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Dynamic response of railway bridges subjected to high speed trains 

Parametrical case studies 

Master’s thesis in the Master’s Programme  Structural Engineering and Building 

Technology 

MARCUS HJELM 

NICLAS KARLSSON 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Concrete structures 

Chalmers University of Technology 

 

ABSTRACT 

The interest in high-speed trains is increasing around the world and it provides a 

sustainable and effective way of travelling. A high-speed railway line is currently 

being planned in Sweden with an intended line speed of 320 km/h. High train speeds 

induce more critical dynamic effects on railway bridges and the purpose of this 

Master's thesis is to enhance the basic understanding of how different parameters 

influence the bridge response. A literature survey of the dynamic behaviour of railway 

bridges was carried out and numerical analyses were performed for different 

reinforced concrete bridges in Brigade/Plus. The outcome of the study was limited to 

assess vertical accelerations and vertical deflections of the bridge deck. 

The FE-modelling of the bridges started with a simply supported case and different 

parameters were altered in order to assess their effect on the dynamic response. 

Influence of mass, stiffness, damping and span length were included. In addition, the 

bridges were provided with end shields in order to study their impact on the response. 

Moreover, a two- and three span continuous case with simply supported boundary 

conditions were analysed together with a situation with fixed columns as mid-support.  

The results from numerical analyses have shown that the mass, stiffness and damping 

have a great influence on the dynamic response of the bridges. Greater mass lowered 

the critical train speed and reduced the deck accelerations whereas the maximum 

deflection values were unchanged. Higher stiffness increased the critical train speed 

and reduced the deflections instead and left the maximum deck accelerations 

unchanged. A higher damping value reduced both the accelerations and deflections. 

Longer spans were found to enhance the dynamic performance while short span 

bridges with low natural frequencies resulted in excessive vibration levels. Increased 

stiffness of a short span bridge resulted in a satisfying dynamic behaviour since the 

critical resonance peaks were moved outside of the considered speed range. The 

continuous bridges indicated high accelerations for the short span cases due to the low 

natural frequencies. End shields were found to reduce the accelerations, especially for 

the shorter spans due to its mass contribution and transverse stiffening at the bridge 

ends. Finally, the dynamic behaviour was highly influenced by the span to coach 

length ratio, which effectively suppressed the resonance response in the vicinity of 

certain ratios. 

Key words: Dynamic response, high-speed train, deck acceleration, natural 

frequency, railway bridge, resonance, vibrations 
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Dynamisk respons för järnvägsbroar belastade av höghastighetståg 

Parametriska fallstudier 

Examensarbete inom masterprogrammet  Structural Engineering and Building 

Technology 

MARCUS HJELM 

NICLAS KARLSSON 

Institutionen för bygg- och miljöteknik 

Avdelningen för Konstruktionsteknik 

Betongbyggnad 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Intresset för höghastighetståg ökar runtom i världen då det är ett hållbart och effektivt 

sätt att resa. En höghastighetsjärnväg planeras för tillfället i Sverige där hastigheten 

skall vara 320 km/h. Höga hastigheter innebär en ökning av de dynamiska effekterna 

på järnvägsbroar och syftet med denna uppsats är att öka förståelsen för hur olika 

parametrar påverkar broars dynamiska respons. En litteraturstudie genomfördes med 

avseende på järnvägsbroars dynamiska egenskaper och numeriska analyser utfördes 

på slakarmerade betongbroar i Brigade/Plus. De resultat som utvärderats var 

begränsade till vertikala accelerationer och vertikala nedböjningar.  

FE-modelleringen av broarna utgick från fritt upplagda fall där olika parametrar 

modifierades för att utvärdera deras inverkan på den dynamiska responsen. Massa, 

styvhet, dämpning och spannlängd utvärderades i parameterstudien. Därefter 

kompletterades broarna med ändskärmar för att studera dess påverkan. Slutligen 

studeras även fritt upplagda kontinuerliga två- och trespannsbroar samt med fast 

inspända upplag.  

Resultaten från de numeriska analyserna visade att massa, styvhet och dämpning hade 

stor inverkan på resultaten. Ökad massa sänkte resonanshastigheterna och reducerade 

accelerationerna i brodäcket men påverkade inte den dynamiska nedböjningen. Ökad 

styvhet medförde höjda resonanshastigheter, oförändrad acceleration och sänkt 

dynamisk nedböjning. Ökad dämpning sänkte både dynamisk nedböjning och 

acceleration.  

Broar med långa spann visade sig ha bättre dynamiska egenskaper än korta broar med 

låg egenfrekvens. Genom att öka styvheten för en kort bro kunde 

resonanshastigheterna flyttas utanför analysernas hastighetsspektrum. Kontinuerliga 

broar uppvisade höga accelerationer för korta spännvidder på grund av låga 

egenfrekvenser. Accelerationerna reducerades när ändskärmar lades till i analyserna, 

speciellt för de korta broarna då dess massa och transversella styvhet hade stor 

påverkan. Slutligen visade analyserna att kvoten mellan spann- och vagnlängd hade 

stor inverkan på resultaten, och responsen vid resonans minskade avsevärt vid 

särskilda kvoter. 

Nyckelord: Dynamisk respons, höghastighetståg, brodäcksacceleration, 

egenfrekvens, järnvägsbro, resonans, vibrationer 
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Notations 

The following notations are used throughout the report. Time derivatives are notated 

with a dot e.g. 
t
uu

  and space derivatives are denoted with a prime e.g. 

x
uu

 . 

Transposed vectors and matrices are denoted with a T e.g.   









b

a
ba

T
 

Roman upper case letters 

A Cross-section area [m²] 

C Damping matrix [Ns/m] 

C Modal damping matrix [Ns/m] 

C  Mathematical variable 

D Coach length [m] 

𝐷𝑠 Steady-state amplification factor 

DOF Degrees of freedom 

E Young’s modulus [Pa] 

ERRI European Rail Research Institute 

FE Finite element 

FEM Finite element method 

FVD Fluid viscous damper 

HSLM High-speed load model 

I Moment of inertia [m4] 

K Stiffness matrix [N/m] 

K Modal stiffness matrix 

L Length of span [m] 

LΦ Determinant length [m] 

M Mass matrix 

M Modal mass matrix 

MDOF Multi degree of freedom 

ORE Office for Research and Experiments 

SDOF Single degree of freedom 

Sn Non-dimensional speed parameter 

TMD Tuned mass damper 

U Steady-state amplitude [m] 

U Amplitude vector [m] 

0U  Static displacement [m] 

 

Roman lower case letters 

 c Damping coefficient [Ns/m] 

crc  Critical damping coeffiecient [Ns/m] 

 f Frequency [Hz] 

 k Spring stiffness [N/m] 

 m Mass [kg] 

0n  First natural frequency 

Tn  First natural torsional frequency 

 p Force [N] 

 q Generalised coordinates 
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 r Loading frequency ratio 

s  Mathematical variable 

 u Displacement or deflection [m] 

 u Displacement vector [m, rad] 

 

Greek upper case letters 

Φ Dynamic factor 

Φ Eigenvector matrix 

Ω Loading frequency [rad/s] 

 

Greek lower case letters 

𝛼 Phase angle [m] 

𝝓𝒏 Mode shape 

   Factor for track irregularities 

𝜌 Density [kg/m³] 

  Viscous damping factor [%] 

𝜔𝑑 Damped circular natural frequency [rad/s] 

𝜔𝑛 Undamped circular natural frequency [rad/s]
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1 Introduction 

1.1 Background 

High-speed trains are getting more common around the world and are soon to be 

introduced in Sweden. The construction of a double track railway line for high-speed 

trains between Gothenburg and Stockholm is currently being planned with an 

intended line speed of 320 km/h. By introducing new high-speed routes, travelling 

times for passengers can be reduced and existing lines can be utilized by additional 

freight traffic. High-speed railway lines offer a sustainable and comfortable way of 

travel. The high-speed trains are very energy efficient with a low environmental 

impact and it promotes economic growth by connecting larger regions 

(Europakorridoren AB, 2016).  

Bridges are an important asset in order to utilize the landscape and avoid interruption 

of existing infrastructure. Increased train speeds induce higher dynamic effects on 

railway bridges and these effects must be considered in design. The dynamic response 

is important in order to ensure traffic safety and comfort for the passengers. High 

accelerations in the bridge deck may cause destabilization of the ballast and high 

accelerations in the train cabin may cause an unpleasant journey for the passengers. 

For railway bridges with an intended train speed below 200 km/h it is generally 

sufficient to design for static loads. The dynamic effects may be accounted for by 

increasing the static loads with a dynamic amplification factor. According to 

Eurocode 1, SS-EN 1991-2 (CEN, 2003), a dynamic analysis is typically required for 

railway bridges subjected to train speeds exceeding 200 km/h, or for bridges with a 

fundamental frequency outside specified limits. A finite element analysis is required 

for complex systems to simulate the response, and account for the dynamic effects of 

the bridge. There are specifications in Eurocode on what a dynamic analysis should 

include and there are also limitations that needs to be fulfilled. Vertical accelerations 

of the bridge deck are generally the decisive factor in dynamic analyses  

(Andersson, et al., 2011). 

When designing a railway bridge for high-speed traffic, it is important to understand 

how different parameters influence the dynamic response. Even though a bridge is 

satisfactory for static load effects, it might be inadequate in terms of dynamic 

behaviour. Different structural choices may have a great impact on the dynamic 

response and by having some basic dynamic knowledge behind the most influential 

parameters, a better bridge design can be obtained early in the design phase.  

 

1.2 Purpose 

The purpose of this Master’s Thesis was to increase the understanding of structural 

dynamics of railway bridges subjected to high-speed trains. The aim was also to be 

able to describe for engineers and non-specialists what parameters are the most 

influential when designing railway bridges subjected to high-speed trains.  
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1.3 Limitations 

This thesis was limited to describe the structural response of railway bridges and the 

FE-analyses were focused on comparing the following bridge types:  

 Simply supported reinforced concrete slab bridge (with and without end 

shields) 

 Simply supported reinforced concrete trough bridge (with and without end 

shields)  

 Continuous reinforced concrete slab bridge with end shields (two-span and 

three-span) 

Dynamics in vertical direction was primarily considered and emphasis was put on 

vertical accelerations and deflections. Only bridges with ballasted single tracks were 

considered in the numerical analyses. 

 

1.4 Method 

To augment the understanding of theoretical models, a literature study was carried 

out. The studied subjects were structural dynamics for railway bridges, 

implementation of Eurocode and TRVK Bro 11 as well as how the dynamic response 

could be modelled in BRIGADE/Plus. 

The dynamic analyses were performed in BRIGADE/Plus using Eurocode and TRVK 

Bro 11 specifications and it included several different types of reinforced concrete 

bridges as described above. In the initial part of the analyses, the simply supported 

bridges without end shields were subjected to a single moving point load. The 

response was then compared to the same case of an analytical beam model for 

verification and in order to comprehend the dynamic behaviour. The complexity of 

the analyses was then successively increased by introducing train load models and 

providing the bridges with end shields as well as continuity.  

Static deflection from deadweight and natural frequencies of the less complex models 

were compared to hand calculations for verification. Hand calculations were carried 

out using Mathcad and MATLAB. 

This master thesis was a co-operation between COWI and Chalmers University of 

Technology. The thesis was carried out at COWI, Division of Civil Structures in 

Gothenburg. 
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2 Introduction to structural dynamics 

Structural dynamics is an important topic when it comes to designing different 

structures subjected to dynamic loading such as bridges, vehicles, offshore oil 

platforms etc. The dynamic response of a structure differs from the static one since 

inertial effects are induced, arising from accelerations of the structure. Furthermore, it 

is a more complicated problem than the static one due to its time dependency. A 

dynamic load can vary in time with respect to magnitude, direction, or point of 

application and a solution has to be established for each time step of interest.  If the 

inertial forces from dynamic loading have a considerable effect on the response of a 

structure, a dynamic analysis is necessary (Craig Jr & Kurdila, 2006).  

In the following chapter, the basics of structural dynamics will be presented in order 

to establish a basic understanding of the dynamic phenomenon. 

 

2.1 Vibration of SDOF systems 

In order to understand the basics of structural dynamics it is convenient to start with a 

single-degree-of-freedom (SDOF) spring-mass system as presented in Figure 2.1. The 

system can be complemented with a damping model. The simplest analytical damping 

model is the linear viscous dashpot model, where the damping force is a linear 

function of the relative velocity. The equation of motion can be established by 

adopting Newton´s second law and include all forces acting on the system  

(Craig Jr & Kurdila, 2006). 

 

Figure 2.1  Simple spring-mass-dashpot model. 

  (2.1) 

where m is the mass, c is the damping coefficient and k is the spring stiffness. 

Equation (2.1) can be solved analytically according to eq (2.2) with a particular 

solution )(tup  , related to forced motion, and a complementary solution )(tuc , related 

to natural motion.  

 )()()( tututu cp   (2.2) 

Equation (2.1) can be rewritten as 

 

k

tp
uuu nnn

)(
2 22     (2.3) 

)(tpkuucum  
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where mkn / is the undamped circular natural frequency, crcc /  is the 

viscous damping factor and kmccr 2  is the critical damping coefficient. 

The complementary solution is assumed to be on the form 

   tseCtu   (2.4) 

Inserting eqs (2.3) and (2.4) gives the following characteristic equation 

 02 22  nnss   (2.5) 

whose roots are given by 

 12

2,1   nns  (2.6) 

The solution of the characteristic equation will be different depending on the value of 

the viscous damping factor ζ. Three different cases can be studied: underdamped  

(0 < ζ < 1), critically damped (ζ = 1) and overdamped (ζ > 1). The underdamped case 

can be characterised by an oscillating motion with decreasing amplitude. For the 

overdamped system, the amplitude will decay slowly and no oscillation will occur. 

The last case with critical damping is also characterised by no oscillation but the 

amplitude will decay faster than for the two other cases (Craig Jr & Kurdila, 2006). 

Figure 2.2 illustrates the behaviour of these three cases for a SDOF system.  

 

Figure 2.2 Comparison between underdamped, critically damped and   

  overdamped SDOF system. 

For structural dynamics applications, the underdamped case is most relevant since the 

viscous damping factor is usually well below the critical damping for real structures 

and this case will therefore be studied further. 

For an underdamped system, the characteristic equation will have complex roots and 

Eq (2.6) can then be rewritten as 

 
dn is  2,1  (2.7) 

where ωd is the damped circular natural frequency, given by 
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 21   nd  (2.8) 

By adopting Euler´s formula, the general solution for a free vibrating case can be 

expressed in terms of trigonometric functions 

  )sin()cos()( 21 tAtAetu dd

t

c
n 




 (2.9) 

Now consider the particular solution of eq (2.1), assuming a harmonic excitation of 

the force p(t).  

 )cos()( 0 tptp   (2.10) 

where Ω is the exciting frequency given in radians per second. The particular solution 

will be given by  

 )cos(  tUu p  (2.11) 

where U is the steady-state amplitude and α is the phase angle, arising from the fact 

that the steady-state response will be out of phase with the excitation due to the 

damping. The velocity and acceleration will then be expressed as 

 )sin(  tUu p
  (2.12) 

 )cos(2  tUu p
  (2.13) 

By inserting eqs (2.10), (2.11), (2.12) and (2.13) into (2.1) the following expression is 

obtained 

 )cos()cos()sin()cos( 0

2 tptkUtcUtUm    (2.14) 

which can be used to obtain an expression for the steady-state amplitude U, 

 

22

0

)()( 


cmk

p
U  (2.15) 

Eq (2.15) can be rewritten as 

 

22

0

)2()1( rr

U
U


  (2.16) 

where the static displacement is defined as 

 

k

p
U 0

0   (2.17) 

and the frequency ratio is defined as the ratio between the loading frequency and the 

natural frequency of the system given by 
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n

r



  (2.18) 

 

The phase angle is given by 

 
21

2
)tan(

r

r





  (2.19) 

By combining the particular solution and the complementary solution, the total 

response of the damped SDOF system can be expressed as 

 
 )sin()cos()cos(

)2()1(
)( 21

222

0 tAtAeΩt
rr

U
tu dd

tn 









 (2.20) 

The constants A1 and A2 can be determined from the initial conditions of the system. 

 

2.2 Resonance 

Resonance is a very important phenomenon when it comes to structural dynamics and 

it can cause major damages of structures if it is not considered in the design. 

Resonance occurs when a frequency of an external excitation coincides with the 

natural frequency of a system, i.e. if r in eq (2.18) is close or equal to one. The 

dynamic response of the system will then increase rapidly.  

One way to study the resonance effect is to introduce the steady-state amplification 

factor Ds(r), defined as the ratio between the dynamic amplitude and the static 

displacement amplitude given by  

 

0

)(
)(

U

rU
rDs   (2.21) 

Substituting eqs (2.16) and (2.17) into eq (2.21) yields 

 

222 )2()1(

1
)(

rr
rDs


  (2.22) 

By plotting the steady-state amplification factor Ds(r) against the frequency ratio r, a 

very clear illustration of the resonance phenomenon is obtained, see Figure 2.3. 

 

Figure 2.3 Resonance peaks for different amount of damping. 
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2.3 MDOF systems 

In Section 2.1, a simple SDOF system was discussed and a solution for an 

underdamped system subjected to a harmonic excitation was derived. In order to 

model more complex structures, it is generally necessary to adopt a more complex 

model, such as the multi-degree-of-freedom (MDOF) system. MDOF models are the 

basis of finite element modelling and thus they are crucial when analysing complex 

dynamic problems. 

The equation of motion for a MDOF system can be derived in the same manner as for 

SDOF systems, but including more degrees of freedom. Figure 2.4 illustrates a 

damped spring-mass system with two degrees of freedom.  

 

Figure 2.4 A MDOF system with two degree of freedom. 

The equation of motion can be written on matrix form as 

 )(tpKuuCuM    (2.23) 

where M, C and K are the mass, damping and stiffness matrices respectively. 

Equation (2.23) can be expressed explicitly as 

 





































































)(

0

0
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 (2.24) 

The same principal can be adopted for many degree of freedom systems and even for 

3D-systems. 

 

2.3.1 Solving the dynamic response of MDOF systems 

The natural frequencies of a system are of great importance for the dynamic response 

and they are essential for the systems reaction to dynamic loading. In Section 2.1 it 

was presented how the eigenfrequencies of a SDOF system could be obtained 

analytically. Eigenfrequencies for simple MDOF system can also be derived 

analytically, however, a numerical solution is generally required for more complex 

systems. Different strategies can be employed for solving a MDOF system in order to 

obtain the dynamic response. The most commonly used methods for complex systems 

is the mode superposition and direct time integration (Craig Jr & Kurdila, 2006). In 

the following sections some of the methods for solving MDOF systems is presented. 
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2.3.1.1 Natural frequencies of undamped MDOF system 

The simplest MDOF system to determine the natural frequencies from is an 

undamped free vibrating case, with an equation of motion defined as 

 0KuuM   (2.25) 

Assuming a harmonic solution of the form 

 )cos()(   tt nUu  (2.26) 

and substituting eq (2.26) into eq (2.25) yields the following eigenvalue problem 

   0UMK  2

n  (2.27) 

For the nontrivial solution of this problem, the following characteristic equation 

should be satisfied 

 0MK  )det( 2

n  (2.28) 

The roots of eq (2.28) corresponds to the eigenvalues of the system. For a system of N 

degrees of freedom, there will be N eigenvalues and N eigenmodes. The eigenvalues 

corresponds to squared eigenfrequencies. The eigenmodes can be determined by 

substituting the eigenfrequencies back into eq (2.27). 

 

2.3.1.2 Mode superposition 

In general, the dynamic problem equations are coupled and hence, the computational 

effort may be very extensive for large systems. An effective way to evaluate a 

dynamic problem is to adopt the mode-superposition method. The advantages is that 

the coupled equations can be transformed into uncoupled equations and the system 

can be solved as a number of SDOF equations. The eigenmodes are generally 

evaluated from the undamped system and they can be used to transform the stiffness, 

mass and damping matrices into diagonal modal matrices using the following 

expressions (Craig Jr & Kurdila, 2006), 

 K  KT  (2.29) 

 M  MT  (2.30) 

 C  C
T  (2.31) 

where Φ is the eigenvector matrix including all eigenmodes. The fundamental step for 

mode superposition is to adopt a coordinate transformation of the displacement 

according to eq (2.32). 

 



N

r

rtt
1

)()( u )(tr  (2.32) 

where η(t) is the principal coordinate vector, ϕr is the rth eigenvector and ηr(t) is the 

rth principle coordinate.  
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Equation (2.32) can be substituted into eq (2.23) in order to obtain the equation of 

motion in principle coordinates:  

 )(tfKCM     (2.33) 

where 

 T)t( f )(tp  (2.34) 

Another advantage with the mode superposition method is that the system can be 

reduced by only include eigenvectors corresponding to the lowest eigenfrequencies. 

In structural dynamic application, higher frequencies have often a negligible effect on 

the structure and by only include the lowest frequencies, a very good approximation 

can be obtained. Hence, the dynamic analysis will be less extensive and less time 

consuming.  

It should be noted that mode superposition can only be adopted when the damping 

matrix can be represented by diagonal terms only. There are some situations where 

this is not possible and one such modelling case may be a building and its surrounding 

soil, in which the damping matrix will have off-diagonal values. Furthermore, mode-

superposition can only be used for linear systems and in order to include non-

linearities, other methods need to be considered. In such cases it is convenient to use 

numerical integration methods instead (Craig Jr & Kurdila, 2006). 

 

2.4 Continuous systems – Vibration of beams 

In the previous sections, SDOF and MDOF systems have been presented in order to 

understand the dynamic behaviour of a structure. These models are discrete-parameter 

models with a finite number of degrees of freedom. However, a real structure 

constitutes of an infinite number of degrees of freedom and hence, an infinite number 

of eigenfrequencies. Such continuous system can be represented by partial differential 

equation models and are recognised as the exact analytical solution of a system  

(Craig Jr & Kurdila, 2006).  

A railway bridge can generally be idealized as beam elements and therefore a 

continuous beam system will be presented in the following section. 

 

2.4.1 Transverse vibration of beams 

The simplest way to represent a beam member is to implement Bernoulli-Euler beam 

theory, which can be adopted for members with small transverse dimensions 

compared to the longitudinal length (Craig Jr & Kurdila, 2006). The differential 

equation of motion of such beam is 
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
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










  (2.35) 

where u is the vertical deflection, x is the length coordinate, EI is the flexural rigidity, 

c is the damping coefficient and ρA is the mass per unit length. 
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For free vibrations of an undamped uniform beam with constant flexural rigidity  

eq (2.35) can be reduced to 

 0)(  uAuEI   (2.36) 

Assuming harmonic motion given by 

 )cos()(),(   txUtxU  (2.37) 

and inserting this into eq (2.36) will result in the eigenvalue equation 

 0)( 2  UAUEI   (2.38) 

which can be rewritten as 

 
04

4

4

 U
dx

Ud
  (2.39) 

where 

 

EI

A
 24   (2.40) 

The general solution of eq (2.39) can be expressed as 

 )cosh()sinh()cosh()sinh()( 4321 xCxCxCxCxU    (2.41) 

The constants may be determined in terms of boundary conditions. For a simply 

supported beam, there are zero deflection and zero moment at the supports, i.e. the 

boundary conditions are  

  (2.42) 

 0),0(  tu  (2.43) 

 0),( tLu  (2.44) 

 0),(  tLu  (2.45) 

By using these together with eq (2.41), the eigenfrequencies and mode shapes can be 

determined as 

 

A

EI

L

n
n






2





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


  (2.46) 

 










L

xn
n


 sin ,    ...3,2,1n  

(2.47) 

The first three mode shapes are illustrated in Figure 2.5. 

0),0( tu
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Figure 2.5 First three mode shapes of a simply supported beam. 

 

2.4.2 Beam subjected to a moving point load 

A beam subjected to a moving point load can be solved analytically by consider the 

beam in Figure 2.6 with a length L and a point load p0 moving at constant speed v0. 

 

 

Figure 2.6 Illustration of the moving load problem over a simply supported beam. 

The differential equation of motion and boundary conditions from Section 2.4.1 is 

applicable for this case as well. In addition, the initial condition of the beam is 

necessary in order to solve the moving load problem. The beam is assumed to be 

undeformed and at rest when the load is applied. The initial conditions can then be 

stated as 

 0)0,( xu  (2.48) 

 0)0,( xu  (2.49) 

The deflection of the beam can be expressed in terms of mode superposition as the 

sum of the product of the nth mode shape function ϕn(x) and the nth generalized 

coordinate qn(t) according to eq (2.50) 

 






1

)()(),(
n

nn tqxtxu   (2.50) 

For the given mode shape function in eq (2.47), it can be shown that the complete 

solution for a simply supported beam subjected to a moving point load can be 

expressed as 
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where n  is the exciting frequency given by 

 

L

vn
n

0
  (2.52) 

and nS  is a non-dimensional speed parameter defined as 

 

L

vn
S

nn

n

n





0


  (2.53) 

The formulation of the beam displacement is only valid when the point load excites 

the beam i.e. for Ltv  00 . A complete derivation of the analytical solution of a 

simply supported beam subjected to a moving point load can be found in  

Vehicle-Bridge Interaction Dynamics – With Applications to High-Speed Railways  

(Yang, et al., 2004).  

The effect of damping may be neglected when studying the dynamic response of a 

simply supported beam subjected to a moving point load. The reason is that the 

damping has a low impact on the response since the acting time of the point load is 

relatively short (Yang, et al., 2004). By neglecting the influence of damping, eq (2.51) 

reduces to 
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3 Dynamic behaviour of railway bridges 

The dynamic behaviour of railway bridges is an important subject in bridge design, 

especially when loads from high-speed trains are to be considered. The dynamic 

response is influenced by a number of different factors, including the characteristics 

of the bridge itself as well as the characteristics of the vehicles travelling on the 

bridge.  

This chapter will include an introduction to some dynamic effects of railway bridges 

as well as a presentation of the most important bridge parameters that may influence 

the response and how these may be modelled in a dynamic analysis. Furthermore, a 

presentation of how the dynamic effects are considered in Eurocode 1, SS-EN 1991-2 

(CEN, 2003) and in the Swedish national code TRVK-Bro 11 (Swedish Transport 

Administration, 2011) will be included.  

 

3.1 Dynamic effects to be considered on railway bridges 

The mode shapes and corresponding eigenfrequencies of a railway bridge may occur 

with different characteristics, such as vertical, horizontal transverse, longitudinal and 

torsional. In Figure 3.1, these mode shapes are illustrated for a simply supported 

bridge. Dynamic loading from trains induces these kind of vibrations and may cause 

problems for the structure. 

 

   

Figure 3.1  Typical natural modes of railway bridges including vertical bending, 

torsional and horizontal transverse. 

The applied load on a railway bridge mainly arise from the trains travelling along the 

bridge. These vehicles are complex systems subjecting the bridge to forces in many 

directions, hence exciting the different eigenmodes of the bridge (Frýba, 1996). In 

addition, the bridge is subjected to wind, snow, earth pressure, temperature 

differences as well as creep and shrinkage.  

The dynamic effects from vertical forces mainly arise from wheel and axle forces of 

the moving vehicles. In the horizontal transverse plane, centrifugal forces from curved 

bridges and lateral impacts is dominating the response. The lateral dynamics are 

significant for high bridges in particular due to the increasing wind loads higher up. 

The longitudinal forces are a result of accelerations and decelerations of trains and 

may induce axial vibrations of the deck. Torsional vibrations may be initiated by track 

eccentricities of a single track or by trains moving along one side of a double track 

bridge, thus induce twisting moments (Arvidsson & Karoumi, 2014). 

All the dynamic effects described above will be magnified in the presence of 

resonance, which may cause problem for the bridge and compromise the safety of the 

structure.   
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3.1.1 Resonance and cancellation effects 

For railway bridges subjected to high-speed trains, the effect of resonance needs to be 

considered. The trains are composed of coaches with regularly spaced axles which 

excites the bridge with a certain frequency. At high speeds these frequencies may 

coincide with the natural frequencies (or a multiple of it) of the bridge and resonance 

will occur. In such case, a dynamic analysis is essential in order to evaluate the 

response. However, significant resonance effects are unlikely to occur for train speeds 

below 200 km/h, and in such case it is generally sufficient to magnify the static 

response with a dynamic amplification factor. 

The resonance speed of a bridge may be calculated according to 

 
,

2 j

Df

j

D
v nnj

n 



      ...3,2,1j  (3.1) 

where 𝑣𝑛
𝑗
 is the jth resonance speed of the nth mode and 𝑓𝑛 is the natural frequency in 

Hertz (Cho, et al., 2016). 

When a train is moving at resonance speed, the dynamic effects will increase every 

time an axle excites the bridge and the maximum response is generally obtained when 

the last load has passed. However, for a damped structure, the amplitude will 

converge towards a maximum value as the number of loads increases (Li & Su, 1999).  

Another phenomenon that may occur under specific conditions is cancellation effects 

which may, on the contrary to resonance, supress the dynamic vibrations. These 

effects occur for specific span to vehicle length ratios together with a certain train 

speed.  

Both the resonance and cancellation effects may be derived for a simply supported 

beam in order to illustrate at what conditions these effects may occur. As a result, it is 

possible to suggest optimal design conditions in order to obtain minimal dynamic 

response. This have been done in several studies and (Yang, et al., 2004) showed this 

by deriving the train load as a set of two moving loads with constant intervals, 

representing the train axles. An expression of the speed parameter of the first mode,

11 /S  was derived in order to state a resonance condition as 

 
,

2
1

iL

D
S       ...3,2,1i  (3.2) 

As can be seen from this expression, a longer beam will obtain a lower speed at which 

resonance occurs. It was concluded that the most critical condition was obtained when 

the speed parameter equals 0.5D/L, representing the primary resonance speed. For the 

higher integers 𝑖 , the resonance peaks will appear at lower speeds, however, the 

response is decreased and their influence are generally neglected (Yang, et al., 2004).  

From the result it was observed that it is theoretically possible to select a speed at 

which cancellation effects occur and thus providing a better dynamic performance of 

the bridge. Similar to the expression for resonance condition, (Yang, et al., 2004) 

derived the condition of cancellation as 
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S      ...3,2,1i  (3.3) 

In practise, it is possible to select a suitable vehicle length and span length in order to 

obtain an optimal dynamic behaviour where the primary resonance response is 

supressed. By letting the first critical resonance speed, i.e. LDS /5.01   equal any of 

the cancellation speeds in eq (3.3), an expression for the optimal span/vehicle length 

ratio is given by eq (3.4). Noticeable is that this expression is independent of the 

speed. 

 
,5.0 i

D

L
     ...3,2,1i  (3.4) 

In order to illustrate the resonance and cancellation effects, the midpoint response of 

an undamped beam is plotted in Figure 3.2 with two different speeds causing 

resonance and cancellation. It can be seen that at resonance speed, the response is 

increasing when more loads are passing the beam. At cancellation speed, there are no 

amplification effects of the response and as the last load has passed the bridge, no 

residual response remains even though no damping is applied to the beam  

(Yang, et al., 2004).  

 

Figure 3.2 Illustration of the resonance and cancellation effects of a simply  

  supported beam subjected to a moving train of 5 cars with identical 

  lengths (Yang, et al., 2004). 

Similar results were obtained in a study conducted by (Cho, et al., 2016) where they 

evaluated resonance and cancellation effects for bridges subjected to high-speed 

trains. For simply supported bridges the optimal span length was found to be 1.5D, 

2.5D, 3.5D etc., which is the same result as in eq (3.4). Moreover, an increased 

number of spans gave additional optimal design lengths. As an example a two-span 

continuous bridge had optimal span lengths of D, 1.5D, 2D, 2,5D, etc.  

In order to illustrate the cancellation effects, a resonance spectrum jF1  corresponding 

to the first mode of the jth resonance speed was introduced in the study by (Cho, et 

al., 2016). It was defined as the response in terms of the ratio of the distance between 

loads and the span length of the bridge. The resonance spectrum is plotted against the 
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span to coach length ratio in Figure 3.3 where the optimal ratios are clearly illustrated. 

Diagram (b) in the figure corresponds to the envelope resonance spectrum of the first 

mode, which includes ten resonance spectra. It can be seen that for higher span to 

coach length ratios, i.e. for longer bridges, the dynamic response is reduced. 

 

 

Figure 3.3 Resonance spectrum of single-span and two-span continuous beams for 

the first mode. 

It should be noted that even though it is possible to find an optimal span length for a 

certain vehicle length or vice versa, the application in a real design case may be 

difficult since the bridge should most certainly be checked for various train types and 

loads. As an example, the high-speed load model that should be adopted according to 

Eurocode 1, SS-EN 1991-2 (CEN, 2003) includes 10 train types, all with different 

optimal span length.  

 

3.2 Important parameters for dynamic bridge response 

There are a lot of different parameters that contributes to the dynamic response of a 

bridge when it is subjected to dynamic loading. The most obvious ones are the 

damping, stiffness and mass of the structure that are highly influential, but in addition 

there are a number of other factors that needs to be considered. In the following 

section, the most important bridge parameters and their contribution to the dynamic 

behaviour will be introduced. 
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3.2.1 Damping 

The damping of a railway bridge has a high influence of the dynamic behaviour, 

especially at resonance, and it is a desirable effect that reduces the dynamic response. 

A bridge starts to vibrate as soon as a train is passing along and when the train has 

passed, the bridge will vibrate freely until it eventually reaches equilibrium as a result 

of the damping property (Frýba, 1996). The effect of damping at resonance peaks is 

illustrated in Figure 2.3, Section 2.2. 

The damping phenomenon is complex and occurs due to energy losses during cycles 

of oscillation. The energy dissipation is a result of a number of factors such as: 

friction in the material, friction at supports, deformations of the material, opening and 

closing of cracks etc. The amount of damping in a specific bridge can vary depending 

on the amplitude of vibration, temperature, whether the track is ballasted or not and 

influence of boundary conditions (ERRI, 1999).  

Due to the complex nature of damping, it is almost impossible to take all influencing 

parameters into account when evaluating the damping properties of a bridge. As a 

result, there are no theoretical equations for determining the damping coefficients to 

be used in design. Instead, the proposed design values are based on empirical data 

obtained from real bridge experiments (Frýba, 1996).  

Damping is generally expressed as a ratio of critical damping crc  as 

 
 %

crc

c
  (3.5) 

3.2.1.1 Dampers 

Additional damping may be applied to the structure if dampers are installed. By 

tuning the dampers to affect a certain frequency, the response from that frequency will 

be reduced.  

Dampers are categorized into three main categories; active, semi-active and passive 

control systems. The active control systems needs an external power supply whilst a 

passive control system uses the motion of the structure to increase the damping 

(Beygi, 2015).  

According to a master thesis from KTH (Beygi, 2015), tuned mass dampers (TMD) 

installed in the middle of the bridge, could be used to significantly decrease the 

response. Another master thesis (Rådeström & Tell, 2014) investigated how fluid 

viscous dampers (FVD) could be applied to decrease the response. The FVD’s would 

be applied at each support and the TMD’s at the middle of the bridge. Both systems 

are passive and can be seen in Figure 3.4.  
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Figure 3.4  Tuned mass dampers a) (Beygi, 2015) and a fluid viscous damper b) 

(Rådeström & Tell, 2014). 

The dampers are passively decreasing the influence of a certain frequency and thus 

reducing the response as can be seen in Figure 3.5. The reports came to the conclusion 

that it is possible to significantly decrease accelerations and deflections due to 

dynamic loading with TMD’s and FVD’s respectively.  

 

Figure 3.5  Influence of multiple tunes mass dampers on a railway bridge 

subjected to HSLM-A3 (Beygi, 2015). 

 

3.2.2 Mass 

The mass in a structural dynamic problem is related to the acceleration of the 

structure. If a load is applied at a sufficiently slow rate, the problem can be considered 

as static since the inertial effects will be negligible. Nonetheless, when the load 

application is relatively fast i.e. having a high speed, the inertial effects can have a 

large influence of the structure and needs to be considered. In such case, the mass has 

a great impact of the dynamic response of the structure.  

By looking at the expression for the natural frequency of a simply supported beam 

given by eq (2.46) in Section 2.4.1, it is clear that the eigenfrequency is inversely 

proportional to the square root of the mass. An increase in mass will thereby decrease 

the natural frequency of a structure and thus lower the speed at which resonance 

occur.  

At resonance, the maximum acceleration is inversely proportional to the mass of the 

structure. Hence, an increase in mass will lower the maximum acceleration. Apart 

from the regions at which resonance occurs, the dynamic behaviour of the beam is 

dominated by the response from the first axle load exciting the bridge (ERRI, 1999).   

a) b) 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-16-29 19 

In design situations it is therefore important to assess two cases; one where a lower 

bound estimate of the mass is considered in order to predict maximum deck 

accelerations and one where an upper bound is considered to obtain the lowest speed 

at which resonance is likely to occur (ERRI, 1999). 

 

3.2.3 Stiffness 

The natural frequency of a railway bridge is proportional to the square root of the 

stiffness as can be seen in eq (2.46). Increasing the stiffness of a structure will raise 

the natural frequency and thus increase the speed at which resonance effects are likely 

to occur. Furthermore, the deflection will decrease with an increase of stiffness but 

the acceleration will be unaffected.  

The stiffness of concrete structures is generally difficult to predict and it is 

recommended to use a lower bound value in design. Even though a lower value of the 

stiffness is conservative it should be noted that it could result in the appearance of 

new resonance peaks in the considered speed interval. This may result in a need for 

higher stiffness in order to move the new resonance peak outside the design interval 

again. Increasing the stiffness can often cause an increase of the mass which in turn 

will lower the speed at which resonance occur. In conclusion, a too conservative 

assumption of the stiffness may result in a redundant and uneconomical structure  

(Andersson, et al., 2010).  

 

3.2.4 Length and number of spans 

The influence of variation of length and number of spans has generally shown that the 

dynamic effects decreases for longer spans as well as for continuous bridges. By 

changing the span length of a bridge, the natural frequencies will be affected. 

Furthermore, the relation between the span length and the distance between train axles 

will be influenced.  

In general, the natural frequencies are influenced by stiffness, mass and length as can 

be seen in eq (2.46). A lower natural frequency means that the speed at which 

resonance will occur is decreased as well. A parametric study of how the length and 

number of spans influenced the dynamic response was conducted by  

(Andersson, et al., 2010) where a number of bridge configurations were evaluated. 

The study was performed with 1 - 5 spans with a varying length of 8 - 60 meters in 

addition to other varying parameters. The applied load was the HSLM-A load model 

from Eurocode 1, SS-EN 1991-2 (CEN, 2003) and the maximum vertical 

accelerations were studied.  

Results from the study regarding varying lengths showed that short bridges with low 

eigenfrequencies gave the highest accelerations. In order to avoid excessive dynamic 

effects the eigenfrequencies needs to be high for short bridges and bridges with low 

eigenfrequencies need to be sufficiently long. Furthermore, it was concluded that the 

lower limit for the first natural frequency n0 in Eurocode 1, SS-EN 1991-2  

(CEN, 2003), given by Figure 3.15, is a good recommendation in order to avoid 

excessive dynamic effects (Andersson, et al., 2010).  

The obtained reduction of the dynamic effects of longer span bridges can be explained 

by the fact that if the bridge is longer than the distance between axles of the train, a 

number of axles will be on the bridge at different phases, hence cancelling effects will 
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occur. A simple illustration of the influence of span length on deflection for a simply 

supported bridge can be seen in Figure 3.6 (Calcada, et al., 2009).  

 

Figure 3.6 Influence of span length on deflection of a simply supported bridge 

  using a length of 20, 30 and 40 meters. Solid lines represent a moving 

  load model and dashed lines represent a vehicle-bridge interaction 

  model (Calcada, et al., 2009). 

The study by (Andersson, et al., 2010) regarding different number of spans was 

performed using the same length, mass and stiffness for all spans. It was concluded 

that for bridges with frequencies within the limits recommended by Eurocode, given 

in Figure 3.15, the vertical accelerations were decreased compared to single span 

bridges. Moreover, continuous short span bridges with low eigenfrequencies resulted 

in higher accelerations compared to single span bridges. As a result, a bridge design 

with continuity over supports instead of a series of simply supported spans will 

enhance the dynamic performance (Andersson, et al., 2010).  

Similar results have been obtained in other studies as well and (Yau, 2001) concluded 

in a study that the dynamic response is decreased for continuous beams. Further 

observations stated that the number of resonance peaks increased with increasing 

number of spans even though the dynamic response was reduced, which can be 

observed in Figure 3.7. Moreover, the distribution of frequencies got denser as the 

number of spans was increased.  
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Figure 3.7 Comparison of dynamic response of continuous beams with different 

number of spans where the impact response (defined as

 
)(

)()(
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xRxR

s

sdI


 , where 𝑅𝑑(𝑥) and 𝑅𝑠(𝑥) are the maximum dynamic and 

static response respectively) is plotted against the speed parameter

/S  (Yau, 2001). 

For simply supported bridges, the dynamic response is dominated by the first 

eigenfrequency and the corresponding eigenmode, whereas several eigenmodes 

influence the behaviour of continuous bridges and thus cancel each other out to some 

extent (Calcada, et al., 2009). Furthermore, the vibration energy can be spread more 

easily to the adjacent spans when the number of spans are increased and thus reduce 

the dynamic effects (Yau, 2001).  

 

3.2.5 Ballasted and non-ballasted tracks 

Traditionally, railway lines have been constructed using ballast in the supporting sub-

structure. The ballast layer contains some sort of granular material which is packed in 

order to provide a sufficient support for rails and sleepers. Movements and 

deterioration of the ballast material may occur under loads from moving trains and 

this may cause irregularities of the track and thus induce additional stresses to the 

supporting structure as well as the moving vehicle. As a result, regular maintenance is 

required in order to preserve an accurate track alignment and ensure traffic safety.  

An alternative to the traditional ballasted railway track is the non-ballasted track 

which consists of a solid slab that supports the rail and sleepers. As a result of the 

absence of ballast, the track will require less maintenance and thus enable high 

availability. With the increasing traffic intensity in our society it is important that the 

railway lines are available for trains as much as possible and thus low maintenance is 

a great advantage. For high-speed applications in particular, the ballasted tracks have 

shown to require more maintenance, mainly because of damages of wheels and rails 

from ballast particles that are churned up at high speeds. Furthermore, the non-

ballasted tracks provide a lower structural height, lower weight and a higher precision 

of the track alignment compared to the ballasted alternative. Studies with regard to 

life-cycle costs have shown that slab tracks are a very good alternative to traditional 

ballasted tracks (Esveld, 2001).  

A comparison of the dynamic behaviour of a railway bridge with ballasted and non-

ballasted track was conducted in a study by (Casal, et al., 2011). The study included a 

bridge segment of four 28.4 meter spans made of pre-stressed concrete. For the 
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analysis with ballasted track, values of density was adopted with accordance to 

Eurocode and the ballastless track consisted of Rheda 2000 slabs. Load model 

HSLM-A10 from Eurocode 1, SS-EN 1991-2 (CEN, 2003) was adopted in the 

dynamic analysis in order to obtain maximum vertical acceleration and maximum 

deflection. The results showed that the resonance peak for maximum acceleration of 

ballasted track was obtained at lower speed compared to the ballastless track. This 

was mainly due to the fact that the ballastless track resulted in a lower mass and hence 

a higher speed at which resonance occurs. The maximum acceleration was higher for 

the ballastless track, however, this does not necessarily have to be a problem since the 

permissible limits of vertical acceleration is higher for non-ballasted tracks  

(Casal, et al., 2011). The influence of the mass contribution from ballast is lower for 

concrete bridges compared to steel and composite bridges since the mass is already 

high for a concrete bridge, thus the mass ratio between ballast and the concrete bridge 

will be low (Frýba, 1996). 

Moreover, the resulting maximum deflections was not influenced by the choice of 

railway topology even though they occurred at different speeds. The obtained 

response of the studied bridge is in line with what was described in Section 3.2.2 with 

regard to how the mass influence the dynamic behaviour. 

An important topic for railway bridges is the end connections which may cause 

disturbances to the railway. This may be problematic for the non-ballasted slab track 

subjected to high-speed loads in particular since less movements can take place in 

such topology. The displacements and rotations must be limited in order to keep the 

resulting forces at an acceptable level. There are less problems for a ballasted track 

due to the fact that it allows for movements caused by temperature gradients as well 

as creep and shrinkage (Calcada, et al., 2009).  

 

3.2.6 Track irregularities 

A railway track is never perfectly straight or without imperfections and such 

irregularities will induce vibrations to the bridge during a passage of a train. Track 

irregularities can occur in both the vertical and horizontal plane and thus induce 

vertical, horizontal and torsional vibrations. Some typical track irregularities is 

illustrated in Figure 3.8. Factors that may cause track irregularities are for instance 

wheel defects, rail joints, turnouts, transition zones (between bridges and abutments 

for instance) (Frýba, 1996). 
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Figure 3.8 Typical irregularities of a rail track (Yang, et al., 2004). 

The transition zones between bridges and abutments or between different railway 

superstructures such as ballasted and non-ballasted tracks (see Figure 3.9) may cause 

increased dynamic effects. This is due to the fact that the vertical stiffness is abruptly 

changed, leading to impact loading of the wheels of the vehicle as well as the rails. As 

a result, it is important to take this problem into consideration when designing 

transition zones. It can be achieved by gradually change the stiffness over a 

sufficiently long distance in order to avoid the abrupt change in stiffness  

(Meng, et al., 2015). Failure to deal with this problem may lead to excessive 

maintenance requirements. Studies have shown that the maintenance frequency can be 

five times higher for transition zones than for regular tracks  

(Arvidsson & Karoumi, 2014).  

 

Figure 3.9 Illustrative example of a transition zone between ballasted and non-

  ballasted track (Meng, et al., 2015). 

In dynamic calculations of railway bridges, track irregularities may be considered in a 

simplified way by using a factor 𝜑′′ . This factor was a result from investigations 

conducted by the ORE committee D23 and additional studies by the ERRI committee 

D214 concluded that the factor 𝜑′′  lead to conservative results  

(Arvidsson & Karoumi, 2014). 

Track irregularities may as well be modelled in a dynamic analysis to evaluate the 

dynamic effects. However, in such case the train-bridge interaction is necessary in the 

model and thus the computational effort may be extensive. Train-bridge interaction 

models will be discussed further in Section 3.5.  
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3.2.7 Train parameters 

The most important parameter affecting the dynamic response of a railway bridge is 

the speed of the train.  Generally, the dynamic behaviour increases with an increased 

speed (Frýba, 1996). A train travelling at low speed are unlikely to induce any 

significant dynamic stresses to the bridge. 

The configuration of the moving train has also a substantial impact on the dynamic 

behaviour. A train can have different car lengths, masses, suspension system etc. and 

all will affect the bridge response to some extent. A certain span to length ratio 

together with a certain speed can either influence the structure in a favourable way or 

in an unfavourable way as described in Section 3.1.1. 

 

3.3 Different bridge types for high-speed railway lines 

Since the first high-speed railway line started to operate in Japan in 1964, many 

countries have introduced high-speed railways into their infrastructure (UIC, 2015). 

Bridges play an important role in the railway system and each country have developed 

their own design in order to fulfil the dynamic requirements that arise with high 

speed.  

The high-speed railway bridges in Europe consists of a high number of prestressed 

concrete bridges. Box girders are a commonly used profile which provides high 

bending and torsional stiffness in addition to efficient use of material, see  

Figure 3.10 b). The prestressed box girders are typically used for span lengths up to 

60 meters both for simply supported and continuous bridges. The majority of the 

bridges in Spain and Italy consists of different prestressed box girder solutions. For 

short span bridges of 20-30 meters, a typical solution in Spain is a prestressed voided 

slab, see Figure 3.10 a) (Calcada, et al., 2009). The prestressed box girder profile is 

also a common solution in the German high-speed railway network (Dai, et al., 2015).  

 

Figure 3.10 a) Prestressed voided slab deck used in the Spanish high-speed 

network for span lengths 20-30 m (Calcada, et al., 2009).  

b) Prestressed box girder bridge typically used for span lengths up to 

60 meters (Dai, et al., 2015). 

In the initial stage of the development of the French high-speed railway system, 

reinforced and prestressed concrete bridges were designed in order to ensure an 

appropriate dynamic behaviour. However, in recent years the majority of the designed 

bridges consists of steel-concrete composite for span lengths above 40 meters. The 

most commonly used profile is the twin girder with spans up to 75 meters, see Figure 

3.11. For longer spans, steel trusses and tied-arch bridges have been constructed. For 

short span bridges below 30 meters, reinforced and prestressed concrete solutions are 

still typically used (Calcada, et al., 2009).  

a) b) 
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Figure 3.11 Steel-concrete composite twin girder bridge used in a continuous 

bridge in the French TGV Nord line with maximum span length of 40 

meters (Calcada, et al., 2009). 

The Chinese high-speed railway system has expanded significantly in recent years 

and they have utilized a high number of simply supported short span bridges with 

standard profiles in order to provide rapid construction. Typical span lengths are 24, 

32 and 40 meters where prestressed concrete box girders have been used  

(Dai, et al., 2015). For medium and long span bridges other solutions have been used 

such as steel arch bridges, rigid frame bridges and cable-stayed truss girder bridges, 

see Figure 3.12 (Dai, et al., 2014).  

 

Figure 3.12 Railway bridges in the Chinese high-speed network for medium and 

long spans. a) Tied steel arch bridge (Tingsihe Bridge, main span 140 

m), b) Cable-stayed bridge with truss girder (Tianxingzhou Bridge, 

main span 504 m), c) Steel truss arch bridge (Dongping Bridge, main 

span 242 m), d) Rigid frame bridge (Tianluo Bridge, main span 160 m) 

(Dai, et al., 2014). 

The Swedish railway network does not yet include many bridges designed for high-

speed trains. However, the bridges along the Bothnia Line between Kramfors and 

Umeå are supposed to handle train speeds up to 250 km/h. The construction of this 

railway line was initiated in 1999 and the requirement of checking the dynamic 

behaviour of bridges with intended line speed above 200 km/h was introduced into the 

Swedish regulations in 2004, meaning that the majority of the bridges along the 

Bothnia Line are not designed for high-speed loads.  

a) b) 

c) d) 
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A study to assess these bridges when subjected to the high-speed load model HSLM 

from Eurocode 1, SS-EN 1991-2 (CEN, 2003) was later conducted by  

(Andersson, et al., 2011). Simplified 2D-analyses were performed for 76 of the 

bridges with regard to vertical accelerations. The analyses included portal frame 

bridges, steel-composite bridges as well as reinforced concrete beam and slab bridges 

and the results indicated that 41 of the bridges did not fulfil the dynamic 

requirements. Beam and slab bridges designed with end shields showed high 

accelerations, because of a transient response induced by the train load at the end of 

the end shields. Steel-concrete composite bridges showed high accelerations as a 

result of low bending stiffness and low mass. The response of the analysed portal 

frame bridges was shown to be highly dependent of the foundation conditions and  

75 % of these bridges exceeded the permissible acceleration limit.  

According to Technical system standard for high-speed tracks (Swedish Transport 

Administration, 2016), the following recommendations are given with regard to 

different bridge types for high-speed applications: 

 Suspension bridges, cable-stayed bridges or arch bridges with suspension 

struts should be avoided due to the risk of resonance 

 Steel-concrete composite bridges may result in excessive vibrations due to a 

combination of low mass and low natural frequency 

 There is a risk of high levels of vibration in bridges designed with end shields 

since a transient response may be induced by the impact from the train loads at 

the end of the end shields 

 Short bridges located at soft foundations may result in high vibrations even if 

the load-bearing structure is rigid 

 

3.4 Dynamic effects according to Eurocode 

The dynamic effects of railway bridges are considered in Eurocode 1, SS-EN 1991-2 

(CEN, 2003) Section 6.4, Dynamic effects (including resonance). The general design 

criteria states that a static analysis shall be carried out with the load model LM71 in 

Figure 3.13, together with load models SW/0 and SW/2 if required. The load models 

should also be multiplied by a factor α if required in order to account for heavy rail 

traffic (CEN, 2003). TRVK Bro 11 (Swedish Transport Administration, 2011) states 

that the α should be taken as α = 1.60 for railway lines where heavy freight traffic is 

intended and α = 1.33 for other lines (Swedish Transport Administration, 2011).  

 

Figure 3.13 Load model LM71 from Eurocode to be considered in static design of 

  railway bridges (CEN, 2003). 

Whether a dynamic analysis is required or not is determined by the flowchart in 

Figure 3.14. Where a dynamic analysis is not required, the dynamic loads may be 

considered as quasi-static by magnifying the static load by a dynamic factor Φ. 
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Eurocode defines a quasi-static load as a dynamic load represented as an equivalent 

static load, which is obtained by the dynamic amplification factor Φ (CEN, 2003).  

 

Figure 3.14 Flow chart used to determine whether a dynamic analysis is required 

  or not (CEN, 2003). 
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where 

V  is the maximum line speed [km/h] 

L   is the span length [L] 

0n   is the first natural bending frequency of the bridge [Hz] 

Tn   is the first natural torsional frequency of the bridge [Hz] 

v  is the maximum nominal speed [m/s] 

(v/n0)lim is defined in Annex F in Eurocode 

The limits of the first natural bending frequency of the bridge 0n  is given by  

Figure 3.15. The upper limit is determined by dynamic enhancements due to track 

irregularities and is defined as 

 748.0

0 76.94  Ln  (3.6) 

The lower limit is determined by dynamic impact criteria, defined as 

 
 

L
n

80
0   for 4m ≤ L ≤ 20m (3.7) 

 592.0

0 58.23  Ln  for 20m < L ≤ 100m (3.8) 

    

 

Figure 3.15 Limits of the fundamental natural frequency (CEN, 2003). 
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These limits are based on results from experimental tests of 113 railway bridges of 

different categories. According to the test results, the fundamental frequency of all 

bridges appeared within the grey zone in Figure 3.15, and the lower and upper limits 

were determined accordingly (Frýba, 1996).  

In order to estimate the first natural frequency 0n for a simply supported bridge 

subjected to bending, Eurocode 1, SS-EN 1991-2 (CEN, 2003) suggest to use the 

following equation: 

 

0

0

75.17


n [Hz] (3.9) 

where 𝛿0 is the deflection at the middle of the span when the bridge is loaded by 

permanent actions (CEN, 2003). 

 

3.4.1 Dynamic factor 

The dynamic factor Φ may be applied on the static load models LM71, SW/0 and 

SW/2 in order to consider the dynamic magnification of stresses and vibrations in the 

structure. However, it does not take resonance effects into account. When a dynamic 

analysis is required in accordance with the flowchart in Figure 3.14, the resonance 

effects can be evaluated.  

The dynamic factor should be taken as either eq (3.10) or (3.11) depending on the 

quality of track maintenance. For carefully maintained tracks, Φ2 should be applied 

and for tracks with standard maintenance Φ3 should be applied. 
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where LΦ is the determinant length defined in Table 6.2 in Eurocode 1, SS-EN 1991-2 

(CEN, 2003). The expressions for the dynamic factor were established for simply 

supported girders and in order to use the expressions for other cases, the determinant 

length is applicable.  

A reduction of the dynamic factor can be used for arch bridges and concrete bridges if 

the cover is greater than 1.00 m. However, this is only valid for bridges with a single 

track and for bridges with more tracks no reduction can be applied (CEN, 2003).   

 

3.4.2 Requirements for a dynamic analysis 

3.4.2.1 Loads and load combinations 

The excitation from real trains may be modelled as a series of moving point forces 

and vehicle-structure interaction may be neglected. According to Eurocode 1, SS-EN 

1991-2 (CEN, 2003), the loading from real trains, which intend to use the bridge, 

should be adopted using characteristic values. Furthermore, load model HSLM should 
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be implemented in the analysis for bridges designed of international lines  

(CEN, 2003). According to TRVK Bro 11 (Swedish Transport Administration, 2011), 

HSLM is the only load model that should be adopted in the dynamic analysis. Load 

model HSLM includes two different load model compositions, HSLM-A and  

HSLM-B. HSLM-A is a combination of 10 different train configurations according to 

Figure 3.16 and Table 3.1. 

 

Figure 3.16 HSLM-A train configuration, where (1) is the power car, (2) is the end 

  coach and (3) is the intermediate coaches (CEN, 2003). 

Table 3.1 Specified values of the ten different train configurations included in 

  HSLM-A (CEN, 2003). 

Universal train Intermediate 

coaches N 

Coach length 

D [m] 

Bogie axle 

spacing d [m] 

Point force 

P [kN] 

A1 18 18 2.0 170 

A2 17 19 3.5 200 

A3 16 20 2.0 180 

A4 15 21 3.0 190 

A5 14 22 2.0 170 

A6 13 23 2.0 180 

A7 13 24 2.0 190 

A8 12 25 2.5 190 

A9 11 26 2.0 210 

A10 11 27 2.0 210 

HSLM-A should be used when designing continuous bridges and for all simply 

supported bridges with a span longer than 7 m. For simply supported bridges with a 

span shorter than 7 m, HSLM-B should be applied. HSLM-B is a series of point loads 

of 170 kN with identical spacing between each one. 

The train speeds to be considered in the dynamic analysis should be a series of speed 

steps starting from 40 m/s (144 km/h) up to 1.2 times the maximum intended line 

speed. In regions close to resonance speeds, smaller speed steps should be used in 

order to acquire the resonance peaks with sufficient accuracy.  

Load distribution from the rails, sleepers and ballast may be taken into account in a 

dynamic analysis for load model HSLM-A. The longitudinal distribution of a point 

load may be distributed over three sleepers and the distribution from the sleepers 

through the ballast can be accounted for by using a ratio of 4:1. The longitudinal load 

distribution is presented in Figure 3.17. Furthermore, the load may be distributed 

transversely through the ballast with the ratio of 4:1. These effects may be taken into 

account for all span lengths but they are most important for loaded lengths of less than 

10 m (CEN, 2003). 
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Figure 3.17 Principle of longitudinal load distribution of the axle loads according 

  to Eurocode 1, SS-EN 1991-2 (CEN, 2003). 

If the dynamic load effects exceed the effects from static loading on a track, the 

dynamic load effects should be combined with the horizontal load effects on the track 

that was loaded in the dynamic analysis. Furthermore, if the dynamic load effects 

exceed the static ones the dynamic load effects should be combined with the vertical 

and horizontal load effects on the other tracks in accordance with Section 6.8.1 and 

Table 6.11 in Eurocode 1, SS-EN 1991-2 (CEN, 2003). For bridges with more than 

one track, the vertical acceleration of the bridge deck and passenger comfort criteria 

should be checked with one track loaded while for vertical and horizontal deformation 

of the deck as well as deck twist, the load should be applied on the number of tracks 

giving the most critical response. 

In addition, the dynamic rail loading effects (bending and twisting moments, shears, 

deformations etc.) should be enhanced by the partial factors specified in Eurocode, 

SS-EN 1990 (CEN, 2002) whenever the dynamic effects exceed the static effects. 

However, partial factors should not be applied when determining the bridge deck 

accelerations (CEN, 2003). 

 

3.4.2.2 Specifications of bridge parameters 

There are several different parameters that influence the dynamic behaviour of a 

railway bridge and according to Eurocode 1, SS-EN 1991-2 (CEN, 2003), there are 

several factors that are considered to be most influential. The important parameters 

related to the train is the speed, number of axles, axle load, spacing of axles, 

suspension characteristics and vehicle imperfections. The important factors of the 

bridge is span length, mass, damping and natural frequencies (related to the stiffness) 

(CEN, 2003). 

 

3.4.2.2.1 Damping 

The amount of damping in a structure influence the dynamic response to a great 

extent and in order to ensure safe predictions of the peak response, it is important to 

adopt lower bound values in the dynamic analysis. Table 3.2 shows the appropriate 

values of damping for different bridge types that should be assumed in the design 

phase (CEN, 2003). The recommended values are based on empirical data from a 

number of tests of railway bridges (ERRI, 1999).  
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Table 3.2 Lower bound values of the structural damping to be used in design of 

  railway bridges (CEN, 2003). 

Bridge Type 
ζ Lower limit of percentage of critical damping [%] 

Span L < 20m Span L ≥ 20m 

Steel and composite ζ = 0.5+0.125 (20 – L) ζ = 0.5 

Prestressed concrete ζ = 1.0+0.07 (20 – L) ζ = 1.0 

Filler beam and reinforced 

concrete 
ζ = 1.5+0.07 (20 – L) ζ = 1.5 

The peak response at resonance has a tendency to be reduced for bridges with a span 

less than 30 meters when vehicle-structure interaction effects are considered. This 

may be accounted for by either performing a dynamic analysis with vehicle-bridge 

interaction, or to increase the damping of the structure according to eq (3.12) and  

Figure 3.18. For continuous bridges, the smallest value of all spans should be used 

(CEN, 2003). 

  TOTAL  (3.12) 

where  

 

32

2

000255.00044.00441.01

00064.00187.0
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


  (3.13) 

 

Figure 3.18  Graph showing the assumed increase in damping due to vehicle-

structure interaction according to eq (3.13). 

The additional damping is a result of analyses performed by the ERRI Committee 

D214 where a moving constant force model was compared with a simplified vehicle-

bridge interaction model for simply supported beam bridges with a span length of 0 - 

30 meters. The moving constant force model was given additional damping in order to 

obtain the same response as the simplified vehicle-interaction model. The curve given 

by Figure 3.18 is a lower bound of the results (ERRI, 1999).  
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3.4.2.2.2 Mass 

The mass is an important factor for the dynamic response of a bridge and both the 

bridge acceleration and the resonance speed will be affected by a change in mass. The 

maximum acceleration of a bridge is inversely proportional to its mass at resonance. 

An underestimation of the mass will overestimate the natural frequency and the 

resonance speed.  

Two specific cases should be evaluated in order to predict the maximum deck 

accelerations and the lowest resonance speed. A lower bound estimate of the mass 

should be adopted to predict the maximum deck acceleration, using minimum 

thickness and dry clean density of ballast. An upper bound should be adopted to 

obtain the lowest resonance speed, using maximum saturated density of dirty ballast 

(CEN, 2003). For fixed track systems, it is allowed to perform only one analysis with 

a nominal mass (Swedish Transport Administration, 2016). 

 

3.4.2.2.3 Stiffness 

As for the mass and damping, the stiffness has a great influence on the dynamic 

behaviour of a bridge. An overestimation of the stiffness will overestimate the natural 

frequency and the resonance speed. A lower bound of the stiffness should be adopted 

in accordance with Eurocode 2, SS-EN 1992 to Eurocode 4, SS-EN 1994  

(CEN, 2003).  

 

3.4.2.3 Verifications of the limit states 

The dynamic bridge response should be verified with respect to serviceability limit 

state and ultimate limit state. Moreover, a control of the fatigue should be included in 

the verification of the dynamic response of a bridge. In the serviceability limit state 

verifications, the following effects should be checked: 

 Vertical deck acceleration 

 Vertical displacements and rotations of the deck 

 Horizontal displacements and rotations of the deck 

 Deck twist 

When designing a railway bridge, the most unfavourable value of eqs (3.14) and 

(3.15) should be considered. 
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where dyn  is a dynamic enhancement factor determined from the dynamic analysis: 

 1/max 
statdyndyn yy  (3.16) 
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ydyn is the maximum dynamic response and ystat is the corresponding maximum static 

response.   is an increase of the dynamic response with regard to vehicle 

imperfections and track irregularities defined as: 
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where α = 1 for speeds above 22 m/s (79.2 km/h), 𝐿𝛷 is the determinant length and 

0n  is the fundamental natural frequency (CEN, 2003).  

 

3.4.2.3.1 Vertical deck accelerations 

The vertical deck accelerations should be limited in order to ensure traffic safety and 

prevent track instability. The maximum limits according to Eurocode SS-EN 1990 

(CEN, 2002) are given by eqs (3.18) and (3.19), where bt  is applicable for ballasted 

tracks and df  is used for non-ballasted tracks.  

 5.3bt m/s2 (3.18) 

 0.5df m/s2 (3.19) 

The maximum vertical acceleration in the dynamic analysis should be carried out by 

including all natural frequencies and corresponding mode shapes up to the highest 

value of either 30 Hz, 1.5 times the first natural frequency or the third natural 

frequency (CEN, 2002).  

The limiting values of the vertical accelerations are based on field measurements and 

laboratory tests where it was concluded that ballast instability was initiated for deck 

accelerations of 7-8 m/s2. A safety factor of two was then used to obtain a design 

value (ERRI, 1999).  

 

3.4.2.3.2 Vertical displacements and rotations of the deck 

The vertical deflection of the bridge deck should be limited with regard to traffic 

safety and passenger comfort. For static loads, the maximum vertical deflection 

should not exceed L/600 for railway bridges loaded by characteristic values in 

accordance with Eurocode 1, SS-EN 1991-2 (2003). TRVK Bro 11  

(Swedish Transport Administration, 2011) states that the maximum permissible 

deflection is L/800, which is applicable for both vertical and horizontal deflection 

(Swedish Transport Administration, 2011).  

Furthermore, the vertical displacement δv between the end of a bridge deck and 

adjacent structures should be limited in order to avoid excessive stresses, see  

Figure 3.19. The limiting value is 2 mm for train speeds above 160 km/h  

(CEN, 2002). 
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Figure 3.19 Definition of the vertical displacement δv, the bridge end rotation  

  θ and the distance from the bottom of the superstructure to the top of 

  the rail h(m) (Calcada, et al., 2009). 

In addition, the vertical rotation 𝜃 between the end of a bridge deck and the abutment 

should be limited according to eq (3.20) (Swedish Transport Administration, 2011).  
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The rotation between two bridge decks should be limited to 
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Figure 3.20 Definition of the vertical rotation of the bridge deck (CEN, 2002). 

These values are valid for ballasted tracks in accordance with TRVK Bro 11  

(Swedish Transport Administration, 2011). There are no specific value given for a 

non-ballasted track, instead it is stated that the corresponding rotation limits may be 

given by the constructor (Swedish Transport Administration, 2011). 
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3.4.2.3.3 Vertical deflection with regard to passenger comfort 

Passenger comfort is dependent on the vertical acceleration bv inside the train and 

Eurocode, SS-EN 1990 (CEN, 2002) recommends the values given by Table 3.3 in 

order to ensure a good travelling experience.  

Table 3.3 Recommended comfort levels (CEN, 2002). 

Level of comfort Vertical acceleration bv [m/s2] 

Very good 1.0 

Good 1.3 

Acceptable  2.0 

The vehicle acceleration may be determined by performing a dynamic analysis with 

vehicle-bridge interaction taken into account. Alternatively, the limits for passenger 

comfort can be controlled by checking the maximum deflection δ along the centreline 

of a track as a function of span length, train speed, number of spans and bridge 

configuration (simply supported, continuous). Limits of maximum deflection L/δ of a 

railway bridge with three or more simply supported spans is given by Figure 3.21 and 

the values corresponds to a very good level of comfort i.e. bv = 1 m/s2. If a lower level 

of comfort is desired, the values of L/δ in Figure 3.21 can be divided by the 

corresponding limits of vertical vehicle acceleration. For a bridge composed of one or 

two simply supported spans, the values of L/δ in Figure 3.21 should be multiplied by 

0.7, the same value is relevant for two continuous spans. The values for continuous 

bridges with three or more spans, should be multiplied by 0.9. Note that the values of 

L/δ should not be lower than 600 (CEN, 2002). 

 

 

Figure 3.21 Maximum deflection limits L/δ for railway bridges with three or more 

  spans, corresponding to a vertical vehicle acceleration of bv=1 m/s2 

  i.e. very good level of comfort (CEN, 2002). 
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3.4.2.3.4 Horizontal displacement and rotations of the deck 

The horizontal deflection and vibration should be checked in order to guarantee a safe 

structure. The horizontal deflection should be checked with regard to angular rotation 

at the end of the deck as well as change in radius of curvature. For train speeds above 

200 km/h, the maximum horizontal rotation at support is α = 0.0015 rad and the 

maximum change in radius of curvature is r = 14 000 meters for a single track bridge 

or r = 17 500 meters for a multi-span bridge. The curvature variation can be 

determined by the following expression: 

 

h

L
r

8

2

  (3.22) 

where 𝛿ℎ is the horizontal deflection. 

Furthermore, the lowest horizontal natural frequency should not be lower than the 

recommended value fh0 = 1.2 Hz in order to avoid lateral resonance (CEN, 2002). 

 

3.4.2.3.5 Deck twist 

Deck twist for a track gauge with a width of s = 1.435 meters measured over a length 

of 3 meters should not exceed t = 1.5 mm/3 m where train speeds above 200 km/h is 

intended. Deck twist is defined in Figure 3.22. 

 

Figure 3.22 Definition of deck twist (CEN, 2002). 
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3.5 Dynamic analysis of railway bridges 

In a dynamic analysis it is possible to adopt simplified models of the applied load as 

well as the structure itself in order to obtain sufficient accuracy of the result. The 

different choices depends on the purpose of the analysis and it is important to 

understand under what conditions a certain model would be suitable. In the following 

section different modelling choices will be presented and how these may influence the 

result of the analysis.  

 

3.5.1 Train models 

In order to analyse a railway bridge, the train load may be represented by simplified 

load models, either by moving constant forces or with vehicle-bridge interaction 

models. Figure 3.23 illustrates such models with increasing complexity. 

 

Figure 3.23 Different complexity of load models. a), a vertical moving force acting 

on the rail. b), a damped spring-mass system. c), a composition of 

damped spring-mass systems representing a coach. 

In reality the interaction between the train and bridge is a non-linear, coupled and 

time-dependant dynamic problem since the contact forces between the train wheels 

and the rail is not constant in time and their magnitude is varying. A model 

representing the vehicle-bridge interaction would then reflect the real behaviour in a 

better way (Yang, et al., 2004).  

The moving constant force model is generally used when designing railway bridges, 

and it is usually a good representation when the vehicle-bridge mass ratio is small and 

the elastic and inertial effects can be neglected. However, the choice of load model 

can have a significant influence on the result of an analysis and it is important to be 

aware of the consequences when choosing a specific model. The response of the train 

cannot be represented without the vehicle-bridge interaction and for railway bridges 

subjected to high-speed trains, the vertical and lateral accelerations of the train is 

essential when evaluating the riding comfort of the passengers (Yang, et al., 2004).  

A number of studies have been carried out in this topic in order to get a better 

understanding of when and why a certain load model should be adopted.  

(Arvidsson & Karoumi, 2014) reviewed a number of publications dealing with the 

effect of train-bridge interaction models and it was concluded that the effect was only 

relevant for bridges with intermediate lengths. A train-bridge interaction model does 

only imply a considerable reduction of the bridge response at resonance whereas the 

difference is negligible outside the resonance range, which can be seen in Figure 3.24 

(Arvidsson & Karoumi, 2014). The reason is that the energy from the bridge is 

partially transferred into the vehicle, thus resulting in a reduction of the dynamic 

response. For longer bridges the difference between the load models is small, which 

could be observed in Figure 3.6, Section 3.2.4 (ERRI, 1999).  

a) b) c)
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Figure 3.24 Results from a study conducted by the ERRI Committee D214 where 

  the dynamic behaviour of a simply supported bridge was evaluated 

  when using moving force model and bridge-vehicle interaction.  

  Resonance speed (v=236.5 km/h) was compared with non-resonance 

  speed (v=360 km/h). Deflections and accelerations was studied and 

  compared with quasi-static deflection as well as acceleration limits 

  given by Eurocode (Gabaldón, et al., 2006).  

Further details can be adopted in the bridge-vehicle interaction model by introducing 

3D-models. In such case it is possible to simulate the dynamic response in the lateral 

and longitudinal direction as well.  

 

3.5.2 Bridge models 

In addition to the train models, it is possible to model the track as well in order to 

introduce an even more realistic model. By doing so, the axle forces from the train is 

distributed along the track rather than acting at one point. The load distribution has a 

tendency to reduce the dynamic response of the bridge.  

For a ballasted track, the rail may be modelled as beam elements on top of the 

sleepers that may be represented by suspended masses. The pads and ballast 

properties can be idealised as spring-damper systems. An example of such a track 

model is given by Figure 3.25. A non-ballasted track may be modelled in a similar 

way by letting the slab be represented by beam elements (Casal, et al., 2011).  
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Figure 3.25 An example of how a ballasted track may be modelled in a dynamic 

  analysis (Casal, et al., 2011). 

According to Eurocode 1, SS-EN 1991-2 (CEN, 2003) it is allowed to account for 

load distribution in a dynamic analysis by the principle discussed in Section 3.4.2.1. 

In a study of the influence of load distribution conducted by (Andersson, et al., 2011) 

it was concluded that the dynamic effects were significantly reduced for short span 

bridges with a high fundamental frequency. For longer spans the reduction was 

negligible (Andersson, et al., 2010).  

Track irregularities may be included in the dynamic analysis in order to account for 

different defects of the rail. This can be done by implementing different mathematical 

models that describes the irregularities or using real measured data for existing 

bridges. As a consequence of including track irregularities in the analysis, the 

dynamic response is somewhat increased for the bridge whereas the effects are higher 

for the train. How much the result is influenced depends on how the track 

irregularities are implemented in the analysis (Arvidsson & Karoumi, 2014).  

 

3.5.3 Boundary conditions 

There are a lot of different railway bridges out there with different configurations and 

support conditions. The support conditions may have a great influence of the dynamic 

behaviour of a bridge. The dynamic response of a simply supported bridge is different 

from a bridge with fixed support conditions. In addition, the soil-bridge interaction 

can be very important for the response of a bridge by affecting the stiffness and 

damping properties of the structure. This is especially true for short and stiff 

structures such as portal frame bridges, which are surrounded by soil  

(Ülker-Kaustell, 2009). By including the soil-bridge interaction, the natural 

frequencies of a bridge are generally reduced, thus lowering the train speed at which 

resonance occurs. Consequently, an assumption of non-flexible supports may lead to 

non-conservative results as higher resonance speeds may be obtained in the dynamic 

analysis (Karoumi & Ülker-Kaustell, 2008).  

In a study of a 12 meter simply supported bridge including soil-bridge interaction 

(Domínguez, et al., 2013), it was concluded that the resonance speed was lowered 

compared to the case where soil-bridge interaction was not considered. The 

magnification of the dynamic response at resonance was also lowered. This indicates 

that the soil-bridge interaction is an important topic in bridge dynamics  

(Domínguez, et al., 2013). 
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4 Case studies of reinforced concrete bridges 

The case studies in this thesis includes several different reinforced concrete bridges 

subjected to high-speed trains. A dynamic analysis was carried out for each bridge in 

order to evaluate their dynamic response. The study included the following bridges: 

 Simply supported reinforced concrete slab bridge (with and without end 

shields) 

 Simply supported reinforced concrete trough bridge (with and without end 

shields) 

 Continuous reinforced concrete slab bridge (two-span and three-span) 

Each bridge type was analysed by considering four different span lengths of 16, 24, 

32 and 40 meters. This chapter provides some general information about each bridge 

and how they were modelled in the finite element analyses. 

 

4.1 General conditions and simplifications 

The FE-analyses were carried out in accordance with the specifications given by 

Eurocode 1, SS-EN 1991-2 (CEN, 2003). The results were carried out using modal 

analysis including mode shapes and corresponding frequencies up to  

fmax = max(30 Hz, 1.5f1, f3) where f1 and f3 are the first and third bending frequency of 

the bridge respectively. The damping was determined by summing up the value given 

by Table 3.2 and the additional damping given by eq (3.13). The same damping 

coefficient were provided for all natural modes.  

The structure was assumed to behave linearly, thus mode analysis could be adopted 

when computing the dynamic response. Moreover, geometric nonlinearities were not 

considered since the bridges were assumed to experience small deformations. The 

cross-section was treated as constant along the length of the bridge even though it 

varied slightly for the real bridges. The boundary conditions were modelled as 

inflexible throughout the analyses. 

Approximations of the stiffness and mass were determined from the available 

drawings and the considered densities for reinforced concrete and ballast were  

2500 kg/m³ and 2000 kg/m³ respectively. Rails, sleepers and railings were included as 

an additional mass contribution, thus they did not influence the stiffness of the bridge.  

The applied load was the HSLM-A load model from Eurocode 1, SS-EN 1991-2 

(CEN, 2003) and the considered train speeds were 144 - 384 km/h. The upper speed 

was taken as the maximum intended speed for the planned Swedish high speed 

railway line, which is 320 km/h. This value was then multiplied by a factor of 1.2 in 

accordance with Eurocode 1, SS-EN 1991-2 Section 6.4.6.2 (CEN, 2003). The time 

step was set to be 5 km/h and for regions close to resonance it was adjusted to 1 km/h 

in order to obtain sufficient accuracy of the peak values. The time increment per 

speed step was chosen according to the Brigade/Plus manual (Scanscot Technology, 

2015) after the principle that it should not be greater than a tenth of the highest 

eigenfrequency, which resulted in a value of 3.3 ms for fmax = 30 Hz. This time 

increment was used throughout the analyses even though higher frequencies than  
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30 Hz was included for some cases. The obtained results were magnified with 
2

1
 



in order to account for track irregularities, where   is given by eq (3.17). 

Horizontal loads such as wind and braking forces were not considered in the dynamic 

analysis. Only single track bridges were evaluated and the train were modelled to 

travel along the centreline of the bridge without any track eccentricities. As a 

consequence, lateral and torsional mode shapes did not contribute to the dynamic 

response, thus only vertical bending modes were affecting the bridge behaviour.  

In order to be able to compare the different bridge types, four different span length 

was analysed for each bridge. The considered span lengths were 16, 24, 32 and  

40 meters. The FE-models were generated from two existing bridges where the real 

span lengths were 24 meters for the concrete slab bridge and 29 meters for the 

concrete trough bridge. In order to evaluate the other span lengths it was necessary to 

adjust the corresponding cross-sections accordingly, hence, unreasonable bridge 

configurations were avoided. The cross-sectional adjustment were done by 

considering the ratio between the static deflection δs and the span length L of the 

original design. The cross-section of the adjusted bridge were then changed to obtain 

a stiffness corresponding to the same ratio. The considered loads for the static analysis 

were self-weight of the bridge and train load model LM71 from Eurocode 1, SS-EN 

1991-2 (CEN, 2003). More details about the adjusted cross-section is described for 

each bridge when they are presented below. 

Furthermore, longitudinal load distribution was introduced by distributing each point 

force over three sleepers according to Section 3.4.2.1. 

 

4.2 Simply supported reinforced concrete slab bridge 

The first bridge to be studied was a simply supported concrete slab bridge with end 

shields. It is crossing the river Aspan in Nordmaling and it carries a single railway 

track. Some general information of the bridge is presented in Table 4.1. The total 

length is 38.6 meters including end shields as well as wing walls and the span length 

is 24 meters. An elevation of the bridge is presented in Figure 4.1 and its cross-section 

is shown in Figure 4.2. The complete drawings of the bridge may be found in 

Appendix C. 

Table 4.1 General information of the slab bridge over the river Aspan. 

Name Bridge over the river Aspan 

Construction number 3500-5778-1 

Bridge type Simply supported bridge with end shields 

Material Concrete C40/50 

Span length [m] (1.7) + 24 + (1.7) 

Number of tracks 1 

Location Nordmaling 

Year of construction 2004 
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Figure 4.1 Elevation of the reinforced concrete slab bridge over the river Aspan 

(Swedish Transport Administration, 2016a). 

 

Figure 4.2 Cross-section of the reinforced concrete slab bridge over the river 

Aspan (Swedish Transport Administration, 2016a). 

 

4.2.1 FE-models 

In order to evaluate the influence of the end shields and wing walls with regard to 

vertical dynamic response, the bridge was modelled considering two cases; one where 

the bridge was modelled without the end shields and one where the end shields were 

included. Figure 4.3 shows the principle model of the two cases. Each case was 

analysed for the four considered span lengths of 16, 24, 32 and 40 meters. The real 

cross-section was modified in order to obtain a reasonable bridge configuration. The 

height of the bridge deck was changed until a stiffness corresponding to the same 

static deflection as for the real bridge was obtained. A more detailed description of the 

procedure may be found in Appendix A. The resulting cross-sections of the FE-

models for each span length is presented in Figure 4.4. For the case when the end 

shields and wing walls were included, the cantilever length of the real bridge was 

considered for all span lengths, i.e. 1.7 meters.  

 

Figure 4.3 Principle models of the bridge over the river Aspan where Model 1 

represent the case without end shields and Model 2 represent the case 

with end shields and wing walls. 

In addition to the single span case, this slab bridge was used in order to evaluate the 

dynamic behaviour of continuous two-span and three-span bridges. The same cross-
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sections and span lengths as for the single span case were considered for the 

evaluation. Furthermore, the end shields and wing walls were included for all the 

continuous cases. 

 

Figure 4.4 Considered cross-sections for the different span lengths of the slab 

bridge  over the river Aspan in the FE-analyses. 

According to Eurocode 1, SS-EN 1991-2 (CEN, 2003) a lower bound estimate of the 

stiffness should be used. For these cases the concrete were assumed to be cracked and 

thus a reduction of the stiffness were considered. Reducing the bending stiffness with  

40 % is a conservative approach (Swedish Transport Administration, 2016). The 

damping for each bridge length was determined according to Table 3.2 and  

Figure 3.18, resulting in: 

 16 meter: 417.2tot %  

 24 meter: 586.1tot %  

 32 meter: 500.1tot %  

 40 meter: 500.1tot %  

The bridge deck was modelled using 3D shell elements while the edge beams were 

modelled as 3D beam elements. The outermost nodes on the long side of the deck 

were tied with a stiff connection to the beam elements to ensure complete interaction. 

For the single span case, the columns were not considered in the model and the 

support conditions were assumed to be fixed in vertical and transverse translation. 

The longitudinal translation was restrained at one support and free at the other. The 

boundary conditions are modelled as line boundaries over a width of 585 mm and no 

restrictions were set for the rotational degrees of freedom. The transverse distance 

between the supports were set to be 4.3 meters. The track was modelled as 3D beam 

element without stiffness in the middle of the deck. The mesh and boundary 

conditions of the FE-model for the 24 meter bridge without end shields can be seen in 

Figure 4.5.  
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Figure 4.5 Mesh of the concrete slab bridge where the end shields were 

disregarded. 

The FE-model of the case with end shields was generated from the first model by 

extending the bridge deck and adding the end shields. The cantilevering part of the 

deck extends 1.7 meters over the supports. The end shields goes 3.25 meters below 

the deck with a thickness of 700 mm. The wing walls extend 5.6 meters from the end 

of the bridge deck with a thickness of 500 mm. More details about the dimensions of 

the end shields and wing walls may be found in Appendix A. The mesh of the model 

where the end shields were included is illustrated in Figure 4.6.  

 

Figure 4.6 Mesh of the concrete slab bridge with end shields included. 

The continuous models were generated from the single span model with end shields 

by adding another span. For the analyses with different span lengths, the boundary 

conditions were modelled as simply supported. However, the bridge with 24 meter 

spans were also modelled with fixed columns as mid-support in order to evaluate how 

this would affect the dynamic response. This was done for both the two-span case and 

the three-span case. The meshes of the two-span continuous bridge for the simply 

supported case and the case with a fixed column are illustrated in Figure 4.7. The 

modelling principle is the same for the three-span case but with an additional span. 
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Figure 4.7 Mesh of the continuous two span bridges. 

 

4.3 Simply supported reinforced concrete trough bridge 

The second bridge was a simply supported concrete trough bridge with end shields 

located in Umeå as a part of the Bothnia Line and it is crossing the river Norrmjöleån. 

It has a total length of 41.4 meters and the distance between supports are 29 meters as 

can be seen in the elevation of the bridge given by Figure 4.8. The cross-section can 

be seen in Figure 4.9 where the height of the edge beams are 2724 mm. More detailed 

information about the bridge dimensions may be found in Appendix B. Table 4.2 

summarizes some general information of the bridge. 

Table 4.2 General information of the bridge over the river Norrmjöleån. 

Name Bridge over the river Norrmjöleån 

Construction number 3500-5798-1 

Bridge type Simply supported bridge with end shields 

Material Concrete C35/45 

Span length [m] (2.26) + 29 + (2.26) 

Number of tracks 1 

Location Umeå 

Year of construction 2009 

 

 

Figure 4.8 Elevation of the concrete trough bridge over the river Norrmjöleån 

(Swedish Transport Administration, 2016b). 
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Figure 4.9 Cross-section of the concrete trough bridge over the river  

Norrmjöleån where the height of the edge beams are 2724 mm  

(Swedish Transport Administration, 2016b). 

4.3.1 FE-models  

As for the previous bridge, this one was also modelled considering two cases where 

the end shields were disregarded for one case. The analysed span lengths in the model 

were 16, 24, 32 and 40 meters and since the original bridge length was 29 meters the 

cross-section was adjusted accordingly. The adjustment was made so that the ratio 

between the width and height of the edge beams stayed the same for the new cross-

section as for the original one. The thickness of the deck remained constant for all 

cases. A complete description of the calculations for the adjusted cross-sections can 

be found in Appendix B. The considered cross-section of the four bridge models is 

illustrated in Figure 4.10. 

 

Figure 4.10  Considered cross-sections of the four span lengths for the concrete 

  trough bridge. 

A lower bound estimate of the stiffness was used and the concrete was assumed to be 

cracked, thus reducing the bending stiffness with 40 % as for the previous bridge. The 

damping for each bridge length was determined according to Table 3.2 and  

Figure 3.18, resulting in: 

 16 meter: 417.2tot %  
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 24 meter: 586.1tot %  

 32 meter: 500.1tot %  

 40 meter: 500.1tot %  

The bridge deck was modelled using 3D shell elements while the edge beams were 

modelled as 3D beam elements. The supports of the real bridge were located at the 

bottom of the edge beams below their centrelines. However, in the FE-model the 

boundary conditions were applied in the midpoint of the edge beams, leading to a 

slight increase of the transverse distance between supports for the longer spans since 

these were wider. The track was modelled as 3D beam elements without stiffness and 

tied to the deck. The FE-model of the case without end shields with the mesh and 

boundary conditions can be seen in Figure 4.11.  

 

Figure 4.11 Mesh of the trough bridge where the end shields were disregarded. 

The FE-model of the case with end shields were generated from the first model by 

extending the deck over the supports. The length of the cantilevering part was set to 

2.3 meters and this length was used for all considered spans. The end shields have a 

height of 3.8 meters and a thickness of 900 mm. The wing walls extends 3.9 meters 

from the end of the bridge deck and the thickness is 500 mm. More details of the 

dimensions of the end shields and wing walls may be found in Appendix B. The mesh 

of the model with end shields are presented in Figure 4.12. 

 

Figure 4.12  Mesh of the trough bridge with end shields. 
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5 Results 

The following chapter includes the results from dynamic analyses of the reinforced 

concrete bridges. The vertical accelerations and vertical deflections were evaluated 

with regard to the specified limits according to Eurocode SS-EN 1990 (CEN, 2002) 

and SS-EN 1991-2 (CEN, 2003). The general layout of the dynamic analysis was 

firstly to perform a convergence study to ensure a sufficiently fine mesh, secondly the 

models were compared to an analytical solution. Finally, the vertical accelerations and 

vertical deflections could be extracted and evaluated. The maximum values were 

obtained in different regions of the bridge deck depending of the bridge type. A 

principal illustration of where the maximum response were obtained in the deck is 

presented in Figure 5.1. 

 

Figure 5.1 Principal plan of a bridge, illustrating where maximum response was 

  obtained.  

In order to verify the FE-model, a comparison with an analytical solution was 

performed with regard to static deflection due to self-weight as well as the first three 

natural frequencies that corresponded to the first three vertical bending mode shapes. 

The dynamic response of the single-span bridges was also compared to an analytical 

solution for a case when a point load passed along the track at constant speed. This 

was done in order to verify the dynamic response of the bridge but also to better 

understand the dynamic behaviour before including a series of point loads. 

The analytical solution was based on Bernoulli-Euler theory and the FE-model was 

based on Kirchhoff plate theory for shell elements and Bernoulli-Euler theory for 

beam elements. For bridges with a span length longer than 8 meters, shear 

deformations have generally a negligible effect on the response (ERRI, 1999).  

The analyses included a parametric study of some of the main parameters that may 

influence the dynamic response. Each considered factor were altered one at a time 

while the others stayed constant. This was done in order to obtain a clear picture of 

how each parameter affected the dynamic response. In reality, a change of one 

parameter will often affect another to some extent and thus more factors will 

influence the behaviour of the bridge. A variation of stiffness for instance will 

probably change the mass of the structure as well. This is especially true when 

studying a variation of the span length and cross-section since both the stiffness and 

mass are heavily affected as well.  

In the analysis of the simply supported concrete slab bridge, the parametric study was 

performed thoroughly by considering the influence of variations of damping, mass 

and stiffness. The principle of changing the damping, mass and stiffness individually 

is the same independent of the bridge type, thus these factors is only evaluated for the 

A 

B 

C 
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slab bridge. However, different span lengths will basically affect all the considered 

parameters to a great extent in reality and therefore all these changes should be 

considered. Therefore, a variation of the span length was included in the analyses for 

all bridges, considering all the other factors that was influenced as well. Moreover, the 

influence of load distribution was evaluated for the single span bridges.  

 

5.1 Simply supported concrete slab bridge 

The first bridge in the analysis was the simply supported slab bridge where the end 

shields were excluded to begin with. The verification of the FE-models was done for 

these single-span bridges and the more complex models, i.e. the continuous cases as 

well as the case where the end shields were considered, were generated from this one. 

A convergence study of the first three natural frequencies was performed for all 

models. The verification and convergence study of the 24 meter FE-model will be 

presented in the section below and others were checked in the same manner. 

 

5.1.1 Convergence study and verification of FE-model 

A convergence was performed for the 24 meter FE-model in order to ensure that the 

mesh of the FE-model was sufficiently fine. The first three natural frequencies was 

studied for different number of element in x-direction (longitudinal) and y-direction 

(transverse). A mesh with 24 elements in x-direction and 14 elements in y-direction 

was considered to provide sufficiently accurate results. 

The FE-model was verified against an analytical solution regarding static deflection, 

natural frequencies and dynamic response of the bridge when excited by a point load. 

The analytical analysis resulted in a static deflection of δs = 38.166 mm when 

considering the deadweight only. In the FE-model, the static deflection was slightly 

lower, δs,FEM = 38.089 mm. Since the FE-model consists of shell elements, which 

introduce transverse bending of the deck, the deflection value was taken as the 

average over the transverse midline of the deck. The value from the analytical 

solution and the FE-solution is therefore somewhat different. 

The natural frequency analysis resulted in 7 mode shapes with a corresponding 

frequency within the cut-off limit of 30 Hz. The first three vertical bending 

frequencies are presented in Table 5.1 and the corresponding mode shapes are 

illustrated in Figure 5.2. As can be seen the results are very similar between the 

analytical solution and the FE-solution, especially for the first frequency. The small 

difference that can be observed mainly arise from the additional transverse bending 

that was included in the FE-model.  

Table 5.1  Natural frequencies of the first three vertical bending modes for the 

  analytical and FEM solution of the real bridge over Aspan. 

Mode number  

(vertical bending) 

Analytical solution 

[Hz] 

FEM solution 

[Hz] 

1st 2.873 2.872 

2nd 11.493 11.247 

3rd 25.859 24.141 
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Figure 5.2 First three vertical bending modes of the bridge over Aspan. 

In order to verify that the dynamic response of the FE-model was reasonable, it was 

evaluated for a case when a moving point load of constant speed excited the bridge. 

This could then be compared with the analytical solution of the same case. The 

considered point load was p0 = 200 kN which corresponds to an axle load of the train 

model HSLM-A1 and the considered speed was v0 = 150 km/h. The results are 

presented as midpoint deflection and midpoint acceleration in Figure 5.3. Since the 

analytical solution is only valid when the point load excites the bridge, the response is 

only plotted over the time it took for the load to cross the bridge i.e. from  

t = 0 s to tmax = 0.576 s. 

The displacement plot of the dynamic response shows that the analytical solution and 

the FE-solution match up quite well. Observe that the initial behaviour of the bridge 

when the load enters indicate a positive displacement of the midpoint i.e. an upward 

movement. This is clearly indicated in the acceleration plot where the initial 

acceleration is positive. This phenomenon was due to the fact that as the load entered 

the bridge it excited all vertical bending modes. However, the ones with a high 

frequency had a negligible effect of the response. Therefore, the positive deflection 

that was observed in the first time steps of Figure 5.3 mainly resulted from the third 

mode shape. Note that the bending modes with even numbers did not affect the 

midpoint response as they were anti-symmetrical, see the second mode in Figure 2.5 

as an example. As the point load continued to cross the bridge, the response was 

dominated by the first mode shape. 

The comparison of the analytical solution and the FE-solution with regard to midpoint 

acceleration in Figure 5.3 shows that they are in quite good agreement with each 

other. It can be seen that the FE-solution of the bridge response corresponds well to 

the first mode shape of the analytical solution due to the similarities between their 

first natural frequencies. The third mode shape can be observed in the diagram as it 

oscillates around the first mode. In the initial stage, the third mode shape of the FE-

solution follows the analytical case quite well but as the load keeps crossing the 

bridge the two cases gets out of phase. This can be explained by the differences in the 

higher natural frequencies. The third natural frequency of the analytical solution was 

slightly higher than the FE-solution, which is why the time period between 

oscillations was smaller for the analytical case.  

Further observations were that the first mode shape resulted in negative acceleration 

of the midpoint in the initial stage. Nonetheless, when including the third mode shape 

the initial acceleration were positive due to the same reason as described earlier for 

the deflection. 

For the given results, the FE-model was considered to provide reasonable results and 

could be used for more complex analyses. 
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Figure 5.3 Comparison of the analytical solution and the FE-solution for 

 midpoint displacement and acceleration of the bridge over Aspan due 

to a moving point load. 

 

5.1.2 Dynamic response from HSLM-A 

The results from the dynamic analysis of the 24 meter slab bridge when subjected to 

load model HSLM-A (defined in Figure 3.15 and Table 3.1) are presented as 

maximum vertical accelerations in Figure 5.4 and maximum deflections in Figure 5.5. 

The maximum response were obtained in the edge of the long side of the bridge deck, 

i.e. region B) in Figure 5.1. 

The bridge response indicated very high accelerations at resonance peaks that were 

well beyond the Eurocode limit of 3.5 m/s2 for all train configurations, except  

HSLM-A1. All peak values appeared when the loading frequency coincided with the 

first natural frequency of the bridge. The first resonance peak within the considered 

speed range occurred at a speed of approximately 186.5 km/h for HSLM-A1. As the 

coach length got longer for the following trains, their peak values occurred at higher 

speeds. Moreover, the response was increased for the following trains, which can be 

explained by the span to coach length ratios. The shorter trains were closer to the 

optimal design ratio of 1.5, which was discussed in Section 3.1.1, and thus the 

response were reduced. This phenomenon will be further discussed when different 

span lengths are compared in Section 5.1.4. 

Additional observations was that for HSLM-A1 and HSLM-A10, there was an extra 

peak in the acceleration plot within the considered speed range that occurred at a 

speed of approximately 365 km/h. This peak arose when the loading frequency 

coincided with a multiple of the second eigenfrequency of the bridge. 

The deflection of the bridge is presented in Figure 5.5 where two horizontal lines are 

included which corresponds to the limits given by Eurocode SS-EN 1990  

(CEN, 2002) . The lower line corresponds to very good level of comfort given by 

Figure 3.21 and the upper line corresponds to the static limit of L/600. The deflection 

from the first three HSLM trains fulfilled the limit of very good level of comfort. All 

HSLM trains fulfilled the deflection limit that corresponded to acceptable level of 

comfort. However, the acceptable level of comfort limit exceeded the static limit of 

L/600, which is why this value was taken as the maximum limit in the diagram. It was 

only the last two HSLM trains that exceeded this limit. 
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Figure 5.4 Maximum vertical acceleration of the slab bridge over the river Aspan 

when subjected to the HSLM trains from Eurocode. The maximum 

allowable acceleration limit is indicated in the figure as a solid 

horizontal line. 

 

Figure 5.5 Maximum deflection of the bridge over Aspan when subjected to the 

HSLM trains from Eurocode. The doted horizontal line represent the 

static deflection limit of L/600 and the solid horizontal line represent a 

deflection corresponding to very good level of comfort given by 

Eurocode, SS-EN 1990 (CEN, 2002). 

The response of the bridge when subjected to HSLM-A4 is plotted in Figure 5.6 

where the maximum vertical acceleration of a resonance speed is compared to a non-

resonance speed. A similar comparison is made for maximum deflection in  

Figure 5.7. It is clear that the response at resonance increased for each axle pair 

crossing the bridge. Maximum response was obtained right after the first boogie of the 

end coach has passed the middle of the bridge span. For a non-resonance speed, the 

response did not increase for each pair of axles passing the bridge, instead the 

response remained relatively low. When the train had left the bridge, the bridge would 

vibrate freely and eventually reach equilibrium again as a result of damping.  
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Figure 5.6  Maximum vertical acceleration of the bridge over Aspan during the 

passage of HSLM-A4 at resonance speed of 217 km/h and non-

resonance speed of 244 km/h. The vertical doted line indicates when 

the last axle pair of the train travelling at resonance speed exit the 

bridge. The vertical solid line corresponds to the exit of the train at 

non-resonance speed. 

 

Figure 5.7  Deflection of the bridge over Aspan during the passage of HSLM-A4 at 

resonance speed of 217 km/h and non-resonance speed of 244 km/h. 

The vertical doted line indicates when the last axle pair of the train 

travelling at resonance speed exit the bridge. The vertical solid line 

corresponds to the exit of the train at non-resonance speed. 

In order to illustrate how the dynamic response increases at resonance for each train 

axle that excited the bridge, a time sequence of HSLM-A4 is presented in Figure 5.8 

when it was crossing the bridge. A downward deflection was initiated as the first pair 

of axles enters the bridge at a) and the deck started to vibrate. At b) ¼ of the bridge’s 

oscillation (i.e. period) was completed and it started to move upwards again. Since the 

wheel loads were as far away from the middle of the bridge as they could be at c) 

when the bridge had returned to its original position, it was allowed to continue its 

movement upwards. At the moment when the bridge reached its highest position at d) 

and wanted to move down again, the next pair of axles reached the middle of the span. 

Consequently, the deck was pushed down by the wheel loads just at the same moment 

as it wanted to move down by itself. This procedure was repeated for every pair of 

axles that excited the bridge, thus the response was increased and caused resonance. 
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Figure 5.8  Train axles moving over the bridge at resonance speed. 

 

5.1.3 Parametric study 

A parametric study was carried out for the 24 meter slab bridge over the river Aspan 

without considering the end shields. The study was performed using HSLM-A4 and 

the other trains was not considered since they would provide similar results. The 

included parameters were; mass, stiffness and damping. 

 

5.1.3.1 Mass 

The first parameter to be evaluated was the mass, which was studied by changing the 

density of the material in the model. The density of reinforced concrete is 2500 kg/m³ 

and the considered densities in the parametric study were 1500 kg/m³, 2000 kg/m³, 

2500 kg/m³, 3000 kg/m³ and 3500 kg/m³. The results are presented in  

Figure 5.9 and Figure 5.10 as maximum vertical acceleration and maximum 

deflection. Each increment of density corresponds to an increase in mass of 4.77 

ton/meter. 

 

Figure 5.9  Maximum vertical deck acceleration for different densities of the  

  concrete. 
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Figure 5.10  Maximum deflection of the deck for different densities of the concrete. 

As can be seen in the acceleration diagram, the response was reduced when the mass 

was increased and the resonance peaks appeared at lower train speeds. In the 

deflection plot, the resonance peaks were moved to lower train speeds as for the 

accelerations, however, the same peak values appeared independent of the mass. The 

deadweight of the bridge was not included in the deflection analysis and it only 

influenced the natural frequencies of the bridge, which is why the peak values 

remained the same in the diagram.  

The influence of increasing the mass of a bridge may be summarized in the following 

bullet points: 

 Natural frequencies and critical resonance speeds decreases 

 Maximum accelerations at resonance decreases 

 Maximum accelerations at resonance are inversely proportional to the mass of 

the bridge 

 Maximum deflections at resonance are unchanged  

 

5.1.3.2 Stiffness 

The influence of stiffness was studied for five different values of the elastic modulus, 

with 14 GPa, 21 GPa, 28 GPa, 35 GPa and 42 GPa. The result is presented in  

Figure 5.11 and Figure 5.12 where the maximum vertical acceleration and maximum 

deflection are shown. 

 

Figure 5.11  Maximum vertical acceleration of the bridge deck for different 

stiffness. 
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Figure 5.12  Maximum deflection of the bridge deck for different stiffness. 

The maximum vertical acceleration occurred at higher train speeds when the stiffness 

was increased. Nonetheless, the peak values were unaffected by the change in 

stiffness. In the deflection diagram it is clear that a lower stiffness resulted in higher 

deflection at lower train speed.  

The influence of increasing the stiffness of a bridge may be summarized in the 

following bullet points: 

 Natural frequencies and critical resonance speeds increases 

 Maximum accelerations at resonance are unchanged 

 Maximum deflections at resonance decreases 

 Maximum deflections at resonance are inversely proportional to the bending 

stiffness of the bridge 

 

5.1.3.3 Damping 

Different damping coefficients were studied in order to evaluate their influence of the 

bridge response. The maximum vertical acceleration and maximum deflection of the 

deck is plotted in Figure 5.13 and Figure 5.14. A higher damping resulted in lower 

dynamic response both for the acceleration and deflection. The resonance peaks 

appeared at the same train speed independent of the damping value. 

 

Figure 5.13  Maximum vertical acceleration of the deck for different damping 

 values. 
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Figure 5.14  Maximum deflection of the deck for different damping values. 

The influence of increasing the damping of a bridge may be summarized in the 

following bullet points: 

 Natural frequencies and critical resonance speeds are unchanged 

 Maximum accelerations at resonance decreases 

 Maximum deflections at resonance decreases 

 

5.1.4 Dynamic response of different span lengths 

The concrete slab bridge without end shields was evaluated for four different cases 

where the span length and cross-section were changed simultaneously. The 

considered span lengths were 16, 24, 32 as well as 40 meters and the corresponding 

cross-sections are presented in Section 4.2.1. The dynamic analyses of the four cases 

were performed in two steps, the first in which the influence of load distribution 

according to Section 3.4.2.1 was excluded. The second step included the load 

distribution in order to evaluate its effect on the dynamic behaviour.  

The properties of the four bridge spans, which affected the dynamic behaviour are 

shown in Table 5.2. The results indicated that the natural frequencies decreased for a 

longer bridge.  

Table 5.2 Dynamic properties of the four considered span lengths for the 

concrete slab bridge without end shields. 

Span length 

[m] 

Bending 

stiffness 

[GNm2] 

Mass 

[ton/m] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

16 8.92 21.45 3.959 15.156 31.756 

24 34.29 30.92 2.872 11.247 24.515 

32 99.07 41.35 2.374 9.295 20.226 

40 233.10 52.86 2.062 8.056 17.483 

The maximum vertical accelerations and maximum deflections of the four bridge 

configurations are presented in Figure 5.15 and Figure 5.16 respectively. Observe that 

in order to make the resonance peaks visible in the plots, the scale of the y-axis is 

different for all acceleration cases. The maximum response was obtained in the edge 

of the long side of the bridge deck, i.e. in region B) of Figure 5.1. 
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The acceleration and deflection plots represents the complete response from the case 

where longitudinal load distribution was considered according to Section 3.4.2.1. The 

envelope of the response from the cases where the axle loads were applied as single 

point loads are included as a red line in the same figures.  

By studying the acceleration plots in Figure 5.15 it can be seen that the response 

decreased as the bridge span got longer. The 16 meter bridge obtained the highest 

response and the resonance peak values were well beyond the permitted limit. The 

resonance peaks occurred at higher train speeds as the bridge span got shorter, which 

can be explained by the fact that the natural frequency was increased for the shorter 

bridges. The peak value of HSLM-A10 was almost moved outside the considered 

speed range for the 16 meter bridge. The 24 meter bridge experienced very high 

accelerations as well, however, the first HSLM train were just at the allowable limit.  

For the 32 meter bridge, the accelerations for the first HSLM trains were below the 

maximum limit of 3.5 m/s2 and it was only the last two trains that exceeded the limit. 

The 40 meter bridge showed a very good dynamic behaviour and the peak values 

were well below the permitted limit. Due to a low eigenfrequency of this bridge, the 

peaks from the first two trains appeared outside of the considered speed range. 

The dynamic response was highly related to the cancellation effects and the optimal 

bridge span to train coach length ratio that was explained in Section 3.1.1. For a 

simply supported bridge the first optimal ratio appears at L/D = 1.5. The ratio for the 

16 meter span varied from 0.59 for HSLM-A10 to 0.89 for HSLM-A1. As a result the 

response of this bridge was lower for the shorter trains since they were closer to the 

optimal ratio. For the 24 meter bridge the ratios between the bridge span and train 

coach length varied from 0.89 for HSLM-A10 to 1.33 for HSLM-A1. Consequently, 

the response was lower than for the 16 meter bridge. The span to coach ratios of the 

32 meter bridge varied from 1.19 for HSLM-A10 to 1.78 for HSLM-A1. The 

acceleration plot for the 32 meter bridge clearly shows that HSLM-A10 resulted in the 

highest response and then the peak values got lower and lower as the coach lengths 

got shorter until there were no visible peaks at all for HSLM-A4 and HSLM-A5. The 

reason was that the ratio was very close to 1.5 for these two trains and the response 

was effectively suppressed. As the coach length got even shorter for the remaining 

trains the response increased again since the ratio moved away from 1.5 once again. 

The last diagram which corresponds to the 40 meter bridge indicated, on the contrary 

to the other three bridges, that the response was higher for the shorter trains. This was 

due to the fact that the ratio between the span length and the train coach went from 

1.48 for the longest train to 2.22 for the shortest one. 

In addition to the cancellation phenomenon, there were other factors that influenced 

the response. At resonance the maximum accelerations are inversely proportional to 

the mass of the bridge and higher mass would result in lower dynamic response. Since 

the mass increased as the cross-sectional area increased for the longer span lengths, 

the response was higher for the shorter bridges. Moreover, the magnitude of the 

moving point loads in load model HSLM was generally higher for the trains with 

longer coaches. For the longer bridge spans, there were more axle pairs that excited 

the bridge simultaneously and they cancelled each other out to some extent. 

By studying the response of the four bridges it can be seen that the peak values for the 

16 meter bridge were quite similar whereas the relative difference increased for the 

longer bridges. This was also a result of the cancellation effects since the relative 
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difference between each span length to train coach ratio was small for the 16 meter 

bridge and then it increased for the longer bridges. 

It can be observed that in addition to the primary resonance peaks, which were related 

to the fundamental natural frequency, there were other peak values in the considered 

speed range. These peaks arose from a multiple of the natural frequencies, however, 

their response were lower than for the primary resonance. The additional peaks that 

appeared in the speed range of 160-200 km/h for the 16 meter bridge were a result of 

the second resonance speed of the first natural frequency. This means that the loads 

excited the bridge every other oscillation instead of every oscillation as for the 

primary resonance.  
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Figure 5.15 Maximum vertical accelerations of the four considered span length 

 for the concrete slab bridge without end shields. Note that the scale of 

 the y-axis differs. The horizontal line represents the maximum 

allowable acceleration limit according to Eurocode. 
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In the deflection plots in Figure 5.16 it is clear that the primary resonance peaks 

appeared at the same train speeds as for the accelerations. Nonetheless, the smaller 

acceleration peaks that occurred at speeds above the primary resonance speed for the 

32 and 40 meter bridges were not apparent in the deflection plots, whereas the 

additional peaks that appeared at lower speeds for the 16 meter bridge were still 

present. This can be explained by the fact that the peaks that occurred at lower speed 

were caused by a multiple of the first natural frequency whereas the peaks at higher 

speeds were caused by a multiple of the third natural frequency. The dynamic 

response was mainly dependant of the first natural frequency, thus causing the bridge 

to vibrate with large amplitudes. The higher frequencies on the other hand, vibrated 

with much smaller amplitudes which is why they affected the accelerations but not the 

deflections.  

The permissible deflection limit corresponding to very good level of comfort is 

included in the deflection diagrams and the limit was greatly exceeded for the 16 and 

24 meter bridges. The 32 and 40 meter bridges indicated satisfactory dynamic 

deflections and the peak values were within the allowable limits.  

Regarding the effect of load distribution, it can be seen that the response was basically 

the same whether the axle loads were taken as single point loads or when they were 

distributed over three sleepers.  
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Figure 5.16 Maximum vertical deflections of the four considered span lengths for 

the concrete slab bridge without end shields. The horizontal line 

represent the maximum limit corresponding to a very good level of 

comfort. 
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5.2 Simply supported concrete slab bridge with end 

shields 

The following section includes the result of the dynamic analysis of the simply 

supported concrete slab bridge when the end shields and wing walls were considered. 

The applied load was the HSLM-A load model from Eurocode 1, SS-EN 1991-2  

(CEN, 2003), defined in Figure 3.15 and Table 3.1. 

 

5.2.1 Dynamic response of different span lengths 

The studied span lengths were the same as for the case when the end shields where 

excluded, i.e. 16, 24, 32 and 40 meters. The cantilevering length of the end shields 

were the same for all four bridges, that is 1.7 meters. The dynamic properties are 

shown in Table 5.3 and it can be seen that the fundamental natural frequency 

decreased for longer spans. In comparison to the case without end shields, the natural 

frequencies have decreased slightly when the end shields were included. The mass per 

meter and stiffness were the same for both cases but since the end shields and wing 

walls provided an additional mass at the end of the cantilevering part, the natural 

frequencies were decreased. The first six vertical bending mode shapes of the 24 

meter bridge are presented in Figure 5.17 and the other span lengths had similar mode 

shapes.  

Table 5.3 Dynamic properties of the four considered span lengths for the 

concrete slab bridge when considering the end shields. 

Span 

length 

[m] 

Bending 

stiffness 

[GNm2] 

Bridge 

mass 

[ton/m] 

Mass of 

end shields 

[ton] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

16 8.92 21.45 159.55 3.088 6.348 8.031 

24 34.29 30.92 175.16 2.694 8.590 11.688 

32 99.07 41.35 192.36 2.287 7.988 12.244 

40 233.10 52.86 211.32 1.998 7.120 11.364 

 

 

Figure 5.17 The first six vertical bending mode shapes of the 24 meter slab bridge 

with end shields. 

a) b) c) 

f) e) d) 
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The four considered bridge configurations were loaded with load model HSLM-A and 

the resulting maximum vertical accelerations and deflections can be seen in  

Figure 5.18 and Figure 5.19. As for the case without end shields, the influence of load 

distribution was studied for this bridge type. The complete response from load 

distribution is presented in the diagrams whereas the single point load case is 

illustrated as a red line, corresponding to the envelope of the response. 

The appearance of the diagrams are quite similar to the case where the end shields 

were excluded since the relation between the span length and the coach length was 

identical. The resonance peaks appeared at lower train speeds as a result of the 

decreased natural frequencies. The maximum accelerations were lower compared to 

the case without end shields and the difference was more significant for the 16 meter 

bridge. The difference decreased as the bridge span got longer and for the 40 meter 

bridge, there were practically no difference at all between the two cases.  

The reason that the response was higher for the case without end shields was that the 

additional mass from the end shields reduced the accelerations. The influence of the 

extra mass was more significant for the 16 meter bridge since it had the lowest mass 

to start with. The longer the bridge got the lower was the influence of the additional 

mass. 

The resulting deflections of the four bridges with end shields are plotted in  

Figure 5.19 and the maximum response occurred at the edge in the middle of the 

deck, i.e. region B) in Figure 5.1. The result showed that the peak response were 

similar to the case without end shields and the only visible difference could be spotted 

for the 16 meter bridge whereas the others were basically unaffected by the end 

shields, except the fact that the resonance peaks occurred at lower train speed. This 

can be explained by studying the effect of the mass in Section 5.1.3.1 where it was 

clear that a change in mass only influenced the accelerations and not the deflections. 

Since the end shields only provided the bridge with additional mass and no stiffness in 

the span, the deflections were basically the same as for the case without end shields.  

The influence of load distribution was very low for this bridge type as well and the 

maximum dynamic response was practically the same. Slightly lower accelerations 

could be observed for the 16 meter bridge. 
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Figure 5.18 Maximum vertical accelerations of the four considered span lengths for 

the concrete slab bridge with end shields. Note that the scale of the y-

axis differs. The horizontal line represents the maximum allowable 

acceleration limit according to Eurocode.  
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Figure 5.19 Maximum vertical deflections of the four considered span lengths for 

the concrete slab bridge with end shields. The horizontal line represent 

the maximum limit corresponding to a very good level of comfort.  
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5.3 Simply supported concrete trough bridge 

This section presents the dynamic analysis of the simply supported trough bridge 

where the end shields and wing walls were excluded to begin with. The verification of 

the FE-models was done for these single-span bridges and the more complex models, 

i.e. the case where the end shields were considered, were generated from this one. A 

convergence study of the first three natural frequencies was performed for all models. 

The verification and convergence study of the 24 meter FE-model will be presented in 

the section below and others were checked in the same manner. 

 

5.3.1 Convergence study and verification of FE-model 

The first three natural frequencies were studied in order to ensure that the model had 

converged. Different number of element in x-direction (longitudinal) and y-direction 

(transverse) was evaluated. The mesh with 40 elements in x-direction and 10 elements 

in y-direction was considered to give sufficiently accurate results.  

The static deflection due to self-weight for the analytical solution resulted in a value 

of δs.an = 17.731 mm. According to the FE-model, the static deflection was  

δs.FEM = 17.702 mm, which was in good agreement with the analytical value. The 

values for deflection in the FE-model were taken from the middle node in one of the 

edge beams in order to exclude the transverse deflection of the bridge deck that arose 

from the usage of shell elements. Thereby a more reasonable comparison with the 

analytical solution could be made. 

The natural frequencies of the first three vertical bending modes are presented in 

Table 5.4 where the first frequency of the FE-model was quite in good agreement 

with the analytical solution. However, the difference for the other two was quite 

significant, especially for the third frequency. The reason can be explained by the fact 

that the FE-model with shell elements was more flexible and thus the vertical bending 

modes included not only vertical bending in the longitudinal plane but also in the 

transverse plane. The transverse behaviour affected this bridge much more compared 

to the slab bridge since the transverse stiffness was much lower for this bridge. This 

was also the reason that there were more vertical bending mode shapes within the 

considered frequency limit (see Figure 5.20) in comparison to the slab bridge where 

only three mode shapes were included.  

By looking at the first vertical bending mode a) it is clear that the longitudinal 

bending was dominant and the bridge deflected as a whole, which was why the 

corresponding frequency was in better agreement with the analytical value. When 

studying the second vertical bending mode b) it can be observed that the deformation 

in the deck increased in the transverse direction between the edge beams, while the 

edge beams themselves experienced smaller displacements. Consequently, the bridge 

experienced more local bending rather than global deformations as for the first mode. 

This phenomenon got even more significant for the third mode c) that mainly 

involved transverse bending of the deck. This is why the corresponding frequency 

was even further away from the analytical value. 
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Table 5.4 Natural frequencies of the first three vertical bending modes for the 

analytical solution and the corresponding frequencies of the FE-

solution for the concrete trough bridge. 

Mode number  

(vertical bending) 

Analytical solution 

[Hz] 

FEM solution 

[Hz] 

1st 4.215 4.153 

2nd 16.861 15.075 

3rd 37.938 18.4401 

 

 

 

 

Figure 5.20 First six vertical bending modes of the concrete trough bridge. 

The dynamic response of the bridge when subjected to a point load p0 = 200 kN at 

constant speed v0 = 200 km/h was evaluated for the FE-model and compared with an 

analytical solution. The midpoint deflection and midpoint acceleration are plotted in 

Figure 5.21. The point load leaves the bridge at time tmax = 0.432 s.  

The midpoint deflection of the FE-model was in good agreement with the analytical 

solution. The FE-model resulted in a slightly larger maximum deflection due to the 

transverse bending of the deck. As for the previous bridge, the initial response 

indicated a positive deflection and acceleration, which was a result of the same reason 

as explained before in Section 5.1.1. 

The diagram of midpoint acceleration shows that the FE-solution of the bridge 

behaviour were in good agreement with the analytical solution when comparing the 

contribution from the first mode shape. However, the higher modes were not in good 

agreement and they were out of phase with each other. The FE-solution oscillated 

more rapidly and with larger magnitude, since the difference between the 

corresponding eigenfrequencies was quite large and the transverse bending resulted in 

higher accelerations. One of the curves in the acceleration diagram corresponded to 

the behaviour when only mode shapes with mainly longitudinal bending were 

considered. It was still some transverse bending included in these modes but not as 

much as for mode c) in Figure 5.20 for instance. When including all modes the 

response was increased quite a lot which indicates how much the transverse bending 

                                                        
1 For the FE-solution, the third eigenfrequency corresponds to Figure 5.20c. The analytical solution 

does not take transverse bending into account thus the modes are not the same. 

a) b) c) 

f) e) d) 
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influence the accelerations. The influence of the higher modes on the deflections was 

negligible since they vibrated with a low amplitude, which is why the deflections 

were in better agreement with the analytical solution. 

 

Figure 5.21  Comparison of the analytical solution and the FE-solution for 

midpoint deflection and acceleration of the concrete trough bridge due 

to a moving point load.  

 

5.3.2 Dynamic response of different span lengths 

The dynamic response of the simply supported trough bridge without end shields and 

wing walls was studied for four different span lengths as for the previous bridge, i.e. 

16, 24, 32 and 40 meter. The dynamic properties for each bridge are presented in 

Table 5.5 and the first six vertical bending mode shapes for the 24 meter bridge are 

shown in Figure 5.20. Similar mode shapes were valid for the other span lengths as 

well, however, their corresponding frequencies were different. Noticeable was that for 

the 40 meter bridge, mode shape c) appeared before b), which can be explained by the 

fact that the transverse distance between supports were increased for the longer 

bridges. Since the frequencies were decreasing for the longer bridges, there were a 

few more mode shapes within the cut-off limit of 30 Hz in addition to the ones 

presented in the figure. 

Table 5.5 Dynamic properties of the four considered span lengths for the 

concrete trough bridge without end shields and wing walls. 

Span length 

[m] 

Bending 

stiffness 

[GNm2] 

Mass 

[ton/m] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

16 19.10 25.55 5.305 17.834 20.790 

24 72.91 31.44 4.153 15.075 18.440 

32 205.03 39.86 3.479 13.129 14.542 

40 495.86 52.16 3.027 11.225 11.691 

In comparison to the concrete slab bridge without end shields, the stiffness for each 

span lengths was much larger for the trough bridge whereas the mass per meter was 

similar. Consequently, the fundamental natural frequencies were higher for the trough 

bridge and thus the resonance peaks occurred at higher train speed. However, the third 

eigenfrequencies were lower than for the slab bridge, which may be explained by the 

fact that the third mode shape that appeared for the trough bridge, c) in Figure 5.20, 

was mainly involving transverse bending of the deck, on the contrary to the slab 

bridge which had a third mode shape as shown in Figure 5.2. The reason that the 
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transverse bending was more influential for the trough bridge was that the deck was 

rather thin and the distance between the supports in the transverse direction was 

relatively long.  

The results of the dynamic analyses for the concrete trough bridge when subjected to 

load model HSLM-A are presented in Figure 5.23 and Figure 5.24 as maximum 

vertical accelerations and maximum vertical deflections. The bridges were evaluated 

for the case when the axle loads were taken as single point loads as well as when load 

distribution over three sleepers were accounted for. The single point load case is 

included as an envelope of the maximum response for all trains, presented as a red 

line in the diagrams. The complete response of the load distribution case is plotted in 

the same diagrams in order to see the difference.  

The acceleration diagrams indicated that the maximum values were slightly lower for 

the three longest trough bridges in comparison to the slab bridges, when studying the 

load distribution case. The 16 meter trough bridge however, got slightly higher peak 

values. The mass of each span length was similar between the trough bridges and the 

slab bridges, which is why the maximum accelerations were similar. The difference in 

mass was more significant for the 16 meter span where the mass of the trough bridge 

was approximately 4 ton/m higher than the slab bridge. Consequently, the mass 

affected this span length more than the others.  

Even though the mass was quite similar between the two bridge types, the appearance 

of the acceleration plots were not as smooth as for the slab bridge, especially for the 

16 and 24 meter bridges. This was because of the dissimilarities of the mode shapes 

where the trough bridge had more transverse bending involved. The maximum 

accelerations for the slab bridge at resonance were progressively built up for each axle 

load exciting the bridge, which was shown in Figure 5.6 and at non-resonance speed 

the response was kept rather low.  

For the trough bridge, the maximum acceleration at resonance was obtained in the 

middle of the span (region A in Figure 5.1) whereas it was obtained at the short ends 

of the deck between the supports for non-resonance speeds (region C in Figure 5.1). 

Figure 5.22 a) shows the accelerations of the short end of the bridge at a non-

resonance speed for the 24 meter bridge. The maximum values occurred when the 

closely placed axle loads of the power car and end coach passed the short edge, see 

Figure 5.22 b). The maximum response is indicated with rings in the history plot a) 

and the arrows pointing upwards in b), illustrates the corresponding train location 

over the short end. 

 

Figure 5.22 Time history plot of a non-resonance speed for the 24 meter bridge. 

b) a) 
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When the closely placed axle pairs passed the edge of the bridge they stimulated the 

higher mode shapes, which highly effected the vibrations in the short edge. Hence, 

they induced transient vibrations in the deck with high peak values. Since the distance 

between these axle pairs were similar for all the HSLM trains, the response was 

similar for all trains outside of resonance. For the resonance peaks, the same 

phenomena with the short edge of the bridge occurred but the accelerations in mid-

span were eventually higher as more axle loads excited the bridge.  

The deflection of the different span lengths for the trough bridge without end shields 

are shown in Figure 5.24 and the results were almost overall satisfactory. The 

allowable limit was only slightly exceeded for the 16 meter bridge at speeds above 

340 km/h. The deflection plots were much smoother than the acceleration plots since 

the maximum values were obtained in the middle of the span. In addition, the higher 

mode shapes had a negligible effect on the deflection. In comparison to the slab 

bridge, the deflections were much lower since the stiffness was a lot larger for the 

through bridge.  

The effect of load distribution was much higher for this bridge type where there were 

significant accelerations at the short edges of the bridge. The transient response that 

were induced got even higher when the applied load was taken as single point loads. 

The difference between the load distribution case and the single point load case was 

less for the resonance peaks. This may be explained by the fact that the resonance 

response was obtained in mid-span where the effect of the transient response was 

lower. The deflections plots on the other hand showed no difference at all between the 

two cases. The reason was that the maximum deflections were obtained in the middle 

of the span where the influence from the higher modes were negligible. 
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Figure 5.23 Maximum vertical accelerations of the four considered span lengths 

 for the concrete trough bridge without end shields. Note that the scale 

of the y-axis differs. The horizontal line represents the maximum 

allowable acceleration limit according to Eurocode.   
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Figure 5.24 Maximum vertical deflections of the four considered span lengths for 

the concrete trough bridge without end shields. The horizontal line 

represent the maximum limit corresponding to a very good level of 

comfort. 
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5.4 Simply supported concrete trough bridge with end 

shields 

The following section includes the result of the dynamic analysis of the simply 

supported concrete trough bridge when the end shields and wing walls were included 

in the FE-model. The applied load was the HSLM-A load model from Eurocode 1, 

SS-EN 1991-2 (CEN, 2003), defined in Figure 3.15 and Table 3.1. 

 

5.4.1 Dynamic response of different span lengths 

The dynamic analyses of the concrete trough bridges with end shields included the 

four span lengths 16, 24, 32 and 40 meters. The length of the cantilevering part with 

the end shields was 2.3 meters and it was the same for all four cases. The dynamic 

properties for each span length are given by Table 5.6 and the mode shapes of the 24 

meter bridge are presented in Figure 5.25. The principal shape of the modes are 

similar for each span length. 

Table 5.6 Dynamic properties of the four considered span lengths for the 

concrete trough bridge with end shields. 

Span 

length 

[m] 

Bending 

stiffness 

[GNm2] 

Bridge 

mass 

[ton/m] 

Mass of 

end shields 

[ton] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

16 19.10 25.55 236.74 3.795 6.687 10.219 

24 72.91 31.44 253.85  3.763 9.514 12.897 

32 205.03 39.86 271.82 3.347 10.699 14.506 

40 495.86 52.16 292.10 2.973 10.605 12.251 

 

 

 

Figure 5.25 The first six vertical bending mode shapes of the 24 meter trough 

bridge with end shields. 

By including the end shields and wing walls in the analysis, the fundamental natural 

frequencies were decreased because of the additional mass that the end shields 

provided. The difference was quite significant for the 16 meter bridge since the 

influence of the extra mass was more substantial for that bridge. In comparison to the 

a) b) c) 

f) e) d) 
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slab bridge with end shields, the natural frequencies were higher as a result of the 

stiffer cross-section and similar mass per meter.  

By examine the mode shapes in Figure 5.25, it is clear that the end shields have 

provided the bridge deck with extra stiffness in the transverse direction at the short 

edges. Consequently, there were no longer any significant transverse movement at the 

regions close to the end shields, which was the case when the end shields were 

excluded. 

The results of the dynamic analyses when subjecting the bridges with load model 

HSLM-A are presented in Figure 5.26 and Figure 5.27. The maximum accelerations 

were obtained in the middle of the span for all four bridges. For the 16 meter bridge, 

the peak values decreased substantially in comparison to the case without end shields. 

The reason being that the additional mass from the end shields were most influential 

for this short bridge. Furthermore, the accelerations were no longer excessive for the 

train speeds outside of resonance, which was the case when the end shields were 

disregarded. This was due to the fact that the end shields provided transverse stiffness 

to the edges and the mode shapes affecting the short edges were no longer present. 

The 24 and 32 meter bridges showed also lower peak response but the difference to 

the case without end shields were not as significant as for the 16 meter bridge. For the 

longest bridge of 40 meters, the response was slightly increased for the case with end 

shields. Nonetheless, the response was still well below the permissible limit of  

3.5 m/s2. Since the same span lengths and load models were considered as before, the 

same behaviour of each peak response was obtained, related to the cancellation 

effects. This was most obvious for the 32 meter bridge where the response from 

HSLM-A4 and HSLM-A5 were effectively suppressed.  

The deflection plots in Figure 5.27 shows a good behaviour for the three longest 

bridges. As a result of the decreased natural frequencies in comparison to the case 

without end shields, the train speeds at which resonance occurred have been 

decreased. Consequently, new peak values from the longer trains have been moved 

down to the considered speed range for the 16 and 24 meter bridges, causing higher 

response than before. It should be noted that the response of the trains that were 

present for the case without end shields were still similar for this case since the 

stiffness was identical.  
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Figure 5.26 Maximum vertical accelerations of the four considered span lengths for 

the concrete trough bridge with end shields. Note that the scale of the 

y-axis differs. The horizontal line represents the maximum allowable 

acceleration limit according to Eurocode. 
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Figure 5.27 Maximum vertical deflections of the four considered span lengths for 

the concrete trough bridge with end shields. The horizontal line 

represent the maximum limit corresponding to a very good level of 

comfort.  



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-16-29 79 

5.4.2 Dynamic response of a short span trough bridge with 

improved cross-section 

A new cross-section was considered for the 16 meter trough bridge with end shields in 

order to improve the dynamic performance. The new dimensions are presented in 

Figure 5.28 and the dynamic properties are presented in Table 5.7. The cross-section 

was a lot more massive than before and the natural frequencies were therefore 

increased significantly. The corresponding natural modes had still the same shape as 

the previous case in Figure 5.25. 

 

Figure 5.28 New cross-section of the 16 meter concrete trough bridge. 

Table 5.7 Dynamic properties of the 16 meter trough bridge with improved 

cross-section. 

Span 

length 

[m] 

Bending 

stiffness 

[GNm2] 

Bridge 

mass 

[ton/m] 

Mass of 

end shields 

[ton] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

16 67.05 30.97 252.89 6.394 10.953 16.484 

The maximum vertical accelerations and maximum deflections are presented in 

Figure 5.29 and it was clear that the new bridge design was better in terms of dynamic 

performance. As a result of the high fundamental frequency, the primary resonance 

peaks were moved outside of the considered speed range and the response was instead 

determined by the second resonance speed. It can be observed that the primary 

resonance peak of HSLM-A1 was starting to rise at train speeds above 360 km/h but it 

did not exceed the limit for the studied speed interval. According to the deflection 

diagram, the response decreased substantially in comparison to the previous 16 meter 

bridge. 
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Figure 5.29 Maximum vertical accelerations and deflections of the 16 meter trough 

bridge with improved cross-section. The horizontal lines represent the 

maximum allowable limits from Eurocode. 
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5.5 Two-span continuous concrete slab bridge 

This section includes the result of the dynamic analysis of the two-span continuous 

concrete slab bridge, based on the same cross-sections as the single span slab bridge. 

The applied load was the HSLM-A load model from Eurocode 1, SS-EN 1991-2 

(CEN, 2003), defined in Figure 3.15 and Table 3.1. 

 

5.5.1 Dynamic response of different span lengths 

The dynamic analyses were carried out by considering two equal spans for each 

bridge with span lengths of 16, 24, 32 and 40 meters. The dynamic properties of each 

bridge are presented in Table 5.8 and since the same cross-sections were used as for 

the single-span simply supported case, the stiffness and mass per meter were 

unchanged. The fundamental frequencies have been increased in comparison the 

simply supported case. By providing the bridge with continuity, more mode shapes 

with lower frequencies emerged within the considered frequency range, which was 

why the higher frequencies were lower than for the simply supported case. The first 

six principal vertical bending mode shapes are shown in Figure 5.30. 

Table 5.8 Dynamic properties of the four considered span lengths for the two-

span continuous slab bridge. 

Span 

length 

[m] 

Bending 

stiffness 

[GNm2] 

Bridge 

mass 

[ton/m] 

Mass of 

end shields 

[ton] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

16 8.92 21.45 159.55 3.379 4.684 7.566 

24 34.29 30.92 175.16 2.770 4.243 9.357 

32 99.07 41.35 192.36 2.316 3.607 8.381 

40 233.10 52.86 211.32 2.011 3.139 7.276 

 

Figure 5.30 The first six principal vertical bending mode shapes of the two-span 

continuous slab bridge with end shields.  

The resulting maximum accelerations and deflections are presented in Figure 5.31 and 

Figure 5.32. The two bridges with 16 and 24 meter spans showed high accelerations 

that exceeded the limit of 3.5 m/s2 whereas the two longest bridges were satisfactory. 

The behaviour of all four cases was dominated by the first two mode shapes, i.e. a) 

a) b) c) 

f) e) d) 
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and b) in Figure 5.30. The resonance peaks at lower train speeds corresponded to the 

first mode and the peaks at higher train speeds corresponded to the second mode. 

As for the simply supported case, the span length to coach length ratio highly 

influenced the dynamic response. For a continuous bridge there are a higher number 

of optimal span/coach length ratios, which was described in Section 3.1.1. A simply 

supported single span bridge had optimal ratios of L/d = 1.5, 2.5, 3.5 etc. whereas a 

continuous two-span bridge had optimal ratios of L/d = 1, 1.5, 2, 2.5 etc. This was 

why the response of the first mode shape for the 16 meter bridge was decreased 

rapidly as the trains got shorter since they approached a span to coach length ratio 

equal to one.  

The same phenomenon occurred for the other span lengths as well whenever the span 

to coach length ratio was close the values mentioned above. However, this was only 

true for the first mode shape and the second mode shape behaved differently. When 

the first mode resulted in high accelerations, the second mode was cancelled out and 

vice versa. This may be explained by studying the shape of the two first modes in 

Figure 5.30. The first cancellation ratio of the first mode appeared at L/d = 1, which 

means that two boogie pairs were in the centre of each span at the same time. Since 

the first mode shape was asymmetrical, this implied that one of the boogies pushed 

the deck downwards whereas the other one held it back, thus reducing the response. 

The second mode shape on the other hand was symmetrical and both spans were 

pushed down simultaneously for a span to coach length ratio equal to one, hence 

increasing the response. This was most obvious for the 24 meter bridge where HSLM-

A7 resulted in a ratio equal to one and the response was effectively suppressed for the 

first mode at a train speed of 239 km/h, whereas the same train resulted in the highest 

response for the second mode at a train speed of 366 km/h. 

The dynamic response caused by the first mode shape was limited in magnitude for 

the longer bridges since there was always axle loads preventing the deck to move 

freely in one of the spans. However, by studying the shortest bridge with span length 

16 meters, it can be seen that the second mode resulted in higher response for the 

shorter trains whereas the first mode gave higher response for the longer trains. This 

was due to the fact that when one boogie of the longer trains excited one of the spans, 

the other span could move freely since the next boogie had not yet entered the bridge.  

In the deflection plots of Figure 5.32, it was only the 16 meter bridge that exceeded 

the allowable limit. The response of all four cases was mainly influenced by the first 

mode shape, except for the 24 meter bridge where the second mode provided high 

deflections as well. The reason being that the span to coach length ratio was equal or 

close to one for this bridge, which resulted in high response from the second mode. In 

comparison to the single span case, the deflections were lower for all four considered 

span lengths and the difference was more substantial for the longer bridges.  
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Figure 5.31 Maximum vertical accelerations of the four considered span lengths for 

the continuous two-span bridge. Note that the scale of the y-axis 

differs. The horizontal line represents the maximum allowable 

acceleration limit according to Eurocode. 
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Figure 5.32 Maximum vertical deflections of the four considered span lengths for 

the continuous two-span bridge. The horizontal line represent the 

maximum limit corresponding to a very good level of comfort. 
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5.5.2 Dynamic response of a two-span continuous bridge with a 

fixed column as mid-support 

In order to evaluate the effects on the dynamic response of using a fixed column as 

mid-support, the two-span bridge with spans of 24 meters was considered. The 

dynamic properties are presented in Table 5.9 and the first six vertical bending mode 

shapes are shown in Figure 5.33. The first frequency was slightly increased in 

comparison to the continuous simply supported case whereas the second frequency 

was basically the same. The fixed column in the centre of the bridge provided 

additional stiffness, thus preventing the bridge to deform as easily. Since the first 

mode included rotation over the mid-support, more energy was required than before 

in order to obtain the first mode. The second mode shape on the other hand did not 

include any significant movement over the mid-support, which is why the 

corresponding frequency had not changed. However, the third mode shape was not 

similar to the simply supported case. This mode was similar to the first one but 

without the rotation of the deck over mid-support. 

Table 5.9 Dynamic properties of a two-span continuous slab bridge with a fixed 

column in the middle. 

Span 

length 

[m] 

Bending 

stiffness 

[GNm2] 

Bridge 

mass 

[ton/m] 

Mass of 

end shields 

[ton] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

24 34.29 30.92 175.16 2.880 4.244 5.561 

 

 

Figure 5.33 The first six vertical bending mode shapes of the two-span continuous 

slab bridge with a fixed column in the middle. 

The dynamic response of this case is presented as maximum accelerations and 

deflections in Figure 5.34. The dynamic behaviour was dominated by the first two 

modes and since the corresponding frequencies were similar to the simply supported 

case, the resonance peaks occurred at similar train speeds. The response from the 

second mode resulted in highest accelerations once again and the maximum values 

were basically the same as before due to the fact that the fixation of the mid-support 

did not change the second mode. The response from the first mode however, was 

reduced and the peak accelerations were just below the limit of 3.5 m/s2. The reason 

was that the column prevented the deck from deforming as easily as for the simply 

supported case, hence reducing the response. This was also true for the deflections, 

where the resonance peaks were decreased as well. 

a) b) c) 

f) e) d) 
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Figure 5.34 Maximum vertical accelerations and deflections of the continuous 24 

meter two-span bridge with fixed column as mid-support. The 

horizontal lines represent the maximum allowable limits from 

Eurocode. 
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5.6 Three-span continuous concrete slab bridge 

The following section includes the result of the dynamic analysis of the three-span 

continuous concrete slab bridge, based on the same cross-sections as the single span 

slab bridge. The applied load was the HSLM-A load model from Eurocode 1, SS-EN 

1991-2 (CEN, 2003), defined in Figure 3.15 and Table 3.1. 

 

5.6.1 Dynamic response of different span lengths 

Equal span lengths were considered when evaluating the dynamic behaviour of three-

span continuous bridges. The span lengths were the same as before, i.e. 16, 24, 32 and 

40 meters and the dynamic properties for each bridge are presented in Table 5.10. The 

same cross-sections as the single span and two span bridges were used which means 

that the stiffness and mass per meter were still the same. The fundamental frequencies 

have been increased in comparison to the two-span case whereas the higher 

frequencies have decreased. The bridges with three spans have more vibration modes 

within the considered frequency range and consequently, the higher frequencies 

occurred closer to the first one. The first six vertical bending mode shapes of the 

bridge with 24 meter spans are illustrated in Figure 5.34. 

Table 5.10 Dynamic properties of the four considered span lengths for the three-

span continuous slab bridge. 

Span 

length 

[m] 

Bending 

stiffness 

[GNm2] 

Bridge 

mass 

[ton/m] 

Mass of 

end shields 

[ton] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

16 8.92 21.45 159.55 3.534 4.109 6.122 

24 34.29 30.92 175.16 2.815 3.524 5.187 

32 99.07 41.35 192.36 2.335 2.968 4.335 

40 233.10 52.86 211.32 2.023 2.583 3.758 

 

 

Figure 5.35 The first six principal vertical bending mode shapes of the three-span 

continuous slab bridge. 

The maximum vertical accelerations are presented in Figure 5.36 and the maximum 

vertical deflections are presented in Figure 5.37. The maximum response occurred in 

either one of the end spans or the mid-span depending on what mode that was most 

influential for a certain speed. The bridge with 16 meter spans resulted in the highest 

accelerations and the behaviour was dominated by the first two mode shapes. For the 

a) b) c) 

f) e) d) 
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first seven HSLM trains, the second mode resulted in the highest accelerations 

whereas the three longest HSLM trains gave higher response from the first mode. 

The first mode shape was less influential for the longer bridges as more axle loads 

excited the bridge simultaneously and thus limiting the magnitude of the resonance 

peaks. The two bridges with span lengths of 24 and 32 meters obtained the highest 

accelerations from the second mode shape for HSLM-A10. The resonance peaks of 

the bridge with 32 meter spans within the speed range 350-384 km/h arose from the 

third mode shape. The response of the longest bridge was well below the permissible 

limit and the peak accelerations occurred for HSLM-A3 when the loading frequency 

coincided with the third vertical bending frequency. 

As can be observed, there were different mode shapes and trains resulting in the 

highest response for different span lengths. This was due to the fact that the response 

was cancelled out for some cases and for others the response was maximized. Since 

the higher frequencies were lower for a higher number of spans, the response was 

influenced by more mode shapes. 

In the deflection diagrams of Figure 5.37, the allowable limit was exceeded for the 

two shortest bridges and the response was determined by the first two mode shapes. 

The third mode resulted in the highest peak accelerations for the 40 meter span bridge 

but it was not affecting the deflections since its vibrating magnitude was very low. 
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Figure 5.36 Maximum vertical accelerations of the four considered span lengths 

for the continuous three-span bridge. Note that the scale of the y-axis 

differs. The horizontal line represents the maximum allowable 

acceleration limit according to Eurocode. 
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Figure 5.37  Maximum vertical deflections of the four considered span lengths for 

the continuous three-span bridge. The horizontal line represent the 

maximum limit corresponding to a very good level of comfort. 
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5.6.2 Dynamic response of a three-span continuous bridge with 

fixed columns as mid-supports 

As for the two-span continuous bridge with a span length of 24 meters, the three-span 

case was modelled with fixed column as mid-supports in order to evaluate how the 

dynamic response would change. The dynamic properties of the model is presented in 

Table 5.11 and the first six vertical bending mode shapes are illustrated in  

Figure 5.38. The first natural frequency had increased in comparison with the three-

span simply supported case. The first mode from the simply supported case were no 

longer present, instead the first mode for this bridge was similar to the second mode 

of the simply supported case. As a consequence, the first natural frequency for this 

bridge was similar to the second frequency of the simply supported case. The second 

and third frequencies have been increased as well and their mode shapes were quite 

different from the previous case. 

Table 5.11 Dynamic properties of a three-span continuous slab bridge with fixed 

columns in the middle. 

Span 

length 

[m] 

Bending 

stiffness 

[GNm2] 

Bridge 

mass 

[ton/m] 

Mass of 

end shields 

[ton] 

1st bending 

frequency 

[Hz] 

2nd bending 

frequency  

[Hz] 

3rd bending 

frequency  

[Hz] 

24 34.29 30.92 175.16 3.540 3.952 5.865 

 

 

Figure 5.38 The first six vertical bending mode shapes of the three-span continuous 

slab bridge with fixed columns in the middle. 

The dynamic response of the bridge is plotted in Figure 5.39 and the accelerations 

were higher than for the continuous simply supported case. Since the mode shapes 

were changed significantly when providing the bridge with fixed columns as mid-

supports, the response was very different from the simply supported case. The 

deflections showed maximum peaks slightly above the allowable limit and the values 

were similar to the simply supported bridge. 

  

a) b) c) 

f) e) d) 
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Figure 5.39 Maximum vertical accelerations and deflections of the continuous 24 

meter three-span bridge with fixed columns as mid-supports. The 

horizontal lines represent the maximum allowable limits from 

Eurocode. 
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6 Discussion 

This chapter includes a discussion with regard to the modelling choices adopted in 

this thesis study. Moreover, the obtained results will be reviewed and related to 

similar studies in order to distinguish similarities and dissimilarities. Finally, some 

bridge types that might be suitable for high-speed applications will be discussed. 

 

6.1 FE-modelling 

The FE-analyses in this study was carried out using the commercial software 

Brigade/Plus. The FE-models of the less complex studies, i.e. the simply supported 

cases without considering the end shields, were verified with hand calculations. Static 

deflections from deadweight and the first three vertical bending frequencies were 

compared. In addition, vertical accelerations and deflections of the bridge when 

subjected to a single moving point load were compared with an analytical solution. 

The moving point load study was performed initially in order to better understand the 

dynamic behaviour but also to provide a simple verification of the dynamic behaviour 

of the bridge. There are more complex analytical methods that includes a series of 

moving point loads, which would represent a moving train in a more accurate way. 

But due to the limited amount of time, a simple case with a single moving point load 

was considered to be sufficient. In order to ensure convergence of the FE-models, a 

convergence study was performed where the first three natural frequencies were 

analysed.  

The analysed bridges in this study was generated from two existing reinforced 

concrete bridges. The real span length of the slab bridge (24 meters) was included as 

one of the considered lengths whereas the real span length of the trough bridge (29 

meters) was not included. The cross-sections for the remaining span lengths was 

adjusted in order to obtain reasonable cross-sections in term of static load effects. 

However, one can argue that the longest bridges in this study obtained quite 

inefficient designs. The slab bridge with a deck thickness of 2641 mm solid concrete 

and the trough bridge with its large main beams of 3823 x 1684 mm. These cross-

sections were required in order to obtain the same ratio between the static deflection 

and the span length, which was set as a requirement for the adjusted cross-sections. 

The use of reinforced concrete for span lengths of 40 meters are rare and a typical 

choice would be to utilize other bridge types instead, such as prestressed concrete and 

steel-composite bridges. Nonetheless, the aim of this thesis was not to assess existing 

bridges but rather to understand the influence of certain parameters regarding the 

dynamic behaviour. Even if the design of the longer bridges was questionable, they 

provided the study with certain dynamic properties that resulted in a certain dynamic 

response, which could be evaluated and reconnected to the design. The reason that the 

analysed cross-sections and span lengths were generated from the same two bridges, 

rather than choosing unique bridges, was to limit the number of parameters 

influencing the response. Small structural dissimilarities may influence the mode 

shape to a great extent, hence making it more difficult to compare the different span 

lengths. 

The FE-models were carried out using 3D-elements, thus including the transverse 

behaviour of the bridges. Consequently, torsional and lateral bending mode shapes 

were included in the frequency analyses but these modes did not influence the results 

since the train loads were applied centrically. However, the transverse bending of the 
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deck did also affect the vertical bending modes since transverse deflections were 

included in addition to the longitudinal bending. This was found to have a great 

impact on the dynamic response of the simply supported trough bridge due to its 

relatively thin deck and long transvers distance between supports. The corresponding 

mode shapes of this bridge type included a number of modes with high frequencies 

where a major part of the deformations occurred in the edge of the short end of the 

bridge deck. As a result, high accelerations were obtained in the short end due to a 

transient response from the axle loads, especially for the shortest span lengths of 16 

and 24 meters.  

In accordance with Eurocode 1, SS-EN 1991-2 (CEN, 2003), the designer of a railway 

bridge for high-speed applications are encouraged to use a lower bound of the 

stiffness of the structure. For reinforced concrete bridges a conservative approach is to 

reduce the concrete stiffness with 40 % in order to account for a fully cracked section. 

This method have been used throughout the analyses in this thesis. However, if the 

designer can verify that a higher stiffness is more reasonable, that value may be used 

as well. The choice of stiffness will highly influence the results as have been 

mentioned earlier and it is important to use a realistic value. A situation which enables 

to account for an uncracked section is for prestressed sections.  

 

6.2 Dynamic response 

The first step of the analyses was to provide the reader with clear indications of how 

mass, stiffness and damping influenced the dynamic response of the bridges. This was 

not a unique study and many reports have covered this topic before. The outcome of 

the results was as expected with the mass changing the natural frequencies as well as 

the peak accelerations, but without affecting the deflections. The stiffness did only 

affect the natural frequencies and deflection peaks, but the accelerations were left 

unchanged. Increased damping was found to reduce the response in terms of both 

accelerations and deflections.  

The results from the dynamic analyses with regard to different span lengths indicated 

that the bridges with a 16 meter span were inadequate in terms of dynamic 

performance. Because of their low fundamental natural frequencies, the primary 

resonance peaks from the HSLM trains appeared within the considered speed range. 

The response from these peaks caused very high accelerations and deflections with 

peak values well beyond the allowable limits stated in Eurocode. This was true for 

both the simply supported single span cases and the continuous bridges.  

The bridges with span length 24 meters did also result in high accelerations for all 

studied cases. However, the deflection limits were only exceeded for the simply 

supported single span cases. The 32 meter span lengths resulted in accelerations 

slightly above the permissible limit for the single span cases while the continuous 

bridges showed satisfactory results. All bridges with a span length of 40 meters 

resulted in good dynamic behaviour both for accelerations and for deflections.  

In general, the acceleration limit were exceeded more often than the deflection limit. 

The reinforced concrete trough bridge was found to be a better solution for shorter 

spans, mainly due to a much stiffer cross-section with higher mass. The deflection 

limit was only somewhat exceeded for the 16 meter bridge whereas the longer bridges 

were satisfactory. The differences between the slab bridges and the trough bridges 

were less significant for the longer spans.  
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The influence of providing the bridges with end shields was studied for the single 

span cases and the results have shown that the maximum accelerations were reduced 

substantially for the 16 meter span bridges, especially for the trough bridge. The main 

reason for the reduced response was found to be the mass contribution from the end 

shields, which was more significant for the shortest bridge. The additional mass gets 

less influential for the longer bridges and the difference in response was lower for 

them. In addition to the mass contribution, the end shields provided transverse 

stiffness to the thin bridge deck of the trough bridge. Consequently, the impact of the 

end shields was even higher for this bridge since the excessive vibrations in the short 

end of the bridge disappeared.  

The evaluation of continuity in this study included two- and three-span bridges with 

identical span lengths. The FE-models were generated from the single span case of the 

slab bridge, thus the same cross-section were considered as for that case. Simply 

supported boundary conditions were considered and the influence of a fixed column 

as mid-support was evaluated for the 24 meter span bridges. The results have shown 

that the dynamic response got somewhat more complex due to the fact that more axle 

loads excited the bridge simultaneously. As a consequence, the different HSLM trains 

affected different mode shapes and more resonance peaks occurred within the 

considered speed range. The maximum accelerations were found to be increased for 

the 16 meter spans in comparison to the single span slab bridge whereas lower 

response was obtained for the longest bridges. The dynamic deflections on the other 

hand, were observed to be lower for all considered spans than for the single span case. 

When considering fixed mid-supports for the continuous bridges with span length of 

24 meters, the response became quite different. For the two-span case, the response 

from the first mode shape was reduced whereas the response from the second mode 

was pretty much unchanged. This was found to be highly associated with the mode 

shapes, where the first was somewhat different but the second was basically the same. 

The mode shapes of the three-span bridge were more affected by the fixed columns 

and the change in response was quite significant with higher maximum peak values 

than for the simply supported three-span case. 

The outcome of the comparison between different span lengths was in line with 

results from previous studies, where it was concluded that the dynamic response was 

reduced for longer spans, see Section 3.2.4. The result from this study clearly 

indicates the same principle and the response was always found to be lower for longer 

spans. Moreover, the response of the continuous bridges in this study confirms what 

was stated in Section 3.2.4, that the accelerations of short span continuous bridges 

with low natural frequencies might be higher in comparison to single span bridges. 

However, in previous studies concerning the influence of end shields it has been 

concluded that the dynamic response was increased by providing the bridges with end 

shields. These previous studies were carried out in a simplified manner by considering 

2D-models and by including the end shields as an additional mass at the ends of the 

bridges. According to the results in this thesis, the influence of end shields have been 

proven to enhance the dynamic performance and reduce the vertical accelerations. By 

accounting for the transverse effects in more detailed 3D-analyses, the end shields 

provided additional stiffness at the short ends and thus eliminating some mode shapes 

that caused excessive vibrations. In addition, they provided an important mass 

contribution for short span bridges that reduced the response significantly. 

Another aspect that has been studied in this report is the influence of load distribution, 

meaning that the axle loads were distributed over three sleepers. According to 
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Eurocode 1, SS-EN 1991-2 (CEN, 2003), the influence of load distribution may be 

accounted for whenever loaded lengths of less than 10 meters are considered since the 

dynamic effects can be overestimated otherwise. The effects of load distribution was 

evaluated for the single span cases and due to the statement in Eurocode, which said 

that load distribution should be considered for loaded lengths of less than 10 meters, 

the difference was expected to be high for the end shield bridges. However, the 

response was found to be very similar for the slab bridge whether the end shields were 

considered or not. For the trough bridge without end shields on the other hand, the 

consideration of load distribution resulted in quite large differences, especially in the 

regions outside of resonance. The reason was found to be that the transient response, 

which was induced in the short edges of the thin bridge deck, increased when the axle 

loads were taken as single point loads. If the interpretation of the Eurocode statement 

would have been followed, the load distribution would not have been considered for 

the trough bridge since all of the loaded lengths were longer than 10 meters. 

Therefore, it might be appropriate to adopt load distribution models in other cases as 

well in order to avoid overestimations of the response.  

The span to coach length ratio has proven to be a very important factor for the 

dynamic response. Depending on the ratio, the response may be either very high or 

completely suppressed. Whenever the resonance peaks have been suppressed in the 

diagrams from the different bridge analyses, the span to coach length ratio has 

corresponded very well to the values discussed in Section 3.1.1.  Since the dynamic 

analyses included the ten HSLM trains with varying lengths from Eurocode, there 

were always certain trains with clear resonance peaks even though the response from 

some of the trains were suppressed. If it was known or decided in advance what type 

of high-speed train that would use the railway bridges, a very efficient structure could 

be obtained in terms of dynamic performance. By knowing the coach length of the 

train, different optimal span lengths could be chosen in order to supress the response 

from that certain train. However, the HSLM load model is required in the analyses 

whenever European interoperability is stated as a demand, which it is for the planned 

Swedish high-speed network. 

In addition to the coach length property of the trains, the speed at which it crosses the 

bridges have shown to be highly influential for the dynamic response. The speed 

interval that has to be considered for a railway bridge with an intended speed of  

320 km/h is quite wide. As a consequence, the risk of high levels of vibration at some 

train speeds are substantial, especially for short span bridges. The stiffness needs to be 

high in order to move the primary resonance peaks outside of the considered speed 

range. If a certain speed range could be avoided it would lead to a less redundant 

structure, which would be desirable in an economical point of view. Nonetheless, the 

railway bridges should be able to handle all possible train speeds as it is difficult to 

ensure that certain speeds could be completely avoided. 

It should be noted that the studied dynamic effects in this report were chosen to be 

vertical accelerations and vertical deflection. However, as stated in Section 3.4.2.3, 

there are additional dynamic effects that needs to be satisfied in order to fulfil all the 

requirements. 
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6.3 Bridge types for high-speed applications 

According to the obtained results from this study, short span bridges with low natural 

frequency have shown to be sensitive to dynamic effects in terms of vertical 

accelerations and deflections. An improved design of the 16 meter simply supported 

trough bridge with end shields was carried out and analysed. The stiffness of the 

cross-section was increased significantly in order to move the primary resonance 

peaks outside of the considered speed range. This was achieved for a fundamental 

frequency of 6.394 Hz and the response was instead determined by the second 

resonance speed, with peak values below the required limits. Short span bridges have 

been found to obtain high levels of vibration due to the primary resonance, which is 

why a sufficiently stiff cross-section is necessary in order to move these peaks to 

higher train speeds. Nonetheless, this requires that the maximum peaks of the second 

resonance speed are within the allowable limit since they will then determine the 

response. The continuous bridges could also benefit from a stiffer cross-section in 

order to enhance the dynamic performance. As described in Section 3.2.4, continuous 

bridges with natural frequencies within the given limits of Figure 3.15 from Eurocode, 

resulted generally in an adequate dynamic response. 

The mass may also be modified in order to obtain a better dynamic behaviour. 

However, this would not be a suitable option for the short span bridges in this study 

since the peak values were well beyond the permissible limit and an unreasonable 

increase of the mass would be necessary in order reduce the response that much. For 

the simply supported 32 meter span bridges on the other hand, this might have been a 

suitable option since the acceleration limit were only slightly exceeded for this span 

length. The mass could be increased by using a thicker ballast layer or increasing the 

deck thickness for instance.  

Another approach to enhance the dynamic performance of a bridge, would be to 

provide the bridges with dampers. These can effectively reduce the response from 

certain natural frequencies. By letting the dampers reduce the influence of the first 

vertical bending mode, which is typically causing the critical response, the dynamic 

behaviour of the bridge would be much more satisfying. As a result, a less redundant 

structure could be adequate in terms of dynamic performance if dampers are applied. 

However, these requires maintenance during the life time of the bridge which might 

be costly. Furthermore, the stiffness of the bridge is difficult to predict and thus the 

real natural frequencies might be different from the calculated values. In order to 

calibrate the dampers for the correct frequency, real tests of the bridges would be 

necessary. Moreover, the stiffness might change with time due to cracking and creep 

and hence the natural frequencies will change. Regular inspections would be 

necessary in order to ensure that the dampers are calibrated for the critical 

frequencies. 

In conclusion, a stiff bridge design is desirable in order to move the primary 

resonance speeds outside of the considered speed range. A lot of the bridges in 

existing high-speed railway networks compose of prestressed concrete box girders, 

which was discussed in Section 3.3. The stiffness of such sections are high and the 

prestressing enables to account for an uncracked section, which will increase the 

stiffness even more in the dynamic analysis. This have proven to be a suitable 

solution for high-speed applications and dynamic analyses have been carried out in 

the design phase to verify this. The steel-concrete composite bridges that are widely 

used in the French high-speed network could be a suitable alternative for continuous 
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bridges with long span lengths since they provide an efficient structure in such 

situations. However, the dynamic behaviour of steel-composite bridges have indicated 

critical accelerations in previous studies for simply supported bridges and in such 

situations it might be more suitable to utilize other bridge types.  

According to the technical system standard for high speed tracks  

(Swedish Transport Administration, 2016), bridges provided with end shields are not 

recommended since these might result in excessive vibrations. The result from this 

thesis however, have obtained a better dynamic behaviour for this bridge type in 

comparison to the case without end shields. This was found to be especially true for 

bridges with low transverse stiffness, which may obtain high accelerations in the ends 

of the bridge. 

The substructure of high-speed railway lines are composed of either ballasted tracks 

or ballastless tracks. The ballastless track have been found to be a suitable choice for 

high-speed applications since these provide low maintenance and higher precision of 

the track alignment. From a structural point of view the major difference between 

these two alternatives is the mass contribution, which is higher for the ballasted track. 

The result will be reduced acceleration peaks at lower train speeds. However, the 

allowable acceleration limit is higher for the ballastless track which is of course an 

advantage. The choice to use either ballast or slabs in the substructure will be more 

influential for steel and steel-concrete solutions since these already have quite low 

mass. The effect on a concrete structure would be less significant as they are already 

heavy structures.  
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7 Conclusions 

The aim of this Master's Thesis was to increase the basic understanding of the 

dynamic behaviour of railway bridges subjected to high-speed trains. Furthermore, the 

purpose was also to be able to describe for engineers and non-specialists what 

parameters are the most influential when designing railway bridges subjected to high-

speed trains. With regard to the results from this study, the following concluding 

remarks can be obtained from the studied railway bridges: 

 The mass had a high influence of the dynamic response. An increased mass 

resulted in reduced accelerations at lower train speed whereas the deflection 

peaks were unaffected but occurred at lower train speed. 

 The stiffness had a great impact on the dynamic behaviour and a higher 

stiffness resulted in lower deflections at higher train speed. The acceleration 

peaks were unchanged but they appeared at higher train speed. 

 Another very important parameter for the dynamic response was the damping. 

Higher damping coefficient reduced the response for both accelerations and 

for deflections. 

 The ratio between the span length and the distance between axle loads had a 

high impact on the dynamic behaviour. For trains with ratios in the vicinity of 

1.5 and 2.5, the response from first natural bending mode was effectively 

suppressed for the simply supported cases. The continuous bridges indicated 

similar behaviour with cancellation effects for certain ratios.  

 Bridges with longer spans were found to enhance the dynamic performance, 

which was true for both the simply supported bridges and the continuous 

bridges 

 The continuous bridges obtained low natural frequencies, resulting in high 

response from different mode shapes within the considered speed range. 

Hence, the response was determined by more mode shapes and when low peak 

values were obtained for one mode, another showed high response. 

 By providing the continuous bridges with fixed columns as mid-support, the 

mode shapes were somewhat changed for the two-span case whereas it had 

even more influence on the three-span case. No general conclusion could be 

drawn of how the dynamic response will be affected with a rigid mid-support, 

more than that it may change the behaviour significantly. 

 The influence of end shields was found to enhance the dynamic performance 

in comparison to the case when they were disregarded. The major reasons 

were related to the mass contribution from the end shields as well as the 

transverse stiffness contribution at the short ends. 

 Load distribution affected the trough bridge without end shields substantially 

due to the influence of transversal bending and transient response in the ends. 

For bridges with stiffer ends, load distribution did not influence the response 

significantly.  
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Appendix A 
Bridge over river Aspan 

  



Bridge over the river Aspan 
Input data h 3600s ton 1000kg

Material properties  

Reduced Young's modulus of
concrete C40/50 to account for a
cracked section

E 21GPa

ρc 2500
kg

m
3

 Density of concrete

ρb 2000
kg

m
3

 Density of ballast

mrail 60
kg

m
 Mass of UIC60 rail per meter

msl 245kg Mass of a single sleeper

Geometry 

Cross-section:

L 24m Length of span
 

beb 260mm Width of edge beams

heb 800mm Height of edge beam

bdeck 6800mm Width of bridge deck

hdeck 1350mm Thickness of bridge deck

Cross-sectional area of 
edge beam

Aeb beb heb 0.2m
2

Cross-sectional area of 
bridge deck

Adeck bdeck hdeck 9.2m
2
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A 2 Aeb Adeck 9.6m
2 Total area of bridge cross-section

hb 0.5m Height of ballast layer

bb bdeck 6.8m Width of ballast layer

ssl 0.6m Spacing of sleepers

Calcualting the centre of gravity zcog of the cross-section:

zcog

2Aeb

heb

2
hdeck 300mm









 Adeck

hdeck

2


2Aeb Adeck
708.6 mm

Moment of inertia of the cross-section:

Ideck

bdeck hdeck
3

12
Adeck zcog

hdeck

2










2

 1.4m
4

Ieb 2
beb heb

3

12
Aeb zcog

heb

2
hdeck 300mm


















2








 0.3m
4

I Ideck Ieb 1.655m
4

EI E I 34.76 GN m
2 Bending stiffness of the bridge

Permanent loads

gbridge A ρc g 235.3
kN

m
 Self-weight of the bridge

gb ρb hb bb g 66.7
kN

m
 Self-weight of ballast

gtrack 2mrail g 1.2
kN

m
 Self-weight of track

gsl

msl

ssl
g 4

kN

m
 Self-weight of sleepers

Total self-weight of the bridge:

gtot gbridge gb gsl gtrack 307.128
kN

m

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Static deflection due to self-weight:

δs

5 gtot  L
4

384EI
38.2 mm
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Recalculation with new span lengths
The span lengths that will be considerd is 16 m, 20 m, 24 m, 28 m and 32 m.

Lnew 32m

As a consequence of the new span length, the cross-section is adjusted in order to
obtain a resonable bridge configuration. The width of the deck remains the same
while the thickness of the bridge deck is changed in relation to the span length. 
The adjustment is performed so that the ratio between the static deflection and span
length is kept the same for the new span length as for the original one. The
considered loads are  self-weight of the bridge and train load model LM71 from
Eurocode. No eccentricity is considered for the train load. Furthermore, the
dimensions of the edge beams will be kept constant.

The thickness of the new deck are adjusted until the ratios between the static
deflection are the same for both cases:

hnew.deck 1.964m Thickness of the new deck

Anew.deck hnew.deck bdeck 13.4m
2 Area of the new deck

Total area of new bridge
cross-section

Anew Anew.deck 2 Aeb 13.8m
2

Calculating the centre of gravity znew.cog of the new cross-section:

znew.cog

2Aeb

heb

2
hnew.deck 300mm 









 Anew.deck

hnew.deck

2


Anew


znew.cog 1.015m

Moment of inertia of the cross-section:

Inew.deck

bdeck hnew.deck
3

12
Anew.deck znew.cog

hnew.deck

2










2



Inew.eb 2
beb heb

3

12
Aeb znew.cog

heb

2
hnew.deck 300mm 


















2










Inew Inew.deck Inew.eb 4.787m
4

Bending stiffness of the new bridgEInew E Inew 100.5 GN m
2

Total self-weight of the new bridge:

gnew.tot Anew ρc g gsl gb gtrack 409.5
kN

m

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Static deflection analysis with permanent load and train
load

The worst position of load model LM71 at the bridge is when one of the middle
point loads are placed in the centre of the span.

Distance between point loadsd1 0.8m
Distance between point load and
distributed loadd2 1.6m

Alpha factor according to TRVK
Bro 11

α 1.33

ψ1 0.8 Partial factor for SLS loads

Characteristic distributed loadqvk 80
kN

m


Characteristic point loadQvk 250kN

qvd α ψ1 qvk 85.1
kN

m
 Distributed design load

Qvd α ψ1 Qvk 266 kN Design point load

Calculating the static deflection of the original bridge design:

Distance where the left
distributed load is acting

a
L

2
2 d2 8.8m

Distance where the right
distributed load is acting

b
L

2
d2 10.4m

x
L

2
12m Distance to centre of span
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Deflection due to distributed train loads:

δa

qvd a d1 2

24 EI L
L x( ) 2 x

2
4L x a d1 2



 2.6 mm

δb

qvd b d1 2

24 EI L
L x( ) 2 x

2
4L x b d1 2



 3.6 mm

Deflection due to train point loads:

δc

Qvd L a L x( )

6 EI
2x

L

a
2

L
2


x

2

L
2








 2 mm

δd

Qvd L a d2  L x( )

6 EI
2x

L

a d2 2

L
2


x

2

L
2












 2.1 mm

δe

Qvd L
3

48EI
2.2 mm

δf

Qvd L b x

6 EI
1

b
2

L
2


x

2

L
2








 2.1 mm

Deflection due to permanent loads:

δs.g

5 gtot  L
4

384EI
38.2 mm

Total deflection due to permanent loads and train loads:

δtot δa δb δc δd δe δf δs.g 52.9 mm

Calculating the static deflection of the new bridge design:

Distance where the left
distributed load is acting

a
Lnew

2
2 d2 12.8m

Distance where the right
distributed load is acting

b
Lnew

2
d2 14.4m

x
Lnew

2
16m Distance to centre of span
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Deflection due to distributed train loads:

δ2.a

qvd a d1 2

24 EInew Lnew
Lnew x  2 x

2
4Lnew x a d1 2





δ2.a 3.5 mm

δ2.b

qvd b d1 2

24 EInew Lnew
Lnew x  2 x

2
4Lnew x b d1 2





δ2.b 4.4 mm

Deflection due to train point loads:

δ2.c

Qvd Lnew a Lnew x 

6 EInew
2x

Lnew

a
2

Lnew
2


x

2

Lnew
2














δ2.c 1.7 mm

δ2.d

Qvd Lnew a d2  Lnew x 

6 EInew
2x

Lnew

a d2 2

Lnew
2


x

2

Lnew
2














δ2.d 1.8 mm

δ2.e

Qvd Lnew
3

48EInew
1.8 mm

δ2.f

Qvd Lnew b x

6 EInew
1

b
2

Lnew
2


x

2

Lnew
2












 1.8 mm

Deflection due to permanent loads:

δs.g

5 gnew.tot  Lnew
4

384EInew
55.6 mm

Total deflection due to permanent loads and train loads:

δnew.tot δ2.a δ2.b δ2.c δ2.d δ2.e δ2.f δs.g 70.6 mm
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Deflection to span ratios:

 Original bridge:  New bridge:

δtot

L
2.2039 10

3
δnew.tot

Lnew
2.2071 10

3

New bridge configurations:

The procedure above was performed for each span length of interest, resulting in the
following deck heights: 

L1 16m h1.deck 792mm

L3 24m h3.deck 1350mm

L5 32m h5.deck 1964mm

L6 40m h6.deck 2641mm

Eigenfrequencies

Calculating the natural frequencies of the bridge:

nmax 3 Number of mode shapes

n 1 nmax

mbridge

gtot

g
31.3

ton

m
 Total mass per meter

of the bridge

ωn
n π
L







2
EI

mbridge


First three natural frequencies of the bridge:

ωn

2 π

2.9
11.5

25.9

Hz


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Appendix B 
Bridge over river Norrmjöleån 

  



Bridge over the river Norrmjöleån 
Input data h 3600s ton 1000kg

Material properties  

Reduced Young's modulus of
concrete C35/45 to account for a
cracked section

E 20.4GPa

ρc 2500
kg

m
3

 Density of concrete

ρb 2000
kg

m
3

 Density of ballast

mrail 60
kg

m
 Mass of UIC60 rail per meter

msl 245kg Mass of a single sleeper

Geometry 

Cross-section:

L 29m Length of span
 

beb 1200mm Width of edge beams

heb 2724mm Height of edge beam

bdeck 7070mm Width of bridge deck

hdeck 700mm Thickness of bridge deck

Cross-sectional area of edge beamAeb beb heb 3.3m
2

Cross-sectional area of bridge deckAdeck bdeck hdeck 4.9m
2
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A 2 Aeb Adeck 11.5m
2 Total area of bridge cross-section

hb 0.5m Height of ballast layer

bb bdeck 7.1m Width of ballast layer

ssl 0.6m Spacing of sleepers

Calcualting the centre of gravity zcog of the cross-section:

zcog

2Aeb

heb

2
 Adeck

hdeck

2


2Aeb Adeck
0.926m

Moment of inertia of the cross-section:

Ideck

bdeck hdeck
3

12
Adeck zcog

hdeck

2










2

 1.8m
4

Ieb 2
beb heb

3

12
Aeb zcog

heb

2










2








 5.3m
4

I Ideck Ieb 7.129m
4

EI E I 145.44 GN m
2 Bending stiffness of the bridge

Permanent loads

gbridge A ρc g 281.6
kN

m
 Self-weight of the bridge

gb ρb hb bb g 69.3
kN

m
 Self-weight of ballast

gtrack 2mrail g 1.2
kN

m
 Self-weight of track

gsl

msl

ssl
g 4

kN

m
 Self-weight of sleepers

Total self-weight of the bridge:

gtot gbridge gb gsl gtrack 356.1
kN

m

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Recalculation with new span length
The new span length to be considered is:

Lnew 24m

As a consequence of the new span length, the cross-section is adjusted in order to
obtain a resonable bridge configuration. The thickness of the deck remains the same
since it is already relativle thin. The width of the bridge deck is keeped the same as
well. 
The adjustment is performed so that the ratio between the static deflection and span
length is kept the same for the new bridge as for the original one. The considered
loads are  self-weight of the bridge and train load model LM71 from Eurocode. No
eccentricity is considered for the train load. Furthermore, the ratio between the
width and height of the edge beams will remain the same for the new design. 

Ratio between the width and
height of the edge beams

reb

beb

heb
0.4

The height of the new edge beams are adjusted until the ratios between the static
deflection are the same for both cases:

hnew.eb 2282mm Height of new edge beams

bnew.eb reb hnew.eb 1.005m Width of new edge beams

bnew.eb 1005mm

Anew.eb hnew.eb bnew.eb 2.3m
2 Area of new edge beams

Anew Adeck 2 Anew.eb 9.5m
2 Total area of new bridge

cross-section

Calculating the centre of gravity znew.cog of the new cross-section:

znew.cog

2Anew.eb 
hnew.eb

2









 Adeck

hdeck

2


Anew
730 mm

Calculating the second moment of inertia of the new cross-section:

Inew.deck

bdeck hdeck
3

12
bdeck hdeck znew.cog

hdeck

2










2


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Inew.eb 2
bnew.eb hnew.eb

3

12

bnew.eb hnew.eb znew.cog

hnew.eb

2










2


















 2.8m
4

Inew Inew.deck Inew.eb 3.7m
4

Bending stiffness of the new
bridge

EInew E Inew 75.11 GN m
2

Total self-weight of the new bridge:

gnew.tot Anew ρc g gsl gb gtrack 308.3
kN

m


Static deflection analysis with permanent load and train load

The worst position of load model LM71 at the bridge is when one of the middle
point loads are placed in the centre of the span.

Distance between point loadsd1 0.8m
Distance between point load and
distributed loadd2 1.6m

Alpha factor according to TRVK
Bro 11

α 1.33

ψ1 0.8 Partial factor for SLS loads

Characteristic distributed loadqvk 80
kN

m


Characteristic point loadQvk 250kN
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qvd α ψ1 qvk 85.1
kN

m
 Distributed design load

Qvd α ψ1 Qvk 266 kN Design point load

Calculating the static deflection of the original bridge design:

Distance where the left
distributed load is acting

a
L

2
2 d2 11.3m

Distance where the right
distributed load is acting

b
L

2
d2 12.9m

x
L

2
14.5m Distance to centre of span

Deflection due to distributed train loads:

δa

qvd a d1 2

24 EI L
L x( ) 2 x

2
4L x a d1 2



 1.5 mm

δb

qvd b d1 2

24 EI L
L x( ) 2 x

2
4L x b d1 2



 2 mm

Deflection due to train point loads:

δc

Qvd L a L x( )

6 EI
2x

L

a
2

L
2


x

2

L
2








 0.9 mm

δd

Qvd L a d2  L x( )

6 EI
2x

L

a d2 2

L
2


x

2

L
2












 0.9 mm

δe

Qvd L
3

48EI
0.9 mm

δf

Qvd L b x

6 EI
1

b
2

L
2


x

2

L
2








 0.9 mm

Deflection due to permanent loads:

δs.an

5 gtot  L
4

384EI
22.6 mm
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Total deflection due to permanent loads and train loads:

δtot δa δb δc δd δe δf δs.an 29.7 mm

Calculating the static deflection of the new bridge design:

Distance where the left
distributed load is acting

a
Lnew

2
2 d2 8.8m

Distance where the right
distributed load is acting

b
Lnew

2
d2 10.4m

x
Lnew

2
12m Distance to centre of span

Deflection due to distributed train loads:

δ2.a

qvd a d1 2

24 EInew Lnew
Lnew x  2 x

2
4Lnew x a d1 2





δ2.a 1.2 mm

δ2.b

qvd b d1 2

24 EInew Lnew
Lnew x  2 x

2
4Lnew x b d1 2





δ2.b 1.7 mm

Deflection due to train point loads:

δ2.c

Qvd Lnew a Lnew x 

6 EInew
2x

Lnew

a
2

Lnew
2


x

2

Lnew
2














δ2.c 0.9 mm

δ2.d

Qvd Lnew a d2  Lnew x 

6 EInew
2x

Lnew

a d2 2

Lnew
2


x

2

Lnew
2














δ2.d 1 mm

δ2.e

Qvd Lnew
3

48EInew
1 mm

δ2.f

Qvd Lnew b x

6 EInew
1

b
2

Lnew
2


x

2

Lnew
2












 1 mm
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Deflection due to permanent loads:

δs.an

5 gnew.tot  Lnew
4

384EInew
17.7 mm

Total deflection due to permanent loads and train loads:

δnew.tot δ2.a δ2.b δ2.c δ2.d δ2.e δ2.f δs.an 24.5 mm

Deflection to span ratios:

 Original bridge:  New bridge:

δtot

L
1.0245 10

3
δnew.tot

Lnew
1.0228 10

3

Utilization ratios with regard to deflection:

 Original bridge:  New bridge:

ulim
L

800
36.3 mm unew.lim

Lnew

800
30 mm

udefl

δtot

ulim
81.96 % unew.defl

δnew.tot

unew.lim
81.83 %

New bridge configurations:

The procedure above was performed for each span length of interest, resulting in the
following dimensions of the edge beams:

L1 16m h1.deck 1592mm b1.deck 701mm

L2 24m h2.deck 2282mm b2.deck 1005mm

L3 32m h3.deck 3005mm b3.deck 1324mm

L4 40m h4.deck 3823mm b4.deck 1684mm
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Eigenfrequencies
Calculating the natural frequencies of the bridge:

nmax 3 Number of mode shapes

n 1 nmax

mbridge

gnew.tot

g
31.4

ton

m
 Total mass per meter

of the bridge

EInew 75.1 GN m
2

ωn
n π

Lnew









2 EInew

mbridge


First three natural frequencies of the bridge:

ωn

2π

4.2

16.9

37.9

Hz


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Appendix C 
Drawings of the studied bridges 
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