
Simulating an Ecosystem

Implementing and Analysing Virtual Ecosystems in Real-time
Using the Unity Game Engine

Bachelor’s thesis in Computer science and engineering

Mattias Heinl
Sebastian Holm
Edwin Holst
Albin Johansson
Oliver Karmetun
Karl Öqvist

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Bachelor’s thesis 2021

Simulating an Ecosystem

Implementing and Analysing Virtual Ecosystems in Real-time Using
the Unity Game Engine

Mattias Heinl
Sebastian Holm
Edwin Holst

Albin Johansson
Oliver Karmetun

Karl Öqvist

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Simulating an Ecosystem
Implementing and Analysing Virtual Ecosystems in Real-time Using the Unity Game
Engine
Mattias Heinl Sebastian Holm Edwin Holst Albin Johansson Oliver Karmetun
Karl Öqvist

© Mattias Heinl, Sebastian Holm, Edwin Holst, Albin Johansson, Oliver Karmetun,
Karl Öqvist 2021.

Supervisor: Marco Fratarcangeli, Department of Computer Science and Engineering
Examiner: Gordana Dodig-Crnkovic, Department of Computer Science and Engi-
neering

Bachelor’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Screenshot from the main menu of the simulation, depicting the four animals
used in the simulations.

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Simulating an Ecosystem
Implementing and Analysing Virtual Ecosystems in Real-time Using the Unity Game
Engine
Mattias Heinl, Sebastian Holm, Edwin Holst, Albin Johansson, Oliver Karmetun,
Karl Öqvist

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Many modern video games feature large virtual ecosystems inhabited by diverse
animals with realistic behaviours. This project utilises the Unity game engine to
simulate different configurations of virtual ecosystems, allowing the user to anal-
yse the results in real-time as well as through visualisations of compiled simulation
data. The simulated animals feature genome with genes that support mutation
which affect different traits and behaviours, such as speed and vision. Ecological
aspects such as evolution and carrying capacity along with miscellaneous trends
in gene values are investigated in simulation results. Performance aspects are also
discussed, e.g. through experimentation with data-oriented solutions such as ECS
(Entity Component System) architecture. The results from numerous simulation it-
erations showed that simulated ecosystems are complex and hard to assess. Whilst
some results presented in the report mimic aspects of real world ecosystems, it is
difficult to draw conclusions from the results due to the many contributing factors.
Overall, the final application serves as a simple means of investigating the effects
of genomes and different initial conditions on the longevity and balance of small
ecosystems over time.

Source code: https://github.com/albin-johansson/ecosystem

v

https://github.com/albin-johansson/ecosystem

Sammandrag
Många moderna datorspel har omfattande virtuella ekosystem som innehåller flera
olika arter av djur med realistiska beteenden. Detta projekt använder spelmotorn
Unity för att simulera olika konfigurationer av virtuella ecosystem, där användaren
kan analysera resultat i realtid såväl som genom visualiseringar av sammanställd
simulationsdata. De simulerade djuren har genom med gener med stöd för mutation
som påverkar olika attribut och beteenden, som hastighet och syn. Ekologiska aspek-
ter som evolution och miljöns bärkraft tillsammans med diverse trender i genvärden
undersöks i resultat från simulationerna. Prestanda diskuteras också, till exempel
genom experimenterande med dataorienterade lösningar som ECS-arkitektur (En-
tity Component System). Resultaten från flera iterationer av simuleringar visade på
att simulerade ekosystem är komplexa och svåra att bedöma. Medan vissa resultat
som presentas i rapporten liknar beteenden i verkligheten så är det svårt att dra
slutsatser av dessa resultat, på grund av de många faktorer som påverkar slutre-
sultatet. The slutgiltiga versionen av den utvecklade applikationen utgör ett enkelt
sätt att undersöka effekten av genom och initiala förutsättningar på livslängden och
balans av små ekosystem över tid.

Källkod: https://github.com/albin-johansson/ecosystem

Keywords: simulation, ecosystem, evolution, ecology, real-time, visualisation, unity

vi

https://github.com/albin-johansson/ecosystem

Acknowledgements
We would like to thank our project supervisor Marco Fratarcangeli, for his enthusi-
astic support throughout the course of the project.

Mattias Heinl, Sebastian Holm, Edwin Holst, Albin Johansson, Oliver Karmetun,
Karl Öqvist, Gothenburg, June 2021

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Related Work . 1

1.1.1 Virtual Ecosystems in Games 1
1.1.2 Scientific Usage of Simulated Ecosystems 2

1.2 Objective . 3
1.3 Scope and Limitations . 3

2 Theory 5
2.1 Technical Theory . 5

2.1.1 Agent-based Model . 5
2.1.2 Unity Engine . 6
2.1.3 Shader . 7
2.1.4 Ambient Occlusion . 7
2.1.5 Entity Component System . 7

2.2 Biological Theory . 7
2.2.1 Ecology . 8
2.2.2 Genes, Genomes, and Phenotype 9
2.2.3 Evolution Through Natural Selection 9

3 Method 11
3.1 Simulation Design and Implementation 11

3.1.1 Software . 11
3.1.2 Data Collection and Visualisation 11
3.1.3 Simulation Model . 11
3.1.4 Configuration . 12
3.1.5 Scenes . 12
3.1.6 Animal Types . 12
3.1.7 Genome . 13
3.1.8 Acquisition of Genes . 13
3.1.9 Food and Water . 14
3.1.10 Food Generation and Decay 14
3.1.11 Mating . 14
3.1.12 Memory . 14

ix

Contents

3.1.13 Navigation . 15
3.1.14 Collisions . 15
3.1.15 State Machines . 15

3.2 Graphics . 18
3.2.1 Third-Party Packages . 18
3.2.2 Animations . 18
3.2.3 Terrain . 18
3.2.4 Toon Shader . 19
3.2.5 Ambient Occlusion . 19

3.3 Performance . 20
3.3.1 Object Pooling . 20
3.3.2 Entity Component System . 20

3.4 Process . 21
3.4.1 Prototyping . 21
3.4.2 Crafting Interesting Ecosystems 21
3.4.3 Implementing Complex Behaviours 21
3.4.4 Configurable Scenes . 22
3.4.5 Balancing Attributes . 22

3.5 Testing Carrying Capacity . 22
3.5.1 Food Availability . 22
3.5.2 Impact of Predators . 23
3.5.3 Simulating All Animals . 23

3.6 Testing Evolution . 23
3.7 Performance Benchmarks . 24

4 Results 25
4.1 Visuals . 25

4.1.1 Main Menu . 25
4.1.2 Graphics Settings . 26
4.1.3 Real-time Animal Information 26
4.1.4 Logging Information . 27
4.1.5 Carcasses . 27
4.1.6 Forest Scene . 27
4.1.7 Dynamic Scene . 28
4.1.8 ECS Scene . 29

4.2 Carrying Capacity . 30
4.2.1 Near Unlimited Food Supply Without Predators 30
4.2.2 Limiting Food Supply . 30
4.2.3 Introducing Predators . 31
4.2.4 Adding all animals . 32

4.3 Genes and Evolution . 34
4.3.1 Food Density . 34
4.3.2 Presence of Predators . 35
4.3.3 Different Predators . 36

4.4 Performance . 36
4.4.1 Conventional Game Object Approach 36

x

Contents

4.4.2 ECS Framework . 37

5 Discussion 39
5.1 Thoughts on the Simulation Results 39

5.1.1 Factors Affecting Carrying Capacity 39
5.1.2 Evolution of Genes . 40
5.1.3 Maturity of Unity ECS Framework 40

5.2 Possible Improvements . 40
5.2.1 Simulation Quality . 40
5.2.2 User Experience . 41

5.3 Real World Comparisons . 42
5.3.1 Balancing . 42
5.3.2 Realism of Attributes . 42

5.4 Societal and Ethical Aspects . 43
5.4.1 Risk of Incorrect Conclusions 43
5.4.2 Risk of Damages . 43
5.4.3 Privacy . 43
5.4.4 Fairness . 44

6 Conclusion 45

Bibliography 47

A State Diagrams I

B Performance Benchmarks V

xi

Contents

xii

List of Figures

3.1 The figure displays the state diagram of the bear state machine, dis-
playing the different states with associated transitions. 18

3.2 Wolf with and without toon shader applied. Note the addition of a
black outline, reduced reflections and increased uniformity of colour
when the toon shader is enabled. 19

3.3 Grass without any ambient occlusion (a) and with strong ambient
occlusion (b). The grass in image (a) is hard to distinguish and there
is not much depth in comparison to image (b), where each single straw
of grass is easier to distinguish. 20

4.1 The main menu of the simulation. The cogwheel button will navigate
to the settings menu which enables the user to change the graphics as
well as how the genomes work for the different animals. Furthermore,
the central “cards” can be scrolled, and let the user choose the scene
that will be simulated. 25

4.2 The graphics settings available in the simulation. 26
4.3 A wolf chasing a rabbit in the forest scene. Note the state indicators,

the wolf is chasing a prey, i.e. the rabbit, whilst the rabbit is actively
fleeing from the wolf. Furthermore, both animals are low on stamina
(indicated by the “lighting” bars), due to the chase. 26

4.4 The real-time information provided about the current simulation. . . 27
4.5 A carcass in the forest scene, as the result of an animal dying. 27
4.6 Screenshot of the forest scene. 28
4.7 Screenshot of the dynamic scene, with its numerous water sources

and open terrain. 28
4.8 The configuration menu for the dynamic scene, with its default values. 29
4.9 Screenshot of the ECS scene. Note the completely flat terrain and

lack of animations (all animals are always in their default “poses”). . 29
4.10 Population data (a) and cause of death (b) from simulation of 500

rabbits and 2,000 berry bushes running for 1,000 seconds. 30
4.11 Population data (a) and cause of death (b) from simulation of 500

rabbits and a smaller food supply. 31
4.12 Amount of available food in simulation of 500 rabbits and 400 berry

bushes in dynamic scene. 31
4.13 Population data (a) and cause of death (b) from simulation of 500

rabbits, 400 berry bushes and 50 wolves 32

xiii

List of Figures

4.14 Population data (a) and cause of death (b) from simulation of 500
rabbits, 2,000 berry bushes and 50 wolves. 32

4.15 Population data (a) and cause of death (b) from simulation of 200
rabbits, 200 deer, 200 wolves, 200 bears and 500 berry bushes. 33

4.16 Population data (a) and cause of death (b) from simulation of 500 rab-
bits, 100 deer, 50 wolves, 20 bears and 400 berry bushes and predators. 33

4.17 Speed gene value populations for 500 initial rabbits with (a) abundant
(1000 berry bushes) and (b) sparse (75 berry bushes) food. 34

4.18 Vision gene value populations for 500 initial rabbits with (a) abundant
(1000 berry bushes) and (b) sparse (75 berry bushes) food. 34

4.19 Average values of the gestation period gene of 500 initial rabbits for
(a) abundant (1000 berry bushes) and (b) sparse (75 berry bushes)
food. 35

4.20 Changes in population size for 750 initial rabbits, 500 initial wolves,
and 750 berry bushes over 2000 seconds. Note the extinction of wolves
after approximately 1000 seconds. Note the increase in (b). 35

4.21 Speed gene populations changes for 500 initial rabbits with either (a)
100 initial wolves or (b) 100 initial bears. 36

4.22 Plot of the performance degradation in the dynamic scene. Configu-
ration A was used to obtain these results. 37

4.23 Plot of the performance degradation in the ECS scene. Configuration
A was used to obtain these results. 38

A.1 A state diagram describing the state machine used by wolves. The
diagram features the states of the state machine and the state tran-
sitions with associated transition conditions. I

A.2 A state diagram describing the state machine used by bears. The dia-
gram features the states of the state machine and the state transitions
with associated transition conditions. II

A.3 A state diagram describing the state machine used by rabbits. The
diagram features the states of the state machine and the state tran-
sitions with associated transition conditions. II

A.4 A state diagram describing the state machine used by deer. The dia-
gram features the states of the state machine and the state transitions
with associated transition conditions. III

xiv

List of Tables

3.1 Overview of all available states and which states the different animals
support. 16

3.2 Hardware and software specifications of the computers used for bench-
marking the simulation. 24

4.1 Minimum, maximum and average frame rates obtained when running
the dynamic scene with the default distribution of entities. 36

4.2 Minimum, maximum and average frame rates obtained when running
the ECS scene with the default distribution of entities. 37

B.1 Performance degradation in the dynamic scene as a result of increas-
ing the amount of game objects. Configuration A was used to obtain
these results. V

B.2 Performance degradation in the ECS scene as a result of increasing
the amount of entities. Configuration A was used to obtain these
results. V

xv

List of Tables

xvi

1
Introduction

Many modern video games feature large and diverse environments that the player
can roam and interact with, such as the Elder Scrolls, Read Dead Redemption
and Far Cry series. These environments are often made up of forests, plains, seas,
lakes and mountains along with a flora and fauna, which together constitute virtual
ecosystems. The immersive ecosystems in these games are often used as major sell-
ing points due to the great amount of work put into these aspects.

Virtual ecosystems can also be a source of great learning opportunities to explore
natural ecosystems and the relations within it. With the use of modern computer
graphics and technologies, these experiences are becoming increasingly realistic as
technology progresses. A possible future direction of virtual ecosystems could be to
adhere to ecological theories and laws.

Furthermore, virtual ecosystems present opportunities to serve as interactive learn-
ing tools, due to the possibilities of interaction and real-time visual feedback of
various aspects of ecosystems. Visualisations of problems and making complex prob-
lems repeatable and testable is a great way to improve understanding of the intricate
natural concepts and correlations [1].

1.1 Related Work
This section introduces related work in the field of simulating ecosystems and pro-
vides an overview of the state of virtual ecosystems and their use cases within
ecology.

1.1.1 Virtual Ecosystems in Games
The video game Red Dead Redemption 2 was released in 2018, and quickly became
incredibly popular, having sold over 36 million copies [2], as of 2020. It has been
praised for its detailed and believable open world. The developer, Rockstar Games,
have stated that the game features ecosystems inhabited by 200 distinct species
[3]. However, there is little documentation on the inner workings of these systems,
making it difficult to assess to what extent the virtual ecosystems have been made
to accurately simulate real world behaviours.

Another example of a game that tries to model virtual ecosystems is Equilinox, an

1

1. Introduction

indie game released by ThinMatrix in 2018. The official Equilinox website states
that Equilinox is a relaxing nature simulation game which allows you to create
and nurture your own living ecosystems [4]. In the game, different species have
different life-cycles, behaviours and requirements on habitat and resources. The
individuals also carry genes and values for those genes that affect their attributes.
Individuals inherit values for their genes that are similar to their parent but with
the possibility of mutations. Certain values for the genes allows for the player to
evolve an individual into an entirely new species.

1.1.2 Scientific Usage of Simulated Ecosystems
Computer simulations of ecology have been used previously in numerous research
settings. One such example, Romanuk, et al. [5] compared simulations of species in-
vasions (species unlike those previously present in the ecosystem), speciation events
(species similar to previous in the ecosystem) and their effects on the food webs.
Using the data from the simulations and comparing it with empirical data, it was
determined that “Contrary to much competition theory, these findings suggest that
evolutionary and other processes that more tightly pack ecological niches contribute
more to ecosystem structure and function than previously thought.” [5].

There have been previous simulations of the genetic factors in ecosystems, with one
example being the research presented by Alan Grafen in his book “Behavioural ecol-
ogy: An evolutionary approach”. Grafen presents research on how modelling and
simulating genes, an often overlooked subject, can be a major telltale for the trends
seen in ecology since it is from the genes that traits and behaviours stem from [6].

Other examples of graphical simulations of ecosystems includes a video series titled
Evolution[7], by Primer, in which colourful blobs are progressively given traits and
that exhibits different aspects of evolution. Another example is the work of Lassabe
et. al. in Advances in Artificial Reality and Tele-Existence [8].

Computer simulation has also been used as a learning tool. An article in the sci-
entific journal Computers in Human Behaviour goes into depth on how a class is
taught the intricacies of factors that affects the environment of a pond using a vir-
tual ecosystem. The program details the growth of algae leading to the death of fish
in the pond and the student are subsequently tasked with drawing a “concept map”
of the events that lead to this [1].

Another example of simulation used in a pedagogic setting was Agar [9]. Agar is
what is called, by the creator Michael D. Travers, an “Animal Construction Kit”
- a computer system made for students to build their own animals and simulate
them in an ecosystem. It was done as part of a bigger project called Vivarium at
MIT funded by Apple. The simulation was created using a kind of individual based
model called an agent based model where each animal was its own entity with its
own traits and behaviours. The whole Vivarium project had the objective of making
ecology more interactive and engaging to learn with the use of modern computer

2

1. Introduction

technology [10].

1.2 Objective
The objective of this project is to produce a software tool for simulating ecosystems
with the use of Unity, a modern game engine. The simulations will to varying extents
emulate real world ecosystems. Furthermore, basic concepts related to ecology, such
as carrying capacity, natural selection and evolution will be investigated in the
virtual ecosystems. It should be possible to analyse different scenarios and evaluate
the effects of small changes to both biotic and abiotic factors of the ecosystem.
Additionally, a tertiary objective is to make the virtual ecosystems provide real-
time information about the state of the ecosystem, to aid the user’s insight and
understanding of the ecosystem. However, in order to be able to notice and evaluate
results with confidence, the number of simulated entities should be relatively large,
putting great strain on the hardware of the computer which introduces a need for
the simulation to be efficient.

1.3 Scope and Limitations
To narrow the scope of the project, and to make sure that the project is finished in
the allocated time frame, certain limitations have been introduced. These include
both limitations to the application but also limitations within the virtual ecosystem.

Performance

The virtual ecosystem was developed for stable use on computers with a dedicated
graphics card, a newer generation of processors and a large memory capacity. Dif-
ferent hardware specifications have not been considered in the developing process
meaning that performance on less powerful computers can be unstable or even make
the virtual ecosystem unable to run.

Virtual Ecosystem

The only aspect of the simulated ecosystems considered to be active are the animals.
Therefore, plants are only considered as food resources or terrain. Furthermore, the
simulated ecosystems are limited to static and local system, i.e. factors such as
day/night cycles, seasons, and migration are not considered. As a result, the only
dynamic aspects of the simulated ecosystems are the animals and the availability of
food and water resources.

Simulation Duration

The simulated ecosystems need to be able to produce results within a relatively
short time frame, i.e. a few minutes or up to an hour at the most since the virtual
ecosystems are meant to be studied in real-time. Additionally, the idea is that differ-
ent configurations can be tested and compared in a short period of time. Therefore,

3

1. Introduction

aspects such as hunger and thirst rates, gestation periods and sexual maturity are
sped up to match this time frame. This means that certain results will not be di-
rectly applicable to real world behaviours. For example, an animal might only eat
and drink once during the entire duration of its pregnancy.

Reproduction

The simulated ecosystems only feature mammals, making sexual reproduction the
only means of reproduction. The genomes that are present in the animals are sim-
plified down to a handful of genes that in no way emulates any real-world gene. The
gene system instead emulates some of the effects that a real-world genome can have
on traits of the animals.

Behaviour of Animals

The animals in the virtual ecosystem are developed to have behaviours and traits
that are as primitive as possible. The animals have unique eating and hunting
behaviours but are apart from that equal in all behaviours. These are needed sim-
plifications that reduces the complexity in creating a balanced ecosystem with re-
producible results.

4

2
Theory

This chapter introduces the main theoretical subjects. The chapter is divided into
two parts, where the first part elaborates on technical aspects of the project whilst
the second part focuses on ecological and biological aspects.

2.1 Technical Theory
This section presents the concept of an agent-based model, along with important
concepts related to the Unity game engine. Additionally, the ECS architectural
pattern is introduced.

2.1.1 Agent-based Model
The virtual ecosystem in this project is built around an agent-based model (ABM).
ABM is a fitting model to work from when dealing with what is called a complex
adaptive system (CAS) that an ecosystem can be viewed as. With a CAS means a
system that from a micro perspective is governed by simple laws and where events
in the system are predictable but that from a macro perspective can give rise to
very complex trends and pattern because of the shear number of different events
happening in the system. The agent-based approach for modelling a CAS is a
straightforward approach where all entities in the system are agents. The agents are
independent but they have relations between them that govern how they respond
to each other. The relations between two agents can be stochastic, meaning that
the behaviour between the two agents is random and impossible to predict. The
relations can however also be deterministic meaning that the behaviour between the
agents is programmed in advance and can therefore be predicted knowing all factors
that determine the behaviour [11].

The possibilities and use cases for agent-based models are many since the agents
can model any entity. The ABM is also convenient in the cases where it can be
challenging to describe a whole system with for example one equation. In those
cases, it might be easier to describe each part of the system as agents and their
relation to each other [11]. Simulations in ecology and ecosystems have been shown
to benefit from this because the trends that can be seen from a macro perspective
depend more on the individuals than the system as a whole. Agent based models
also keeps the information local to the individual making it only act on that. It can
otherwise be tempting or hard to not have individuals share global information of

5

2. Theory

the system and use that in the simulation [12].

2.1.2 Unity Engine
The Unity game engine, or simply Unity, is the game engine used in this project as
the main developing tool for the virtual ecosystem. Game engines, including Unity,
are aimed to ease and speed up the development of video games and other graphical
applications. Unity includes support for performant 3D graphics, physics simulation,
animations, user input and much more. As a result, a lot of common “boilerplate”
aspects of game development can be reused in multiple projects. Furthermore, game
engines can also be used for producing media content such as animated movies or
even architectural demonstrations.

Game Object

Development in Unity is centred around game objects that represent different ob-
jects in the game world. In Unity game levels are referred to as scenes, and are built
from a hierarchy of game objects. Furthermore, each game object can have different
components (also referred to as scripts) attached to them, that are updated each
frame of the game. This is how custom behaviours, abilities, visual characteristics
and other attributes are assigned to game objects in Unity. A component is imple-
mented as a C# class, that inherits from the MonoBehaviour class, which is a part
of the Unity API. In general, all game objects feature a transform component (a
position, rotation and scale) as a minimum [13].

Colliders and Triggers

Collisions are a key component of the developed ecosystem because it is used to
simulate vision and contact between animals and resources. The collision detection
in Unity is primarily handled using colliders, which are standard components that
can be attached to game objects to let the game objects collide and react to each
other. There are many different colliders with different shapes, such as spheres,
boxes and capsules. Furthermore, colliders can be configured as triggers, which
causes them to emit collision events instead of actually causing physics collisions
between game objects [14].

NavMesh

The navigation within the ecosystem that game objects perform are handled with
the use of a NavMesh, a data structure designed to enable navigation and path
finding. The NavMesh contains data on which areas of the map are walkable and
are structured to provide fast path finding. All navigating game objects have a
NavMeshAgent component attached to them and it is through that component and
the large set of functions that work on the NavMesh data that paths can be cal-
culated. The developer can choose to have all agents be aware of each other and
all possible obstacles making the path calculations dynamic. Meaning that if an

6

2. Theory

agent or any other obstacle obstructs the current path of an agent the path gets
recalculated to avoid collision and provide stable movement [15].

2.1.3 Shader
A shader is a program that runs on the graphics card that takes the graphical
information of an object as input and outputs a generated image. The shader math-
ematically defines how light should behave on the object and can as such produce
numerous visual effects. Shaders are being used in this project to aid in visibility
and distinction of entities in the scene.

2.1.4 Ambient Occlusion
Ambient occlusion is a rendering/shading effect that creates soft shadows based on
scene geometry. It functions by estimating the amount of ambient light that should
be interacting with a given point, in order to approximate shadows caused by real
lighting. The virtual ecosystems developed in this project make use of ambient
occlusion to improve the overall graphical quality, but also to increase the contrast
and aid the visibility of entities in the scene.

2.1.5 Entity Component System
Entity Component System (ECS), is a data-oriented architectural design pattern
that is occasionally utilised in games, due to performance advantages from being
designed with data locality in mind. The idea is that the CPU can better utilise
its caches and spend less time jumping around in memory. In an ECS architecture,
there are three core concepts: entities, components, and systems, hence the name.
Entities represent distinct “objects”, and are usually implemented as simple inte-
ger identifiers. Subsequently, components are simply plain data containers, often
implemented as structs with only public data. The components represent different
aspects or abilities that an entity might have. For example, movable entities in a
game might feature a Movable component, which simply contains a position and
velocity vector. Unlike object-oriented game objects, components are not stored
with entities. Instead, the different components are stored in separate contiguous
arrays, enabling very fast iteration speeds. Components are then “attached” to
entities, without having the entities store the components themselves. These com-
ponents are then handled by systems, which are the pieces of code that contain all
the logic, iterating entities with different components. For example, a game might
feature movement system, that iterates all entities with the aforementioned Movable
component, updating the positions according to the current velocities.

2.2 Biological Theory
This section introduces relevant concepts from the field of ecology, such as carrying
capacity and evolution. Furthermore, concepts related to genetics are also presented,
such as genes, mutations and phenotype.

7

2. Theory

2.2.1 Ecology
Ecology is branch in biology that concerns the relations between all entities that
constitute nature. This means relations between biotic factors (living components
and once living components) as well as the relations between these biotic factors
and the abiotic factors (physical conditions and non-living components) that they
come in contact with. The main part of ecology is about changes in population
sizes of different animal and plant species and how these correlate to each other.
Ecology also takes into account the presence of microbial factors such as bacteria
and viruses. [16]. In ecology the most fundamental approach are ecosystems which
is a figurative encapsulation of nature. The encapsulation can be of any size meaning
that it could include the whole world or only a small cubic centimetre of soil where
the contents of the ecosystems are considered to be all abiotic and biotic factors
inside the encapsulation. Ecosystems make it possible to study nature without the
full complexity since it is limited in size and number of entities in it [17].

Animal Distribution in Ecosystems

Biomass is a term in ecology to describe the mass of biotic factors in an ecosystem.
The total amount of biomass in a system gives insight into not only the distribution
of for example plants, animals, fungi and microbial life but also distribution of
different species of aforementioned groups when divided among their own total share
of biomass. In this project, research results from studies of biomass were used to
get a basic real-world distribution of population sizes of the animals used. Research
show that the amount of prey biomass outnumbers the predators’ biomass by a
magnitude of at least a hundred, but it can vary depending on region and a plethora
of other factors. Biomass is however a weight unit and does not correlate to the
number of entities, for example bears occupy a much larger biomass than rabbits
because of their larger weight. The metric however still show that the population
size of prey outnumbers that of the predators [18].

Carrying Capacity

In ecology carrying capacity is defined as the maximum population size of a species
or group of species that can be sustained by the ecosystem. The causes for changes
in carrying capacity are many: changes in population of predators, availability of
food or water and even the spread of diseases. When the carrying capacity of an
ecosystem is surpassed, the population sizes will eventually decrease to a level that
can be sustained or collapse [19].

Studying population size changes while plotting them in a diagram gives a good
representation on where the carrying capacity lies since population in most cases
tend to approach the carrying capacity or fluctuate around it. Population growth
and carrying capacity are of great importance in ecology because they are strong
indicators of patterns in populations and ecosystems [20]. In this report carrying
capacity and population growth diagrams are used to determine and discuss the
stability and the success of populations. It also gives a clear metric to be used in

8

2. Theory

comparisons between different simulations.

2.2.2 Genes, Genomes, and Phenotype
Genome is a term describing the complete set of genes that are present in a living
entity and can be constituted by upwards of 31,000 different genes [21]. The genome
is what governs how the creature appears and behaves which can be summarised
in the concept phenotype meaning the collection of traits and behaviours that are
observable in a biotic creature [22].

The biggest changes to the genome occur through a process called mutation where
the DNA inside of the gene gets altered and are the most common source of ge-
netic variation, playing a big role in the evolution of life [23]. The changes can
be brought about for numerous reasons, what is noteworthy is the two types of
mutations: hereditary and acquired mutations. Hereditary mutation is a mutation
that gets passed on through the DNA from an individual’s forefather and will there-
fore be present in the entirety of the individual’s life. The individual can continue
passing this mutated gene unto its offspring as well. The other type of mutation is
acquired during the life of the individual. This type of mutation can occur because
of environmental factors such as radiation or an error in the copying of DNA in the
process of cell division. Acquired mutations cannot be passed on to offspring unless
the mutated genes are present in the gametes, the cells that are present in the eggs
or sperm [24].

2.2.3 Evolution Through Natural Selection
Evolution through natural selection is the theory that is the most well accepted in
the scientific community and as such the theory that the virtual ecosystem has been
developed with in mind. The theory explains how animals and plants have changed
since the first basic life forms emerged on earth, and how these changes have resulted
in new species [25].

The theory of evolution through natural selection was based on four facts: pheno-
type vary within a species, parts of the phenotype get passed on to offspring, the
phenotype contribute to the life span and the success of reproduction of the species,
and more animals are born than can survive. Evolution theory can get summarised
to that the individuals that are adapted well enough to their environment (pheno-
type that is beneficial enough) survives and have a greater chance of passing along
their genes. Meanwhile, poorly adapted individuals have a lesser chance of doing
so making the population as a whole diverging towards having a phenotype that is
better adapted to their environment [26].

9

2. Theory

10

3
Method

This chapter presents in-depth explanations of the methods used during the design
and implementation of the simulation and describes the development process. Fur-
thermore, the methodology of the various tests conducted related to genes, carrying
capacity and performance is also presented.

3.1 Simulation Design and Implementation
This section discusses the design choices and approaches used in the designing and
development of the virtual ecosystem.

3.1.1 Software
The simulation was developed using the Unity game engine, which was chosen due
to its relative simplicity and widespread adoption. Subsequently, all source code
related to the simulation was written in the C# programming language. Addition-
ally, scripts for visualising the obtained simulation data were written in the Python
programming language, using the open-source library matplotlib [27].

3.1.2 Data Collection and Visualisation
The simulation continuously monitors the state of the ecosystem, such as food con-
sumption, food generation, animal deaths and animal reproductions. This was im-
plemented using C# events, which are emitted by the various scripts responsible for
these different aspects. A centralised logging manager subscribes to all of the simu-
lation events, which manages an in-memory representation of the events throughout
the entire duration of the simulation. Upon termination of the simulation, the
recorded data is stored as a JavaScript Object Notation (JSON) file, using a cus-
tom format. Subsequently, the generated JSON files can be processed with Python
visualisation scripts, that generate a collection of diagrams of the simulation data,
to aid the analysis of the simulations of the virtual ecosystem and their parameters.

3.1.3 Simulation Model
The simulation developed in this project follows an agent-based model where ev-
ery animal in the ecosystem is an agent that is governed by its basic traits, be-
haviours, and relations to other animals. The relations are deterministic and so are

11

3. Method

the behaviours, though some behaviours have some stochastic elements to them (e.g.
direction in wandering behaviour explained in section 3.1.13).

3.1.4 Configuration
Through an initial main menu, different aspects of the simulation can be config-
ured, such as graphical fidelity and simulation behaviour. Post-processing effects
such as anti-aliasing and ambient occlusion can also be configured through the same
menu. The anti-aliasing can either be turned off, or assigned as one of SMAA (sub-
pixel morphological anti-aliasing), FXAA (fast approximate anti-aliasing) or TAA
(temporal anti-aliasing). Similarly, ambient occlusion can be either be turned off,
or enabled with adjustable intensity, specified as a percentage. The main purpose
of the different anti-aliasing and ambient occlusion options is to enable improved
performance on less performant computers sacrificing visual quality.

In addition to graphical settings the user can change how the genomes are configured
and inherited in the simulation. For each species it is possible to decide whether the
initial genome should be the same for all individuals or if they should be partitioned
into sets. The user can also choose whether to allow mutations, or if the gene
values should stay in the sets instead. If the user intention is to investigate animal
behaviour and run the simulation with an objective to examine carrying capacity
or different animal distribution setups, the gene sets can be turned off to enhance
the stability and repeatability of the setup. On the other hand, if the intention is
to run longer simulations investigating what genes are most advantageous to the
environment, the option of having sets active can be beneficial.

3.1.5 Scenes
There are a total of four different scenes available in the simulation. However,
one of these scenes (the “Testing Ground” scene) was not intended to be used to
simulate ecosystems, it is as the name suggests a testing ground primarily used for
development purposes. The other scenes are the forest, dynamic and ECS scenes.
The forest and dynamic scenes feature the complete simulation aspects, both using
the conventional object-oriented Unity framework. Lastly, the ECS scene makes use
of the Unity ECS framework, although it does not feature nearly as complex logic as
the non-ECS scenes, since it was developed as a demonstration of the performance
potential of the ECS framework (see 3.3.2).

3.1.6 Animal Types
All animals were split into three categories: wolves are carnivores, deer and rab-
bits are herbivores, and bears are omnivores. The animals differ in many of their
behaviours, but they share the same core functionality: wandering, drinking and
mating. The main differences lie in eating behaviours, where herbivores flee upon
encountering predators, whilst carnivores and omnivores will try to chase down any
herbivores they encounter (if they are sufficiently hungry). There is no aggression

12

3. Method

between predators or between prey, i.e. two individuals of the same species will not
attack each other.

3.1.7 Genome
Each animal has a set of genes, called a genome, where each gene corresponds to
some functional value for the animal. The phenotype is strictly tied to the genes
meaning that there is no element of chance in the creation of an animal’s phenotype
except for the case where mutations have been chosen to be allowed, then small
changes can occur when new individuals get birthed. The genomes in the animals
within the virtual ecosystem are constituted of the following genes: hunger rate,
thirst rate, hunger threshold, thirst threshold, vision, speed, gestation period, and
sexual maturity age.

The hunger rate gene affect the metabolism, which is how fast the hunger increases.
Likewise, the thirst rate gene, affects the rate of water consumption. Threshold
genes determine at which degree of hunger or thirst at which the animals should
start looking for the associated resource. How far an animal sees and how fast it can
move around in the terrain is directly correlated to the vision and speed genes. Since
a fast animal with great vision can seem objectively better than one with lover speed
and vision, these genes are balanced by making the animal’s metabolism dependent
on them, together with the hunger rate gene, in a multiplicative relationship. The
gestation period gene determines the duration for which a female is pregnant. When
pregnant the hunger and thirst increase faster, nurturing the child so that it will be
birthed with lesser need to eat and drink in comparison to individuals with a shorter
gestation period. Lastly the sexual maturity age gene affects the time from birth
to the time when the animal can mate. All animals are considered to be immature
before they reach their age of sexual maturity. This means that a lower maturity
age makes it possible for animals to get pregnant/impregnate faster in comparison
to animals with a higher age of maturity.

Since certain aspects of an animal could be dependent on more than one gene the
genome has composite factors. A genome contains exactly one such composite factor,
namely metabolism which is dependent on hunger rate, speed, and vision. As such
there is a trade-off to having higher speed or longer vision, being higher food needs.

3.1.8 Acquisition of Genes
Each animal acquires its genome either during its reproduction or by the initialisa-
tion (if it belongs to the first generation of the simulation). The first generation is
provided with a value for each gene or if gene sets are enabled by randomly selecting
from a set of values. In the case of reproduction, the new genome is generated from
the two parent genomes. For each gene, one is selected at random (with even 50/50
odds) from either of the parents. When reproducing, mutation adds a chance for
each gene to take a new random value within the allowed range of the gene. Both
gene sets and mutation can be enabled or disabled for each species in the menu of

13

3. Method

the simulation.

3.1.9 Food and Water

The animals can drink from designated water sources, implemented as invisible game
objects, that are placed along the shorelines of lakes and rivers. The animals have
a thirst that is always increasing and when surpassing a threshold will trigger the
need for water. The thirst is gradually quenched when colliding with a water source.
Similar to thirst, all animals experience hunger, which will cause animals to look for
food when they get sufficiently hungry. Wolves hunt and eat deer and rabbits, rabbits
eat berries and carrots, bears are omnivores and can consume rabbits and deer as
well as berries and carrots, and deer consume grass which they find everywhere on
grassy terrain.

3.1.10 Food Generation and Decay

Carrots are placed at random position in the scenes. Berries regenerate, but are
always placed on berry bushes at stationary positions. Additionally, whenever an
animal dies, it results in a carcass (represented by a piece of meat) being placed
at the position of the deceased animal, which can subsequently be consumed by
carnivores. However, carcasses will only remain for a certain duration after which
they will disappear. The hunger value that the berries, carrots and meat replenish
varies. As a result, different animals require different amounts of food to be fully
replenished.

3.1.11 Mating

Animals are through their genome defined as either male or female, and become
sexually mature after a certain amount of time after their birth. Mature animals
actively search for mates, as long as their thirst and hunger are under control (and as
long they are not chased by predators). After a mating has taken place, the female
animal is pregnant for a duration of time that is determined by their genome. During
pregnancy, the female will have increased hunger and thirst needs. The longer the
gestation period, the less hungry and thirsty the child will be when entering the
world.

3.1.12 Memory

All animals feature a limited memory of locations of water sources. When an animal
discovers a water source the location of the resource is stored in the memory, re-
gardless of whether the animal consumes the resource. This means that animals can
recall previous positions of water sources, reducing their need to constantly explore
the terrain when thirsty.

14

3. Method

3.1.13 Navigation
The animals wander in the terrain looking for food, water, or a mate. The wandering
works by setting a destination at the edge of its sensory range and repeating the
process when the destination is reached. If the animals detect food, water, or a
predator detects a prey it will change target and go to the new target instantly. If a
prey detects a predator it will try to flee in a direction opposite of the predator. If
the opposite direction is blocked, the animal will try to flee in one of seven predefined
angles away from the predator. The fleeing direction is updated regularly, making
the hunted animal very responsive to changes in the trajectory of the predator.
When hunting or being hunted the animals have the ability to sprint at 150% of
its walking speed at the cost of stamina. The animal will return to walking when
the stamina has been depleted. Stamina is subsequently regenerated as long as the
animal is not sprinting.

3.1.14 Collisions
The interactions between game objects in the simulation are implemented through
the use of collision detection in the physics engine in Unity. Each animal feature a
sphere collider and a box collider. The sphere collider represents sensory range and
is used so that the animals can detect other animals and resources. The box collider,
roughly the size of the animal, is used to represent the collision of the actual animal.
For example, the collision between the box collider of a wolf and the box collider of
a rabbit being chased by said wolf indicates that the wolf has caught up with the
rabbit and can attack.

Layer Collision Matrix

Different collision layers were used in order to minimise the number of collisions
handled by the state machine, using the unity built-in layer collision matrix. The
matrix provides an overview of all layer combinations and whether or not they
should collide. Each animal makes use of two distinct collision layers, one for its
large sphere collider, that represents its field of view, and one for the hit-box based
on the body of the animal.

3.1.15 State Machines
The animals in the simulation feature a state machine, which determines the be-
haviour of each animal. This separates logic related to specific states into distinct
classes, reducing the complexity of implementing the behaviours. As seen in the
table 3.1, several animals implement the same states. This is due to the fact that
the animals share most of its fundamental behaviours, such as drinking and eat-
ing. However, in some of these cases the implementation is slightly different, e.g.
the LookingForFood state has the same general purpose for all animals, but since
different animal species have different food preferences, they all have a unique im-
plementation of said class. Below, it is briefly described what the purpose of each
state is and what the requirements to enter that state are.

15

3. Method

State Rabbit Deer Wolf Bear
LookingForWater X X X X
LookingForFood X X X X

Idle X X X X
Fleeing X X
Drinking X X X X

RunningTowardsWater X X X X
RunningTowardsFood X X X

ChasingPrey X X
LookingForMate X X X X

Attacking X X
Eating X X X

Table 3.1: Overview of all available states and which states the different animals support.

LookingForWater

The LookingForWater state can be entered when an animal becomes sufficiently
thirsty. In this state the animals will try to recall previous locations of water sources
from their memory. If the animals do not know of any previous water sources, they
will roam the terrain in search of new water sources.

LookingForFood

When the hunger of an animal surpasses a certain threshold, it can enter the
LookingForFood state. The state serves the purpose of wandering around and
reacting to collisions with a preferred food source, such as berry bushes for rabbits
and bears or meat for wolves and bears. Predators will also react to live prey.

Idle

The Idle state is the initial state of all animals when the simulation starts, the
animals leave this state when maturing and goes to the LookingForMate state. The
animal will then only return if they are pregnant and all other needs are fulfilled.

Fleeing

The Fleeing state is only used by prey animals, i.e. rabbits and deer. This state can
be entered from all other states, whenever a prey detects that a predator is nearby.
Animals that are fleeing will actively steer away from the threat, and deplete their
stamina by sprinting, in order to evade their pursuer.

GoingToWater

When an animal in the LookingForWater state recalls or detects a water source,
it enters the GoingToWater state and start moving towards the source in order to
start drinking.

16

3. Method

Drinking

The Drinking state can be entered when an animal is in the GoingToWater state
and collides with a water source. Whilst inside the Drinking state, the animal
quench their thirst gradually.

GoingToFood

When a hungry animal recalls or detects a possible food source, e.g. a carcass or a
carrot, it enters the GoingToFood state. However, this state should not be confused
with ChasingPrey, which is used by hungry predators when they detect live prey,
whilst the GoingToFood only incorporates food that is stationary.

ChasingPrey

The ChasingPrey state can be enabled when a hungry predator detects a live prey.
The predators will try to catch the prey by sprinting, which gradually depletes their
stamina.

LookingForMate

When animals are not hungry nor thirsty (and are not chased by predators, in the
case of prey), they may look for a mate by entering the LookingForMate state. This
state can only be entered by animals that are sexually mature, to prevent newborn
animals from immediately looking for mates.

Attacking

When predators that are chasing prey get withing striking distance, they will enter
the Attacking state. By the time this state is entered, the prey that was chased
has been killed, and a carcass will be spawned at the location of the deceased prey.

Eating

The Eating state can be entered whenever an animal is eating from a stationary
food source such as berry bushes. Note, the reason that bears support this state
whilst wolves do not, is because bears are able to consume berries, since they are
omnivores.

Switching Between States

Since only one state can be active at a time for each animal, and several require-
ments for entering the states can be fulfilled at the same time a priority system was
implemented. The priorities were chosen based on what seemed to be most urgent
in terms of surviving. This led to the following priorities: Fleeing, GoingToFood
and GoingToWater, LookingForFood and LookingForWater (which ever resource
has the larger deficit), LookingForMating and lastly Idle. In the bears’ chase, this
resulted in the state diagram in Figure 3.1. For all state diagrams including the
transition conditions, see the figures in appendix A.

17

3. Method

Figure 3.1: The figure displays the state diagram of the bear state machine, displaying
the different states with associated transitions.

3.2 Graphics
This section explains in detail how the graphics for the simulations were developed
and what technologies were used to enhance the aesthetics and usability of the
virtual ecosystem.

3.2.1 Third-Party Packages
The graphical assets used in the simulation stem from a third party package cre-
ated by Polyperfect. This package included all the animal materials, textures and
animations as well as terrain assets such as trees, rocks, and plants that were also
used. There were some modifications done to the package to better suit the simula-
tion, e.g. animator controllers and animal materials were improved and/or replaced
entirely.

3.2.2 Animations
All animals are fully animated for each possible state. As such, all animals have idle,
walking, running, attacking and dying animations. The animations are originally
from a third-party package (from Polyperfect). However, their associated animation
controllers were rewritten to better suit the custom state machines used in the
project. The different states are able to enable different transition animations by
simply setting Boolean values in their associated animation controller.

3.2.3 Terrain
The terrains in the simulation consists of a grass, trees, boulders, and rivers and lakes
with shorelines. The terrain in the scenes were constructed with the Unity terrain
tool and is static making it a more stable platform for doing multiple consecutive
simulations and comparing results. The particular shape and content of the terrain
varies between different scenes.

18

3. Method

3.2.4 Toon Shader

A family of shaders known as toon shaders are used in the simulation on various
objects to primarily aid the visibility of different objects at a distance. Toon shaders
(also referred to as cel shaders), mimic the visual style of cartoons. For instance,
by making objects appear with black outlines, a paper-like texture and flat shading.
An experimental toon shader provided by Unity [28] was used. See Figure 3.2 for
an example of the effects of the toon shader when applied to the wolf model used in
the simulation.

(a) Wolf without toon shader. (b) Wolf with toon shader.

Figure 3.2: Wolf with and without toon shader applied. Note the addition of a black
outline, reduced reflections and increased uniformity of colour when the toon shader is
enabled.

3.2.5 Ambient Occlusion

Ambient occlusion is utilised in the project to improve the overall visual quality of
the simulation, by producing soft shadows. Furthermore, ambient occlusion aids
with increasing the contrast between animals and the terrain, improving visibility.
The ambient occlusion is partially “baked” into scenes when the lighting data for
the different scenes is generated. However, the most noticeable ambient occlusion
effects come from post-processing. See Figure 3.3 for an illustrative example of the
effects of ambient occlusion on the grass in the main menu of the simulation.

19

3. Method

(a) (b)

Figure 3.3: Grass without any ambient occlusion (a) and with strong ambient occlu-
sion (b). The grass in image (a) is hard to distinguish and there is not much depth in
comparison to image (b), where each single straw of grass is easier to distinguish.

3.3 Performance
This section discusses the optimisations that were performed to improve the overall
performance of the virtual ecosystem.

3.3.1 Object Pooling
The simulations are meant to run over many generations, to be able to see general
trends in the statistics. This entails dynamic allocation and destruction of a large
quantity of game objects, such as when food items are consumed or when animals
are born, etc. However, dynamic memory allocation is costly, and the animals
are constructed of several game objects with a considerable number of attached
components, which gives them a non-trivial memory footprint. As a result, object
pools are used by the simulation to reuse game objects, reducing the overall number
of dynamic allocations. In general, there are distinct object pools for each animal
and food resource. This works by letting objects that would normally be destroyed
to be inactivated, and later reused when needed. This optimisation likely results
in increased overall memory usage, in favour of improved execution speed due to
fewer dynamic allocations. Additionally, start-up times are also slightly negatively
affected, since the pools are allocated immediately when the simulation starts.

3.3.2 Entity Component System
To be able to get more accurate results the number of simulated entities must be
large and a goal was for the ecosystem to have population sizes in the magnitude
of a few thousand animals. However, this turned out to be very difficult using the
conventional game object workflow, due to inherent performance limitations caused
by poor data locality and cache misses. To address this issue, a more data-oriented

20

3. Method

approach was deemed necessary. As a result, the plausibility of utilising an ECS
architecture to improve the general performance of the simulation was investigated.
By the time of this realisation, a considerable amount of code had been written
for the conventional Unity framework. As such, a proof of concept was developed
in parallel with further development of the simulation in the conventional object-
oriented style. This work resulted in the “ECS Demo” scene, accessible through
the main menu of the application, which consists of a simplified version of the main
simulation that is implemented using an ECS architecture. Due to the fact that
the group did not commit to the ECS architecture for the entire simulation, it was
important to ensure that scenes developed without ECS support would continue
to work as expected. For that reason, the ECS systems are dynamically enabled
or disabled depending on the choice of scene that is run. This means that the
simulation does not unnecessarily run ECS logic in non-ECS scenes, and vice versa.

3.4 Process
This section gives a chronological report on the development process of the virtual
ecosystem.

3.4.1 Prototyping
The initial prototyping took place in a small scene with flat terrain. Basic behaviours
such as roaming, eating and drinking were the focused on at this stage. Subsequently,
interactions between animals were experimented with using triggers. Most of the
early work consisted of trying out different approaches in order to figure out how
to utilise Unity in the best way. Only rabbits and wolves were available for a
considerable amount of time during the prototyping phase, with similar behaviours.
The initial prototyping scene was never intended to be used for actual simulations,
but it is included in the final version of the application (called “Testing ground”).

3.4.2 Crafting Interesting Ecosystems
The visual aspects of the simulation were considered important. As such, the scenes
needed to be visually interesting and appealing. This led to the introduction of
the forest scene, the first attempt at crafting interesting ecosystems, featuring trees,
lakes, rivers along with miscellaneous decorations. Whilst it turned out quite nicely,
it was not configurable by the user and was still quite small. The forest scene was
the main scene used during the early stages of the project, when more and more
features were added.

3.4.3 Implementing Complex Behaviours
As more complex behaviours were introduced, the need for a better way to separate
and implement different behaviours grew apparent. As a result, state machines were
introduced, where each animal had distinct implementations of different states. This
simplified development and reduced the complexity of animal prefabs. Eventually,

21

3. Method

deer and bears were introduced when the state machine architecture was in place.
However, these animals did not initially differ in any aspect except visual compared
to rabbits and wolves, respectively.

3.4.4 Configurable Scenes
In order to be able to compare simulated ecosystems, initial aspects such as pop-
ulation sizes needed to be configurable. For this reason, the dynamic scene was
introduced. The dynamic scene was designed along with a configuration menu that
is shown before the simulation starts, which enables the user to specify the initial
number of animals and food. This led to the introduction of the main menu, which
lets the user choose which scene that will be run. Additionally, graphical options
such as anti-aliasing and ambient occlusion were also made configurable to improve
performance.

3.4.5 Balancing Attributes
The animals in the ecosystem feature numerous attributes that affect their chances
of survival, e.g. the maximum amount of hunger, thirst and stamina along with size
and the nutritional value of carcasses. In order to balance these attributes, aspects
such as hunger, thirst and stamina were initially set to the same values for all
animals. Other aspects such as size were configured to achieve realistic proportions,
except for rabbits that were slightly enlarged in order to make them more visually
distinctive. The nutritional value of carcasses was determined in a similar manner.
Subsequently, the different animals were slowly given more distinctive gene values
through a process of empirical trials to make sure that no animals grew too powerful.

3.5 Testing Carrying Capacity
A set of guidelines were introduced in order to test the carrying capacity of ecosys-
tems. These included a process of gradually increasing the amount of different
animal species for each test, i.e. the test began with rabbits as the sole species
present in the simulation, and subsequently introducing wolves, deer and bears. All
carrying capacity tests were conducted with immutable genomes. That is, the genes
were assigned values at the start of the simulation and values would remain the
same during the entire simulation, with no mutations at all. The dynamic scene
was chosen as the scene to use when conducting carrying capacity tests, where each
simulation run lasted for 1,000 seconds.

3.5.1 Food Availability
The food availability was considered a key limiting factor for the survival of the
animals. This was tested by running simulations with different initial ratios of
animals and food resources. Three configurations were used to test the effects of
food availability. The first configuration used 500 rabbits and 2,000 berry bushes
and ran for 400 seconds, whilst the second configuration used the same amount

22

3. Method

of rabbits and berry bushes, but ran for 1,000 seconds in order to investigate the
effects of letting the simulation run longer. The third and last configuration used
500 rabbits and 400 berry bushes and ran for 1,000 seconds, emulating more scarce
food conditions.

3.5.2 Impact of Predators
The impact of predators was tested using two different configurations. The first
used 500 rabbits, 50 wolves and 400 berry bushes, whilst the second configuration
increased the amount of berry bushes to 2,000. The rationale for this was to see
how predators affect the carrying capacity and if an increased food supply could
counteract the effects of the wolves. The ratio of rabbits to wolves were based on
the research presented in section 2.2.1.

3.5.3 Simulating All Animals
Two configurations were used when testing carrying capacity in ecosystems with all
animals and features enabled. The first configuration used 200 instances of each
animal type along with 500 berry bushes. Subsequently, the second configuration
used a distribution of animals based on the research presented in 2.2.1, with 400
rabbits, 100 deer, 20 bears, 50 wolves and 500 berry bushes.

3.6 Testing Evolution
In order to verify that reasonable conclusions regarding evolution in the simulated
ecosystems could be made, a number of tests simulations were conducted. The tests
were intended to determine if and how genes changed over time. Mutations were
disabled during these tests, and genes which differed between simulations were com-
pared, as judged by the logging and visualisation scripts.

Three tests were constructed, each attempting to conclude the effects of certain vari-
ables on the gene populations of animals over extended periods by comparing the
results of two simulations with different starting configurations. The first test ex-
amined the effects of food density on prey (rabbits) in a predator free environment.
In both simulations 500 rabbits were placed with differing amounts of berry bushes,
with 75 berry bushes in the sparse scenario and 1000 berry bushes in the abundant
scenario. In the second test, the effects of predators hunting prey were examined.
In both simulations 750 rabbits and 750 berry bushes are placed. In the predator
scenario 500 wolves are added, whilst in the control no wolves were added. In the
third test, the effects of the two different predators were compared. Since bears
are omnivores and the wolves are carnivores, the rabbits might therefore respond
differently. In both simulations 500 rabbits, 400 berry bushes, and either 100 wolves
or 100 bears were placed.

Finding that changes to the simulations produce meaningful changes to the genomes
of the animal populations would be considered a success in indicating that there

23

3. Method

is an amount of evolution occurring in the simulation. Due to this definition of
success, each test is considered done once the population number in the simulation
has stabilised.

3.7 Performance Benchmarks
The performance results were obtained using two different computers, one of them
being a desktop computer and the other being a laptop, with desktop having more
powerful components than the laptop. The exact specifications are listed in Table
3.2. The desktop and laptop computers will hereby be referred to as configuration
A and configuration B, respectively.

Configuration A (Desktop) Configuration B (Laptop)
CPU Intel i7-9700K @ 3.6 GHz Intel i7-8550U @ 1.8 GHz
GPU Nvidia GeForce RTX 2070 Super Nvidia GeForce MX150
RAM 16 GB DDR4 @ 3,000 MHz 16 GB DDR3 @ 1,867 MHz

Video memory 8 GB GDDR6 2 GB GDDR5
Operating system Windows 10 20H2 Windows 10 20H2

Monitor refresh rate 240 Hz 60 Hz
Unity version 2020.2.1f1 2020.2.6f1

Table 3.2: Hardware and software specifications of the computers used for benchmarking
the simulation.

All frame rate data was obtained by running the relevant scene for 45 seconds. The
minimum, maximum and average frame rates were based on frame rate data that was
updated three times per second, where only the last 100 values were used, in order
to avoid anomalies in association with the initialisation of the scenes (especially with
the ECS scene). Furthermore, all benchmarks were run using the default graphics
settings, i.e. SMAA was used for anti-aliasing and ambient occlusion was enabled
at 25% intensity.

24

4
Results

This chapter presents the results of the project, including an overview of the vi-
sual aspects of the virtual ecosystems, investigations into ecological aspects and
performance benchmarks of simulation runs.

4.1 Visuals
This section provides an overview of the graphical user interface (GUI) and the
scenes that represent different ecosystems in the final version of the application.

4.1.1 Main Menu
When running the simulation, a main menu lets the user select which simulation
scene that will be run, as well as configure graphical quality and genomes. See
Figure 4.1 for a screenshot of the main menu. Certain scenes, such as the dynamic
and ECS scenes, will let the user specify the initial number of animals and resources
such as food and water.

Figure 4.1: The main menu of the simulation. The cogwheel button will navigate to the
settings menu which enables the user to change the graphics as well as how the genomes
work for the different animals. Furthermore, the central “cards” can be scrolled, and let
the user choose the scene that will be simulated.

25

4. Results

4.1.2 Graphics Settings
The initial settings menu provides graphical options for anti-aliasing and ambient
occlusion. Both anti-aliasing and ambient occlusion can be disabled entirely for
improved performance. The genome settings are accessed by pressing the “Gene
settings” label. See Figure 4.2 for a screenshot of the settings menu.

Figure 4.2: The graphics settings available in the simulation.

4.1.3 Real-time Animal Information
To aid understanding and insight into the behaviour of the animals in the simulation,
all animals feature graphical indicators that provide information about the state,
gender, hunger, thirst and stamina of the animal. Additionally, pregnant animals
feature purple gender icons. See Figure 4.3 for an example of real-time information
provided about animals.

Figure 4.3: A wolf chasing a rabbit in the forest scene. Note the state indicators, the
wolf is chasing a prey, i.e. the rabbit, whilst the rabbit is actively fleeing from the wolf.
Furthermore, both animals are low on stamina (indicated by the “lighting” bars), due to
the chase.

26

4. Results

4.1.4 Logging Information
In addition to recording simulation events and storing them in log files, some in-
formation is displayed in real-time when running the simulation. This information
includes the current frame rate, the duration of the simulation, the number of an-
imals, the number of births, the number of deaths, the amount of food resources,
the amount of mating and the amount of consumed prey. This is displayed in the
upper left corner of the screen. Overall, this information is useful to quickly make
assessments about simulations without having to look at the generated log files. See
Figure 4.4 for a screenshot of how the information is presented in the simulation.

Figure 4.4: The real-time information provided about the current simulation.

4.1.5 Carcasses
When an animal dies in the simulation, either from being hunted, starvation or
thirst, a piece of meat is placed at the position where the animal died, to emulate a
carcass. This can subsequently be consumed by both omnivores and carnivores, i.e.
bears and wolves. This is represented by a piece of meat with a bone, see Figure
4.5 for a screenshot of how it looks in the simulation.

Figure 4.5: A carcass in the forest scene, as the result of an animal dying.

4.1.6 Forest Scene
The forest scene is a small non-ECS scene, having the dimensions 200×200. It was
the first scene added to the simulation, and serves as a small-scale testing ground.

27

4. Results

The animal and food amounts are not configurable in the forest scene, instead the
scene always starts off with a total of 104 animals. See Figure 4.6 for a screenshot
of the forest scene.

Figure 4.6: Screenshot of the forest scene.

4.1.7 Dynamic Scene
The dynamic scene is the largest non-ECS scene provided in the simulation (with
the dimensions 750×750 in Unity). It features open and flat terrain, with numerous
lakes and rivers. The number of animals and food is configurable in the dynamic
scene (hence the dynamic in the name). See Figure 4.7 for a screenshot of the
dynamic scene.

Figure 4.7: Screenshot of the dynamic scene, with its numerous water sources and open
terrain.

By default, the dynamic scene is configured to spawn 100 rabbits, 100 deer, 100
wolves, 100 bears, 100 carrots and 100 berry bushes. The amount of any animal of
food resource is limited to the interval [0; 9, 999]. See Figure 4.8 for a screenshot of
the configuration menu for the dynamic scene.

28

4. Results

Figure 4.8: The configuration menu for the dynamic scene, with its default values.

4.1.8 ECS Scene
The ECS scene is by far the largest scene, with the dimensions 3,000×3,000. Due to
limited NavMesh support using the ECS framework, the terrain is completely flat.
For the same reason, the animals in the scene feature no animations. However, the
scene does provide insight into the performance potential of the ECS framework in
Unity. See Figure 4.9 for a screenshot of the ECS scene.

Figure 4.9: Screenshot of the ECS scene. Note the completely flat terrain and lack of
animations (all animals are always in their default “poses”).

29

4. Results

4.2 Carrying Capacity

The simulated ecosystems feature many factors that affects the overall balance and
carrying capacity of the different species. This section presents limiting factors re-
lated to the carrying capacity. Section 3.5 explains the methods used for performing
the simulations used in this section.

4.2.1 Near Unlimited Food Supply Without Predators

Given near unlimited availability of food and no predators, the rabbit population
will grow steadily and then seems to stabilise around a carrying capacity (see Figure
4.10). Whilst most rabbits still succumb due to starvation, the amount of deaths
by thirst is still a bigger share of the total then compared to 4.11 (b). This is likely
due to the fact that water sources are relatively scarce compared to food resources.
The simulation shows that it is the availability of berries on the berry bushes that
can be found by the rabbits, possibly close to water sources, that are the true limiting
factor to carrying capacity.

(a) (b)

Figure 4.10: Population data (a) and cause of death (b) from simulation of 500 rabbits
and 2,000 berry bushes running for 1,000 seconds.

4.2.2 Limiting Food Supply

If food availability is lower the population size will stabilise around a carrying capac-
ity for the current ecosystem. The left diagram in Figure 4.11 shows the population
where the amount of food has been lowered. The population starts with a rapid
growth but as time goes on there appears to be a struggle for food and the popula-
tion size decreases rapidly. The right diagram in the same figure shows the cause of
death where dehydration still accounts for a similar number of deaths but starvation
has become a more prominent cause.

30

4. Results

(a)
(b)

Figure 4.11: Population data (a) and cause of death (b) from simulation of 500 rabbits
and a smaller food supply.

However, despite the fact that the amount of food increases steadily, as can be seen
in Figure 4.12, some rabbits still continue to die of starvation. A likely cause for this
is that lowering the number of bushes makes it harder for the rabbits to actually
find the food even though there is food available in the ecosystem.

Figure 4.12: Amount of available food in simulation of 500 rabbits and 400 berry bushes
in dynamic scene.

4.2.3 Introducing Predators
The most important limiting factor in the simulated ecosystems for prey are preda-
tors. Introducing a few predators will lower the carrying capacity for rabbits sig-
nificantly. Figure 4.13 depicts the population curve and cause of death when a few
wolves have been introduced into the ecosystem.

31

4. Results

(a)
(b)

Figure 4.13: Population data (a) and cause of death (b) from simulation of 500 rabbits,
400 berry bushes and 50 wolves

When simulating the ecosystem and increasing the amount of berry bushes a new
trend emerges that can be seen in the left population diagram in Figure 4.14. The
wolves go extinct and the rabbits thrive, likely due to the fact that are fewer rabbit
carcasses for the wolves to eat. This forces the wolves to survive of hunting, which
is difficult.

(a)
(b)

Figure 4.14: Population data (a) and cause of death (b) from simulation of 500 rabbits,
2,000 berry bushes and 50 wolves.

4.2.4 Adding all animals
Simulating ecosystems containing all animals using the same amount of each species
leads to unstable systems, where the population sizes of rabbits, deer and wolves
decrease rapidly whilst the amount of bears steadily increase. The wolves mainly
succumb to starvation when a large amount of prey have hunted and subsequently

32

4. Results

killed. Figure 4.15 depicts population sizes and cause of death in a simulation where
the population sizes are equal in the beginning.

(a)
(b)

Figure 4.15: Population data (a) and cause of death (b) from simulation of 200 rabbits,
200 deer, 200 wolves, 200 bears and 500 berry bushes.

With some balancing, more stable ecosystems can be simulated. This involves having
fewer predators and larger prey populations. Results from using more balanced
population sizes is shown in Figure 4.16.

(a)
(b)

Figure 4.16: Population data (a) and cause of death (b) from simulation of 500 rabbits,
100 deer, 50 wolves, 20 bears and 400 berry bushes and predators.

33

4. Results

4.3 Genes and Evolution
In this section, the results of the tests described in section 3.6 are presented.

4.3.1 Food Density
As specified in 3.6, sparse versus abundant food is compared in a scenario containing
only rabbits (no predators, only prey). Comparing the results of both simulations
(each taking approximately 3,600 seconds), it was found that speed, vision, and
gestation period differ. As can be seen in Figure 4.18 short vision (value 7.0) is
successful in the sparse environment. Low speed is significantly more prevalent in
the plentiful scenario.

(a) Speed (Abundant food) (b) Speed (Sparse food)

Figure 4.17: Speed gene value populations for 500 initial rabbits with (a) abundant
(1000 berry bushes) and (b) sparse (75 berry bushes) food.

(a) Vision (Abundant food) (b) Vision (Sparse food)

Figure 4.18: Vision gene value populations for 500 initial rabbits with (a) abundant
(1000 berry bushes) and (b) sparse (75 berry bushes) food.

34

4. Results

When comparing the gene populations (total number of present genes sorted by
value) for gestation period, no clear change could be found. However, a noticeable
difference is apparent upon examination of the average values instead. As seen in
Figure 4.19, higher values for the time spent in gestation are favoured when food is
sparse.

(a) Average gestation period (abundant
food). (b) Average gestation period (sparse food).

Figure 4.19: Average values of the gestation period gene of 500 initial rabbits for (a)
abundant (1000 berry bushes) and (b) sparse (75 berry bushes) food.

4.3.2 Presence of Predators
Due to wolves being ineffective predators, in this case due to the fact that they
go extinct early in the simulation, no information can be extracted from this test.
There are no meaningful results produced from this result, see Figure 4.20.

Figure 4.20: Changes in population size for 750 initial rabbits, 500 initial wolves, and
750 berry bushes over 2000 seconds. Note the extinction of wolves after approximately
1000 seconds. Note the increase in (b).

35

4. Results

4.3.3 Different Predators
When comparing the effects of wolves and bears a similar issue to the previous
section 4.3.2 is found. Since the wolves go extinct early in the simulation, this test
is more akin to a predator versus no predator test. Each simulation was run for
approximately 1,750 seconds. As shown in Figure 4.21, rabbits favour lower speeds
when wolves are present compared to without bears.

(a) Rabbit speed gene values with 100
wolves.

(b) Rabbit speed gene values with 100
bears.

Figure 4.21: Speed gene populations changes for 500 initial rabbits with either (a) 100
initial wolves or (b) 100 initial bears.

4.4 Performance
This section discusses the overall performance of the simulation, primarily regarding
frame rate, measured in frames per second (FPS). The results in this section were
obtained according to section 3.7.

4.4.1 Conventional Game Object Approach
The main scene for the simulation is the dynamic scene, which features much more
intricate logic and behaviours compared to the ECS scene. However, it makes use
of the conventional object-oriented game object workflow in Unity, which inherently
limits its performance potential. The dynamic scene is by default configured spawn
a total of 600 game objects, of which 400 are “active” objects. See Table 4.1 in the
appendix for the performance of the dynamic scene using the default distribution.

Minimum FPS Maximum FPS Average FPS
Configuration A 25.5 39.1 32.6
Configuration B 15.0 30.1 22.8

Table 4.1: Minimum, maximum and average frame rates obtained when running the
dynamic scene with the default distribution of entities.

36

4. Results

Performance Degradation

The performance degradation in the dynamic scene is shown in Figure 4.22. The
amount of game objects was evenly distributed for each benchmark. Overall, the
performance degradation appears to be relatively linear. For instance, the relative
decrease in average FPS from 1,000 to 2,000 game objects is 52.7 %, which is close
to 50 %. See Table B.1 in the appendix, for the exact frame rate data.

Figure 4.22: Plot of the performance degradation in the dynamic scene. Configuration
A was used to obtain these results.

4.4.2 ECS Framework
The “ECS Demo” demo scene utilises the Unity ECS framework. However, it does
not feature the same level of detail as other scenes that do not use the ECS frame-
work. Nevertheless, the scene does provide an insight into the potential of ECS in
relation to more traditional object-oriented approaches. By default, the ECS scene
is configured to spawn 1,500 rabbits, 700 deer, 450 wolves, 250 bears, 2,000 carrots
and 2,000 water objects. These add up to a total of 6,900 entities. This number of
entities is effectively impossible to simulate in the other non-ECS scenes.

Minimum FPS Maximum FPS Average FPS
Configuration A 32.8 240.0 74.9
Configuration B 12.0 60.0 26.1

Table 4.2: Minimum, maximum and average frame rates obtained when running the
ECS scene with the default distribution of entities.

Performance Degradation

Figure 4.23 shows how the performance degrades in the ECS scene. See Table B.2
for the underlying frame rate data. A distribution of 50 % rabbits and 50 % wolves

37

4. Results

was used for the benchmarks. The maximum FPS is capped at 240 FPS due to
the fact that the frame rate cannot exceed the refresh rate of the monitor, so the
potential maximum FPS might be slightly higher. Compared to the dynamic scene,
the difference between the maximum and minimum FPS is greater using the ECS
framework, even if the overall performance is much better. An apparent result
when comparing the frame rate data from the ECS and dynamic scene is that the
performance of the ECS scene seems to improve when the entities are more evenly
distributed. Since the performance of the ECS scene using the default distribution
(using configuration A), which uses a total of 6,900 entities, is comparable to the
performance of running 3,000 entities, where 50 % are rabbits and 50 % are wolves.

Figure 4.23: Plot of the performance degradation in the ECS scene. Configuration A
was used to obtain these results.

38

5
Discussion

This chapter discusses the final state of the simulation, possible improvements and
other results. Additionally, societal and ethical aspects of the project are discussed.

5.1 Thoughts on the Simulation Results
When evaluating the results of the carrying capacity tests and evolution test, we
find that the simulation works adequately. The system reaches the expected level of
advancement for the scope of the project. It does however leave room for improve-
ment.

5.1.1 Factors Affecting Carrying Capacity
Through testing several setups some interesting patterns emerged. Many patterns
and results were briefly discussed in 4.2 but will be expanded upon here.

Unlimited Food

Tests with ecosystems that provided near unlimited food showed that, when rabbits
were not required to struggle with finding food and could spend more time mating,
the population skyrocketed. However, according to Figure 4.10, there appears to be
a population ceiling. This might be caused by the size of the ecosystem, which could
limit the amount of rabbits the scene can support since many rabbits succumbed
to thirst as they failed to locate water sources. Another factor was the system’s
ability to run a large amount of entities, one limitation with the unity navigation
system is its limit on how many entities can compute their paths at the same time.
This meant that in our case, numerous entities froze while waiting for their turn
to calculate paths making it even harder for them to traverse the map and find
resources to survive.

Stability

It became clear that the graph obtained when running the simulation for 1000
seconds didn’t resemble a stable system, at least not when predators were introduced.
This could be improved upon by tweaking the stats of the wolf and rabbit more and
to obtain stability when all animals are present even more testing needed to be done.
But with the outset to have the genes be the same for all animals, the problem of

39

5. Discussion

stability had to be solved by adjusting the starting population. But overtime this
tended to not be stable.

5.1.2 Evolution of Genes
As can be seen in the results of the tests 4.3.1 and 4.3.3, changes in the initial
conditions cause changes in the evolution of the animals within the simulation. As
such, we can consider there to be good indication that evolution occurs in the system.

As mentioned in 5.1.1, one possible source of error is that because of the large
population of entities due to the overabundance of food, the navigation system is
not able to keep track of all the rabbits at the same time and the rabbits therefore
spend a lot of time in place. This might have an effect on the evolution. For example,
one possible reason why low values of the speed gene were favoured might be that
the increased hunger rate that high speed values entail was too detrimental when the
animals spent much time frozen in place. However, this should not have affected the
results of the third test in 4.3.3, since in this case the population numbers remained
similar throughout the simulation.

5.1.3 Maturity of Unity ECS Framework
Several problems were encountered when using the Unity ECS framework. The
framework was, at the time of the development of the simulation, in a preview
state. As a result, many features, such as the NavMesh navigation system, were not
usable in the context of the ECS framework. Therefore, a third-party library [29]
was required to get the basic navigation to work. Furthermore, due to the preview
nature of the framework, many aspects of the typical Unity workflow changed dra-
matically, increasing complexity and made it difficult to port old code. Overall, the
performance gains were promising, especially with regards to parallelisation, due
to great support in the Unity ECS framework to easily and safely run systems in
parallel. However, the difficulties with getting even basic Unity features to work
with the ECS framework meant that the group chose to not use it other than in a
“demo” scene.

5.2 Possible Improvements
There are many opportunities for improvements to the simulation, both with re-
gards to the quality of the simulated behaviours but also with regards to the user
experience of running the simulation.

5.2.1 Simulation Quality
One area for potential improvements could be increasing the quality of the simu-
lation, either by increasing the reliability of the simulation or by introducing more
complex and different aspects to simulate.

40

5. Discussion

Behavioural Genes

Genomes could be given greater influence over the behaviour of animals. In the
current simulation, genes only marginally affect the traits, e.g. speed or size, of
animals, but they do not add or remove any behaviours. For example, a gene could
be made to correspond to a specific strategy for hunting or fleeing, or perhaps to
give animals the possibility to give birth to a litter of children, instead of only ever
giving births to a single animal.

Increase Simulation Size

Expanding the total size of the simulation and the number of entities in it would
be an improvement. It would give more stable results when simulating ecological
theories since it would reduce the impact of error sources in the statistics. For this
to be possible it would in essence involve enhancing the performance of the system,
either by optimising the current implementation or by transitioning to a different
engine/type of implementation. The latter being what the group has found as the
preferable alternative, namely transitioning to full ECS. As seen in the ECS demo
scene, the number of animals that can be supported far outperforms the current
implementation making it unlikely that any amount of optimisation on the current
implementation would achieve the same performance. This transition would almost
certainly involve changing the engine to one that supports it or by waiting for Unity
to build support for it.

An additional important factor related to the scalability of the simulation is the
choice of programming language. A more low-level language, such as C++, would
result in more control over the general performance of the simulations. The perfor-
mance advantage from choosing a lower level language might come at the cost of a
slower overall development pace, which might be worth it if the goal is to simulate
larger ecosystems. Future projects aiming to simulate ecosystems should at least
consider the scalability and performance issues during the early stages of develop-
ment. For example, there are popular game engines that use C++, such as the
Unreal engine, which could be used instead of Unity for simulating ecosystems.

5.2.2 User Experience
This section discusses aspects related to user experience that could be improved, such
as support for multiple simulation runs without having to restart the simulation or
providing visualisation of simulation results directly in the application.

Multiple Simulation Runs Per Session

Due to certain assumptions in the implementation, it is not currently possible to sim-
ulate more than one ecosystem configuration per run of the simulation application.
The overall usability would benefit from letting users simulate multiple ecosystems
with different configurations without having to restart the entire application.

41

5. Discussion

Improve Visualisation of Data

In order to produce visualisations of the data obtained from simulating an ecosys-
tem, the user is required to manually navigate to the generated log file and run the
visualisation scripts. This experience could be improved significantly if it was also
possible to generate the visualisations from within the application, since it would
make the results more accessible.

Adding support for visualising the differences between multiple runs could improve
what kind of conclusions could be drawn from the data. Additionally, different types
of graphs could be included, such as heat maps of animal activity and death to look
at hunting behaviours, genealogy trees to find exceptionally successful individuals,
and generally more complex graphs.

5.3 Real World Comparisons
There is little to no possibility of computer simulations being able to fully simulate
the real world with the same complexity. The strive for this project was never to
achieve a virtual ecosystem that behaves like an ecosystem would in reality but for
it to be a plausible approximation of the real world. With this said, even though
simulation and models seldom are fully correct there is still real-world conclusions
to be had, with this project being no exception. The developed ecosystem has the
potential to be a learning tool and source of information into how complex the real
world can be. Showing that animals that have a handful of variables to them can
display a complex system while the user also gets tangible experience with ecology.

5.3.1 Balancing
A major challenge in working with a simplified model is how to balance the variables
in a way that resembles the real world enough as to enable drawing some conclusions
about the principles of ecosystems and natural selection. Furthermore, they need
to be balanced in a way that makes said conclusions possible to draw within a
suitable time frame and meaningful changes should happen within this time frame.
Attributes such as hunger and thirst rate thus need to vary enough so that some
animals die from being less adapted to the environment than others. Moreover,
because the simulation is running for a relatively short time, they need to vary
enough to counteract the randomness of the system, such as whether animals will
cross path with food or not.

5.3.2 Realism of Attributes
Because of the limit on the number of entities discussed earlier, some values need
to be made more significant than they would be in real life. For example, the vision
attribute of animals allows some animals to have a field of view twice the size of oth-
ers. Unfortunately, this strays from reality quite a bit, and runs the risk of leaving
the survivability of different phenotypes up to chance by too much. Nevertheless,

42

5. Discussion

while longer simulation times and more entities would allow for more accurate bal-
ancing, the current system still works as a tool for exploring the principles of natural
selection and ecosystems.

5.4 Societal and Ethical Aspects

The benefits of conducting this project included improving our understanding of the
underlying mechanisms of evolution and natural selection. Our goal was to create
a simulation tool that is interesting, pedagogical and provides insights to people
outside of our project group. This can help to improve the understanding of these
natural processes for people other than ourselves. Furthermore, in a time when
many animal species are in danger of going extinct [30], it could be interesting to
see if we could, for example, create a simulation that demonstrates how animal
populations can change as a result of only small changes to their initial sizes, to
encourage greater care of our environment.

5.4.1 Risk of Incorrect Conclusions

There is almost always a risk of making incorrect conclusions from a set of data.
This is something which were kept in mind and monitored during the evaluation
of results of the simulation, since the simulation consisted of a simplified model
whose results cannot be directly applied to the real world, even if they are useful for
understanding the underlying concepts. For example, if we find that a population
is stable at a size of 50 animals in our simulation, that cannot be interpreted as
real-life animal populations are fine with only 50 living examples. Likewise, if the
genes of the animals converge around certain values through natural selection, it
does not necessarily mean that those are the values that would work best or at all
for the attributes of animals in the real world.

5.4.2 Risk of Damages

We find that there are no direct risks related of material or psychological damages
associated with the project, since no humans, animals or ecosystems were put in
harm’s way through the execution of the project. Furthermore, the simulation did
not make use of photo-realistic graphics and did not depict any graphic or gruesome
violence, so it should not be any issues related to people using the simulation and
watching the results unfold.

5.4.3 Privacy

The simulation does not collect user credentials or information of any kind, so pri-
vacy is not an issue.

43

5. Discussion

5.4.4 Fairness
The simulation depicts different animals with attributes assigned to fit their “role”
in a real ecosystem. For example, a bear hunts rabbits and are aggressive. However,
the attributes assigned to different animals are arbitrary and/or chosen to measure
different outcomes. As a result, there might be worries that some animals are
“misrepresented”, but as explained earlier, the simulation is not to be taken too
literally, since the underlying processes and mechanisms are the interesting aspects.

44

6
Conclusion

It is possible to utilise the application to simulate different configurations of ecosys-
tems and evaluate results of different factors. Caution should be exercised before
drawing conclusions from the obtained results in relation to real ecosystems. Sim-
ulating ecosystems is complicated and there are many subtle details that affect the
end result. However, the simulation software is capable of providing a visually in-
teresting experience that provides some basic insights into how ecosystems can be
affected by tweaking different initial factors.

As presented in section 4.4, the performance of the conventional object-oriented
Unity frameworks limited the potential scale of the simulated ecosystems. The
Unity ECS framework did show potential to mitigate the performance limitations,
but it caused problems due to the fact that many features, such as NavMesh agents
or triggers, were not officially supported at the time of development. Future projects
that aim to simulate large scale ecosystems, i.e. ecosystems with a few thousand
entities, should consider performance early during the development cycle. Using an
ECS architecture is recommended, but utilising more low-level programming lan-
guages, such as C++, could simplify the optimisation process significantly. Since
the group spent quite some time trying to avoid some of the innate performance
deficits associated with languages such as C#.

Overall the results meet the goals (to at least sufficient levels) within the constraints
of the project. The results of the evolution and carrying capacity tests, while not
perfect, were satisfactory. Simulating biological aspects such as genomes and mu-
tations can be challenging especially when some conclusions are desired from the
system. There is room for improvement in many aspects of the system, as described
in section 5.2, such as reliability and complexity. However, as a prototype, or first
iteration, project, the overall outcome can be considered a success.

45

6. Conclusion

46

Bibliography

[1] S. J. Metcalf, J. M. Reilly, A. M. Kamarainen, J. King, T. A. Grotzer, and
C. Dede, “Supports for deeper learning of inquiry-based ecosystem science
in virtual environments-comparing virtual and physical concept mapping,”
Computers in Human Behavior, vol. 87, pp. 459–469, 2018.

[2] K. Knezevic. (2021). “GTA 5 has sold more than 140 million copies,” [Online].
Available: https://www.gamespot.com/articles/gta-5-has-sold-more-
than-140-million-copies/1100-6487267/ (visited on 04/20/2021).

[3] U. Ali. (2018). “Red dead redemption 2: Virtual ecology is making game worlds
eerily like our own,” [Online]. Available: https://theconversation.com/
red-dead-redemption-2-virtual-ecology-is-making-game-worlds-
eerily-like-our-own-107068 (visited on 04/20/2021).

[4] Rami Ismail. (2018). “Equilinox presskit,” [Online]. Available: https://equilinox.
com/presskit/sheet.php?p=equilinox#factsheet (visited on 05/13/2021).

[5] T. N. Romanuk, A. Binzer, N. Loeuille, W. M. A. Carscallen, and N. D.
Martinez, “Simulated evolution assembles more realistic food webs with more
functionally similar species than invasion,” Scientific Reports, vol. 9, no. 1,
Dec. 2019. doi: 10.1038/s41598-019-54443-0. [Online]. Available: https:
//doi.org/10.1038/s41598-019-54443-0.

[6] A. Grafen, “Modelling in behavioural ecology,” Behavioural ecology: an evolu-
tionary approach, vol. 3, pp. 5–85, 1991.

[7] Primer. (2018). “Why do things exist? setting the stage for evolution.,” [On-
line]. Available: https://www.youtube.com/watch?v=oDvzbBRiNlA&list=
PLKortajF2dPBWMIS6KF4RLtQiG6KQrTdB (visited on 02/22/2021).

[8] N. Lassabe, H. Luga, and Y. Duthen, “Evolving creatures in virtual ecosys-
tems,” in Advances in Artificial Reality and Tele-Existence, Springer Berlin
Heidelberg, 2006, pp. 11–20. doi: 10.1007/11941354_2. [Online]. Available:
https://doi.org/10.1007/11941354_2.

[9] M. D. Travers, “Agar–an animal construction kit,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1988.

[10] ——, “Programming with agents new metaphors for thinking about compu-
tation,” Ph.D. dissertation, Massachusetts Institute of Technology, 1996.

[11] H. V. D. Parunak, R. Savit, and R. L. Riolo, “Agent-based modeling vs.
equation-based modeling: A case study and users’ guide,” in International
Workshop on Multi-Agent Systems and Agent-Based Simulation, Springer, 1998,
pp. 10–25.

[12] P. Hogeweg and B. Hesper, “Individual-oriented modelling in ecology,” Math-
ematical and Computer Modelling, vol. 13, no. 6, pp. 83–90, 1990.

47

https://www.gamespot.com/articles/gta-5-has-sold-more-than-140-million-copies/1100-6487267/
https://www.gamespot.com/articles/gta-5-has-sold-more-than-140-million-copies/1100-6487267/
https://theconversation.com/red-dead-redemption-2-virtual-ecology-is-making-game-worlds-eerily-like-our-own-107068
https://theconversation.com/red-dead-redemption-2-virtual-ecology-is-making-game-worlds-eerily-like-our-own-107068
https://theconversation.com/red-dead-redemption-2-virtual-ecology-is-making-game-worlds-eerily-like-our-own-107068
https://equilinox.com/presskit/sheet.php?p=equilinox#factsheet
https://equilinox.com/presskit/sheet.php?p=equilinox#factsheet
https://doi.org/10.1038/s41598-019-54443-0
https://doi.org/10.1038/s41598-019-54443-0
https://doi.org/10.1038/s41598-019-54443-0
https://www.youtube.com/watch?v=oDvzbBRiNlA&list=PLKortajF2dPBWMIS6KF4RLtQiG6KQrTdB
https://www.youtube.com/watch?v=oDvzbBRiNlA&list=PLKortajF2dPBWMIS6KF4RLtQiG6KQrTdB
https://doi.org/10.1007/11941354_2
https://doi.org/10.1007/11941354_2

Bibliography

[13] Unity Technologies. (2021). “Important Classes - GameObjects,” [Online].
Available: https://docs.unity3d.com/Manual/class-GameObject.html
(visited on 05/10/2021).

[14] ——, (2020). “Colliders,” [Online]. Available: https://docs.unity3d.com/
Manual/CollidersOverview.html (visited on 04/05/2021).

[15] ——, (2021). “Inner workings of the navigation system,” [Online]. Available:
https://docs.unity3d.com/Manual/nav-InnerWorkings.html (visited on
03/03/2021).

[16] Y. Avissar, J. Choi, J. DeSaix, V. Jurukovski, R. Wise, C. Rye, et al., “Biology:
Openstax,” 2018.

[17] T. E. o. E. Britannica. (2020). “Ecosystem,” [Online]. Available: https://
www.britannica.com/science/ecosystem (visited on 03/03/2021).

[18] I. A. Hatton, K. S. McCann, J. M. Fryxell, T. J. Davies, M. Smerlak, A. R.
Sinclair, and M. Loreau, “The predator-prey power law: Biomass scaling across
terrestrial and aquatic biomes,” Science, vol. 349, no. 6252, 2015.

[19] T. E. o. E. Britannica. (2020). “Carrying capacity,” [Online]. Available: https:
//www.britannica.com/science/carrying-capacity (visited on 05/14/2021).

[20] L. learning. (2016). “Environmental limits to population growth,” [Online].
Available: https://courses.lumenlearning.com/boundless- biology/
chapter / environmental - limits - to - population - growth/ (visited on
04/07/2021).

[21] N. S. Foundation. (2011). “The most genes in an animal? tiny crustacean holds
the record,” [Online]. Available: https://www.nsf.gov/news/news_summ.
jsp?cntn_id=118530 (visited on 03/02/2021).

[22] M. Mahner and M. Kary, “What exactly are genomes, genotypes and pheno-
types? and what about phenomes?” Journal of theoretical biology, vol. 186,
no. 1, pp. 55–63, 1997.

[23] F. J. Ayala and M. Coluzzi, “Chromosome speciation: Humans, drosophila,
and mosquitoes,” Proceedings of the National Academy of Sciences, vol. 102,
no. suppl 1, pp. 6535–6542, 2005.

[24] MedlinePlus. (2020). “What is a gene mutation and how do mutations occur?”
[Online]. Available: https://medlineplus.gov/genetics/understanding/
mutationsanddisorders/genemutation/ (visited on 03/03/2021).

[25] J. M. Smith and S. J. Maynard, The theory of evolution. Cambridge University
Press, 1993, p. 26.

[26] R. C. Lewontin, “The units of selection,” Annual review of ecology and sys-
tematics, pp. 1–18, 1970.

[27] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science
& Engineering, vol. 9, no. 3, pp. 90–95, 2007. doi: 10.1109/MCSE.2007.55.

[28] Unity Technologies. (2021). “Unity Toon Shader,” [Online]. Available: https:
//github.com/Unity-Technologies/com.unity.toonshader (visited on
05/05/2021).

[29] R. Schultz. (2020). “ReeseUnityDemos,” [Online]. Available: https://github.
com/reeseschultz/ReeseUnityDemos (visited on 04/19/2021).

48

https://docs.unity3d.com/Manual/class-GameObject.html
https://docs.unity3d.com/Manual/CollidersOverview.html
https://docs.unity3d.com/Manual/CollidersOverview.html
https://docs.unity3d.com/Manual/nav-InnerWorkings.html
https://www.britannica.com/science/ecosystem
https://www.britannica.com/science/ecosystem
https://www.britannica.com/science/carrying-capacity
https://www.britannica.com/science/carrying-capacity
https://courses.lumenlearning.com/boundless-biology/chapter/environmental-limits-to-population-growth/
https://courses.lumenlearning.com/boundless-biology/chapter/environmental-limits-to-population-growth/
https://www.nsf.gov/news/news_summ.jsp?cntn_id=118530
https://www.nsf.gov/news/news_summ.jsp?cntn_id=118530
https://medlineplus.gov/genetics/understanding/mutationsanddisorders/genemutation/
https://medlineplus.gov/genetics/understanding/mutationsanddisorders/genemutation/
https://doi.org/10.1109/MCSE.2007.55
https://github.com/Unity-Technologies/com.unity.toonshader
https://github.com/Unity-Technologies/com.unity.toonshader
https://github.com/reeseschultz/ReeseUnityDemos
https://github.com/reeseschultz/ReeseUnityDemos

Bibliography

[30] WWF. (2021). “Species list,” [Online]. Available: https://www.worldwildlife.
org/species/directory?direction=desc&sort=extinction_status (vis-
ited on 02/22/2021).

49

https://www.worldwildlife.org/species/directory?direction=desc&sort=extinction_status
https://www.worldwildlife.org/species/directory?direction=desc&sort=extinction_status

Bibliography

50

A
State Diagrams

Figure A.1: A state diagram describing the state machine used by wolves. The diagram
features the states of the state machine and the state transitions with associated transition
conditions.

I

A. State Diagrams

Figure A.2: A state diagram describing the state machine used by bears. The diagram
features the states of the state machine and the state transitions with associated transition
conditions.

Figure A.3: A state diagram describing the state machine used by rabbits. The diagram
features the states of the state machine and the state transitions with associated transition
conditions.

II

A. State Diagrams

Figure A.4: A state diagram describing the state machine used by deer. The diagram
features the states of the state machine and the state transitions with associated transition
conditions.

III

A. State Diagrams

IV

B
Performance Benchmarks

Amount of game objects Minimum FPS Maximum FPS Average FPS
500 28.4 42.1 39.1
600 25.2 34.6 32.2
700 25.0 29.3 27.7
800 19.0 26.4 24.2
900 18.4 23.4 21.2
1,000 16.6 20.6 18.8
1,200 11.2 17.0 15.6
1,400 10.0 14.8 13.0
1,600 8.9 13.0 11.2
1,800 7.9 10.9 10.0
2,000 7.3 10.4 8.9

Table B.1: Performance degradation in the dynamic scene as a result of increasing the
amount of game objects. Configuration A was used to obtain these results.

Amount of entities Minimum FPS Maximum FPS Average FPS
500 150.1 240.0 237.4
1,000 102.7 240.0 221.3
2,000 54.1 240.0 121.7
3,000 30.6 127.4 68.3
4,000 20.2 102.1 45.0
5,000 16.8 66.5 32.7
6,000 8.9 33.8 23.9
7,000 5.5 26.3 17.6

Table B.2: Performance degradation in the ECS scene as a result of increasing the
amount of entities. Configuration A was used to obtain these results.

V

	List of Figures
	List of Tables
	Introduction
	Related Work
	Virtual Ecosystems in Games
	Scientific Usage of Simulated Ecosystems

	Objective
	Scope and Limitations

	Theory
	Technical Theory
	Agent-based Model
	Unity Engine
	Shader
	Ambient Occlusion
	Entity Component System

	Biological Theory
	Ecology
	Genes, Genomes, and Phenotype
	Evolution Through Natural Selection

	Method
	Simulation Design and Implementation
	Software
	Data Collection and Visualisation
	Simulation Model
	Configuration
	Scenes
	Animal Types
	Genome
	Acquisition of Genes
	Food and Water
	Food Generation and Decay
	Mating
	Memory
	Navigation
	Collisions
	State Machines

	Graphics
	Third-Party Packages
	Animations
	Terrain
	Toon Shader
	Ambient Occlusion

	Performance
	Object Pooling
	Entity Component System

	Process
	Prototyping
	Crafting Interesting Ecosystems
	Implementing Complex Behaviours
	Configurable Scenes
	Balancing Attributes

	Testing Carrying Capacity
	Food Availability
	Impact of Predators
	Simulating All Animals

	Testing Evolution
	Performance Benchmarks

	Results
	Visuals
	Main Menu
	Graphics Settings
	Real-time Animal Information
	Logging Information
	Carcasses
	Forest Scene
	Dynamic Scene
	ECS Scene

	Carrying Capacity
	Near Unlimited Food Supply Without Predators
	Limiting Food Supply
	Introducing Predators
	Adding all animals

	Genes and Evolution
	Food Density
	Presence of Predators
	Different Predators

	Performance
	Conventional Game Object Approach
	ECS Framework

	Discussion
	Thoughts on the Simulation Results
	Factors Affecting Carrying Capacity
	Evolution of Genes
	Maturity of Unity ECS Framework

	Possible Improvements
	Simulation Quality
	User Experience

	Real World Comparisons
	Balancing
	Realism of Attributes

	Societal and Ethical Aspects
	Risk of Incorrect Conclusions
	Risk of Damages
	Privacy
	Fairness

	Conclusion
	Bibliography
	State Diagrams
	Performance Benchmarks

