
#Creates a " p l o t l e n g t h " long l i s t f o r the p l o t f u n c t i o n
l i s t_ar_x . append (0 )
l i s t_ar_y . append (0 )
l i st_bor_x . append (0 )
l i st_bor_y . append (0 )
l i s t _ r o l l . append (0)
l i s t_p i t c h . append (0 )
l i s t_bor_pi tch . append (0 )
l i s t_bo r_ro l l . append (0 )

ar_pitch = 0
a r_ro l l = 0
old_distx = 0
old_disty = 0
e1 = 0

def event_pitch (x ) :#Event p i t c h i s used f o r p o l a r i t y
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global bor_pitch , minus_pitch

i f minus_pitch ==True :
bor_pitch = −1∗x

else :
bor_pitch = x

def event_pitch_minus (x ) :#Event p i t c h i s used f o r p o l a r i t y
global minus_pitch , bor_pitch
i f x == 1 :

minus_pitch = True
i f bor_pitch >0:

bor_pitch= −1∗bor_pitch
else :

minus_pitch = False
i f bor_pitch <0:

bor_pitch=−1∗bor_pitch

def event_ro l l ( x ) :#Event r o l l i s used f o r p o l a r i t y
global bor_rol l , minus_tol l
i f minus_rol l == True :

bor_ro l l = −1∗x
else :

bo r_ro l l = x

def event_roll_minus (x ) :#Event r o l l i s used f o r p o l a r i t y
global minus_roll , bo r_ro l l
i f x == 1 :

minus_rol l = True
i f bor_ro l l >0:

bor_ro l l= −1∗bor_ro l l
else :

minus_rol l = Fal se
i f bor_rol l <0:

bor_ro l l=−1∗bor_ro l l

def f i n d b a l l ( mask , image ) :#Finds the b i g g e s t contour
#in the image and marks i t

global b a l l p o s i t i o n
cnts = cv2 . f indContours (mask . copy ( ) , cv2 .RETR_EXTERNAL,

cv2 .CHAIN_APPROX_SIMPLE)[−2]
c en te r = b a l l p o s i t i o n

# only proceed i f a t l e a s t one contour was found
i f len ( cnts ) > 0 :

# f ind the l a r g e s t contour in the mask , then use
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# i t to compute the minimum enc l o s i n g c i r c l e and
# cen t ro i d
c = max( cnts , key=cv2 . contourArea )
( ( x , y ) , r ad iu s ) = cv2 . minEnc los ingCi rc l e ( c )
M = cv2 . moments ( c )
c en te r = ( int (M[ "m10" ] / M[ "m00" ] ) ,

int (M[ "m01" ] / M[ "m00" ] ) )
cx = int (M[ "m10" ] / M[ "m00" ] )
cy = int (M[ "m01" ] / M[ "m00" ] )

# only proceed i f the rad ius meets a minimum s i z e
i f rad iu s > 10 :

# draw the c i r c l e and cen t ro i d on the frame ,
# then update the l i s t o f t racked po in t s
cv2 . c i r c l e ( image , ( int ( x ) , int ( y ) ) , int ( rad iu s ) ,

(0 , 255 , 255) , 2)
cv2 . c i r c l e ( image , center , 5 , (0 , 0 , 255) , −1)

return c en te r

def mousechoice ( event , x , y , f l a g s , param ) :
#Grabs the user input from the image
global chosenpoint , newpoint

i f event == cv2 .EVENT_LBUTTONDBLCLK:
#Chooses a po in t in the image
chosenpo int = ( int ( x ) , int ( y ) )
for i in range (0 , l i s t l e n g t h ) :

l i s t x [ i ] = 0
l i s t y [ i ] = 0

i f event == cv2 .EVENT_RBUTTONDBLCLK and chosenpo int != None :
#Nothing w i l l happen i f the r i g h t bu t ton i s c l i c k e d

p l t . f i g u r e (1 )
#Plo t s the cord ina t e o f the b a l l in the " x " d i r e c t i o n
p l t . subp lot (211)
p l t . p l o t ( l i s t_ar_x )
p l t . p l o t ( l i st_bor_x )
p l t . ax i s ( [ 0 , 120 , 0 , 290 ] )
p l t . y l ab e l ( ’ Ro l l ’ )

p l t . subp lot (212)
#Plo t s the cord ina t e o f the b a l l in the " y " d i r e c t i o n
p l t . p l o t ( l i s t_ar_y )
p l t . p l o t ( l i st_bor_y )
p l t . ax i s ( [ 0 , 120 , 0 , 350 ] )
p l t . y l ab e l ( ’ Pitch ’ )
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p l t . s a v e f i g ( " arvardepos . png " )

p l t . f i g u r e (2 )
#Plo t s the va lue o f the i n c l i n a t i o n o f the r o l l
p l t . subp lot (211)
p l t . p l o t ( l i s t _ r o l l )
p l t . p l o t ( l i s t_bo r_ro l l )
p l t . ax i s ( [ 0 , 120 , −6 ,6 ] )
p l t . y l ab e l ( ’ Ro l l ␣ i n c l i n a t i o n ’ )

p l t . subp lot (212)
#Plo t s the va lue o f the i n c l i n a t i o n o f the p i t c h4
p l t . p l o t ( l i s t_p i t c h )
p l t . p l o t ( l i s t_bor_pi tch )
p l t . ax i s ( [ 0 , 120 , −6 ,6 ] )
p l t . y l ab e l ( ’ Pitch ␣ i n c l i n a t i o n ’ )

p l t . s a v e f i g ( " a rva rdev inke l . png " )
p l t . show ( )

cv2 . setMouseCal lback ( ’ image ’ , mousechoice )

def p i x e l t ome t r i c ( ) :
#Converts from p i x e l s to metr ic [mm]

global chosenmetr icpos , met r i cba l lpo s , chosenpoint , b a l l p o s i t i o n
i f chosenpo int != None :

chosenmetr icpos = ( chosenpoint [ 0 ] ∗ 290 / r e s [ 0 ] ,
chosenpo int [ 1 ] ∗ 335 / r e s [ 1 ] )

i f b a l l p o s i t i o n != None :
me t r i cba l l po s = ( b a l l p o s i t i o n [ 0 ] ∗ 290 / r e s [ 0 ] ,

b a l l p o s i t i o n [ 1 ] ∗ 335 / r e s [ 1 ] )

def g e td i s t x ( bor , ar ) :
#Gets the e [ k ] va lue in the x−ax i s

return ( bor [ 0 ] − ar [ 0 ] )
def g e td i s t y ( bor , ar ) :

#Gets the e [ k ] va lue in the y−ax i s
return −(bor [ 1 ] − ar [ 1 ] )

def sumdistx ( d i s t x ) :
#Summarize the l i s t o f o l d e [ k ] ( x−ax i s )
#va l ue s f o r the i n t e g r a t e d e f f e c t

global l i s t x
l i s t x . pop (0 )
l i s t x . append ( d i s t x )
return sum( l i s t x )
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def sumdisty ( d i s t y ) :
#Summarize the l i s t o f o l d e [ k ] ( y−ax i s )
#va l ue s f o r the i n t e g r a t e d e f f e c t

global l i s t y
l i s t y . pop (0 )
l i s t y . append ( d i s t y )
return sum( l i s t y )

def get_ux ( d i s tx , old_distx , h , sumx ) :
s t y r = 0 . 5∗ ( d i s t x + 1 . 3∗ ( ( d i s t x − o ld_distx )/h)+((h/10)∗ sumx ) )
#The c o n t r o l l e r which c a l c u l a t e s the c on t r o l va lue
i f s t y r > 6 :

return 6
i f s t y r < −6:

return −6
else :

return s t y r

def get_uy ( d i s ty , o ld_disty , h , sumy ) :
s t y r = 0 . 6∗ ( d i s t y + 1 . 3∗ ( d i s t y − o ld_disty )/h+((h/10)∗ sumy ) )
#The c o n t r o l l e r which c a l c u l a t e s the c on t r o l va lue
i f s t y r > 6 :

return 6
i f s t y r < −6:

return −6
else :

return s t y r

def contro l_funct ion_pi tch ( d i s tp ) :
#Ramps up the c o n t r o l va lue o f p i t c h
global ar_pitch , bor_pitch , S e rvo s e tp i t ch
i f ar_pitch <= bor_pitch+0.1 and ar_pitch >= bor_pitch −0.1:

S e rvo s e tp i t ch=Se rvo s e tp i t ch
e l i f ar_pitch > bor_pitch :

S e rvo s e tp i t ch += int (15∗ d i s tp )
i f Se rvo s e tp i t ch >= ServoMax :

Se rvo s e tp i t ch = ServoMax
e l i f ar_pitch < bor_pitch :

S e rvo s e tp i t ch −= int (15∗ d i s tp )

i f Servose tp i t ch<=ServoMin :
Se rvo s e tp i t ch = ServoMin
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def con t ro l_ func t i on_ro l l ( d i s t r ) :
#Ramps up the c o n t r o l va lue o f r o l l
global ar_ro l l , bor_ro l l , S e r v o s e t r o l l
i f a r_ro l l <= bor_ro l l +0.1 and a r_ro l l >= bor_rol l −0.1:

S e r v o s e t r o l l=S e r v o s e t r o l l
e l i f a r_ro l l > bor_ro l l :

S e r v o s e t r o l l += int (15∗ d i s t r )

i f S e r v o s e t r o l l >= ServoMax + 50 :
S e r v o s e t r o l l = ServoMax + 50

e l i f a r_ro l l < bor_ro l l :

S e r v o s e t r o l l −= int (15∗ d i s t r )

i f S e r v o s e t r o l l <=ServoMin − 70 :
S e r v o s e t r o l l = ServoMin − 70

while ( 1 ) :
#Sta r t o f mainloop

image = vs . read ( )
#Read an image
hsv = cv2 . cvtColor ( image , cv2 .COLOR_BGR2HSV)
#Converts the image to a modi f i ed HSV s c a l e
mask = cv2 . inRange ( hsv , colorLower , colorUpper )
#Masks out the c o l o r s w i th in the lower and upper l i m i t
mask = cv2 . erode (mask , None , i t e r a t i o n s =2)
#Errodes the f i r s t mask
mask = cv2 . d i l a t e (mask , None , i t e r a t i o n s =2)
#D i l a t e s the second mask
b a l l p o s i t i o n = f i n d b a l l (mask , image )
#Finds the b a l l in the mask and then shows i t in image
p i x e l t ome t r i c ( )
#Converts from p i x e l to metr ic [mm]
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i f chosenpo int != None :
#Doesent s t a r t the c o n t r o l l i n g u n t i l a po in t i s chosen
cv2 . c i r c l e ( image , chosenpoint , 20 , ( 255 , 255 , 255) ,2 )
#Creates a whi te c i r c l e around the chosen po in t
cv2 . l i n e ( image , chosenpoint , b a l l p o s i t i o n , (255 , 255 , 255) , 3)
#Creates a whi te l i n e between the chosen po in t and the b a l l
d i s t x = f loat ( ( g e t d i s t x ( chosenmetr icpos , me t r i cba l l po s )

∗ 0 .027273) )
#Ca l cu l a t e s the d i s t ance f o r the x−ax i s
sumx = sumdistx ( d i s t x )
#Summarises the l i s t o f x−ax i s d i s t a n c e s
d i s t y = f loat ( ( g e t d i s t y ( chosenmetr icpos , me t r i cba l l po s )

∗ 0 . 0 25 ) )
#Ca l cu l a t e s the d i s t ance f o r the y−ax i s
sumy = sumdisty ( d i s t y )
#Summarises the l i s t o f x−ax i s d i s t a n c e s
e2 = cv2 . getTickCount ( )
#S t a r t s the f i r s t c l o c k
h = ( e2 − e1 )/ cv2 . getTickFrequency ( )
#Ca l cu l a t e s the sample va lue
bor_ro l l = − round( get_ux ( d i s tx , o ld_distx , h , sumx ) , 1 )
#Rounds up the c o n t r o l l / Set va lue ( x−ax i s ) to 1 decimal
bor_pitch = round( get_uy ( d i s ty , old_disty , h , sumy ) , 1 )
#Rounds up the c o n t r o l l / s e t va lue (y−ax i s ) to 1 decimal
e1 = cv2 . getTickCount ( )
#S t a r t s the second c l o c k

o ld_distx = d i s t x
#C o l l e c t the o ld d i s t ance va lue ( x−ax i s )
o ld_disty = d i s t y
#C o l l e c t the o ld d i s t ance va lue (y−ax i s )

l i s t_ar_x . pop (0 )
#De le t e s a c t ua l x va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t_ar_y . pop (0 )
#De le t e s a c t ua l y va lue in the f i r s t p o s i t i o n o f the l i s t
l i st_bor_x . pop (0 )
#De le t e s s e t x va lue in the f i r s t p o s i t i o n o f the l i s t
l i st_bor_y . pop (0 )
#De le t e s s e t y va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t_ar_x . append ( met r i cba l l po s [ 0 ] )
#I n s e r t s a new ac tua l x va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t_ar_y . append ( met r i cba l l po s [ 1 ] )
#I n s e r t s a new ac tua l y va lue in the f i r s t p o s i t i o n o f the l i s t
l i st_bor_x . append ( chosenmetr icpos [ 0 ] )
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#I n s e r t s a new s e t x va lue in the f i r s t p o s i t i o n o f the l i s t
l i st_bor_y . append ( chosenmetr icpos [ 1 ] )
#I n s e r t s a new s e t y va lue in the f i r s t p o s i t i o n o f the l i s t

ar_pitch = o_s . read_pitch ( )
#C o l l e c t s the p i t c h va lue from the gyroscope
a r_ro l l = o_s . r ead_ro l l ( )
#C o l l e c t s the r o l l va lue from the gyroscope

i f ar_pitch > 350 :
ar_pitch = ar_pitch − 360

#Converts the p i t c h a c t ua l va lue to be a number
#between 0 −> −6 degrees
i f a r_ro l l > 350 :

a r_ro l l = a r_ro l l − 360
#Converts the r o l l a c t ua l va lue to be a number
#between 0 −> −6 degrees

l i s t_bo r_ro l l . pop (0 )
#De le t e s s e t r o l l va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t_bor_pi tch . pop (0 )
#De le t e s s e t p i t c h va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t _ r o l l . pop (0 )

#De le t e s a c t ua l r o l l va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t_p i t c h . pop (0)
#De le t e s a c t ua l p i t c h va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t _ r o l l . append ( a r_ro l l )

#I n s e r t s a new ac tua l r o l l va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t_p i t c h . append ( ar_pitch )
#I n s e r t s a new ac tua l p i t c h va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t_bo r_ro l l . append ( bor_ro l l )
#I n s e r t s a new s e t r o l l va lue in the f i r s t p o s i t i o n o f the l i s t
l i s t_bor_pi tch . append ( bor_pitch )
#I n s e r t s a new s e t p i t c h va lue in the f i r s t p o s i t i o n o f the l i s t

d i s tp = abs ( ar_pitch − bor_pitch )
#Gets the d i s t ance between the choosen po in t and the b a l l
d i s t r = abs ( a r_ro l l − bor_ro l l )
#Gets the d i s t ance between the choosen po in t and the b a l l

contro l_funct ion_pi tch ( d i s tp )
#Ramps up the c o n t r o l l va lue f o r p i t c h
con t ro l_ func t i on_ro l l ( d i s t r )
#Ramps up the c o n t r o l l va lue f o r r o l l
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pwm.setPWM( servo_channel_pitch , 0 , S e rvo s e tp i t ch )
#Sets the p i t c h p o s i t i o n f o r the servo motors
pwm.setPWM( servo_channel_rol l , 0 , S e r v o s e t r o l l )
#Sets the r o l l p o s i t i o n f o r the servo motors

cv2 . imshow( ’ image ’ , image )
#Shows the image
k = cv2 . waitKey (1 ) & 0xFF
#I f " c t r l C" i s pushed down the program i s ended
i f k == 27 :

break
cv2 . destroyAllWindows ( )
#Shuts down a l l windows
vs . stop ( )
#Stops v ideo stream
o_s . stop ( )
#Stops o r i e n t stream

XI



A. Appendix 1

XII



B
Appendix 2

A flowchart that explains the logic behind the code in appendix A.
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The function in the code that finds the balls position and maps it out
on the picture.
def f i n d b a l l ( mask , image ) :#Finds the b i g g e s t contour

#in the image and marks i t
global b a l l p o s i t i o n
cnts = cv2 . f indContours (mask . copy ( ) , cv2 .RETR_EXTERNAL,

cv2 .CHAIN_APPROX_SIMPLE)[−2]
c en te r = b a l l p o s i t i o n

# only proceed i f a t l e a s t one contour was found
i f len ( cnts ) > 0 :

# f ind the l a r g e s t contour in the mask , then use
# i t to compute the minimum enc l o s i n g c i r c l e and
# cen t ro i d
c = max( cnts , key=cv2 . contourArea )
( ( x , y ) , r ad iu s ) = cv2 . minEnc los ingCi rc l e ( c )
M = cv2 . moments ( c )
c en te r = ( int (M[ "m10" ] / M[ "m00" ] ) ,

int (M[ "m01" ] / M[ "m00" ] ) )
cx = int (M[ "m10" ] / M[ "m00" ] )
cy = int (M[ "m01" ] / M[ "m00" ] )

# only proceed i f the rad ius meets a minimum s i z e
i f rad iu s > 10 :

# draw the c i r c l e and cen t ro i d on the frame ,
# then update the l i s t o f t racked po in t s
cv2 . c i r c l e ( image , ( int ( x ) , int ( y ) ) , int ( rad iu s ) ,

(0 , 255 , 255) , 2)
cv2 . c i r c l e ( image , center , 5 , (0 , 0 , 255) , −1)

return c en te r
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The class that was created for running the gyroscope separately in the
background of the main code with the help of thredding.

from sense_hat import SenseHat
import time
import os
import cv2
from thread ing import Thread
import numpy as np

class o r i en ta t i on s t r eam :
#c r ea t e s a c l a s s c a l l e d o r i en ta t i ons t r eam
#i n i t i z i a t e s the v a r i a b l e s a v a i l a b l e when addres s ing the c l a s s
def __init__( s e l f ) :

s e l f . s ense = SenseHat ( )
s e l f . s ense . c l e a r ( )
s e l f . stopped = False
s e l f . p i t ch = 0
s e l f . r o l l = 0
s e l f . o = None

def s t a r t ( s e l f ) :
#S t a r t s a thread t ha t jumps to the update−f unc t i on

Thread ( t a r g e t=s e l f . update , a rgs =() ) . s t a r t ( )
return s e l f

def update ( s e l f ) :
#Updates the gyroscope−va l u e s
while ( s e l f . stopped == False ) :

s e l f . o= s e l f . s ense . g e t_or i en ta t i on ( )
s e l f . p i t ch = round( s e l f . o [ " p i t ch " ] , 1 )
s e l f . r o l l = round( s e l f . o [ " r o l l " ] , 1 )

def read_pitch ( s e l f ) :
#re turns the p i t ch−va lue when c a l l e d
return s e l f . p i t ch
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def r ead_ro l l ( s e l f ) :
#re turns the r o l l−va lue when c a l l e d
return s e l f . r o l l

def stop ( s e l f ) :
#stop s the gyroscope−update proces s when c a l l e d
s e l f . stopped = True
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