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MEHDI GHALEBANI
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Abstract
Over the recent decade, Emergence and commercialization of the new, low-cost, sen-
sor technologies have created the possibility of major paradigm shifts in air quality
monitoring. Their price of three orders of magnitude lower than standard/reference
instruments provides the opportunity for new applications such as higher geograph-
ical and temporal resolutions of the measurements. There have been studies on the
performance of a network of these sensors, however, their individual reliability is
still questionable. This study aimed to evaluate the performance of one of the most
common low-end sensors available on the market, SDS011, as well as a middle-end
sensor, SDS019 under different circumstances such as temperature and humidity.
The main research questions were: how reliable are these sensors and what are the
causes of errors for these sensors and is it possible to find correction factors based on
meteorological data? To address the research questions, a range of experiments in
different environments, including field and laboratory, have been conducted under
several humidity and temperatures. The results of the experiments illustrated a
high linear correlation between the SDS011 and SDS019 sensors with the reference
sensor(Optical Particle Sizer) at laboratory experiments. The data were fitted to the
reference sensor using a linear regression model. additionally, a multiple linear re-
gression was applied to include the temperature and relative humidity as additional
input parameters to the regression model. The results of the multiple and nor-
mal regression were compared and discussed under different circumstances for both
SDS011 and SDS019 sensors. The field experiments showed significant differences
between the SDS011 and reference instruments and these could not be explained
by humidity alone. They were not significantly reduced when applying laboratory
correction factors either. A three week comparison of the SDS011 against the golden
standard for PM in air quality monitoring (TEOM) showed periods with both de-
cent and poor agreement, illustrating that the SDS011 sensors respond to PM but
that they are rather unreliable when used as single devices. Further research work
is needed to understand this. Nevertheless the sensors are suitable for operation in
a network to obtain spatial air quality information , both as stationary and mobile.

Keywords: air quality monitoring, low-cost sensors , multiple linear regression, signal
processing, aerosols , particulate matter , PM2.5, particles , dust, human health.
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1
Introduction

1.1 Particulate matter, definition, sources, risks
Air pollution is a process that exposes humans, other living organisms, and the
natural environment to possibly harmful substances in the atmosphere[1]. Some air
pollutants can cause severe health effects even at relatively low concentrations due
to their high exposure risk both in indoor and outdoor environments[2]. Among
the 20 leading risk factors contributing to the burden of disease in, expressed as a
percentage of global disability-adjusted life-years (DALYs), household air pollution
from solid fuels and ambient particulate matter pollution were ranked 3rd and 9th
with 3·5 million (2·6 million to 4.4 million) premature deaths and 4.3% (3·4–5·3)
of global DALYs in 2010 and 3·1 million (2·7 million to 3·5 million) deaths and
3·1% (2·7–3·4) of global DALYs respectively[3], see Figure 1.1. The overall contri-
bution of these two air pollution risk factors in 2010 is 6.6 million deaths. Airborne
Particulate matter (PM) is a heterogeneous mixture of solid and liquid particles
with small mass which allows them to suspend in the air. The suspension gives
them mobility and the ability to stay in the air long enough to increase the ex-
posure possibility. The particles possess varying chemical composition and size in
space and time[4].

Figure 1.1: Burden of disease attributable to 20 leading risk factors in 2010,
expressed as a percentage of global disability-adjusted life-years [3]
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1. Introduction

Several studies are providing scientific evidence for the health disrupting impacts
that PM can cause, e.g. nonfatal heart attacks, irregular heartbeat [5], cardio-
vascular diseases [6], respiratory diseases, asthma[7], lung cancer[8], and premature
death[3]. In 2013, the International Agency for Research on Cancer (IARC) classified
Particulate Matter (PM) from outdoor air pollution as carcinogenic to humans[9].
The finest particles are dangerous since they penetrate deep into humans’ lungs and
even blood streams. The mobility and inhalability of the PM are the determining
characteristics of their risk, and these two parameters are very much dependent on
the aerodynamic diameter of a particle which therefore is usually used to categorize
PM pollution[10]. USEPA categorizes the PM into coarse (PM10) and fine particles
(PM2.5) [11]. Figure 1.2[12] illustrates the size of coarse and fine particles compared
to human hair and fine beach sand. PM2.5 could be composed of chemicals such as
sulfate, nitrate, ammonium, hydrogen ion, elemental carbon; organic compounds,
PAH, metals, Pb, Cd, V, Ni, Cu, Zn, particle-bound water and biogenic organics.
Whereas PM10 is usually composed of resuspended dust, soil dust, street dust, coal
and oil fly ash, metal oxides of Si, Al, Mg, Ti, Fe, Calcium carbonate, Sodium chlo-
ride, sea salt, pollen, mold spores, and plant part[13]. since the fine particles are
smaller and generally lighter than coarse particles, they can suspend more in the air
and have a lifetime of days to weeks, while that of coarse particles is in the order of
minutes to hours[13]. Due to the same reason, fine particles have more mobility and
they can travel as far as 100 to 1000 kilometers while the longest travel distance for
coarse particles is 10 kilometers[14]. The main sources of fine particles are combus-
tion of coal, oil, gasoline, NOx, SO2, and organics including biogenic organics, e.g.,
(terpenes); high temperature processes; smelters, and steel mills. Whereas coarse
particle usually are caused by resuspension of soil tracked onto roads and streets;
Suspension from disturbed soils, e.g., farming, mining, resuspension of industrial
dust, construction, coal and oil combustion and ocean spray[14].

Figure 1.2: Size comparison of PM2.5 and PM10 against the average diameter of
a human hair (∼70 µm) and fine beach sand (∼90 µm) [12]
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1. Introduction

For each size range of the particles, there are specific processes that lead to formation
of particles. mechanical processes such as the break-up of larger solid particles are
mostly responsible for the formation of coarse particles whereas the processes lead-
ing to the formation of fine particles are more diverse and include chemical processes
as well as mechanical processes such as coagulation and aggregation of smaller par-
ticles with aerodynamic diameters of less than 0.1 µm (known as ultrafine particles)
and subsequent formation of the fine particles [15]. The ultrafine particles are either
emitted due to combustion or formed by nucleation [16]. Nucleation is a process in
which a nucleus provides a surface on which low-vapor-pressure substances, formed
by chemical reactions in the atmosphere or high temperature vaporization, can con-
dense. The nucleation and condensation growth of primary particles (ultrafine) leads
to particles in the accumulation mode with aerodynamic diameters between 0.1 and
1.0 µm, with a typical size of 0.3 µm. Condensation growth happens on one ultra-
fine particle and leads to the formation of one fine particle whereas coagulation is a
process that combines a number of ultrafine particles and leads to the formation of
fine particles. Condensation growth is therefore most efficient when the surface area
is high while coagulation is most efficient at high particle concentrations. Figure 1.3
illustrates the size distribution and formation modes of particles[17].

Figure 1.3: Prototypical size distribution of particles, their sources and pathways
of formations; dashed line corresponds approximately to 2.5 µm of diameter [16]

The described features of particles and their posed health risks raises the concerns
about their pollution levels. To ensure that the risks attributed to these factors is
reduced, the World Health Organization (WHO) has provided air quality guideline
values for different substances including PM. Guideline values for PM2.5 in terms
of annual mean and 24-hour mean are 10 and 25 µg/m3[18].
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1. Introduction

1.2 The Changing Paradigm of Air Pollution Mon-
itoring

The traditional air pollution monitoring approach mostly use expensive, complex,
stationary equipment[19] which restricts the measurements to only few instruments
and locations . In addition, in the developing world they are generally too expen-
sive. These paradigms are changing fast due to recent technological advances in
portable low-cost air pollution sensors which can report data in near-real time at a
high-temporal and spatial resolution, using wireless communication/infrastructure
and enhanced visualization and computational capabilities[20].

Implementation of networks of mobile and stationary low-cost sensors increases spa-
tial and temporal resolution of monitoring coverage which enables immediate access
of information to the general public as well as possibility of supplementary data air
quality modelling to assess personal exposure of the pollutants and health effects.
However, all the mentioned benefits and applications are valid given the quality of
the data measured by the low-cost sensors meets the requirements of monitoring
purpose in terms of precision, accuracy, sensitivity, etc. [20].

1.3 Goal and Scope of the study
In the context of low-cost sensors data quality has a vital role since data of poor or
unknown quality is worse decision support than no data. There are many low-cost
sensors already available in the market and implemented whose performance has not
been evaluated under ambient conditions, taking into account environmental factors
such as different levels of concentration and humidity and temperatures. Therefore,
this study aims to evaluate the performance of two of the common and wide-spread
commercial low cost PM sensors under different conditions including simulated pol-
lution in the laboratory as well as ambient air measurment in the city of Gothenburg.

The main research questions posed are: how reliable are these sensors and what
are the causes of errors for these sensors and is it possible to find correction factors
based on meteorological data? How is the relationship between the performance
of the SDS011 and SDS019 low-cost sensors and parameters such as humidity and
temperature? How does the performance of these two sensors compare to each other
and to a reference sensor under different environmental circumstances?

4



1. Introduction

To address the research questions, a range of different activities and experiments
was performed and the scope of these activities during the course of this project
are illustrated in Figure 1.4. The activities include selection and assessment of the
sensors in the laboratory and field in different ambient circumstances. In addition,
they include preparation of hardware and software for deployment of the sensors for
long term measurements in the field.

Figure 1.4: Scope of this study, the figure is adapted from Morawska, Lidia, et al
who illustrated a general framework for air pollution monitoring [21]

.
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1. Introduction

1.4 Low-cost Sensors and Internet of Things

The low-cost sensors are usually part of Internet-of-Things (IoT). IoT corresponds
to a network of devices able to exchange data. The components of the network
can consist of different devices including sensors and embedded electronics and net-
work connectivity, which enables the components to connect and collaborate with
each other[22]. Although IoT has been around since the 1980s[23], it has first gained
attention in recent times thanks to the 5G network. The 5G network technology pro-
vides the infrastructure for the implementation of IoT in a very large geographical
scale in urban areas with an unprecedented bandwidth and rate of data commu-
nication between the objects, enabling the cities to possess a highly collaborative
environment whose components have interactions based on real-time data[24].

The IoT has already been used in different applications. Automobiles, city infras-
tructures such as smart lighting, power, cooling, water and alarm systems are some
examples of current IoT applications in the cities[25–28]. However, 5G provides
an infrastructure which brings the application of IoT to the next level[29]. The
combination of IoT and 5G is a tool for smart and sustainable city planning and
maintenance. With such a combination, the interconnection between the objects in
the cities provides the cities more efficiency in terms of energy use and resource effi-
ciency in general[28]. This combination of technologies can contribute to sustainable
mobility systems, enabling the city planners to do active interventions on both pri-
vate and public transportation vehicles based on real-time data from all components
of the city, including the vehicles[30]. Interventions such as variable speed limits in
certain streets according to the traffic flow, hindering the vehicles to exceed certain
speeds by a central command. Another example of such interventions could be for
hybrid vehicles and making them switch to electricity in areas with high pollution
levels. Yet another example, a dynamic and real-time guideline for self-driving vehi-
cles in the future, to optimize the traffic flow and prevent accidents. One key player
for such purposes is to have a larger coverage and a higher resolution of air quality
measurements in urban areas.

Air pollution is a significant problem in many major cities in the world. It has
impact on both human health and the global environment. There are a lot of reg-
ulations for the limits on the concentration of the different air pollutants in the air
and more restrict ones may be passed by the EU in the years to come. For the
societies and authorities to be able to improve the air quality, they need to have a
realistic sense of the air quality and the spatial distribution, and reliable measure-
ments should take place and be available and reported regularly. Such data can
provide decision support for authorities and information whether they comply with
newly passes regulations and EU directives with respect to air quality. However,
today in the major cities usually measure the air quality in only a few locations in
the city center and consequently, their reported data does not necessarily represent
the air quality of the whole city. This provides a scientific incentive to investigate
the expansion of the coverage of the measurements in the big cities.
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1. Introduction

In addition, in residential areas few air quality measurements are carried out, and,
such data is important also to raise the awareness of people and get consensus about
new environmental legislation or directives. This provides the social incentive for
exploring the expansion of the coverage of the measurement stations. In the case of
Gothenburg, currently there exist five reliable air quality stations, run by municipal-
ity. The air quality data reported from these stations represent the real air quality
only in the vicinity of 1 kilometer or less around the location. It goes without say-
ing that every large-scale project is coupled with high investment costs. There has
been a plethora of studies and projects in this field, trying to provide low-cost solu-
tions for a better coverage of air quality measurements in different cities around the
world. Some examples of these projects are the following: Opensense project, which
is conducted in Switzerland doing real-time air pollution monitoring with sensors
on city buses[31]. GreenIoT project in Sweden, which utilizes IoT to measure air
pollution level in the city center of Uppsala. LoV-IoT (Luft- och vattenövervakning
med internet of things) -air and water monitoring with internet of things, is also
another project in Sweden which has tested a range of different air quality sensors
(loviot.se). The common idea behind these and other projects is to minimize the
costs by implementing a large number of very cheap sensors and accounting for the
overall data from the array of the sensors.

This master thesis project was conducted at Gothenburg in Sweden and the raw sen-
sors and data acquisition system were funded as part of a project called ElectriCity
while the other hardware (such as protective boxes, power) and installation costs at
bus-stops were funded by internal funding at Chalmers. Fifteen partners from indus-
try, academy, and society are working together to develop, test and demonstrate new
solutions for sustainable mobility (electricitygoteborg.se). The partners are listed as
The Volvo Group, Västra Götalandsregionen, Västtrafik, The city of Gothenburg,
Chalmers University of Technology, Swedish Energy Agency, Johanneberg Science
Park, Lindholmen Science Park, Göteborg Energi, Keolis, Älvstranden Utveckling,
Akademiska Hus, Chalmersfastigheter, and Ericsson. This wide range of different
partners from the producers of electrified vehicles to the municipality and public
transport authorities provides the possibility of designing and testing prototypes.

This work was the prototype of application of IoT for air quality monitoring in
the city of Gothenburg. The work includes a literature review on the applications
of IoT for sustainability and low-cost aerosol sensors, laboratory experiments on a
small number of low-cost aerosol sensors, field experiments on the performance of
a combination of different low- and medium-cost aerosol sensors as both stationary
and mobile measurement devices using IoT. In this project I have built together 20
small sensors and one mobile one on a bus, with help from Ericsson and Chalmers.
The sensors were installed in the end of this masters project and they have started
to produce data. Their data processing is not part of this work. The idea was to
calibrate the smaller sensors with the medium quality one which was mobile. This
work is an attempt to build stepping stones of a high coverage system of stationary
and mobile sensors in the city of Gothenburg by deploying low-cost sensors in the
bus stations and calibrate them against a medium costly sensors on top of an electric
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1. Introduction

bus from public transport, Figure 1.5. The work is also a case study of application
of IoT and performance of sensors in the city of Gothenburg and provides a platform
for a higher connectivity as soon as 5G is commercialized.

Figure 1.5: Low-cost Sensors and Internet of Things
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2
Theory

2.1 Physical Principles of Particle Sensors

For most of the air pollutants, knowing the concentration of the substance is usually
enough for having an understanding of the air quality. However, when it comes to
particulate matters, an additional parameter plays a key role: Particle size distri-
bution. Smaller particles are able to remain in the atmosphere for a longer period
and penetrates deeper into to humans. Therefore, the combination of the particle
size distribution and particle concentration provides more complete information on
the air quality[32]. There are several physical principles for measuring the parti-
cle concnetration (by number or mass) and size distribution[32]: This includes for
instance utilizing the principles of gravimetry, optical light scattering, light absorp-
tion, electrical and aerodynamic mobility . Many of the instruments count particles
(number concentration) in different size bins and then the particle mass is obtained
by assuming the density and shape of the particle[33]. The gravimetric instruments,
on the other hand, measures the mass of PM10 or PM2.5. particles collected on
a filter by microbalance technique and they are the most accurate. However they
are slow , bulky and do not provide the size distribution. The most common par-
ticle measuring instruments for measuring concentration and size distribution are
summarized in Figure 2.1.

Amaral et al. performed experiments on different instruments working with differ-
ent principles and they were evaluated based on the following characteristics[32]:
the ability to sample particles in real-time; need to dilute gas flow before collection;
detection limit of the equipment; size range; the accuracy of the equipment. And
it was found out that instruments measuring based on the light scattering principle
(optical devices) have the highest accuracy of all except for the microbalance instru-
ments, which has better accuracy and are usually used as reference measurement
instruments. However, there are two drawbacks to the microbalance instruments;
First is their high price, which makes them not an affordable choice for using in a
large number of sensors for reasonable coverage of the city area. And the second
drawback is their size and mass which makes the mobility of the sensors more diffi-
cult, compared to the optical sensors.
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2. Theory

Figure 2.1: Methods and instruments for PM measurement[32].

This thesis mostly focuses on optical particle sensors and compares two of the com-
mercially available low-cost optical sensors (SDS011 and SDS019) to a reference
optical particle sizer (TSI 3300 OPS). At some point, performance of the mentioned
optical sensors was also compared with another reference sensor Tapered Element
Oscillation Microbalance (TEOM) which works on another physical principle (mi-
crobalance). The TEOM instrument is used to detect aerosol particles in real-time
by measuring PM mass concentration due to the accumulation of particles in a
sampling filter and based on the alteration of the resonance frequency of a tapered
quartz wand [32].

10



2. Theory

2.2 Optical Particle Sensors
Optical sensors consist of a light source which lights up the particles passing the
detection chamber. part of the light is absorbed by the particles and turned to
other types of energy such as heat[34]. The other part of beam is irradiated to
different directions (scattered). and by summation of scattering and absorption,
extinction of the light can be calculated[35]. These three features can be used as a
working principle for optical instruments to count the particles and determine their
mass concentration. All of the mentioned instruments for this study (OPS, SDS011,
SDS019) determine the concentrations based on scattering of the light beams in the
orthogonal direction. The similarities and differences between them are elaborated
in the next section. Figure 2.2 illustrates different components inside the detection
chamber of TSI 3300 OPS.

Figure 2.2: components of an optical particle sensor [36]

The OPS instrument has a built in pump which determines the flow rate of the par-
ticles into the detection unit and controls it in a way that single particles is counted
and depending on the intensity of the scattered light for each one, the counted par-
ticles are binned into 16 different size channels ranging from 0.3 to 10 µm. Table
2.1 shows the cut points of the OPS size channels[34]. To the contrary, the low-end
optical sensors are not able to measure the scattering from single particles and inside
obtains the concentration based on the combined scattering of all particles passing
through the sensor. Furthermore, the performance of these sensors is affected when
the compositions of PM2.5 vary greatly. Thus, the majority of the low-cost instru-
ments are used indoors or in situations where particle composition is constant[37].
The SDS011 has a small computer-like fan with a varying flow rate into its detec-
tor, which affects the accuracy of the measurement. The SDS019 is based on four
SDS011 sensors connected to an air pump with controlled flow rate and it also cor-
rects for pressure and relative humidity. It is however 10 times more expensive. TSI
OPS is 100 times more costly than SDS019. The low-end sensors work in certain
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size and concentration ranges, see Table 2.2 and 2.3. SDS011 measures PM2.5 and
PM10. SDS019 additionally measures PM100 (inovafitness.com). Tables 2.2 and
2.3 provide a piece of information on product specifications of SDS011 and SDS019.
And Figure 2.3 shows SDS011, SDS019 and OPS.

Table 2.1: OPS size channels based on OPS product specifications (tsi.com)

Size channel cut point number size channel cut point (µ m)
Bin 1 0.3
Bin 2 0.374
Bin 3 0.465
Bin 4 0.579
Bin 5 0.721
Bin 6 0.897
Bin 7 1.117
Bin 8 1.391
Bin 9 1.732
Bin 10 2.156
Bin 11 2.685
Bin 12 3.343
Bin 13 4.162
Bin 14 5.182
Bin 15 6.451
Bin 16 8.031
Bin 17 10

Table 2.2: product specifications of SDS011 (inovafitness.com)

Property Value
Measurement parameters PM2.5, PM10
Concentration Range 0.0-999.9 µg /m3

Humidity Range Max 70%
Corresponding Time 1s
Counting Efficiency 70% @ 0.3 µm and 98% @ 0.5 µm

Minimum resolution of particle 0.3 µm
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Table 2.3: product specifications of SDS019 (inovafitness.com)

Property Value
Measurement parameters PM2.5, PM10, PM100
Concentration Range 0.0-1999.9 µg /m3

Humidity Range Max 98%
Corresponding Time 1s
Counting Efficiency 70% @ 0.3 µm and 98% @ 0.5 µm

Minimum resolution of particle 0.3 µm

Figure 2.3: SDS011 and SDS019 tow examples of low-cost optical sensors, OPS
an example of a reference optical sensor

2.3 The Effect of Humidity on Optical Particle
Sensors

Research has revealed that light scattering is strongly affected by high Relative Hu-
midity (RH)[38–43]. There are two main phenomenon causing the error caused by
humidity in optical sensors: condensed fog droplets of similar size as PM-relevant
particles[44] and hygroscopic growth of saline particles[45].

Deliquescence, the process by which a substance absorbs moisture from the atmo-
sphere until it dissolves in the absorbed water and forms a solution. The process
takes place as long as the vapour pressure of the formed solution does not exceed
the partial pressure of water vapour in the air. Therefore, the more humidity in the
air, the more partial pressure of water vapor and the more chance for deliquescence.
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Ammonium sulfate and ammonium nitrate, which are major semi-volatile compo-
nents of PM2.5, respectively have deliquescence points of 62% and 80%. Thus, at
RH is above 62%, particle-bound water increases. When RH is above 65% mass of
particles grows and this growth is intensified when RH exceeds 80%, which eventu-
ally leads to the overestimation of PM2.5[43].

In order to assess the influence of RH on measurement results, the hygroscopic
growth factor has been included, which is the ratio of a particle’s diameter under
high RH conditions to that under dry conditions. At high RH, especially above 90%,
a small alteration in RH can result in considerable changes in the hygroscopic growth
factor. For instance, the hygroscopic growth factor of particles in the range of 200
nm to 1 µm is about 1.5 at 90% of RH and reaches nearly 2.0 when RH is 95%[46].
To cope with this effect, Petters, M. D., & Kreidenweis, S. M. [47] suggested this
approach to describe the relationship between particle dry diameter and cloud con-
densation nuclei (CCN) activity using a single hygroscopicity parameter k, which is
based on Köhler theory[48]. This can be done by computing a multicomponent hy-
groscopicity parameter by weighting component hygroscopicity parameters by their
volume fractions in the mixture, given that the composition data and the hygroscop-
icity parameter of each component are available. Additionally, The hygroscopicity
parameter can be used as an input to model the CCN activity of atmospheric par-
ticles, including those containing insoluble components[49].

However, calculation of the hygroscopicity parameter requires data on the com-
position of the mixtures of the particles and their their individual hygroscopicity
parameters which can also vary city by city. Additionally there are several studies
that focus on the sources with another approach to do indirect measurements and
estimate the amount of particle pollution by emission factors. In this study the
attempt was to have authentic ambient situation and deal with the data as it is
without any physical addition to the system such as dryers or chemical absorbents.
Also, investigating the possibility of a relation between the reported RH and tem-
perature and the performance of low-cost sensors by comparing them to reference
instruments. However, also for the reference instruments the inclusion of water
vapour in the particle mass is partly present. This has not been accounted for in
the study.
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3
Methods

A combination of different approaches was implemented for this investigation. The
methods can be divided into two main categories: theoretical and experimental. The
theoretical part consists of reviewing the most recent literature on the topic and the
experimental part includes the following activities: laboratory and field experiments,
designing and prototyping of some of the instruments for the experiments, design
of experiments and setups, computer programming for using instruments, and com-
puter programming for analyzing the results. The materials and requirements and
the methods are elaborated in the following sections of this chapter. The project
started with a literature review to understand the research field and methods and to
find relevant research questions. The literature includes both peer-reviewed papers
and reports

The experimental part of the project can be divided into laboratory and field ex-
periments. The laboratory experiment consists of a setup including different sensors
and a test chamber which was aimed to simulate the real-world circumstances of
the ambient air. The field tests were conducted in different locations and occasions
with different time spans ranging from a couple of hours to months. The laboratory
and field tests were designed for different purposes whose combination serves the
overall aim of the study. A field experiments was carried out at Femman air quality
station operated by the Environmental department of the municipality of the city
of Gothenburg (Miljöförvaltningen). Another field expedition was carried out with
a van in the city of Gothenburg.

3.1 Laboratory Experiments

A number of devices were used to simulate ambient air with particle pollution and
variable meteorological circumstances to evaluate and compare the performance of
the low-cost sensors compared to the reference sensor. The general setup of the
laboratory experiment is illustrated in Figure 3.1. Here a certain temperature,
relative humidity and number of ammonium sulphate particles were released into the
test chamber. Several particle instruments were then used to measure the particle
concentration inside the test chamber at the different environmental conditions. The
general idea of the setup is sketched in a schematic diagram in Figure 3.1.
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Figure 3.1: A schematic diagram of the instruments and setup for the laboratory
experiments

Figure 3.2: The instruments and setup for the laboratory experiments
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3.1.1 Materials and Requirements
The instruments used for the experiments are illustrated in Figure 3.2:
1. PORTABLE ATOMIZER / AEROSOL GENERATOR / MODEL 3079A
2. LI-610 Portable Dew Point Generator
3. Optical Particle Sizer / Spectrometer / Model 3330
4. Nova fitness SDS019 sensor
5. Nova fitness SDS011 sensor
6. AM2302 digital temperature and humidity sensor, 5V, Adafruit (referred as T
and RH)
7. Raspberry pi
8. Heating blanket
9. test Chamber (a metallic box of size of 70 x 48 x 40 cm) cube shaped with holes
and hose

For each particle sensor a Raspberry Pi computer was used to log the particle con-
centration data, RH and temperature. A T and RH sensor can be read with the same
Rasberry pi reading a particle sensor. The aerosol generator was used to generate
ammonium sulphate aerosols inside the test chamber and the humidity generator
was utilized to provide different levels of humidity inside the chamber. The heating
blanket covered some of the sides of the chamber from outside to provide different
operational temperatures inside the chamber.

3.1.2 Operational Procedures
The operational stages for the experiments are categorized into two main phases:
Preparation phase and During the experiments.

Phase 1. Preparation:
Before each test day, The test chamber was cleansed and the sensors inside it were
checked to see if the wire connections are tight and firm enough and the devices
are placed in the correct positions. It took a couple of hours for the moisture to
accumulate inside the chamber, therefore the first step was to run the humidity
generator and place its outlet as an inlet to the chamber with a hose until the hu-
midity inside the chamber reached 100 %. This step was, most of the time, done
a day before the experiment to save time. The humidity was monitored by the T
and RH sensor. There are some considerations regarding raising the humidity inside
the chamber worth mentioning: It was made sure that the OPS and SDS019 were
turned off while the humidity generator was operating. The reason is that both of
the mentioned devices suck the air into their sampling unit and this would hinder
the humidity inside the chamber to rise because of the continuous air suction for de-
tection. While working with the humidity generator it also was made sure that the
cooler and pump were switched on. On the test day, while waiting for the relative
humidity to reach to 100 % the following activities were done:

First the time was calibrated and synchronized for each device. After that, the OPS
was turned on. Then the logging programs of the different sensors were opened
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and ready to be run. To begin the experiment, the following actions were taken:
Running the logger program for SDS011 and T and RH sensors on the raspberry
pies, removing the tapes from the holes of the chamber and placing the hose of OPS
inside the hole, turning the SDS019 on, starting to run the OPS and SDS019 logger
programs. The last sensor to be turned on was SDS019 as its hose was inside the
chamber and turning it on will immediately remove some humidity from the cham-
ber.

Phase 2. During the experiments:
As mentioned before the SDS019 and OPS reduce the humidity when they mea-
sure the particles. Therefore, the test was designed to be conducted in a way that
the relative humidity starts decreasing from around 100 % to the room humidity
level, which usually was something between 30 to 50 %. Most of the experiments
were conducted at room temperature and for some of them, the heating blanket
was placed around the chamber to increase the temperature before and during the
test. The humidity generator was kept running during the experiments so that the
humidity reduces with a slower rate than as if it was turned off and there was not
a source of moisture anymore during the experiment. The reason for the attempt
to maintain the high humidity levels for a longer while was that the data measured
in a relative humidity of 70 % and more are more valuable for the purpose of this
research. Another action at this phase was particle injection to the chamber which
would take place periodically to make some peaks in the particle concentration levels
from the background level. The injections were conducted by placing a hose to the
outlet of the aerosol generator and placing the other end of the hose to one of the
inlet holes on the chamber for a second or a fraction of a second to produce some
impulses. The time intervals between the impulses were determined based on the
real-time data on the particle level in a way that each injection took place as soon
as the particle levels reached back down to the background level.

The flow rate of the aerosol generator was 300 L/h(www. tsi. com ), which was too
high. Therefore, a T-shaped hose connector was utilized to branch out the majority
of the flow rate of the aerosol generator and the other branch of the hose was used
for the injections with a 90 % reduction in the flow rate. At the end of each test
day, all of the sensors and instruments were turned off and the data was extracted
and stored and documented. Sometimes due to the unrealistic values of particle
levels, and the possibility of saturation of the sensors, a number of data sets were
excluded from the study. The process, in general, was a semi-batch process with
the test chamber as the volume control or the system under study and there was
a constant input of moisture to the system as a periodic input of aerosols. There
was not any intended outlet flow out of the chamber, however, the air was able to
escape out through uncovered wires. Another mechanism that took place in such a
setup is the decay of the concentration levels of the particles due to deposition[50].
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3.2 Stationery measurement in the city with a
Van

Figure 3.3: Stationery Measurement in the City with a Van.

3.2.1 Materials and Requirements
The applied sensors for conducting this test were the same as the laboratory exper-
iments explained in the previous section.

3.2.2 Operational Procedures
The location was a parking house in the city of Gothenburg in Sweden which was
called Olskroken P-hus at the address Lilla Olskroksgatan 1. All the required in-
struments were taken to the measurement location with a van. The van was parked
inside the parking house in a way that its back door was opened and facing the
ambient air by a close-by highway intersection, see Figure 3.3. The meaurements
were done at the ground floor and the parking house with plastic shield making a
semi-covered wall and making ít possible for the wind to flow through quite easily.
On a couple of occasions cigarettes were lit up to inject a spike of particles into the
sensor for test purposes. The weather during this experiment was rather windy (10
m/s) and part of the time it was raining. The wind blew from the nearby high-
way intersection of the E6 and E20 approximately 200 m away. The operational
procedures were very similar to that of the laboratory experiments explained in the
previous section with the difference that particle injection was not conducted and
instead a couple of cigarettes were lit up to cause some peaks and deviations from
the background levels.
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3.3 Femman air quality station
Femman air quality station is operated by the Environmental department of the
municipality of the city of Gothenburg (Miljöförvaltningen) and it is located at the
rooftop of the Femman shopping mall, approximately 7 floors above the ground
level. The station is equipped with high-end instruments to measure a wide range
of substances as well as temperature and humidity and most importantly for this
research, aerosols. The latter are measured by a TEOM reference instrument. The
following data were gathered with the purpose given below: SDS011 sensors were
operated during two months (only 3 weeks of data is available due to prototypings
in the IoT code) in parallel with the TEOM, see Figure 3.4 (left side). Additionally
an OPS was operated during two days in parallel with the TEOM, see Figure 3.4
(right side).

Figure 3.4: The left picture: Long term data gathering by SDS011 sensors at
Femman wather station. The right picture: comparison of OPS and TEOM.

3.3.1 Materials and Requirements
1. OPS sensor with a computer for logging the data
2. SDS011 sensors, raspberry pies for logging the data, T and RH sensors, waterproof
boxes, jumper wires for connections

3.3.2 Operational Procedures
A script was developed in python which starts the connection with WiFi, logs the
data and saves locally to the SD-card of the raspberry pies and also sends the data
using Message Queuing Telemetry Transport (MQTT) messages to the IoT broker
in real-time.
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3.4 Data processing and Analyses
When measuring with different sensors simultaneously, there are a number of issues
that need to be addressed and for that, a number of concepts to be defined. The
concepts to be defined are response time and sampling rate. The response time is the
time it takes from the moment the substance reaches the detection unit to the sensor
until it leaves the unit (residence time of substances inside the detection chamber).
an indicator for response time of sensors is the time it takes from 10 % to 90 % of a
logged signal. Another concpet to be defined is sampling rate which is the frequency
in which the sensor logs a new measurement. and the combination of the two deter-
mines the time resolution of the data. Another concept is time lag which can be due
to the time it takes for the substances to go through the hose and reach the sensor
with a linear time shift which can easily be corrected or due to the effect of response
time. The latter is not necessarily a linear shift in the recorded data. Its effect is
rather a different resolution of data per the same time interval for 2 different sensors.

Figure 3.5 shows the data processing steps taken for the measurements. After log-
ging and data extraction for each sensor, the timestamps of different sensors were
transformed to the same type and the overlapping time span of all of them was
identified. The next step was to fix the inconsistent sampling rates for each sensor
as well as synchronizing the time resolution and sampling rates for different sensors
by interpolations. To solve the problem of the different response times for different
sensors, a moving average was applied to the signals. Finally, the time lags caused by
different reasons were corrected and the correlation analyses were performed. More
details about the mentioned data treatment steps are provided in the following of
this chapter.

Figure 3.5: Data processing steps when running different sensors simultaneously
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3.4.1 Interpolations

Different sensors had different start times and end times per test day. For each test
day, the longest time interval where all the sensors had overlap was extracted and
the rest was excluded. The OPS and SDS019 were programmed to log every second
while the T and RH sesnors and SDS011 logged with 2 and 5 second time resolution,
respectively. To solve problems of sensors time resolutions, a builtin function from
MATLAB, called Interp1 (Copyright 1984-2018 The MathWorks, Inc.), was used.
The functions provide different methods for interpolation. The implemented method
for this study was called "nearest" which connects fills in between the existing data
by connecting a curve to the nearest existing neighboring data point, see Figure 3.6.

Figure 3.6: An example of MATLAB Interpolation function (Interp1).

The Interp1 function was applied to all of the data sets from all the sensors on all of
the test days. As a sample of the implementation of the function the compression
between the result of implementing this function and the actual data is illustrated
in the Figure 3.7. As seen in the Figure 3.7, the interpolation (red) is matching
well with the actual data (blue). The interpolation function requires the starting
point and endpoint of the data set when all the sensors overlap in the measurement
records. And the rest of the data was excluded. Finding the start and endpoint of
the data and synchronizing the different sensors to the same time span automatically
solved the time lag between the sensors.
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Figure 3.7: An example of MATLAB Interpolation function (Interp1).

3.4.2 Moving average
The tests in this study showed that SDS019 and SDS011 have similar response
times in contrast to the OPS which was much faster, see Figure 3.8. The data for
OPS(faster response time) and SDS011 and SDS019 are shown with red, black and
blue colors respectively. To solve the response time problem, the data from the
faster sensor, with short response time, had to be slowed down and time synchro-
nized with the slower sensors, with long response time. This was done by applying
a moving average on the fastest sensor in a way that the new data for each point
is the weighted average of the last N seconds (time domain) before that point. The
weighted average can be done linearly or with many different curvature assump-
tions. However, a Gaussian distribution seems to be more realistic according to the
mechanism by which these sensors detect the aerosols. The average also needs to be
normalized according to N seconds, so it does not change the magnitude of the data.
There is a function in MATLAB which does this moving average. The function is
called "Smoothdata" (Copyright 2016-2018 The MathWorks, Inc.). An example of
its application on one of the laboratory data sets is shown in fugue 3.8, which can
be compared with Figure 3.9. The Gaussian filter causes an additional time lag
between the different sensors. A cross correlation was applied on OPS and SDS
sensors. The MATLAB function xcorr(x,y) (Copyright 1988-2019 The MathWorks,
Inc.) returns the cross-correlation of two discrete-time sequences. Cross-correlation
measures the similarity between a vector x and shifted (lagged) copies of a vector y
as a function of the lag [51]. The returned arguments are r and lags, which respec-
tively represent the correlation and the different lags at which the correlations were
calculated. By plotting the r against different lags, the absolute maximum of the r
was selected as a criterion for determining the highest correlation for a given time
domain of "Gaussian-filtered" OPS data, see Figure 3.10. The corresponding lag to
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that maximum r (rmax) was used to synchronize the the time lag between the OPS
and the SDS sensor. By raising the time domain from 1 second to an extreme value
of 1000, it was obswrved that the trend for the rmax is risisng up to some time
domin and after that it starts falling, see Figure 3.11.

Figure 3.8: Comparison of the response time for different sensors before filtering,
Red: OPS, Blue: SDS019, Black: SDS011

Figure 3.9: Comparison of the response time for different sensors after filtering,
Red: OPS, Blue: SDS019, Black: SDS011
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Figure 3.10: rmax for differnet time domains

Figure 3.11: rmax for differnet time domains, a closer look to the peak of figure
3.13: the red curve is where the trend changes (in this case 94 seconds)

The maximum of rmax within different time domains was obtained by running a
loop for time domains at the mentioned range. The time domain corresponding to
the maximum rmax was chosen for each data set to apply with the Gaussian filter
and the time lags corresponding to that optimal filter was used to fix the time lag of
the OPS data caused by the optimal Gaussian filter. Finally, another interpolation
was applied to all the data to synchronize the time series.
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3.4.3 Correlation Analysis and Regression
To analyse the performance of the different sensors against the reference one a cor-
relation analysis was performed. This was done after data processing, according the
described in the previous subsections. The correlation analysis was carried out using
a cross correlation MATLAB function called Corrcoef[51]. The function produces a
matrix of sample correlation coefficients for a data matrix (where each column rep-
resents a separate quantity). The correlation coefficients range from -1 to 1, where
bValues close to 1 indicate that there is a positive linear relationship between the
data columns. Values close to -1 indicate that one column of data has a negative
linear relationship to another column of data (anticorrelation). Values close or equal
to zero suggest there is no linear relationship between the data columns.

After correlation analysis, the linear regression was performed and the slope and
intercept of the lines were calculated. The most common type of linear regression
is a least-squares fit, which can fit both lines and polynomials, among other linear
models. Additionally, the possibility for a multiple regression by including T and
RH as extra inputs to the regression problem was investigated. These different sets
of regression methods were applied to the data sets and the R-squared values of
different methods were compared to determine the method. The the mean relative
error of SDS011 and SDS019 compared to OPS calculated based on the following
equation.

Relative error = [SDS −OPS

OPS
] (3.1)

Equation for single linear regression model:

PM 2.5_corrected = PM 2.5_measured ∗ Slope (3.2)

Equation for single linear regression model with intercept:

PM 2.5_corrected = Intercept+ PM 2.5_measured ∗ Slope (3.3)

Equation for Multiple linear regression model:

PM2.5_corrected = Intercept+Σparameter_measured∗parameter_Slope (3.4)

where parameter is: PM2.5, T, RH.
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4.1 Size Channels
A comparison between the measurements if OPS in 2 different environments were
performed. Figure 4.1 shows the typical mass size distribution of particles for pure
ammonium sulfate from laboratory experiments with orange color and the mixture
of particles in the city ambient air with gray bars. It can be seen in Figure 4.1
that the size distribution of the generated ammonium sulfate particles is such that
all particles are lower than 2.5 µm, hence corresponding to PM2.5 is under focus
and PM10 is delimited. On the other hand, the gray bars are not negligible from
channels 11 to 17 which means there are coarse particles in the measurement site in
the city (Olskroken).

Figure 4.1: Mean values for size channel of OPS, Field vs. laboratory data .
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4.2 General Explanation of results
Several days of experiments and iterations for the instruments were conducted, and
here a few data sets are presented in this chapter with their results. Data sets A,B,C
are the chosen data sets from the laboratory experiments whereas data set D is from
a measurement in the city of Gothenburg. Data set E corresponds to the field tests at
Femman air quality station. Data sets A to E are presented with their humidity and
temperature plots over the time span of each data set as well as a table including the
properties of the experiment and another table referred as results table including
some statistics and errors. The first block of each table shows the mean relative
error of SDS011 and SDS019 compared to OPS calculated based on the equation
3.1. The mean relative errors are also plotted. The second and third blocks of each
result table show the coefficients for the single linear regression without and with
intercept, which can be applied to the equations 3.2 and 3.3 respectively. And the
last block shows the coefficients for multiple linear regression which can be used
based on the equation 3.4. Additionally, the regression plots for all the data sets are
presented. After comparing the R-squared values for the single regression models
the one with the intercept was chosen as correction factor and applied to the same
data set for each data set and the new relative error after applying the correction
factors based on equation 3.3 and was plotted for each data set. The mean values
of that calculation is presented in the last line of first block of the results tables for
each data set and is compared to the second line in the same block of the table.
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4.3 Data Set A (Laboratory experiment)

Comparison of the Figures 4.4 and 4.5 reveals that The offset different between the
OPS and SDS011 can be corrected by excluding the first three size channels of OPS
from the Pm2.5 calculations. This could be due to the low counting yield of SDS011
at those size ranges.

Table 4.1: Data Set A, 22 degrees (room Temperature)

properties observations
Location laboratory

Particle mixture Pure Ammonium Sulfate
Duration (minutes) 207
Average Temperature 21.6

Maximum Temperature 22.7
Minimum Temperature 20.7

Average RH(%) 52.5
Maximum RH(%) 81.2
Minimum RH(%) 40.7
Average PM2.5 130

Maximum PM2.5 829
Minimum PM2.5 5

Figure 4.2: Temperature, Data set A
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Figure 4.3: Relative Humidity, Data set A

Figure 4.4: PM2.5 mass concentrations for OPS, SDS011, and SDS019, Data set
A
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Figure 4.5: PM2.5 mass concentrations for SDS011 and OPS excluding the first 3
channels, Data set A

Figure 4.6: SDS011 Corrected with Multiple Linear Regression model compared
to OPS, Data set A
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Figure 4.7: Relative errors for SDS019 and SDS011 vs. OPS, Data set A
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Figure 4.8: Relative errors for SDS011 vs. OPS before and after applying the
correction factors based on Linear regression, Data set A
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Figure 4.9: Linear Regression plots, Data set A

Table 4.2: Data Set A, 22 degrees (room Temperature)

properties observations
Mean relative error of SDS019 -57.65 %
Mean relative error of SDS011 -67.41 %

Mean relative error of SDS011 after applying the correction factors 8.11 %
lope (Single Linear Regression) 3.004
r2 (Single Linear Regression) 93.88 %

Slope (Single Linear Regression with intercept) 2.959
Intercept (Single Linear Regression with intercept) 3.936

r2 (Single Linear Regression with intercept) 93.93 %
Intercept (Multiple Linear Regression) 59.34

PM2.5 factor (Multiple Linear Regression) 0.962
RH factor (Multiple Linear Regression) -0.009

Temperature factor (Multiple Linear Regression) -2.522
r2 (Multiple Linear Regression) 93.90 %
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4.4 Data Set B (Laboratory experiment)

Table 4.3: Data Set B, 25 degrees

properties observations
Location laboratory

Particle mixture Pure Ammonium Sulfate
Duration (minutes) 182
Average Temperature 25.2

Maximum Temperature 26.3
Minimum Temperature 23.4

Average RH(%) 50.5
Maximum RH(%) 83.1
Minimum RH(%) 39.9
Average PM2.5 72.9

Maximum PM2.5 411.5
Minimum PM2.5 1.6

Figure 4.10: Temperature, Data set B
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Figure 4.11: Relative Humidity, Data set B

Figure 4.12: PM2.5 mass concentrations for OPS, SDS011, and SDS019, Data set
B
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Figure 4.13: SDS011 Corrected with Multiple Linear Regression model compared
to OPS, Data set B
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Figure 4.14: Relative errors for SDS019 and SDS011 vs. OPS, Data set B
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Figure 4.15: Relative errors for SDS011 vs. OPS before and after applying the
correction factors based on Linear regression, Data set B
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Figure 4.16: Linear Regression plots, Data set B

Table 4.4: Data Set B, 25 degrees

properties observations
Mean relative error of SDS019 -60.27 %
Mean relative error of SDS011 -66.95 %

Mean relative error of SDS011 after applying the correction factors 27.87 %
Slope (Single Linear Regression) 3.003
r2 (Single Linear Regression) 96.78 %

Slope (Single Linear Regression with intercept) 2.903
Intercept (Single Linear Regression with intercept) 4.429

r2 (Single Linear Regression with intercept) 97.00 %
Intercept (Multiple Linear Regression) -92.23

PM2.5 factor (Multiple Linear Regression) 2.84
RH factor (Multiple Linear Regression) 0.0186

Temperature factor (Multiple Linear Regression) 3/918
r2 (Multiple Linear Regression) 97.32 %
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4.5 Data Set C (Laboratory experiment)

Table 4.5: Data Set C, 22 degrees (room Temperature)

properties observations
Location laboratory

Particle mixture Pure Ammonium Sulfate
Duration (minutes) 15
Average Temperature 22.7

Maximum Temperature 22.8
Minimum Temperature 22.6

Average RH(%) 71.4
Maximum RH(%) 85.7
Minimum RH(%) 62.1
Average PM2.5 107.4

Maximum PM2.5 259.6
Minimum PM2.5 3.3

Figure 4.17: Temperature, Data set C
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Figure 4.18: Relative Humidity, Data set C

Figure 4.19: PM2.5 mass concentrations for OPS, SDS011, and SDS019, Data set
C
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Figure 4.20: SDS011 Corrected with Multiple Linear Regression model compared
to OPS, Data set C
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Figure 4.21: Relative errors for SDS019 and SDS011 vs. OPS, Data set C
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Figure 4.22: Relative errors for SDS011 vs. OPS before and after applying the
correction factors based on Linear regression, Data set C
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Figure 4.23: Linear Regression plots, Data set C

Table 4.6: Data Set C, 22 degrees (room Temperature)

properties observations
Mean relative error of SDS019 -6314 %
Mean relative error of SDS011 -70.40 %

Mean relative error of SDS011 after applying the correction factors 4.12 %
Slope (Single Linear Regression) 3.23
r2 (Single Linear Regression) 91.96 %

Slope (Single Linear Regression with intercept) 3.153
Intercept (Single Linear Regression with intercept) 3.476

r2 (Single Linear Regression with intercept) 92.04 %
Intercept (Multiple Linear Regression) 102.08

PM2.5 factor (Multiple Linear Regression) 0.986
RH factor (Multiple Linear Regression) 0.358

Temperature factor (Multiple Linear Regression) -5.650
r2 (Multiple Linear Regression) 89.4 %
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4.6 Data Set D (Field experiment with van)

Data set D is divided into to subsets and separate correction factors are calculated
for it. Three big spikes are observed in Figure for data set D, which is split into two
data sets in between the spikes. For this experiment, the difference (background
concentrations) observed between the OPS and SDS sensors can be explained by
OPS having a peak in its size distribution around 1.7 micrometer, see Figure 4.1.
The peak is not typical for combustion, hence, it might be due to ocean spray or dust
formation. SDS sensors were not sensitive to this but OPS showed a background
concentration.

Table 4.7: Data Set D, ambient air with an average Temperature of 7 degrees

properties observations
Location A Parking lot in the city

Particle mixture Ambient air in the city (Olskroken)
Duration (minutes) 404
Average Temperature 6.9

Maximum Temperature 9.8
Minimum Temperature 6.3

Average RH(%) 89.8
Maximum RH(%) 93.4
Minimum RH(%) 74.3
Average PM2.5 45.4

Maximum PM2.5 3030
Minimum PM2.5 31.8

Figure 4.24: Temperature, Data set D
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Figure 4.25: Relative Humidity, Data set D

Figure 4.26: PM2.5 mass concentrations for OPS, SDS011, and SDS019, Data set
D
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Figure 4.27: PM2.5 mass concentrations for OPS, SDS011, and SDS019, Data set
D, between the first and second spike
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Figure 4.28: SDS011 Corrected with Multiple Linear Regression model compared
to OPS, Data set D, between the first and second spike
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Figure 4.29: Linear Regression plots, Data set D, between the first and second
spike

Table 4.8: Data Set D, ambient air with an average Temperature of 7 degrees,
between the second and third spike

properties observations
Mean relative error of SDS019 -64.57 %
Mean relative error of SDS011 -77.67 %

Mean relative error of SDS011 after applying the correction factors 0.32 %
Slope (Single Linear Regression) 4.511
r2 (Single Linear Regression) 60.41 %

Slope (Single Linear Regression with intercept) 3.752
Intercept (Single Linear Regression with intercept) 7.3197

r2 (Single Linear Regression with intercept) 63.02 %
Intercept (Multiple Linear Regression) 3.032

PM2.5 factor (Multiple Linear Regression) 3.72
RH factor (Multiple Linear Regression) 3.72

Temperature factor (Multiple Linear Regression) 0.69
r2 (Multiple Linear Regression) 63.99 %
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Figure 4.30: PM2.5 mass concentrations for OPS, SDS011, and SDS019, Data set
D, between the second and third spike
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Figure 4.31: SDS011 Corrected with Multiple Linear Regression model compared
to OPS, Data set D, between the second and third spike
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Figure 4.32: Linear Regression plots, Data set D, between the second and third
spike

Table 4.9: Data Set D, ambient air with an average Temperature of 7 degrees,
between the first and second spike

properties observations
Mean relative error of SDS019 -63.49 %
Mean relative error of SDS011 -78.21 %

Mean relative error of SDS011 after applying the correction factors 0.10 %
Slope (Single Linear Regression) 4.598
r2 (Single Linear Regression) -36.97 %!

Slope (Single Linear Regression with intercept) 1.891
Intercept (Single Linear Regression with intercept) 28.165

r2 (Single Linear Regression with intercept) 35.03 %
Intercept (Multiple Linear Regression) 41.96

PM2.5 factor (Multiple Linear Regression) 1.89
RH factor (Multiple Linear Regression) -0.04

Temperature factor (Multiple Linear Regression) -1.53
r2 (Multiple Linear Regression) 35.43 %
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4.7 Data set E (Femman air quality station)
SDS011 measurements for 3 weeks in parallel with TEOM at Femman air quality
station is shown with the RH and T data in Figures 4.33. SDS011 shows an in-
consistent performance about humidity. There are examples such as 3/2/2020 and
12/2/2020 where the humidity is below 80 % and SDS011 does not correlate with
TEOM. On the other hand, there are times such as 8/2/2020 and 15/2/2020 where
SDS011 shows a higher value due to high humidity (above 80 %) and correlates very
well with TEOM. This is in contrary with the product specification of the SDS011
where it states that SDS011 is less likely to have humidity based errors at RH below
70 %. Howeveer, du to the inconsistency of the behaviour of SDS011 in this data
set, the data set is not very conclusive and not so many statistical and regression
analyses can be performed on this data set.

Figure 4.33: SDS011 measurements for 3 weeks in parallel with TEOM at Femman
air quality station
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An interesting observation for the same data set is seen in Figure 4.34, which shows
the absolute error of SDS011 from TEOM compared to RH. The interesting find-
ing here is that the absolute value of the relative humidity being above 80 % for a
certain moment is not necessarily the cause of the error for such sensors, but the
fluctuations in relative humidity correlates very well with the absolute error.

Figure 4.34: The absolute error and RH for SDS011 measurements for 3 weeks in
parallel with TEOM at Femman air quality station
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Figure 4.35 shows the OPS measurements for 2 days in parallel with TEOM and
SDS011 at Femman air quality station. There are big spikes in the middle of the
Figure where all of the three sensors react to something and show very high values.
That interval cannot be physically explained. Excluding the spiky interval shows an
absolute agreement between the sensors. However, the performance of OPS shows
that it may not be as reliable as TEOM as a reference deice.

Figure 4.35: OPS measurements for 2 days (48 hours) in parallel with TEOM and
SDS011 at Femman air quality station
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4.8 Analysis of the results and Discussions

Looking at all data sets at concentration plots, implies the general impression that
there is reasonable correlation between the SDS011 and the OPS in most cases.
However, in terms of absolute values, OPS showed higher values in majority of the
time. This is in contrary with the expectations based on section 2.3. This can be
explained by the fact that OPS has higher counting yield in the particles smaller
than 0.5 µm, and the effect of this phenomenon overcomes the exaggeration of the
concentrations due to humidity by SDS sensors. It should also be noted that after
completion of this work it was found that the OPS had a dirty inlet that possibly
caused abstraction and lower flow, and after cleaning it increased the values by 58
%. Such an effects is consistent with a 37 % lower flow. Whether this was the case
during my field and laboratory tests is uncertain but this will exaggerate the differ-
ences between OPS and SDS. Hence my conclusion are still valid. In addition the
refractive index used by the OPS was the one of black carbon, but testing showed
that this had very small impact on the retrieved results.

The same plots show a precise agreement between SDS011 and SDS019. The labo-
ratory experiments reveal that SDS019 performs slightly better than SDS011 with
an average relative error (from OPS) of 10 to 20 % lower than that of SDS011.
The relative error plots show that the relative error for SDS011 ranges from 50 to
80 % in different data sets and this error can be improved and reduced down to
below 10 % and in some cases below 1 % by applying the single linear regression
correction factor to the laboratory data. Comparing the r-squared values of derived
correction factors based on multiple linear regression with single linear regression did
not show a significant improvement, and it turned out that taking into account the
temperature and relative humidity as input parameters into a mathematical model
without considering their physical aspects is not very useful. However, measuring
and knowing the temperature and other meteorological parameters besides the PM
concentrations may be useful in explaining the measurement artifacts in some cases.
The plots for corrected SDS011 based on multiple linear regression compared to OPS
are also presented. By looking at the last row of results tables it can be inferred that
the multiple mode can provide a really good fit with r-squared values of up to 97 %
for he laboratory experiments whereas in the case of field experiment for data set D
the goodness of the fir is not as high. Thus, the performance of the multiple model
for correction factor is not necessarily better and it differs case by case. However,
the comparison of linear and multiple linear regression for SDS sensors showed that
the error caused by high humidity cannot be fully corrected by taking into account
the humidity as an input parameter to the model. Thew reason for this is that OPS,
SDS have fundamental differences with TEOM, larger than the ones caused by the
humidity only.

The most relevant comparison in this study is probably the one in data set E (Fig-
ure 4.33) comparing the SDS011 against TEOM (the golden standard for PM in
air quality monitoring). This comparison shows periods with both good and poor
agreement which partly seems related to humidity but it is hard to totally under-
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stand. The results hence indicate that the SDS011 is not performing well enough
as a single monitor for air quality. When it comes to these kind of measurements
there are several things that could possibly go wrong and cause errors. From electric
wires and connections being disconnected to short circuits due to water in the field
experiments as well as fluctuations in voltage and internet connection all of which
can harm the instruments as well as inconsistent logging. There are also system-
atic and physical souses of error such as effect of humidity which was mentioned
in section 2.3. Additionally sometimes there are some measurement artifact which
cannot be explained such as field experiment at the air quality station illustrated
in Figures 4.35. To eliminate the errors caused by humidity, some studies come up
with new design trying to eliminate the moisture of the air sample before it reaches
the detection unit of the sensors by heating or chemical absorbents.

In this project it has been demonstrated that the SDS011, which is designed for
indoor application, can be used outdoors in a weatherproof box together with a
Raspeberry Pi computer. And be operated in a network to get a sense of pollution
levels in an area. As part of this project we were not fully able to corrects for hu-
midity problems, which is reported to be a problem. Some papers suggest removing
the moisture instead but this has not been explored here. The results here indicate
that using the sensor alone for precise measurements must be done with caution.

Raspberry pi with wifi network as the electronics to complement these sensors is
not a stable and reliable choice, because of the connection inconsistency observed
during the field experiments. Instead, PyCom and 5G network is expected to be
more reliable and will be tests later on as a continuation of this work.
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Conclusion

5.1 Conclusions
Generally a good correlation between uncorrected SDS sensors and OPS was ob-
served in the laboratory experiments. The correlation in the field experiments was
poor on the other hand. Despite the correlations, a systematic differences in the
absolute values was observed. This offset can be corrected with correction factors
based on linear regression, However, the comparison of linear and multiple linear
regression for SDS sensors showed that the error caused by high humidity cannot
be fully corrected by taking into account the humidity as an input parameter to
the model. Because the SDS sensors have fundamental differences with OPS and
TEOM (reference) in sensing. SDS011 and SDS019 did not show a significant dif-
ference in accuracy, wherase their prices differ significantly. SDS011 is designed for
indoor applications. However, with waterproof packaging similar to what was de-
sign throughout the course of this project and also with some correction factors, its
error can be reduced and it can be used in ambient environment with a reasonable
measurement quality to get a general sense of PM pollution levels, and subsequently
a network of them can be used for a general sense of pollution level in a bigger area.
However, it is not recommended to use them alone as an indicator of the air quality.

5.2 Recommendations for future Studies
At the end of this work, 5 sensors are permanently installed as stationary units
(SDS011) in 5 bus stations in Gothenburg reporting data in real-time by IoT. ad-
ditionally, one mobile unit (SDS019 and SDS011) is installed on a bus from public
transport which visits these 5 stations frequently and the data is compared and cal-
ibrated. One SDS011 will be also installed at Nordstan air quality station besides
the TEOM reference instrument for calibration purposes. Additionally, the frame-
works and codes for data analysis as well as the prototyping and design experience
for hardware and sensor packages are documented and available for future work.

To improve the correction factors, it is recommended to perform more experiments
under more diverse circumstances such as temperature and humidity and back-
ground concentration levels. These experiments shall be a combination of labora-
tory and field experiments with different particles sources in laboratory other than
ammonium sulfate to cover a greater range of particle mixtures. For field installa-
tions raspberry pi with wifi network as the electronics to complement these sensors
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is not a stable and reliable choice. Instead, PyCom and 5G network is expected to
be more reliable.
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Figure A.1: Maximum values for size channel of OPS, Field vs. laboratory data .
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