

Investigation of approaches for change
impact analysis and facilitating finding
reviewers in testing frameworks
Master’s thesis in Software Engineering

Abel Yohannes Asefa
Fredrik Hansson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018:NN

Investigation of approaches for change impact
analysis and

facilitating finding reviewers in testing
frameworks

Abel Yohannes Asefa
Fredrik Hansson

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2018

Investigation of approaches for change impact analysis and facilitating finding re-
viewers in testing frameworks
Abel Yohannes Asefa
Fredrik Hansson

© Abel Yohannes Asefa, Fredrik Hansson, 2018.

Supervisor: Francisco Gomes de Oliveira Neto
Examiner: Regina Hebig

Master’s Thesis 2018:NN
Department of Computer Science and Engineering
Software Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden 2018

iv

Abstract
As software becomes larger and more complex and time between deliveries decreases
the more maintenance becomes an issue. An established way to facilitate some main-
tenance efforts is to use automated testing frameworks to reduce the time needed
for testing, freeing up both computational and human resources for other tasks.
However, as the number of testers using such a framework increase so does the
maintenance efforts on the framework itself and there seems to be a gap in research
regarding processes for improving maintainability in testing frameworks.
This study aims to provide means of improving maintainability of testing frame-
works by first investigating issues that hinder maintenance efforts in a real testing
framework and search in literature for possible solutions that can be applied to
address the issues.
We implement a tool for change impact analysis to assist maintainers in making
informed decisions during maintenance and we create guidelines for what to consider
when selecting tools for automatic reviewer recommendation.
We evaluate the tool and guidelines by interviewing experienced practitioners and
the results show that maintainability of a testing framework can be improved by
using tools for CIA and the guidelines provide a good starting point for practitioners
wishing to learn about reviewer recommendation tools.
Specifically, we found that by using our tool maintainers can more easily identify the
impact of their modifications and understand the related components of the frame-
work, allowing them to mitigate the risk of introducing faults by taking corrective
actions. The interviewees pointed out that there are limitations of the tool in the
current context, most importantly that a specific type of important files are not
covered and that the impact set may sometimes be too large. These are limitations
that should be addressed in future research as all interviewees agreed that if they
could be addressed, the tool would be very valuable.
Ultimately, our contributions to research are i) fostering transfer of research in CIA
to industry and assessing its effect, ii) identifying challenges in implementing tools
for CIA in practise and iii) providing means of understanding tools for reviewer
recommendation. Thus, the end goal of the thesis goes beyond the deliverables we
produce, additionally, we aim to generalize the results of the thesis such that they
can be applied in other contexts where organizations using testing frameworks face
similar problems. In the long term, our research lays the foundation for continuing
transferring research to industry and helping researchers identify where their efforts
are most needed in the industry.

Keywords: Maintenance, Testing frameworks, change impact analysis, reviewer rec-
ommendation, challenges, coverage.

v

Acknowledgements
We would like to extented our gratitude and thanks to Francisco Gomes for being our
supervisor at the university, helping us in every step of the research. Furthermore,
we would like to thank James Harper and Pat Mooney for being our supervisors
at Ericsson, helping us get the information needed to accomplish the research and
helping us when we struggled. We would also like to thank Ericsson for giving us
the opportunity to conduct our research in cooperation with the company. Lastly,
we would like to thank everyone who participated in the interviews conducted.

"Thanks be to God for His unspeakable gift!" 2 Corinthians 9:15
I would like to thank Swedish Institute (Si) for funding my studies.

Abel Yohannes Asefa, Gothenburg, Jun 2018

I would like to thank our fellow master students and friends at Chalmers for their
support during our work and keepig our spirits high during our struggles.

Fredrik Hansson, Gothenburg, Jun 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem description . 3
1.2 Research Questions and Contributions 4

2 Background 7
2.1 Automated testing . 7
2.2 Change impact analysis . 8

2.2.1 Test coverage . 9
2.3 Modern code review . 9

2.3.1 Reviewer recommendation . 12
2.3.2 Code ownership and responsibility 12

3 Methods 15
3.1 Our approach . 16

3.1.1 Process for reviewing literature 17
3.2 Case company . 18

3.2.1 Testing framework . 18
3.2.2 Code reviewing practices for test code at Ericsson 20

3.3 Change impact analysis: Finding a suitable technique 22
3.4 Process for finding ways of facilitating reviewer identification 22
3.5 Evaluation methodology . 23

3.5.1 Objectives of the evaluation 23
3.5.2 Evaluation plan and process 24
3.5.3 Interview instrument . 25

4 Results CIA 27
4.1 Results of interviews . 27
4.2 The tool for CIA . 28

4.2.1 Object of analysis: . 28
4.2.2 Impact set . 30
4.2.3 Type of analysis . 30
4.2.4 Intermediate representation 31
4.2.5 Language and tool support . 31

ix

Contents

4.2.6 Empirical evaluation . 32
4.2.7 Choice of technique . 32

4.3 Implementation process . 33
4.3.1 The purpose and process of our tool 34
4.3.2 Motivating examples . 35

4.4 Evaluation results of the tool . 37
4.5 Discussion . 39

4.5.1 What are the challenges in implementing a tool for CIA in a
test framework? . 41

5 Results: Facilitating finding reviewers 45
5.1 Guidelines for choosing a tool for finding reviewers 45

5.1.1 What data do we have that can be used for RR? 46
5.1.2 What is our data lifetime? . 46
5.1.3 What kind of expertise are we interested in? 47

5.2 Suggestion for Ericsson . 49
5.2.1 Proposed changes regarding practices 49
5.2.2 Proposed change for responsibility 50
5.2.3 Application of guidelines . 50
5.2.4 What should be done regarding RR? 52
5.2.5 Results of evaluation of recommendation 54
5.2.6 Discussion . 55

6 Threats to Validity 57
6.1 Construct validity . 57
6.2 Internal validity . 58
6.3 External validity . 58
6.4 Reliability . 59

7 Conclusion 61

Bibliography 65

A Appendix 1 I
A.1 Interview instrument for initial interviews I
A.2 Interview instrument for the CIA tool II
A.3 Interview instrument for the guidelines II
A.4 List of investigated RR approaches III

B Appendix 2 V

x

List of Figures

1.1 The two testing efforts . 2

3.1 methodology activity diagram . 17
3.2 Our process during literature review 18
3.3 The test framework . 19
3.4 The different roles in the TF . 20
3.5 The working process of developers, testers and reviewers using Gerrit 21

4.1 Ericsson’s context according to Li’s Framework 32
4.2 The CIA tools and the testers/reviewers interaction with it 34
4.3 The coverage file(code statements of the TF covered by a test case)

and the html report generated during the test run 36
4.4 Affected Test cases if platform_packetloss.py file is changed at

line 99 . 36

5.1 Framework to follow when adopting a tool for RR 45
5.2 (A) The cycle created in review expertise algorithms, (B) The non

cycle in modification expertise algorithms. 48

A.1 The interview instrument for the initial interviews I
A.2 The interview instrument for the first set of interviews II
A.3 The interview instrument for the first set of interviews III

xi

List of Tables

2.1 Challenges and which practices for authors and reviewers address these 11
2.2 Challenges and organizational practices to improve the code reviewing

process . 11

3.1 Our case study planning according to guidelines presented by Runeson
and Höst [40] . 16

5.1 Available tools for reviewer recommendation 52
5.2 Table showing three recent tools for RR 53

xiii

1
Introduction

As software becomes larger and more complex and time between deliveries decreases
maintenance becomes more of an issue. Research estimates maintenance costs to
range between 50-80 percent of total costs in software development projects [38, 41].

There is plenty of research on maintainability in software in many topics such as
measuring maintenance effort [18], different activities effect on maintenance and
maintenance cost [19, 42], how to improve maintainability from an organizational
point of view [20] and software maintenance’s effect on cost and schedule. But when
it comes to improving the sub-characteristics of maintainability e.g. understand-
ability, how easy it is to understand the code , and modifiability, how easy it is
to modify the code without introducing defects, there seem to be a lack of widely
known tools and approaches for improving either.

An established way to facilitate some maintenance efforts is to use automated test-
ing frameworks to reduce the time needed for testing, freeing up both computational
and human resources for other tasks. However, as the number of testers using such
a framework increase so does the maintenance efforts on the framework itself.

Wiklund et al. and Rafi et al. found that maintenance of test systems is an issue
and both found that there is little research within the area of automated testing
that is based in practise [35, 34]. In certain environments, like that of agile projects,
maintenance issues in test systems become even more pronounced. Eldh states that
the test suite in an agile continuous integrated build can quickly become costly if
there isn’t a good architecture or rules in place. In such cases maintainers often add
new test cases instead of maintaining existing ones which quickly leads to overlap-
ping test cases and wasted efforts [28].

When it comes to maintenance in testing frameworks there is research in handling
test suites with methods and frameworks for reducing size of test suites [21, 91].
However there seems to be a gap regarding processes for improving maintainability
in testing frameworks other than reducing the size of a test suite.

Testing frameworks are often at least as complex as their respective System Under
Test (SUT) and should be developed and maintained with the same care as the SUT
but this is rarely the case in practise [35, 87]. This is likely caused by the high costs
associated with doing so. In fact, research has shown that one of the main imped-
iments to adopting automated testing in the first place is the high costs related to

1

1. Introduction

development and maintenance of the testing software [35, 86].

One could say that maintenance issues in testing frameworks are indirect, meaning
that while they don’t necessarily cause problems in their SUT they allow problems
to arise with time as the testing is not done properly. This problem is aggravated
by the fact that few companies employ effort in creating test suites for the test
framework itself, since that implies the two testing efforts: the SUT and the test
framework used [87, 35] as shown in figure 1.1.

Figure 1.1: The two testing efforts

The lack of testing of testing frameworks make defects [84] (also known as faults)
harder to detect causing change propagation to become an even larger issue in test-
ing frameworks. Furthermore, issues in testing frameworks are not as noticeable, as
they only affect the testing of the SUT, which may function well despite not being
tested correctly. Consequently, the number of detected defects in the System Under
Test is not a feasible metric to assess whether the test framework is being properly
maintained.

For example, a modification of a method in the test framework may affect several
test cases using that method. If the modification break a test case, it could still
result in the test passing if for example the test case still received/provided a valid
input/output from the method, making the error go unnoticed. Even if the test case
fails it may not be clear that the test case is broken, and maintainers may spend
significant amounts of time trying to fix the SUT without realizing that the defect
is in the test system. An example was reported by Karlström who stated that in
some situations it was hard to decide whether it was the test system or the SUT
that caused tests to fail [88].

Thus, complementary verification approaches to testing (e.g. static analysis) are
suitable for this scenario. To our knowledge, there is little or no research on main-
tainability in testing frameworks or how to improve it.

If the complexity and size of any software (including test frameworks) continues to
increase, it is a very real possibility that the currently available methods may not be
enough to keep maintenance efforts at manageable levels. Therefore there is value in
investigating possible methods for improving maintainability of testing frameworks
since it will provide stakeholders with mechanisms to allow evolution of their test
frameworks with reduced effort.

2

1. Introduction

One example of the advantage in supporting maintainability of testing frameworks
is that doing so allows testers to modify the framework to enable creation of more
reusable test cases, by for example adding functions or interfaces to the test frame-
work. We suggest reducing the effort by providing instruments (e.g., data and
impact analysis) to inform tester the consequences of those modification on existing
test cases. Note that when several testers are simultaneously changing the frame-
work, understanding those changes require more cognitive effort, which is also true
when creating new test cases reusing the added features to the framework.

1.1 Problem description

The thesis focuses on two tasks that maintainers perform i) change impact analysis,
hereby referred to as CIA, and ii) finding reviewers. To describe the tasks we present
a scenario about a maintainer of a testing framework.

Alice, who started 6 months ago as a new developer at Ericsson, opened
her computer and she started reading emails. And one of the emails got
her attention:

“Last Friday we created the new feature for the EPG, so we
are hereby asking for new test cases to test the new function-
ality.”

Alice noticed that the issue had top priority and started working on it
right away. First, she checked what the new feature was and how it
worked and once she understood it, she started writing test cases for it.
While doing so she noticed that the createAll method in robustness.py
file (a file in the test framework) has the code she needed. All she has to
do is to add an optional argument to the method. However, if she changes
the createAll method to accept an optional argument, she may affect
other test cases using the method.

There are few tests for the framework and little documentation so to
tackle this problem she started going through the test cases one by one,
trying to figure out whether they will be affected. After a couple of
hours, she decided that it is impossible to figure out the impact this
way and asked for help from her colleagues. However, like her, most of
her teammates were inexperienced with the test framework and couldn’t
provide much help. Feeling frustrated she committed the changes hoping
they wouldn’t break anything elsewhere.

After committing the changes she had to find a suitable person to review
her changes and hopefully help her in determining their impact. How-
ever, she doesn’t know who is experienced with the part of the framework
she made changes for, so she simply added as many people as possible in

3

1. Introduction

the review process hoping that some of them could help in the review.

We list the following risks associated with Alice’s modifications. i) Her modifications
introduced a defect that may cause the test case to fail. If so, other maintainers may
think there is a problem in the SUT directing misguided efforts to finding defects in
the SUT. ii) Her modified code may not be invoked when other tests are executed,
thus the defect may remain undetected until the CreateAll method is executed and
even then it may not be clear that the defect in the test method and not the SUT.

When developers perform maintenance tasks they must accurately determine the
impact of their modifications to ensure that they don’t break the code elsewhere
and find competent reviewers to review the code. The reviewers in turn check that
the impact was correctly estimated and mitigated. However, both tasks can be chal-
lenging to perform, especially if there are no tools available supporting the tasks as
Alice experienced.

The two tasks are intertwined in that completing one task may help in completing
the other. First, if one is able to identify maintainers who are experienced with
the code, one can ask them for assistance in performing CIA. Secondly if one can
correctly estimate which parts of code are affected, one can more easily identify
someone with knowledge about those parts.

1.2 Research Questions and Contributions

The purpose of the study is to improve maintainability of Ericsson’s testing frame-
work. We accomplish this by implementing a tool for CIA with the goal of improv-
ing the sub-characteristics of maintainability: understandability and modifiability.
Therefore our first two research questions are:

• RQ1: To what degree can modifiability of a testing framework be improved
by using a tool for CIA?

• RQ2: To what degree can understandability of a testing framework be im-
proved by using a tool for CIA?

We search in literature for existing solutions for CIA and adapt a tool for CIA
by levering from existing instruments at Ericsson. Then, we investigate how to
properly use the data collected from the tool to inform testers of maintenance related
decisions. Additionally we hope to identify possible challenges in implementing CIA
tools in testing frameworks that should be considered. Thus, we include a third
research question:

• RQ3: What are the challenges in implementing a CIA tool for a test frame-
work?

In addition to the tool, we hope to indirectly improve maintainability of the frame-
work by addressing the issue of finding reviewers. To facilitate finding reviewer one
could either modify the code reviewing process to provide optimal conditions for

4

1. Introduction

finding reviewers or one could adopt tools for performing and/or assisting main-
tainers in the task. We search in literature for ways to facilitate finding reviewers
including best practises and tools. Therefore we also include the following research
questions:

• RQ4: What are the current best practices in literature regarding code review
and code ownership that facilitate finding reviewers?

• RQ5: What should be considered before adopting tools that support stake-
holders in finding appropriate reviewers for their code commits?

We provide a set of guidelines for choosing reviewer recommendation tools and we
suggest changes that Ericsson can make in their code reviewing process to facilitate
finding reviewers.

The deliverables are a means to lever maintainability at Ericsson test maintenance
activities. The end goal of the thesis goes beyond the deliverables we produce,
additionally, we aim to generalize the results of the thesis such that they can be
applied in other contexts where organizations using testing frameworks face similar
problems.

Our research provides the following contributions: i) fostering transfer of research in
CIA to industry and assessing its effect, ii) identifying challenges in implementing
tools for CIA in practise and iii) providing means of understanding tools for reviewer
recommendation.

A recent study shows that most of the contributions in the area of CIA are not
transferred to industry, so fostering such transfer and empirically assessing its effect
is a contribution to the fields of CIA and maintenance [23].

We find that tools for CIA can be used to improve maintainability of testing frame-
works but that there are several challenges that must be overcome for them to
become truly useful and adopted in practise. We also find that reviewer recommen-
dation tools can be understood using our guidelines but more research is required
to fully capture all important aspects of them.

The rest of the thesis is structured as follows: In section 2 we present the back-
ground of the thesis, section 3 presents the methodology, section 4 and 5 presents
the results of the interviews, the tool and the results regarding finding reviewers.
The results are discussed in section 6 and the different threats to validity and how
we have addressed them are presented in section 7. Lastly we present the conclusions.

5

2
Background

This section describes the background of the thesis including all topics we will dis-
cuss. We establish the current state of the art within the related areas of research
and justify our research based on the current literature.

2.1 Automated testing
According to Wiklund et al., software testing is the most widely used method of
quality assurance in software development [35], which is reflected in its costs which
range from 30-80 percent of a projects total costs [35, 37].

Automated testing is a common way to reduce effort required in testing as it in-
creases the efficiency for repetitive steps, especially in regression testing [36]. Rafi et
al. found in his research that the main benefits of automated testing are reusability,
repeatability and effort saved in test executions [34]. Thus the criticality of testing,
its high cost and the possibility to reduce these are the main reasons why it is de-
sirable to automate testing.

However, despite the apparent benefit of automating testing there is surprisingly
little empirical research on the topic. Rafi et al. found in their systematic literature
review, in 2012, only 25 articles in the area [34]. Five years later in 2017, in a
literature review by Wiklund et al. only 39 articles were identified in the area, of
which only 18 were experience reports [35].

While Rafi et al. was able to identify the benefits and limits of automated testing
and Wiklund et al. was able to identify the current impediments in automated test-
ing, both state that there is a need to increase the body of evidence regarding the
actual use of automated testing. Rafi et al. found that maintenance of automated
test cases are an issue and that 45 percent of practitioners think that the current
tools do not match their needs [34]. The primary themes regarding the test system
that Wiklund et al. identify are development and maintenance of tools, tool selec-
tion, and configuration of the test beds and test system [35].

According to Wiklind et al., test systems are usually at least as complex as their
SUT’s and should thus be developed and maintained with the same care as the SUT
[35]. However this is usually not the case as test systems in practise are poorly
tested, undocumented and unstructured [35, 87]. Under such conditions the main-

7

2. Background

tainability decreases as maintainers have insufficient means of understanding the
test system. This further aggravates the issues as, for example, maintainers fail to
reuse parts they can’t understand and instead recreate similar parts that further
contribute to a poor test system structure [87].

This lack of support for maintaining, testing and understanding test systems is
likely caused by the related costs. The goal of test automation is usually related to
saving resources in terms of time and money and if automated testing can’t deliver
appropriate return on investment it may even be abandoned [35, 87].
Thus it seem that maintenance is a prominent issue in automated testing yet there
is not enough research on the topic to provide aid for the industry in addressing it.

2.2 Change impact analysis
Change impact analysis (CIA) is an analysis of what impact a modification has on
the rest of the software. When modifying code during maintenance work, it is criti-
cal to understand that modifications made may affect other parts than the modified
code possibly introducing more defects that need to be fixed, further increasing the
maintenance work.

Research on change impact analysis has been done in several areas and techniques
have been created for its purpose like the WAVE-CIA technique that first identifies
the core (a set of methods affected by the change) and then calculates the ripple
effect caused by the change [7]. Research has also produced several kinds of program
slicing techniques ranging from static to dynamic that may be used in different con-
texts to varying degrees [8]. One survey has identified many different approaches
to CIA but a majority of these lack tool-support and some are only for specific lan-
guages and not applicable elsewhere [1].

All tools for CIA that we found have been evaluated predominatly by quantitative
approaches (e.g. comparing algorithms). Some examples of these include Zhang et
al. and Ren et al. who evaluated their tools by analyzing their ability to predict
which test cases are affected by which modifications [52, 53], Apiwattanapong et al.
evaluated their tool by comparing its execution cost and precision to two existing al-
gorithms [3], Orso et al., similarly to Apiwattanpong et al., compared his technique
with three others[2], and Zimmermann et al. who evaluated his tool by using it
on eight different projects and checked whether the actual changes that were made
could be predicted through historical analysis [54].

Despite there being a plethora of CIA tools in literature few seem to be in use in
practise. In fact, research suggests that programmers do not use tools developed
for CIA and many do not even know the term. It seems developers perform CIA at
different stages of development, mostly before a change and immediately after but
the practice of CIA is different from the process as described in the literature. This
suggests that the industry has not yet benefited from the research on CIA [23]. Thus
further research is necessary to either identify new approaches for CIA or modifying

8

2. Background

existing ones to make them more applicable to the industry.

In a recent study, a tool for assessing the impact of changes in Simulink models
on artifacts like test cases and other models was presented by Rapos, who argued
that with increasing use of Simulink models there is an increasing need for tools
to manage such models and related artifacts. [80]. His research is very similar to
ours but where he works exclusively with Simulink models we work with testing
frameworks for large software products. Rapos extended his work by including his
tool in a set of evolution tools that can be used to determine impact of changes on a
test harness model, suggest changes on it and even generate a new one if necessary
[81]. Because of the similarity of our work these extensions may be possible future
extensions of our work, extending our tool to providing suggested changes or even
making changes if necessary.

2.2.1 Test coverage
Coverage, in the world of testing, is a measurement that shows how much of the
code in a SUT is executed as the tests of the system are executed. It is measured
by analyzing what parts of the SUT is executed as a test suite runs. It is a common
measure for determining the efficacy and adequacy of testing efforts [44].

Research has shown that a higher code coverage brings both a higher failure detec-
tion [5, 46, 47, 48] and improves the effectiveness of software reliability estimation
[5, 6]. The research on the topic of coverage include improving code coverage [50],
optimizing test coverage for the purpose of reducing regression test suite size [49],
using coverage to improve fault localization techniques [51] and using code coverage
to guide generation of test cases [45]. Most of the research about code coverage
seems to be within the world of testing, specifically regression testing.

In this thesis we use test coverage to elicit data which is later used by the CIA tool
for estimating the potential impact of modifications in a testing framework.

2.3 Modern code review
Modern, or contemporary, code review is a process in which peers examine software
artifacts for defects and alternative solutions. It has evolved from the traditional
software inspections to become less rigid and better suit the needs of developer
teams [25].

Despite the large body of research on software inspections, there is limited research
regarding current best practices in modern code review (MCR). MacLeod et al.
states in her research that “the lessons learned in MCR are widely dispersed and
poorly summarized by literature. In particular, practitioners wishing to adopt or
reflect on a new or existing code review process may find it difficult to know which
challenges to expect and which best practices to adopt for their specific development
context” [12]. Rigby stated in his research that “Despite a large body of research

9

2. Background

on peer review in the software engineering literature, little work focuses on con-
temporary peer review in software firms.” [25]. The research that exists focus on
the current best practices and challenges in modern code review [12, 13, 25], how
practices have evolved and converged [25], how developers understand changes in
code [14] and how one can improve code review through adoption of best practices
[12].

Table 2.1 shows the practices that MacLeod et al. suggest for facilitating finding
reviewers and addressing certain issues in code reviewing processes that are tied to
finding reviewers.

Fist, it may be desirable to improve the response time of reviewers as if reviewers
can respond faster they can respond to more reviews, improving the availability of
reviewers. Additionally, if the response time is quick the authors will have to wait
less before learning whether the selected reviewer was appropriate or if another re-
viewer should be found.

To improve the response time of reviewers MacLeod et al. only suggests practise R.i
[12], which in itself is not very useful. However, if reviewers understand the changes
faster it is likely that they can respond faster. Baccelli et al. states that developers
could respond better and faster when the author of a review provides context and
direction to them in a review [13]. For helping reviewers understand changes and
to find relevant documentation MacLeod et al. suggests applying practices A.i, A.ii
and A.iii [12], which is also proposed by Bosu et al. in their research [60].

Practise A.iv may indirectly affect the response time of reviewers as it allows the
author to identify and deal with low level issues that would just have wasted the
reviewers time [12]. This can be taken even further by using more advanced tools,
like tools for CIA. Tao et al. found that the third most important piece of informa-
tion reviewers need, after rationale and consistency, is information about the risk
that the modifications breaks the code elsewhere. This is also the second hardest
piece of information to acquire [14]. In addition to helping reviewers understanding
modifications quicker such information is also beneficial for finding reviewers, be-
cause if you know which files are affected it will be easier to find reviewers who has
experience working with one or more of the affected files.

To improve quality of feedback Macleod et al. recommend practices R.ii and R.iii
[12, 61]. When creating a checklist for code review one could refer to the research by
Fu et al., who provides an example of such a list [61], and Bosu et al. who provides
a set of characteristics of good code reviews [60].

In addition to the practices already suggested, MacLeod et al. present several orga-
nizational practices that may be helpful when adopting new practices and improving
the code reviewing process [12]. These are presented in figure 2.2
Practices O.i and O.ii improve the ability to change the reviewing process to ad-
dress problems that may arise over time. O.iv and O.v ensure that the maintainers

10

2. Background

Challenge Author(A) Reviewer(R)
Slow response
time, unuse-
ful feedback
and lack of
documenta-
tion

i) Submit small incremental changes
ii) Cluster related changes
iii) Describe and motivate changes
iv) Analyze code using tools to fix
minor things and provide reviewers
with necessary information about risk
and other critical pieces of information.

i) Provide feedback as soon as
possible
ii) Focus on core issues and avoid
nitpicking
iii) Use or create a review check-
list
iv) Use code analysis tools to bet-
ter understand the code and the
changes
v) Give constructive and respect-
ful feedback
vi) Provide reasons for rejecting a
change

Finding
reviewers

v) Choose reviewers based on experi-
ence or need to learn code.
vi) Allow self selection if possible
vii) Check who to notify other than the
reviewer
viii) Notify reviewer as early as possible
and explain changes

vii) Set dedicated time for re-
views
viii) Be prepared to iterate and
review again

Table 2.1: Challenges and which practices for authors and reviewers address these

Organizational practise (O)
i) Develop,reflect on and revise code reviewing policies
ii) Develop a mechanism to watch for bottlenecks in the process
iii) Build and maintain a positive review culture
iv) Ensure appropriate tools are in place and used
v) Ensure sufficient training is in place for code reviewing activities

Table 2.2: Challenges and organizational practices to improve the code reviewing
process

have the necessary tools and knowledge to work according to the reviewing process
policies.

There also seems to be a large body of research on the topic of reviewer recommen-
dation and how to use it to improve code reviewing processes [15]. This topic is
explained further in section 2.3.1. Thus we have found research in different areas
that provide solutions which address the issue of finding code reviewers. There-
fore, we lever those existing findings to apply our solutions with respect to reviewer
identification.

11

2. Background

2.3.1 Reviewer recommendation
Finding competent reviewers in modern code review is challenging as it is hard to
determine the expertise and availability of any possible reviewer at a given time
[67]. Therefore, significant efforts in research has been given to the area of reviewer
recommendation, hereby referred to as RR, and developing tools for the task. These
tools attempt to calculate the expertise of available reviewers and provide recom-
mendations for developers looking for a reviewer [67].

RR tools use different kinds of data depending on the approach they use. The most
frequently used data include file paths, comments, issue labels, source code and
collaboration history. This information was elicited by analyzing tools available in
literature and investigating what data the different tools used, thus the list is not
exhaustive.

The two most common ways of extracting such data is by looking at either the com-
mit history of candidates which is for example done by the tools of Zanjani et al.
and Kagdi et al. [63, 64] or their review history which for example is done by the
tools of Zanjani et al. , Hannebauer et al. and Thongtanunam et al. [63, 65, 15].
Whichever you choose to analyze depends on which kind of expertise one wish to
determine. Additionally, both can be used to determine several other factors, for
example one can find out how often a developer has collaborated with certain re-
viewers and to what extent by analyzing either.

Systems for pull requests are frequently used for this purpose and the current state
of the art around pull requests seems to be geared around solving issues like finding
appropriate reviewers, using automated tools for finding reviewers as well as im-
proving these tools [23, 10]. Research has been done on automatic recommendation
of reviewers in the context of pull requests [10] and in reviewer recommendation in
the context of peer to peer review in software engineering [11].

While there are a large number of RR tools [62, 65, 15, 66, 71, 70, 79, 63, 69,
10, 23, 68] available, we have not found any research that summarizes the current
state of the art or provides means of comparing tools. Many tools are evaluated by
comparing algorithms [62, 65, 67] to existing ones but there seem to be a lack of
benchmarks and means of comparing tools. This makes it hard to identify techniques
that suit one’s needs.

2.3.2 Code ownership and responsibility
Ensuring that for every piece of code in a software exists a responsible developer
that knows and maintains the code is an important goal. Code without responsible
developers is a huge risk as that means there are pieces of the software that no one
fully understands or maintains.

Code ownership is a term used to describe whether a person is responsible for a
piece of code or if the piece of code lacks a responsible developer [72]. It is usually

12

2. Background

expressed as who has modification rights over certain pieces of code and is often
used as a proxy for responsibility [28]. There is research on code ownership’s impact
on maintainability [26] and software quality [72] and there is research on different
perspectives on code ownership [28].

There are several different models of code ownership each with their benefits and
drawbacks. For example, regarding the number of code owners. Having too many
people working with a piece of code has been proven to decrease its maintainability
[26]. Farago et al. states that the boundaries of responsibility should be as clear as
possible to avoid decreasing maintainability [26]. However, you don’t want too few
code owners either as that may make you too dependent on a small set of people
[26, 27]. A motivating example is provided by Bacchelli et al. who states that if the
author of a change is the only expert, she has no potential reviewers [13].

Nordberg presents a model for managing code ownership based on the idea of adopt-
ing different models of code ownership depending on which phase a project is in, to
match the needs of the project with regards to code ownership [27].

He identifies four models of code ownership including:
1. Product specialist - a single individual manages all code with occasional help

from others.
2. Subsystem ownership - each subsystem has a specific owner and each team

member owns one or more subsystems.
3. Chief architect - one chief programmer has primary ownership of all code but

has a team that takes supporting roles in fleshing out the chiefs vision.
4. Collective code ownership - all code is owned by all developers and everyone

is free to work across all subsystems and everyone should contribute to all
systems.

Nordberg’s model states that during the inception of a project one should apply the
product specialist model by having one person create the high level features, core
requirements and business case as well as articulate the vision of the new or revised
system. The product specialist should increasingly accept help from analysts to
gather requirements but remains the sole owner. Then as the project grows and the
tasks start becoming to large for one individual to manage one should switch to the
chief architect model where the product specialist is assisted by a chief architect who
focuses on whole system design and utilizes a growing team around him to perform
prototyping, planning and setting up environments with the goal of establishing a
clear architecture [27].

Once the architecture is well-defined one should start switching over to collective
code ownership as the number of developers increases to fit the needs of the project,
allowing rapid propagation of the architecture to a growing team of developers. Dur-
ing the switch to collective ownership, the chief architects should be moved to new
products, which could be subsystems within the same project, to repeat the same
cycle. Finally as subsystems of the project are becoming stable one should switch to

13

2. Background

the subsystem ownership model by assigning individuals or smaller teams to finalize
the subsystems.

Current research states that the definition of code ownership as having modification
rights causes problems [28]. Thongtanunam et al. states in their research that
approximations of code ownership should take review activities into account as well
as he found that many developers who contribute little in terms of code may actually
be suitable code owners if they often perform reviews of the code. In fact he found
that many developers only contribute to modules through reviewing code changes
for them [16]. Therefore one should consider modifying the definition of ownership
before using it for managing responsibility. Owning code should not mean having
modification rights but rather being responsible for understanding, maintaining and
reviewing a piece of code.

14

3
Methods

We performed a case study at Ericsson AB with the purpose of improving main-
tainability of their testing framework. We accomplish this by implementing a tool
for CIA with the purpose of improving understandability and modifiability of the
framework. Additionally, to further foster transfer of research on CIA to industry
we identify and discuss challenges we encounter when implementing a tool for CIA.
Therefore our first three research questions are:

• RQ1: To what degree can modifiability of a testing framework be improved
by using a tool for CIA?

• RQ2: To what degree can understandability of a testing framework be im-
proved by using a tool for CIA?

• RQ3: What are the challenges in implementing a tool for CIA in a test frame-
work?

By answering how well the tool helps in improving these sub-characteristics we can
then attempt to quantify how much the tool helps in improving maintainability.

To answer the first two research questions we define two main objectives of the tool:
i) Helping maintainers understand the test cases, the TF and dependencies between
them and ii) helping maintainers understand the potential impact their modifica-
tions may have so that corrective action may be taken to avoid introducing defects.
These objectives will be the main focus of the evaluation of the tool, which is de-
scribed in detail in section 3.5.

To answer RQ3 we will take note of any significant challenges we encounter during
the implementation process and at the end of the thesis conduct a retrospective
analysis to summarize which challenges we have faced, how we have overcome them
and what the implications are if the challenges are left undressed.

In addition to the tool, we hope to indirectly improve maintainability of the TF by
addressing the issue of finding reviewer, thereby making the maintenance process
more efficient. We accomplish this by investigating both practices for improving
code review processes and tools for reviewer recommendation. We chose not to
implement a tool for facilitating finding reviewers because Ericsson could not state
what kind of solutions they were interested in nor express the requirements of such
solutions. They stated a need for understanding the options available and thus we
had to perform an exploratory study on the subject.

Therefore our research questions regarding finding reviewers are:

15

3. Methods

• RQ4 What are the current best practices in literature regarding code review
and code ownership that facilitate finding reviewers?

• RQ5 What should be considered before adopting tools that support stakehold-
ers 1 in finding appropriate reviewers for their code commits?

A summary of our case study planning is presented in table 3.1

Objective Improving and exploratory
The context Maintainability of test frameworks
The case Test framework at Ericsson
Theory Change impact analysis, reviewer recommendation, code ownership

Research questions RQ1, RQ2, RQ3, RQ4 and RQ5
Methods Interviews, instrumentation and documentation analysis

Table 3.1: Our case study planning according to guidelines presented by Runeson
and Höst [40]

3.1 Our approach

We elicited information about the current working process by interviewing users of
the test framework to identify problem areas that gave rise to the issues and to
prioritize them according to their criticality. The interviewees were six experienced
users with the framework, from different teams and roles which are explained further
in section 3.2.2. The interview instrument used in the initial interviews is found in
Appendix A

Additionally, to understand the structure and the components of the framework as
well as how developers handle it, we reviewed its code and documentation as well
as the interview data collected from the developers and testers as shown in figure 3.1.

To find approaches addressing the issues, we elicited information regarding the cur-
rent trends in Software engineering by analyzing how the issues are addressed in
literature, like the IEEE Standard for Software Reviews and Audits [82] or IEEE
Standards for Software Maintenance [83].

The purposes of the investigation was i) to lay the foundation for developing a tool
for one of the issues that will help humans in making decisions during development
and ii) to find ways one can facilitate finding reviewers.

1The stakeholders are any maintainers of the TF that needs to find reviewers in their work
including testers and developers

16

3. Methods

Conduct
interview

Analyze interviews
and prioritize

problems

Implement tool Create guidelines

Conduct literature
review

Evaluate
recommendationEvaluate tool

Report results

Guidelines
on finding
reviewersCIA

Conduct
Literature reviewState problems

Conduct literature
review

Figure 3.1: methodology activity diagram

3.1.1 Process for reviewing literature

We conducted a literature review in preparation for the thesis and two reviews dur-
ing the thesis work: i) one mainly focused on CIA, and ii) one focused on finding
solutions for how to facilitate finding reviewers. We used the same methodology
during all literature reviews, which is described in figure 3.2.

First, we identified general topics of research that may be of interest and then for
each area we identified keywords with which to search for articles, for example soft-
ware testing, test execution, change impact analysis and code reviewer. We analyzed
the titles of articles we found to determine if they were within the topics of interest
in which case we would save them for closer inspection. Next we read the abstract
of all these to determine if they were within the scope and if they were, we would
continue to read them thoroughly.

For every article we read that we deemed was within our scope, we attempted to
use a snowballing approach in two ways. First, to find new keywords with which we
could perform further searches and second to find new sources by looking at their
references. Thus our approach has been highly iterative.

17

3. Methods

Figure 3.2: Our process during literature review

3.2 Case company
In this section we introduce the case company, Ericsson, by explaining the testing
framework they use, their code reviewing process and the challenges that exist in
the process.

Ericsson is one of the leading providers of Information and Communication Tech-
nology (ICT) to service providers with more than 97,000 employees world wide.
The study was conducted at Ericsson located at Lindholmen, Gothenburg. Ericsson
provided the study with access to the testing framework, documentation, training
material and knowledgable personal for aid in working with the framework and for
interviews.

3.2.1 Testing framework
The Ericsson product in question is regression tested continuously especially at
weekends since hardware resources are expensive and there is always a very high
utilization of these resources during weekdays. To automate the testing effort a
testing framework is used and it has many users (usually more than 150 testers),
and everyone has access rights to make changes in the framework. The framework
itself consists of several parts as shown in figure 3.3.

There is a set of system testers that maintain the test cases and the framework.
When a test is run, an automation tool called AutoTT uses a test case, which is
fetched from the test case database TCDB, to configure how the test is going to
be run and then runs test scripts that execute the test. These in turn use parts of
LIBgeneral, which is a repository of libraries, in their execution. Furthermore there

18

3. Methods

are hooks, test scripts which test special/certain cases, that TCDB sometimes uses.
This thesis will focus on the part of the test framework that is inside the grey box
as the issues are most prevalent in these parts. We will refer to this part as TF for
simplicity’s sake.

Since a large part of the code may not be ran until the weekend, failures in it can
result in missing or incomplete test status. Coupled with the feedback time for those
changing this code it can be very expensive if faults in this code are not found early.
One such example could be that one defect could set back project goals with one
week since re-execution is needed during the week which causes delays for others
utilizing the same resources.

Thus, increasing the maintainability of the TF by increasing understandability and
modifiability of the TF may significantly reduce maintenance costs.

AutoTT

LIB
general

Test
scripts Hooks

TCDB

Fetches
data

usesruns

uses

System testers
and

Reviewers

Maintains

Figure 3.3: The test framework

The two main issues in the TF that need to be addressed to improve its maintain-
ability are: i) estimating impact of modifications and ii) finding reviewers.

When modifying the TF, there is a significant risk that a large number of test cases
are affected. This is very hard to detect as there is no current way of seeing what
impact any modifications may have and these may cause cascading changes in the
system. Thus whenever a developer modifies the TF, there is a significant risk that
a set of test cases will fail, not because of the system under test itself but because
they are using some part of the TF that has been modified. Therefore, CIA in our
context is analysis of impacted test cases caused by modifications in the TF.

Furthermore, when a maintainer modifies a part of the TF, there is, currently, no

19

3. Methods

instrumented support at Ericsson to know who should review their changes. Due
to the difficulties in finding ideal reviewers, it is difficult and risky for an arbitrary
tester to accept modifications and guarantee that their new modifications are valid.

These issues are currently a problem in Ericsson’s process and in the future the
number of test cases and working developers may increase, further accentuating the
issues. Therefore the current process must be changed to address these issues.

3.2.2 Code reviewing practices for test code at Ericsson
There are three main roles among the maintainers of the framework including XFT,
LSV and TOR. XFT’s (cross functional team) are responsible for adding new fea-
tures to the product and also new testcases or updates to testcases to test the new
feature. LSV’s (Latest system version) are responsible for the regression testing.
TOR (Test object responsible) are four individuals each responsible for a specific
test objects, which include stability, robustness, capacity and IRT (installation and
replacement test).

When an XFT or LSV has made changes/added functionality they send their code
for review to the corresponding TOR. The TORs review and/or assign reviews to
other people from XFT or LSV depending on who would be best suited to perform
the review.

Figure 3.4: The different roles in the TF

Any code that is produced at Ericsson must be reviewed before it can be accepted
and every modification should be reviewed by at least two reviewers and any major
modification must also be approved by the areas TOR. All XFT’s and LSV’s work-
ing with the product know who each TOR is and which areas they are responsible for.

To ensure that all code is reviewed, Ericsson uses a code reviewing tool that allows
users to submit modifications for review and selecting reviewers as shown in fig-

20

3. Methods

ure 3.5. The tool enables reviewers and authors to discuss issues and saves all such
information for traceability purposes, including reviewers and authors of issues, com-
ments, projects, branches, files, commit histories and more. For a developer, you can
see all issues she has worked on or is working on as well as any issue she has reviewed.

However, the tool does not explicitly forbid a single reviewer from giving a high
enough score to pass, nor does it explicitly require certain people, for example
TOR’s, to review it. Thus, it is possible to violate the practices described above.
This is one reason why traceability is necessary because if one can trace all issues,
any such violations can be found and the committed changes can be removed.

Framework

Send changes
for review

Gerrit

Developers/ Testers

Reviewers

Modifies Modified
file

Reviews and
send feedback

Figure 3.5: The working process of developers, testers and
reviewers using Gerrit

Ericsson applies continuous integration. All changes that are submitted are kept
at small sizes so reviewers can easily understand the changes with less explanation
required from the author, which helps reducing the time required to perform re-
views. Furthermore authors generally describe their changes, sometimes providing
motivations for why the changes are being made.

Teams at Ericsson are encouraged to create and run unit tests for all code they
produce to ensure that any code that is submitted for review has already been
tested. This practise is rigorously followed by all teams working with the SUT, but
it is not a strict requirement for teams working with the TF and so most such teams
do not follow this practise.

21

3. Methods

3.3 Change impact analysis: Finding a suitable
technique

In order to identify what CIA techniques will suit our needs, we used Li et al.’s
framework for comparison of CIA techniques [1]. The framework presents a set of
seven properties used to characterize CIA methods so that they can be compared.
Our results in using this framework for finding a technique for CIA are presented in
section 4.2.

The properties of the framework are:
1. Object - The change set and the source of analysis
2. Impact set - The output of the analysis composed of the impacted elements
3. Type of analysis - The type of analysis that is performed. The existing types

of analysis are static and dynamic analysis. Each has some sub-types as shown
below:
(a) Static Structural - analysis of structural dependencies of the code.
(b) Static Historical - analysis of change history repositories.
(c) Static Textual - analysis of comments and or identifiers in the code to

identify conceptual dependencies (coupling).
(d) Dynamic Online - the analysis is done as the program executes and while

data is being collected.
(e) Dynamic Offline - the analysis is done post execution after all data has

been collected
4. Intermediate representation - The representation of the source code used by

the tool.
5. Language support - What programming languages support the techniques.
6. Tool support - If there are tools supporting the techniques.
7. Empirical evaluation - whether or not the techniques have been empirically

validated.

3.4 Process for finding ways of facilitating reviewer
identification

While it is possible that the issue of finding reviewers may be addressed by using a
tool for reviewer recommendation, it is also possible that the issue can be addressed
by dealing with the root causes of the problem. Therefore we elicited information
about the working process of developers in the first set of interviews to find such
root causes. Specifically we asked how developers at Ericsson find reviewers for their
code and what challenges they face. The findings are presented in section 4.1.

After identifying the root causes we decided to investigate three main topics in liter-
ature: i) code review best practices, ii) code ownership and iii) tools for automatic

22

3. Methods

reviewer recommendation.

First we investigated the current best practices in code review including, known
issues and practices that address them. The purpose was to identify practices, not
already in use at Ericsson, that may address the root causes of the issues in the
current code review process.

One of the main root causes identified was that there was no responsibility of files
in the TF, meaning that there are no developers responsible for understanding and
maintaining the files. Therefore we investigated the concept of code ownership to
find solutions for how to handle responsibility in the TF. Specifically we tried to
find models or approaches for managing code ownership that could be applied to
create and maintain a clear structure of responsibility in the TF.

Lastly we investigated tools for RR to find out what tools were available and what
different techniques are used in these. Due to the uncertainties in what the require-
ments would be for such a system at Ericsson we decided to investigate what factors
one should consider before implementing such a tool with the goal of providing Eric-
sson enough information to be able to take the first steps in adopting RR tools. We
did this by analyzing different tools to identify common factors among them that
one may need to consider, for example, if there are common ways of gathering data.

Based on our findings in literature we compiled a recommendation for how to change
the current code review process by adopting best practices, a recommendation for
how to manage responsibility of code by applying a modified model for managing
code ownership and lastly a set of guidelines for what to consider before adopting a
tool for RR.

3.5 Evaluation methodology
In this section we present the method used to evaluate the tool for CIA and the
guidelines for choosing a tool for finding reviewers. First we describe the objectives
of the evaluation, then we describe the plan, the process and finally the interview
instrument and our plan for validating it.

3.5.1 Objectives of the evaluation
As described at the start of section 3 the two objectives for our tool were i) to
help maintainers understand the test cases, the TF and dependencies between them
and ii) helping maintainers understand the potential impact their modifications may
have so that corrective action may be taken to avoid introducing defects.

Therefore the objective of the evaluation was to determine how well the tool achieves
these objectives. This in turn allows us to determine the usefulness of the imple-
mented tool for CIA, in terms of increasing modifiability and understandability of

23

3. Methods

the TF thereby answering RQ1 and RQ2.

As for the guidelines we had to determine if they were useful for understanding
and selecting RR tools that suits one’s needs and if there were relevant factors not
included in the guidelines. By determining this we can verify whether or not the
factors we included in the guidelines are relevant as well as identify missing factors
allowing us to complement and validate our results regarding RQ5. Therefore we
include this as the last objective of the evaluation.

3.5.2 Evaluation plan and process
The target population were developers and testers at Ericsson that are currently
working with the TF that we implemented the tool for. Thus, the population were
small and their availability was limited due to their workload. Therefore the inter-
viewees were selected by our industry supervisors as they knew who was available
and who would be working on the parts of the TF we implemented the tool for. Five
maintainers were interviewed in the evaluation, including two TOR’s, one XFT’s and
two LSV. The evaluations were ongoing for the last three weeks of April (9th-30th)
and during this time we had maintainers try using the tool and then we interviewed
them about their experiences.

Through the interviews, we elicited information about the tool’s usefulness, the
working process of the maintainers as well as improvement suggestions for the tool
itself. The improvements will be incorporated during the adoption of the tool to the
maintenance toolkit, after the conclusion of the thesis work.

To evaluate the usefulness of the guidelines for choosing RR tools we applied the
them in the context of Ericsson to identify suitable tools and presented the results
along with the guidelines to a TOR. The TOR was then interviewed to provide
feedback regarding the usefulness of the guidelines and the results. The TOR was
selected for the evaluation because of their extensive experience within the review
process and their good knowledge of the testing framework and Ericsson.

The evaluation of the CIA tool used the following process.

Training: The participants were given the implemented tool and we explained its
purpose. To explain the usage of the tool we provided them with use cases for the
intended purpose of the tool and gave them access to a wiki explaining the tool.

Usage: The users then returned to their daily work and tried using the tool in their
work.

Interview: After testing the tool each user was interviewed about their experiences
using the tool and asked about its usefulness. Each interview was recorded for later
transcription and analysis.

24

3. Methods

Analysis: In order to save time and be able to perform as many evaluations as
possible we began transcription and analysis of elicited data from each interview
after they had been conducted and in parallel to having other users trying the tool.

We analyzed the transcribed interviews qualitatively by identifying recurrent themes.

The evaluation of the guidelines for selecting RR-tools did not include any training,
and the usage was limited to a presentation of the guidelines and the recommended
application of them.

3.5.3 Interview instrument
The interviews were semi structured, as described by Runeson [39], where we asked
both open and closed questions. We used semi structured interviews because we
needed to catch a possibly wide array of topics. Each user may have different ex-
periences and to fully capture this we had to be able to adapt the interviews by
asking follow-up questions and possibly deviating from the order of the questions.
However, we had very clear objectives that we needed to answer so we could not
use completely open interviews either, as we need a specific set of questions answered.

Therefore we designed our interviews to follow the Funnel shape described by Rune-
son [39], where we started by asking more general and open questions in an attempt
to capture as much knowledge as possible without introducing bias from possibly
leading questions. We continued by narrowing the discussion down to the subjects
of interest by asking more direct questions aimed towards the subjects of interest
for our research.

The interview instruments for the CIA tool and the guidelines are both found in
appendix A.

The constructs we use should comply with the existing constructs from state of
the art CIA research, so that we are using the right tool. We used the guidelines
by Pfleeger and Kitchenham [73, 74, 75, 76, 77, 78] to evaluate the validity of our
research in addition to Runeson’s guidelines [39] to validate the interview instrument.

To ensure construct and criterion validity of our interview instrument we sought to
identify similar instruments used in previous research. However, as mentioned in
section 2.2, not one of the tools we investigated, which other than those previously
mentioned include tools by Acharya et al., Breech et al., Poshyvanyk et al., Gethers
et al., Buckner et al., Gwizdala et al. and Li et al. [8, 4, 55, 56, 57, 58, 7], were
evaluated by interviewing users that were allowed to test the tool. This finding is
no surprise given that Jiang found that few, if any, instruments and tools used in
CIA are in fact transferred to industry [23]. The fact we have not been able to find
any tool that has been evaluated by actual users may be a contributing factor to
the slow adoption of the many techniques for CIA.

25

3. Methods

This lack of instruments and sources to use for comparison when designing our own
instruments is an inherent threat to the validity of our instruments.
However, we rely on the sessions with experienced practitioners to validate the con-
tent of our constructs and their value to Ericsson’s maintenance processes. Addition-
ally, we reviewed the interview instrument in different sessions with our academic
supervisor to check for possible sources of bias and refined the questions.
To further mitigate this threat, we analyzed interview instruments used in research
in other areas to assist in creating our own [12, 89, 90]. Specifically we analyzed how
the researches established a purpose with each questions and how they tied their
questions to their objectives.

Certainly, we hinder our external validity, since generalization is limited given the
current construction and content validity. Conversely, our methodology contributes
to the field, by including reusable research instruments for future work involving
technology transfer of CIA techniques and tools.

26

4
Results CIA

In this section we present the results of the main part of the study. First the results
of the initial set of interviews are presented and then we present the tool that was
developed. We describe the requirements of the tool which were elicited using Li et
al.’s framework [1], the implementation of the tool, its process and the results of its
evaluation.

4.1 Results of interviews
The interviews provided us with the following insights regarding the working process
at Ericsson:

1. CIA
(a) There are no tools that are used for performing CIA.
(b) Some teams working with the TF use unit tests to assess the impact of

changes but it is not common practise.
(c) There is no general process for how to do CIA.
(d) Many rely on their experience to determine the impact of changes.
(e) The file structure is unclear.
(f) Figuring out whether modifications break the code elsewhere is very im-

portant.
2. Finding reviewers

(a) There are no tools for reviewer recommendation
(b) Many stated that finding reviewers is a problem because people outside

their team, excluding the TOR, don’t have the necessary knowledge about
their code to give good reviews.

(c) Some of the interviewees stated that the response time of the reviews is
too long.

(d) There is no responsibility of files, meaning there are no people assigned
to be responsible for files.

(e) There is a significant lack of documentation for code, except for some
code that was developed recently

(f) The system testers have limited knowledge about areas outside their ex-
pertise.

These findings show that there are several challenges in the current working process.
The lack of documentation and tools for analysis of TF code at Ericsson make it
difficult to estimate risk or trying to understand a piece of code as developers have

27

4. Results CIA

to rely on manual approaches for these tasks, often using debugging tools.

Another issue that slows down the process is that there is no standard for struc-
turing files and as a result there are many paths in the TF that contain unrelated
files which may affect maintainers ability to navigate and understand the code. We
believe that the root causes of why it is hard to find reviewers are related to findings
2.a, 2.d, 2.e, 2.f.

Since the TOR’s are few they can quickly become overburdened by reviews and
currently the response time of the TOR’s is an issue as it may take several days
before a response is given, according to several interviewees, which is likely caused
by the high workload on the TOR’s.

While we can’t determine if finding 2.b actually reflects reality at Ericsson it in-
dicates that there is either a problem in sharing of knowledge between teams or
that there are not enough means for users to determine the competence of other
developers.

Some also mentioned that the feedback they get is sometimes not useful, focusing
on minor issues while overlooking more serious ones. If a TOR is performing the
review, they may not have time to review the code in enough detail to give useful
feedback. On the contrary one interviewee stated that because of the TOR’s wide
knowledge of the code, the feedback the TOR’s provide may be incomprehensible for
the author as it requires a wider understanding of the code than the author possesses.

If someone other than a TOR is performing a review, the quality of the feedback will
be heavily impacted by their previous knowledge of the code and their ability to gain
such knowledge. The lack of documentation slows down this process as reviewers
have less information available for understanding the code, which likely affects the
usefulness of the feedback they can provide. Furthermore there are no established
guidelines for how to write reviews or how to perform CIA so depending on who
performs the tasks, the process may differ.

4.2 The tool for CIA
To find a technique that suited our needs we first identified the requirements imposed
by the context at Ericsson and elicit what they meant in terms of the properties
in Li et al.’s framework [1], which we presented in section 3.3. We then used the
framework to identify what methods or approaches are available for implementation.
We describe this process in detail in the following sections.

4.2.1 Object of analysis:
The object of analysis refers to the change set and the source. The change set is the
set of modifications made that one wishes to determine the impact of. The change
set can have five different levels of granularity depending on the need of the analysis

28

4. Results CIA

including file, class, method, field and statement changes. A change set can also
include textual changes.

The source refers to the code that is analyzed and it can either be a single version
of the source code or multiple versions. The source may also use execution data,
which is usually used to improve the precision of the impact set.

In our case the granularity of the change set would likely need to be on the code
statement level because our goal is to find out what parts of TF are affecting what
test cases. Having a finer granularity will greatly assist in providing a clearer pic-
ture of the real impact as one is able to check the impact of just the modified code
statements.

The requirements regarding the source of analysis in our case are less clear as they
greatly depends on the type of analysis we choose. If we were to choose historical
or textual analysis it is likely that we could run analysis on multiple versions of
the software as we would analyze the history from the version control system rather
than the system itself.

One other option would be to rely on execution data for the analysis by for example
using coverage information. Using coverage information we could perform CIA by
mapping the dependencies between different test cases and the parts of the TF they
use. Furthermore, by analyzing coverage we can also identify how frequently parts
are being used, which could be helpful in determining the risk of modifications. Thus
using execution data may be a good option as it could directly assist in achieving
our goals with the tool. However, using execution data puts more demanding re-
quirements on the object of analysis.

To gather execution data the regression suite must be executed and since it is so
large it can only be run once a week. Therefore we can’t gather data from multiple
versions at the same time as that requires the entire test suite to be run several
times with different versions and there aren’t enough resources to do so.

Even though it would be possible to save data from weekly executions (e.g., to be
used in later analysis), older information may become obsolete because of the high
frequency of change, and the inclusion of such data would lower the accuracy of the
results. Therefore it would be best to only use data from the current version during
analysis.

In summary, if we were to use a method relying on historical or textual analysis
we could use multiple versions of the object of analysis. But if we were to rely on
execution data in the analysis we would have to use a single version of the object.

29

4. Results CIA

4.2.2 Impact set
There were two main goals with the CIA tool we implemented. First it needed to
help maintainers in understanding the test cases, the TF and the dependecies be-
tween them. Secondly it needs to help maintainers in understanding the impact that
any modifications they make in the TF may have on the test cases. The impact set
of any chosen tool would have to provide the necessary information for these goals.

In Li’s framework, the levels of granularity for the impact set are the same as for
the object. To see which parts of the TF were used, we were only in need of an
impact set on the file level, showing which test case files use the selected file or code
statement.

To achieve our goals we do not need a finer granularity than file level in the impact set
as we are merely interested in which test cases are using which parts of the TF. The
test cases themselves are not directly using the parts of the TF, rather they instruct
the automation tools which then uses scripts that run the TF. Thus, there is little
interest in examining the test cases on a finer granularity. Furthermore, choosing a
granularity of file level helps keeping the size of the impact set on a manageable level.

4.2.3 Type of analysis
Regarding the type of analysis, the choices available were very limited because of
the context. Because there are no explicit dependencies between the TF and the
test cases in the code, static structural analysis can’t be used to elicit information
about such dependencies, as it relies on explicit dependencies in the code to per-
form its analysis. While textual and/or historical analysis may provide insights of
conceptual dependencies, it is likely that the impact set generated would become
too large to handle and be too inaccurate [2, 3]. Because our aim is to create a tool
that can be used whenever making changes, the information has to be more precise
and easy to handle. Therefore dynamic analysis was a more appropriate option as
it, while being computationally costlier than static analysis, is more precise [1, 4].

In fact, dynamic analysis has some specific benefits in our context in that it may help
in removing dead code1 and its accuracy is not impacted by the presence of dead
code as dynamic analysis relies on execution data. A finding from the interviews
was that there is a lot of dead code in the TF. If we were to use static historical or
static textual analysis, it is likely that dead code would be included in the analysis
which could affect their accuracy. Thus this finding further strengthens the choice
of a dynamic analysis technique.

A potential problem with dynamic analysis is that it tends to include more false
negatives, not showing parts that are affected by modifications, than static analysis
[1, 4]. However, Breech also states that when the safety of the impact set is not

1Dead code refers to code that is either never executed or whose results are never used.

30

4. Results CIA

critical for its use, they may be more practical to use than sets generated from static
techniques. In our context, the safety is not critical as the goal is to aid developers
in performing CIA and maintaining a testing framework rather than it’s SUT. The
worst case scenario an overlooked false negative could have, meaning that the tool
missed some dependencies, is that a set of test cases unexpectedly fails when a part
of the TF is modified despite the developers having taken actions to ensure no test
cases should fail. Furthermore, many false negatives would likely stem from test
cases that are not being run, which would be test cases that are not part of the
regression suite. These could be interesting to investigate to determine if they can
be removed or not but are not critical because of their exclusion from the regression
suite.

Regarding the type of dynamic analysis, we could only choose one because of limi-
tations of the context. Online dynamic analysis is not desirable because as we have
already stated in section 4.2.1, if we were to rely on execution data, we are limited
to gathering such data once a week. Therefore the best choice for type of analysis is
dynamic offline analysis. Note that dynamic offline analysis does not hinder us from
gathering data during the week if specific test cases are modified and executed, it
only means that the analysis of the elicited data does not have to occur as we are
eliciting it.

Because we need to use dynamic analysis we can finally determine the requirements
regarding the object of analysis. We have to rely on a single version of the object.

4.2.4 Intermediate representation

We were unable to identify any specific requirements regarding the intermediate
representation of a tool for CIA. The representation must be accurate and be able
to represent the source code without loss of information. Because we could not
identify any restricting requirements, we did not consider this factor further.

4.2.5 Language and tool support

The TF is written in python. Thus, we needed a tool that is available for python.
The tools available for any language or specifically for python include:

1. Jimpa - Eclipse plugin that analyzes a change request description and a set of
historical source file revisions. Identifies impacted files by referencing similar
past change requests [59].

2. IRC2M - Computes conceptual coupling which can then be used for impact
analysis [55].

3. LDA - Computes relational topic based coupling which can then be used for
impact analysis[56].

4. Rose - Eclipse plugin that analyzes version history and a change set to deter-
mine likelihood that further changes should be applied in a given section [54].

31

4. Results CIA

All four of the available tools are either using historical or textual analysis and so
it seemed there were no tools for CIA suitable for our requirements.

4.2.6 Empirical evaluation
Empirical evaluation refers to whether or not techniques have been empirically val-
idated. Any technique for CIA should be empirically validated so that different
techniques can be compared to each other [1].

The requirements regarding empirical evaluation in our case are simple. We prior-
itize techniques that have been evaluated quantitatively and/or by actual users as
then we can compare the accuracy against other techniques and gain information
about what users need from such tools.

4.2.7 Choice of technique
As shown in figure 4.1, an ideal tool for our requirements would be a dynamic of-
fline tools that analyses data from one version of the object on the code statement
level, identifies impacted test cases on the file level showing for a selected part of
the object what test cases are affected by it.

We need a tool available for Python and in Python there is a module, called cov-
erage, which dynamically collects coverage information that could be used for CIA.
Therefore we chose to use that module to elicit coverage on the TF as the test cases
are executed during the weekend test suite runs. The elicited information is later
analyzed to identify what parts of the TF are used by what test cases.

Li’s Framework

Object
• Granularity: code

statement level
• Execution data

Impact set
Granularity: file level

Intermediate
Representation

Language and tool
support

Support : Python

Empirical
evaluation

Type of analysis
Dynamic offline

Test Coverage
➢ Python coverage module

Figure 4.1: Ericsson’s context according to Li’s Framework

32

4. Results CIA

Coverage in testing frameworks has some unique aspects to it compared to other
software. Usually, for any piece of software, software coverage tools shows what
parts of the code is tested or not, which assumes the existence of a set of test cases
for the investigated software.

Conversely, we ran coverage on the TF instead. In other words, we reversed the
approach, by using the existing test cases to indicate which parts of the TF were
being used or not. Note that the test cases were not for the TF, rather they were
test cases used on the SUT.

In contrast to a regular SUT, having parts in a testing framework that are not cov-
ered isn’t necessarily a bad thing since it only means that those parts are not being
used in the creation or execution of tests, rather than not being tested. This can
for example mean that there are features that have not been discovered by its users
(e.g. testers at Ericsson) or that there is dead code in the TF.

Thus, by gathering coverage data on the TF when executing test cases we aim to
identify what parts of the TF were used by the test cases and to what extent. For
each test case of interest we can then check what parts of the TF were executed by
it and for each part of the TF we can find out what test cases it affects.

4.3 Implementation process

The implementation of this tool was broken down in several steps. First, we elicited
coverage information by modifying AutoTT such that the module coverage is run
on the TF whenever a new test case is executed on the SUT. Then the resulting
reports generated by coverage are stored in traceable locations, hence connecting
reports to their corresponding test cases.

Secondly we created scripts for performing CIA on the TF on a file level by search-
ing through the elicited information based on a selected file in the TF. Thus the
impact set will be generated when the user selects a part of the TF and enters it
into the tool. The impact set is created by using scripts that search trough the set
of coverage reports that were created during the coverage elicitation.

Then we had to increase the fineness of granularity, regarding parts in the TF, to
the code statement level showing what code statements in the TF are affected by
what test cases. This requires more complex scripts that for every coverage report
examines every part of the report.

Finally, because we were developing a new tool we had to empirically evaluate its
usefulness. We describe this further in section 3.5

33

4. Results CIA

4.3.1 The purpose and process of our tool

As mentioned in section 3 the two main objectives of the tool are: i) To help main-
tainers in understanding the test cases, the TF and the dependencies between them
and ii) to help maintainers in understanding the impact that any modifications they
make in the TF may have on the test cases. The tool accomplishes this by providing
information about what components in the TF are used by what test cases and vice
versa, so that maintainers can determine which test cases are impacted by modifi-
cations in the TF.

The process of the tools is shown in figure 4.2. When the regression suite that tests
the SUT is run over the weekend, the tool runs a coverage analysis over the TF for
every executed test and stores the data in the log files of each specific test case. At
the end of the regression suite’s execution, the coverage data is parsed and stored
in a file as a hash table2. The build name is used as an identifier for each weekly
run and each identifier is unique.

Then when a developer wants to modify a part of the TF, she can quickly find out
what test cases may be affected by the modification by passing the file name and
the line number of the part to the impact analyzer tool. In doing so she is provided
with a list of all potentially affected test cases.

AUTOTT

Coverage
data

collector

Test
Framework

Test log Test log Test log Test log

Coverag
e data

Coverag
e data

Coverage
data

Coverag
e data

Test cases

Last test
case?

No

Yes

runs

Generates1

1. One coverage data per testcase is generated

2. All coverage data is specific to a weekly run, that is one “all coverage data” per week

All
coverage

data2

Tester

runs

Data collector
tool

Parser

store

Testers/Developers/
Reviewers

Impact analyzer
tool

runs

Report(in text
format)

Figure 4.2: The CIA tools and the testers/reviewers
interaction with it

2Hash table (hash map) is a data structure which implements an associative array abstract data
type, a structure that can map keys to values

34

4. Results CIA

A training material, which is in Appendix B, was sent to the testers, developers and
reviewers in advance before they start using them.

An important note related to this is that the risk of a modification is not quantified
by the tool itself. The tool provides a set of potentially affected test cases for
a specific input, which is the modified part of the TF, but the developers have
to manually verify and quantify the actual impact. A complete set of potentially
affected test cases can thus be attained by compiling the results from each individual
input.

4.3.2 Motivating examples

In this section we will provide an example of how a maintainer, who wants to modify
a specific file in the TF called platform_packetloss.py, tries to understand which
test cases will be impacted by her changes. First, we briefly describe how the test
cases are automatically executed each weekend, then how coverage data is collected
and finally how this coverage data is used for impact analysis. At the end of the
section, additional uses of the tool outside the intended use are discussed.

On April 6, Like any other weekend runs, the test portal started running the test
cases one by one. However, at this time the coverage tool has been integrated in
AUTOTT so that at the end of each test case run a coverage file is generated and
stored in the test log directory. These coverage files contain both a text output and
an html output as shown in figure 4.3.

The HTML report is an easily understandable color coded report where one can
check for each test execution which part of the file the test case has used (green
color) and which part of the files it hasn’t used (red color). The coverage file, which
contains line numbers of the TF covered by a test case, on the other hand is not in a
human readable format so it has to be changed to an easily understandable format.
One coverage file and one HTML report are generated per a test case and they are
stored in the log files of each test case. In order to simplify the utilization of these
files, they have to be collected and stored in one file, which is done by running the
collector script. There are hundreds of test cases running hundreds of functions, so
the size of the coverage file is huge (up to 15Gb). Thus, to easily manipulate and to
avoid spending much time in manipulating this file, the final coverage data, which is
a combination of all coverage files generated in one weekend, is stored in hash tables.

Finally, the maintainer who wants to modify the TF can check what test cases are
affected by his changes by running the cia (change impact analysis) script as
shown in the figure 4.4

35

4. Results CIA

Figure 4.3: The coverage file(code statements of the TF
covered by a test case) and the html report generated during

the test run

Figure 4.4: Affected Test cases if platform_packetloss.py file is changed at
line 99

To run the cia script, two mandatory arguments must be passed as an input. The
first one is the file in the TF which is going to be changed and the second argument
is the line number where the change is going to take place.
As shown in figure 4.4, the maintainer was informed that test cases TC16248.9
and TC00_cots_1host are going to be affected if platform_packetloss.py file is
modified at line 99.
Knowing this, the maintainer can make an better informed decision of how to pro-
ceed. she may for example decide to run the test cases after finishing his modifica-
tions or even modify them as needed to avoid introducing defects.

In addition to the above main intended purpose we have found another way that
the tool can be used, namely to identify dead code. The tool provides information
about what parts of the TF are used by the regression suite and so one can also use
it to find out what parts are not used. If some part of the TF does not have any

36

4. Results CIA

coverage information at all, it indicates that it may be dead and by analyzing the
change logs one can determine whether or not the piece of code is actually dead.

As mentioned in section 4.2.3, we found in the interviews that dead code is a recur-
ring problem in the TF and so there is a need to implement tools to assist developers
in dealing with dead code.

In fact, during the thesis work the industry supervisor tried using the tool for re-
moving dead code. Using the tool she was able to identify a set of seemingly unused
files which she then investigated further. After consulting the change logs and the
responsible developers, they decided to remove a total of ten files.
This could be a possible future extension of the tool we implement for CIA, where
the same tool could provide a complete set of all files that lack coverage information
indicating that they should be investigated. However, this is outside the scope of
this thesis and therefore we will not be investigating this matter further.

4.4 Evaluation results of the tool

In this section we present the results of the interviews conducted with the users that
tested the tool. First we present results regarding the research questions and finally
the improvement suggestions.

To ensure the anonymity of the interviewees we refer to them as TOR 1, TOR 2,
LSV 1, LSV 2 and XFT and we will refer to all of the using the female pronoun.

RQ1) Is the tool useful for assisting developers in understanding the TF,
the testcases and the dependencies between them?

TOR 1 one stated that the tool was not useful to her for understanding parts of
the TF because she already knew all she needed to. In her test object there were
significantly fewer test cases to maintain and thus less need for such a tool. However,
she stated that in a test object with more test cases it may be useful. In fact TOR
2, whose test object have more test cases, stated that the tool would be very useful
in this regard especially for understanding how test cases execute. Furthermore she
added that such a tool would also be useful when working with legacy code which
may be difficult to understand by just reading the code. Lastly, both TORs agreed
that this tool would be useful for a newcomer who needs to understand the frame-
work.

Both LSVs stated that the tool would be useful for understanding the code. LSV
1 stated "Having the information about what is truly executed by the test cases is
very useful in understanding the code". LSV 2 specifically stated that it helps in
understanding the structure of the TF, adding that the tool is extra helpful when
working with the TF because of the lack of documentation of those files. Lastly
LSV 2 stated that the tool would be helpful for newcomers to the TF but that it

37

4. Results CIA

can’t replace training.

The XFT stated that the tool would be useful for newcomers but couldn’t say how
useful it would be as she didn’t think about using the tool for this purpose when
trying it out. She added that the tool in its current state is not very useful because
it doesn’t cover a specific type of files called macros 3. These are not python files and
are therefore not covered by the tool. If the tool could cover those it would be useful.

Thus we have found that the tool is helpful for improving understandability of the
TF (RQ1) but in its current state primarily for newcomers or LSVs. However all
interviewees agree that the tool would be helpful if a future extension of it would
include coverage of macros as well.

RQ2) Is the tool useful for assisting developers in understanding the im-
pact of modifications they make or are going to make?

For helping in understanding the impact of modifications both TOR’s agreed that
the tool would be useful. However each voiced similar concerns about the tool. TOR
1 stated that sometimes the impact set too large to manage and in those cases the
tool is not very useful at all. In one case she had selected a file that was used by all
test cases within her test object and was summarily provided with a list of all of her
test cases. TOR 2 stated that while the tool is useful there is a risk that if one were
to send such a list of impacted test cases to a tester she wouldn’t know what to do.
Testers would need to know which files to look into or at least get some more help
in that. Thus there is a need to improve the accuracy of the impact set to ensure
that it is manageable for all users.

LSV 2 had similar concerns and stated "It depends on how accessible the information
is. If it’s simple and straightforward, it would be very helpful. The most critical
part however are the macros and if those could be covered it would be very useful.
If we specify one line of code and we can see which test cases use it, that’s the
information we are after!".

LSV 1 stated "While it is not 100 percent what we are looking for in terms of infor-
mation, it is helpful. We want to know what the problems are and this information
(the information provided by the tool) may help us navigate to the problems."

The XFT stated that, it is useful for impact analysis but without a scale, meaning
that she couldn’t quantify how useful it is. "If we are only going to cover python
files and files within TF, its not useful enough to spend time on. If it could cover
the macros it would be useful but in its current state I see limited usability".

Thus we have found that the tool is useful for improving modifiability of the TF
(RQ2) but there are some necessary modifications that should be made before the
tool is completely adopted.

3Macros are text files which are part of LIB general in the TF.

38

4. Results CIA

Additional uses of the tool
In addition to the intended uses of the tool i.e. understanding the TF and helping
estimating impact, several of the interviewees found other ways to use the tool that
were useful to them.

TOR 1 found that the tool allowed her to do more rigorous controls of change re-
quests. By looking at the coverage data from a specific test case she could check
whether or not the modified code in a change request is actually covered by the test.
She stated that being able to check which code statements were executed by which
tests is something she have wanted but not had the tools to do. Furthermore she
and LSV 1 found that the tool could be used for identifying and removing dead code
by looking at parts with low coverage and then examining change logs and related
files that indicate whether or not the code is used.

LSV 2 found that she could use the tool to help verify the correctness of tests. If a
newly created test case fails, she could use the tool to find all other test cases that
used the same parts of the TF. If they all passed she could often assume that the
error was in the test case rather than the TF.

4.5 Discussion

In this section we discuss the above presented results and the lessons learned from
the study. From the interviews we identify a strong recurring theme regarding both
RQ1 and RQ2. The tool is useful for improving both understandability and modifi-
ability but it needs modifications to make it truly useful for all involved stakeholders.

The two most important modifications are i) adding coverage of macros and ii)
improve the precision of the impact set. If these modifications can be made, all
interviewees state that the tool would be useful in their current process both for
improving understandability and modifiability of the framework.

However, these are not trivial modifications. In fact coverage of macros was inten-
tionally left out at the start of the project, on behest of our supervisor, because of
the difficulty of covering them. The macros are not python files but text files which
are executed in a different way than the test cases. Additionally they have much
more complex dependencies as stated by the XFT "A test case may be using macro
that uses another macro which is using a sub-macro that another test case is using
as its main macro. Those things you don’t see when you do the execution, you only
see what python code was executed. You see the resulting TCDB file which is a copy
of all the variables and macros you have created but that’s just the end result, you
don’t see how you got there." Thus covering them requires an entirely new approach
which would have to be added to the tool. Furthermore, as far as we know these
macros and the way they are used is unique to Ericsson’s framework and as a result
any tool made specifically for this framework that covers macros will likely not be

39

4. Results CIA

applicable elsewhere.

Improving the accuracy of the impact set is also quite difficult. There are two ways
that it could be done but each is problematic. First one could improve the tool
to actually quantify the impact of modifications rather than just showing poten-
tially affected files. By quantifying the actual impact the impact set will become
much smaller as we currently show all test cases using a file or code statement and
not test cases whose function is impacted by the modification of those files or code
statements. Naturally this is much more complex to do as it requires an additional
process after the current impact set is estimated to calculate which test cases are
actually affected by the modification.

Another way to reduce the size of the impact set is to allow exclusion of certain
parts from the impact set. The exclusion criteria could be to only show parts with
a certain coverage level or manually excluding entire sets of test cases. While such
approaches may be very effective in reducing the size of the impact set there is a
great risk that actually impacted test cases are excluded.

Lessons learned about coverage of test systems
The results indicate that there is merit to the idea of providing coverage informa-
tion of test cases, with respect to the test system, to assist maintainers in estimating
impact and understanding a framework. A key lesson is that for such tools to be
useful, they must provide information on all parts of the test system or at least
the parts of interest. Thus it is of interest to identify which parts of a framework
are of interest to cover and which challenges they present before implementing tools.

Not covering all parts of the test system introduces several risks in the use of such
tools. The XFT stated "Low coverage of parts in a test system is not necessarily bad.
Some tests are only executed very rarely like once a month or even more seldom. In
addition there are manual test cases that are not run by the automation tool and
because this tool gathers its data from the automation tool manual test cases are
not covered. This means that there are parts of the framework that will always have
low or no coverage at all and if someone was given that information they may think
that the parts are unused and try to remove them."

Furthermore, both the XFT and the LSV expressed concern that showing coverage
in the context of a test system may be misleading because of the difference in what
coverage means in a test system compared to an SUT. In an SUT coverage shows
how much of the code is tested and thus low coverage indicates insufficient testing.
This is not the case in a test system as its tests are for an SUT not for the test sys-
tem itself. The coverage in a test system only indicates which parts of the system
are used by the tests.

Because of this difference in meaning, coverage may behave differently in a test
system as well. A component of an SUT may be tested for different purposes, for
example functional testing or stress testing and in either case the same or similar

40

4. Results CIA

parts of the SUT will be executed. However, this change in testing may cause a
complete shift in the coverage of the test system as different parts of it are used
for the different tests. Thus coverage in a test system will vary to a greater degree
depending on which test cases are executed compared to its SUT. The XFT stated
"In Ericsson’s case the test priorities are usually different in each week and so dif-
ferent tests are selected for execution. Thus the coverage of their framework will
also vary greatly from week to week which may cause confusion and frustration for
maintainers if they don’t understand why this is.

Thus, when adopting tools that use coverage in the way ours does there must be suffi-
cient training and instructional material for maintainers to understand and properly
use the tools.

Different maintainers have different needs
Despite our small number of interviews, we were able to see some distinct needs for
LSVs and TORs with regards to what the tool provides. The TOR needs the tool
for understanding and controlling change requests that are sent to them. The LSVs
on the other hand need information that can help them when working with the test
cases for example to localize faults, help them understand the test cases or to verify
the correctness of test cases.

Because of the difference in needs it may be desirable to elicit further informa-
tion about the requirements from each group with regards to tools for CIA before
making modifications to the tool. It may very well be the case that the needs of
one group contradict the needs of another or that a necessary modification/feature
for one group may impact the usefulness of the tool for another. Furthermore, as
mentioned three interviewees found additional uses of the tool, which suggests that
there are other needs that may be met with tools providing similar information. To
fully capture the needs of each role one should start with thorough requirements
elicitation for each role. By creating an overview of these needs one can determine
whether or not to implement tools for each role or just one tool that may have
specific features for specific roles.

4.5.1 What are the challenges in implementing a tool for
CIA in a test framework?

To answer our third research question we conduct a retrospective analysis of the
challenges we have faced during the implementation of the tool. The purpose is to
identify possible challenges that one should consider when implementing such tools
for a testing framework.

Choosing frequency of data elicitation
One of the first issues we ran into was when and how often to elicit coverage data
since it has a significant impact on the tool in terms of accuracy. If ones organization
has a very high frequency of changes, one has to ensure that the data is collected

41

4. Results CIA

often to avoid using obsolete data.

As described in section 4.2 the context of Ericsson’s framework limited us to re-
lying on coverage data which we elicited once a week because of the high costs of
executing the regression suite. Even though Ericsson runs regression test cases on
weekends, our tool has a capability to elicit coverage data at anytime as long as they
are regression test cases run by the test portal.

Thus, practitioners should be aware of the recency of the data they are using as it
could affect the accuracy of the tool.

Choosing granularity of object and impact set
The second major challenge we encountered was deciding what levels of granularity
the object and impact set should have. The granularity of these are directly related
to what the tool has to achieve. Furthermore, achieving a more precise granularity
often implies additional efforts and the challenge presented is to balance the needs
of precise granularity versus the required efforts.
In our case we had to achieve a granularity on the method level for the object at
least because maintainers needed to see for specific modified parts of the TF what
could possibly be impacted. However because the efforts of achieving a granularity
on the code statement level were very small we decided on a finer granularity than
absolutely necessary. As a result maintainers can even more accurately determine
the impact as they know precisely which code statement they are analyzing as
opposed to which method.
For the impact set we needed to see which files were affected and so the impact set
needed a granularity of file level at least. Improving the granularity further turned
out to be very complex because of our selected approach and how tests are executed
by the automation tool. Because of this and the fact that our priority was to de-
termine which test case files are affected by modifications we decided to not spend
effort trying to refine the granularity.

Covering sub-processes
The third challenge we faced was inability to cover files in the TF run by sub-
processes. The coverage module used can cover files which are run by a sub-process,
but achieving the module to do that involves extra steps which are not trivial, which
are:

• First, upgrade-to/install the 4.3 coverage version or later.
• Second, configure the module as specified in the module help page to support

sub-processes.
• Lastly, change the system python environment setup. To cover all files run in

sub-processes, the coverage module should be started before a test execution
starts. This is done by modifying/creating the sitecustomize.py file to start
the coverage module before anything else. sitecustomize.py is one of the files
a python interpreter calls before anything else.

Thus, practitioners should be aware of the architectural complexity of their test
framework in terms of how sub-processes are used. Not considering this may result

42

4. Results CIA

in inability to elicit all coverage data which in turn affects the reliability of the tool.

Covering all necessary parts of a framework
The fourth challenge we encountered was covering all necessary parts of the frame-
work. We decided on leaving coverage of macros as a later extension to the tool we
implemented. However, the implication of doing so was that the usefulness of the
tool was significantly reduced.

This shows that one must be aware of which parts of the framework are critical
to cover as well as the challenges related to doing so. If critical parts are missed
the tools usefulness may be reduced and unless there is a plan for how to achieve
coverage of such parts it is a very real possibility that the tool won’t achieve its goals.

Considering the expertise of the users
The last challenge we were faced with was considering the expertise of the users of
the tool. Any tool for CIA that is implemented must be understood by its users.
If the information it provides is inaccessible due to the complexity of what the tool
shows the tool will likely not be used.

In our case we found that the impact set is sometimes to large to handle for main-
tainers. They needed more precise information or a sensible visualization to be able
to use the tool effectively. Furthermore, as mentioned regarding the lessons learned
about coverage of test systems we also had trouble with the term coverage caus-
ing confusion as the term had a different meaning in the context of our tool. Our
suggested solution to this issue was to provide maintainers with basic training to un-
derstand the tool and how the meaning of coverage changes in the context of the tool.

This shows that one must be aware of the expertise of the people who will use the
tool. The impact of not taking this into account may be that the tool is completely
unusable by its target users.

43

5
Results: Facilitating finding

reviewers

In this chapter we present the findings of the literature review we conducted to
answer our third research question addressing the issue of finding reviewers. First
we investigate the option of adopting an RR tool by identifying key questions one
should answer before choosing a tool to implement. Then we provide a suggestion for
how to change Ericsson’s code reviewing process by applying practices and models
from literature that facilitate reviewer identification. Lastly, we answer the questions
of the guidelines in the context of Ericsson, present a list of available RR tools and
provide a recommendation about which tool to adopt based on the answers.

5.1 Guidelines for choosing a tool for finding re-
viewers

Reviewer recommendation

• File paths
• Comments
• Issue Labels
• Code
• Collaboration history
• Commit history
• Review history

• Time local
• Forgetful
• Time global

• Review expertise
• Modification expertise

Data Used Data Lifetime Reviewer Types

Figure 5.1: Framework to follow when adopting a tool for
RR

45

5. Results: Facilitating finding reviewers

By analyzing and comparing different RR tools we found that there are three main
areas where techniques differ as shown in figure 5.1: i) The data they use, ii) the
lifetime of the data iii) the type of reviewer they recommend. In the following
sections we describe these areas and how the different choices related to them may
impact the choice of technique.

5.1.1 What data do we have that can be used for RR?
In answering this question one can quickly determine if there are any existing tools
that can be used. As mentioned in section 2.3.1, most RR tools rely on historical
data acquired from issue tracking systems, or similar systems. Therefore one can
start by analyzing one’s own systems to identify what data can be acquired from
them.

Depending on the kind of data one wishes to analyze, there may be additional re-
quirements one must comply with for an RR tool to provide accurate results. For
example, when using an algorithm based on analyzing file path similarity there
should be a clear standard for all files i.e related files should be in similar paths.
Such algorithms determine the expertise under the assumption that files with similar
paths are closely related by their function [65].

5.1.2 What is our data lifetime?
How long the data, that the tool uses, is stored may affect the choice of RR tools as
old data may become obsolete and impact the accuracy of certain tools. Lifetime of
data is a significant factor in RR approaches as expertise degrades over time [63, 65].
Some approaches take this into account and some don’t and we can distinguish be-
tween three types of algorithms used in RR approaches which we describe below [65].

1. Time local algorithms - only consider data that was generated shortly before
execution.

2. Forgetful algorithms - consider all data available but weights data based on
recency.

3. Time global algorithms - consider all data available equally.

Time local algorithms are not affected by old obsolete data as they exclusively rely
on very recent data, for example, the line 10 rule which recommends the developer
that last modified the code [66]. The biggest issue with such algorithms is that they
tend to be much less accurate than forgetful and time global algorithms [65] likely
because of the very limited set of data they use.

Both forgetful and time global may increase in accuracy over time as their input data
grows but forgetful algorithms are more accurate as they consider equal amounts of
data but takes its recency into account. Time global algorithms may lose accuracy
if there are changes in the project because old data, that may have become obso-

46

5. Results: Facilitating finding reviewers

lete, is still taken into account. Hannebauer et al. explains this with the following
example “Two reviewers that were active for two years will both be recommended
with equal probability, even if one of them was active only five years ago and then
left the project and the other is still active. This effect decreases their prediction
performance over time and may also affect forgetful algorithms that do not properly
forget obsolete data” [65].

Thus before choosing an RR tool one should consider the lifetime of one’s data.
If data is never removed and the project undergoes significant changes, it may be
necessary to use a forgetful algorithm to get accurate results while if data is only
stored for a shorter time, one might be able to achieve equal results with a time
global or time local algorithm.

5.1.3 What kind of expertise are we interested in?
There are two kinds of expertise that can be analyzed, review expertise which is de-
termined by analyzing a person’s previous reviews and modification expertise which
is determined by analyzing a person’s previous work [65]. There are benefits and
drawbacks with each and the the choice of which to use depends on how well these
benefits and drawback suit one’s needs [65].

Techniques that rely on review expertise have been proven to be more accurate in
their recommendations. They only consider those who have already performed re-
views excluding all who do not have review rights. However, this also means they
exclude potentially competent reviewers if these have not done any reviews, which
prevents new reviewers from being considered by the tool until they have made at
least one review [65]. This could easily lead to the tool always recommending a
small set of reviewers who quickly become overburdened.

Modification based algorithms have a similar problem because such algorithms only
consider people who have made modifications to the code and will therefore exclude
potentially competent reviewers if they have not modified the code. Additionally
modification expertise algorithms may recommend developers without review rights
[65]. However it is possible to take this into account and Hannebauer et al. states
that if such algorithms filter out reviewers without review rights before making rec-
ommendations they will likely achieve a greater accuracy [65].

An advantage with review expertise algorithms is that sometimes it might not be
desirable for the one with the best modification expertise to do reviews, as they may
be better developers than reviewers and might be best used as developers. Because
such algorithms do not depend on the competence one has working with that code
but rather the competence in reviewing it, this is less of an issue than for modifica-
tion expertise algorithms[65].

A significant drawback of relying on review expertise is that tools that rely on it
create cycles as their recommendations affect the data they use in their analysis as

47

5. Results: Facilitating finding reviewers

shown in figure 5.2. When the tool makes a recommendation and the recommended
reviewer performs a review the new review will be added to the review history
and the next time the tool makes a recommendation it will be even more likely to
recommend the same reviewer.

Recommends
Reviewer

Review
History

Uses

Perform Review

Commit
History

Review
History

ARR Tool
Uses

Perform Review

Recommends Reviewer

B. Modification expertise based toolsA. Review expertise based tools

ARR Tool

Figure 5.2: (A) The cycle created in review expertise
algorithms, (B) The non cycle in modification expertise

algorithms.

Modification expertise based algorithms don’t have this problem as the output is
not used by the algorithm itself in its recommendations. As shown in figure 5.2
when the tool makes a recommendation and the reviewer makes a review, it doesn’t
create a positive feedback loop as the algorithm uses the commit history for its rec-
ommendations rather than the review history. This is the one of the main benefits
of modification expertise.

While it is possible to use both types of expertise to determine the expertise of a
reviewer, doing so may have adverse results on an algorithm’s accuracy. Zanjani et
al. found in his study that an algorithm using commits and reviews for its analysis
provided less accurate results than one just using reviews for its analysis [63].

However, there are reports showing that combinations of approaches in RR tools,
for example using review expertise and collaboration history or common interests
and modification expertise, may increase the accuracy of recommendations. Yu et
al. found in his research that an algorithm that combined analysis of expertise and
common interests among developers i.e social factors was more accurate than those
who only used one approach [10]. Additionally many newer algorithms that out-
perform older ones rely on more factors than just expertise including frequency and
recency of collaboration [62] and implicit relations in review data [67]. Those tools

48

5. Results: Facilitating finding reviewers

that do rely solely on expertise often use several metrics like frequency and recency
of reviews/commits to enhance their precision like the tools presented by Zanjani et
al. and Xia et al.[63, 67].

This suggests that there may be benefits using the data of both modification and
review expertise in the same tool but one should carefully consider how the data is
used and for what purpose. While there is a risk of degrading performance when
both are used for determining expertise, they could be used to in the same tool but
for different purposes. For example, one could analyze previous work to determine
the expertise and previous review comments to determine common interests similar
to what Yu et al. did in their study[10].

5.2 Suggestion for Ericsson
In this section we provide a suggestion for how Ericsson can apply these findings to
change their current process to facilitate finding reviewers. First we present what
practices may be applied and how responsibility should be addressed. Lastly we
answer the three questions we have provided in sections 5.1.1, 5.1.2 and 5.1.3 in the
context of Ericssons TF.

5.2.1 Proposed changes regarding practices
To address the issues of improving response times of reviews, the usefulness of feed-
back and finding reviewers MacLeod et al. presents several practices for code authors
and code reviewers, as shown in 2.1.

Most of the practices of table 2.1 are already being applied at Ericsson to some
extent including A.i-iii, R.i, R.ii, R.v and R.vi. However, their use is not mandatory
as there are no actual guidelines for how to do code reviews. Thus a way to ensure
that the practices are more strictly adhered to and to adopt the new practices is to
implement such guidelines. These guidelines should include all practices for authors
and reviewer presented in 2.1.

The new practices that should be included in such guidelines are: R.iii (using re-
view checklists), which may be extended to authors as well and A.iv (testing and
analysis of code). The inclusion of A.iv implies that tools for analysis of code must
be implemented and a good start would be using and extending the tool for CIA
implemented in this thesis. Lastly, to further address the lack of documentation one
could include instructions for how to document code in the guidelines as well. To
facilitate adoption of new practices and establishing a sustainable reviewing process,
Ericsson should also adopt the organizational practices presented in 2.2.

However, while the practices we found address some root causes of the issue of finding
reviewers, like finding relevant documentation and transferring knowledge, they do
not address the lack of responsibility of files or the lack of tools for finding reviewers.
Therefore we suggest addressing this issue by first by creating a clearer structure of

49

5. Results: Facilitating finding reviewers

responsibility, to ensure that there is always at least one responsible developer for
each piece of code and secondly to implement a tool for reviewer recommendation.
As both solutions are complex we provide a more extensive explanation for how to
implement either in sections 5.2.2 and 5.2.3 respectively.

5.2.2 Proposed change for responsibility

Because of the close relationship between code ownership and code responsibility we
use Nordberg’s work, which we presented in section 2.3.2, to find out which model
suits Ericsson best at this time. Note that code ownership should be defined as
having responsibility for understanding, maintaining and reviewing a piece of code.

Because the testing framework is not a newly starting project but a fully functioning
software with many involved developers it is inadvisable to start from the beginning
with the product specialist model with a single code owner. The appropriate model
to adopt at this point would be subsystem ownership, with individual owners for
every sub-system, as there are many functioning components and sub-systems in the
framework. Thus, Ericsson should start by assigning responsibility of such compo-
nents and sub-systems to teams or individuals that are working with them. Finally
to keep track of who has responsibility of what code one could for example create
maintainer files for different components that explain who is responsible for the
component.

5.2.3 Application of guidelines

In this section we answer the questions presented in the guidelines of section 5.1
in the context of Ericsson’s TF. Afterwards we provide a necessary information to
Ericsson for making decisions about how to proceed with RR tools.

What data is available for analysis?
When it comes to data, Ericsson’s code review tool can provide the required data for
almost any RR algorithm available. However, because of their current file structure,
in which unrelated files may have similar paths, it will be difficult to apply RR tools
based on file path similarity because, as mentioned in section 5.1.1. Therefore the
file structure must be addressed before any tools based on file path similarity can
be implemented.

The second issue is that because of the lack of guidelines for how to perform reviews,
maintainers are free to perform many actions that may affect the validity of data
used by RR tools. For example, developers could tag a large amount of reviewers
for a commit, which may give the impression that all reviewers contributed to the
issue. Thus if an RR tool would take that data into consideration it’s accuracy
of recommendation would likely be negatively impacted. Thus we find additional
reasons why such guidelines should be implemented.

50

5. Results: Facilitating finding reviewers

Both these issues should be addressed before RR tools are implemented.

What is the data lifetime?
Currently, there is no limit to how long data is stored and thus there is data from
when the system was first introduced. Because of the lifetime of the data there are
two issues that one must consider.

First, there is a significant risk that developers found in the code reviewing system
are no longer with the company as the data is several years old and many reviewers
have been employed by or left the company in that time span. This means that
any RR tool used at Ericsson must be able to determine if a reviewer is still in the
company or not.

Secondly, because of the high frequency of change at Ericsson, specifically within
the TF, old data becomes obsolete faster. If such data were to be included by an RR
tool it would likely have a negative impact on the accuracy of the tools recommen-
dations. Therefore older information should not be analyzed or at least weighted
lower to avoid this issue. Because of this any RR tool would have to use either a
forgetful or time local algorithm to not lose accuracy in recommendations over time.

What expertise are we interested in?
As mentioned in section 4.1, a finding from the interviews is that there is a percep-
tion that knowledge of code only exists within teams and with certain individuals.
This is a hindrance in finding reviewers as many believe there is no one that has the
necessary expertise to perform insightful reviews.

Because finding reviewers have been a problem at Ericsson for some time, the ex-
isting data of previous reviews may be misleading. It is entirely possible that the
actual reviewers have not been the most suitable ones and therefore modification
expertise may yield better recommendations early on as the recommendations will
be of people who have actually modified the files, or at least similar files. However,
only using modification expertise will likely leave out a large number of competent
reviewers as there are a significant amount of people at Ericsson who perform re-
views but do not produce code.

While algorithms using review expertise risks leaving out reviewers if they have
not performed reviews, the impact of such an exclusion is likely lower as most
who have not performed reviews are either very new or don’t have review rights.
Furthermore, review expertise is much more prevalent in recent algorithms that
significantly outperform older algorithms. Therefore, we suggest using a tool based
on review expertise. We choose not to recommend using an algorithm that combines
both types of expertise because of Zanjani et al.’s findings we presented in section
5.1.3.

51

5. Results: Facilitating finding reviewers

5.2.4 What should be done regarding RR?
Thus, after applying the guidelines at Ericsson we identify two actions that should
be taken. i) Establish a clear standard for files such that similar or related files
should have similar paths. Code that is unrelated should be extracted into separate
folders. In doing this Ericsson lays the foundation for using any RR tool that relies
on file path similarity. ii) Implement a tool for RR that uses a forgetful and/or time
local and a review expertise based algorithm.

Regarding the tool itself we suggest using existing algorithms and tools and mod-
ifying them to suit one’s needs if necessary. In figure 5.1 we present ten different
tools, showing what data they use, what time type they have and what kind of
expertise they use. As mentioned in section 2.3 information from CIA tools can be
very helpful for finding reviewers because you essentially have more accurate input
data to the RR-tools. However, none of the tools in table 5.1 use CIA as a means
to help for finding reviewers.

Tools DATA TIME Expertise
 File

paths

Comments Issue

Labels

file Collaboration

History

Commit

History

Review

History

Time

local

Forgetful Time

Global

Review

Expertise

Modification

expertise

Frequency Recency

REVFINDER X X X X X

RevRec X X X X X X X

WRC X X X X

PR-CF X X X X X

FPS X X X X X

Line 10 rule X X X

Expertise

Recommender

 X X X X

Number of

Changes

 X X X

Expertise Cloud X X X X X

CHRev X X X X X

Table 5.1: Available tools for reviewer recommendation

Based on the answers to the guidelines questions we believe that the three most
suitable techniques are WRC, RevRev and PR-CF. All three are recent tools using
forgetful algorithms and review expertise that have a much higher accuracy than
all other presented tools. In table 5.2 we provide more detailed information about
these tools. We excluded all algorithms based on modifications expertise as all such
algorithms we found were significantly older, most being from research before 2010,
and less accurate.

52

5. Results: Facilitating finding reviewers

During the study we investigated several other tools and the complete list of in-
vestigated tools can be found in appendix A.3. The tools that are not presented
here are tools that were either proven inferior to at least one the tools in the table
or used similar techniques to one or more of the presented tools with similar accuracy.

Tool Input Time Type Top 1 pre-
cision

Size of evalua-
tion

Systems
used in
evaluation

WRC
[65]

File, recency and
frequency of re-
views

Forgetful N/A
60.000 - 120.000
issues and 300-
3000 reviewers

Firefox,
ASOP, Qt
and
Openstack

RevRec
[62]

File paths, col-
laboration his-
tory, frequency
and recency of
comments

Forgetful 49-59
5000 - 23000 is-
sues. 94-202 re-
viewers

Openstack,
Qt and
android

PR-
CF
[67]

Reviews, com-
ment network,
implicit rela-
tions

Time local
and
Forgetful

60-91
3.000 - 15.000
issues and 200-
1500 reviewers

angular,
netty, salt-
stack/sal,
ipython
and
symfony

Table 5.2: Table showing three recent tools for RR

WRC calculates and sums up reviewers knowledge about a specific issue by analyz-
ing review experience for similar files at the time of their reviews. It uses Expertise
Explorer, an OSS platform for running expertise analysis, which is publicly available
on Github. WRC was evaluated on the largest set of issues and with the largest
amount of reviewers but did not use precision or recall to determine its accuracy
which makes comparison to the other techniques difficult. However WRC has been
proven to outperform FPS which was the second best algorithm in the study pre-
senting PR-CF with a precision of 66 to 81 percent for top 1 recommendations. Thus
it is likely that WRC will have a comparable accuracy in terms of precision and recall.

RevRec identifies the file of the modified source code and then looks at who has
reviewed that code in the past while taking into account the reviewers previous col-
laboration with the author. Revrec was evaluated with by far the smallest amount
of reviewers in the systems it used for evaluation. Both WRC and PR-CF were eval-
uated on systems with more than 1000 reviewers while the largest system RevRev
was evaluated on had 200 reviewers. Thus, if this tool was to be applied in a system
where there are more than 200 reviewers there is no way of knowing how well it will
perform. It was however evaluated on some systems that WRC was evaluated on
including Openstack and QT which makes comparisons easier.

53

5. Results: Facilitating finding reviewers

PR-CF uses latent factor modeling and neighborhood methods to capture implicit
relations and it takes recency of reviews into account. It is both time local and
forgetful as it has two tiers in its algorithm. It was evaluated on completely different
projects and it had a much smaller set of issues to work with but more reviewers
than Revrec. PR-CF seems to have a higher precision than both other algorithms
but this could very well be caused by the differences in the evaluation. PR-CF also
has the largest span of accuracy of 31 percentage points compared to Revrec whose
span was 10 percentage points. This suggests that the accuracy of PR-CF may be
affected by the project it analyzes to a greater extent than the other two.

5.2.5 Results of evaluation of recommendation
In this section we present the results of the interview we conducted to evaluate the
usefulness of the guidelines for choosing RR tools. The objective of the evaluation
was to determine if the guidelines provided are useful for understanding RR tools.
Once again to ensure anonymity we will refer to the interviewee by their role or use
the female pronoun.

The interviewed TOR stated that the guidelines are good and provide a quick
overview of such tools. She admitted to not having any previous knowledge about
RR tools.

While she found the first question rather trivial the time types and expertise types
related to the following two questions were of great interest. She stated "That some
tools consider all data is useful to know for us, because here at Ericsson people move
around a lot and the poor guy who worked on something two years ago doesn’t want
to be bothered with reviewing those things. So I can see that we would want a for-
getful algorithm". Furthermore she stated that understanding what kind of expertise
these tools calculate helps to figure out if such tools are of interest. She goes on to
state "When I have a problem I need to find someone for, I might be looking for
someone who is knowledgeable in python for example, or someone who knows the
domain very well, so just modification or review expertise may not be what we are
looking for.".

By having the guidelines presented she understood some of the benefits and limi-
tation of RR tools. She stated that the guidelines gave her enough information to
make a case for whether or not they should investigate RR tools further and when
asked about what Ericsson’s next step regarding RR tools would be she answered "I
think it would be of interest to investigate further knowing this, and tools we find
should be implemented and tried side by side to see which is the most useful. Only
then can we truly see if the tools are useful enough to be adopted".

To quantify the perceived benefit of RR tools she added "If we investigate further, it
should be done by a summer worker or thesis worker because it’s not useful enough
to warrant spending significant paid efforts on it".

54

5. Results: Facilitating finding reviewers

5.2.6 Discussion
The results indicate that the guidelines are useful for understanding RR tools as the
interviewee was able to quantify the usefulness of such tools and make a decision to
investigate further despite having no previous knowledge about RR tools. However,
from the interview we found that there are two additional informational needs when
choosing RR tools that should be included in the guidelines.

The first is to provide deeper explanations for how tools calculate their expertise as
well as more distinct classifications than review or modifications expertise as this
greatly affects the usefulness of such tools in different contexts.

The second is to distinguish between approaches that are just algorithms and those
that are supported by tools. When the interviewee was told that out of the three
recommended tools only one of them had tool support she immediately dismissed
the other two as they would require much larger implementation efforts further ar-
guing that the usefulness of such tools wouldn’t justify the cost of developing them.
Thus there is a need for research that summarizes the available approaches similar
to Li et al.’s work in CIA [1] and separates tools from algorithms.

The fact that modification or review expertise may not be of interest is an obser-
vation that should be investigated further. If practitioners are interested in other
kinds of expertise than modification or review expertise, research on RR tools should
focus on creating tools for those as well.

We found no RR tools that were evaluated with actual users and it is very possible
that the research in RR does not match the needs or practitioners. These needs must
be investigated further so that any RR tools that are developed actually match the
needs of practitioners.

Thus, the answer to RQ5 that we provide may not be complete. In addition to the
guidelines the following should be considered when choosing RR tools: i) Whether
or not an approach is available as a tool or if its just an algorithms and ii) if the
kind of expertise the tool calculate is of interest. However, because of the lightweight
evaluation it is a very real possibility that there are other factors that should be
considered as well. Thus further research on this topic is required to fully answer
RQ5 and the guidelines provided are a starting point for this research.

55

6
Threats to Validity

In this section we address the potential threats to validity in our thesis work.

6.1 Construct validity
Construct validity, according to Runeson, means “to what extent the operational
measures that are studied really represent what the researcher has in mind and what
is investigated according to the research questions” [40].

In our evaluation of the tool we interviewed a small set of users, and the small size
of our sample is a threat to our validity. We addressed this threat by having more in
depth interviews with each user to fully capture the experiences of each user. Our
process to ensure the validity of any instruments created for the thesis is describe in
section 3.5.3. Another threat regarding the interviews is that the interviewees may
not have had enough time to try out the tool. To address this we tried to prepare
the interviewees as best as possible by providing them with training material before-
hand and booking the interviews well in advance. Lastly we made sure to answer
any questions that the interviewees had during the interviews regarding the tool, its
purpose and its process so that the interviewees could get a full understanding of
the tools capabilities and limitations.

Since we relied on manual searches in our literature reviews and did not use any
automated tools for searching larger databases a threat to the validity of the review
is that we may have missed key research reports.

To address this threat we relied heavily on the research that we found by exten-
sively studying the related work reported by experienced researchers and using their
findings in a snowballing approach. Because much of the research we found was
very recent, the most recent being from late 2017, it is likely that relevant recent
research would have been included in such sections. Furthermore we have had a
highly iterative approach where we have been using existing resources to assist in
finding new keywords to perform more relevant searches.

The evaluation of the recommendation and guidelines we provide was very lightweight
as we only interviewed one representative from Ericsson. We addressed this issue
by choosing the representative with great care and the interviewee was one of the

57

6. Threats to Validity

most experienced and knowledgeable employees within the relevant area of Erics-
son. Thus, the interviewee was likely the best suited to assess the usefulness of
any suggested guidelines for choosing tools that would be adopted into the working
process.

6.2 Internal validity
"Internal validity is of concern when causal relations are examined. When the re-
searcher is investigating whether one factor affects an investigated factor there is a
risk that the investigated factor is also affected by a third factor. If the researcher
is not aware of the third factor and/or does not know to what extent it affects the
investigated factor, there is a threat to the internal validity" [40].

In our first meeting with our industry supervisor, we were presented with several
issues they faced in the current testing framework that they wished us to address.
This might have introduced a bias towards what solutions we thought were avail-
able and what parts of literature we would investigate. We mitigated this threat
by in the first set of interviews try to identify what challenges the maintainers were
actually facing, and only once we had compiled the results did we decide on what
to investigate.

Because of the small number of interviews there was a risk that we would miss
important factors that cause problems in the working process. The same risk is
also present during analysis of the results as we may have misinterpreted results or
missed important factors. These are threats that concern all sets of interviews and
the analysis of each.

To address these threats the interviewees were selected with care with help from
the industry supervisor such that all interviewees were experienced in working with
the framework and that each key group that interacts with the framework was rep-
resented. To avoid misinterpretations during the interviews we spent extra time
ensuring that each interviewee understood what they were being asked. As a result
the length of the interviews varied significantly as some interviewees needed much
more time to fully understand the questions and frame a response. All interviews
were transcribed by both researchers individually and later compared to check for
inconsistencies and bias. Any uncertainties that arose were resolved by emailing or
directly talking to the corresponding interviewee to clarify result. We found strong
recurring themes in the interviews which indicates that the findings were at least
relevant.

6.3 External validity
External validity concerns the extent to which it is possible to generalize the findings
and to what extent the findings are of interest outside the investigated case. For

58

6. Threats to Validity

case studies, the intention is to enable analytical generalization where the results
are extended to cases which have common characteristics and hence for which the
findings are relevant, i.e. defining a theory [40].

When creating the guidelines for choosing a tool for finding reviewers we made
generalizations based on literature. Thus, the applicability of the guidelines is de-
pendent on these generalizations. To ensure the validity of our generalizations we
relied heavily on existing research, summarizing findings from several researchers.
Our process to ensure the validity of findings in literature is describe above section
6.1 about construct validity. Furthermore, we found strong recurring themes among
the tools we studied which we based the generalizations on.

Some of the findings in this thesis are very specific to Ericsson since it was the source
and context where the study was applied. For example the macros and the need to
cover them, the different needs of each role and the challenges we encountered when
implementing the tool. More generality of the results can be achieved in future work
as different aspects of our tool and guidelines are applied in different contexts.

6.4 Reliability
Reliability concerns the extent to which the data and the analysis are dependent
on the specific researchers. Threats to this aspect of validity is, for example, if it is
not clear how to code collected data or if questionnaires or interview questions are
unclear [39].

Before conducting the initial interviews we studied documentation of the current
working process and the framework itself to ensure that we had a good grasp of the
process in theory. Additionally our industry supervisors held several sessions during
which they described and explained the process in theory.

To ensure that any of the data we elicited from either interviews or literature was
not influenced by our own bias we always discussed, and reviewed each others find-
ings in literature and both researches were present during all interviews.

59

7
Conclusion

In this study we have investigated how maintainability of a testing framework could
be improved by adopting a tool for CIA and by investigating both practices for
improving code review processes and tools for reviewer recommendation.

Thus we divide the thesis in two parts i) improving understandability and modifia-
bility of the TF, which are two characteristics of maintainability, by implementing
a tool for CIA to use in maintenance tasks and ii) investigating ways to facilitate
finding reviewers by searching in literature. Thus the first part of the study answers
the following research questions:

RQ1: To what degree can modifiability of a testing framework be im-
proved by using a tool for CIA?
RQ2: To what degree can understandability of a testing framework be
improved by using a tool for CIA?

We tried to answer these questions by implementing a tool for CIA based on eliciting
coverage information of the test system as tests for the SUT are executed and then
having experienced maintainers from different roles try using the tool. Finally we
evaluate the usefulness of the tool by conducting semi-structured interviews with
the maintainers.

From the evaluation, we can conclude that modifiability and understandability of
the testing framework can be improved by using a tool for CIA. Thus, we have
found that there is merit to the approach of using coverage information on a test
system for CIA. However, we also found two necessary improvements that must be
made to the tool. First, all parts of the test framework must be covered and not
just the TF. For example, for the tool to be fully adopted at Ericsson, the macros
should also be covered. Second, the impact set of the tool is sometimes to large
to manage and must therefore be reduced to a manageable size by improving the
tools accuracy. From this we learn that that there are key things to consider when
implementing such tools including considering the varying needs of different roles
and the difficulties and benefits involved in identifying and covering all necessary
parts of a framework.

Additionally, a short training should be given to the users of tools like ours, because
using coverage for change impact analysis may be confusing for maintainers who do
not understand the the difference of coverage of a test system compared to coverage

61

7. Conclusion

of its SUT. The users of the tool were familiar with coverage in the context of an
SUT and in this context coverage refers to which parts are tested or not. Thus main-
tainers may for example think that high coverage is necessary. However coverage in
a test system only shows which parts are used and low coverage is not necessarily a
bad thing as it only means that some parts are less frequently used. Thus, training
should be given to users to avoid such kind of misconceptions.

To answer RQ3 we conducted a retrospective analysis of our process developing the
tool and identified all significant challenges we faced as well as the impact they
have or may have had on the tool. We identified five major challenges including: i)
choosing frequency of data elicitation ii) choosing granularity of object and impact
set iii) covering sub-processes iv) covering all necessary parts of the framework and
v) considering the expertise of the users. Each challenge, our way of overcoming
them and their potential implications are described in section 4.5.1.

The second part of the study revolved around answering the following research
questions:

RQ4: What are the current best practices in literature regarding code
review and code ownership that facilitate finding reviewers?
RQ5: What should be considered before adopting tools that support
stakeholders in finding appropriate reviewers for their code commits?

To answer RQ4 we studied literature to find the best practices to facilitate finding
reviewers. The main findings are from research by MacLeod et al. [12], supported
by findings from research by Bacchelli et al. [13], Tao et al. [14], Rigby et al. [25],
Bosu et al. [60] and Fu et al. [61].

First we identified practises that may indirectly help in facilitating reviewer identi-
fication by improving response time and providing authors and reviewers with addi-
tional necessary information. Secondly we investigated practises that may directly
help in facilitating reviewer identification. All identified practises are presented in
section 2.3. We describe how these practises should be applied at Ericsson in sec-
tion 5.2.1. In short most practises should be included in a set of guidelines for all
involved stakeholders at Ericsson describing how code reviews should be conducted.
How these practises are best applied will likely vary depending on the context and
anyone trying to modify their code reviewing process in accordance with the best
practises should be aware that there may be unique aspects in their respective en-
vironment that affect how practises should be adopted.

The Last research question, RQ5, is answered by analyzing literature on RR tools in
order to provide guidelines of what to consider before adopting RR tools. We found
that there are three questions one must answer in order to specify ones requirements
on such tools and identify potential tools that meet these. The questions are i) What
data do we have available for analysis? ii) What is the lifetime of our data? and iii)
What kind of expertise are we interested in?

62

7. Conclusion

The guidelines were evaluated through an interview with one of the most experi-
enced individuals working with Ericsson’s testing framework where we presented the
guidelines and applied them at Ericsson. From the evaluation, we can conclude that
the guidelines are useful and covers most of the important criteria that should be
considered before adopting a tool for finding appropriate reviewers. However, we
found two things that should be added to the guidelines. First, practitioners need
to know which RR approaches are available as tools and which are just algorithms.
Knowing this allows for easier selection of tools that can be compared to each other.
Such information about empirical comparisons between tools may also be of interest
to include in the guidelines. This would require research similar to Li et al.’s work
in CIA [1] where he identifies available tools and characterizes them according to
the factors he introduces in his framework.

Second, the types of expertise need to be differentiated in further detail as practi-
tioners may be interested in additional kinds of expertise, for example programming
language expertise or domain expertise. If this information is acquired and sum-
marized practitioners can much easier identify tools that can determine the kind of
expertise they are most interested in.

Thus we see that at least two questions should be added to the guidelines including:
i) Which available RR approaches have tool support? and ii) Which tools have been
compared to each other? Furthermore, the types of expertise needs to be differen-
tiated in greater detail.

If this research was to be extended another six months, the priority should be to
further investigate the additional necessary features required for full adoption of the
tool (e.g, including coverage of macros). If these can be implemented, the tool should
be more rigorously evaluated by quantitative means such as observational studies
or statistical analysis or even experiments. The end goal of such a study would
be to quantify the usefulness of CIA tools for improving maintainability. Regard-
ing reviewer recommendation a separate study should be conducted where different
reviewer recommendation tools should be implemented and evaluated in practise.
The end goal would be to add to the guidelines information about how well different
tools perform in different kinds of context to further help practitioners identify tools
that may suit their needs.

If the research were to continue for an additional two years, the focus should be
to evaluate the effect of using tools for CIA and RR has had on maintainability of
testing software as well as continuously revising and adding to the guidelines for
choosing RR tools as new insights are found. A key goal that research in both areas
should focus on identifying and overcoming the actual challenges hindering transfer
of research to industry and between the fields. We found that there are many tools
available for both purposes but neither is applied in practise to a significant extent.
Furthermore, we believe that tools for CIA may be used to improve the accuracy of
RR-tools by providing them with more detailed input information about which files

63

7. Conclusion

the RR-tools should calculate expertise for, but we have not found any RR-tools
that utilize CIA-tools in this way. Therefore, researchers should apply tools in prac-
tise to a larger extent to determine how different approaches perform in different
contexts, use tools for CIA and evaluate whether or not such information improves
the accuracy of RR-tools and finally evaluate RR-tools usefulness to practitioners.

Lastly, the usefulness of the guidelines should also be more rigorously evaluated by
applying them in different contexts to find tools, implement them in practise and
evaluate their performance.

64

Bibliography

[1] Li, B., Sun, X., Leung, H. Zhang, S. 2013, "A survey of code-based change
impact analysis techniques", Software Testing, Verification and Reliability, vol.
23, no. 8, pp. 613-646.

[2] Orso, A., Apiwattanapong, T. Harrold, M.J. 2003, "Leveraging field data for
impact analysis and regression testing", ACM SIGSOFT Software Engineering
Notes, vol. 28, no. 5, pp. 128.

[3] Apiwattanapong, T., Orso, A. Harrold, M. 2005, "Efficient and precise dynamic
impact analysis using execute-after sequences", ACM, , pp. 432.

[4] Breech, B., Danalis, A., Shindo, S. Pollock, L. 2004, "Online impact analysis
via dynamic compilation technology", IEEE, , pp. 453.

[5] Chen, T.Y., Kuo, F., Liu, H. Wong, W.E. 2013, "Code Coverage of Adaptive
Random Testing", IEEE Transactions on Reliability, vol. 62, no. 1, pp. 226-237.

[6] Chen, M.-., Lyu, M.R. Wong, W.E. 2001, "Effect of code coverage on software
reliability measurement", IEEE Transactions on Reliability, vol. 50, no. 2, pp.
165-170.

[7] Li, B., Zhang, Q., Sun, X. Leung, H. 2013, "Using water wave propagation phe-
nomenon to study software change impact analysis", Advances in Engineering
Software, vol. 58, pp. 45-53.

[8] Acharya, M. Robinson, B. 2011, "Practical change impact analysis based on
static program slicing for industrial software systems", ACM, , pp. 746.

[9] Jiang, J., Yang, Y., He, J., Blanc, X. Zhang, L. 2017, "Who should comment
on this pull request? Analyzing attributes for more accurate commenter recom-
mendation in pull-based development", Information and Software Technology,
vol. 84, pp. 48-62.

[10] Yu, Y., Wang, H., Wang, T. Yin, G. 2016, "Reviewer recommendation for pull-
requests in GitHub: What can we learn from code review and bug assignment?",
Information and Software Technology, vol. 74, pp. 204-218.

[11] Prechelt, L., Graziotin, D. Fernández, D.M. 2017, "A Community’s Perspective
on the Status and Future of Peer Review in Software Engineering",

[12] MacLeod, L., Greiler, M., Storey, M.A., Bird, C. and Czerwonka, J., 2017.
Code Reviewing in the Trenches: Understanding Challenges and Best Practices.
IEEE Software

[13] Bacchelli, A. Bird, C. 2013, "Expectations, outcomes, and challenges of modern
code review", IEEE Press, , pp. 712.

[14] Tao, Y., Dang, Y., Xie, T., Zhang, D. Kim, S. 2012, "How do software engineers
understand code changes?: an exploratory study in industry", ACM, , pp. 1.

65

Bibliography

[15] Thongtanunam, P., Kula, R.G., Cruz, A.E.C., Yoshida, N. Iida, H. 2014, "Im-
proving code review effectiveness through reviewer recommendations", ACM, ,
pp. 119.

[16] Thongtanunam, P., McIntosh, S., Hassan, A. Iida, H. 2016, "Revisiting code
ownership and its relationship with software quality in the scope of modern
code review", ACM, , pp. 1039.

[17] Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H.
Matsumoto, K. 2015, "Who should review my code? A file location-based code-
reviewer recommendation approach for Modern Code Review", IEEE, , pp. 141.

[18] Szoke, G., Antal, G., Nagy, C., Ferenc, R. Gyimothy, T. 2017;2016;, "Empirical
study on refactoring large-scale industrial systems and its effects on maintain-
ability", JOURNAL OF SYSTEMS AND SOFTWARE, vol. 129, pp. 107-126.

[19] Almugrin, S., Albattah, W. Melton, A. 2016, "Using indirect coupling metrics
to predict package maintainability and testability", JOURNAL OF SYSTEMS
AND SOFTWARE, vol. 121, pp. 298-310.

[20] Midha, V. Bhattacherjee, A. 2012, "Governance practices and software main-
tenance: A study of open source projects", Decision Support Systems, vol. 54,
no. 1, pp. 23-32.

[21] Khan, S., Lee, S., Ahmad, R., Akhunzada, A. Chang, V. 2016, "A survey on
Test Suite Reduction frameworks and tools", INTERNATIONAL JOURNAL
OF INFORMATION MANAGEMENT, vol. 36, no. 6, pp. 963-975.

[22] Xi, H., 1999, January. Dead code elimination through dependent types. In
PADL (Vol. 99, pp. 228-242).

[23] Jiang, S., McMillan, C. Santelices, R. 2017;2016;, "Do Programmers do Change
Impact Analysis in Debugging?", EMPIRICAL SOFTWARE ENGINEERING,
vol. 22, no. 2, pp. 631-669.

[24] Wang, X., Zhang, Y., Zhao, L. Chen, X. 2017, "Dead Code Detection Method
Based on Program Slicing", IEEE, , pp. 155.

[25] Rigby, P.C. Bird, C. 2013, "Convergent contemporary software peer review
practices", ACM, , pp. 202.

[26] Faragò, C., Hegeds, P. Ferenc, R. 2015, "Code ownership: Impact on main-
tainability", , pp. 3.

[27] Nordberg, M.E. 2003, "Managing code ownership", IEEE Software, vol. 20, no.
2, pp. 26-33.

[28] Eldh, S. Murphy, B. 2015, "Code Ownership Perspectives", IEEE Software,
vol. 32, no. 6, pp. 18-19.

[29] Knoop, J., Rüthing, O. Steffen, B. 1994, "Partial dead code elimination", ACM,
, pp. 147.

[30] Damiani, F. Prost, F. 1998, "Detecting and removing dead-code using rank 2
intersection", , pp. 66.

[31] M. Coppo, F. Damiani, and P. Giannini. Refinement Types for Program Anal-
ysis. In SAS’96, LNCS 1145, pages 143–158. Springer, 1996.

[32] Boomsma, H. Gross, H. 2012, "Dead code elimination for web systems written
in PHP: Lessons learned from an industry case", IEEE, , pp. 511

[33] S. Berardi. Pruning Simply Typed Lambda Terms. Journal of Symbolic Com-
putation, to appear

66

Bibliography

[34] [Rafi, D., Moses, K., Petersen, K. Mäntylä, M. 2012, "Benefits and limitations
of automated software testing: systematic literature review and practitioner
survey", IEEE Press, , pp. 36.]

[35] Wiklund, K., Eldh, S., Sundmark, D. Lundqvist, K. 2017, "Impediments for
software test automation: A systematic literature review", Software Testing,
Verification and Reliability, vol. 27, no. 8, pp. n/a.

[36] Collins, E., Dias-Neto, A. de Lucena, V.F. 2012, "Strategies for Agile Software
Testing Automation: An Industrial Experience", IEEE, , pp. 440.

[37] Wiklund, K., Eldh, S., Sundmark, D. Lundqvist, K. 2012, "Technical Debt in
Test Automation", IEEE, , pp. 887.

[38] Leung, H.K.N. White, L. 1991, "A cost model to compare regression test
strategies", , pp. 201.

[39] Runeson, P., Ebook Central (e-book collection), Department of Computer Sci-
ence, Lund University, Institutionen för datavetenskap Lunds universitet 2012,
Case study research in software engineering: guidelines and examples, 1. Aufl.;1;
edn, Wiley, Hoboken, N.J

[40] Runeson, P., Höst, M., Department of Computer Science, Lund University,
Institutionen för datavetenskap Lunds universitet 2009, "Guidelines for con-
ducting and reporting case study research in software engineering", Empirical
Software Engineering, vol. 14, no. 2, pp. 131-164.

[41] Hunt, B., Turner, B. McRitchie, K. 2008, "Software Maintenance Implications
on Cost and Schedule", IEEE, , pp. 1.

[42] Dehaghani, M.H. Hajrahimi, N. 2013, "Which Factors Affect Software Projects
Maintenance Cost More?", Acta Informatica Medica, vol. 21, no. 1, pp. 63.

[43] Zhu, H., Hall, P. May, J. 1997, "Software unit test coverage and adequacy",
ACM Computing Surveys (CSUR), vol. 29, no. 4, pp. 366-427.

[44] Kochhar, P.S., Lo, D., Lawall, J. Nagappan, N. 2017, "Code Coverage and
Postrelease Defects: A Large-Scale Study on Open Source Projects", IEEE
Transactions on Reliability, vol. 66, no. 4, pp. 1213-1228.

[45] Li, J.J., Weiss, D. Yee, H. 2006, "Code-coverage guided prioritized test gener-
ation", Information and Software Technology, vol. 48, no. 12, pp. 1187-1198.

[46] Hutchins, M., Foster, H., Goradia, T. Ostrand, T. 1994, "Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria", IEEE
Computer Society Press, , pp. 191.

[47] Hutchins, M., Foster, H., Goradia, T. Ostrand, T. 1994, "Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria", IEEE
Computer Society Press, , pp. 191.

[48] Wong, W.E., Horgan, J.R., London, S. Mathur, A.P. 1994, "Effect of test set
size and block coverage on the fault detection effectiveness", , pp. 230.

[49] Lin, Y., Chou, C., Lai, Y., Huang, T., Chung, S., Hung, J. Lin, F.C. 2012;2011;,
"Test coverage optimization for large code problems", Journal of Systems and
Software, vol. 85, no. 1, pp. 16-27.

[50] Godboley, S., Dutta, A., Mohapatra, D. Mall, R. 2018, "GECOJAP: A novel
source-code preprocessing technique to improve code coverage", COMPUTER
STANDARDS INTERFACES, vol. 55, pp. 27-46.

67

Bibliography

[51] Perez, A., Abreu, R. Riboira, A. 2014, "A dynamic code coverage approach to
maximize fault localization efficiency", JOURNAL OF SYSTEMS AND SOFT-
WARE, vol. 90, no. 1, pp. 18-28.

[52] Zhang, L., Kim, M. Khurshid, S. 2011, "Localizing failure-inducing program
edits based on spectrum information", , pp. 23.

[53] Ren, X., Shah, F., Tip, F., Ryder, B. Chesley, O. 2004, "Chianti: a tool for
change impact analysis of java programs", ACM, , pp. 432.

[54] Zimmermann, T., Zeller, A., Weissgerber, P. Diehl, S. 2005, "Mining version
histories to guide software changes", IEEE Transactions on Software Engineer-
ing, vol. 31, no. 6, pp. 429-445

[55] Poshyvanyk, D. Marcus, A. 2006, "The Conceptual Coupling Metrics for
Object-Oriented Systems", IEEE, , pp. 469.

[56] Gethers, M. Poshyvanyk, D. 2010, "Using Relational Topic Models to capture
coupling among classes in object-oriented software systems", , pp. 1.

[57] Buckner, J., Buchta, J., Petrenko, M. Rajlich, V. 2005, "JRipples: a tool for
program comprehension during incremental change", IEEE, , pp. 149.

[58] Gwizdala, S., Jiang, Y. Rajlich, V. 2003, "Tracker - a tool for change propaga-
tion in Java", IEEE, , pp. 223.

[59] Canfora, G. Cerulo, L. 2006, "Jimpa: An Eclipse plug-in for impact analysis",
IEEE, , pp. 2 pp.

[60] Bosu, A., Greiler, M. Bird, C. 2015, "Characteristics of useful code reviews:
an empirical study at Microsoft", IEEE Press, , pp. 146.

[61] Fu, Q., Grady, F., Broberg, B.F., Roberts, A., Martens, G.G., Johansen, K.V.
Loher, P.L. 2017, "Code review and cooperative pair programming best prac-
tice",

[62] Ouni, A., Kula, R.G. Inoue, K. 2016, "Search-Based Peer Reviewers Recom-
mendation in Modern Code Review", IEEE, , pp. 367.

[63] Zanjani, M.B., Kagdi, H. Bird, C. 2016, "Automatically Recommending Peer
Reviewers in Modern Code Review", IEEE Transactions on Software Engineer-
ing, vol. 42, no. 6, pp. 530-543.

[64] Kagdi, H., Hammad, M. Maletic, J.I. 2008, "Who can help me with this source
code change?", IEEE, , pp. 157.

[65] Hannebauer, C., Patalas, M., Stünkel, S. Gruhn, V. 2016, "Automatically rec-
ommending code reviewers based on their expertise: an empirical comparison",
ACM, , pp. 99.

[66] McDonald, D. Ackerman, M. 2000, "Expertise recommender: a flexible recom-
mendation system and architecture", ACM, , pp. 231.

[67] Xia, Z., Sun, H., Jiang, J., Wang, X. Liu, X. 2017, "A hybrid approach to code
reviewer recommendation with collaborative filtering", IEEE, , pp. 24.

[68] Xia, X., Lo, D., Wang, X. Yang, X. 2015, "Who should review this change?:
Putting text and file location analyses together for more accurate recommen-
dations", IEEE, , pp. 261.

[69] Balachandran, V. 2013, "Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation",
IEEE Press, , pp. 931.

68

Bibliography

[70] Alonso, O., Devanbu, P. Gertz, M. 2008, "Expertise identification and visual-
ization from CVS", ACM, , pp. 125.

[71] Girba, T., Kuhn, A., Seeberger, M. Ducasse, S. 2005, "How developers drive
software evolution", IEEE, , pp. 113.

[72] Bird, C., Nagappan, N., Murphy, B., Gall, H. Devanbu, P. 2011, "Don’t touch
my code: examining the effects of ownership on software quality", ACM, , pp.
4.

[73] Pfleeger, S. Kitchenham, B. 2001, "Principles of survey research: part 1: turn-
ing lemons into lemonade", ACM SIGSOFT Software Engineering Notes, vol.
26, no. 6, pp. 16-18.

[74] Kitchenham, B. Pfleeger, S. 2002, "Principles of survey research part 2: de-
signing a survey", ACM SIGSOFT Software Engineering Notes, vol. 27, no. 1,
pp. 18-20.

[75] Kitchenham, B. Pfleeger, S. 2002, "Principles of survey research: part 3: con-
structing a survey instrument", ACM SIGSOFT Software Engineering Notes,
vol. 27, no. 2, pp. 20-24.

[76] Kitchenham, B. Pfleeger, S. 2002, "Principles of survey research part 4: ques-
tionnaire evaluation", ACM SIGSOFT Software Engineering Notes, vol. 27, no.
3, pp. 20-23.

[77] Kitchenham, B. Pfleeger, S. 2002, "Principles of survey research: part 5: popu-
lations and samples", ACM SIGSOFT Software Engineering Notes, vol. 27, no.
5, pp. 17-20.

[78] Kitchenham, B. Pfleeger, S. 2003, "Principles of survey research part 6: data
analysis", ACM SIGSOFT Software Engineering Notes, vol. 28, no. 2, pp. 24-27.

[79] Fritz, T., Murphy, G.C., Murphy-Hill, E., Ou, J. Hill, E. 2014, "Degree-of-
knowledge: Modeling a developer’s knowledge of code", ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 23, no. 2, pp. 1-42.

[80] Rapos, E.J. Cordy, J.R. 2017, "SimPact: Impact Analysis for Simulink Models",
IEEE, , pp. 489.

[81] Rapos, E.J. Cordy, J.R. 2017, "SimEvo: A Toolset for Simulink Test Evolution
Maintenance", IEEE, , .

[82] IEEE Xplore Standards (e-book collection) IEEE Xplore (e-book collection)
2008, IEEE Std 1028-2008: IEEE Standard for Software Reviews and Audits,
IEEE, S.l.

[83] IEEE Xplore Standards (e-book collection) IEEE Xplore (e-book collection)
IEEE Standard for Software Maintenance, IEEE, Piscataway.

[84] IEEE Xplore Standards (e-book collection) IEEE Xplore (e-book collection)
2013, ISO/IEC/IEEE 29119-1: 2013(E): Software and systems engineering Soft-
ware testing Part 1:Concepts and definitions, IEEE, S.l.

[85] Sae-Lim, N., Hayashi, S. Saeki, M. 2016, "Context-based code smells prioriti-
zation for prefactoring", IEEE, , pp. 1.

[86] Kasurinen, J., Taipale, O. Smolander, K. 2010, "Software Test Automation
in Practice: Empirical Observations", Advances in Software Engineering, vol.
2010, pp. 1-18.

[87] Berner, S., Weber, R. Keller, R. 2005, "Observations and lessons learned from
automated testing", ACM, , pp. 571.

69

Bibliography

[88] Karlström, D., Runeson, P., Nordén, S., Department of Computer Science,
Lund University, Institutionen för datavetenskap Lunds universitet 2005, "A
minimal test practice framework for emerging software organizations", Software
Testing, Verification and Reliability, vol. 15, no. 3, pp. 145-166.

[89] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break? an
empirical study,” in 2014 IEEE International Conference on Software Mainte-
nance and Evolution, Sept 2014, pp. 41–50

[90] McKee, S., Nelson, N., Sarma, A. Dig, D. 2017, "Software Practitioner Per-
spectives on Merge Conflicts and Resolutions", IEEE, , pp. 467.

[91] Yoo, S. Harman, M. 2010;2012;, "Regression testing minimization, selection
and prioritization: a survey", Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67-n/a.

70

A
Appendix 1

A.1 Interview instrument for initial interviews

Theme Question Purpose

General
working
process

1) What is your current process?
a) Flow of your process step by step
b) Do you make changes in the framework?
c) If so when?

Understanding how
the interviewee
works and their role
in the framework.

Understanding
code

2) How do you go about understanding code?
a) How do you find knowledgeable developers

to help you get started/explain code for you?
b) What tools do you use for this?
c) Do you use documentation to understand a

code and if so how?

Understanding how
maintainers
understand code.

Finding
reviewers

XFT and LSV
3) How do you find reviewers for your code?

a) Who are you usually looking for?
b) What tools do you have available?
c) What channels of communication do you

have available to find reviewers?
d) How fast can you find a reviewer?
e) How fast do you usually receive a response?
f) How often can you find a suitable reviewer?

TOR
3) How are you approached by with review requests?

a) How often do you receive requests?
b) How often are you requested for the code you

are not expert on?
c) How do you handle such requests?
d) How do you find appropriate people when

assigning review requests?

Understanding how
maintainers find
reviewers.

Coding and
code review
practises

4) What are your practices?
a) How often do you commit?
b) How big/complex are your commits?
c) How do you document your work?

Understanding the
practises of the
maintainer.

Change
impact
analysis

5) Do you perform CIA and if so how?
a) What tools are used?
b) How often and to what extent?
c) Who is involved?
d) How do you document your changes?

Understanding the
role of CIA and how
it is performed at
Ericsson.

Figure A.1: The interview instrument for the initial
interviews

I

A. Appendix 1

A.2 Interview instrument for the CIA tool

Figure A.2: The interview instrument for the first set of
interviews

A.3 Interview instrument for the guidelines

The interview instrument we used to evaluate the usefulness of the recommendation
for how to facilitate finding reviewers are shown below:

II

A. Appendix 1

Figure A.3: The interview instrument for the first set of
interviews

A.4 List of investigated RR approaches
We investigated several tools that turned out to be inferior to at least one of the
three provided in table 1. Below we present the tools that each tool in table 1 were
proven to outperform.

WRC proven better than:
1. FPS (achieves similar results to FPS but is simpler and much faster) [65, 15]
2. Line 10 Rule [65]
3. Expertise Recommender [66]
4. Number of Changes [65]
5. Code Ownership [71]
6. Expertise Cloud [70]
7. Degree-of-Authorship [79]

RevRec proven better than:
1. cHRev [63]. Which in turn outperforms:

(a) xFinder [64]
(b) Revcom [63]
(c) REVFINDER

2. REVFINDER [15]
3. ReviewBot [69].

PR-CF proven better than:

III

A. Appendix 1

1. IR+CN[10]
2. FPS [65, 15]
3. activeness [23]
4. TIE [68]

IV

B
Appendix 2

V

Coverage tool Training

Coverage data shows which parts of the application code are executed (covered by the execution) and which parts are not executed. Here, the
application code is the code in /epg/epgcats/tcdb/*

Every test execution will generate coverage info which is stored in the autoTT log directory htmlcov. The html report of the coverage data is also
stored in the log directory, which can be used as a graphical tool to see which parts of the application are executed and which parts are not
executed for a specific test case.

For weekend release candidate builds we can collect the coverage data for all autott test executions started by the portal test scheduler (e.g by
user stportal) using the tools described below. With this data we can find out which testcases hit which lines of code.

Tools location:

The tools are found in epg/epgcats/tools/coverage

collecting the coverage data of all test runs

Autott's weekly execution will generate coverage data for each test cases, to collect all the coverage data from each test case, use the following
command.

./create_coverage <BUILD>

This command will collect all the coverage data from all test cases under that build and store it in a json file.

<BUILD> has the following format example: EPG_<NUMBER>R<NUMBER><A-Z><NUMBER>_<DATE>_<TIMESTAMP> EPG_25R12A459_180420_
082553

Example: ./create_coverage EPG_25R12A459_180420_082553

As can be seen from the figure, in the build () 6 test cases are found. The '.json' file is created if the EPG_25R12A459_180420_082553 c
is run for the first time for that specific build. If it is run more than once for the same build, the .json file will be reate_coverage

recreated with the additional data.

Checking coverage info

Coverage information is collected once a week so the latest data is from last weeks run. To check which test case run has
executed(covered) a specific part of a file, you can specify the file name and the line number and get the specific coverage data for that
specific build.

./cia <file_name> <line_number> -b <BUILD>

file_name is the name of the python file which you want to check (the name includes the path starting after tcdb) :Example
lib/general/yaml_emitter.py or lib_general_yaml_emitter.py

line_number is the line number in the file which you want to check.

Build is the build name , if no Build is provided it shows the test cases which covered this file name with line number(optional field)
line_number in every build where data has been collected.

NOTE: For a filename, the relative path starts after epg/epgcats/tcdb/ E.g. if the file is
epg/epgcats/tcdb/LIB_general/tunelib.py : your relative path will be LIB_general/tunelib.py

Example 1 : ./cia lib_general_robustness_ext_rob.py 374

As can be seen from the figure, if the file name and the line number of the file is given, test cases that
cover this line number of the file will be printed. In the figure above, file at line isext_rob.py 374
executed by 7 test cases in the first build and by one test case in the second build and by 6 test cases in
the last build(If you want to get the result for a specific build, then pass the build name as shown in Exa

). A detailed description of the coverage of the file for a specific build can be found in the htmlmple 2
report (the listed link).

the link can be opened as (please use the full path), and the report looks like the figure below

xdg-open_lab_epg_scm4_builds_program_ci_EPG_25R12A309_epgcats_tcdb_LIB_general_ .htmlrobustness_ext_rob.py

1.

N.B The Green part shows the part that is executed and the red part shows the part which isn't executed.

Example 2: ./cia -b lib_general_robustness_ext_rob.py 374 EPG_25R12A459_180420_082553

This Example shows how to get the coverage data for a specific build.

N.B There is a debugger option which is configured to logging.DEBUG, but if you wish to have no DEBUG info, then you can remove this by
passing -debug info option

Notes:

As you know, the line numbers change when files are edited. So if you are looking at a source code that has changed since the
last coverage run, you need to look at the file vesion that was valid for that build. The HTML REPORT is a good input on those

1.

2.

3.

cases, since it will show you the executed source code itself.
Coverage data is only fetched for “stportal” executions.This means re-runs are not covered yet. (reruns are usually not run by
stportal user).
Dont choose line numbers where the function is defined e.g since any time a python file is imported by anotherdef myfunc
coverage marks the line as being covered. Instead use the first line of code in the function if you want to see where the function
is used.

Coverage of other code

autoTT provides options to execute coverage on more code than what is included in LIB_general.

To add more use the autoTT option -o cov=path1,path2

	List of Figures
	List of Tables
	Introduction
	Problem description
	Research Questions and Contributions

	Background
	Automated testing
	Change impact analysis
	Test coverage

	Modern code review
	Reviewer recommendation
	Code ownership and responsibility

	Methods
	Our approach
	Process for reviewing literature

	Case company
	Testing framework
	Code reviewing practices for test code at Ericsson

	Change impact analysis: Finding a suitable technique
	Process for finding ways of facilitating reviewer identification
	Evaluation methodology
	Objectives of the evaluation
	Evaluation plan and process
	Interview instrument

	Results CIA
	Results of interviews
	The tool for CIA
	Object of analysis:
	Impact set
	Type of analysis
	Intermediate representation
	Language and tool support
	Empirical evaluation
	Choice of technique

	Implementation process
	The purpose and process of our tool
	Motivating examples

	Evaluation results of the tool
	Discussion
	What are the challenges in implementing a tool for CIA in a test framework?

	Results: Facilitating finding reviewers
	Guidelines for choosing a tool for finding reviewers
	What data do we have that can be used for RR?
	What is our data lifetime?
	What kind of expertise are we interested in?

	Suggestion for Ericsson
	Proposed changes regarding practices
	Proposed change for responsibility
	Application of guidelines
	What should be done regarding RR?
	Results of evaluation of recommendation
	Discussion

	Threats to Validity
	Construct validity
	Internal validity
	External validity
	Reliability

	Conclusion
	Bibliography
	Appendix 1
	Interview instrument for initial interviews
	Interview instrument for the CIA tool
	Interview instrument for the guidelines
	List of investigated RR approaches

	Appendix 2

