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Abstract

The shortage of fossil fuels and the climate change has forced humans to
find new ways of transportation. A solution to this problem could be to
start using plug-in hybrid vehicles(PHEV). This type of vehicles need to be
charged in an organized way to minimize the impact on an already strained
electric system. A load scheme for the PHEV aggregators reduces the impact
on the system, by moving the charging to low load periods. In this thesis a
bi-level model is created built up on to charge during low load periods, in
ordered to find the optimal bidding strategy for the PHEV fleet. The upper
level problem is the aggregators, which are placing bids in a market pool
during a 24 hour period. The lower level problem is the market pool, which
is returning the clearing price for the bids on an hourly basis.

The bi-level model is turned into a two-level optimization problem. The
upper level problem is a cost function, minimizing the charging cost. The
lower level problem are built up on welfare maximization and optimal power
flow(OPF). By using different mathematical approaches, this problem is
turned in to a mathematical problem with equality constraints(MPEC). The
MPEC model was found not to be able to solve large systems. Therefore,
where the bi-level model implemented into two embedded models, to find a
solution for large systems.

The models were finally tested in a case study on four networks systems
of different size and on a full scale model of the swiss power system. It
was found that the MPEC was faster at solving the problem and also in
some cases found other solutions then the embedded models. In these cases
the MPEC found a better solution. The cause for this may have been that
the MPEC found the global minimum, while the embedded models could
have found a local minimum. When comparing the minimum charging cost
models with a system cost minimization approach, it was found in a specific
case that the charging cost was lower with the charging models. In this
case the MPEC gave a lower charging cost than the embedded models.
When the full scale test was done on the swiss system, only one of the
embedded models was working. When comparing the two cost models the
results showed that there was a very small difference in the charging cost.
The MPEC didn’t work on this system, which is a complication due to that
it might give a larger difference compared to the supply driven cost model.
If the MPEC would have worked, it would have been possible wheatear or
not the aggregators had gained market power in the Swiss system.
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Chapter 1

Introduction

Due to the up coming shortage of fossil fuels and the climate change the
topic, of how to reform the human behavior of transportation has become
of great importance. One solution to this problem is to substitute the clas-
sic combustion car with an electrical one, which is not run on fossil fuels.
The technology in existing electrical cars has limitations for long distance
transportation. A first step in this change is therefore to use Plug-in-hybrid
electrical vehicle (PHEV), which has two engines. One electrical engine for
short distance driving and one combustion engine for long distances trans-
portation. The difference between a plug in hybrid and the normal hybrid
used today ( e.g. Toyota Prius), is that the PHEV has a larger battery ca-
pacity that can be charged while the cars is parked. The majority of all cars
are parked most of the time and without any prepared charging schemes
all this vehicles would start to charge at random times. This will cause a
large impact on an already congested grid and thus increase the generation
costs. A solution is to have controlled charging managed centralized or by
the fleet aggregator. This will decrease the the additional load caused by
PHEV during time periods when the load is already high. The load schemes
for the PHEV will be shifted to the periods when the load normally is low
in the net.

There have been several studies to evaluate the effects of optimal PHEV
charging. Most of these studies have been done on centralized charging in
[1] and [2], where the charging is controlled centrally and results in valley
filling during low load hours. There have also been studies on decentralized
charging where the Nash certainty equivalence was applied [3]. The result
showed that the PEHV fleet acted homogenous and that all vehicles had the
same loading pattern. This pattern was also filling the valleys during the
low load hours.

Many electricity markets in the world builds up on spot market pricing.
The participants, suppliers and consumers are placing offers and bids in a
market pool, in form of capacity and price. From the bids and offers the

1



CHAPTER 1. INTRODUCTION 2

market clearing price is determined, on an hourly interval. This is done on
a day ahead basis. In this project the consumer bidding is studied where
PHEV fleet aggregators participate in the electricity market by placing bids.
The aim for the project is to find the optimal bidding strategy for the aggre-
gators, which will give the lowest charging cost. To find the optimal strategy
a bi-level model is created built up on to charge during low load periods.
The upper level problem in this model is the aggregators, which are placing
bids in a market pool during a 24 hour period. This bi-level model is turned
in to a two level optimization problem. The upper level problem is cost
minimization of the charging. The lower level problem is a market clearing
problem built up on optimal power flow and welfare maximization.

This type of two level optimization problems for electricity markets has
earlier been studied in [6]. There, an optimization model, which simulates
the electricity markets, is presented. In the article the authors also mention
demand side bidding, where the consumers will gain market power by having
the ability to react on prices.

In this thesis the two-level optimization problem is turned into a math-
ematical problem with equality constraints (MPEC). This is mainly done
using already existing techniques by other engineers and researchers. Large
parts of the MPEC model is taken from [5], where the authors are creating
a model to find the optimal bidding strategy for the producer. The model
in [5] is changed to find the optimal bidding strategy for the PHEV aggre-
gators. It was necessary to add conditions for PHEV fleet to this model, the
framework for that is taken from [4]. In this paper a finished model already
exists, where only small modifications had to be done to fit the strategy
model. Most of the mathematical concepts are taken from these two pa-
pers to create the model. A lot of the mathematical theory and some of
the assumptions are therefore relaying on other peoples research. In this re-
port the focus is instead on the theory that was used to modify the existing
MPEC to fit together with the PHEV model.

When the model was developed it was found that the MPEC couldn’t
solve large network problems due to the fact that computer was running out
of memory, because of too many variables. Because of this it was necessary
to implement the bi-level model in another way to reduce the number of
optimization variables. Two embedded models were created, which is built
up on the original problem, a genetic algorithm and a non-convex solver. The
three minimum charging cost models were tested in a case study on system
cost on four networks of different size and a full scale model of the swiss
system. The results from the case study showed that the MPEC was faster
than the embedded models. Although it has a weakness of not being able to
solve large networks. Congestion in the lines was a factor that increased the
solving time. To investigate the aggregators ability to gain market power
by participating in the bidding on the market. The minimum charging cost
models are compared with a minimum system cost model. This model is
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considering what is best for the society and not the consumer. It was found
in one of the case that the aggregators were having a lower charging cost
with the MPEC and the embedded models. From a simulation made on a
full scale model of the swiss system, it was found that the charging cost was
slightly lower with the embedded model.

Structure of the thesis

The first chapters of this thesis are describing the theory behind the models,
economical frameworks and optimal power flows, which the market clearing
is built up on. They are also containing the mathematical theory for the
creation of the MPEC. These parts are followed by a chapter describing the
derivation of the MPEC and the structure of the embedded models. After
this part the results are presented as a case study, where the models are
simulated on four different networks of different sizes and on a full scale
model of the swiss power system. In every case there is a discussion part
where the results are evaluated. In the last part of the report the conclusions
from this master thesis can be found. There are two appendices; the first
one describes the economical concepts and used terms and the second one
contains data from the simulations.



Chapter 2

Mathematical Optimization

A traditional optimization problem focuses on minimizing or maximizing
the objective function f(x) with respect to x. The goal is to find the action
which gives the optimal outcome. An optimization problem has an amount
of feasible action to choose between to find the solution. These actions are
called the constraints and are boundaries or equalities for the variables. The
problem can be written mathematically on the form:

min f0(x)
subject to : fi(x) ≤ bi

Where f(x) is the objective function that describes the return or payoff
to the decision maker. The vector x = (x1, x2, ...xn) is the optimization
variables, which is a subset C of the finite-dimensional real vector space
Rn. The function fi is the constrains or feasible actions a decision maker
can choose between. x* is the desired outcome of the problem, the optimal
solution [11].

2.1 Lagrange

To find the optimal solution for a optimization problem the Lagrange method
can be used. This method creates the Lagrange function where the con-
straints are added to the objective function together with the Lagrange
multipliers.

A standard optimization problem with an objective function and equal-
ity constraints is written on following form:

min f0(x)
subject to : gi(x) = bi

To this type of problem there are added conditions. To find a maximum
or minimum of this problem the Lagrange method can be used, this gives

4



CHAPTER 2. MATHEMATICAL OPTIMIZATION 5

addition unknown variables. These variables λi, which are called Lagrange
multipliers, are used to find a new optimum value for the problem. The
Lagrange is an extended function of the objective function and are defined
as:

L(x, λ) = f(x) +
∑
i

λigi(x)

This is the primary problem as a function of the constraints. By taking the
first order partial derivatives of the Lagrangian function, the first order opti-
mal conditions can be found which are the new constraints for the extended
problem [8].

∇xif =
dL(x, λ)
dxi

and ∇λi
f =

dL(x, λ)
λi

The Lagrange multipliers state how the optimal solution will react if there
is a marginal change in any of the constraints.

2.2 The Lagrange dual function

The Lagrange dual function is similar to the previous method, adding the
constraints to the objective function. For this function there are two types
of Lagrange multipliers. The first comes from the inequality constraints and
the other from the equality constraints. These are called the dual variables
and are used as a function of the primal problem. The new problem is
called the dual problem or the dual function. To find the this function two
steps need to be done; derive the Lagrangian function and minimizing the
problem.

A standard optimization problem written as an objective function, equal-
ity and inequality constraints is written of following form:

min f0(x)
subject to : gi(x) = 0

hi(x) ≤ 0

The optimization variables x ∈ Rn, where the domains for gi and hi are in
domainD which is non empty and includes the optimal value p∗. This type of
problem is similar to the previous, but has additional inequality constraints.
To find a solution the Lagrangian duality is used and the objective function
is increased by adding the Lagrange variables. This variables are a weighted
sum of the constrain functions. The Lagrange is defined as before but with
an additional multipliers:

L(x, λ, µ) = f(x) +
∑
i=1

λigi(x) +
∑
j=1

µjhj(x) (2.1)
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Where L : Rn × Rm × Rp → R. The two multipliers (the dual variables)
are the λi and µj , which are associated with inequality and the equality
constraints respectively.

The Lagrangian dual function where G : Rm×Rp → R is defined as the
minimum value of the Lagrangian over x: for λ ∈ Rm and µ ∈ Rp

G(λ, µ) = inf L(x, λ, µ) = inf

(
f(x) +

∑
i

λigi(x) +
∑
j

µjhj(x)

)
(2.2)

This function gives for each pair of (λ, µ) with λ � 0 a lower bound on
the optimal value x∗ of the optimization problem. The lower bound is now
dependent on these parameters and to find the best point within this new
bound an additional optimization problem is created, the Lagrange dual
problem:

Maximize G(λ, µ)
Subject to λ � 0

The Lagrange dual problem is convex because the objective function is con-
cave and the constraint is convex. This is independent from the primal
problem if it is convex or not [8].

Strong duality theorem States that optimal solution from the primal
problem is equal to the optimal solution for the dual problem.

p∗ = d∗

This means that the duality gap between the primal and dual problem is zero
and this condition holds if the primal problem is convex. This is not always
the case but if the optimization problem is convex and on the following form:

min f0(x)
subject to : Ax = b

fi(x) ≤ 0

strong duality is valid for most cases [8].

2.3 Karush Kuhn Tucker

The KKT can be seen as a ”standardized” way to represent the first order
optimality condition and is necessary to find an optimal solution for a non-
linear optimization problem. To find the KKT conditions, the Lagrange
function is set up:

L(x, λ, µ) = f(x) +
∑
i

λigi(x) +
∑
j

µjhj(x)
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Let x∗ and (λ, µ) be any primal and optimal points with zero duality gap,
when minimizing L(x, λ, µ) with respect to x, the gradient disappears over
x∗ which gives [8]:

∇f(x∗) +
∑
i

λi∇gi(x∗) +
∑
j

µj∇hj(x∗) = 0

The Karush Kuhn Tucker conditions are then given by:

gi(x∗) ≤ 0 i = 1, ...
hj(x∗) = 0 j = 1, ...

λ∗i ≥ 0 i = 1, ...
λ∗i gi(x∗) = 0 i = 1, ...

∇f(x∗) +
∑
i

λi∇gi(x∗) +
∑
j

µj∇hj(x∗) = 0

where the first and second conditions are the states of the constraints on
the primal problem. The third and fourth conditions are the complementary
slackness conditions. The last one is the partial derivatives of the Lagrangian
which are equal to zero at the optimum point[9].
An optimization problem with differentiable objective function and con-
straint function, for which strong duality holds, obtains any pair of primal
and dual optimal points, which satisfies the KKT conditions. For a convex
problem the the KKT conditions are satisfied if f(x) is convex and h(x) is
affine1 [8].

2.4 Complementary slackness

A vector G(λ, µ) is the optimal solution for the problem f(x∗). The only
remaining difficulty for the solution is the complementary slackness condi-
tions; λg(x∗) = 0 and µh(x∗) = 0. These conditions consist of a sum of
products of two variables, and when strong duality holds, we know that
λg(x∗) = 0. If λ∗i ≥ 0, then the primal constraint is binding g(x∗) = 0,
or if the constraint is not bidding, its shadow price is zero. This can be
used to transform the optimization problem f(x) into an equivalent mixed
integer quadratic program, by modifying the constraints λg(x∗) = 0 and
µh(x∗) = 0. Add for each of these products a zero-one variable, ηi and a
large positive constant M, which gives the new constraints [12]:

λi ≤ ηiM (2.3)
fi(x) ≤ (1− ηi)M

1Affine: A function is affine if the proportions are preserved after a geometric trans-
formation.
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2.5 Bi-Level program

A bi-level program is a mathematical program, which contains an optimiza-
tion problem. The program is a two level problem where the upper level
determines the response from the lower level. The upper level contains two
vectors, x and y, where x is determining the strategy and y represents the
response from the lower level. The problem can be formulated:

min F (x, y)
subject to : (x, y) ∈ C

y solves Q(x) (2.4)
Q(x) : minimize f(x, y)

Subject to : y ∈ T (x)
(2.5)

where F = Rn+Rm → R and C ⊆ Rn+Rm are non empty closed subsets.
T (x) is the feasible set for the lower problem and Q = Rn → 2Rm is a set
of valued mapping such that Q(x) is a set of solutions to the lower level
problem for each x. 2Rm denotes the set of all subsets of Rm and for each
x ∈ Rn, Q(x) ⊆ T (x). We assume that T (x) is closed and non-empty for
each x ⊆ Rn.

In some economic and engineering problems, where an equilibrium con-
dition is to be found, the lower level problem can be replaced with an ex-
pression describing this equilibrium. A typical economic case is the two
person Stackleberg game theory problem, where the leader anticipates the
results from the followers and adjusting its strategy thereafter. It can be
mathematically formulated as:

min f(x, y)
subject to : x ∈ X, y ∈ Q(x)

Q(x) : minimize h(x, y) (2.6)
Q(x) : minimize f(x, y)

Subject to : y ∈ T (x)
(2.7)

where f is the leader’s objective function (cost function) and h is the fol-
lower’s objective function (cost function). It is assumed that h is smooth
and convex in y and T (x) is closed and convex [10]. This problem is similar
to finding the optimal bidding strategy for the PHEV fleet.

2.6 MPEC

A Mathematical Program with Equilibrium Constraints (MPEC) is a bi-
level problem, which is rewritten as a one level problem. This is done by
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adding the KKT conditions for the lower level problem to the upper level
problem [10].

2.7 Power flow calculations

Power flow analysis is a method to do numerical studies on electricity net-
works during steady state operation. It is mainly used as a tool for planning
the usage of a power system and for future expansions, but can also be used
for economic and fault analysis.

The method calculates the currents and voltages on every bus and the
real and reactive power flows to every bus. The focus is mainly on AC power
flows but it is also possible to calculate DC flows. The linear parameters in
the network such as loads, transformers and lines, have constant value. But
the relationships between voltages and currents are non-linear and the same
for active and reactive power consumption at each node. A network can be
written on matrix form:

[Yij ][Vi] = [Ii] (2.8)

where Ii is the injected current in bus i, Vi is the voltage at bus i and Y is
the bus admittance matrix. Yii is the self admittance which is the sum of all
admittances connected to the bus. Yij is the negative of branch admittance
between bus i and j.

The power flow equation for the active power can be written as:

Pi =
N∑
i=1

|Vi||Vj |(Gij cos(θij) +Bij sin(θij)) (2.9)

where Pi is the injected power at bus i, Vi the voltage at bus i, Gij is the
real part of Yij and Bij imaginary part of the admittance matrix. θij is the
voltage angle difference between bus i and j.

The power flow equation for the reactive power can be written as:

Qi =
N∑
i=1

|Vi||Vj |(Gij sin(θij)−Bij cos(θij)) (2.10)

whereQi is the injected reactive power at bus i but the rest of the parameters
are the same as in the active power flow equation.

When the power flow model is set up for a network there are mainly
three types of buses defined.

• PV Bus, the real power P and the magnitude of the voltage is known.
There is a generator connected to the bus.

• PQ bus, the active power P and reactive power Q are known. It is
normally a load but can also be a generator with fixed values.
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• Slack bus or swing bus is the network reference bus where the voltage
angle is zero. Normally only one of these buses exist in a network.
These buses are used as reference when the value of the other buses is
calculated. Often a bus with a connected generator is chosen because
it has two unknown parameters, the voltage angle and the voltage
magnitude.

By knowing the type of bus all the parameters can be calculated from that
particular bus[9].

2.8 Solution methods for power flows

To solve these nonlinear power flow problems, there are different iterative
methods. The most common one is the Newton Raphson method, but there
are also other methods such as the Gauss Seidel and the Fast Decoupled
(a simplified and fast method which is not so accurate). All these methods
are used for analysis of AC networks. When doing power market analysis,
the networks are often very large and it is not very important to have high
precision in the calculations, but rather high calculation speed. Therefore
DC power flow is used, which gives linear equations and thus several iter-
ations are not needed. To create the algorithm, the following assumptions
are made [9]:

1. All voltage magnitudes are equal to 1.

2. The resistance is ignored at all branches and only the susceptance is
used in the admittance matrix:
Bij = −1/xij

3. The angle differences between the branches is very small:
sin(θij) = θi − θj
cos(θij) = 1

4. All ground branches are ignored:
Bi0 = Bj0 = 0

The DC model: 
∆P1

...

∆Pn−1

 =
[
B′
] 

∆θ1

...

∆θn−1

 (2.11)

Where:
B′ = −1/xij (2.12)

and the DC power flowing on each line is:

Pij = −Bij(θi − θj) =
θi − θj
xij

(2.13)



Chapter 3

Optimization of the
electricity market

The electricity market is a spot price built market, where individuals place
a supply or demand bid to a central operator for the system. The system
operator is determining the price of the day ahead market by matching the
bids on a hourly basis. This is done by running an optimal power flow
(OPF), with the objective to maximize the social welfare. An optimization
model for the electricity market consists of both economical and technical
factors, where the objective function is mostly a social welfare maximiza-
tion problem built up on economical functions. The problem is limited by
different technical parameters e.g. generation capacities, transmission capa-
bilities and load limits. The aim for this type of optimization problems is
to find the price at each node according to the present demand.

3.1 Welfare maximization

Welfare maximization is a method built up on the microeconomic supply
and demand model. The goal is to maximize the surplus for the market par-
ticipants, consumers and producers. The surplus is the monetary amount,
which the consumer has left when purchasing a good. For the producer the
surplus is the profit made by selling a good. The supply and demand model
describes how a market condition changes depending on the price and the
amount of a good. The model is mathematically represented by two equa-
tions. The first equation describes the consumer behavior of the willingness
to purchase a good to a certain price. The second equation describes the
producer’s willingness to produce and sell at a certain price. This can be
represented by a diagram showed in figure 3.1. A more in depth description
of the microeconomic theory can be found in Appendix A.

11
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P*

Q*

D

S

P

Q

Figure 3.1: The supply and demand model, where the intersection point
shows the market equilibrium P ∗ and Q∗.

3.2 Problem formulation

When formulating an electricity market problem, the supply and demand
model is represented by two equations. The demand equation calculates the
marginal benefit a consumer gets by purchasing an additional unit. The
supply function is defining the marginal cost of the generators. These two
functions can be turned into an optimization problem by taking the con-
sumer benefit minus the producer cost. By maximizing this problem, the
maximum social welfare will be found. This is formulated mathematically:

max
∑
j

B(PLj)−
∑
j

C(PGi) (3.1)

where B(PLj) is the consumer benefit and C(PGi) is the producer bene-
fit. PLj is the demand at each node and PGi is the generation at each
node. This optimization problem is subjected to inequality and equality
constraints from an OPF of the system. This OPF is built up on the char-
acteristics of the net in form of transmission, generation and load capacity.
The equality constraint is the power balance in the system, where the sum
of all generating power units, loads and transmission lines are equal to zero.
This is described by the following equation:

∑
i PGi −

∑
j PLj −

∑
l Plnm = 0 (3.2)

where PGi is the generation and PLj is the load at each node. Plnm is the
transmitted capacity between the nodes.
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The inequality constrains are defining the capacity boundaries for each gen-
erator, limits of each load and flow limits in each line between the nodes.

PminGi ≤ PGi ≤ PmaxGi (3.3)
PminLj ≤ PLj ≤ PmaxLj (3.4)
−Plnm ≤ Bnm(δtn − δtm) ≤ Plnm (3.5)

where Bnm is the susceptance of a line and δ is the transmission angle
(Bnm(δtn − δtm) = Plnm) [7].

3.3 Nodal prices

To find the nodal prices (spot price), the Lagrangian of the optimization
problem is set up:

max
∑

j B(PLj)−
∑

iC(PGi)− λn
(∑

i PGi −
∑

i PLj

)
−µl

(
|Plnm | − Pmaxlnm

)
− µl

(
PGi − PmaxGi

)
(3.6)

The nodal prices can be found by differentiating the Lagrangian with respect
to the load:

pn = λn +
∑
l

µl
δPlnm

δPLj
(3.7)

where pn is the nodal prices, λn and µl are the Lagrangian multipliers. µl
is describing the scarcity of the transmission capacity.
If there is a change in some of the constraints, the Lagrangian multipliers
will adjust the optimal solution of the problem. At major changes in the
constraints for example in the available capacity or demanded price, the La-
grangian will change the equilibrium solution, which leads to a price change.
If the change dosen’t reach a constraint limit, the multiplier will be zero and
there is no change in the price.
When using a monetary objective function, the multiplier will create a
threshold. This is the price that a producer or consumer is willing to pay to
purchase an additional unit of capacity. This threshold, which is the optimal
solution of the Lagrangian multiplier, is called the shadow price [13].



Chapter 4

PHEV fleet model

The following part describes how the PHEV fleet is modeled. The fleet
consists of a set of aggregated storage resources where the capacity and
energy content is changing when a vehicle is arriving or departing at a node.
This is modelled by a virtual battery. It is built up on a simulation of the
normal day driving pattern of a fleet of 1 million vehicles. The characteristics
of this model is that the battery level is decreasing during those time periods
when the vehicles are used for transportation to work and home, i.e. in the
morning and in the evening. EtV BJ

is the stored energy content of the
connected batteries to node j at time t. The energy content which is needed
for usage for the driving patterns of a vehicle during a normal day, can vary
between a minimum and maximum.

Et,minV Bj
≤ EtV Bj

≤ Et,maxV Bj
∀j∀t (4.1)

which is the constraint for the battery. The lower battery bound of an
individual vehicle is given by either its minimum state of charge or by its
required state of charge before departure (SOCVk,min and SOCVk,req). These
are summed up at each node.

Et,minV Bj
=

∑
k∈Ωt

j

max(SOCVk,min
, SOCVk,req

)CVk,batt
(4.2)

The upper battery bound is given by the sum of all PVk,conn which represents
the capacities connected to the node.

Et,maxV Bj
=

∑
k∈Ωt

Lj

CVk,batt
(4.3)

The content of a virtual battery is given by its content in the previous time
step: the charging power on each node is P tLjb

, the average charging efficiency

14



CHAPTER 4. PHEV FLEET MODEL 15

of the fleet η̄j,char and the positive and negative departure of PHEVs arriving
and departing at each node EtV Bj,dep

and EtV Bj,arr
respectively.

Et+1
V Bj

= EtV Bj
+
∑
t,j,b

P tLjb
·∆t · η̄j,char

− EtV Bj,dep
+ EtV Bj,arr

(4.4)

The initial stored energy E0
V Bj

in the battery is equal to the final value
ETV Bj

. Basically the energy content is the same at the start and at the end
of every time period [4].

E0
V Bj

= ETV Bj
(4.5)



Chapter 5

Derivation of the first model
- MPEC

A bi-level program is a mathematical program which is containing a two
level optimization problem, where the upper level determines the response
from the lower level. The upper level contains two vectors, variables x and y,
where x is the decision variable (the strategy) and y represents the response
from the lower level. The problem can be formulated:

Minimize F(x,y)
Subject to:(x,y)∈ C

y solves Q(x)
Q(x):minimize f(x,y)
Subject to :y ∈ T(x)

The lower level problem in our case is continuous and convex, and can
therefore be replaced by its Karush-Kuhn-Tucker (KKT) conditions, which
give a mathematical program with equilibrium constraints (MPEC). The
MPEC is non-linear and needs to be linearized. This is done by adding the
dual variables as a function of the primal problem by using the Lagrange
dual function. The new function can be simplified by applying the strong
duality theorem on the new function. When solving the non-linearities in
the KKT conditions, the complementary slackness theorem is applied.

5.1 Upper Level Problem

The purpose of the upper level problem is to find the ultimate offering
strategy for the PHEV fleet aggregators. This is done by minimizing the
charging cost of the PHEV. The load is using blocks, this function is dividing
every hour into a number of periods which is equal to the number of blocks:

min
αt

Ljb

∑
t,n

λtn
∑
j,b

P tLjb
(5.1)

16
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where λtn is the price at node n and
∑

j,b P
t
Ljb

is the charging load at each
node.

Subject to
The minimum and maximum charged power:

P t,minLjb
≤ P tLjb

≤ P t,maxLjb
(5.2)

where P tLjb
is the charged load at each node.

The upper bound of the inequality constraint is the sum of all connected
capacities at each node, divided by number of blocks.

P t,maxLjb
=

∑
Vk∈Ωt

Lj

PVk

nrBlocks
(5.3)

The lower bound of the inequality constraint is the minimum load, which in
our case is equal to zero.

P t,minLjb
= 0 (5.4)

The initial value for the virtual battery E0
V BJ

is equal to its final value E(T )
V BJ

.

E0
V Bj

= ETV Bj
∀j (5.5)

The bounds for the virtual battery:

Et,minV Bj
≤ EtV Bj

≤ Et,maxV Bj
∀j∀t (5.6)

The upper battery bound is given by the sum of all capacities connected to
the node.

Et,maxV Bj
=

∑
k∈Ωt

Ljb

CVk,batt
(5.7)

The lower battery bound of an individual vehicle is given by either its min-
imum state of charge or by its required state of charge before departure
(SOCVk,min and SOCVk,req). These are summed up at each node.

Et,minV Bj
=

∑
k∈Ωt

j

max(SOCVk,min
, SOCVk,req

)CVk,batt
(5.8)

The content of a virtual battery is given by its content in the previous time
step:

Et+1
V Bj

= EtV Bj
+
∑
t

∑
j,b

(P tLjb
) ·∆t · η̄j,char

− EtV Bj,dep
+ EtV Bj,arr

(5.9)
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5.2 Lower Level Problem

The lower level problem is the marking clearing, which is built up on a
economic social welfare maximization problem and a technical optimal power
flow:

min
P t

Gi
,E0

Vj
,P t

Ljb

∑
t,i

nGiP
t
Gi
−
∑
t,j,b

αtLjb
P tLjb

(5.10)

where nGi is the marginal cost for the generation, P tGi
is the generated ca-

pacity, αtLjb
is the demand bid and P tLjb

is the PHEV load.

Subject to
Power Balance at each node in the network:∑
jb∈Ωn

P tLjb
+
∑
j∈Ωn

P t,refLj
+
∑
m∈θn

P tlnm
−
∑
Gi∈Ωn

P tGi
= 0 : λtn, ∀t, ∀n (5.11)

where P t,refLj
is the reference load, which is the normal system outage. Gen-

erator capacity at each node.

P t,minGi
≤ P tGi

≤ P t,maxGi
: µt,minGi

, µt,maxGi
∀t, ∀i (5.12)

The upper and lower load demand at each node.

P t,minLj ≤ P tLjb
≤ P t,maxLj : µt,minLj , µt,maxLj ∀t, ∀j (5.13)

Network flows for each branch in the network:

P tlnm
= Bnm(δtn − δtm) ∀t,∀n, ∀m ∈ θn (5.14)

Transmission capacity of each line:

−Pmaxlnm
≤ Bnm(δtn− δtm) ≤ Pmaxlnm

: νt,minn , νt,maxn ∀t,∀n, ∀m ∈ θn (5.15)

Bounds for angles:

−π ≤ δtn ≤ π : ξt,minn , ξt,maxn , ∀t, ∀n (5.16)

Reference bus, fixed angle at bus 1:

δt1 = 0 ∀t (5.17)

5.3 The KKT conditions

To add the lower level problem to the MPEC, it is replaced by its KKT con-
ditions. To set up the KKT conditions, first the Lagrangian of the problem
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must be determined :

L = F (x) +
∑
i

λigi(x) +
∑
i

µihi(x) = F (x) + λT g(x) + µTh(x) (5.18)

where:
F(x) Objective function
g(x) ≤ 0 Inequality constraints
h(x) = 0 Equality Constraints

The Lagrangian for this problem can be formulated as:

F (x) =
∑

t,i nGi · P tGi
−
∑

t,j,b α
t
Ljb
· P tLjb

(5.19)

λTh(x) =
∑
t,n

λtn

( ∑
j∈Ωn

P tLjb
+
∑
j∈Ωn

P t,refLj
+
∑
m∈θn

Bnm(δtn − δtm)−
∑
Gi∈Ωn

P tGi

)
+
∑
t

ξt1δ
t
1

(5.20)

µT g(x) =
∑
i

(P tGi − P
t,max
Gi )µt,maxGi −

∑
i

(PGi − P t,minGi )µt,minGi

+
∑
j

(P tLjb
− P t,maxLjb

)µt,maxLjb
−
∑
j

(P tLjb
− P t,minLjb

)µt,minLjb

−
∑

t,n,m∈Θn

(P t,maxlnm
−Bnm(δtn − δtm))νt,maxn −

∑
t,n,m∈Θn

(P t,maxlnm
+Bnm(δtn − δtm))νt,minn

− (π − δtn)ξt,maxn − (π + δtn)ξt,minn

(5.21)

5.3.1 The KKT-Conditions for the lower level problem

For a convex problem, the KKT conditions are satisfied if f(x) is convex
and h(x) is affine (connected to f(x)). By using the Lagrangian function of
the problem from the previous chapter, the KKT conditions can be derived
by using the rules from chapter 2.3.

Optimality Conditions:

ntGi
− λtn + µt,maxGi − µt,minGi = 0 (5.22)

−αtLjb
+ λtn + µt,maxLjb

− µt,minLjb
= 0 (5.23)
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∑
m∈Θn

Bnm(λtn − λtm) +
∑
m∈Θn

Bnm(νt,maxnm − νt,maxmn )

+
∑
m∈Θn

Bnm(νt,minmn − νt,minnm )

+ξt,maxn − ξt,minn + ξt1 = 0 ∀t,∀n (5.24)

Equality Constraints:

∑
t,i

P tGi
−
∑
t,j,b

P tLjb
−
∑
t,j

P t,refLj
=

∑
t,m∈Θn

Bnm(δtn − δtm) ∀t,∀j,∀b,∀n

(5.25)

0 = δtn∀t, n = 1 (5.26)

Complementary conditions and inequality constraints for primal and dual
variables.

0 ≤ P t,maxGi
− P tGi ⊥ µt,maxGi

≥ 0 ∀t, ∀i (5.27)

0 ≤ P t,maxLjb
− P tLjb

⊥ µt,maxLjb
≥ 0 ∀t, ∀j (5.28)

0 ≤ P tGi
− P t,minGi

⊥ µt,minGi
≥ 0 ∀t, ∀i (5.29)

0 ≤ P tLjb
⊥ µt,minLjb

≥ 0 ∀t, ∀i (5.30)

0 ≤ Pmaxlnm
+Bnm(δtn − δtm) ⊥ νt,minn ∀t, ∀n,∀m ∈ Ωn (5.31)

0 ≤ Pmaxlnm
−Bnm(δtn − δtm) ⊥ νt,maxn ∀t, ∀n, ∀m ∈ Ωn (5.32)

0 ≤ π − δtn ⊥ ξt,maxn ≥ 0 ∀t, ∀n (5.33)
0 ≤ π + δtn ⊥ ξt,minn ≥ 0 ∀t, ∀n (5.34)

5.4 MPEC

The overall problem is a mathematical program with equilibrium constraints,
where the lower level problem is replaced by its KKT conditions.

The MPEC contains some non-linearities, the upper level problem has
two unknown variables, λtn and P tLj . These two variables are multiplied with
each other and make the equation non-linear. By rewriting the lower level
problem as a Lagrangian dual problem and substituting it into the upper
level problem, these non-linearities can be solved. Also some of the comple-
mentary slackness conditions are non-linear, (5.27)-(5.34) and thus need to
be linearized. This is done by introducing integer variables.

The upper level problem:

min
αt

Ljb

∑
t,n

λtn
∑
j,b

P tLjb
(5.35)
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Subject to (5.5)-(5.9) and to KKT conditions (5.22)-(5.34)

5.5 Linearization of the objectiv function

To linearize the objective function, the term λtnP
t
Ljb

can be substituted by
the Lagrangian dual problem of the lower level problem. The Lagrangian
dual problem is found by first setting up the Lagrangian of the lower level
problem.

L(x, λ, µ) = F (x) + λT g(x) + µTh(x) (5.36)

The Lagrangian of the lower level problem:∑
t,i

nGi · P tGi
−
∑
t,j,b

αtLjb
· P tLjb

(5.37)

+
∑
t,n

λtn

( ∑
Lj∈Ωn

P tLjb
+
∑
Lj∈Ωn

P t,refLj
+

∑
t,m∈Ωn

Bnm(δtn − δtm)−
∑
Gi∈Ωn

P tGi

)
+

∑
i

(P tGi − P
t,max
Gi )µt,maxGi −

∑
i

(PGi − P t,minGi )µt,minGi (5.38)

+
∑
j

(P tLjb
− P t,maxLjb

)µt,maxLjb
−
∑
j

(P tLjb
− P t,minLjb

)µt,minLjb

−
∑

t,n,m∈Θn

(P t,maxlnm
−Bnm(δtn − δtm))νt,maxn −

∑
t,n,m∈Θn

(P t,maxlnm
+Bnm(δtn − δtm))νt,minn

− (π − δtn)ξt,maxn − (π + δtn)ξt,minn +
∑
t

ξt1δ
t
1

(5.39)

The Lagrangian dual problem is defined by: G(λ, µ) = inf L(x, λ, µ). In
this case the problem is minimized by setting the optimization variables to
zero. By also using the strong duality theorem, where the primal and dual
problem have the same value at the optimal point. The new equation is
given by the primal variables of the lower level problem as a function of the
dual variables:∑

t,i

nGiP
t
Gi
−
∑
t,j,b

αtLjb
· P tLjb

=
∑
t,n

λtn
∑
j∈Ωn

P t,refLj

−
∑
i

P t,maxGi µt,maxGi +
∑
i

P t,minGi µt,minGi −
∑
j

P t,maxLjb
µt,maxLjb

+
∑
j

P t,minLjb
µt,minLjb

−
∑

t,n,m∈Θn

P t,maxlnm
νt,maxn −

∑
t,n,m∈Θn

P t,maxlnm
νt,minn − πξt,maxn − πξt,minn

(5.40)
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−
∑
t,jb

αtLjb
P tLjb

= −
∑
t,i

nGiP
t
Gi

+
∑
t,n

λtn
∑
j∈Ωn

P t,refLj
−
∑
t,Gi

µt,maxGi
P t,maxGi

+
∑
t,Gi

µt,minGi
P t,minGi

−
∑
t,jb

µt,maxLjb
P t,maxLjb

−
∑

t,m∈Ωn

νt,maxnm Pmaxlnm

−
∑

t,m∈Ωn

νt,minnm Pmaxlnm
−
∑
t,n

ξt,minn π −
∑
t,n

ξt,maxn π (5.41)

To substitute the new function into the upper level problem, we want to
obtain a relation between the bidding variable αtLj and the Lagrangian λtn.
This is done by first substituting αtLj with equation (5.23), which gives us a
new linear objective function:∑

t,jb

αtLjb
P tLjb

=
∑
t,jb

(λtn + µt,maxLjb
− µt,minLjb

)P tLjb
(5.42)

∑
t,jb

αtLjb
P tLjb

=
∑

t,jb∈Ψn

λtnP
t
Ljb

+
∑
t,Ljb

µt,maxLjb
P tLjb

−
∑
t,jb

µt,minLjb
P tLjb

(5.43)

This can be rewritten with some of the KKT conditions.

µt,maxLjb
P tLjb

= µt,maxLjb
P t,maxLjb

(5.44)

µt,minLjb
P tLjb

= µt,minLjb
P t,minLjb

= 0 (5.45)

Substituting this relation in (5.43) gives:∑
t,Lj

αtLjb
P tLjb

=
∑

t,jb∈Ψn

λtnP
t
Ljb

+
∑
t,jb

µt,maxLjb
P t,maxLjb

−
∑
t,jb

µt,minLjb
P t,minLjb

(5.46)

By substituting this into (5.41) we can express αtLj in terms of λtn ,which
gives:∑
t,jb

λtnP
t
Ljb

=
∑
t,i

nGiP
t
Gi
−
∑
t,n

λtn
∑
j∈Ωn

P t,refLj
+
∑
t,i

µt,maxGi
P t,maxGi

−
∑
t,Gi

µt,minGi
P t,minGi

+
∑

t,m∈Ωn

νt,maxnm Pmaxlnm
+
∑

t,m∈Ωn

νt,minnm Pmaxlnm
+
∑
t,n

ξt,maxn π+
∑
t,n

ξt,minn π (5.47)

⇒ min
λt

n,P
t
Ljb

(∑
t,i

nGiP
t
Gi
−
∑
t,n

λtn
∑
j∈Ωn

P t,refLj
+
∑
t,i

µt,maxGi
P t,maxGi

−
∑
t,Gi

µt,minGi
P t,minGi

+
∑

t,m∈Ωn

νt,maxnm Pmaxlnm
+
∑

t,m∈Ωn

νt,minnm Pmaxlnm
+
∑
t,n

ξt,maxn π+
∑
t,n

ξt,minn π

)
(5.48)
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5.5.1 Linearization of the KKT conditions

The KKT conditions can be linearized by using the theorem for comple-
mentary slackness from chapter 2.3. This gives additional constraints with
a linearization optimization variable and a constant M, which is deciding
the size of the variable and this one should be large. The new conditions:

P t,maxGi − P tGi ≥ 0 ∀t, ∀i (5.49)

P t,maxLjb
− P tLjb

≥ 0 ∀t, ∀j (5.50)

µt,maxGi
≥ 0 ∀t, ∀i (5.51)

µt,maxLjb ≥ 0 ∀t, ∀j, b (5.52)

P t,maxGi − P tGi ≤ (1− ωt,maxGi )MP ∀t, ∀i (5.53)

P t,maxLjb
− P tLjb

≤ (1− ωt,maxLjb
)MP ∀t, ∀j, b (5.54)

µt,maxGi
≤ ωt,maxGi

MµP ∀t, ∀i (5.55)

µt,maxLjb
≤ ωt,maxGi

MµP ∀t, ∀j, b (5.56)

ωt,maxGi
, ωt,maxLjb

∈ {0, 1}

−P t,minGi
+ P tGi

≥ 0 ∀t, ∀i (5.57)

−P t,minLjb
+ P tLjb

≥ 0 ∀t, ∀j, b (5.58)

µt,minGi
≥ 0 ∀t, ∀i (5.59)

µt,minLjb
≥ 0 ∀t, ∀j, b (5.60)

−P t,minGi
+ P tGi

≤ (1− ωt,minGi
)MQ ∀t, ∀i (5.61)

−P t,minLj + P tLjb
≤ (1− ωt,minLj )MQ ∀t, ∀j (5.62)

µt,minGi
≤ ωt,minGi

MµQ ∀t, ∀i (5.63)

µt,minLjb
≤ ωt,minGi

MµQ ∀t, ∀j, b (5.64)

ωt,minGi
, ωt,minLjb

∈ {0, 1}
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Pmaxlnm
−Bnm(δtn − δtm) ≥ 0 ∀t,∀n, ∀m ∈ Ωn (5.65)

Pmaxlnm
+Bnm(δtn − δtm) ≥ 0 ∀t,∀n, ∀m ∈ Ωn (5.66)

νt,maxnm ≥ 0 ∀t,∀n, ∀m ∈ Ωn (5.67)
νt,minnm ≥ 0 ∀t,∀n, ∀m ∈ Ωn (5.68)

Pmaxlnm
−Bnm(δtn − δtm) ≤ (1− ψt,maxnm )MC ∀t,∀n, ∀m ∈ θn (5.69)

Pmaxlnm
+Bnm(δtn − δtm) ≤ (1− ψt,minnm )MC ∀t,∀n, ∀m ∈ θn (5.70)

νt,maxnm ≤ ψt,maxnm MνC ∀t,∀n, ∀m ∈ θn (5.71)

νt,minnm ≤ ψt,minnm MνC ∀t,∀n, ∀m ∈ θn (5.72)
ψt,maxnm , ψt,minnm ∈ {0, 1}

π − δtn ≥ 0 ∀t, ∀n (5.73)
π + δtn ≥ 0 ∀t, ∀n (5.74)
ξt,maxn ≥ 0 ∀t, ∀n (5.75)
ξt,minn ≥ 0 ∀t, ∀n (5.76)
π − δtn ≤ (1− ϕt,maxn )MD ∀t, ∀n (5.77)
π + δtn ≤ (1− ϕt,minn )MD ∀t, ∀n (5.78)

ξt,maxn ≤ ϕt,maxn M ξD ∀t, ∀n (5.79)

ξt,minn ≤ ϕt,minn M ξD ∀t, ∀n (5.80)
ϕt,minn , ϕt,minn ∈ {0, 1}
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5.6 Adding the constraints for the PHEV to the
model

To find the equality constrains for the PHEV, the following equation needs
to be rewritten, by using the condition for initial value and the final value
for the virtual battery:

EtV Bj
= E0

V Bj
+

t∑
l=1

P lLjb
∆tηjb,char −

t∑
l=1

ElV Bj,dep
+

l∑
t=1

ElV Bj,arr

(5.81)

For the last time step:

ETV Bj
= E0

V Bj

(5.82)

which gives the equality constraint per node:

0 =
T∑
l=1

P lLjb
∆tηj,char −

T∑
l=1

ElV Bj,dep
+

T∑
l=1

ElV Bj,arr

(5.83)

T∑
l=1

P lLjb
=

∑T
l=1E

l
V Bj,dep

−
∑T

l=1E
l
V Bj,arr

∆tηjb,char

(5.84)

By inserting (5.81) into (5.6) the inequality constraint can be found

EtV Bj ,min ≤ E
0
V Bj

+
t∑
l=1

P lLjb
∆tηjb,char−

t∑
l=1

ElV Bj,dep
+

t∑
l=1

ElV Bj,arr
≤ ElV Bj ,max

(5.85)
t∑
l=1

P tLjb
∆tηj,char + E0

V Bj
≤ EtV Bj ,max +

t∑
l=1

ElV Bj,dep
−

t∑
l=1

ElV Bj,arr
(5.86)

The new objective function:

∑
t=1

tP t,PHEVLjb
∆tηjb,char + E0

V Bj
≥ EtV Bj ,min +

t∑
t=1

EtV Bj,dep
−

t∑
t=1

EtV Bj,arr

(5.87)



Chapter 6

Second model - The
embedded models

The MPEC was developed for a small network with three buses and thus it
was shown that the model was working properly. When the model was tested
on a larger network with more buses, the number of optimization variables
in this problem was to big for Matlab and thus no solution was found.
To decrease the number of optimization variables, two new programs were
created. Both new models are built up on the bi-level model, but are using
a genetic algorithm and non-convex solver. The problems are embedded,
which means that one of the problems are inside of the other. The outcome
of the upper level problem is used as input for the lower level problem.

The genetic algorithm builds up on an evolutionary algorithm, where the
optimization problems consist of a population. For every iteration of the
problem, the best individuals are stochastically selected and these individu-
als constitute the new population. The algorithm runs until the population
have reached a satisfied level of fitness [16].

The solve the upper level problem the standard Matlab tool Fmincon
is used. This is a non-convex solver, which is based on a Nelder-Mead
algorithm. This is a heuristic search method that can converge to a non-
stationary point [17]. It can solve a constrained non linear metavariable
function and is using the cost as input. The cost is gotten from the OPF,
which is embedded in the upper level objective function. The OPF is also
linear.

The upper level problem is the same as in the first model, but instead of
getting the demand bids as in the MPEC, the result from these two programs
will be the derived charging profile.

min
αt

Ljb

∑
t,n

λtn
∑
j,b

P tLjb
(6.1)

This problem is using same constraints as the upper level problem. The

26
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program calls the lower level problem which is the market clearing built on
OPF framework placing the bids:

min
P t

Gi
,E0

Vj
,P t

Ljb

∑
t,i

nGiP
t
Gi
−
∑
t,j,b

αtLjb
P tLjb

(6.2)

where nGi is the marginal cost for the generation, P tGi
is the generated

capacity, αtLjb
is the demand bid and P tLjb

is the PHEV load. This problem
has the same objective function and constraints as the lower level problem
in the first model. The only difference is that the OPF is using the Power
transfer distribution factor (PTDF) instead of voltage angles. By solving
the problem with embedded models, the number of optimization variables
Matlab is handling simultaneously will be reduced. The dual variables and
the integers for the complementary constraints are not used, which is also
reducing the number of variables. It is therefore possible to find solutions
for larger network problems. The problems is not convex, therefore there is
no guarantee that the embedded models will find the global maximum point
rather then finding a local maximum point.



Chapter 7

Case study

In the process of creating the optimization model, it was first tested on a
three bus network to to make certain that the model was working properly.
The model has been run on a computer with two Intel Xenon 2.66GHz
processors and 24GB ram-memory and the used software is Matlab with
the optimization toolbox Tomlab. There are four different optimization
models that are used in this case study; the MPEC, the embedded non-
convex solver(Fmincon), the embedded genetic algorithm and the minimum
system cost model. The three first models have the objective to minimize
the charging cost, while the fourth has the objective to minimize system
cost.

In this part the results from four case studies will be presented. Each
part is followed by a discussion where the results are evaluated. In the
first case study the solution from the models are investigated to see if the
load schedule seems to be correct and logic. In the second case the overall
performances are tested on the four models and a cost comparison between
the cost models. The third case investigates how congestions in the grid
are effecting the results. The last case is the test on the Swiss grid , where
the results are showing how the PHEV fleet is affecting the system and a
comparison between the cost models.

28
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7.1 Case 1 - Load schedule

The purpose of this part is to see which periods the PHEVs are charging
and to investigate the hourly prices. This is mainly done to validate that
the results are logical. The results come from the four bus network and
it consists of two generators, four loads and four lines. The reference load
represents the normal load during a winter day. The PHEV load is the
demand for each hour during a 24 hour period. The data is the simulated
behavior of the PHEV fleet and consists of, the required energy, the total
connected capacity and departing and arriving energy.

The network is simulated with four different set ups; the embedded mod-
els, the MPEC with three and ten load blocks. There are no observable dif-
ferences in the results from the MPEC with three and ten blocks, therefore
only one of the figures is presented. In figure 7.1 the reference load on all
four nodes is shown. The reference load is the same for all three simulations.
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Figure 7.1: Reference load per node.
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In figure 7.2 the nodal price at each bus is shown for the MPEC ten block
model and the nodal prices are the same for the other models. In figure 7.3
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Figure 7.2: MPEC 10 block model: Price [CHF/MW].

to 7.4 the charged load of the PHEV at each node is shown. All the results
are plotted and there is no difference between the MPEC with three blocks
and ten blocks. There is no difference between the embedded models, but
between the MPEC and the embedded models the charging pattern differs .
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Figure 7.3: Embedded model, Fmincon: PHEV charged load.
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Figure 7.4: MPEC 10 block model: PHEV charged load.
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7.1.1 Comments on the load schedule

When comparing the reference load (figure 7.1) with the nodal prices (figure
7.2) it can be seen that the prices are higher during those periods when the
demand is high. In figure 7.3, the PHEVs charging load is shown. Here it is
observable that the charging takes place during the time when the reference
load and the price are low. Further more there is a difference between the
MPEC and the embedded models when the PHEV fleet is charging. By
plotting the total system load it can be seen that the load pattern is differ-
ent between the embedded models and the MPEC. This is shown in figure
7.5 where all the four models; MPEC, Fmincon, genetic algorithm and the
minimum system cost model are plotted together with the reference load.
The embedded models are following the same load curves as the minimum
system cost model. This is because of that the embedded models are using
the results from the minimum system cost model as start values. A clearer
plot of this figure B.1 appendix B, where the MPEC load curve is removed.

The total system cost and the charging cost for the four bus network
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Figure 7.5: Reference load and the total system load computed with all four
models.

is the same, apart from a very small difference compared to the genetic al-
gorithm. In the end it seems like both models find the lowest cost but with
different solutions.
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7.2 Case 2 - Tests on 4 different networks

All the minimum charging cost models and the minimum system cost model
are tested on all four different systems with 4, 9, 14 and 30 buses. The
MPEC is tested twice, with three and ten load blocks. For each networks
the models performance will be investigated. The outputs from each model
are:

• Computational time in seconds it takes to find the solution for the
problem.

• Computational time in seconds it takes for the solver to optimize the
problem.

• Computational time in seconds for solving the optimization problem
with different sizes of the linearization variable M.

• System cost

• Charging cost

The system cost and charging cost are used to compare the cost differences
between the minimum charging cost models and the minimum system cost
model. All the data from these tests can be found in Appendix B. From
the test it was found that the embedded models and the MPEC were able
to solve all networks.
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7.2.1 Comments on test results

When comparing the data from the four different cases it can clearly be seen
that the MPEC seems to be faster than the embedded models for solving
each case. This can be seen in figure 7.6 and 7.7. The genetic algorithm
seems to be faster at solving larger networks, while the Fmincon is faster
for smaller networks, figure 7.7. The number of blocks for the MPEC is
also a factor that determine the solving speed, figure 7.6. The solving speed
is also dependent on the size of the linerazation variable M. This can be
seen in appendix B for case nine where the computational time is shown
for different values of M. In the MPEC a relationship between number of
buses and solving time can be seen, figure 7.6. The Fmincon seems to be
dependent on the number of loads, the genetic algorithm seems not. This
can be seen in figure 7.8 where the computational time for the Fmincon is
increasing with the number of loads. The genetic algorithm’s solving time
is higher for three loads than for four loads.
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Figure 7.6: Solving time MPEC
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Figure 7.7: Computational time embedded models [time/bus], where the
genetic algorithm seems to be faster at solving larger networks, while the
Fmincon is faster for smaller networks.
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Figure 7.8: Computational time embedded models [time/load], where the
Fmincon model seems to dependent on the number of loads.
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Blocks 3 10
Computational time [s] 2.6832 3.6816
Optimization time [s] 1.3572 1.6224

Table 7.1: MPEC: Computational time for 9 bus network.

Table 7.1 shows the computational time for the MPEC to solve the nine
bus network. The compute time is the total time it takes to solve the problem
and optimization time is the time it takes for the Tomlab solver to find the
optimal solution. By taking the computational time minus the optimization
time it yields the time it takes for Matlab to set up the different matrices
for the solver. This time can be reduced by writing the code more efficiency,
which in the end will give a faster solution to each network.

Total system cost
Buses 4 9 14 30
Genetic Algorithm 1 1 1 1
Fmincon 1 1 1 1
MPEC 1 1 1 1
Charging cost
Buses 4 9 14 30
Genetic Algorithm 1 1 0.7522 1
Fmincon 1 1 0.7522 1
MPEC 1 1 0.6757 1

Table 7.2: The cost differences in per unit between the models, with the
minimum charging cost models as reference.

In table 7.2 the cost differences in per unit have been calculated between
the models, with the minimum charging cost models as reference. It can
be seen that there is almost no differences in the total system cost for the
two types of cost models. Although there are different charging costs in the
14 bus network, where the charging cost is much lower with the minimum
charging cost models, especially with the MPEC. An explanation for this
cost difference is that the embedded models may have found a local minimum
point, while the MPEC may have found the global minimum. A conclusion
to be drawn from these results is that the MPEC model is superior at finding
the optimal point in the feasible space.
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7.3 Case 3 - Congestion

Two of the test networks are containing congestions; the 9 and 14 bus net-
work. The presented results here are the nodal prices for the 9 (figure 7.9)
and the 14 bus network (figure 7.10) both simulated with the MPEC 3 block
model. Different prices at every node can be observed in these figures. Con-
gestions may be found when a line is maximally loaded, this is shown in
figure 7.11 and 7.12 where the load flows are plotted in per unit. The two
networks were also tested without any congestion and this by increasing the
capacity of the congested lines. This was effecting the nodal prices which
can be seen for the nine bus network in figure 7.13.

0 5 10 15 20 25

10

15

20

25

30

Time[h]

P
ric

e

Price case 9 MPEC number of blocks 3

 

 
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Figure 7.9: MPEC 3 Block model: Nodal prices[CHF/MW] for 9 bus net-
work.
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Figure 7.10: MPEC 3 Block model: Nodal prices[CHF/MW] for 14 bus
network.
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Figure 7.11: MPEC 3 Block model: Line flows for the 9 bus model, where
congestion can be seen on line 1 and 7.
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Figure 7.12: MPEC 3 Block model: Line flows for the 14 bus model, where
congestion can be seen on line 1.
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Figure 7.13: MPEC 3 Block model: Nodal price for case 9 without conges-
tion, the prices are homogenous on all nodes.
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Model Fmincon MPEC 10 Blocks
Computational time [s] 452.0440 5.6784
Computational time without congestion [s] 182.8175 2.8548

Table 7.3: Computational time with and without congestion

It was also found that the solving time was faster when the congestions
were removed. The new computational time for the nine bus network can
be found in table 7.3.

Also remarkable in this case, is the solution found by the embedded
models for the 14 bus network. It can be seen that the price is higher
around time period five, figure 7.14. There are also different prices for the
embedded models and the MPEC between time 20 and 24 (MPEC figure
7.10). Both these observations may show that the models finds different
solutions, which is affecting the cost.
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Figure 7.14: Embedded model: Nodal price for case 14.
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7.3.1 Comments on congestion

In the 9 and 14 bus networks different nodal prices exist. This can be
seen in figure 7.9 and 7.10. The reason for price differences is that the
competition on the market is not perfect. This non perfect state is caused
by the congestions on the lines, where power can’t flow freely between all
regions (buses). The line flows are shown in per unit in figure 7.11 and 7.12.
An indication of congestion is that there is a steady state condition at the
lines’ maximum capacity (1 p.u.). This can be seen at line 1 and 7 in the
9 bus network and at line 1 for the 14 bus network. When increasing the
capacity of the lines for both networks, the congestions are removed and
there are homogenous prices on the market. This can be seen at the 9 bus
network in figure 7.13.

When solving the 14 bus network the nodal price are different between
the MPEC and the embedded models. This can be observed in figure 7.14
where the price is higher around time period five with the embedded model.
There are also different prices for the models between time 20 and 24 (MPEC
figure 7.10). When comparing the line flows, it can be seen that the line for
the MPEC is not congested around time period five (figure 7.12), while the
embedded is (figure B.2). The charging is also different for these periods
which can be seen in figure 7.15 where the total system load is plotted.
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Figure 7.15: Total system load for case 14.

The conclusion of this is that the embedded models are finding different
solutions then the MPEC. The MPEC may have found the global minimum
while the Fmincon model only could have found a local minimum. This is
discussed earlier in case two as it was found that the charging costs here not
the same for the models due to different solutions.
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Total system cost
Congestion none with
Fmincon 1 1
Charging cost
Fmincon 1 0.7522

Table 7.4: The cost differences in per unit between the models, with the
minimum charging cost models as reference. If the value is smaller than
one, the cost is lower the minimum charging cost model. One the cost is
equal

The results from the 14 bus network shows that the system cost is higher
with congestion. This could give the producer the ability to raise the elec-
tricity price by congesting the lines. By investigating how the cost between
the two cost models is changing with congestion, it can be seen whether or
not the aggregators will gain any market power with the minimum charging
cost models. There are two cases with and without congestion, where the
cost models are compared, table 7.4. In the case of congestion the con-
sumers have a lower charging cost than the case without. The conclusion to
be drawn from this result is that the consumer may gain market with the
minimum charging cost models.
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7.4 Case study - Swiss system

This is the final test of the swiss power system where PHEV load is simu-
lated with one million vehicles. The energy usage is due to a normal day
driving pattern of a swiss citizen. The MPEC and the genetic algorithm
were not able to solve a system of this size, so the results come from the
embedded model with the Fmincon solver.

Number of vehicles 1 million
Total charged power 8.374GW

Table 7.5: PHEV fleet data

Total system cost
Fmincon 1
Charging cost
Fmincon 0.9991

Table 7.6: Cost comparison

The results that are presented here are a cost comparison in per unit be-
tween the minimum system cost model and the demand bid model (the
minimum system cost model is used as reference), table 7.6. In figure 7.16
different nodal prices due to congestions are shown and the load curve with
and without PHEV fleet in figure 7.17. Data for the fleet the simulated fleet
can be found in table 7.5.
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Figure 7.16: Fmincon model: Nodal prices [CHF/MW].
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Figure 7.17: Fmincon model: Total load with and without PHEV fleet.

7.4.1 Comments on the Swiss system

From the results of the simulations on the swiss system, it can be seen that
total load in the system is increased with 4.12% by the PHEV fleet.

When comparing the two cost models, the minimum system cost and
the minimum charging cost, it appears that the charging is slightly lower
with the charging model, table 7.6. The total system cost is more or less
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the same, consequently there is not a large difference between this two cost
models. However, there can probably be a difference if the MPEC would
have worked in this system. Thus is due to previous cost comparison of the
smaller networks.

In the Swiss system congestions also do exist. This can be seen due to
the cost differences between a large number of nodes, figure 7.17.

The charging of the vehicles is mainly done during the low load hours at
evening and night, which is called Valley filling. This can be seen in figure
7.17 when comparing the reference load with the total load.



Chapter 8

Conclusion

In this part the conclusions from the development process and results of this
master project are presented.
Conclusions about the MPEC:

• The MPEC model can find a charging schedule for the PHEV fleet.

• The MPEC model can’t solve large networks due to too many opti-
mization variables.

• By making the Matlab code more efficient, the set up of the matrices
for the solver is made faster and the total time thus is decreased.

Conclusions from the results by the MPEC and the embedded
models:

• The MPEC model is faster at solving problems then the embedded
models for the four networks.

• The size of the linearization variable M is affecting the computational
time for the MPEC. A larger M is prolonging the time. Also congestion
in the system increases the computational time, which was found in
the 9 bus network.

• The MPEC and the embedded models find different solutions. In
one case the MPEC is better at finding an optimal solution then the
embedded models, which was found when comparing the charging cost
for the 14 bus network. Due to that, the MPEC finds the global
minimum point and the embedded models find a local minimum.

• Compared with the minimum system cost model, the MPEC and the
embedded modes give lower charging costs in some cases, which sub-
sequently gives the PHEV aggregators market power.
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• Congestion in the system is affecting the prices.

• For the Swiss system there is almost no cost difference between the
embedded model, with the Fmincon solver, and the minimum system
cost model.

8.1 Future work

The MPEC
The future work of this thesis would be to test the MPEC on a computer
with larger capacity. Parts of the code for the MPEC can be made more
efficient in order to decrease the computational time. The MPEC and em-
bedded models ought to also be tested on more networks and compared
to the supply bid model, to further investigate the opportunities of market
power with the demand bid model.

Model development
In this model the PHEVs consist on fixed loads on every node. The loads
are simulated from the driving pattern by the vehicles. A future work is to
create a stochastic model for these loads, where the PHEVs are randomly
charging at different nodes. Another further work could be to optimize
which loading node the PHEV fleet is choosing depending to the nodal price
and see how load is changing in the system.
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Appendix A

Basic micro economics

To analyze questions about the price and quantity in a market, the supply
and demand model is used. This model is a graph with two linear functions,
which are showing the demand and the supply in the market.

A.1 Supply and demand

The demand is defined as the amount of good that a consumer is willing to
buy at given price. A consumer tends to demand a larger quantity at a lower
the price. To get an overview of the problem the function can be plotted in
a diagram, to shows the relationship between quantities demanded at each
possible price. It describes how many units a consumer is willing to buy at a
certain price. There are two causes that can change the demand and there is
a clear distinction in how to determine these. When the underlying price is
changing there will be a movement along the demand curve to find the new
demanded quantity. When there is a change in other variables the demand
curve is shifted to the right or to the left in order to get the new demanded
quantity. For instance when the gasoline price goes up on, consumers search
a substitute and start to use electric cars. The effect of this is that the
demand for electricity is rising and the demand curve is shifted to the right.
The demand function’s mathematical model can either be a linear function
or a non-linear function. Individual demand curves can be summed up to
one curve to determine a group’s behavior. The curve can be described by
the following equation:

D = m− kq (A.1)

To determine the market price we also need to know the quantity that firms
are willing to supply at a given price. The supply is dependent on the cost of
production and can also be affected by governmental restrictions and taxes.
The supply curve shows the quantity supplied at each possible price. When
the price of the underlying is changing the supply is reflected by a movement
along the curve. When a change in costs, government rules, or other factors
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changes the supply curve is shifted to the right or left [14].
The supply function can be written:

S = kq +m (A.2)

Individual supply curves can be aggregated into one curve.

P*

Q*

D

S

P

Q

Figure A.1: The supply and demand model, where the intersection point
shows the market equilibrium P ∗ and Q∗.

A.2 Economical terms

In this theses some economical terms will be used. The definitions for them
is found in this part [14].

Market equilibrium is the state which appears when traders are able
to buy and sell as much as they want in a market. There is an equilibrium
price when the supply and demand doesn’t change.

Price elasticity is the percentage change in the demand or supply made
by a change in the price. The term inelastic is used when the demand or
supply are unaffected by a price change, whereas elastic price don’t.

Utility is a term used by the economist to describe the consumers’ be-
havior on a market. The consumer preference is to choose the amount of a
good which gives the largest possible utility. This can be modeled by a util-
ity function, which shows the utility for each quantity. The utility function
U is written:

U(z, b)
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where y is the quantity y and b is the price. Marginal utility is the extra
utility that a consumer gets by purchasing an additional unit of goods.

MU = du/dz

Short run cost To make a profit maximization decision a firm needs to
know how their cost varies with the output. To get an overview of the costs,
the firm has some concepts to be used. To produce an amount of output,
there are two types of costs to use as input in the calculation. Fixed cost
is the cost of the production, which is not changing in the short term with
the level of output. A typical fixed cost is the one for capital goods, e.g.
machines and facilities. The second one is the variable cost, which changes
with the level of output, the amount of labor and material that is used in
the production.

C = V C + F

where C is the total cost, VC the variable cost and F the fixed cost.

The marginal cost is how much a firm’s cost is increasing by producing
an additional unit of output.

MC = dC/dq

Perfect competition is a description of a state of the market, with the
following properties;

• The market contains a large number of firms. If there are enough
sellers in the market, no individual firms can rise or lower the price in
the market.

• Identical products, if the sellers has identical or homogenous products
it is difficult for the consumers to notice any difference between the
product and therefore no firm can increase the price.

• Full information, consumers and producers have all information about
the quantity and quality of the product in the market.

• No entry barriers, companies can enter and exit the market easy with-
out any obstacles.

• Transactions cost, very low transaction costs for a buyer or seller to
exchange goods.

The opposite to perfect competition is monopolistic competition or oligopolis-
tic competition. Monopolistic competition takes place when there is one firm
on the market that has the power and no additional firms can enter and earn
profits. Oligopolistic competition is when there are a few firms that have
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the power in the market and there are large barriers, which make it difficult
for additional firms to enter.

Welfare maximization Consumer welfare from a good is the benefit the
consumer gets from purchasing the good at the market price minus what
the consumer is ready to pay for the good. The utility a customer gains can
be measured in a monetary amount by using the supply and demand curve.
The difference between what the consumer is willing to pay and the actual
cost, is the consumer surplus.

Producer welfare is what a supplier gains by participating in the market,
determined by using the supply and demand curve. Monetarily this is cal-
culated by taking the difference between the price the good is sold for and
the minimum amount the producer is willing to sell at. The result will be
the producer surplus. These surpluses are presented in A.2.

By maximizing the producer surplus and the consumer surplus the soci-
ety’s total welfare is maximized, which is described with the welfare equa-
tion:

W = CS + PS

Where W is the welfare, CS the consumer surplus and PS the producer
surplus [14].

D

SP

Q

Figure A.2: The red area is the consumers surplus and the blue area is the
suppliers surplus, by maximizing these two areas the welfare in the market
will be maximized.



Appendix B

Data

B.1 4 bus network

Data

Buses 4
Loads 4
Generators 2
Lines 4
PHEV charging nodes 4

Minimum system cost model

System cost 98292.666505
Charging cost 3671.711274

Embedded models

Model Fmincon Genetic algorithm
System cost 98292.66650 98292.66650
Charging cost 3671.711274 3671.711274
Computational time[s] 512.042082 536.191037

MPEC

Number of blocks 3 10
System cost 98292.666505 98292.666505
Charging cost 3671.711274 3671.711274
Computational time[s] 2.683217 3.681623
Optimization Computational time[s] 1.357208 1.622410
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Figure B.1: Total load in the network where the solution from the MPEC
is removed and it can be seen that the embedded models are following the
minimum system cost

B.2 9 bus network

Data

Buses 9
Loads 3
Generators 3
Lines 9
PHEV charging nodes 3

Minimum system cost model

System cost 208390.209228
Charging cost 9467.934734

Embedded models

Model Fmincon Genetic algorithm
System cost 208390.209228 208390.209228
Charging cost 9467.934734 9467.934734
Computational time[s] 452.044097 1364.915149
Computational time[s]1 182.817571 -

MPEC
1Without congestion
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Number of blocks 3 10
System cost 208390.209228 208390.209228
Charging cost 9467.934734 9467.934734
Computational time[s] 2.730017 5.678436
Computational time[s]1 2.854818 -
Optimization Computational time[s] 1.138807 2.184013

MPEC with different M

M Compute time
100 2.636416
10000 2.901618
1000000 2.995219
100000000 3.494422
10000000000 3.697223

1Without congestion
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B.3 14 bus network

Data

Buses 14
Loads 11
Generators 5
Lines 20
PHEV charging nodes 11

Minimum system cost model

System cost 193667.296433
Charging cost 12826.197522

Embedded models

Model Fmincon Genetic algorithm
System cost 193667.296433 193667.296433
Charging cost 9648.096392 9648.096392
Computational time[s]1 2123.953615 2070.242470

MPEC

Number of blocks 3 10
System cost 193667.296433 193667.296433
Charging cost 8667.201168 8667.201168
Computational time[s] 9.796862 35.958230

Generator Bus Capacity Cost
1 1 332.4 10
2 2 50 20
3 3 50 30
4 6 100 40
5 8 240 50

Table B.1: Generator cost and bus connection

1Without congestion
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Figure B.2: The line flows in the 14bus network with congestion.

B.4 30 bus network

Data

Buses 30
Loads 21
Generators 6
Lines 41
PHEV charging nodes 21

Minimum system cost model

System cost 296399.418833
Charging cost 10393.944936

Embedded models

System cost 296399.418833 296399.418833
Charging cost 10393.944936 10393.944936
Computational time[s] 7291.159137 2950.088110

MPEC

Number of blocks 3 10
System cost 296399.418833 296399.418833
Charging cost 10393.944936 10393.944936
Computational time[s] 33.181412 231.146681
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B.5 Swiss system

Data

Buses 191
Loads 126
Generators 134
Lines 267
PHEV charging nodes 126

Minimum system cost model

Model Fmincon Genetic algorithm
System cost 9614870.397442 -
Charging cost 642710.446951 -

Embedded models

Model Fmincon Genetic algorithm
System cost 9614870.675528 -
Charging cost 642145.079237 -
Computational time[s] 388083.250897 (4d, 11h, 48s) -


