
Anthropomorphic Proof System for First-Order 
Logic
Master of Science Thesis in Intelligent Systems Design

ABDUL RAHIM NIZAMANI

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2010
Report No. 2010:128
ISSN: 1651-4769



Anthropomorphic Proof System for First-Order Logic

Copyright c© Abdul Rahim Nizamani, 2010

Report No. 2010:128
ISSN 1651-4769

Examiner: Claes Stranneg̊ard
Supervisor: Claes Stranneg̊ard

Department of Applied Information Technology
Chalmers University of Technology
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Abstract

This thesis presents a computer-based experiment conducted to study the human rea-
soning in first-order logic. Fifty questions of FOL with accompanying graph models were
presented to participants, who were asked to determine which questions were true and vice
versa. The questions appeared randomly and with a fixed time limit, and the response times
were recorded for all the right answers. A suggested proof system for FOL with bounded
cognitive resources is analyzed using the results from this experiment.

Results show that the proposed proof system models the human reasoning much better
for some problems but not for all. With some shortcomings and space for improvement, the
system gives a working concept for better proof formalisms with limited cognitive resources,
which can generate proofs that are easier to comprehend than the purely mathematical proof
strategies used today.
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Chapter 1

Introduction

1.1 Anthropomorphic Artificial Intelligence

Since the advent of computers, artificial intelligence has remained a major area of research
in computer science. Thousands of scientists have devoted their precious time to realise some
of the important fantasies of human mind by the help of computers. The charm of artificial
intelligence is not limited to scientists only, as much of the science fiction fantasy circulates
around advanced topics in A.I.

Most of the A.I. research is dedicated to the computational modeling of human reasoning.
Computers can process complex problems and data by using mathematical models of human
learning and reasoning processes. But as a matter of fact, the prevalent A.I. research only
considers the strengths of human mind and memory, and builds upon that to design A.I.
applications that can beat humans in complex problems such as chess playing. Output of
such systems is too complex to be understood or consumed by humans. There are certain
classes of problems where the computer-generated output is usually meant to be consumed
by humans. Thus such an A.I. application will have to consider not only the strengths of
human reasoning but also the weaknesses and limitations of the brain. This class of A.I.
programs is termed as Anthropomorphic Artificial Intelligence.[1]

Indeed, this approach to A.I. that considers limitations of human mind and memory,
could also be helpful in solving very complex problems at which humans are still better than
computers. The Chinese game of Go is a typical example in which today’s supercomputers
are still not able to beat the best human players. The game has a vast search space of
possible moves, too huge to be explored by computers. Humans tend to overcome this
problem, possibly by ignoring many possibilities that the computer will usually explore.

This thesis presents the analysis of a proof system for first order logic that works with
bounded cognitive resources. This proof formalism is developed by Claes Stranneg̊ard and his
research fellows including myself, at the Department of Applied I.T., Göteborg University,
Sweden. The complete system is yet to be published. This thesis only concerns the details
of the experiment to analyze this new model and presents its results. An analysis of this
proof formalism is carried out using a psychological experiment carried out in the same
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2 CHAPTER 1. INTRODUCTION

department, in order to assess its performance and validate its results. The work builds on
earlier works by Claes et.al. in [1, 4].

This report only presents my part of the work except where stated otherwise.

1.2 Thesis Outline

Chapter 2 presents the background for this thesis including key concepts in cognitive
modeling and logical reasoning. Related work is discussed in the last section.

Chapter 3 discusses the computational model that is analyzed in this thesis. This model
is developed by Claes Stranneg̊ard, myself and other members of our team.

Chapter 4 presents the design and conduct of the experiment to study the human rea-
soning in first-order logic. The results of this experiment, presented in chapter 5, are used
to analyze the proposed computational model for proving the truth of FOL models.

Chapter 6 discusses the results gathered from the experiment, examines the proposed
proof formalism and presents some important findings. The thesis is concluded in chapter 7
with suggested future work.



Chapter 2

Background

2.1 Cognitive Modeling

In cognitive science, the human mind is often seen as an information processor, with its
various memory systems to store and process information. Many computational models used
in cognitive psychology are presented in [10].

Atkinson and Shiffrin proposed a basic memory model in 1968 with three parts of human
memory. They divided memory in three stages: Sensory Memory (SM), Short-term memory
(STM) and Long-term memory (LTM) [11]. This three-stage model was further refined by
Park and Gutchess, who divided the LTM into Declarative Memory (DM) and Procedural
Memory (PM) [10]. The delarative memory stores semantic information, factual information
as well as some personal experiences. The procedural memory stores methods or processes,
such as basic arithmetic operations or rules of logic.

Sensory memory stores information from the senses for very short time spans, usually
under one second or no more than two. However, information from this memory can be
transferred to other memory systems for longer conservation. There are various components
of sensory memory, but for the purpose of this thesis, we are more interested in visual memory
(VM) that stores incoming visual information. This can store scenes, text, or logic formulas
in our case.

Baddeley and Hitch suggested working memory model in 1974, to replace the simplistic
notion of short-term memory. Later, it was further refined by Baddeley and others [12].
Working memory (WM) actively holds information, usually for short durations, and supports
cognitive functions such as reasoning, comprehension and learning. It is recognized to have
four components, the central executive, the phonological loop, the visuospatial sketchpad
and the episodic buffer [10].

The central executive acts as a controller for the other components. The phonological
loop stores speech and sounds in a subvocal form, and is able to convert the visually presented
speech information such as words into its phonological code. The visuospatial sketchpad is
a temporary storage for visual and spatial information. The episodic buffer acts as a link
between these systems and the LTM.

3



4 CHAPTER 2. BACKGROUND

Working Memory is severely limited and holds small chunks of information at once. Miller
suggests that it can store up to seven items of some kind, such as digits or symbols [2]. Later
studies show that it is even less than that in general, whereas for some individuals it can
even be larger.

2.2 Logical Reasoning

Logical reasoning has been studied in many scienctific research areas, and goes back to
the times of Aristotle. Everyday logical reasoning is usually quite different from reasoning
in classical logic. Most of the experiments conducted in logical reasoning formulate trials
in natural language rather than as logic formulas [13]. This can be natural for studies not
involving classical logic, but it can give rise to ambiguities when used within the classical
logic. Connectives in mathamatical logic usually do not exactly correspond to the structures
in human language. For example, the ”or” in English does not always correspond to the
logical connective ∨, as ”or” can be exclusive or inclusive but ∨ is only inclusive. Similarly
the quantifiers in predicate logic do not correspond to their natural language counterparts.
Newstead’s investigations into syllogisms [14, 15] show that it is quite common in everyday
reasoning to jump from the assumption ”Some A are B” to the conclusion ”Not all A are
B”. Whereas the quantifier ∃ does not lead to ¬∀ in logic.

2.3 Previous Work

Natural deduction systems were developed by Jaskowski [8] and Gentzen [7] in the 1930s.
Gentzen’s goal was to define a formal proof system for logic that was pscyhologically realistic
and close to the actual human reasoning (page 74 in [7]). Several other formalisms were
later developed, many of them derivatives of natural deduction. But none of them follows
the memory models developed by Atkinson and Shiffrin and later refined by others, which
is necessary to make them close to the actual human reasoning.

This thesis builds on the previous work of Claes, et. al. presented in [5]. They propose a
model of human reasoning in propositional logic and analyze it with the help of a psycholog-
ical experiment. They state that their suggested proof formalism is local as all the successor
states depend only on their immediate predecessor state, and linear as the states appear in
linear order.

The proof formalism models rules to prove a propositional statement as a tautology or
non-tautology, providing two proof systems respectively. An experiment was conducted with
student volunteers to study the human reasoning in propositional logic and to validate the
suggested proof model. They conclude that their work shows that it is possible to define
proof systems that can go beyond natural deduction and incorporate concepts from cognitive
psychology, in order for them to be close to human reasoning.



Chapter 3

Proof Formalism

This chapter presents the computational model of the proof formalism which is examined
in this thesis. This model was developed by our team headed by Claes Stranneg̊ard and is
not solely my work. It is based on previous work by Claes et.al. in [1, 4, 5, 9], and is to be
published in a later publication with complete details. Here I summarize it for the readers
of this thesis.

3.1 Formula

Definition 1. A term is any variable or constant. The variables used in the model are x,
y and z. The constants are natural numbers, 1..n, representing the node number in the
respective model.

Definition 2. The formulas are defined as follows.

• The propositional constants ⊥ and > are formulas.

• Propositional variables and abstraction variables are formulas.

• If P is a predicate symbol of arity n ≥ 1, and if t1, t2, ...tn are terms, then P (t1, t2, ...tn)
is a formula.

• If A is a formula, then so is ¬A.

• If A and B are formulas, then so are (A ∨B), (A ∧B), (A→ B) and (A↔ B).

• If A is a formula and x is a variable, then (∀xA) and (∃xA) are also formulas.

Definition 3. The length of a formula A denoted by |A| is defined inductively as follows.

• |⊥| = |>| = 1

• For any variable x or a constant c, |x| = |c| = 1

• Precates: |P (t1, t2, ..., tn)| = n+ 1

5



6 CHAPTER 3. PROOF FORMALISM

• |¬A| = |A|+ 1

• Binary Connectives: |B � C| = |B|+ |C|+ 1

• Quantifiers: |∀xA| = |∃xA| = |A|+ 2

3.2 Proof Systems

The proof system consists of two sub systems, one for proving truth and one for falsity.
A proof in our system is a trace of the use of four memory types, i.e., declarative memory
(DM), visual memory (VM), working memory (WM) and procedural memory (PM). The
FOL sentence lies in the working memory where it is reduced by the rules of the proofs
which are stated in the PM. Each step is an application of a proof rule to the previous
contents of the WM.

Some rules use the declarative memory contents (stored in a file for the proof finder,
given in Appendix D). The application of such rules retrieves related contents from the file
which are shown in the DM field in the proof.

Many of the fol sentences are longer than the visual memory (set to 6 in our experiments).
To overcome the limit, abstraction variables are used to refer to the whole or parts of the
formula. Later, the abstraction variables are expanded by looking up the specific part of the
formula, hence keeping the VM field within the bound. Any rule requiring the lookup of a
part of the formula stores that part into the VM.

Thus, a proof is an application of rules that reduce the original fol sentence to either T
or F, depending upon whether the question was True or False. WM depicts the reduction of
the sentence with rule application.

3.3 Proof Rules

Table 3.3 lists the basic rules of the proof system. Further rules for the truth system are
listed in table 3.3 and for falsity system in table 3.3.

An example of a proof (of problem 4) is presented in table 3.3, generated with proof size
= 17 and proof length = 6 steps. It was generated using visual memory size 6 and working
memory size 8, while minimizing the proof size. See Appendix B for the model for this
problem.

3.4 Complexity Measures

3.4.1 Formula Measures

Formula length is a simple complexity measure defined as the number of symbols in the
formula excluding the parentheses. The difficulty of the problem is somewhat related to this
measure, as the larger formulas are usually harder to solve. Other measures can also be
used for the length, such as the number of binary connectives or the number of predicates in
the formula. Number of quantifiers also adds to the complexity of a formula, and is a good
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Name Rule Conditions

Formula Inspect:
B(ai)

B(C)
if ai ↔ C ∈ VM and f(ai) = C,
where f is the standard abstrac-
tion of A.

Rewrite:
B(C)

B(C ′)
if C ↔ C ′ ∈ D is a tautology,
|C ′| < |C| and B(C ′) is obtained
by replacing exactly one occur-
rence of C in B by C ′.

∀ Reduce:
B(∀x ∈ DC(x))

B(∀x ∈ D − iC(x) ∧ C(i))
if i is the smallest constant in
D.

∃ Reduce:
B(∃x ∈ DC(x))

B(∃x ∈ D − iC(x) ∨ C(i))
if i ∈ D.

Delta Inspet:
B(C)

B(v)
if C ∈ VM , C ∈ I and v is the
truth value of C in M .

Pi Inspect:
B(∀x ∈ DC(x))

B(∀x ∈ D − iC(x))
if C(i) is quantifier free and
true in M .

Sigma Inspect:
B(∃x ∈ DC(x))

B(∃x ∈ D − iC(x))
if C(i) is quantifier free and
false in M .

Pi → Comprehen-
sion:

B(∀x ∈ D(col(x)→ C(x)))

B(∀x ∈ D′C(x))
where D′ = {d ∈ D : col(d) is
true in M}.

Sigma ∧ Compre-
hension:

B(∃x ∈ D(col(x) ∧ C(x)))

B(∃x ∈ D′C(x))
where D′ = {d ∈ D : col(d) is
true in M}.

Table 3.1: Basic System Rules

measure as shown in the results.

One of the complex measures to weigh the formula is the depth of its parse tree. This
can be a good measure, as one may argue that a user will have to parse the formula while
trying to solve it.

3.4.2 Model Measures

The complexity of the models accompanying the formulas can be measured in simple
values such as the number of nodes and the number of edges. Since the models are directed
graphs, another measure can be the number of connections, i.e. the number of directed edges.
Number of colors is also used in the analysis which is the number of unique colors used to
color the graph nodes.
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Name Rule Conditions

Strengthening: A
A′ if A′ → A ∈ DM is a tautology.

Tautology Recall: A
φ

if A ∈ DM is a tautology.

Table 3.2: Truth System Rules

Name Rule Conditions

Weakening: A
A′ if A→ A′ ∈ DM is a tautology.

Contradiction Recall: A
φ

if A ∈ DM is a contradiction.

Table 3.3: Falsity System Rules

3.4.3 Proof Measures

Proof Length

It is defined as the length of a proof using the suggested rules, and is equal to the number
of steps to solve a problem.

Proof Size

It is defined as the sum of the lengths of formulas appearing in the proof. Minimum
proof size is the smallest proof size of a proof for a given problem and is used as the main
complexity measure in this work.

This is mainly because it is a simple measure, but also captures more details of a proof
than the proof length. Although like other mathematical complexity measures, it is prone
to heavy criticism. But note that it measures the usage of the working memory, making it
closer to the psychological complexity of the proof.

Proof Weight

Proof weight is a variation of proof length in which different rules are assigned different
weights and the sum of weighted rules is considered as proof weight.

Proof Volume

This is a combination of proof weight and proof size, where the length of each formula in
the proof is applied a weight according to the rule used to generate that formula. The sum
of the weighted lengths of formulas is defined as the volume of a proof.

3.5 Proof Finder

A program was implemented in Haskell by one of the team members to find the proofs
in the proposed proof system. It was contiously updated during the work to implement the
latest changes during the development of the system.
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DM VM WM PM

a0 => x{1, 2, 3}a1 a0 Formula Inspect

a1[x = 3]→ (∀x{1, 2, 3}a1) ∀x{1, 2, 3}a1 Weakening

a1 => y{1, 2, 3}a2 a1[x = 3] Formula Inspect

a3↔ (∀y{1, 2}a2[x = 3]) ∀y{1, 2, 3}a2[x = 3] For-all Reduce+

a3 ∧ a2[x = 3, y = 3] Delta Inspect

a3 ∧ F a3 ∧ F Contradictin Recall

F

Table 3.4: A proof of problem 4: ∀x(∀y(¬E(x, y)→ Yellow(y)))

I will not describe it as it is not my work, but I used it to generate proofs with varying
parameters. It accepted following parameters as command-line options:

folp "formula" ltm-file pm-file model-file model (T|NT) SM-size WM-size

(--length | --size | --weight | --volume)

where,

• ltm-file is the file containing formulas appearing in Appendix D

• pm-file is a text file containing names of rules to be used, optionally with a weight
to be applied (for proof weight and volume measures)

• model-file is a text file containing model structures. It was encoded to encode graph
models in text format, in which each line encodes a single node of any graph in the
format: 1,1,red,"2,3", containing node number, model number, node color and the
list of nodes to which it connects, respectively.

• model: model number (same as problem number)

• (T|NT) for true and non-true formulas

• SM-size: the size of visual memory, set to 6 for all problems

• WM-size: the size of working memory, set to 8 for all problems

• (--length | --size | --weight | --volume): the proof measure to be used to
generate proofs. It generates the proof with minimum value of this measure.

A sample run of the program for problem 4 is as follows:

folp ">x>y(~E(x,y)->Yellow(y))" ltm.txt pm.txt models.txt 4 NT 6 8 --size



Chapter 4

Experiments

This chapter focuses on the design of the experiment conducted to examine the proposed
proof formalism presented in chapter 3. A description of the design of test questions con-
sisting of FOL formulas and graph models is presented, along with the design of web-based
user interface.

The proposed proof system is designed according to the memory model of humans, follow-
ing the human reasoning with limited cognitive resources. This requires cognitive validation
of the model, which can be accomplished using a trial of human participants. A high corre-
lation of the test measures with the suggested complexity measures will be indicative of the
system’s relationship with the human reasoning.

Similar experiments have been conducted previously. The one presented here builds on an
earlier very similar test for propositional logic [5]. Other experiments have been conducted
to study the use of arithmetic by children [9].

4.1 Preliminary Experiments

A preliminary test was conducted with two student participants. The test consisted of
eight unique first order sentences and eight different graph models. Each FOL sentence was
tested on each graph, thus making 64 different problems to be solved. The models were
hand-crafted simple graphs with colored nodes and undirected edges.

The results showed that the problems were rather too simple, and the fol sentences were
being repeated. The repetition allowed the participants to memorize the problems and solve
them better in later questions. The final experiment was designed to include unique problems
for every question.

4.2 Controlled Experiments

4.2.1 Participants

Ten computer science students were selected from Gothenburg, Sweden, using email invi-
tation. They were from mixed nationalities and in the age span of 20-30 years, with nine of
them being men and one woman. All of them had studied first-order logic in their university

10



4.2. CONTROLLED EXPERIMENTS 11

studies. Snacks were also offered to them for participating in the experiment.

4.2.2 Questions

Fifty questions were prepared for the final controlled experiment. Each question consisted
of a first-order formula accompanied with a model for that formula. The objective was to
decide whether the formula is true or not for the given model, i.e. to give the truth of the
problem (see example in Figure 4.3 on page 15 for the presentation of a problem). The
questions included 24 true formulas and 26 false formulas.

Formulas

The FOL sentences used in the test were manually constructed and were continuously
modified to fit the experiment. Following points were considered to build the final set of
formulas:

• The final 50 sentences were of varying length, with their formula length from 5 to 19.

• Number of predicates used in each formula was from 1 to 3.

• Number of quantifiers in each sentence was 1 to 3, however only two formulas had three
quantifiers. It was observed that an extra quantifier adds considerable complexity to
the question even with limited size of the models.

• Same variables were used in all the formulas, x, y and z, and in this specific sequence.
Reusing a variable in the same formula was avoided to prevent confusion. For instance,
a sentence such as ∀xRed(x) ∧ ∃xBlue(x) was rewritten as ∀xRed(x) ∧ ∃yBlue(y).

• A negation (¬) at the start of a formula was avoided. Although it does not change
the mathematical complexity (except an extra step of reversing the truth of original
formula), it significantly adds to the psychological level of difficulty of the problem.

• Multiple parentheses are hard to parse for humans. In FOL, since parentheses are used
for predicates to contain their arguments, groups inside the formulas were bracketed
using square brackets or large-sized parentheses to simplify the human reading of the
formulas. The after-interviews from the participants also showed that reading and
parsing the formula takes much longer than solving it.

• Four predicates were used: Red(x), Blue(x), Yellow(x), all representing the color of
node x, and E(x, y) representing an edge between nodes x and y.

The full list of sentences used in the experiment is provided in Appendix A along with
their truth value for the models given in Appendix B.

Models for Formulas Initially, simple undirected graphs with colored nodes were sug-
gested to act as the models for FOL formulas used in the experiments. Graphs are pretty
simple models for FOL formulas and an undergraduate computer science student is well
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aware of the basic graph theory. To keep the complexity under control, number of nodes
and edges was limited.

During the preliminary experiments, the undirected graphs proved to be too simple. To
raise the complexity of the graphs, the directed graphs were chosen for the final experiments.
To generate 50 graphs with as much randomness and dissimilarity as possible, and having
few choices in terms of number of nodes, a simple procedure was written in PHP to generate
random graphs. This routine generated Latex code for the graphs. Finally, 50 graphs were
hand-picked from the set of generated graphs, mainly due to the fact that not all random
graphs were visually clear. Intercrossing edges for example were avoided.

To put some limits, the nodes were limited to 3-4, and the number of edges was con-
strained in 3-6 including loops. The nodes were colored randomly with red, blue and yellow.
The comments by pscyhology professor Lance Rips showed that about 10% males are color
blind for red/green. So green was avoided as red had been used.

The full list of graphs is provided in Appendix B.

4.3 User Interface

The experiment was conducted on the web. The user interface for the test is based on
the previous interface initially developed by Jorge Garcia and later modified by Claes et.al.
for use in the similar experiment for propositional logic [5]. This open-source design was
further modified to accommodate for the first-order logic, specially the presentation of graph
models alongwith the logic sentences.

Important design elements including the modifications are as under:

• The web URL lands on a html page containing instructions about the test. A link at
the bottom of the page directs the user to the actual test interface.

• The first page of the test interface lists the truth table for Logic operators and a list
of the Predicates used in the test (Figure 4.1).

• The second screen requests user particulars including a nickname in order to make the
results anonymous and build the user confidence. Age and sex are also requested on
this page.

• A question is presented as a model with a logic sentence stating some statement about
the model. The user is asked about the truth of the problem, and she answers by
evaluating that statement in the accompanied graph. (See figure 4.3).

• Every two consecutive questions are separated with an intermediate screen that allows
the user to get ready for the next question by taking a little break.

• A time-out of 90 seconds was implemented. If a user takes longer than that, the current
problem is aborted and the user is directed to the intermediate page to start the next
question.
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• The user is able to skip a problem by cliking on the ”I don’t know” option. This also
helps to avoid guesses by the users, as they are encouraged to skip a question rather
than to guess it, in case they are not sure about the answer.

Sample screen shots of the test interface are provided in figures 4.1 (p.13), 4.2 (p.14), 4.3
(p.15) and 4.4 (p.15).

Figure 4.1: Web Interface: Start Screen

4.3.1 Procedure

The experiment was conducted in a computer laboratory in the I.T. University of Gothen-
burg, Sweden. The participants were each assigned computer terminals individually. The
duration of the experiment was one hour, with a short break after 25 minutes.

After being seated, the participants were given instructions printed on a page which were
also read aloud to them. They were first introduced to the sample test in order to familiarize
them to the test setup and sample questions. After they were confident to proceed to the
actual test, they were guided to the new URL of the real test. After 25 minutes, they were
requested to take a break of short time after finishing the question at hand.

4.4 Measures

The test recorded the answers of the participants along with their response times for
each answer. The response times were recorded on the client computer and then sent to the
server in order to avoid the network delays.
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Figure 4.2: Web Interface: User Particulars

Following psychological measures of the trials were gathered from the experiment.

Accuracy This is defined as the number of correct answers for the test questions. Each
question has an accuracy value of 0-10: the number of participants correctly classifying the
truth value of a problem.

Latency This is the average response time for every question, for only the correct answers.
Median values are used instead of mean to minimize the effects of possible unusual or extreme
response times which may possibly occur due to external disturbances.
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Figure 4.3: Web Interface: Trial Screen

Figure 4.4: Web Interface: Next Question Screen



Chapter 5

Results

This chapter summarizes the results of the experiment conducted to study the psychological
complexity of the FOL models and to compare it with the complexity of the proofs generated
with the proposed formalism. Section 5.1 presents summarized results of the experiment
with respect to accuracy and latency (response times). Regression graphs are presented for
comparison of different complexity measures. Section 5.2.1 presents the results of the proofs
and the usage of rules in the proofs. For discussion of these results, see the following chapter.

5.1 Results of the experiment

Ten participants attempted the test consisting of fifty problems, among them 24 true and
26 false questions. The complete results of the test are provided in Appendix C. Table 5.1
lists the results of the test for each participant for the 50 questions, including 24 true and
26 false trials.

Table 5.1: Results of the test
True (24) False (26) Total (50)

Person 1 23 / 0 / 1 24 / 2 / 0 47 / 2 / 1

Person 2 14 / 9 / 1 17 / 9 / 0 31 / 18 / 1

Person 3 15 / 8 / 1 11 / 14 / 1 26 / 22 / 2

Person 4 23 / 1 / 0 21 / 5 / 0 44 / 6 / 0

Person 5 12 / 11 / 1 16 / 10 / 0 28 / 21 / 1

Person 6 20 / 3 / 1 24 / 1 / 1 44 / 4 / 2

Person 7 19 / 3 / 2 17 / 8 / 1 36 / 11 / 3

Person 8 16 / 7 / 1 16 / 10 / 0 32 / 17 / 1

Person 9 20 / 3 / 1 17 / 8 / 1 37 / 11 / 2

Person 10 16 / 7 / 1 11 / 14 / 1 27 / 21 / 2

Average 17.8 / 5.2 / 1.0 17.4 / 8.1 / 0.5 35.2 / 13.3 / 1.5

Percentage 74.1 / 21.7 / 4.2 66.9 / 31.2 / 1.9 70.4 / 26.6 / 3.0

16
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5.1.1 Accuracy

Table 5.1 lists the accuracy data for the participants in the form of correct answers /
incorrect answers / timeouts. For simplicity, all incorrectly answered and unaswered trials
are considered as incorrect. Timeouts are also incorrect answers, but are listed separately
to elaborate their proportion.

For individual problems, the accuracy value ranged from 2 to 10, with an average value
of 7.

5.1.2 Latency

For the individual problems, the median response times for the correct answers were in
the range 11.34 to 60.3, with the average value of 35.34.

5.2 Proofs

The proof finder was used to generate the minimum sized proofs for all the questions
used in the test. The proofs were generated with minimum proof size, our main complexity
measure. Proof lengths of the same proofs were also recorded and are used in the analysis
for comparison only. This measure should not be confused with minimum proof length, for
which the proof finder might have generated different proofs.

Due to the restriction of cognitive resources including working memory and visual mem-
ory, the proof finder was unable to generate proofs for three questions: 2, 5 and 45. Although
the proof system is designed to be used for simple formulas, these questions are not really
hard and were solved by the participants. This may be due to some problem with either
the proof finder or the proof system itself. In any case, further improvement is required for
both.

5.2.1 Usage of Rules

Table 5.2 summarizes the number of times each rule is used in the generated proofs for
47 questions, among them 22 true and 25 false ones.

5.3 Correlation

The results of the experiment were related to different complexity measures of the prob-
lems to see any relationship between them.

In the following table, latency is compared to the three proof measures and the correlation
coefficients show that the proofs of the problems are correlated with it to some extent. The
false problems have a higher correlation with latency.
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Table 5.2: Usage of rules in the proofs

Rule Name True False Total

Formula Inspect 66 63 129

Delta Inspect 22 31 53

Pi Inspect Prime 33 33

Weakening 24 24

Sigma Inspect Prime 2 26 28

Strengthening 23 23

Contradiction Recall 25 25

Tautology Recall 22 22

Pi Arrow Comprehension 2 5 7

Exists Reduce+ 17 12 29

Rewrite 14 15 29

Forall Reduce+ 9 9 18

Sigma And Comprehension 3 1 4

Table 5.3: Correlation of Proof Measures with Latency

Rule Name True False All Problems

Proof Length 0.20 0.62 0.37

Min Proof Size 0.24 0.63 0.40

Proof Volume 0.36 0.75 0.52

The proof volume was computed by varying the weights of the rules to find the optimal
ones. No special method was applied for this due to the high computing requirements, and
the weights were found manually. Therefore, the proof volume was not used later on for
further analysis and was abandoned at this stage.

The complexity measures are not related to accuracy values in the test, showing that the
proof rules actually model the latency instead of accuracy.

Table 5.4: Correlation of Proof Measures with Accuracy

Rule Name True False All Problems

Proof Length -0.16 -0.02 -0.04

Min Proof Size -0.20 -0.03 -0.06

Proof Volume -0.36 0.06 -0.08
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The figures 5.1, 5.2 and 5.3 show the correlation of various mathematical measures with
latency. The proof measures show a better relationship with latency than the formula length
except a few points which are scattered away from the trend line.
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This shows that the proof measures model the psychological complexity of the problems
better than the simple measures such as formula length. However, some of the proofs are
oversmart in this system, suggesting that more work needs to be done to improve the proof
model.
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Response time vs. proof size
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Chapter 6

Discussion

6.1 Interviews with Participants

After the test, some short interviews were done with the participants to see what they
thought about the test and how did they solve the problems. The interviews showed that
understanding the formula was a major step consuming more than 50% of the time. On
the other hand, understanding the model was trivial and solving the problem did not take
that much once they had analyzed the formula. The problems were presented with both the
formula and the graph appearing simultaneously, but most participants said they looked at
the formula first and tried to analyze it. They also revealed that although some tried to
analyze the complete formula before beginning to solve the problem, some of them indeed
tried to look at the parts if the formula was long. Most of them told that they used the
strategy to falsify the formula first by trying to find a counter example, and if failed, analyzing
it for the truth.

It was earlier suggested by Lance Rips that the underlying axioms must be conveyed
clearly to the participants to avoid misunderstanding. He emphasized that this was most
important, and that any misconception will lead to false results. This proved to be true, as
a few of the subjects had really a problem in understanding predicate E(x, y). They were
in doubt whether x and y in this term can be instantiated to the same node or not. This
was made clear to them during the break that multiple variables can be instantiated to the
same node. But even being in doubt, they mostly evaluated it in the right way as the use of
self-loops in most models was a guiding factor to them.

6.2 Formula and Model Complexities

As pointed out by some participants, the amount of time taken by them to understand
the formula was considerably higher as compared to the total time spent to solve a particular
problem. This is also evident in the correlations between model measures and test measures.
Table 6.1 gives such correlations between the different variables of the two types, for the
subset of 47 questions for which the proof generator was able to generate proofs. The
variables are explained as follows:

Nodes : Number of nodes used in the model

21
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Edges : Number of edges (uni- or bidirectional) in the model

Cons : Number of connections (directed edges) in the model

Colors : Number of different colors used in the model

Table 6.1: Correlation of Model Complexities

Model Measures Latency Accuracy

Nodes 0.072 0.058

Edges -0.112 -0.012

Cons -0.169 -0.039

Colors -0.167 0.167

This suggests that the model complexity has little or no effect on the human reasoning
for solving these questions, whereas the formula complexity plays a bigger role in the same.
This may be due to the fact that the model size was kept limited to an average 3.5 nodes
per model (3-4 nodes in each), and 3.76 edges per model (3-5 in each). Further, the fact
that graphs are visually apealling and do not need analytical digestion, is also an important
factor in this. Whereas the logic formulas are quite complex for human reasoning, which is
evident from table 6.2 listing the correlations of formula measures with latency and accuracy.

Table 6.2: Correlation of Formula Complexities

Formula Measures Latency Accuracy

Length 0.374 -0.138

Quantifiers 0.525 -0.138

Binary Connectives 0.231 -0.023

Parse Depth 0.496 -0.292

Predicates 0.231 -0.023

Negations 0.197 -0.376

6.3 Multiple Correlation

”The general purpose of multiple regression (the term was first used by Pearson,
1908) is to learn more about the relationship between several independent or
predictor variables and a dependent or criterion variable.” [16]

During the course of evaluation of results, multiple correlation was applied to see any
signifant relationship between the problem measures and test results.

6.3.1 Model Measures

All the four model measures (number of nodes, edges, colors and connections) were
correlated with the latency and accuracy. The results, in accordance with our previous
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observation, show that the model measures do not significantly affect the test results. The
correlation coefficient was 0.068 for latency and 0.158 for accuracy.

6.3.2 Formula Measures

The combined regression of all the formula measures was 0.60 with latency and 0.43 with
accuracy. This shows that the formula complexity affects the human performance in the test
to a large extent, and can be used to predict the psychological complexity, though with less
precision.

Considering that the problems comprised of both true and false questions, truth value was
introduced as another formula measure, being 0 for false questions and 1 for true questions.
When this was included in the set of formula measures for multiple correlation, the result
was a correlation of 0.67 with latency and 0.55 for accuracy, which is somewhat better than
the previous values.

However, when the proof measures were included in the set of predictors, no considerable
achievement was observed. The two measures included were the proof length and the proof
size. The new correlation was 0.70 with latency (compared to 0.67 without proof measures)
and 0.55 with accuracy (compared to the previous 0.54), which does not improve the previous
values.

6.4 Selective Regression

In order to further analyze the results, regression was applied on subsets of values selected
on various criteria.

6.4.1 Selecting by Higher accuracy

The participants were not equally good at solving the test problems. On the other axis,
not all questions were solved by a good number of participants, with some problems solved
only by less than half of them. Selective regression was applied on the measures of problems
with higher accuracy. First we looked at the accuracy distribution of the test problems,
given in table 6.3.

As the table 6.3 shows, exactly half of the problems were solved with a very high accuracy
of 80% and higher. This was selected as the threshold and those problems with accuracy
80% and higher were selected for analysis. Out of those 25, we did not have proof measures
for two of them, making the total to 23 problems. The results of regression for this selected
subset of problems are given in table 6.4.

The proof size, our main mathematical complexity measure, is highly correlated with
latency for the false questions. The values are better than the correlations in the full data,
but with less data points. Correlation coefficients for formula length and proof length are
provided for comparison. Values for formula length show that it is still a better predictor
for the latency than the proof measures. Higher coefficients for false problems show that the
system reasonably models those problems but fails to properly model the true questions.
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Table 6.3: Accuracy distribution of test problems

Accuracy No. of Problems %

1 0 0%

2 1 2%

3 0 0%

4 6 12%

5 2 4%

6 7 14%

7 9 18%

8 17 34%

9 5 10%

10 3 6%

Tot 50 100%

Table 6.4: Selective Regression Analysis - 80% and higher

True False Combined

Formula length 0.38 0.90 0.54

Proof length 0.42 0.70 0.43

Proof size 0.47 0.85 0.51

In comparison, the regression of the questions with accuracy less than 80% is listed in
table 6.5, for 24 questions, among them 9 true and 15 false. The correlation of formula
length with latency is visibly much less than the above values, suggesting that the formula
length is better correlated to latency in easier problems. Values for proof measures are also
less than those in the above table.

Table 6.5: Selective Regression Analysis - less than 80%

True False Combined

Formula length -0.48 0.31 0.07

Proof length -0.39 0.58 0.25

Proof size -0.31 0.55 0.24

6.4.2 Selecting by Formula Complexity

Correlations of mathematical measures with the latency show that the false problems are
better correlated than the true ones. This leads us to think why is it so, when the system
has almost similar rules for both types of problems. The formulas were analyzed for any
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sign related to this, and it was observed that some of the formulas might be harder to solve
than others.

From the 24 true problems, 8 were universal formulas (starting with ∀) and the rest were
existential (starting with ∃). To solve a true existential formula, one only needs to find one
example to prove it true. Whereas, the truth of universal formulas has to be checked in the
whole domain, making it harder to solve.

Looking at the false problems, only two were found as existential formulas which may be
harder to solve than the false universal formulas. This clue was pointed out by one of the
team members. A larger number of universal true formulas as compared to existential false
formulas may be the cause of the bad correlations of true problems earlier. From here on, I
will refer to these 10 problems as harder formulas and for the rest, including true existential
and false universal, as easier formulas.

For analysis, the harder formulas (1,5,11,13,15,16,17,19,42,45) were removed from the
dataset and the rest were analyzed, except problem 2 for which no proof measures were
available. For these 39 problems, the correlation of 16 true ones stands at 0.65, for the 23
false ones it stands at 0.69, combined the correlation coefficient is 0.66. Unlike previous
figures, the current values do not have a wide difference for true and false problems.

This important finding shows that the proof system better models the easier formulas, but
not the harder ones as pointed out above. This finding is also supported by the participant
interviews where many of them said they always tried to find a counter-example first to solve
the problem.

On the other hand, the harder formulas had a correlation of only 0.28 in latency vs. proof
size (for only 8 of those 10, as problems 5 and 45 did not have proof measures).

If we combine the two selection criteria discussed above, i.e. select problems with ac-
curacy 80% and higher, and then select the easier problems from those, we get a set of 19
problems. The correlation of proof size of this selection with the latency stands at 0.76 which
is promising, as suggested by Lance Rips that a correlation of at least 0.70 to 0.80 is sufficient
to prove that the system actually models human reasoning in first order logic. Although it
comes at the cost of reduced data set, which shows the proof system does need further re-
finement and improvement. For comparison, the formula length vs. latency correlation for
this subset is 0.52.



Chapter 7

Conclusion

7.1 Summary and Conclusion

The main conclusion drawn from this thesis is that better proof systems can be defined
for classical logic than the traditional formalisms, which can incorporate concepts from
cognitive psychology and model the actual human reasoning in logic. It can be deduced
from the results of the experiment that the psychological complexity of a problem in first
order logic can be predicted by the suggested model, though it needs more development. The
minimum proof size of the proofs in the suggested model highly correlates to the average
response times of high accuracy questions in the experiment. The suggested model can be
developed further by using different axioms and rules, using better complexity measures,
conducting more psychological experiments, and in several other ways.

7.2 Future Work

The work presented in this thesis is just a startup to a broader field of applying cognitive
science concepts in the computational problem solving. The scope of this study was limited
to first order logic. The natural next step to this study will be to further the development
of the proof strategy presented herein and to make it closer to the human reasoning. One
of the important developments will be to verify the findings of section 6.4.2 and develop the
rules for the harder questions as discussed therein.

The memory model used in this study is a basic model of human memory, whereas the
models currently used in cognitive science are quite complex. To better assess the human
reasoning, a more sophisticated model can be implemented which will hopefully yield better
results.
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Appendix A

List of Test questions

The fol formulas used in the experiment are listed here along with their truth value in the
given model (models listed in Appendix B). Proof values for questions 2, 5 and 45 are not
given, as these could not be computed within the specified limit of cognitive resources. Here
FL = formula length,
PL = proof length, and
PS = minimum proof size.

# Formula Truth FL PL PS

1 ∃x(Blue(x) ∧ ∀y[Blue(y)→ E(x, y)]) False 13 9 35

2 ∀x(Red(x)→ ∃y∃z[E(x, y) ∧ E(y, z) ∧ Red(z)]) False 19

3 ∃x[Yellow(x) ∧ ∀y¬E(x, y)] True 11 10 34

4 ∀x∀y[¬E(x, y)→ Yellow(y)] False 11 6 17

5 ∀x(∃y[Yellow(y) ∧ E(x, y)]↔ Yellow(x)) True 13

6 ∀x([E(x, x) ∨ ¬Blue(x)]→ E(3, x)) False 13 4 7

7 ∃x∃y[Red(x) ∧ Red(y) ∧ E(x, y) ∧ E(y, x)] True 17 9 24

8 ∃x∃y∃z[E(x, y) ∧ E(y, z) ∧ ¬E(z, x)] True 18 9 27

9 ∀x[¬Red(x)→ ∀yE(x, y)] False 11 9 26

10 ∀x∀y[E(x, y) ∧ E(y, x)] False 11 6 17

11 ∀x[¬E(x, x)→ ¬Red(x)] True 10 5 13

12 ∀x(E(x, x)→ ∃y[E(x, y) ∧ Yellow(y)]) False 14 10 32

13 ∀x(¬E(x, x)→ ∃y[Yellow(y) ∧ E(y, x)]) True 15 10 39

14 ∃x∀y¬E(x, y) True 8 7 22

15 ∀x(¬E(x, x)→ ∃y[Blue(y) ∧ E(x, y)]) True 15 22 87

16 ∃x¬∃y[Blue(y) ∧ E(y, x)] False 11 23 92

17 ∀x(Red(x)→ ∃y[E(x, y) ∧ ¬Blue(y)]) True 14 15 53

18 ∀x[Red(x)→ E(x, x)] False 8 4 7
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# Formula Truth FL PL PS

19 ∀x(E(x, x)→ ∃y[Blue(y) ∧ E(x, y)]) True 14 21 76

20 ∃x[¬Yellow(x) ∧ ∀y¬E(x, y)] True 12 11 37

21 ∀x∃y[E(x, y) ∧ Red(y)] False 10 8 26

22 ∃x∀y[E(x, y) ∧ E(y, x)] True 11 7 22

23 ∃x[¬E(x, x) ∧ ∃yE(y, x)] True 12 9 26

24 ∀x∀y[E(x, y)↔ E(x, x)] False 11 6 17

25 ∀x(Yellow(x)↔ ∃y[Yellow(y) ∧ E(x, y)]) False 13 9 31

26 ∀x∀y([Blue(x) ∧ Yellow(y)]→ E(x, y)) False 13 6 17

27 ∀x(¬E(x, x)→ ∃y[E(x, y) ∧ ¬Blue(y)]) False 16 11 37

28 ∃x(Yellow(x) ∧ ¬∃y[¬Yellow(y) ∧ E(x, y)]) True 15 10 33

29 ∃x∃y[E(x, x) ∧ E(y, y) ∧ E(x, y)] True 15 6 17

30 ∃x[∀yE(x, y)→ Blue(x)] True 10 5 14

31 ∀x[Red(x)→ ¬∃y(¬Red(y) ∧ E(x, y))] False 15 9 30

32 ∀x[Yellow(x)→ ∀yE(x, y)] False 10 8 23

33 ∀x(E(x, 2) ∨ ¬∃y[Blue(y) ∧ E(y, x)]) False 15 10 32

34 ∀xE(x, 3) False 5 4 6

35 ∀x[E(x, 2) ∧ E(x, 3)] False 9 4 7

36 ∀x(Yellow(x)→ ∃y[Red(y) ∧ E(x, y)]) False 13 10 29

37 ∃x∃y[¬Yellow(x) ∧ Yellow(y) ∧ ¬E(x, y)] True 15 9 26

38 ∀x[∃yE(x, y)→ E(x, x)] False 11 9 29

39 ∀x[¬E(x, x)→ ∃y(E(y, y) ∧ E(x, y))] False 16 11 37

40 ∀x[∀yE(x, y)↔ Blue(x)] False 10 10 24

41 ∃x[Blue(x) ∧ ∀y(Yellow(y)→ [E(x, y) ∨ E(y, x)])] True 17 10 34

42 ∀x[Red(x)→ ∃yE(x, y)] True 10 15 49

43 ∀x[Red(x) ∨ Yellow(x)] False 7 4 7

44 ∀x[Yellow(x)→ ∃yE(x, y)] False 10 11 28

45 ∀x∀y([E(x, y) ∧ E(y, x)]→ [E(x, x) ∨ E(y, y)]) True 19

46 ∃x∀y[Blue(y)→ ¬E(x, y)] True 11 8 26

47 ∀x[Yellow(x)→ ∃y(E(x, y) ∧ (Blue(y) ∨ Red(y)])] False 16 10 34

48 ∃xE(x, x) True 5 4 6

49 ∃x∀y¬E(x, y) True 8 7 22

50 ∃x[¬Blue(x) ∧ E(x, x)] True 9 4 7
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Models for the Test Questions

Model 01 Model 02 Model 03

1

2

3

1

2

3

1

2

3

4

Model 04 Model 05 Model 06

1

2

3

1

2

3

4

1

2

3
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Model 07 Model 08 Model 09

1

2

3

1

2

3

4

1

2

3

Model 10 Model 11 Model 12

1

2

3

1

2

3

1

2

3

Model 13 Model 14 Model 15

1

2

3

1

2

3

1

2

3

4
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Model 16 Model 17 Model 18

1

2

3

1

2

3

4

1

2

3

4

Model 19 Model 20 Model 21

1

2

3

1

2

3

4

1

2

3

4

Model 22 Model 23 Model 24

1

2

3

1

2

3

4

1

2

3

4
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Model 25 Model 26 Model 27

1

2

3

4

1

2

3

4

1

2

3

4

Model 28 Model 29 Model 30

1

2

3

4

1

2

3

4

1

2

3

Model 31 Model 32 Model 33

1

2

3

4

1

2

3

1

2

3

4



35

Model 34 Model 35 Model 36

1

2

3

4

1

2

3

1

2

3

Model 37 Model 38 Model 39

1

2

3

1

2

3

4

1

2

3

4

Model 40 Model 41 Model 42

1

2

3

4

1

2

3

4

1

2

3
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Model 43 Model 44 Model 45

1

2

3

4

1

2

3

4

1

2

3

Model 46 Model 47 Model 48

1

2

3

4

1

2

3

4

1

2

3

4

Model 49 Model 50

1

2

3

1

2

3



Appendix C

Test Results

The following table lists the response times of the 10 participants for the test questions.
Only correct answers are listed here.

The following parameters are provided at the end of the table.

• avg = Average

• tot = Total

• rel = Reliability

Reliability is a parameter to assess the performance of users, and is defined as ’one minus
the ratio of wrong answers’.

37



38 APPENDIX C. TEST RESULTS
#

P
-1

P
-2

P
-3

P
-4

P
-5

P
-6

P
-7

P
-8

P
-9

P
-1

0
M

e
d
ia

n
A

ccu
ra

cy

1
47.231

32.377
26.926

49.287
57.578

72.735
10.719

66.640
48.259

8

2
30.264

67.878
35.266

42.565
65.716

54.906
70.516

70.484
60.311

8

3
17.031

23.173
21.172

12.422
47.128

59.984
29.906

30.704
45.422

29.906
9

4
14.025

68.172
41.098

2

5
52.169

31.422
24.546

60.907
71.047

53.297
52.733

6

6
29.061

49.344
73.547

21.500
20.219

29.061
5

7
19.202

29.783
22.865

18.563
19.315

22.203
24.407

22.203
7

8
39.639

25.749
16.435

58.800
37.502

28.188
73.344

26.047
32.845

8

9
21.046

31.517
14.670

48.516
26.281

4

10
19.250

24.392
29.054

27.219
23.469

24.392
5

11
30.545

61.128
6.279

30.012
15.781

29.594
10.015

38.437
29.803

8

12
23.749

65.785
14.936

37.877
34.163

18.344
43.734

34.163
7

13
32.686

41.546
10.047

51.584
16.766

46.172
37.116

6

14
24.749

50.237
41.686

13.078
21.877

49.640
41.813

42.657
41.749

8

15
28.031

27.777
32.585

28.218
62.563

48.016
30.401

6

16
45.497

68.800
52.734

25.535
49.230

84.765
50.982

6

17
23.640

23.234
23.749

27.217
30.219

32.281
30.063

27.217
7

18
9.203

14.923
8.156

24.892
10.191

17.609
19.812

30.297
21.969

17.609
9

19
20.155

53.972
68.389

21.341
46.909

40.048
34.515

22.922
67.469

40.048
9

20
29.842

23.984
48.081

48.343
42.094

34.172
38.133

6

21
39.015

37.015
17.406

28.877
19.691

49.687
32.500

47.578
34.757

8

22
23.687

38.424
62.889

13.562
28.341

24.562
45.062

61.016
13.578

28.341
9

23
30.171

48.815
28.594

24.559
38.284

41.325
26.937

50.438
46.890

38.284
9

24
33.202

39.190
36.656

21.559
22.741

31.141
68.093

28.187
32.171

8
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#

P
-1

P
-2

P
-3

P
-4

P
-5

P
-6

P
-7

P
-8

P
-9

P
-1

0
M

e
d
ia

n
A

cc
u
ra

cy

25
19

.5
93

53
.5

81
58

.8
89

17
.0

94
37

.0
34

19
.1

91
43

.0
78

48
.5

46
40

.0
56

8

26
23

.2
02

40
.2

68
41

.7
80

23
.9

84
70

.3
63

54
.9

42
38

.5
16

59
.8

91
41

.0
24

8

27
27

.4
82

42
.9

21
22

.9
99

32
.4

60
64

.9
53

42
.9

69
57

.5
62

42
.9

21
7

28
48

.4
35

19
.3

28
74

.7
62

42
.1

25
45

.2
80

4

29
15

.7
95

30
.2

83
22

.5
77

11
.3

85
17

.0
16

31
.3

61
10

.8
91

34
.2

19
19

.7
96

8

30
36

.9
24

42
.2

19
70

.8
01

30
.1

56
54

.5
62

40
.6

72
21

.1
09

40
.6

72
7

31
29

.7
33

70
.2

02
33

.5
11

35
.8

65
34

.6
88

4

32
56

.6
75

34
.9

12
18

.8
29

37
.4

84
36

.1
98

4

33
61

.2
46

40
.7

52
38

.4
37

33
.7

72
39

.5
94

4

34
7.

40
6

24
.9

99
13

.5
32

21
.1

36
21

.0
94

23
.1

40
21

.1
15

6

35
27

.5
14

58
.8

78
20

.5
93

26
.5

33
30

.0
38

18
.2

35
19

.8
75

47
.1

72
27

.0
23

8

36
19

.6
86

53
.7

69
13

.3
69

36
.6

12
26

.5
07

34
.2

97
65

.7
81

34
.2

97
7

37
30

.7
33

13
.0

10
26

.7
36

36
.3

64
51

.0
00

38
.3

28
55

.4
53

36
.3

64
7

38
23

.5
78

57
.1

75
34

.1
86

64
.0

32
55

.0
15

33
.9

22
61

.7
19

55
.0

15
7

39
51

.3
56

75
.1

45
52

.3
63

38
.9

26
61

.9
37

24
.6

72
51

.8
59

6

40
52

.5
75

32
.2

34
66

.5
22

41
.1

90
52

.9
10

23
.5

31
66

.0
16

52
.5

75
7

41
25

.3
89

53
.4

56
43

.3
90

28
.2

94
26

.9
93

34
.4

84
41

.1
87

65
.7

97
37

.8
35

8

42
18

.2
02

22
.7

50
16

.4
37

33
.0

64
19

.4
99

17
.2

03
63

.6
88

32
.5

62
21

.1
24

8

43
8.

54
7

23
.1

42
6.

09
4

16
.6

41
16

.5
79

16
.1

10
11

.6
56

49
.4

69
16

.3
44

8

44
13

.4
53

25
.8

61
32

.5
00

11
.5

58
32

.5
96

29
.6

87
51

.3
43

14
.0

16
35

.5
16

38
.6

25
31

.0
93

10

45
33

.6
39

51
.1

43
74

.5
76

19
.3

41
36

.9
06

48
.3

75
53

.2
19

52
.5

16
49

.7
59

8

46
33

.7
63

21
.7

25
42

.0
47

38
.6

88
36

.2
25

4

47
32

.5
60

39
.9

40
71

.7
64

24
.6

56
39

.6
43

47
.0

39
35

.2
65

65
.7

04
46

.5
78

63
.7

81
43

.2
59

10

48
7.

17
2

17
.4

85
10

.7
97

4.
74

9
9.

23
5

25
.6

33
11

.9
22

36
.5

00
11

.3
59
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#
P

-1
P

-2
P

-3
P

-4
P

-5
P

-6
P

-7
P

-8
P

-9
P

-1
0

M
e
d
ia

n
A

ccu
ra

cy

49
25.811

33.314
34.686

54.534
46.108

42.687
35.594

29.750
35.140

8

50
9.313

22.595
20.140

4.811
12.814

20.258
22.860

16.672
9.937

53.719
18.406

10

av
g

27.984
43.217

40.149
20.916

36.810
35.841

38.477
36.739

40.062
45.275

tot
47

31
26

44
28

44
36

32
37

27

rel
0.96

0.68
0.62

0.88
0.64

0.92
0.80

0.68
0.78

0.72



Appendix D

Axioms

This appendix lists the axioms used in the delarative memory (DM). These are common
formations and are supposed to be known by the test participants.

A, B and C denote arbitrary formulas. Most of the following were used in the earlier work
presented in [5]. Some new additions include those for predicates and quantifiers.

D.1 Tautologies

Truth-table entries

>
¬⊥
> ∧>

Identity

A ∨ >
> ∨ A
A→ >
⊥ → A
(A ∨ ⊥)↔ A
(⊥ ∨ A)↔ A
(A ∧ >)↔ A
(> ∧ A)↔ A
(> → A)↔ A
(A→ ⊥)↔ ¬A
(A↔ >)↔ A
(> ↔ A)↔ A
(⊥ ↔ A)↔ ¬A
(A↔ ⊥)↔ ¬A

41



42 APPENDIX D. AXIOMS

Idempotence

(A ∨ A)↔ A
(A ∧ A)↔ A
A→ A
A↔ A

Double Negation

¬¬>
¬¬A↔ A

Commutativity

(A ∧B)↔ (B ∧ A)
(A ∨B)↔ (B ∨ A)
(A↔ B)↔ (B ↔ A)

Associativity

(A ∧B) ∧ C ↔ A ∧ (B ∧ C)
A ∧ (B ∧ C)↔ (A ∧B) ∧ C
(A ∨B) ∨ C ↔ A ∨ (B ∨ C)
A ∨ (B ∨ C)↔ (A ∨B) ∨ C
((A↔ B)↔ C)↔ (A↔ (B ↔ C))
(A↔ (B ↔ C))↔ ((A↔ B)↔ C)

Distributivity

(A ∧B) ∨ (A ∧ C)↔ A ∧ (B ∨ C)
(A ∨B) ∧ (A ∨ C)↔ A ∨ (B ∧ C)

De Morgan

(¬A ∧ ¬B)↔ ¬(A ∨B)
¬(¬A ∧ ¬B)↔ (A ∨B)
¬(A ∧ ¬B)↔ (¬A ∨B)
¬(¬A ∧B)↔ (A ∨ ¬B)

(¬A ∨ ¬B)↔ ¬(A ∧B)
¬(¬A ∨ ¬B)↔ (A ∧B)
¬(A ∨ ¬B)↔ (¬A ∧B)
¬(¬A ∨B)↔ (A ∧ ¬B)

Negation

A ∨ ¬A
¬A ∨ A
(A→ ¬A)↔ ¬A
(¬A→ A)↔ A
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Implication

(¬A ∨B)↔ (A→ B)
(A ∧ ¬B)↔ ¬(A→ B)
(¬B → ¬A)↔ (A→ B)

Simplification

A ∧B → A
A ∧B → B

∀x(A)→ (A)[x = 1]
∀x(A)→ (A)[x = 2]
∀x(A)→ (A)[x = 3]
∀x(A)→ (A)[x = 4]
∀x(A)→ (A)[x = 5]

(A↔ B)→ (A→ B)
(A↔ B)→ (B → A)

∃x(A ∧B)→ ∃x(A)
∃x(A ∧B)→ ∃x(B)

∀x(A ∧B)→ ∀x(A)
∀x(A ∧B)→ ∀x(B)

Addition

A→ (A ∨B)
B → (A ∨B)

(A)[x = 1]→ ∃x(A)
(A)[x = 2]→ ∃x(A)
(A)[x = 3]→ ∃x(A)
(A)[x = 4]→ ∃x(A)
(A)[x = 5]→ ∃x(A)

∃x(A ∧B)→ ∃x(A) ∧ ∃x(B)

∀x(A)→ ∀x(A ∨B)
∀x(B)→ ∀x(A ∨B)

∀x(¬A)→ ∀x(A→ B)
∀x(B)→ ∀x(A→ B)

Excluded Middle

A ∨ ¬A ∨B
¬A ∨ A ∨B
B ∨ A ∨ ¬A
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B ∨ ¬A ∨ A
A ∨B ∨ ¬A
¬A ∨B ∨ A

A ∨ (¬A ∨B)
¬A ∨ (A ∨B)
B ∨ (A ∨ ¬A)
B ∨ (¬A ∨ A)
A ∨ (B ∨ ¬A)
¬A ∨ (B ∨ A)

Quantifier Expressions

∀x(>)
∀x{}(A)
∀x(A) ∧ ∀x(B)↔ ∀x(A ∧B)
∃x(A) ∨ ∃x(B)↔ ∃x(A ∨B)

∃x∃y(A)↔ ∃y∃x(A)
∀x∀y(A)↔ ∀y∀x(A)

D.2 Contradictions

Truth-table entries

⊥
¬>
> ∧⊥
⊥ ∧>
⊥ ∧⊥
⊥ ∨⊥
> → ⊥
> ↔ ⊥
⊥ ↔ >

Identity

A ∧ ⊥
⊥ ∧ A

Double Negation

¬¬⊥

Negation

A ∧ ¬A
¬A ∧ A
¬A↔ A
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Quantifier Expressions

∃x(⊥)
∃x{}(A)

Predicates

Blue(1) & Red(1)
Blue(1) & Yellow(1)
Red(1) & Blue(1)
Red(1) & Yellow(1)
Yellow(1) & Blue(1)
Yellow(1) & Red(1)

Blue(2) & Red(2)
Blue(2) & Yellow(2)
Red(2) & Blue(2)
Red(2) & Yellow(2)
Yellow(2) & Blue(2)
Yellow(2) & Red(2)

Blue(3) & Red(3)
Blue(3) & Yellow(3)
Red(3) & Blue(3)
Red(3) & Yellow(3)
Yellow(3) & Blue(3)
Yellow(3) & Red(3)

Blue(4) & Red(4)
Blue(4) & Yellow(4)
Red(4) & Blue(4)
Red(4) & Yellow(4)
Yellow(4) & Blue(4)
Yellow(4) & Red(4)

Blue(5) & Red(5)
Blue(5) & Yellow(5)
Red(5) & Blue(5)
Red(5) & Yellow(5)
Yellow(5) & Blue(5)
Yellow(5) & Red(5)

D.3 Non-contradictions

A→ B
A ∨B
B ∨ A


