
Design Optimization for 3D Printed
Energy Absorbing Structures Inspired
by Nature
A theoretical geometry evaluation for maximizing specific
energy absorption

Master’s thesis in Material and Computational Mechanics

Alexander Olsson & Mattias Naarttijärvi

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017:34

Design Optimization for 3D Printed Energy
Absorbing Structures Inspired by Nature

A theoretical geometry evaluation for maximizing
specific energy absorption

Alexander Olsson
Mattias Naarttijärvi

Department of Applied Mechanics
Division of Material and Computational Mechanics

Chalmers University of Technology
Gothenburg, Sweden 2017

Design Optimization for 3D Printed Energy Absorbing Structures Inspired by Na-
ture
A theoretical geometry evaluation for maximizing specific energy absorption
Alexander Olsson
Mattias Naarttijärvi

© Alexander Olsson, 2017.
© Mattias Naarttijärvi, 2017.

Supervisor: Spyros Tsampas, Swerea Sicomp
Examiner: Leif Asp, Department of Applied Mechanics, Chalmers University of
Technology

Master’s Thesis 2017:34
Department of Applied Mechanics
Division of Material and Computational Mechanics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Final result represented as four by four repeated unit columns.

Typeset in LATEX
Printed by Department of Applied Mechanics
Gothenburg, Sweden 2017

iv

Design Optimization for 3D Printed Energy Absorbing Structures Inspired by Na-
ture
A theoretical geometry evaluation for maximizing specific energy absorption
Alexander Olsson
Mattias Naarttijärvi
Department of Applied Mechanics
Chalmers University of Technology

Abstract
Transportation is a major part of people’s every day life in today’s society allowing
them to get to their jobs, commute, trade, travel etc. Motorcyclists and cyclists
are among the most vulnerable road users and in case of an accident, they are
highly dependent on bearing a helmet to protect against severe damage. Studies
have shown that bearing a modern helmet provides 63% to 88% reduction of sus-
tained head and severe brain injury in case of an accident for bicyclist. A route
to further improve helmets, besides developing stiffer and tougher materials, is to
develop a helmet that also relies on the material structure, i.e. its inner geome-
try and architecture, for energy absorption. Additive manufacturing or 3D printing
allows three-dimensional objects or components to be manufactured with a complex-
ity which would be difficult or near impossible to realize with today’s conventional
manufacturing techniques used for helmets. With the possibilities and precision 3D
printing enables in mind, structures based on geometries found in nature is investi-
gated and theoretically optimized to absorb as much energy as possible on impact
meanwhile keeping the mass low.

Three main structures made up of beam elements were chosen and further inves-
tigated in a script. The script is designed to generate and optimize the structure
by positioning its elements and varying their position, width, height and radius and
evaluate it regarding specific energy absorption by doing a FEM analysis and a
buckling analysis. Ultimately the script work as intended by successfully generate
the sought structures and autonomously update the structures variables and return
an optimized combination of the variables which maximized the structures ability
to absorb energy on impact.

Keywords: Beam, helmet, energy absorption, 3D printing, optimization

v

Designoptimering för 3D-printade energiabsorberande strukturer inspirerade av na-
turen
En teoretisk utvärdering av geometri med avseende att maximera specifik energiab-
sorption
Alexander Olsson
Mattias Naarttijärvi
Avdelning för Tillämpad Mekanik
Chalmers Tekniska Högskola

Sammanfattning
Transport är en stor del av människors vardag i dagens samhälle vare sig det är
för att kunna komma till sitt jobb, pendla, handla eller resa. Motorcyklister och
cyklister är bland de mest utsatta trafikanterna och i händelse av en olycka är
de mycket beroende av att ha hjälm på sig för att skydda mot allvarliga skador.
Studier har visat att ha på sig en hjälm minskar chansen att få en allvarlig hjärn-
skada med 63% till 88% vid eventuell olycka för en cyklist. Ett sätt att förbättra
hjälmarna förutom att ta fram bättre och starkare material är att utveckla en hjälm
som är beroende av materialstrukturen i hjälmen, dvs dess inre geometri för att
öka dess energiabsorption. Additiv tillverkning eller 3D-printning gör att även my-
cket komplexa komponenter och strukturer kan tillverkas som annars med dagens
tillverkningstekniker för hjälmar skulle vara svåra eller näst intill omöjliga att realis-
era. Med de möjligheter och precision som 3D-printning tillför i åtanke undersöks
geometrier och strukturer som förekommer naturligt i naturen med avseende att
finna strukturer som teoretiskt optimeras för att absorbera så mycket energi som
möjligt samtidigt som dess vikt hålls låg.

Tre huvudsakliga strukturer uppbyggda utav balkelement valdes och undersöktes
vidare i ett datorskript. Skriptet är konstruerat för att generera och optimera struk-
turerna genom att skapa och placera dess element samt variera elementens position,
bredd, höjd och radie samtidigt som strukturen utvärderas gällande dess förmåga
att ta upp energi genom att göra en FEM-analys och en bucklingsanalys. Skriptet
fungerade som förväntat genom att framgångsrikt generera de eftersökta struktur-
erna och autonomt uppdatera dess variabler samt returnera en optimerad kombi-
nation av variablerna vilka maximerar strukturens förmåga att absorbera specifik
energi vid kollision.

Nyckelord: balk, hjälm, energiabsorption, 3D printing, optimering

vii

Acknowledgements
This report is submitted to fulfill the requirement to the Master’s degree at Chalmers
University of Technology, Gothenburg and has been carried out in collaboration with
SWERA SICOMP in Mölndal, Sweden.

The work was conducted during the spring semester of 2017.

It is with gratitude we acknowledge the help and support from our supervisor Leif
Asp from Chalmers University of Technology for his genuine interest in the project
and his resourceful feedback and help. We would also like to acknowledge and ex-
press our appreciation to our supervisors at SWEREA SICOMP, Spyros Tsampas
and Vasan Churchill Srinivasan Chandrasekaran for their helpful feedback and giv-
ing us vast freedom and trust throughout the project. Lastly we would like thank
Erik Svensson of the Material and Manufacturing Technology of Chalmers for his
input and discussions regarding material characteristics.

Gothenburg, June 2017 Alexander Olsson & Mattias Naarttijärvi

ix

Contents

List of Figures xiii

List of Tables xvii

1 Introduction and background 1
1.1 Objectives . 1
1.2 Challenges and limitations . 2

2 Literature study and relevant research in the field 3
2.1 Personal protection - Helmets . 3
2.2 Foams . 3
2.3 Energy absorbing structures in nature 5

2.3.1 Bones . 5
2.3.2 Teeth . 6
2.3.3 Tree . 7

2.4 Energy absorption fundamentals . 8
2.5 Numerical simulation of energy absorption 9
2.6 Failure criteria for structure - General buckling 10

3 Theory 11
3.1 Energy Absorption . 11
3.2 Finite Element Method . 12

3.2.1 The FEM problem . 12
3.2.2 CALFEM . 22

4 Methodology 29
4.1 Geometries and structures . 29

4.1.1 Cellulose . 30
4.1.2 Tetrahedron . 31
4.1.3 Pyramid . 32

4.2 Material . 33
4.3 Applied force . 34
4.4 Design variables . 35
4.5 Identification of design space . 36

4.5.1 Rough combination mesh . 37
4.5.2 Optimization algorithm . 39

4.6 Compression test simulation . 42

xi

Contents

4.6.1 Determination of unit cell height 43
4.6.2 Build geometry . 43
4.6.3 Buckling . 44
4.6.4 Specific energy absorption . 46

5 Results and discussion 49
5.1 Design variable range and test setup 49
5.2 Design variables impact on the mass 49
5.3 Screening results from rough mesh . 52
5.4 Optimization algorithm . 54

5.4.1 Refinement of design variables 57
5.5 Final geometries and their ranking 60

5.5.1 Performance of the optimization procedure 63

6 Conclusion 65
6.1 Future work and recommendations 66

Bibliography 67

A Appendix 1 - Result I
A.1 Tetrahedron result . I
A.2 Pyramid result . IV

B Appendix 2 - Matlab code IX
B.1 Main . IX
B.2 Rough combination . XIII
B.3 Optimization algorithm . XVII
B.4 Simulate compression test . XXV
B.5 Solve FEM problem . XXX
B.6 Minor functions . XXXI

B.6.1 Mass of the structure . XXXI
B.6.2 Energy absorption . XXXII
B.6.3 Unit cell height . XXXIII

B.7 Build geometries . XXXIV
B.7.1 Geometry factory . XXXIV
B.7.2 Tetrahedron . XXXV
B.7.3 Cellulose . XXXIX
B.7.4 Pyramid . XLVII
B.7.5 Cube . LI

B.8 Plot and store data . LIII
B.8.1 Generate plot . LIII
B.8.2 Plot geometry . LIX
B.8.3 Store data . LX

xii

List of Figures

2.1 Cross section of a Kali Avita Carbon XC helmet [5]. 3
2.2 Compression stress-strain curve of a rigid foam [6]. 4
2.3 An illustrative cross section of a human bone [9]. 5
2.4 Trabeculae [11]. 6
2.5 The anatomy of a human tooth [14]. 7
2.6 Cross-section of a sector of hardwood showing its different layers. R,

L and T denotes the radial, longitudinal and tangential direction [15]. 8

3.1 Idealised stress-strain curves: (a) elastic, perfectly plastic, (b) elastic,
linear hardening and (c) elastic, power hardening [18]. 11

3.2 An infinitely small beam element. 13
3.3 A beam element with one node at each end. In total, the beam has

12 degrees of freedom represented by u1−12. 18
3.4 A beam element with one node at each end. In total, the beam has

12 degrees of freedom represented by u1−12. 22
3.5 The CALFEM beam element in three dimensions displaying degrees

of freedom and the local coordinate system (x̄, ȳ, z̄) [24]. 23
3.6 The CALFEM beam element in three dimensions displaying degrees

of freedom and the local coordinate system (x̄, ȳ, z̄) [24]. 25

4.1 Image of plant cells taken with a light microscope where one can
clearly see the green chloroplast and the cell wall around each cell [25]. 30

4.2 Cellulose unit cell. 31
4.3 Tetrahedron unit cell. 32
4.4 Pyramid unit cell. 32
4.5 Material comparison for 3D printable polymers [28]. 33
4.6 Drop test setup. 34
4.7 Applied force depending on unit cell width. 35
4.8 Overview schematics of the main steps in the code. 37
4.9 Two design variables illustrating the result of all combinations. 37
4.10 Coarse mesh of two design variables resulting in a large design range

for the fine tuning. 38
4.11 Fine mesh of two design variables resulting in a smaller design range

for the fine tuning. 38
4.12 Schematics of the code structure for the optimization algorithm. . . . 39
4.13 Best and worst case scenario for number of tests performed, assumed

the four design variables have the same design range and resolution. . 42

xiii

List of Figures

4.14 Schematics of the test simulation script. 42
4.15 Effects of height factor. 44
4.16 Schematics over the procedure of building a geometry. 44
4.17 Physical compression test for evaluating buckling case of a nylon

structure. 45
4.18 Force and displacement for a compression simulation test of a tetra-

hedral with 5 unit cells. 46

5.1 Mass dependency of beam radius. 50
5.2 Mass dependency of height factor. 51
5.3 Mass dependency of number of unit cells (left image) and width (right

image). 51
5.4 Specific energy absorption of tetrahedron initialization. Failed com-

binations (*) are included in the left image and excluded in the right
image. 53

5.5 Specific energy absorption of cellulose initialization. Failed combi-
nations (*) are included in the left image and excluded in the right
image. 53

5.6 Specific energy absorption of pyramid initialization. Failed combi-
nations (*) are included in the left image and excluded in the right
image. 53

5.7 Specific energy absorption for cellulose from rough mesh vs beam radius. 54
5.8 Specific energy absorption for cellulose from rough mesh vs number

of unit cells. 55
5.9 Specific energy absorption for cellulose from rough mesh vs unit cell

width. 56
5.10 Specific energy absorption for cellulose from rough mesh vs height

factor. 57
5.11 Specific energy absorption (left image) and buckled unit cells (right

image) depending on beam radius. 58
5.12 Specific energy absorption dependent on number of unit cells for the

cellulose geometry. 59
5.13 Specific energy absorption and height factor (left image) or unit cell

width (right image). 59
5.14 Specific energy absorption for all successful tests for the cellulose

structure. 60
5.15 Final geometry of tetrahedron as one unit column (left image) and 4

by 4 unit columns (right image). 62
5.16 Final geometry of cellulose as one unit column (left image) and 4 by

4 unit columns (right image). 62
5.17 Final geometry of pyramid as one unit column (left image) and 4 by

4 unit columns (right image). 62
5.18 Number of tests performed for the cellulose structure as percentage

of all unique combinations. 63

A.1 Specific energy absorption for tetrahedron from rough mesh vs beam
radius. I

xiv

List of Figures

A.2 Specific energy absorption for tetrahedron from rough mesh vs unit
cell width. II

A.3 Specific energy absorption for tetrahedron from rough mesh vs height
factor. II

A.4 Specific energy absorption for tetrahedron from rough mesh vs num-
ber of unit cells. III

A.5 Specific energy absorption for tetrahedron with varying beam radius. III
A.6 Specific energy absorption for tetrahedron with varying height factor. IV
A.7 Specific energy absorption for pyramid from rough mesh vs beam radius. IV
A.8 Specific energy absorption for pyramid from rough mesh vs unit cell

width. V
A.9 Specific energy absorption for pyramid from rough mesh vs height

factor. V
A.10 Specific energy absorption for pyramid from rough mesh vs number

of unit cells. VI
A.11 Specific energy absorption for pyramid with varying beam radius. . . VI
A.12 Specific energy absorption for pyramid with varying width. VII
A.13 Specific energy absorption for pyramid with varying height factor. . . VII

xv

List of Figures

xvi

List of Tables

2.1 Results of static compression tests on EPS [6]. 5

4.1 Material properties for 3D printable polymers [28]. 33
4.2 Different rough resolutions and it’s effects on best and worst case

scenario for number of tests. 41

5.1 Design variable range for test setup. 49
5.2 Design variables’ influence on total mass. 50
5.3 Start guess from the rough combination test. 57
5.4 Optimized design parameters and final result. 61
5.5 The performance of the script. 64

xvii

List of Tables

xviii

1
Introduction and background

Helmets have been widely used by humans for many centuries in order to protect the
brain from heavy impacts. Historically, soldiers have been using helmets in battles
for a long time and as technology and weapons have developed the helmets com-
position and material have also changed. The evolution has gone from early usage
when the helmets were made of leather and cloths to today where a new generation
of ultra-high-molecular-weight polyethylene fibers (UHMWPE) are used in combat
helmets to protect against ballistic impacts [1]. In civilian life, the advantages of
helmets was recognized and used much later. Today helmets are used in a wide
range, stretching from recreational activities and sports, dangerous work activities
like mining and construction and also transportation such as bicycle and motor-
cycles. Motorcyclists and cyclists are among the most vulnerable road users. In
Sweden around 2000 people get seriously injured every year in bicycles accidents,
around 20-30 of these accidents are fatal [2].
Studies have shown that bearing helmets provide a 63% to 88% reduction of sus-
tained head and severe brain injury for all ages of bicyclists. The core function of
a helmet is that it absorbs mechanical energy from the impact, relieving the head
from as much energy as possible, hence reducing the risk of brain and head injuries
[3]. A route to further improve helmets, besides developing better and tougher ma-
terials, is to develop a helmet that is relying on the material structure, i.e. its inner
geometry, for energy absorption. How the material in the helmet is structured is
limited by available manufacturing techniques and materials. However, the manu-
facturing techniques are developing rapidly and with 3D printing it is now possible
to manufacture complex geometries with very high precision. In nature there are
many complex mineral-based and protein-based bio-composites designed to absorb
and resist impact and crushing. With additive manufacturing (AM) or 3D printing
now available it is motivated to look at the structures and organisms in nature,
shaped by the millions of years of evolution to inspire new ways to structure the
materials in helmets in order to make them safer. This further allows for individual
customization through tailor made helmets specifically designed for the user and its
use case.

1.1 Objectives

This thesis aims to generate bio-inspired material architectures for improved en-
ergy absorption with potential to improve helmets. New material architectures are
identified via adjustable models to evaluate different layer thicknesses and densi-

1

1. Introduction and background

ties. Sponge-like structures are common in nature and such geometry will be sought
determining parameters such as wall thickness and node density. With a flexible
model, multiple analyses can be made to evaluate patterns that make a structure
energy absorbent.
The goal of this thesis is to provide direction and guidance for future research in
order to realize micro-structural designs for improved energy absorption in helmets
to make them safer. The work is expected to result in identification of energy
absorbent material architectures and required material properties to construct better
liners for helmets. Furthermore, the proposed material concepts are to be assessed
for their processability with current and future 3D printing capabilities.

1.2 Challenges and limitations
The optimization problem is limited to the liner in a helmet, i.e. not the hard shell
surrounding the outside. Each geometry case will be represented by unit cells stacked
to form unit columns. These unit columns are repeatable and will generate the entire
helmet, however not in this thesis. The unit columns are only to be investigated
with symmetry boundary conditions on the sides, simply supported at the bottom
face and an evenly distributed force applied on the top face. These symmetries
represents a flat structure, and not the curvature seen in helmets. The force is
calculated to represent the force of impact that a helmet is required to withstand,
according to European standards. The load is vertical. Any shear forces that may
occur in an actual helmet crash test are not taken into consideration. The material
selection is limited to polymers that are currently 3D printable. The scale of each
geometry and the beams constructing it is limited to the accuracy of the 3D printer
in order to evaluate against physical tests for Swerea. The simulations are performed
with Matlab constructed by an elastic finite element analysis and buckling models.
Plastic analysis will not be evaluated due to its complexity and the time consuming
computational procedure. Regarding nature’s influence of the thesis, it is limited to
a conceptually inspiring level of the geometry due to material differences and the
lack of documentation for mechanical properties of bio-composite micro-structures.
Lastly, the thesis is 30 credits and limited time wise between January and June of
2017.

2

2
Literature study and relevant

research in the field

The literature review aims to investigate promising structures and geometries found
in nature as well as structures found in helmets today. It is a limited study in which
few organisms and materials with well known mechanical properties is considered
and further investigated.

2.1 Personal protection - Helmets
Most of today’s helmets are of similar design. They have a hard outer shell which is
attached to an inner layer consisting of some sort of foam. The core function of the
outer shell is to protect the head from sharp objects and to distribute the impact
load over a lager area. The outer shell dissipates a significant amount of the the
mechanical energy (34%). The inner foam, absorbs the mechanical energy from the
impact and distributes it over a large area, reliving the head from as much load as
possible [3]. The foam can be of many types, but expanded polystyrene (EPS) is a
common choice in bicycle helmets [4]. A cross section of a typical bicycle is depicted
in Figure 2.1.

Figure 2.1: Cross section of a Kali Avita Carbon XC helmet [5].

2.2 Foams
For expanded polystyrene (EPS) foams the properties of cellular solids depend on
two separate sets of properties, the geometry (cell size, shape, density, material

3

2. Literature study and relevant research in the field

distribution between cell edges and faces) and material properties. A typical com-
pressive stress-strain curve of elastomeric foams is shown in Figure 2.2. The curve
can be divided into three regions: I, shows linear elasticity at low stresses. II, is a
wide collapse plateau and III is the densification where the stresses rise steeply [6].

Figure 2.2: Compression stress-strain curve of a rigid foam [6].

The three stages has the following characteristics.

• I, The linear elasticity holds for small strains (3-5%) and consists of three
types of strain: stretching of cell walls, bending of cell edges and compression
of gas trapped into the cells. For the case of compressive load the plateau is
associated with cell collapse due to the onset of plastic hinges. Opposing walls
come into contact once the cells have almost completely collapsed, further
compressive stresses arise leading to the final region of bottoming-out.

• II, Foams with a plastic yield point displays a ductile failure as well if loaded
beyond their linear-elastic region. The plastic collapse results in a wide hor-
izontal plateau in the stress-strain curve where the strains are no longer re-
coverable. This plastic deformation is exploited in energy-absorbing systems.
The plastic collapse depends on three mechanisms: When the bending mo-
ment acting at cell walls exceed the allowable moment of the edges, there is
an onset of permanent hinges, cell wall plastic stretching occurs and pressure
of fluid contained into the cell increases.

• III, When cells are completely collapsed, at large compressive strains, the op-
posing walls are crushed together and the constituent material is compressed
as well. As a consequence, the stress-strain curve rises steeply.

In Table 2.1 different experimental data on specific energy absorption for expanded
polystyrene is shown. The test resulting in these data was a static compression test
on different EPS densities and were performed according to free- and confined volume
methods. With a confined volume method means that the foam is prevented to
expand in a certain direction. In this experiment the foam was fitted in a cylindrical
steel frame, preventing any radial expansion during the compression [6].

4

2. Literature study and relevant research in the field

Table 2.1: Results of static compression tests on EPS [6].

Specific Energy [kJ/kg]
Nominal Density [kg/m3] Confined Free

28 4.29 3.93
40 4.50 4.25
55 5.09 4.55
70 5.57 5.43

2.3 Energy absorbing structures in nature
In this chapter we present an overview of energy absorbing materiel structures in
nature. The overview is not an extensive review of such materials but rather limited
to some materials with anticipated high energy absorption.

2.3.1 Bones
In the human body, there are only two types of bone tissue: cortical and cancellous
bone. Cortical bone is very dense and strong which makes it more difficult to
fracture. Its primal function is to provide structural support for the body and its
organs and tissues [7]. Cortical bone is structured by many microscopic cylinders
called osteons. These cells produces bone matrices known as a lamellae [8]. A cross
section of a human bone is depicted in Figure 2.3.

Figure 2.3: An illustrative cross section of a human bone [9].

Together the osteons forms a system of concentric circles which builds up the com-
pact bone. When bundled, they form a strong support with high structural strength
and rigidity [7]. The other type of bone, the cancellous bone, is located at the ends
of the long bones, i.e. the cortical bones. In the typical adult human body, the
cancellous bones make up about 20% of the skeleton. Although cancellous bone is

5

2. Literature study and relevant research in the field

strong, it is more porous compared to cortical bones and thus more easily fractured.
Cancellous bone is also known as spongy bone because of its similarity to a sponge
or honeycomb. It has many open hollow spaces connected by flat planes of bone
known as trabeculae [10]. Each time we move or do any physical activity, our hips,
spine, and pelvis, is subjected to mechanical stresses. The strength that keeps the
bones from breaking is provided by the trabeculae, see Figure 2.4.

Figure 2.4: Trabeculae [11].

The trabeculae might look randomly arranged since it is hard to see a clear pattern
of how the the cell tissue is structured, but it is not. It is constructed and ordered by
our body to support the areas which experience the highest stresses. The trabeculae
can even grow and change shape and direction in order to give better support to
our body, depending on the stresses the body is subjected to. Cancellous bone also
contains red bone marrow which fills up the spaces between the trabeculae [12].
Inside the trabecule, there are three types of cells that cooperate to keep the bone
strong and healthy: osteoblasts, osteocytes, and osteoclasts. The osteocytes senses
when the bone is damaged or subjected to stress. The osteoblasts creates new bone
tissue and the osteoclast destroys old or damaged bone in order to make room for
the osteoblasts. The procedure of remolding bone tissue by removing old bone tissue
and replacing it with new bone tissue is an ongoing and carefully regulated process.
The trabeculae need to provide support for the bone without being too thick and
dense since it would make the bone unnecessarily heavy and reduce the space for
red bone marrow. If it would be too thin however it would make the bone more
easily fractured [12].

2.3.2 Teeth
Human teeth are, like most other vertebrate teeth composed of dentin which is
capped by a thin layer of enamel, see Figure 2.5. Fully matured enamel consists
mainly of mineral (>95% per volume) in form of bundles of highly elongated crystals.
This makes the enamel the hardest material in the body, but also brittle. Dentin

6

2. Literature study and relevant research in the field

contains approximately of 50% crystals, 20% water, and 30% organic matrix per
volume. This composition makes it softer, but tougher compared to the enamel
covering it [13]. The enamel and the dentin is subjected to cyclic mechanical loading,
thermal and hydration stresses as we eat and use our teeth in daily life. The enamel
cap transfers the load from its cap and distributes it into the dentin, without having
a fracture. It is however the elastic properties of the enamel and the dentin that
are important for normal tooth function rather than fracture properties, due to the
fatigue damage is always an extreme result of load and normally related to extensive
wear [13].

Figure 2.5: The anatomy of a human tooth [14].

2.3.3 Tree
There are two types of wood in trees, softwood and hardwood. The distinction
between softwood and hardwood depends on the plants reproduction and its seeds.
Hardwood are angiosperms, which means that its seeds have some sort of covering,
like fruits or a hard shell like an oaks acorn, Figure 2.6. Softwood trees are gym-
nosperms, there seeds have no covering and fall to the ground as it is. For example,
pine trees are categorized as a softwood tree, where its seeds are spread out in the
wind as they are mature.
The structures in hardwood are considered to be more advanced compared to soft-
wood. Hardwood have four main cell types: fibers, vessels, tracheids and parenchyma
cells. The fibers are from a mechanical perspective most interesting since they pro-
vide the mechanical support and strength to the tree [15]. The three major polymers
in wood are cellulose, hemicelluloses, and lignin. Cellulose is the main structural
component of the cell wall and the most common macromolecule on earth. The cell
wall provides the cell with stability, stiffness, tensile strength and protection from

7

2. Literature study and relevant research in the field

mechanical stresses [16].

Figure 2.6: Cross-section of a sector of hardwood showing its different layers. R,
L and T denotes the radial, longitudinal and tangential direction [15].

On nano-scale cellulose chains are bonded with each other through hydrogen bonds,
forming flat sheets. The sheets are in turn stacked on each other forming bundles
which is held together by van der Waals forces. These bundels, called fibrils, are
orientated different depending its location in the cell wall. In the thicker secondary
layer the fibrils are organized in a parallel manner, orientated with a certain angle
towards the fibre axis called the microfibril angle. The angle is highly affecting the
mechanical properties of the wood. Due to its diverse structure, the mechanical
behavior of wood depends highly on the direction and which type of load that is
applied [15]. The structure is effective in axial compression which makes the tree
withstand its own weight due to gravity and also flexibility in order to be able to
bend under windy conditions or external loading such as ice, snow or fruit loading
[17].

2.4 Energy absorption fundamentals
Even though energy absorbing structures should suit the particular purpose and
circumstances of which they are to work, the aim is to dissipate kinetic energy in
a controlled manner or at a predetermined rate. There are fundamental principles
that are generally valid for these structures, presented below [18].

8

2. Literature study and relevant research in the field

Irreversible Energy Conversion
The energy conversion by a structure should be irreversible and convert the input
kinetic energy into inelastic energy, such as plastic deformation, rather than storing
it in an elastic manner. Meaning, the stresses in the structure should exceed the
yield strength of the material.

Restricted and Constant Reactive Force
Ideally the reaction force should remain constant during the deformation process
of the energy absorbing structure. The peak reaction force should be kept below a
threshold. This peak force correlates to the deceleration and the threshold should
be set to a value above which would cause damage or injury. The standards for a
bicycle helmet is a deceleration of 300g [19].

Long Stroke
In order to keep the reaction force constant and below the threshold, the structure
must have a sufficiently long deformation zone. The work done by the force is equal
to it’s magnitude times the displacement, meaning in order to decrease the force,
the displacement needs to increase, see Equation 2.1.

W = Fd (2.1)

whereW is the work, F is the force and d is the deformation. To decelerate uniformly
from speed v to 0 m/s requires a distance d, Equation 2.2;

d = vt

2 (2.2)

where t is the time. This distance is what the force acts over to dissipate the kinetic
energy. The relation also describes that distance can be "bought" with time. The
longer time the force acts, the gentler the arresting force required resulting in a
lower risk of injury.

Stable and Repeatable Deformation Mode
Since the loads acting on the structure are varying and uncertain the deformation
mode and energy absorption capacity of the design need to be stable and repeat-
able. This is to ensure reliability of the structure during its service. Examples of
uncertainties for the impact could be magnitude, direction and distribution.

2.5 Numerical simulation of energy absorption
There are three main methods to simulate a drop test in Ansys; response spectrum,
implicit and explicit [20].

9

2. Literature study and relevant research in the field

Response Spectrum
Response spectrum assumes the impact to be a half sine loading with a hand cal-
culated time duration expressed as a harmonic frequency. This method requires
the model to be completely linear since it is a mode superposition method. The
response spectrum solves significantly faster than the transient approaches and uses
fewer resources.

Implicit
The implicit method obtains a solution using a series of linear approximations and
small iterative time steps are required to achieve convergence. The implicit method
is good for drop simulation with long time durations (seconds to minutes) and no or
moderate non-linearities. The solution is dependent on current and previous time
step and resolves nonlinearities with standard Newton-Raphson iteration approach.
The method can handle moderate nonlinearities such as most contact, moderate
nonlinear materials and moderate distortion and strain. It uses 2nd order solid
elements, hence no hourglass energy issues.

Explicit
The explicit method uses uncoupled equations that can be solved directly (explicit).
This method requires tiny time steps that are solved once and no inversion of the
stiffness matrix is required. The explicit method is good for problems with short
time transients and extreme nonlinearities. This includes extremely large distortions
and deformations, material failure and nonlinear materials. The solution depends
only on previous time step and requires small time steps (µs) and is limited to
problems with duration in milliseconds or less. It uses 1st order elements and need
finer mesh to achieve the same accuracy as the implicit model. Ansys tools for
handeling explicit dynamics are Ansys Explicit/STR, Ansys/LS-DYNA and Ansys
Autodyn.

2.6 Failure criteria for structure - General buck-
ling

Even though buckling on a beam in a structure sometimes does not damage the
structure, it must still be avoided since the buckled beam may cause the structure
to lose its capability to fulfill its purpose. The actual buckling load may be the
final load bearing capacity since the beam in its buckled shape may not sustain any
additional load, causing the structure to failure [21]. Therefore, if buckling occur in
a layer, the layer will be considered as expired.

10

3
Theory

3.1 Energy Absorption
In engineering, the evaluation of the energy absorption capacity is defined as the
integration of the stress-strain curves, Equation 3.1.

Ea =
∫ ε0

0
σdε (3.1)

Ea is the energy absorption capacity per unit mass, σ is the stress and ε0 is the strain.
In order to design an energy absorbing structure, it needs to sustain intense impact
loads resulting in deformation and failure involving large geometrical changes, strain-
hardening effects, strain-rate effects and different deformation modes like bending
and stretching. Because of this, most energy-absorbers are made of ductile materials
like low carbon steel, aluminum alloys, polymer foams and fibre-reinforced plastics.

Figure 3.1: Idealised stress-strain curves: (a) elastic, perfectly plastic, (b) elastic,
linear hardening and (c) elastic, power hardening [18].

The stresses corresponding to Figure 3.1 relates to the strain ε as:

σ =

Eε for ε ≤ εy = Y/E

Y for εy ≤ ε < εf
(3.2)

σ =

Eε for ε ≤ εy = Y/E

Y + Ep(ε− εy) for εy ≤ ε < εf
(3.3)

σ =

Eε for ε ≤ εy = Y/E

Y +K(ε− εy)q for εy ≤ ε < εf
(3.4)

11

3. Theory

where εy is the yield strain, Ep is the hardening modulus, K and q area material
constants determined experimentally [18].

3.2 Finite Element Method

3.2.1 The FEM problem
In order to solve the differential equations for the beam elements, a numerical ap-
proach will be applied. The following steps will be carried out in order to solve the
problem [22]:

1. Establish the strong formulation of the problem.
2. Obtain the weak formulation by reformulating the strong formulation.
3. Choose approximations for the unknown function.
4. Choose the weight functions according to Galerkin method.
5. Derive element stiffness matrix and element force vector.
6. Solve global system of equations, i.e. the displacements.

Differential equations for Bernoulli’s beam theory - strong formulation

Consider an arbitrary structure constructed by n beam elements in the global coordi-
nate system (X, Y, Z). Each element in the structure is considered as Euler-Bernoulli
beam with two nodes. Each beam element has 6 degrees of freedom in each node, 3
deformation components (wx, wy, wz) in each coordinate axis direction and 3 rota-
tion components (θx, θy, θz) around each coordinate axis. Now consider an arbitrary
beam element with the local coordinate system (x, y, z). The beam is cylindrical
with length L and starting as a general case, the beam is subjected to a distributed
load q = q(x) and a distributed moment load vector m = m(x). The external
loads give rise to an internal force vector F = F (x) and an internal moment vector
M = M (x), see Figure 3.2. In order to find the differential equations for the beam
element, the procedure outlined in [23] will be adapted. The vectors on component
form in the local coordinate system is put as follows:

F =

NQy

Qz

 , M =

Mx

My

Mz



m =

mx

my

mz

 , q =

qxqy
qz

 (3.5)

The force N represents the axial force and the components Qy and Qz is the shear
force in y- and z-directions respectively. The components My and Mz denotes the
bending moments and the axial componentMx denotes the torsional moment. Force
and moment equilibrium of a indefinitely small beam element gives:

−F + F + dF + qdx = 0

=⇒ dF

dx
+ q = 0 (3.6)

12

3. Theory

Figure 3.2: An infinitely small beam element.

−M + M + dM + i× (F + dF)dx+ mdx = 0 (3.7)
By neglecting second order terms yields:

dM

dx
+ i× F + m = 0 (3.8)

Now, by using

i× F = i× (Ni +Qyj +Qzk) = Ni× i +Qyi× jQzi× k = 0i−Qz +Qyk

the following components relations can be expressed from Equation 3.6 and 3.8:

dN

dx
+ qx = 0, dQy

dx
+ qy = 0, dQz

dx
+ qz = 0, (3.9)

dMx

dx
+mx = 0, dMy

dx
−Qz +my = 0, dMz

dx
+Qy +mz = 0 (3.10)

Using kinematic relations for a Bernoulli-Euler beam, which states that rotated
cross-section is always orthogonal to the deformed beam axis, the rotation θ and
curvature κ can be expressed as:

θy = −dwz
dx

, θz = dwy
dx

(3.11)

κy = −dθy
dx

= d2wz
dx2 , κz = dθz

dx
= d2wy

dx2 (3.12)

The beam axis is considered to be located in the neutral axis, where there are no
longitudinal stresses or strains. This results in the axial and bending problem is
uncoupled and can be separately examined. Assuming homogeneous material, the
moment is:

M = −EIκ (3.13)
This, together by taking the first derivative of the bending equations in 3.10 and
use the expressions in Equation 3.9 yields the differential equations for bending:

d2

dx2

(
EIz

d2wy
dx2

)
− qy + dmz

dx
= 0

13

3. Theory

d2

dx2

(
EIy

d2wz
dx2

)
− qz + dmy

dx
= 0 (3.14)

The differential equation for the axial deformation can be expressed by rewriting the
axial component with the the normal force N in Equation 3.9. In terms of normal
stress N = σA and using Hookes law (σ = Eε) and the kinematic relation ε =
dwx/dx, Equation 3.9 leads to the sought differential equation for axial deformation:

d

dx

(
EA

dwx
dx

)
+ qx = 0

Since the beam is three dimensional, the twist of the beam must be taken into
consideration as well. The torsion is assumed to be homogeneous, i.e. Mx, dθx

dx
and

the warping of the cross sections is constant along the beam (also known as St.
Venant torsion). The beam material is assumed to be homogeneous and isotropic
linear elastic with shear modulus G. In homogeneous torsion, warping does not
induce normal strains i.e. εxx = dux

dx
= 0 which in turn leads to no normal stress as

well (Hookes law: σxx = Eεxx). Thus, only shear stresses are present in the cross
section. The following relation can then be expressed by the linearity assumption
that the torsional moment depends linearly on the twist gradient and the shear
stresses depends linearly on the shear modulus [23]:

Mx = GK
dθx
dx

(3.15)

where G is the shear modulus and K is St. Venant torsion constant. Taking the
first derivative of Equation 3.15 and insert it into Equation 3.10 yields the sought
differential equation for torsion:

GK
d2θx
dx2 +mx = 0 (3.16)

Summarizing, the following differential equations have been expressed for the beam,
i.e. the strong formulation:

d

dx

(
EA

dwx
dx

)
+ qx = 0 (3.17)

d2

dx2

(
EIy

d2wz
dx2

)
− qz −

dmy

dx
= 0 (3.18)

d2

dx2

(
EIz

d2wy
dx2

)
− qy + dmz

dx
= 0 (3.19)

GK
d2θx
dx2 +mx = 0 (3.20)

14

3. Theory

The weak formulation

In order to find the weak form of the differential equations, an arbitrary function
v(x) is multiplied with each one of the differential equations and integrated over the
pertinent region. Starting with Equation 3.17:

∫ b

a
v
(
d

dx

(
AE

dwx
dx

)
+ qx

)
dx = 0 a ≤ x ≤ b (3.21)

By integrating by parts, the weak formulation of axial deformation is obtained:
∫ b

a

dv

dx
AE

dwx
dx

dx =
[
vAE

dwx
dx

]b
a

+
∫ b

a
vqxdx (3.22)

The weak form of bending in the xz-plane is obtained in the same manner by
first multiplying an arbitrary function v(x) to Equation 3.18 and integrate over the
pertinent region:

∫ b

a
v
d2

dx2

(
EIy

d2wz
dx2

)
dx−

∫ b

a
vqzdx−

∫ b

a
v
dmy

dx
dx = 0 (3.23)

Integrating 3.23 by parts twice:

−
[
vVz

]b
a
−
∫ b

a

dv

dx

d

dx

(
EIy

d2wz
dx2

)
dx−

∫ b

a
vqzdx−

∫ b

a
v
dmy

dx
dx = 0 (3.24)

−
[
vVz

]b
a

+
[
dv

dx
My

]b
a

+
∫ b

a

d2v

dx2EIy
d2wz
dx2 −

∫ b

a
vqzdx−

∫ b

a
v
dmy

dx
dx = 0 (3.25)

Rearranging the boundary terms and distributed load to RHS:

=⇒
∫ b

a

d2v

dx2EIy
d2wz
dx2 dx =

[
vVz

]b
a
−
[
dv

dx
Mz

]b
a

+
∫ b

a
vqzdx−

∫ b

a
v
dmy

dx
dx (3.26)

where
Vz = − d

dx

(
EIy

d2wz
dx2

)
, My = −EIy

d2wz
dx2

Adopting the same procedure for Equation 3.19 gives the weak formulation of bend-
ing in xy-plane:

=⇒
∫ b

a

d2v

dx2EIz
d2wy
dx2 dx =

[
vVy

]b
a
−
[
dv

dx
Mz

]b
a

+
∫ b

a
vqydx−

∫ b

a
v
dmy

dx
dx (3.27)

where
Vy = − d

dx

(
EIz

d2wy
dx2

)
, Mz = −EIy

d2wy
dx2

Lastly, the weak formulation of torsion is derived from Equation 3.20 by using the
same procedure to:

GK
∫ b

a

dv

dx

dθx
dx

dx =
[
vGK

dθx
dx

]b
a

+
∫ b

a
vmxdx (3.28)

15

3. Theory

FE-formulation

From the weak formulation of the equilibrium equations, the FE-formulation is de-
rived [22]. Since the deflection w is the unknown function, the approximation for
the deflection w of one element can be generally written as:

w = Na (3.29)

where
N = [N1 N2 . . . Nn], a = [u1 u2 . . . un]T (3.30)

n is the number of unknown for the entire beam. Starting with the bending equa-
tions, 3.26 and 3.27. From Equation 3.29 it follows that:

d2w

dx2 = Ba, where B = d2N

dx2 (3.31)

The arbitrary weight functions v is now chosen according to Galerkin:

v = Nc (3.32)

It is concluded that the parameters given by c are arbitrary since the weight func-
tions are arbitrary. The weight function can be rewritten to:

v = cTNT

dv

dx
= cT

dNT

dx
,

d2v

dx2 = cTBT (3.33)

Inserting variables from Equation 3.33 into the weak formulation of bending in
xz−plane, Equation 3.26, yields:

cT
(∫ b

a
BTEIyBdxa

)
= cT

([
NTVz

]b
a
−
[
dNT

dx
My

]b
a
+
∫ b

a
NT qzdx+

∫ b

a
NT dmy

dx
dx
)

(3.34)
Since cT is arbitrary chosen it is concluded that:
∫ b

a
BTEIyBdxa =

[
NTVz

]b
a
−
[
dNT

dx
My

]b
a

+
∫ b

a
NT qzdx+

∫ b

a
NT dmy

dx
dx (3.35)

which is the sought FE-formulation for bending in xz-plane. Adopting the same
procedure to Equation 3.27 yields the FE-formulation for bending in xy-plane to:
∫ b

a
BTEIzBdxa =

[
NTVy

]b
a
−
[
dNT

dx
Mz

]L
0

+
∫ b

a
NT qydx−

∫ b

a
NT dmz

dx
dx (3.36)

It is desired to write the FE-formulation in compact form Ka = f , which gives in
xz-plane:

K =
∫ b

a
BTEIyBdx

f = f b + f l

16

3. Theory

where

f b = [NTVz]ab −
[
dNT

dx
My

]a
b

and f l =
∫ b

a
NT qzdx+

∫ b

a
NT dmy

dx
dx (3.37)

and in xy-plane:

K =
∫ b

a
BTEIzBdx

f = f b + f l

where

f b = [NTVy]ab −
[
dNT

dx

]a
b

and f l =
∫ b

a
NT qydx−

∫ b

a
NT dmz

dx
dx (3.38)

K is the stiffness matrix, f l the load vector and f b is the boundary vector. The
FE-formulation of axial deformation is obtained in the same manner by defining
B and chose weight functions according to Galerkin. The FE-formulation for axial
deformation, starting from Equation 3.22, yields:

∫ b

a
BTAEBdxa =

[
NTNx

]b
a

+
∫ b

a
NT qxdx

where
Nx = AE

dux
dx

, B = dNx

dx
(3.39)

In compact form:
K =

∫ b

a
BTAEBdx, B = dN

dx

f =
[
NTNx

]b
a

+
∫ b

a
NT qxdx (3.40)

The FE-formulation of torsion is obtained from Equation 3.28 in the same manner
to:

K =
∫ b

a
BTGKBdx, B = dN

dx

f =
[
NTMx

]b
a

+
∫ b

a
NTmxdx (3.41)

where
Mx = GK

dθx
dx

(3.42)

Evaluation of element stiffness matrix

Since the 3D-beam element have 6 degrees of freedom in each of its two nodes the
total unknowns for the element is ne = 12.

ae = [u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12]T

N e = [N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12] (3.43)

17

3. Theory

Figure 3.3: A beam element with one node at each end. In total, the beam has 12
degrees of freedom represented by u1−12.

Where u represents each degree of freedom (see Figure 3.3) and N is the chosen
shape functions. Starting with bending equation in xz-plane, Equation 3.37, it
includes two degrees of freedom, u3, u5 and u9, u11 for the first and second node
respectively. Considering a beam element with length 0 ≤ x ≤ L, the contribution
to the element stiffness matrix Ke from bending in xz-plane can be calculated from:

Ke =
∫ L

0
BeTEIyB

edx, Be = d2N e

dx2 (3.44)

The corresponding shape functions are calculated by adopting the C-matrix method
[22].

N3 = 1− 3x
2

L2 + 2x
3

L3 , N5 = x
(

1− 2x
L

+ x2

L2

)

N9 = x2

L2

(
3− 2x

L

)
, N11 = x2

L2

(
x

L
− 1

)
(3.45)

By using the definition of Be from Equation 3.44 and take the second derivative of
the chosen shape functions in Equation 3.48, one obtains:

Ke = EIy

∫ L

0


Be

3B
e
3 Be

3B
e
5 Be

3B
e
9 Be

3B
e
11

Be
5B

e
3 Be

5B
e
5 Be

5B
e
9 Be

5B
e
11

Be
9B

e
3 Be

9B
e
5 Be

9B
e
9 Be

9B
e
11

Be
11B

e
3 Be

11B
e
5 Be

11B
e
9 Be

11B
e
11

 , BeT =



0
0

12x
L3 − 6

L2

0
6x
L2 − 4

L

0
0
0

6
L2 − 12x

L3

0
6x
L2 − 2

L

0



(3.46)

18

3. Theory

Solving the integral in Equation 3.46 gives the following contributions to the element
stiffness matrix:

Ke(3, 3) = EIy
12
L3 , Ke(3, 5) = EIy

6
L2 , Ke(3, 9) = −EIy

12
L3

Ke(3, 11) = EIy
6
L2 , Ke(5, 3) = EIy

6
L2 , Ke(5, 5) = EIy

4
L

Ke(5, 9) = −EIy
6
L2 , Ke(5, 11) = EIy

2
L
, Ke(9, 3) = −EIy

12
L3 ,

Ke(9, 5) = −EIy
6
L2 , Ke(9, 9) = EIy

12
L3 , Ke(9, 11) = −EIy

6
L2

Ke(11, 3) = EIy
6
L2 , Ke(11, 5) = EIy

2
L
, Ke(11, 9) = −EIy

6
L2 ,

Ke(11, 11) = EIy
4
L

(3.47)

The contribution to Ke from bending in xy-plane is obtained in the same manner as
with the bending in xz-plane by calculating shape functions using C-matrix method
and the FE formulation from Equation 3.37. It is noted that the shape functions
for bending in xy-plane (N2, N6, N8, N12) are identical to the shape functions in
xz-plane, i.e.

N2 = N3 = 1− 3x
2

L2 + 2x
3

L3 , N6 = N5 = x
(
− 1 + 2x

L
− x2

L2

)

N8 = N9 = x2

L2

(
3− 2x

L

)
, N12 = N11 = x2

L2

(
1− x

L

)
(3.48)

thus:

Ke = EIz

∫ L

0


Be

2B
e
2 Be

2B
e
6 Be

2B
e
8 Be

2B
e
12

Be
6B

e
2 Be

6B
e
6 Be

6B
e
8 Be

6B
e
12

Be
8B

e
2 Be

8B
e
6 Be

8B
e
8 Be

8B
e
12

Be
12B

e
2 Be

12B
e
6 Be

12B
e
8 Be

12B
e
12

 , BeT =



0
12x
L3 − 6

L2

0
0
0

6x
L2 − 4

L

0
6
L2 − 12x

L3

0
0
0

6x
L2 − 2

L



(3.49)

Solving the integral in Equation 3.49 gives the contribution from bending in xy-
plane:

Ke(2, 2) = EIz
12
L3 , Ke(2, 6) = EIz

6
L2 , Ke(2, 8) = −EIz

12
L3

19

3. Theory

Ke(2, 12) = EIz
6
L2 , Ke(6, 2) = EIz

6
L2 , Ke(6, 6) = EIz

4
L

Ke(6, 8) = −EIz
6
L2 , Ke(6, 12) = EIz

2
L
, Ke(8, 2) = −EIz

12
L3 ,

Ke(8, 6) = −EIz
6
L2 , Ke(8, 8) = EIz

12
L3 , Ke(8, 12) = −EIz

6
L2

Ke(12, 2) = EIz
6
L2 , Ke(12, 6) = EIz

2
L
, Ke(12, 8) = −EIz

6
L2 ,

Ke(12, 12) = EIz
4
L

(3.50)

The contribution to the stiffness matrix from axial deformation is calculated from
Equation 3.40:

Ke =
∫ L

0
BeAEBeTdx, Be = dN e

dx
(3.51)

The corresponding degrees of freedom for the element are u1 and u7, see Figure 3.3.
Since there are only two degrees of freedom for axial deformation, the shape functions
N1 and N7 are easily chosen as:

N1 = 1
L

(L− x), N7 = x

L
(3.52)

Taking the first derivative of N1 and N7 and inserting them into Equation 3.51
yields:

Ke = EA
∫ L

0

[
Be

1B
e
1 Be

1B
e
7

Be
7B

e
1 Be

7B
e
7

]
, BeT =



− 1
L

0
0
0
0
0
1
L

0
0
0
0
0



(3.53)

Solving the integral in Equation 3.53, the contribution to Ke from axial deformation
is obtained as:

Ke(1, 1) = AE

L
, Ke(1, 7) = −AE

L
, Ke(7, 1) = −AE

L
, Ke(7, 7) = AE

L
(3.54)

The contribution to the element stiffness matrix from torsion remains to be de-
rived. The shape functions for torsion is identical to the shape functions in axial
deformation i.e.

N1 = N4 = 1
L

(L− x), N7 = N10 = x

L
(3.55)

20

3. Theory

Inserting the shape functions into Equation 3.41 yields:

Ke = GK
∫ L

0

[
Be

4B
e
4 Be

4B
e
10

Be
10B

e
4 Be

10B
e
10

]
, BeT =



0
0
0
− 1
L

0
0
0
0
0
1
L

0
0



(3.56)

Ke(4, 4) = GK

L
, Ke(4, 10) = −GK

L

Ke(10, 4) = −GK
L
, Ke(10, 10) = GK

L
(3.57)

Summarizing the contributions from Equation 3.47, 3.50, 3.54 and 3.57 yields the
full element stiffness matrix:

Ke =



AE
L

0 0 0 0 0 − AE
L

0 0 0 0 0

0 12EIz
L3 0 0 0 6EIz

L2 0 − 12EIz
L3 0 0 0 6EIz

L2

0 0 12EIy

L3 0 6EIy

L2 0 0 0 − 12EIy

L3 0 6EIy

L3 0

0 0 0 GK
L

0 0 0 0 0 − GK
L

0 0

0 0 6EIy

L2 0 4EIy
L

0 0 0 − 6EIy

L2 0 2EIy
L

0

0 6EIy

L2 0 0 0 4EIz
L

0 − 6EIz
L2 0 0 0 2EIz

L

− AE
L

0 0 0 0 0 AE
L

0 0 0 0 0

0 − 12EIz
L3 0 0 0 − 6EIz

L2 0 12EIz
L3 0 0 0 − 6EIz

L2

0 0 − 12EIy

L3 0 − 6EIy

L2 0 0 0 12EIy

L3 0 − 6EIy

L2 0

0 0 0 − GK
L

0 0 0 0 0 GK
L

0 0

0 0 6EIy

L2 0 2EIy
L

0 0 0 − 6EIy

L2 0 4EIy
L

0

0 6EIz
L2 0 0 0 2EIz

L
0 − 6EIz

L2 0 0 0 4EIz
L


Ke is defined in the elements local coordinate system (x, y, z) and in order to be able
to assemble the full stiffness matrix K, Ke needs to be transformed and expressed
in the global coordinate system (X, Y, Z). The transformation between coordinate
systems is done by using a transformation matrix G according to:

Ke = GTK̄
e
G (3.58)

21

3. Theory

where K̄
e now denotes the element stiffness matrix in local coordinate system and

Ke denotes the element stiffness matrix in global coordinate system [24]. How the
element stiffness matrix and transform matrix G is implemented is further discussed
in Section 3.2.2.

Evaluation of force vector

The element force vector f e is defined as the sum of the boundary vector and the
load vector according to f e = f e

b + f e
l . Since no distributed load is present in the

structure i.e. qx = qy = qz = 0, there is no contribution from the element load vector
to the solution. The standard form is thus reduced to:

Keae = f e
b (3.59)

In Figure 3.4, boundaries of an arbitrary structure of beam elements is displayed.
The boundary Γsym simulates neighbouring cell connections. Nodes which lays on
Γsym are ruled by a Dirichlet boundary condition, preventing any movement in
xy−plane and only allow movement in z-direction. The boundary Γg represents the
ground, thus nodes present on Γg is prevented from any movement in z-direction.
Nodes located at the boundary at the top of the structure Γf is subjected to a
prescribed force. The magnitude of the force is dependent on type of structure and
is further explained and calculated in Section 4.3.

Figure 3.4: A beam element with one node at each end. In total, the beam has 12
degrees of freedom represented by u1−12.

3.2.2 CALFEM
In order to apply the derived formulations of the FEM-problem in Section 3.2.1,
CALFEM is used. CALFEM is a Matlab toolbox computer program for finite
element applications. The program contains a library of finite element methods
handling matrix operations, material, element, system, statement and graphical
functions. This thesis uses CALFEM’s beam elements to represent each connection
link and all beams within the geometry.

22

3. Theory

The beam3e function

The beam3e function computes the element stiffness matrix for a three dimensional
beam element [24]. This provides the global element stiffness matrix Ke for the
beam element, Equation 3.60.

Ke = beam3e(ex, ey, ez, eo, ep),



ex = [x1, x2]
ey = [y1, y2]
ez = [z1, z2]
eo = [xz̄, yz̄, zz̄]
ep = [E,G,A, Iȳ, Iz̄, Kv]

(3.60)

The input variables supply the element nodal coordinates (x1, y1, ...), the direction
of the local beam coordinate system (xz̄, yz̄, zz̄), see Figure 3.5, and material data
(ep). The material data needed is modulus of elasticity E, shear modulus G, cross
sectional area A, moment of inertia with respect to the ȳ and z̄ axis, Iȳ & Iz̄ and St
Venant torsinal stiffness Kv.

Figure 3.5: The CALFEM beam element in three dimensions displaying degrees
of freedom and the local coordinate system (x̄, ȳ, z̄) [24].

The element stiffness matrix Ke is computed according to Equation 3.61.

Ke = GTK̄
e
G (3.61)

23

3. Theory

where

K̄
e =



k1 0 0 0 0 0 −k1 0 0 0 0 0

0 12EIz̄
L3 0 0 0 6EIz̄

L2 0 − 12EIz̄
L3 0 0 0 6EIz̄

L2

0 0 12EIȳ

L3 0 − 6EIȳ

L2 0 0 0 − 12EIȳ

L3 0 − 6EIȳ

L2 0

0 0 0 k2 0 0 0 0 0 −k2 0 0

0 0 6EIȳ

L2 0 4EIȳ
L

0 0 0 6EIȳ

L2 0 2EIȳ
L

0

0 − 6EIȳ

L2 0 0 0 4EIz̄
L

0 − 6EIz̄
L2 0 0 0 2EIz̄

L

−k1 0 0 0 0 0 k1 0 0 0 0 0

0 − 12EIz̄
L3 0 0 0 − 6EIz̄

L2 0 12EIz̄
L3 0 0 0 − 6EIz̄

L2

0 0 − 12EIȳ

L3 0 6EIȳ

L2 0 0 0 12EIȳ

L3 0 6EIȳ

L2 0

0 0 0 −k2 0 0 0 0 0 k2 0 0

0 0 − 6EIȳ

L2 0 2EIȳ
L

0 0 0 6EIȳ

L2 0 4EIȳ
L

0

0 6EIz̄
L2 0 0 0 2EIz̄

L
0 − 6EIz̄

L2 0 0 0 4EIz̄
L


in which k1 = EA

L
and k2 = GKv

L
, and

G =



nxx̄ nyx̄ nzx̄ 0 0 0 0 0 0 0 0 0

nxȳ nyȳ nzȳ 0 0 0 0 0 0 0 0 0

nxz̄ nyz̄ nzz̄ 0 0 0 0 0 0 0 0 0

0 0 0 nxx̄ nyx̄ nzx̄ 0 0 0 0 0 0

0 0 0 nxȳ nyȳ nzȳ 0 0 0 0 0 0

0 0 0 nxz̄ nyz̄ nzz̄ 0 0 0 0 0 0

0 0 0 0 0 0 nxx̄ nyx̄ nzx̄ 0 0 0

0 0 0 0 0 0 nxȳ nyȳ nzȳ 0 0 0

0 0 0 0 0 0 nxz̄ nyz̄ nzz̄ 0 0 0

0 0 0 0 0 0 0 0 0 nxx̄ nyx̄ nzx̄

0 0 0 0 0 0 0 0 0 nxȳ nyȳ nzȳ

0 0 0 0 0 0 0 0 0 nxz̄ nyz̄ nzz̄


in which nxx̄ specifies the cosine of the angle between the x axis and x̄ axis and so
on. The beam element length L is computed from Equation 3.62.

L =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (3.62)

The beam3s function

The beam3s function computes the section forces and displacements, Equation 3.63,
in local directions along the three dimensional beam element [24]. Figure 3.6 displays
one section element of the beam and the computed forces and displacements.

24

3. Theory

Figure 3.6: The CALFEM beam element in three dimensions displaying degrees
of freedom and the local coordinate system (x̄, ȳ, z̄) [24].

es = beam3s(ex, ey, ez, eo, ep, ed),



ex = [x1, x2]
ey = [y1, y2]
ez = [z1, z2]
eo = [xz̄, yz̄, zz̄]
ep = [E,G,A, Iȳ, Iz̄, Kv]

(3.63)

The element displacements, stored in ed obtained by the extract function. The out-
put variable consists of column matrices that contain the section forces, displace-
ments and the evaluation points on the local x̄-axis as es = [N, Vȳ, Vz̄, T,Mȳ,Mz̄]
or

es =


N1 Vȳ1 Vz̄1 T1 Mȳ1 Mz̄1
N2 Vȳ2 Vz̄2 T2 Mȳ2 Mz̄2
...
Nn Vȳn Vz̄n Tn Mȳn Mz̄n


The section forces is based on the basic Euler-Bernoulli beam equations, Equa-
tion 3.64.

EA
d2ū

dx̄2 + qx̄ = 0 (3.64)

EIz
d4v̄

dx̄4 − qȳ = 0

EIy
d4w̄

dx̄4 − qz̄ = 0

GKv
d4ϕ̄

dx̄4 + qw̄ = 0

25

3. Theory

The displacements along the beam element are obtained as the sum of the homoge-
neous and the particular solutions, Equation 3.65.

u =


ū(x̄)
v̄(x̄)
w̄(x̄)
ϕ̄(x̄)

 = uh + up (3.65)

Where the homogeneous solution is

uh = N̄C−1Gae

and the particular solution

up =


ūp(x̄)
v̄p(x̄)
w̄p(x̄)
ϕ̄p(x̄)

 =



qx̄Lx̄
2EA

(
1− x̄

L

)
qȳL2x̄2

24EIz

(
1− x̄

L

)2

qz̄L2x̄2

24EIy

(
1− x̄

L

)2

qw̄Lx̄
2GKv

(
1− x̄

L

)


and

N̄ =


1 x̄ 0 0 0 0 0 0 0 0 0 0

0 0 1 x̄ x̄2 x̄3 0 0 0 0 0 0

0 0 0 0 0 0 1 x̄ x̄2 x̄3 0 0

0 0 0 0 0 0 0 0 0 0 1 x̄



C =



1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

1 L 0 0 0 0 0 0 0 0 0 0

0 0 1 L L2 L3 0 0 0 0 0 0

0 0 0 0 0 0 1 L L2 L3 0 0

0 0 0 0 0 0 0 0 0 0 1 L

0 0 0 0 0 0 0 1 2L 3L2 0 0

0 0 0 1 2L 3L2 0 0 0 0 0 0



ae =


u1
u2
...
u12



26

3. Theory

Finally the section forces are obtained from Equation 3.66.

N = EA
dū

dx̄
(3.66)

Vȳ = −EIz
d3v̄

dx̄3

Vz̄ = −EIy
d3w̄

dx̄3

T = GKv
dϕ̄

dx̄

Mȳ = −EIy
d2w̄

dx̄2

Mz̄ = −EIz
d2v̄

dx̄2

27

3. Theory

28

4
Methodology

4.1 Geometries and structures
Based on the literature survey, three main structural concepts were selected and
evaluated. Instead of analyzing a structure with the dimension of a full test speci-
men, each structure was designed as a column of unit cells where the unit cell was
based on one geometrical concept.
A unit cell is the smallest structure which can be placed repetitively in any direction
to form the lattice structure or analysis model. Analyzing a column of unit cells
compared to a full model is preferable since it significantly reduces computational
time. For computationally heavy FEM analyses, it means more tests and more
numerical tests can be performed for each structure. A column of unit cells is used
to model the entire material by symmetry conditions.
However, some general assumptions must be made in order for this setup to be
applicable. It is assumed that one column of unit cell is small compared to the num-
ber of columns required to build the full model of the considered material volume.
A Dirichlet boundary condition is applied to the outermost facing nodes, simulat-
ing neighbouring cells which prevents any movement in xy−plane and only allow
movement in z-direction.

29

4. Methodology

4.1.1 Cellulose
The cellulose, which is described in subsection 2.3.3, is the backbone of the cell wall
and contributes with stability, stiffness and strength to the wood. The polymer is
strictly hierarchical, Figure 4.1 shows a micro graph of wood and illustrates each
cell walls surrounding each cell and how they overlap each other.

Figure 4.1: Image of plant cells taken with a light microscope where one can clearly
see the green chloroplast and the cell wall around each cell [25].

Cellulose in the cell wall of plants inspired the design of the unit cell structure
cellulose. The cellulose unit cell consists of two cubes stacked over each other with
an offset. The offset is only in one direction to gain some strength, compared
to if the cubes were placed with an offset in both horizontal ways. The offset is
designed in order to transfer loads between the beams and plastically deform them
in a somewhat smooth fashion. Because of the rigid joints between the beams the
buckling mode will transfer from one layer to the other. This structure does not
have any diagonal beams, hence making the unit cell quite hollow compared to the
other structures. However it has vertical beams and the structure will be stiffer than
diagonally placed beams up to a critical load. The two cubes are seen as one unit
cell since in pair, it can be repeated in any direction. A plot of the cellulose unit
cell is displayed in Figure 4.2.

30

4. Methodology

Figure 4.2: Cellulose unit cell.

4.1.2 Tetrahedron
In subsection 2.3.1, the composition of human bone is described. In every day life,
our hips, spine, and pelvis are subjected to mechanical stresses due to physical
activities. The strength that keeps the bones from breaking is provided by the
trabeculae. A geometric figure that approximately resembles the stochastic pattern
in trabeculae is the tetrahedron. Tetrahedron is a polyhedron (three-dimensional
solid consisting of polygons, often joined at their edges) with four faces. Depending
on how its dimensions are varying, the tetrahedron is either a regular tetrahedron
or a non-regular tetrahedron. A regular tetrahedron has all faces congruent to an
equilateral triangle, i.e. all sides are of the same dimensions whereas a non-regular
has not [26]. With the trabeculae in mind and tetrahedron as a base, the tetrahedron
unit cell was constructed. It consists of eight tetrahedrons and has 90 degrees
rotating base plates in the middle layer in order to make the structure repeatable in
all directions, see Figure 4.3. The main characteristics of the Tetrahedron structure
is many but short beams. Each connection node has a multitude of beams connecting
to it. The structure raises zigzagging in y-z-direction and has no vertical beams

31

4. Methodology

Figure 4.3: Tetrahedron unit cell.

4.1.3 Pyramid

The geometric figure pyramid is a polyhedron, like the tetrahedron it also has some
similarity to the stochastic pattern of the trabuculae. Unlike the tetrahedron it is
easier to construct a unit cell from the pyramid since it can have a base of four
corners. A pyramid has its base as a polygon and the other faces as triangles
meeting at a common vertex, known as the apex. The pyramid can be of various
shapes since the polygon can be of n-sides, but the regular pyramid has its base as
a regular polygon (n ∈ [3, 4, 5]) and is also a right pyramid, which means that the
apex lies right above the centroid of the base [27]. A plot of the unit cell is displayed
in Figure 4.4.

Figure 4.4: Pyramid unit cell.

32

4. Methodology

4.2 Material
The material selection is limited to commercially available 3D printable polymers to
allow future validation of the models against tests on printed objects. The following
four polymers were selected for this study: ABS (acrylonitrile butadiene styrene),
PLA (polylactide), Nylon and TPU (thermoplastic polyurethane). The material
characteristics are presented in Figure 4.5 and relevant properties are displayed in
Table 4.1. In order to absorb energy the material should ideally be able to withstand
both high stresses and strains, since the area under the stress strain curve is the
energy. Both ABS and PLA are too brittle. Brittle materials will not result in a
smooth deceleration nor be able to absorb any significant amount of energy. TPU
is very soft and can withstand large strains, but with low stresses the deformation
length needs to be very large in order to compensate for this. Nylon cannot handle
as large stresses as ABS or PLA but behaves similar to an elastic perfectly plastic
material, which is good for energy absorption.

Figure 4.5: Material comparison for 3D printable polymers [28].

Therefore, nylon is selected as material for all geometries and its material data is
implemented in the code. The behaviour of Nylon is simplified as being an elastic
perfectly plastic material.

Table 4.1: Material properties for 3D printable polymers [28].

Property ABS PLA Nylon TPU
Density [kg/m3] 1060 1210 1160 1120
Young’s modulus [MPa] 1031 3310 940 12
Shear modulus [MPa] 318.9 2400 359.7 8.6
Yield strength [MPa] 42.5 110 31 4

33

4. Methodology

4.3 Applied force
The bicycle helmet drop test needs to be converted into an averaged force in order
to simulate the compression test. This is done using the conservation of energy
principle for a falling object combined with the work-energy principle. European
bicycle helmets need to withstand a drop a weight of 5 kg from 1.5 m [4]. The mass
and height is denoted m and t, respectively. The energy absorbent structure, that
is to be designed, has a defined thickness t that must absorb the impact. The test
setup is illustrated in Figure 4.6.

Figure 4.6: Drop test setup.

The kinetic energy, Ek, just before the impact is equal to its gravitational potential
energy, Ep, at the drop height Equation 4.1.

Ek = 1
2mv

2 = Ep = mg(h+ t) (4.1)

The impact force is calculated using the work-energy principle, Equation 4.2. The
change in the kinetic energy of the object is equal to the work done on the object.
Since the impact on the helmet comes to a stand still, the final kinetic energy,
Ek,final = 0.

Wnet = Ek,final − Ek,initial = −Ek (4.2)

Wnet = Ft⇒ F = −mg(1 + h/t) (4.3)

In order to calculate the applied load onto one unit cell, the contact area needs to
be determined. A bicycle helmet has a mean radius of 160 mm [29], denoted r. The
helmet is assumed to be deformed its entire thickness, this gives the contact area A
as Equation 4.4.

A = πr2cos2(sin−1
(
1− t

r

)
) (4.4)

This results in an applied stress, Equation 4.5.

34

4. Methodology

σapplied = F

A
= −mg(1 + h/t)
πr2cos2(sin−1(1− t/r)) (4.5)

Finally, the applied force on one unit cell is the applied stress multiplied with the
unit cell’s top area. For all three geometries, the top area is the width in square.
Figure 4.7 depicts the relation between applied force on one unit cell and the width
of the unit cell.

Figure 4.7: Applied force depending on unit cell width.

4.4 Design variables
In order to describe and compare energy absorption for different geometries for each
concept, four design variables are introduced: Number of unit cells, width of the
unit cell, beam radius and a height factor. Each design variable is defined with an
individual range defining its minimum and maximum value and resolution.

Number of unit cells
Each geometry is built up by unit cells. Unit cells are the basic building blocks of
the structure which defines its core characteristics. the structure that is the core of
its characteristics, see Figures 4.2 - 4.4. This thesis evaluates three different unit
cells named after their conceptual look; tetrahedron, pyramid and cellular. The
geometries varies from one to ten unit cells. More unit cells equals more beams
and higher degrees of freedom in the problem resulting in longer computational
time. The higher limit of 10 unit cells for a geometry is set due to manufacturing
limitations. More unit cells will generate a denser structure, which is difficult to
print.

35

4. Methodology

Unit cell width
The width of a unit cell defines its footprint on the base plate. By varying the
width, the degrees of freedom remain the same and the calculation time likewise.
Increased width leads to higher mass and a higher applied force. The width has
a range from 5 mm to 30 mm, with a resolution matching that of the 3D printer.
The design range is determined from multiple tests from the script, displaying high
specific energy absorption within the range.

Beam radius
Each beam is circular and the radius is a key design variable. The radius heavily
influences the critical load for buckling in the beam and the mass of the structure.
The minimum radius is 0.05 mm, since it is the finest the manufacturing can produce.
The maximum radius is dynamically calculated with the combination of other design
variables to make sure no beam is colliding with another. The resolution is the same
as that of the 3D printer’s.

Height factor
The height factor is a dimensionless integer defining the height of a unit cell relative
to other unit cells. The range is between one and four. The lower limit generates a
structure where all unit cells are of the same height. The upper limit generates each
unit cell four times higher than the unit cell below it. Tests shows that larger height
factor generates a too small first unit cell which is not printable. The resolution is
experimentally set to 0.1. Finer resolution would increase computational time but
the influence of the solution is minimal below this resolution.

4.5 Identification of design space
There are three main sections in the script used in this thesis; defining the design
variable range, perform tests from a rough mesh of combinations to find a suitable
start guess and lastly fine-tune the start guess using a optimization algorithm. The
design variable range is manually defined for each design variable and geometry.
Depending on the geometry, the range varies for what is possible to manufacture.
For example, the tetrahedron has multiple diagonal beam elements and is more
dense than cellulose. Hence the tetrahedron cannot have as high radius nor height
factor as cellulose. The sections of the script are shown in Figure 4.8

36

4. Methodology

Figure 4.8: Overview schematics of the main steps in the code.

4.5.1 Rough combination mesh
The rough combination mesh allows for an overview of the design variables be-
haviour and how they accommodate with one another. The rough mesh is used to
screen the entire design variable space and define what combinations generate high
specific energy absorption and what combinations that does not. The rough mesh
is illustrated in Figure 4.9 for a system of two design variables D1 and D2, each
with a range of 0 to 1 and a resolution of 0.02. The result is a function f(D1, D2)
presented colorized on the z-axis. The combination of D1 and D2 that generates the
highest result f is sought. The most straight forward approach would be to test all
combinations and evaluate them against each other, as the graph displays. However,
this would result a number of 2,500 unique combinations.

Figure 4.9: Two design variables illustrating the result of all combinations.

An alternative to calculating all unique combinations, presented in Section 4.5.2, is
to compare the results from a rough mesh of the system, see Figure 4.10. If the
resolution of the rough mesh is coarse, more tests are needed in order to evaluate all

37

4. Methodology

combinations within that design space. The peak value is marked in red, highlighting
the maximum value of f and is the start guess used in the optimization algorithm.

Figure 4.10: Coarse mesh of two design variables resulting in a large design range
for the fine tuning.

A finer mesh in the initial rough combination test, Figure 4.11, would take longer
to perform but needs fewer tests to fill the design space surrounding the peak value.
With a finer grid, the probability of missing a local maximum decreases.

Figure 4.11: Fine mesh of two design variables resulting in a smaller design range
for the fine tuning.

The design variables mesh size is depending on its influence on the evaluation func-
tion. For example, the beam radius affects the mass squared and the critical buck-
ling load quadratic. Hence a finer mesh size should be used for the beam radius.
The width on the other hand does not influence the specific energy absorption as
drastically and a more coarse mesh can be applied.

38

4. Methodology

4.5.2 Optimization algorithm
In this thesis, three geometries are studied to find a combination of four design
variables in order to find the combination which has the highest specific energy
absorption. The design variables are number of unit cells, unit cell width, beam
radius and height factor. The material parameter and combined structure height
are predefined. All design variables have a identified design range. By using a tradi-
tional method, all combinations within the variables design range need to be tested
and compared in order to identify the values that give the highest specific energy
absorption. However, this is a very time consuming procedure. If the four design
parameters are tested with 100 evenly spaced steps this would result in 100,000,000
different tests. On a 1.4 GHz Intel Core i5 one test takes on average 5 seconds,
this would result in 15 years of computational time to find the best combination. A
more practical approach for saving computational time is therefore needed.
We start by assuming that the sought combinations are not too sensitive to change
in any one of the parameters, meaning that a good combination is still quite good
even if some parameters are slightly changed. With this in mind, we do not need to
test a fine mesh for all design parameters in order to find a pattern and locate some
combinations that tend to be more energy absorbent than others. When locating
a combination from this rough resolution it is used as a start guess. Each design
variable can then be tested separately, see Figure 4.12. If any of the design variables
differs from the start guess, the procedure starts over again with the updated start
guess. Note that the design variable only needs to be tested within the design
range not covered in the initial rough resolution combination test, as illustrated in
Section 4.5.1.

Figure 4.12: Schematics of the code structure for the optimization algorithm.

As illustrated in Figure 4.12, the same procedure of evaluating the design parameters
apply to all. When an active design parameter is tested, it steps in a local range
from some minimum value to a maximum value. Whichever yields the highest
specific energy absorption is kept as the new value. It is also important to evaluate

39

4. Methodology

the number of buckled levels since this directly correlate to the deceleration of an
impact. Hence if two similar values are found, the one with most buckled levels will
be selected. In order to evaluate how much more efficient this method is, we assume
that we have X number of design variables. Each design variable has an individual
number of tests associated with it. The number of tests per design variable is
collected in a vector N .

N = [N1, N2, ..., NX−1, NX] (4.6)

One way to find the best combination is to test all combinations. This would result
in a total number of combinations C.

C = N1 ·N2 · ... ·NX−1 ·NX (4.7)

Now, assume that a rough resolution is applied to each design variable. The resolu-
tions are collected in a vector R.

R = [R1, R2, ..., RX−1, RX] (4.8)

For all individual design variables, the rough resolution is lower than the total num-
ber of tests connected to it.

Ri < Ni, ∀ 1 ≤ i ≤ X (4.9)

With this, the number of combinations to find the start guess, CR, is:

CR = R1 ·R2 · ... ·RX−1 ·RX << C (4.10)

The rest combinations between the rough mesh is the quote between all combinations
and the ones performed, individual for all design variables. This rest resolution is
gathered in the vector RR.

RR = N

R
=
[
N1

R1
,
N2

R2
, ...,

NX−1

RX−1
,
NX

RX

]
(4.11)

Each element in the rest resolution is less than the number of tests for that design
variable.

RR,i < Ni ∀ 1 ≤ i ≤ X (4.12)
In the optimization algorithm, each design variable is evaluated one at a time with
the other variables kept constant. If a combination with higher specific energy
absorption is found for the evaluated design variable, the start guess is updated with
the new value and the script starts over again. This means that with a good start
guess each design variable can be evaluated without finding a better combination,
hence resulting in few tests being performed. On the other hand, the start guess can
be updated multiple times for every design variable and restart the test, resulting
in more tests. In the best case scenario, the start guess is the best combination.

Tbest =
X∑
i=1

RR,i (4.13)

40

4. Methodology

In the worst case scenario, every design variable resets the script with an updated
start guess.

Tworst =
x∑
i=1

i∑
j=1

RR,i (4.14)

If all design variables has the same number of tests and the same rough mesh reso-
lution, the worst case scenario would be:

Tworst =
X∑
i=1

RR · i = RRX

2 (X + 1),

N1 = N2 = ... = NX−1 = NX

R1 = R2 = ... = RX−1 = RX

(4.15)

The number of tests performed, T , will be between the best and worst case scenario.

CR + Tbest ≤ T ≤ CR + Tworst (4.16)

In order to give a direction of efficiency for the optimization algorithm, all design
variables are assumed to have the same resolution and number of tests. There are
4 design variables, each with 1,000 tests. This results in 1,000,000,000,000 different
combinations. In Table 4.2 the rough resolution, R, is tested from 1 to 10 in order
to calculate the number of tests to be perform.

Table 4.2: Different rough resolutions and it’s effects on best and worst case sce-
nario for number of tests.

R CR RR Tbest Tworst
1 1 1000 4001 10001
2 16 500 2016 5016
3 81 334 1417 3421
4 256 250 1256 2756
5 625 200 1425 2625
6 1296 167 1964 2966
7 2401 143 2973 3831
8 4096 125 4596 5346
9 6561 112 7009 7681
10 10000 100 10400 11000

Figure 4.13 displays the best and worst case scenario from Equation 4.13 and 4.14.
With this particular setup, the program would need to run the fewest tests if a rough
resolution of 5 is used.

41

4. Methodology

Figure 4.13: Best and worst case scenario for number of tests performed, assumed
the four design variables have the same design range and resolution.

4.6 Compression test simulation
The compression test simulation is a system of scripts which builds the model,
applies a force, solves the FEM problem, evaluates buckling and calculates the energy
absorption with fixed values for the design variables. Schematics of the system is
presented in Figure 4.14. The following subsections will describe in detail each major
part of the compression test simulation. See Appendix B for the Matlab code.

Figure 4.14: Schematics of the test simulation script.

42

4. Methodology

4.6.1 Determination of unit cell height
In order to build the structure, the height of each unit cell needs to be determined.
The unit cell height is dependent on the total height htot, number of unit cells N
and the height factor hf . Since each unit cell’s height is described as the height of
the unit cell below multiplied with the height factor, the first unit cell height needs
to be determined. With the first unit cell height, h1, the rest are defined as:

h2 = h1h
1
f

h3 = h1h
2
f

hN−1 = h1h
N−2
f

hN = h1h
N−1
f

⇒ hi = h1h
i−1
f ∀ 1 ≤ i ≤ N (4.17)

The sum of all unit cell heights is the total height of the structure. With this, the
first unit cell height is solved as:

N∑
i=1

hi =
N∑
i=1

h1h
i−1
f = h1

N∑
i=1

hi−1
f = htot (4.18)

h1 = htot∑N
i=1 h

i−1
f

(4.19)

Finally, each unit cell height is calculated as:

hi =
htoth

i−1
f∑N

j=1 h
j−1
f

∀ 1 ≤ i ≤ N (4.20)

In Figure 5.10, the affects of height factor 1, 2 and 3 are illustrated for each geometry
with number of unit cells fixed to 3 and the total height is 30 mm.

4.6.2 Build geometry
There is only one function, Build geometry, that calls the individual geometry con-
structors. This allows for further expansion and addition of other geometries to be
implemented into the code without adjusting large proportions of the code base.
The build geometry functions constructs a system of nodes depending on the chosen
geometry, width and unit cell height. The function draws elements between spe-
cific nodes, making the model take its desired shape. An illustration of the build
procedure is displayed in Figure 4.16. This procedure returns coordinates for all
nodes, the element degrees of freedom matrix, degrees of freedom for each node,
force vector and boundary conditions. All output variables are passed into the finite
element problem, Section 3.2.

43

4. Methodology

Figure 4.15: Effects of height factor.

Figure 4.16: Schematics over the procedure of building a geometry.

4.6.3 Buckling
All beam deformations and end forces are evaluated and exported from the FEM
solution into the buckling analysis. When buckling is studied, each beam is evaluated
individually within the structure. The undeformed beam length, l0, is calculated

44

4. Methodology

with Equation 4.21.

l0 =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (4.21)

Similarly, the deformed beam length, l, is calculated with the beam ends displace-
ments taken into account. From the deformed and undeformed beam length, the
stress, σ, is calculated using Hooke’s Law, Equation 4.22. The material is assumed
to be elastic perfectly plastic, see Figure 4.5.

σ =

Eε if Eε < σy

σy else
(4.22)

The strain, ε is calculated as
ε = l0 − l

l
(4.23)

The axial force, F , acting on the beam is calculated from the stress and the cross
sectional area of the cylindrical beam.

F = πσr2 (4.24)

Lastly, each beam is evaluated against buckling. In order to determine which buck-
ling case to use, a physical compression test is performed, see Figure 4.17. When
zooming into one beam of the lower unit cell, the buckling case is displayed clearly;
clamped in both ends, due to the vertical angle of which the beam connects onto
the horizontal beams. The critical load, Pk, is calculates from Equation 4.25.

Pk = 4π2EI

l2
(4.25)

Figure 4.17: Physical compression test for evaluating buckling case of a nylon
structure.

If the axial force in any beam exceeds the critical buckling load, the buckled unit
cell is removed since its energy absorption properties has decreased significantly once
buckled, see Section 2.6.

45

4. Methodology

4.6.4 Specific energy absorption
The energy is calculated from the integral of the force-displacement curve for a
simulated compression test. In Figure 4.18, the force is plotted against the deflection
for a 5 unit cell tetrahedron structure. Each peak marks the maximum force that
a particular unit cell is able to withstand before buckling. Since the height factor
is always greater than 1 for the structures, the topmost unit cell will buckle first,
followed by the second topmost etc.

Figure 4.18: Force and displacement for a compression simulation test of a tetra-
hedral with 5 unit cells.

Since the script calculates displacement with a certain force step, the integral needs
to be approximately calculated as the sum for all step sizes. Assume n number of
points in the graph for the force F and the displacement δ, the energy E is calculated
from Equation 4.26

E =
∫ δmax

0
Fdδ =

n−1∑
i=1

Fi + Fi+1

2 (δi+1 − δi) (4.26)

In order to evaluate and compare the energy absorbing efficiency, the energy is
normalized with the mass of the geometry. The mass, mtot, is calculated as the sum
of all beam masses, m, constructing the geometry. Assume Nbeams number of beams
in the structure, with radius r and density ρ.

mtot =
Nbeams∑
i=1

mi (4.27)

Each beam is circular and has an individual length, li.

mi = πr2liρ (4.28)

The length of a beam is calculated from its start and end coordinates.

li =
√

(x(1)
i − x

(2)
i)2 + (y(1)

i − y
(2)
i)2 + (z(1)

i − z
(2)
i)2 (4.29)

46

4. Methodology

Lastly the specific energy absorption is calculated with Equation 4.30.

Es = E

mtot

=
∑n−1
j=1

Fj+Fj+1
2 (δj+1 − δj)∑Nbeams

i=1 πr2ρ
√

(x(1)
i − x

(2)
i)2 + (y(1)

i − y
(2)
i)2 + (z(1)

i − z
(2)
i)2

(4.30)

If the active test results in a higher specific energy absorption than previous tests,
the combination is stored as the updated start guess.

47

4. Methodology

48

5
Results and discussion

5.1 Design variable range and test setup
Since the number of tests are highly influenced on the design range and resolution for
each design variable, it is important to have a good setup. If the design range is too
large and a rough mesh is used, the start guess for the optimization algorithm may
not be good enough. After multiple initial tests and mapping of design variables
behaviour, the setup range and resolution for each parameter is determined and
presented in Table 5.1.

Table 5.1: Design variable range for test setup.

Tetrahedron Cellulose Pyramid
Number of unit cells Minimum 3 3 3

Maximum 5 5 5
Resolution 1 1 1
Start tests 3 3 3

Beam radius [mm] Minimum 0.5 0.5 0.5
Maximum 2.0 3.0 2.0
Resolution 0.01 0.01 0.01
Start tests 10 10 10

Width [mm] Minimum 10.0 10.0 10.0
Maximum 30.0 30.0 30.0
Resolution 0.1 1.0 1.0
Start tests 3 3 3

Height factors Minimum 1.1 1.1 1.1
Maximum 3.0 3.0 3.0
Resolution 0.01 0.05 0.05
Start tests 5 5 5

5.2 Design variables impact on the mass
The minimum and maximum mass for each design variable is presented in Table 5.2.
In order to demonstrate the influence on the mass from each design variable, the
starting point is a fixed value for each variable: number of unit cells 3, width 20
mm, beam radius 2 mm and a height factor of 2. These constants are close to the
found solutions for all three geometries and will serve as a reference guide where as

49

5. Results and discussion

each design variable is evaluated separately. The design range for each variable has
different influence on the total mass, which is a key characteristic for specific energy
absorption since it is used to normalize the energy absorption.

Table 5.2: Design variables’ influence on total mass.

Mass [mg] Tetrahedron Cellulose Pyramid
Number of unit cells Minimum 11.3 7.8 10.4

Maximum 28.2 28.9 28.4
Beam radius Minimum 0.010 0.009 0.010

Maximum 63.7 59.3 61.1
Width Minimum 10.4 6.7 9.3

Maximum 20.2 20.2 20.1
Height factors Minimum 15.6 14.8 14.9

Maximum 16.5 14.8 16.0

The beam radius has greatest impact on the the total mass. Due to it’s influence
on the beam’s cross sectional area as a function of square it also effects the mass as
a square function. This is clearly visible in Figure 5.1.

Figure 5.1: Mass dependency of beam radius.

The height factor impacts the mass the least with approximately 1 milligram, and for
the cellulose structure it does not affect the weight at all. In the cellulose geometry
the beams are either horizontally or vertically placed. By changing the height factor,
the number of beams remains the same. The horizontal beams remains unchanged
and with increasing height factor, the length the beams at the bottom becomes
shorter, the beams at the top becomes longer. Hence, the mass remains the same for

50

5. Results and discussion

the cellulose structure, see Figure 5.2. For the tetrahedron and pyramid structures,
the mass as function of height factor shares similar shape. The amplitude of the
tetrahedron is however higher than that of the pyramid. This is due to a greater
number of beams in the tetrahedron, hence higher total mass to start with (assuming
the same design variables). Both structures have tilted beams, hence changing the
mass in an nonlinear manner.

Figure 5.2: Mass dependency of height factor.

Both number of unit cells and width of the unit cells have similar mediocre impact
on the mass in a linear manner, except for the cellulose that is linear. Small changes
in either of these design variables will not drastically affect mass, see Figure 5.3.

Figure 5.3: Mass dependency of number of unit cells (left image) and width (right
image).

51

5. Results and discussion

5.3 Screening results from rough mesh
The number of tests performed in the initialization stage is the factor of all start
tests for each design variable, Table 5.1. Each geometry is evaluated separately and
the combination with highest specific energy absorption is used in the optimization
algorithm as start guess. In Figure 5.4, 5.5 and 5.6, the result from all combina-
tions are presented as mass versus specific energy absorption. If any combination
results in a too weak structure, i.e. not able to withstand the applied force, the
combination is displayed as an asterisk (*) in the graph. All structures share some
characteristics, clearly visible in the figures. With decreasing mass, the proportion
of failed structures increases. The mass is highly influenced by the beam radius and
number of unit cells. Deviation in radius affects the mass squared. Deviation in the
number of unit cells results in the number of beams in the structure. Hence, low ra-
dius and few unit cells will result in a low mass. Few unit cells also generates longer
beams, since the total height of the structure remains. The buckling evaluation
is sensitive to both long and slender beams, resulting in buckling with low critical
load and failed structures. Structures with high mass on the other hand, results
in too stiff structures that will not absorb the energy but rather translate it to the
ground boundary. High-mass structures generally have a large beam radius and a
high number of beams, due to many unit cells. The opposite of the buckling case
is reached, the beams are short and have a large radius resulting in a high critical
load and few, or no, unit cells will buckle. There exist combinations that are too
weak and absorbs large amounts of energy but fail to withstand the applied load,
and there are combinations that are too strong, handling the applied force but do
not manage to absorb significant amount of energy. In this solution domain, there is
a possibility of a combination that are able to hold the applied force without buck-
ling all unit cells, but at the same time absorb a large proportion of the energy by
buckling the majority of the structures cells. The initialization procedure provides
a guideline and start guess for such a combination.
In the model, the many combinations for which no unit cell buckle only absorb
energy elastically, since plasticity is not evaluated. Elastic energy absorption is very
low, compared to plastic, and results in a design range of 0.1 - 2 J/kg, making it
seem like zero in the graphs. This thesis is constructed on the theory that buckling
is the main contributor to energy absorption and evaluates this through the force
versus displacement curve.

52

5. Results and discussion

Figure 5.4: Specific energy absorption of tetrahedron initialization. Failed combi-
nations (*) are included in the left image and excluded in the right image.

Figure 5.5: Specific energy absorption of cellulose initialization. Failed combina-
tions (*) are included in the left image and excluded in the right image.

Figure 5.6: Specific energy absorption of pyramid initialization. Failed combina-
tions (*) are included in the left image and excluded in the right image.

53

5. Results and discussion

5.4 Optimization algorithm
The results from the initialization defines the start guess for the optimization algo-
rithm. All combinations performed from the initialization are presented as specific
energy absorption vs beam radius (Figure 5.7), number of unit cells (Figure 5.8),
width (Figure 5.9) or height factor (Figure 5.10). In these figures, failed combina-
tions are marked with asterisk (*). The figures are related to the cellulose structure,
but similar graphs are generated for the tetrahedron and pyramid as well, see Ap-
pendix A. The design variables display areas of higher specific energy absorption.
In the case of varying radius, Figure 5.7, the result varies from failed combinations
to too stiff combinations as the beams varies from thin to thick. There seems to be
a threshold around 1.5 - 1.7 mm in radius, where the structure is stiff enough to
hold as well as absorb a significant amount of energy.

Figure 5.7: Specific energy absorption for cellulose from rough mesh vs beam
radius.

In a rough mesh, the number of unit cells are less thus capturing little detail as
shown in Figure 5.8. At a large amount of unit cells, large number of beams result
in narrow space. Since the maximum radius is dynamically evaluated, large values
will not be tested since they collide with each other making an impossible geometry.
Hence only small radius are tested, resulting in failed combinations. At one unit
cell, the structure either buckles or is absorbs energy only elastically. It is tempting
to evaluate the number of unit cells with a finer resolution to display in greater
detail what happens between 2 and 6 unit cells. However, the computational time
for the initial rough mesh is very sensitive to the number of start tests and needs
to be prioritized. The radius contributes the most to the specific energy absorption,
hence has the most start tests.

54

5. Results and discussion

Figure 5.8: Specific energy absorption for cellulose from rough mesh vs number of
unit cells.

As the unit cell width decreases, the specific energy absorption associated increases.
The width is the only design variable affecting the applied load. Greater the area,
greater is the applied force in order to remain the applied stresses, see Section 4.3.
The force is evenly applied on the top nodes, which remains the same amount
regardless of the width. In the case of cellulose, with increased width the vertical
beam lengths remains unchanged. This results in an unchanged critical buckling
load, but an increase in applied load. For constant remaining design variables, with
increasing width there will be three stages itemized below, see Figure 5.9. At a
width of 27 mm, all combinations have reached the third stage in varying width.

• Small width equals small applied load and no unit cell will buckle. This results
in a small amount of energy absorption.

• As the width increases, the applied load increases as well. The width increases
the area, thus also the force, as a square function. As the applied force in-
creases, unit cells starts to buckle and increases the energy absorption.

• With even longer width, the force will eventually overcome all beams critical
buckling load and buckle all unit cells.

55

5. Results and discussion

Figure 5.9: Specific energy absorption for cellulose from rough mesh vs unit cell
width.

As discussed in Section 5.2, the height factor has little influence on the mass of
the system. However, the beam length depends on the height factor, as is the
critical buckling load. With increased height factor, the height for the lowest unit
cell decreases. When the lowest unit cell is too short, only combinations with very
narrow beams will be generated. With short lowest unit cell, entails higher unit
cells for the other layers, especially with great height factor. This results in long
beams for the upper unit cells that have a small radius, providing a small critical
buckling load. Hence, a large proportion of the combinations fails with increasing
height factor, see Figure 5.10.

56

5. Results and discussion

Figure 5.10: Specific energy absorption for cellulose from rough mesh vs height
factor.

Each design variable has a value of which the specific energy absorption is the
greatest. This is stored as the start guess for the fine tuning optimization algorithm.
The start guesses for each geometry is summarized in Table 5.3. The values for
cellulose are from Figure 5.7, 5.8, 5.9 and 5.10.

Table 5.3: Start guess from the rough combination test.

Tetrahedron Cellulose Pyramid
Number of unit cells 3 4 3
Beam radius [mm] 1.65 1.65 1.65
Width [mm] 30.0 16.5 30.0
Height factor 2.0 1.1 2.0
Mass [g] 0.0138 0.0108 0.0137
Energy absorption [J] 0.2196 0.0846 0.1884
Specific energy absorption [kJ/kg] 15.9 7.8 13.8

5.4.1 Refinement of design variables
With the configuration of design variable generating the highest specific energy
absorption as a start guess, we adjust one variable at a time. This evaluation clarifies
the behaviour of the energy absorption depending on each parameter. Every time
a new highest specific energy is identified, the start guess is updated and the script
reruns. The characteristics for varying each parameter remains the same and will be
evaluated separately, starting with the most influential variable; the radius. With
the remaining design variables fixed, the results on specific energy absorption as the
radius varies is displayed in Figure 5.11. Four stages are identified.

57

5. Results and discussion

• Small beam radius (r < 1.80 mm) buckles all unit cells, hence not being able
to withstand the applied force, see section 4.3.

• Beam radius between 1.80 mm and 2.05 mm buckles all but the last unit cell,
generating maximum specific energy absorption.

• Beam radius at 2.05 mm buckles only the top unit cell. The structure is highly
sensitive to the radius around this point. Small deviations in radius results in
either 1, 2 or 0 buckled unit cells.

• Greater beam radius than 2.05 mm provides a too stiff structure and no layer
will buckle.

Figure 5.11: Specific energy absorption (left image) and buckled unit cells (right
image) depending on beam radius.

Note that the radius is only tested within the span from the rough mesh where the
start guess is located and its closest neighbors, see Figure 5.7. Furthermore, the
number of unit cells are tested with the updated start guess. With higher beam
radius, it is found that 3 unit cells generates the highest specific energy absorption
instead of 4 as the initial start guess implies, Figure 5.12.

58

5. Results and discussion

Figure 5.12: Specific energy absorption dependent on number of unit cells for the
cellulose geometry.

Following the same procedure, testing the width of a unit cell and the height factor
individually with the other parameters fixed, the results in Figure 5.13 are found.
These results however vary from the number of unit cells and beam radius since no
local maximum is found within the design range. This is due to an updated start
guess that deviates from the initial one. The number of unit cells are 3 instead of 4,
meaning that all rough combinations with 3 unit cells are missed in the rough mesh.
This change might have another local maximum for specific energy absorption out-
side the design range for the refinement. However, the script cannot adjust for these
behaviours. A solution would be to run the initial rough mesh with finer resolution
on the number of unit cells, on the cost of computational time, see Section 4.5.2.

Figure 5.13: Specific energy absorption and height factor (left image) or unit cell
width (right image).

59

5. Results and discussion

All successful tests, both from the rough mesh and the refinement, are gathered
in Figure 5.14. The diverging scattered tests are rough mesh and by varying the
number of unit cells. The gathered tests, forming lines of dots in the figure are
results from the refinement when variations for each design variable is performed.

Figure 5.14: Specific energy absorption for all successful tests for the cellulose
structure.

5.5 Final geometries and their ranking
The final solution for the three geometries are presented in Table 5.4. Ranking
by specific energy absorption, the cellulose is best followed by the tetrahedron and
lastly the pyramid. By looking at energy absorption, both the tetrahedron and
cellulose have similar values. However, since the cellulose has fewer beams in its
unit cell, the mass of the cellulose is generally lower than the tetrahedron. Even if
the radius for the cellulose is larger, the total mass of the structure is lower than for
both tetrahedron and pyramid. This results in a higher specific energy absorption
than for the other structures. The final geometries are displayed as 3D plots in
Figure 5.15, 5.16 and 5.17 both as the output from the script and CAD models.
The CAD models are depicted as four by four unit columns to demonstrate the
structures repeatability. The CAD model is constructed from the final solution for
each geometry, including the beam radius which cannot be displayed in the Matlab
plot. These structures represents the unit columns that are build up of finite element
beams and are tested in the program. The beam radius is not represented in the
graph. Each unit column has the symmetry boundary condition and will be repeated
in x- and y-direction if manufactured. The difference in complexity between the
structures are clearly displayed in the graphs, as the tetrahedron geometry looks
very dense compared to the other.

60

5. Results and discussion

Table 5.4: Optimized design parameters and final result.

Tetrahedron Cellulose Pyramid
Number of unit cells 3 3 3
Beam radius [mm] 1.74 2.03 2.11
Width [mm] 24.75 13.25 19.50
Height factor 1.99 1.60 2.11
Mass [g] 0.014 0.011 0.012
Energy absorption [J] 0.286 0.291 0.245
Specific energy absorption [kJ/kg] 21.088 25.343 20.936

Both the tetrahedron and pyramid have similar properties, even though the design
variables are slightly varying. Both are built on the same principle; a pyramid (with
either a square or triangular base) with every other layer up-side-down. The connec-
tion points in these structures are only placed at beams ends, with multiple beams
connecting with one another. The cellulose however has connections in the middle of
the horizontally placed beams, creating bending in these beams. The general struc-
ture of cellulose is less stiff due to this setup, hence making the normal forces in the
beams smaller and able to take on a higher applied force without buckling. This can
in turn generate a lighter structure with the same energy absorbing properties as
the others. Although, the simulations are only performed for compression tests, it
is necessary to evaluate the shear forces and stiffness in the structures. The sought
application is to replace the foam in bicycle helmets and in case of a crash the forces
is not always perfectly aligned with the normal of the helmet. The tetrahedron and
pyramid should be able to withstand shear forces the best since they have diagonal
beams in multiple directions. The density of beams in both tetrahedron and pyra-
mid may be of advantage since they create a somewhat chaotic pattern, similar to
foam, enabling force paths along any beam. In case of a shear load for the cellulose
however will bend the vertical beams easily since there is no diagonal bracing, see
Figure 5.16.
Manufacturing of the structures might prove to be difficult, regardless of the selec-
tion of geometry. 3D printers struggles with horizontal beams and slender structures,
thus needing support structure in order to manufacture the piece. The support
structure on the other hand needs to be removed, which will be very difficult with
geometries of these scales. The easiest structure to print would be the pyramid
since it does not have a large amount of horizontal beams and the existing ones
are connected with multiple diagonal beams. The pyramid is not as dense as the
other structures, making removal of eventual support material easier. The pyramid
also has the largest beam radius, providing a good support for the structure during
manufacturing. The cellulose is quite narrow and have multiple horizontal beams
making it hard to manufacture, even if the structure is self is spacious. The tetrahe-
dron, as mentioned above, has a greater amount of beams in its structure, making
space more narrow. Each unit cell in the tetrahedron has twelve horizontal beams,
of which four are combined with the unit cell below and four with the one above.
The radius for the tetrahedron is smaller than the other structures, making it more
difficult to manufacture and more support material is needed.

61

5. Results and discussion

Figure 5.15: Final geometry of tetrahedron as one unit column (left image) and 4
by 4 unit columns (right image).

Figure 5.16: Final geometry of cellulose as one unit column (left image) and 4 by
4 unit columns (right image).

Figure 5.17: Final geometry of pyramid as one unit column (left image) and 4 by
4 unit columns (right image).

62

5. Results and discussion

5.5.1 Performance of the optimization procedure
The performance of the optimization procedure is evaluated for how many combina-
tions that are tested against all unique combinations. In Figure 5.18 the calculated
cases, from Section 4.5.2, are displayed as percentage of all combinations. The dot-
ted lines represent the actual setup, Table 5.1, and the solid lines are references
calculated if all design variables had the same resolution, i.e. number of tests from 1
to 10. The best and worst case scenario is the outcome of optimization algorithms.
There is potential for a faster calculation time by reducing the resolution for the
rough mesh. However, this increases the risk of missing sought configurations and
a good start guess, see example in Section 5.4.1.

Figure 5.18: Number of tests performed for the cellulose structure as percentage
of all unique combinations.

The black lines represents an alternative to the optimization algorithm for the fine
tuning, Figure 5.18. This method simply tests all unique combinations in the de-
sign space surrounding the initial start guess. This method will take significantly
more tests, hence increasing the computational time. However, it guaranties that
all combinations within the design range is tested. A summary for all structures
performance with their respective setup are presented in Table 5.5. As Figure 5.18
implies, a more coarse rough mesh will generate fewer tests with the compromise of
a worse start guess. For example, the cellulose setup will generate 6 million com-
binations while the tetrahedron setup generates 17 million. However, because the
cellulose is more sensitive to variation in the design variables, a finer rough mesh is
needed to initialize and find a good start guess. The rough mesh is therefore 1,960
tests for the cellulose but only 450 for the tetrahedron. The final number of tests
that were done for the cellulose and tetrahedron is 1,074 and 669, respectively. As
seen in the table, both setups for the cellulose and pyramid results in fewer tests
being performed than the best case scenario. This is due to the dynamic upper
limit for the beam radius. Before every test is performed, the active combination
of design variables are evaluated to determine if they will generate a possible struc-
ture. If that particular combination has e.g. a large beam radius and a small unit

63

5. Results and discussion

cell height generating colliding beams, that combination is not added to the tests.
Hence the actual tests performed may be smaller than the best case scenario. Note
that even with this optimization method, a large amount of tests will be performed.
This thesis approximates the problem into an elastic model with beam buckling, in-
dividually evaluated. With this, the solution time varies up to 1.5 hours when each
test takes 5 seconds to perform. If a conventional software were to be used with
implicit, explicit or response spectrum the solution time for a single test will take
hours to perform. A FEM model with plasticity would also significantly increase
the computational time and not making the quantities of combinations possible.

Table 5.5: The performance of the script.

Tetrahedron Cellulose Pyramid
Total number of combinations 17391123 6058800 481572
Rough mesh combinations 450 1960 450
Fine combinations 42258 6760 1570
Worst case 537 2075 486
Best case 670 2016 525
Actual tests performed 669 1074 429
Percentage of all combinations tested 0.004% 0.018% 0.089%
Total computation time [minutes] 56 90 36

64

6
Conclusion

The script successfully generates sought geometries and autonomously updates de-
sign variables in order to find values for the variables generating maximum specific
energy absorption. The method for finding these values are effective and only tests a
small proportion of the total number of unique combination of design variables. The
model is easily expandable, should the need arise to extend with another geometry
or adjust the material properties. The result is highly dependent on a good start
guess and design variable range and resolution. Multiple analysis are recommended
with adjusted start setup to ensure that the highest specific energy absorption is
found.
Through the results, the design variable with most influence on specific energy ab-
sorption is concluded: the beam radius. Of the three geometries cellulose, tetrahe-
dron and pyramid studied, cellulose generates the highest specific energy absorption
of 25 kJ/kg. The design values providing maximum specific energy absorption for
cellulose are: number of unit cells 3, beam radius 2.03 mm, width 13.25 mm and a
height factor of 1.60. The maximum value are within the range of manufacturing
capabilities, hence physical tests can be performed for validation. The conceptual
difference between cellulose and tetrahedron or pyramid is how the force paths are
constructed. In tetrahedron and pyramid structure, all beams are connected through
nodes at the beams endpoints resulting in only tension or compression in the beams.
The beams in the cellulose structure however will create bending in the horizontal
beams, resulting in a less stiff structure. Based on this study, beams in bending
absorbs higher energy than beams in compression or tension. Although cellulose
has the highest energy absorption, the specific energy absorption increases further
since the mass is lower for cellulose than the other structures.
Based on the results and the discussion on manufacturing, see Section 5.5, cellulose
is the best structure among the three studied in this thesis. Cellulose has both
high energy absorption and specific energy absorption and is manufacturable. Its
characteristic design should generate a smooth deceleration and provide a good
substitute to foams in helmets.

65

6. Conclusion

6.1 Future work and recommendations
This thesis is meant to explore the field of custom made structures for energy ab-
sorption. Future work can focus either in making the model more accurate, more
efficient, more flexible or exploring more types of structures or materials. The accu-
racy of the model can be improved by performing physical compression tests with
the final geometries provided by the script. From this evaluation, the model can
be adjusted to better reflect the reality. A plastic model should improve the result
accuracy, on the cost of performance. It is recommended to further investigate and
implement a plastic FEM model into the script. The efficiency could be improved by
e.g. implementing a Newton forward method to the fine-tuning algorithm instead
of increment the design variables with a predefined step size. The flexibility of the
model can be extended by adding additional design variables, e.g. a radius factor.
A varying radius, similar to the height factor, could be implemented to resemble
the varying radius found in nature. This would result in a decreasing or increas-
ing radius for each unit cell in the structure. The model is constructed to easily
add additional geometries. Example of geometries could be unit cells similar to a
hexagonal, cube or asymmetric pyramids or other polyhedrons.
Furthermore, the Matlab script could be combined with CATIA to autonomously
generate the structures if an explicit simulation ought to be performed in ANSYS.
If a crash test is to be simulated, it is recommended to perform explicit analysis in
ANSYS. This procedure would generate accurate crash test results but is very time
consuming. For this to be possible, it is recommended to do a more sophisticated
optimization algorithm to reduce the number of tests and run the whole analysis on
a computer cluster.

66

Bibliography

[1] National Academy of Sciences. Review of Department of Defense Test Protocols
for Combat Helmets. 2014 March 31.

[2] trafikverket.se. Bicycle helmet. Updated 2015 March 10. Available from
trafikverket.se

[3] DC Thompson, F Rivara, R Thompson. Helmets for Preventing Head and Facial
Injuries in Bicyclists. 1999 October 25. DOI 10.1002/14651858.CD001855.

[4] helmets.org. Bicycle Helmets Liners: Foam and Other Materials. Updated 2016
December 30. Available from helmets.org

[5] Cited 17 May 2017. Available from https://www.bikerumor.com/2010/06/12/
bikerumor-exclusive-review-kali-avita-carbon-xc-am-helme/

[6] Luca DL, Giuseppe S, Daniela O. Deformation Mechanisms and Energy Ab-
sorption of Polystyrene Foams for Protective Helmets. Elsevier. 2001 Apr 25;
Polymer Testing 21 (2002) 217-228

[7] study.com. Compact Bone: Definition, Structure & Function. Updated 2017.
Available from study.com/academy/lesson/compact-bone-definition-structure-
function

[8] innerbody.com. Cortical (Compact) Bone. Updated 2017. Available from
innerbody.com/image_skel09/skel61

[9] Cited 17 May 2017. Available from http://teachmeanatomy.info/wp-
content/uploads/Structure-of-Mature-Bone.jpg

[10] study.com. Cancellous Bone: Definition, Structure & Function. Updated
2017. Available from: study.com/academy/lesson/cancellous-bone-definition-
structure-function

[11] Cited 17 May 2017. Available from http://study.com/academy/lesson/trabeculae-
of-bone-definition-function.html

[12] study.com. Trabeculae of Bone: Definition, Structure & Function. Updated
2017. Available from study.com/academy/lesson/trabeculae-of-bone-definition-
function

[13] P Zaslansky, A.A Friesem, S Weiner. Structure and Mechanical Properties of
the Soft Zone Separating Bulk Dentin and Enamel in Crowns of Human Teeth:
Insight Into Tooth Function. 2005 October 12. Journal of Structural Biology.
153(2):188-99.

[14] Cited 17 May 2017. Available from https://en.wikipedia.org/wiki/Crown_(tooth)
#/media/File:Blausen_0863_ToothAnatomy_02.png

[15] I Bjurhager. Effects of Cell Wall Structure on Tensile Properties of Hardwood.
2011 Apr. Available from: KTH School of Chemistry

67

http://www.trafikverket.se/resa-och-trafik/Trafiksakerhet/Din-sakerhet-pa-vagen/Ga-och-cykla/Cykelhjalm-/
http://www.helmets.org/liners.htm
https://www.bikerumor.com/2010/06/12/bikerumor-exclusive-review-kali-avita-carbon-xc-am-helme/
https://www.bikerumor.com/2010/06/12/bikerumor-exclusive-review-kali-avita-carbon-xc-am-helme/
http://study.com/academy/lesson/compact-bone-definition-structure-function.html
http://study.com/academy/lesson/compact-bone-definition-structure-function.html
http://www.innerbody.com/image_skel09/skel61.html
http://study.com/academy/lesson/cancellous-bone-definition-structure-function.html
http://study.com/academy/lesson/cancellous-bone-definition-structure-function.html
http://study.com/academy/lesson/trabeculae-of-bone-definition-function.html
http://study.com/academy/lesson/trabeculae-of-bone-definition-function.html
https://en.wikipedia.org/wiki/Crown_(tooth)#/media/File:Blausen_0863_ToothAnatomy_02.png
https://en.wikipedia.org/wiki/Crown_(tooth)#/media/File:Blausen_0863_ToothAnatomy_02.png
https://www.kth.se/polopoly_fs/1.151405!/Menu/general/column-content/attachment/Bjurhager.pdf

Bibliography

[16] D.J Cosgrove. Growth of the plant cell wall. Volume 6 2005 Nov. Available from:
www.nature.com

[17] E Badel, F.W Ewers, H Cochard, F.W. Telewski. Acclimation of mechanical
and hydraulic functions in trees: impact of the thigmomorphogenetic process.
2015 Apr. Available from: National Center for Biotechnology Information

[18] G Lu, T.X Yu. Energy Absorption of Structures and Materials. Woodhead
Publishing Limited: Cambridge England; 2003.

[19] European Committee for Standardization. Helmets for Pedal Cyclists and for
Users of Skateboards and Roller Skates. 1997 February. Ref. No. EN 1078: 1997
E. ICS 13.340.20.

[20] j Higgins. Drop Test Simulation Made Easy With Ansys Simulation. Ansys Inc.
2008.

[21] Dan Zenkert. An introduction to Sandwich Structures - student edition. 2:nd
Edition 2005 Stockholm.

[22] N Ottosen, H Petersson. Introduction to the FINITE ELEMENT METHOD.
1992.

[23] L Andersen, S.R.K. Nielsen. Elastic Beams in Three Dimensions. DCE Lecture
Notes No.23. Aalborg University, Department of Civil Engineering - Structural
Mechanics. August 2008

[24] P-E Austell, O Dahlblom, J Lindemann, A Olsson, K-G Olsson, K Persson,
H Petersson, M Ristinmaa, G Sandberg, P-A Wernberg. CALFEM, a Finite
Element Toolbox. Version 3.4. Lund Universiity; 2004.

[25] Cited 17 May 2017. Available from http://www.ck12.org/life-science/Plant-
Cell-Structures-in-Life-Science/lesson/Plant-Cell-Structures-MS-LS/

[26] mathworld.wolfram.com. E.W Weisstein. "Tetrahedron." Cited 19 April 2017.
Available from: http://mathworld.wolfram.com/Tetrahedron.html

[27] mathworld.wolfram.com. E.W Weisstein. "Pyramid.". Cited 19 April 2017.
Available from: http://mathworld.wolfram.com/Pyramid.html

[28] E. Svensson. Material Characterization of 3D-Printed Energy-Absorbent Poly-
mers Inspired by Nature. 2017. Materials and Manufacturing Technology,
Chalmers.

[29] N. J. Mills. Protective Capability of Bicycle Helmets. Butterworth & Co Ltd.
1990. 0306-3674/90/010055-06.

[30] silver.neep.wisc.edu. Materials with Strucural Hierarchy. Updated 1993. Avail-
able from silver.neep.wisc.edu

[31] R Hill, 1963. Elastic properties of reinforced solids: some theoretical principles.
J. Mech. Phys. Solids 11 (5), 357–372.

68

http://www.nature.com/scitable/ebooks/cell-biology-for-seminars-14760004/118244629
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406077/
http://silver.neep.wisc.edu/~lakes/Hierarch.html

A
Appendix 1 - Result

A.1 Tetrahedron result

Figure A.1: Specific energy absorption for tetrahedron from rough mesh vs beam
radius.

I

A. Appendix 1 - Result

Figure A.2: Specific energy absorption for tetrahedron from rough mesh vs unit
cell width.

Figure A.3: Specific energy absorption for tetrahedron from rough mesh vs height
factor.

II

A. Appendix 1 - Result

Figure A.4: Specific energy absorption for tetrahedron from rough mesh vs number
of unit cells.

Figure A.5: Specific energy absorption for tetrahedron with varying beam radius.

III

A. Appendix 1 - Result

Figure A.6: Specific energy absorption for tetrahedron with varying height factor.

A.2 Pyramid result

Figure A.7: Specific energy absorption for pyramid from rough mesh vs beam
radius.

IV

A. Appendix 1 - Result

Figure A.8: Specific energy absorption for pyramid from rough mesh vs unit cell
width.

Figure A.9: Specific energy absorption for pyramid from rough mesh vs height
factor.

V

A. Appendix 1 - Result

Figure A.10: Specific energy absorption for pyramid from rough mesh vs number
of unit cells.

Figure A.11: Specific energy absorption for pyramid with varying beam radius.

VI

A. Appendix 1 - Result

Figure A.12: Specific energy absorption for pyramid with varying width.

Figure A.13: Specific energy absorption for pyramid with varying height factor.

VII

A. Appendix 1 - Result

VIII

B
Appendix 2 - Matlab code

B.1 Main

1 %--
2 % PURPOSE
3 % Optimize a selected geometry within the prescribed design range.
4 %
5 %--
6 % Created by Alexander Olsson & Mattias Naarttijarvi
7 %--
8

9 clc
10 close all
11 clear variables
12

13 % Global variables
14 global mainData E G rho sigma_y height plotMode testStructure force ...
15 startGuess
16

17 % Test variables
18 testStructure = 3;
19 % 1 = Tetrahedron
20 % 2 = Cellulose
21 % 3 = Pyramid
22 % 4 = Cube
23

24 % Design variables
25 % Number of unit cells
26 nrOfLevels.min = 3;
27 nrOfLevels.max = 5;
28 nrOfLevels.resolution = 1;
29 nrOfLevels.startTests = 3;
30 nrOfLevels.meshSize = 3;
31

32 % Height factor
33 heightFactor.min = 1.1;
34 heightFactor.max = 3;
35 heightFactor.resolution = 0.05;
36 heightFactor.startTests = 5;
37 heightFactor.meshSize = ((heightFactor.max - heightFactor.min + ...
38 heightFactor.resolution) / heightFactor.resolution) ...
39 / (heightFactor.startTests - 1);

IX

B. Appendix 2 - Matlab code

40

41 % Beam radius
42 beamRadius.min = 0.5e-3;
43 beamRadius.max = 2.0e-3;
44 beamRadius.resolution = 0.01e-3;
45 beamRadius.startTests = 10;
46 beamRadius.meshSize = ((beamRadius.max - beamRadius.min + ...
47 beamRadius.resolution) / beamRadius.resolution)...
48 / (beamRadius.startTests - 1);
49

50 % Side width
51 sideWidth.min = 10e-3;
52 sideWidth.max = 30e-3;
53 sideWidth.resolution = 0.5e-3;
54 sideWidth.startTests = 3;
55 sideWidth.meshSize = ((sideWidth.max - sideWidth.min + ...
56 sideWidth.resolution) / sideWidth.resolution) ...
57 / (sideWidth.startTests - 1);
58

59 % Constraints and defined data
60 height = 80e-3; % Total height [m]
61 E = 0.94e9; % Young's modulus [Pa]
62 G = 0.3597e9; % Shear modulus [Pa]
63 rho = 1160; % Density [kg/m^3]
64 sigma_y = 31e6; % Yield strength [Pa]
65 tolerance = 6.25e-6; % The 3D printers printing accuracy [m]
66

67 % Test setup parameters
68 impactForce = 2500;
69 helmetRadius = 160e-3;
70 impactArea = pi * (helmetRadius * cos(asin(1 - height / helmetRadius)))

^2;
71 force.structureStress = impactForce / impactArea;
72 force.min = 0;
73 force.steps = 200;
74

75 % Plots
76 plotMode.grid = 0;
77 plotMode.results = 0;
78 plotMode.progress = 0;
79 plotMode.acceptFailure = 1;
80 plotMode.figureNr = 10;
81 plotMode.autoPlot = 0;
82

83 % Initialize
84 nrOfTests = length(sideWidth) * length(nrOfLevels) * length(beamRadius)

* ...
85 length(heightFactor) * length(testStructure);
86 mainData.tetrahedral = zeros(nrOfTests / length(testStructure), 11);
87 mainData.cellulose = zeros(nrOfTests / length(testStructure), 11);
88 mainData.pyramid = zeros(nrOfTests / length(testStructure), 11);
89 mainData.cube = zeros(nrOfTests / length(testStructure), 11);
90

91 % Start guess
92 startGuess.N = 0;
93 startGuess.hf = 0;

X

B. Appendix 2 - Matlab code

94 startGuess.r = 0;
95 startGuess.w = 0;
96 startGuess.mass = 0;
97 startGuess.force = [];
98 startGuess.displacement = [];
99 startGuess.buckledLevels = 0;

100 startGuess.energyAbsorption = 0;
101 startGuess.specificEnergyAbsorption = 0;
102

103 % Display setup and calculation time
104 fig = NumberOfTestsPlot(nrOfLevels, heightFactor, beamRadius, sideWidth

, 5);
105 print(fig, 'AutoPlots/NumberOfTests', '-dpng');
106

107 % Run initial test
108 testNr = RoughCombinationTest(nrOfLevels, heightFactor, beamRadius, ...
109 sideWidth);
110

111 % Define mesh size
112 testNr = optimisationAlgorithm(nrOfLevels, heightFactor, beamRadius,

...
113 sideWidth, testNr);
114

115 % Write documentation
116 WriteDocumentation(mainData);
117

118 % Print result
119 fprintf('\nOptimization procedure complete. \nNumber of tests: %.0f\n',

...
120 testNr);
121 disp(startGuess);
122

123 % Write solution to text file
124 solutionDoc = fopen('AutoPlots/solution.txt', 'w');
125 fprintf(solutionDoc, strcat('Number of tests: %.0f \n N: %.0f \n ', ...
126 ' hf: %.2f \n r: %f [mm] \n w: %f [mm] \n Mass: %f [g] \n ', ...
127 ' buckled unit cells: %.0f \n Energy absorption: %f [J]\n ', ...
128 ' Specific energy absorption: %f [kJ/kg] \n'), testNr, startGuess.N

, ...
129 startGuess.hf, startGuess.r*1000, startGuess.w*1000, ...
130 startGuess.mass * 1000, ...
131 startGuess.buckledLevels, startGuess.energyAbsorption, ...
132 startGuess.specificEnergyAbsorption/1000);
133 fprintf(solutionDoc, strcat('\n\n Number of unit cells \n Min: %.0f',

...
134 '\n Max: %.0f \n Resolution: %.0f \n Start tests: %.0f \n\n', ...
135 ' Height factor \n Min: %.2f', ...
136 '\n Max: %.2f \n Resolution: %.2f \n Start tests: %.0f \n\n', ...
137 ' Beam radius \n Min: %f', ...
138 '\n Max: %f \n Resolution: %f \n Start tests: %.0f \n\n', ...
139 ' Unit cell width \n Min: %f', ...
140 '\n Max: %f \n Resolution: %f \n Start tests: %.0f \n\n'), ...
141 nrOfLevels.min, nrOfLevels.max, nrOfLevels.resolution, ...
142 nrOfLevels.startTests, ...
143 heightFactor.min, heightFactor.max, heightFactor.resolution, ...
144 heightFactor.startTests, ...

XI

B. Appendix 2 - Matlab code

145 beamRadius.min, beamRadius.max, beamRadius.resolution, ...
146 beamRadius.startTests, ...
147 sideWidth.min, sideWidth.max, sideWidth.resolution, ...
148 sideWidth.startTests);
149 fclose(solutionDoc);
150

151 % Plot all tests
152 plotMode.acceptFailure = 1;
153 fig = PlotFactory(1, 11, 0, 0);
154 print(fig, 'AutoPlots/AllTests/MassAndEnergyAbsorption', '-dpng');
155

156 fig = PlotFactory(1, 10, 0, 0);
157 print(fig, 'AutoPlots/AllTests/MassAndSpecificEnergyAbsorption', '-dpng

');
158

159 fig = PlotFactory(3, 10, 0, 0);
160 print(fig, 'AutoPlots/AllTests/WidthAndSpecificEnergyAbsorption', '-

dpng');
161

162 fig = PlotFactory(4, 10, 0, 0);
163 print(fig, 'AutoPlots/AllTests/NrOfUnitCellsAndSpecificEnergyAbsorption

', ...
164 '-dpng');
165

166 fig = PlotFactory(5, 10, 0, 0);
167 print(fig, 'AutoPlots/AllTests/HfAndSpecificEnergyAbsorption', '-dpng')

;
168

169 fig = PlotFactory(1, 8, 0, 0);
170 print(fig, 'AutoPlots/AllTests/MassAndBuckling', '-dpng');
171

172 fig = PlotFactory(8, 10, 0, 0);
173 print(fig, 'AutoPlots/AllTests/BucklingAndSpecificEnergyAbsorption',

...
174 '-dpng');
175

176 fig = PlotFactory(9, 10, 0, 0);
177 print(fig, 'AutoPlots/AllTests/RadiusAndSpecificEnergyAbsorption', ...
178 '-dpng');
179

180 % Plots excluding failing structures
181 plotMode.acceptFailure = 0;
182 fig = PlotFactory(1, 11, 0, 0);
183 print(fig, 'AutoPlots/AllTests/MassAndEnergyAbsorptionNoFailure', ...
184 '-dpng');
185

186 fig = PlotFactory(1, 10, 0, 0);
187 print(fig, 'AutoPlots/AllTests/MassAndSpecificEnergyAbsorptionNoFailure

', ...
188 '-dpng');
189

190 fig = PlotFactory(3, 10, 0, 0);
191 print(fig, 'AutoPlots/AllTests/

WidthAndSpecificEnergyAbsorptionNoFailure', ...
192 '-dpng');
193

XII

B. Appendix 2 - Matlab code

194 fig = PlotFactory(4, 10, 0, 0);
195 print(fig, ...
196 'AutoPlots/AllTests/

NrOfUnitCellsAndSpecificEnergyAbsorptionNoFailure', ...
197 '-dpng');
198

199 fig = PlotFactory(5, 10, 0, 0);
200 print(fig, 'AutoPlots/AllTests/HfAndSpecificEnergyAbsorptionNoFailure',

...
201 '-dpng');
202

203 fig = PlotFactory(1, 8, 0, 0);
204 print(fig, 'AutoPlots/AllTests/MassAndBucklingNoFailure', '-dpng');
205

206 fig = PlotFactory(8, 10, 0, 0);
207 print(fig, ...
208 'AutoPlots/AllTests/BucklingAndSpecificEnergyAbsorptionNoFailure',

...
209 '-dpng');
210

211 fig = PlotFactory(9, 10, 0, 0);
212 print(fig, ...
213 'AutoPlots/AllTests/RadiusAndSpecificEnergyAbsorptionNoFailure',

...
214 '-dpng');
215

216 % Plot the structure
217 fig = PlotGeometry(testStructure, startGuess.w, startGuess.N,

startGuess.hf);
218 print(fig, 'AutoPlots/OptimizedStructure', '-dpng');
219

220 % Plot force vs displacement curve
221 fig = figure(plotMode.figureNr + 1);
222 plot(startGuess.displacement, startGuess.force);
223 xlabel('Displacement [m]');
224 ylabel('Force [N]');
225 set(gca, 'fontsize', 18);
226 print(fig, 'AutoPlots/ForceDisplacement', '-dpng');
227

228 close all;

B.2 Rough combination

1 function testNr = RoughCombinationTest(nrOfLevels, ...
2 heightFactor, beamRadius, sideWidth)
3 %--
4 % PURPOSE
5 % Initializing optimization algorithm by a rough mesh displaying
6 % combinations with high specific energy absorption.
7 %
8 % INPUT
9 % nrOfLevels = value Number of unit cells

10 % heightFactor = value Height factor

XIII

B. Appendix 2 - Matlab code

11 % beamRadius = value Bean radius [m]
12 % sideWidth = value Unit cell width [m]
13 %
14 % OUTPUT
15 % testNr = value Test identifier number
16 %
17 %--
18 % Created by Alexander Olsson & Mattias Naarttijarvi
19 %--
20

21 global height testStructure force startGuess plotMode
22

23 % Design variables
24 N = linspace(nrOfLevels.min, nrOfLevels.max, nrOfLevels.startTests);
25 hf = linspace(heightFactor.min, heightFactor.max, heightFactor.

startTests);
26 r = linspace(beamRadius.min, beamRadius.max, beamRadius.startTests);
27 w = linspace(sideWidth.min, sideWidth.max, sideWidth.startTests);
28

29 % Initialize
30 nrOfTests = length(w) * length(N) * length(r) * length(hf);
31 EnergyAbsorption = zeros(1, nrOfTests);
32 EnergyAbsorption_F = zeros(1, nrOfTests);
33 Mass = zeros(1, nrOfTests);
34

35 % Main iteration loop
36 testCounter = 1;
37 testNr = 1;
38

39 for i_w = 1 : sideWidth.startTests
40 % Applied force
41 nrOfTopNodes = 4;
42 force.max = force.structureStress * w(i_w)^2 / nrOfTopNodes;
43

44 for i_hf = 1 : heightFactor.startTests
45 for i_N = 1 : nrOfLevels.startTests
46 for i_r = 1 : beamRadius.startTests
47 % Print progress
48 fprintf('Test %.0f. r: %.1f [mm], w: %.1f [mm], N: %.0f, hf: %1.1f

\n', ...
49 testCounter, r(i_r)*1000, w(i_w)*1000, N(i_N), ...
50 hf(i_hf));
51 testCounter = testCounter + 1;
52

53 % Set each level height
54 levelHeights = DescribeLevelHeight(hf(i_hf), N(i_N), height);
55

56 % Check if smallest unit cell is large enough
57 if min(levelHeights) < 6 * r(i_r)
58 fprintf(' Impossible geometry. \n');
59 break;
60 end
61

62 % Do the simulation
63 [Mass(testNr), EnergyAbsorption(testNr), EnergyAbsorption_F(testNr)

, ...

XIV

B. Appendix 2 - Matlab code

64 forceLog, displacementLog, sigma, epsilon, buckledLevels] = ...
65 SimulateTest(testStructure, levelHeights, ...
66 w(i_w), r(i_r));
67

68 % Evaluate if the tested structure is better then the saved one
69 specificEnergyAbsorption = EnergyAbsorption_F(testNr) / Mass(testNr

);
70 if (specificEnergyAbsorption > startGuess.specificEnergyAbsorption)
71

72 % Check if structure withstood the force
73 if (forceLog(end) ~= 0)
74 fprintf(' Start guess updated!\n');
75

76 % Update the start guess
77 startGuess.N = N(i_N);
78 startGuess.hf = hf(i_hf);
79 startGuess.r = r(i_r);
80 startGuess.w = w(i_w);
81 startGuess.sigma = sigma;
82 startGuess.epsilon = epsilon;
83 startGuess.force = forceLog;
84 startGuess.displacement = displacementLog;
85 startGuess.buckledLevels = buckledLevels;
86 startGuess.mass = Mass(testNr);
87 startGuess.energyAbsorption = EnergyAbsorption_F(testNr);
88 startGuess.specificEnergyAbsorption =

specificEnergyAbsorption;
89

90 % Write the updated guess
91 disp(startGuess);
92 end
93 end
94

95 % Store data and results
96 StoreData(Mass(testNr), EnergyAbsorption(testNr), w(i_w), N(i_N),

...
97 hf(i_hf), forceLog(end), buckledLevels, r(i_r), ...
98 EnergyAbsorption_F(testNr), testNr, testStructure);
99

100 % Print result for active test
101 fprintf(' Energy absorption: %.2f mJ\n', ...
102 EnergyAbsorption_F(testNr) * 1e3);
103 fprintf(' Specific energy absorption: %.2f kJ/kg\n', ...
104 EnergyAbsorption_F(testNr)/Mass(testNr) * 1e-3);
105

106 % Increase test counter
107 testNr = testNr + 1;
108 end
109 end
110 end
111 end
112

113 % Print progress for each geometry case
114 fprintf(' Geometry %1.0f finished calculations. \n', testStructure);
115

116 % Create plots and save them

XV

B. Appendix 2 - Matlab code

117 % Plots including failing structures
118 plotMode.acceptFailure = 1;
119 fig = PlotFactory(1, 11, 0, 0);
120 print(fig, 'AutoPlots/Initialization/MassAndEnergyAbsorption', '-dpng')

;
121

122 fig = PlotFactory(1, 10, 0, 0);
123 print(fig, 'AutoPlots/Initialization/MassAndSpecificEnergyAbsorption',

...
124 '-dpng');
125

126 fig = PlotFactory(3, 10, 0, 0);
127 print(fig, 'AutoPlots/Initialization/WidthAndSpecificEnergyAbsorption',

...
128 '-dpng');
129

130 fig = PlotFactory(4, 10, 0, 0);
131 print(fig, ...
132 'AutoPlots/Initialization/NrOfUnitCellsAndSpecificEnergyAbsorption'

, ...
133 '-dpng');
134

135 fig = PlotFactory(5, 10, 0, 0);
136 print(fig, 'AutoPlots/Initialization/HfAndSpecificEnergyAbsorption',

...
137 '-dpng');
138

139 fig = PlotFactory(1, 8, 0, 0);
140 print(fig, 'AutoPlots/Initialization/MassAndBuckling', ...
141 '-dpng');
142

143 fig = PlotFactory(8, 10, 0, 0);
144 print(fig, 'AutoPlots/Initialization/

BucklingAndSpecificEnergyAbsorption', ...
145 '-dpng');
146

147 fig = PlotFactory(9, 10, 0, 0);
148 print(fig, 'AutoPlots/Initialization/RadiusAndSpecificEnergyAbsorption'

, ...
149 '-dpng');
150

151 % Plots excluding failing structures
152 plotMode.acceptFailure = 0;
153 fig = PlotFactory(1, 11, 0, 0);
154 print(fig, 'AutoPlots/Initialization/MassAndEnergyAbsorptionNoFailure',

...
155 '-dpng');
156

157 fig = PlotFactory(1, 10, 0, 0);
158 print(fig, ...
159 'AutoPlots/Initialization/MassAndSpecificEnergyAbsorptionNoFailure'

, ...
160 '-dpng');
161

162 fig = PlotFactory(3, 10, 0, 0);
163 print(fig, ...

XVI

B. Appendix 2 - Matlab code

164 'AutoPlots/Initialization/WidthAndSpecificEnergyAbsorptionNoFailure
', ...

165 '-dpng');
166

167 fig = PlotFactory(4, 10, 0, 0);
168 print(fig, ...
169 'AutoPlots/Initialization/

NrOfUnitCellsAndSpecificEnergyAbsorptionNoFailure', ...
170 '-dpng');
171

172 fig = PlotFactory(5, 10, 0, 0);
173 print(fig, ...
174 'AutoPlots/Initialization/HfAndSpecificEnergyAbsorptionNoFailure',

...
175 '-dpng');
176

177 fig = PlotFactory(1, 8, 0, 0);
178 print(fig, 'AutoPlots/Initialization/MassAndBucklingNoFailure', '-dpng'

);
179

180 fig = PlotFactory(8, 10, 0, 0);
181 print(fig, ...
182 'AutoPlots/Initialization/

BucklingAndSpecificEnergyAbsorptionNoFailure', ...
183 '-dpng');
184

185 fig = PlotFactory(9, 10, 0, 0);
186 print(fig, ...
187 'AutoPlots/Initialization/

RadiusAndSpecificEnergyAbsorptionNoFailure', ...
188 '-dpng');
189

190 % Close all plots
191 close all;
192 end

B.3 Optimization algorithm

1 function testNr = optimisationAlgorithm(nrOfLevels, heightFactor,
beamRadius, ...

2 sideWidth, testNr)
3 %--
4 % PURPOSE
5 % Optimize input design variables for maximized energy absorption.
6 %
7 % INPUT
8 % nrOfLevels = value Number of unit cells
9 % heightFactor = value Height factor

10 % beamRadius = value Beam radius [m]
11 % sideWidth = value Unit cell width [m]
12 % testNr = value Test identification number
13 %
14 % OUTPUT

XVII

B. Appendix 2 - Matlab code

15 % testNr = value Test identification number
16 %
17 %--
18 % Created by Mattias Naarttijarvi
19 %--
20

21 global height testStructure startGuess plotMode
22

23 N_tests = (startGuess.N - nrOfLevels.meshSize : nrOfLevels.resolution
...

24 : startGuess.N + nrOfLevels.meshSize);
25

26 hf_tests = (startGuess.hf - heightFactor.meshSize * heightFactor.
resolution ...

27 : heightFactor.resolution ...
28 : startGuess.hf + heightFactor.meshSize * heightFactor.resolution);
29

30 r_tests = (startGuess.r - beamRadius.meshSize * beamRadius.resolution
...

31 : beamRadius.resolution ...
32 : startGuess.r + beamRadius.meshSize * beamRadius.resolution);
33

34 w_tests = (startGuess.w - sideWidth.meshSize * sideWidth.resolution ...
35 : sideWidth.resolution ...
36 : startGuess.w + sideWidth.meshSize * sideWidth.resolution);
37

38 % Keep running until the guess goes through without changing
39 guessUpdated = 1;
40 while guessUpdated == 1
41 % Start by setting changes to none
42 guessUpdated = 0;
43 fprintf('\n\nInitializing optimization algorithm\n\n');
44

45 %% Number of unit cells
46 fprintf('Varying N \n')
47

48 % Save start test number
49 startTestNr = testNr;
50

51 for i = 1 : length(N_tests)
52 N = N_tests(i);
53 if N > nrOfLevels.max
54 % Break if exceeding the maximum
55 continue;
56 elseif N < nrOfLevels.min
57 % Break if below minimum
58 continue;
59 end
60

61 % Print progress
62 fprintf('N = %.0f \n', N);
63

64 % Set each level height
65 levelHeights = DescribeLevelHeight(startGuess.hf, N, height);
66

67 % Check if smallest unit cell is large enough

XVIII

B. Appendix 2 - Matlab code

68 if min(levelHeights) < 6 * startGuess.r
69 fprintf(' Impossible geometry. \n');
70 break;
71 end
72

73 % Do the simulation
74 [Mass, EnergyAbsorption, EnergyAbsorption_F, forceLog, ...
75 displacementLog, sigma, epsilon, buckledLevels] = ...
76 SimulateTest(testStructure, levelHeights, ...
77 startGuess.w, startGuess.r);
78

79 % Evaluate if the tested structure is better then the saved one
80 specificEnergyAbsorption = EnergyAbsorption_F / Mass;
81 if (specificEnergyAbsorption > startGuess.

specificEnergyAbsorption)
82 % Check if structure withstood the force
83 if (forceLog(end) ~= 0)
84 fprintf(' Start guess updated by N!\n');
85

86 % Update the start guess
87 startGuess.N = N;
88 startGuess.mass = Mass;
89 startGuess.sigma = sigma;
90 startGuess.epsilon = epsilon;
91 startGuess.force = forceLog;
92 startGuess.displacement = displacementLog;
93 startGuess.buckledLevels = buckledLevels;
94 startGuess.energyAbsorption = EnergyAbsorption_F;
95 startGuess.specificEnergyAbsorption = ...
96 specificEnergyAbsorption;
97

98 disp(startGuess);
99 end

100 end
101

102 % Store data and result
103 StoreData(Mass, 0, startGuess.w, N, ...
104 startGuess.hf, forceLog(end), buckledLevels, startGuess.r,

...
105 EnergyAbsorption_F, testNr, testStructure);
106 testNr = testNr + 1;
107 end
108

109 % Plot and save
110 plotMode.acceptFailure = 1;
111 fig = PlotFactory(4, 10, startTestNr, 0);
112 figName = sprintf('r%.0f w%0.0f hf%1.0f', startGuess.r * 10000, ...
113 startGuess.w * 10000, startGuess.hf*10);
114 print(fig, strcat('AutoPlots/VaryingN/', figName), '-dpng');
115

116 fig = PlotFactory(4, 8, startTestNr, 0);
117 figName = sprintf('r%.0f w%0.0f hf%1.0f', startGuess.r * 10000, ...
118 startGuess.w * 10000, startGuess.hf*10);
119 print(fig, strcat('AutoPlots/VaryingN/', figName, 'Buckling'), '-

dpng');
120

XIX

B. Appendix 2 - Matlab code

121 plotMode.acceptFailure = 0;
122 fig = PlotFactory(4, 8, startTestNr, 0);
123 figName = sprintf('r%.0f w%0.0f hf%1.0f', startGuess.r * 10000, ...
124 startGuess.w * 10000, startGuess.hf*10);
125 print(fig, strcat('AutoPlots/VaryingN/', figName, '

BucklingNoFailure'), '-dpng');
126

127 fig = PlotFactory(4, 10, startTestNr, 0);
128 figName = sprintf('r%.0f w%0.0f hf%1.0f', startGuess.r * 10000, ...
129 startGuess.w * 10000, startGuess.hf*10);
130 print(fig, strcat('AutoPlots/VaryingN/', figName, 'NoFailure'), '-

dpng');
131 close all;
132

133 %% Beam radius
134 fprintf('Varying r \n')
135

136 % Save start test number
137 startTestNr = testNr;
138

139 % Set each level height
140 levelHeights = DescribeLevelHeight(startGuess.hf, startGuess.N,

height);
141

142 for i = 1 : length(r_tests)
143 r = r_tests(i);
144 if r > beamRadius.max
145 % Break if exceeding the maximum
146 continue;
147 elseif r < beamRadius.min
148 % Break if below minimum
149 continue;
150 end
151

152 % Print progress
153 fprintf('r = %.2f mm\n', r*1000);
154

155 % Check if smallest unit cell is large enough
156 if min(levelHeights) < 6 * r
157 fprintf(' Impossible geometry. \n');
158 break;
159 end
160

161 % Do the simulation
162 [Mass, EnergyAbsorption, EnergyAbsorption_F, forceLog, ...
163 displacementLog, sigma, epsilon, buckledLevels] = ...
164 SimulateTest(testStructure, levelHeights, ...
165 startGuess.w, r);
166

167 % Evaluate if the tested structure is better then the saved one
168 specificEnergyAbsorption = EnergyAbsorption_F / Mass;
169 if (specificEnergyAbsorption > startGuess.

specificEnergyAbsorption)
170 % Check if structure withstood the force
171 if (forceLog(end) ~= 0)
172 fprintf(' Start guess updated by r!\n');

XX

B. Appendix 2 - Matlab code

173

174 % Update the start guess
175 startGuess.r = r;
176 startGuess.mass = Mass;
177 startGuess.sigma = sigma;
178 startGuess.epsilon = epsilon;
179 startGuess.force = forceLog;
180 startGuess.buckledLevels = buckledLevels;
181 startGuess.displacement = displacementLog;
182 startGuess.energyAbsorption = EnergyAbsorption_F;
183 startGuess.specificEnergyAbsorption = ...
184 specificEnergyAbsorption;
185

186 guessUpdated = 1;
187

188 disp(startGuess);
189 end
190 end
191

192 % Store data and result
193 StoreData(Mass, 0, startGuess.w, startGuess.N, ...
194 startGuess.hf, forceLog(end), buckledLevels, r, ...
195 EnergyAbsorption_F, testNr, testStructure);
196 testNr = testNr + 1;
197 end
198

199 % Plot and save
200 plotMode.acceptFailure = 1;
201 fig = PlotFactory(9, 10, startTestNr, 0);
202 figName = sprintf('N%.0f w%0.0f hf%1.0f', startGuess.N, ...
203 startGuess.w * 10000, startGuess.hf*10);
204 print(fig, strcat('AutoPlots/VaryingR/', figName), '-dpng');
205

206 fig = PlotFactory(9, 8, startTestNr, 0);
207 figName = sprintf('N%.0f w%0.0f hf%1.0f', startGuess.N, ...
208 startGuess.w * 10000, startGuess.hf*10);
209 print(fig, strcat('AutoPlots/VaryingR/', figName, 'Buckling'), '-

dpng');
210

211 plotMode.acceptFailure = 0;
212 fig = PlotFactory(9, 8, startTestNr, 0);
213 figName = sprintf('N%.0f w%0.0f hf%1.0f', startGuess.N, ...
214 startGuess.w * 10000, startGuess.hf*10);
215 print(fig, strcat('AutoPlots/VaryingR/', figName, '

BucklingNoFailure'), '-dpng');
216

217 fig = PlotFactory(9, 10, startTestNr, 0);
218 figName = sprintf('N%.0f w%0.0f hf%1.0f', startGuess.N, ...
219 startGuess.w * 10000, startGuess.hf*10);
220 print(fig, strcat('AutoPlots/VaryingR/', figName, 'NoFailure'), '-

dpng');
221 close all;
222

223 % Restart the loop
224 if guessUpdated == 1
225 continue;

XXI

B. Appendix 2 - Matlab code

226 end
227

228 %% Height factor
229 fprintf('Varying hf \n')
230

231 % Save start test number
232 startTestNr = testNr;
233

234 for i = 1 : length(hf_tests)
235 hf = hf_tests(i);
236 if hf > heightFactor.max
237 % Break if exceeding the maximum
238 continue;
239 elseif hf < heightFactor.min
240 % Break if below minimum
241 continue;
242 end
243

244 % Print progress
245 fprintf('hf = %.1f \n', hf);
246

247 % Set each level height
248 levelHeights = DescribeLevelHeight(hf, startGuess.N, height);
249

250 % Check if smallest unit cell is large enough
251 if min(levelHeights) < 6 * startGuess.r
252 fprintf(' Impossible geometry. \n');
253 break;
254 end
255

256 % Do the simulation
257 [Mass, EnergyAbsorption, EnergyAbsorption_F, forceLog, ...
258 displacementLog, sigma, epsilon, buckledLevels] = ...
259 SimulateTest(testStructure, levelHeights, ...
260 startGuess.w, startGuess.r);
261

262 % Evaluate if the tested structure is better then the saved one
263 specificEnergyAbsorption = EnergyAbsorption_F / Mass;
264 if (specificEnergyAbsorption > startGuess.

specificEnergyAbsorption)
265 % Check if structure withstood the force
266 if (forceLog(end) ~= 0)
267 fprintf(' Start guess updated by hf!\n');
268

269 % Update the start guess
270 startGuess.hf = hf;
271 startGuess.mass = Mass;
272 startGuess.sigma = sigma;
273 startGuess.epsilon = epsilon;
274 startGuess.force = forceLog;
275 startGuess.displacement = displacementLog;
276 startGuess.buckledLevels = buckledLevels;
277 startGuess.energyAbsorption = EnergyAbsorption_F;
278 startGuess.specificEnergyAbsorption =

EnergyAbsorption_F / ...
279 Mass;

XXII

B. Appendix 2 - Matlab code

280

281 guessUpdated = 1;
282

283 disp(startGuess);
284 end
285 end
286

287 % Store data and result
288 StoreData(Mass, 0, startGuess.w, startGuess.N, ...
289 hf, forceLog(end), buckledLevels, startGuess.r, ...
290 EnergyAbsorption_F, testNr, testStructure);
291 testNr = testNr + 1;
292 end
293

294 % Plot and save
295 plotMode.acceptFailure = 1;
296 fig = PlotFactory(5, 10, startTestNr, 0);
297 figName = sprintf('N%.0f w%0.0f r%1.0f', startGuess.N, ...
298 startGuess.w * 10000, startGuess.r*1000);
299 print(fig, strcat('AutoPlots/VaryingHF/', figName), '-dpng');
300

301 fig = PlotFactory(5, 8, startTestNr, 0);
302 figName = sprintf('N%.0f w%0.0f r%1.0f', startGuess.N, ...
303 startGuess.w * 10000, startGuess.r*1000);
304 print(fig, strcat('AutoPlots/VaryingHF/', figName, 'Buckling'), '-

dpng');
305

306 plotMode.acceptFailure = 0;
307 fig = PlotFactory(5, 10, startTestNr, 0);
308 figName = sprintf('N%.0f w%0.0f r%1.0f', startGuess.N, ...
309 startGuess.w * 10000, startGuess.r*1000);
310 print(fig, strcat('AutoPlots/VaryingHF/', figName, 'NoFailure'), '-

dpng')
311

312 fig = PlotFactory(5, 8, startTestNr, 0);
313 figName = sprintf('N%.0f w%0.0f r%1.0f', startGuess.N, ...
314 startGuess.w * 10000, startGuess.r*1000);
315 print(fig, strcat('AutoPlots/VaryingHF/', figName, '

BucklingNoFailure'), '-dpng');
316 close all;
317

318 % Restart the loop
319 if guessUpdated == 1
320 continue;
321 end
322

323 %% Side width
324 fprintf('Varying w \n')
325

326 % Save start test number
327 startTestNr = testNr;
328

329 % Set each level height
330 levelHeights = DescribeLevelHeight(startGuess.hf, startGuess.N,

height);
331

XXIII

B. Appendix 2 - Matlab code

332 % Check if smallest unit cell is large enough
333 if min(levelHeights) < 6 * startGuess.r
334 fprintf(' ERROR! \n');
335 pause(10)
336 end
337

338 for i = 1 : length(w_tests)
339 w = w_tests(i);
340 if w > sideWidth.max
341 % Break if exceeding the maximum
342 continue;
343 elseif w < sideWidth.min
344 % Break if below minimum
345 continue;
346 end
347

348 % Print progress
349 fprintf('w = %.1f mm\n', w*1000);
350

351 % Do the simulation
352 [Mass, EnergyAbsorption, EnergyAbsorption_F, forceLog, ...
353 displacementLog, sigma, epsilon, buckledLevels] = ...
354 SimulateTest(testStructure, levelHeights, ...
355 w, startGuess.r);
356

357 % Evaluate if the tested structure is better then the saved one
358 specificEnergyAbsorption = EnergyAbsorption_F / Mass;
359 if (specificEnergyAbsorption > startGuess.

specificEnergyAbsorption)
360 % Check if structure withstood the force
361 if (forceLog(end) ~= 0)
362 fprintf(' Start guess updated by w!\n');
363

364 % Update the start guess
365 startGuess.w = w;
366 startGuess.mass = Mass;
367 startGuess.sigma = sigma;
368 startGuess.epsilon = epsilon;
369 startGuess.force = forceLog;
370 startGuess.displacement = displacementLog;
371 startGuess.buckledLevels = buckledLevels;
372 startGuess.energyAbsorption = EnergyAbsorption_F;
373 startGuess.specificEnergyAbsorption =

EnergyAbsorption_F / ...
374 Mass;
375

376 guessUpdated = 1;
377

378 disp(startGuess);
379 end
380 end
381

382 % Store data and result
383 StoreData(Mass, 0, w, startGuess.N, ...
384 startGuess.hf, forceLog(end), buckledLevels, startGuess.r,

...

XXIV

B. Appendix 2 - Matlab code

385 EnergyAbsorption_F, testNr, testStructure);
386 testNr = testNr + 1;
387 end
388

389 % Plot and save
390 plotMode.acceptFailure = 1;
391 fig = PlotFactory(3, 10, startTestNr, 0);
392 figName = sprintf('N%.0f r%0.0f hf%1.0f', startGuess.N, ...
393 startGuess.r * 10000, startGuess.hf*10);
394 print(fig, strcat('AutoPlots/VaryingW/', figName), '-dpng');
395

396 fig = PlotFactory(3, 8, startTestNr, 0);
397 figName = sprintf('N%.0f r%0.0f hf%1.0f', startGuess.N, ...
398 startGuess.r * 10000, startGuess.hf*10);
399 print(fig, strcat('AutoPlots/VaryingW/', figName, 'Buckling'), '-

dpng');
400

401 plotMode.acceptFailure = 0;
402 fig = PlotFactory(3, 10, startTestNr, 0);
403 figName = sprintf('N%.0f r%0.0f hf%1.0f', startGuess.N, ...
404 startGuess.r * 10000, startGuess.hf*10);
405 print(fig, strcat('AutoPlots/VaryingW/', figName, 'NoFailure'), '-

dpng');
406

407 fig = PlotFactory(3, 8, startTestNr, 0);
408 figName = sprintf('N%.0f r%0.0f hf%1.0f', startGuess.N, ...
409 startGuess.r * 10000, startGuess.hf*10);
410 print(fig, strcat('AutoPlots/VaryingW/', figName, '

BucklingNoFailure'), '-dpng');
411 close all;
412

413 % Restart the loop
414 if guessUpdated == 1
415 continue;
416 end
417 end
418 end

B.4 Simulate compression test

1 function [M, EnergyAbsorption, EnergyAbsorption_F, F_list, ...
2 displacement_list, sigma, ...
3 epsilon, buckledLevels] = SimulateTest(chosenStructure, ...
4 levelHeights, sideWidth, R)
5 %--
6 % PURPOSE
7 % Simulate a compression test.
8 %
9 % INPUT

10 % levelHeights = [h1, h2, ..., hN] Unit cell height [m]
11 % sideWidth = value Unit cell width [m]
12 % R = value Beam radius [m]
13 %

XXV

B. Appendix 2 - Matlab code

14 % OUTPUT
15 % M = value Mass [kg]
16 % EnergyAbsorption = value Energy absorption (s - e) [J]
17 % EnergyAbsorption_F = value Energy absorption (F - delta) [J]
18 % F_list = array Applied force vector
19 % displacement_list = array Displacement vector
20 % sigma = array Stress vector
21 % epsilon = array Strain vector
22 % buckledLevels = value Number of buckled unit cells
23 %
24 %--
25 % Created by Alexander Olsson & Mattias Naarttijarvi
26 %--
27

28 global E G rho sigma_y height plotMode force
29

30 % Structure
31 % 1 = tetrahedral
32 % 2 = cellulose
33 % 3 = pyramid
34

35 % levelHeights = [l1, l2, ..., ln] in m
36 % sideWidth = x in m
37 % R = x in m, Radius of the beam
38

39 % Forces [N]
40 F = linspace(force.min, force.max, force.steps);
41

42 % Force displacement plot
43 F_list = 0;
44 displacement_list = 0;
45

46 % Anonymous functions
47 % The cross section area
48 A = @(r) pi * r^2;
49

50 % Mass of a beam
51 m = @(area, h, rho) area * h * rho;
52

53 % Area moment of inertia
54 I = @(r, m) (m * r^4)/4;
55

56 % The moment of inertia, local y-axis
57 Iy = @(r, h, m) m * (3 * r^3 + h^2) / 12;
58

59 % The moment of inertia, local z-axis
60 Iz = @(r, h, m) m * (3 * r^3 + h^2) / 12;
61

62 % Saint-Venant's torsion constant
63 Kv = @(r) (pi * r^4) / 2;
64

65 % Material data
66 ep = [E G A(R) Iy(R, 0, 0) Iz(R, 0, 0) Kv(R)];
67

68 % Sought data
69 epsilon = 0;

XXVI

B. Appendix 2 - Matlab code

70 sigma = 0;
71 buckledLevels = 0;
72

73 % Mass of the system
74 [Coord, Edof, Dof, ~, ~, ~] = buildGeometry(...
75 levelHeights, ...
76 sideWidth, ...
77 chosenStructure);
78 [Ex, Ey, Ez] = coordxtr(Edof, Coord, Dof, 2);
79 M = CalcMass(Ex, Ey, Ez, A(R));
80

81 % Step forces
82 f_active = F(1);
83 i = 0;
84 while f_active < force.max
85 % Increase the step
86 i = i + 1;
87 f_active = F(i);
88

89 % Create the geometry
90 if i == 1
91 %fprintf('Building geometry of height %f m \n', sum(

levelHeights))
92 [Coord, Edof, Dof, unitForce, bc, ~] = buildGeometry(...
93 levelHeights, ...
94 sideWidth, ...
95 chosenStructure);
96 end
97

98 % Active force
99 f = unitForce .* f_active;

100

101 % Solve the stucture
102 [a, ~, Ex, Ey, Ez] = ...
103 SolveStructure(Coord, Edof, Dof, f, bc, ep, R);
104

105 % Store result for force - displacement plot
106 F_list = [F_list, f_active];
107 displacement = height - sum(levelHeights) - a(end - 3);
108 displacement_list = [displacement_list, displacement];
109

110 % Get section forces and displacements
111 Ed = extract(Edof, a);
112 eo = [0, 0, 1]; % Orientation of local z axis
113 eq = [0, 0, 0, 0]; % No distributed load
114 epsilon_test = zeros(length(Ex), 1);
115 sigma_test = zeros(length(Ex), 1);
116

117 % Check if level has buckled
118 buckled = 0;
119

120 for elementNr = 1 : length(Ex)
121 % Beam data
122 ed = Ed(elementNr, :);
123

124 % Position

XXVII

B. Appendix 2 - Matlab code

125 ex = Ex(elementNr, :);
126 ex_0 = Ex(elementNr, :) + [ed(1), ed(7)];
127 ey = Ey(elementNr, :);
128 ey_0 = Ey(elementNr, :) + [ed(2), ed(8)];
129 ez = Ez(elementNr, :);
130 ez_0 = Ez(elementNr, :) + [ed(3), ed(9)];
131

132 % Undeformed beam length
133 beamLength_0 = sqrt((ex_0(2) - ex_0(1))^2 + ...
134 (ey_0(2) - ey_0(1))^2 + ...
135 (ez_0(2) - ez_0(1))^2);
136

137 % Deformed beam length
138 beamLength = sqrt((ex(2) - ex(1))^2 + ...
139 (ey(2) - ey(1))^2 + ...
140 (ez(2) - ez(1))^2);
141

142 % Mass
143 beamMass = m(A(R), beamLength_0, rho);
144

145 % Section forces along beam local x-axis
146 % es = [N1 Vy1 Vz1 T1 My1 Mz1;
147 % N2 Vy2 Vz2 T2 My2 Mz2]
148

149 % Displacements
150 % edi = [u1 v1 w1 fi1;
151 % u2 v2 w2 fi2]
152

153 % Local x-coordinates for evaluation points
154 % eci = [x1, x2]'
155 ep = [E G A(R) Iy(R, beamLength, beamMass) Iz(R, beamLength,

...
156 beamMass) Kv(R)];
157 [es, ~, ~] = beam3s(ex, ey, ez, eo, ep, ed, eq, 2);
158

159 % Difference in deformed and undeformed beam length
160 beamLength_delta = beamLength - beamLength_0;
161 beamStrain = beamLength_delta / beamLength_0;
162 % beamStress = E * beamStrain;
163 beamNormalForce = -es(1, 1);
164 beamStress = beamNormalForce / (pi * R^2);
165

166 % Strain
167 epsilon_test(elementNr) = beamStrain;
168 if beamStress > sigma_y
169 % Elastic perfectly plastic
170 sigma_test(elementNr) = sigma_y;
171 else
172 % Elastic
173 sigma_test(elementNr) = beamStress;
174 end
175

176 % Buckling case 4, fixed in both ends
177 Pk = 4 * pi^2 * E * I(R, beamMass) / (beamLength^2);
178 if beamNormalForce > Pk
179 % Critical load exceeded

XXVIII

B. Appendix 2 - Matlab code

180

181 % Remove top layer
182 nrOfLevels = length(levelHeights);
183 levelHeights(nrOfLevels) = [];
184

185 % Print progress
186 if plotMode.progress == 1
187 fprintf(' Level nr %1.0f has buckled at F = %1.2f N \

n', ...
188 nrOfLevels, F(i));
189 end
190

191 % Break loop and begin force at force.min again
192 i = 0;
193 buckled = 1;
194 buckledLevels = buckledLevels + 1;
195 break;
196 end
197

198 % Break if all levels have buckeled
199 if isempty(levelHeights)
200 break;
201 elseif buckled == 1
202 break;
203 end
204 end
205

206 % Break if all levels have buckeled
207 if isempty(levelHeights)
208 break;
209 end
210

211 % Store results
212 if sum(epsilon_test) > 0
213 epsilon = [epsilon, sum(epsilon_test)];
214 sigma = [sigma, sum(sigma_test)];
215 end
216 end
217

218 % All layers have buckled
219 if i == 0
220 fprintf(' All unit cells have buckeled!\n');
221 i = 1;
222 F_list(end) = 0;
223 end
224

225 % Calculate energy absorption
226 [EnergyAbsorption, ~] = CalcEnergyAbsorption(sigma, epsilon);
227 [EnergyAbsorption_F, E_list_F] = ...
228 CalcEnergyAbsorption(F_list, displacement_list);
229

230 % Plots
231 if plotMode.results == 1
232 % Sigma epsilon curve
233 figure(4)
234 plot(epsilon, sigma, '-'), hold on;

XXIX

B. Appendix 2 - Matlab code

235 xlabel('\epsilon')
236 ylabel('\sigma')
237 set(gca, 'fontsize', 18)
238

239 % Energy curve
240 figure(5)
241 subplot(1, 2, 1);
242 plot(E_list_F, displacement_list, '-'), hold on;
243 subplot(1, 2, 2);
244 plot(E_list_F, F_list, '--'), hold on;
245 ylabel('Energy [J]')
246 set(gca, 'fontsize', 18)
247

248 % Force vs displacement curve
249 figure(6)
250 plot(displacement_list, F_list), hold on;
251 xlabel('Displacement [m]');
252 ylabel('Force [N]');
253 set(gca, 'fontsize', 18)
254 end
255 end

B.5 Solve FEM problem

1 function [a, r, Ex, Ey, Ez] = SolveStructure(Coord, Edof, Dof, f, bc,
ep, R)

2 %--
3 % PURPOSE
4 % Solve the FEM problem.
5 %
6 % INPUT
7 % Coord = Coordinate matrix
8 % Edof = Element degree of freedom
9 % Dof = Degree of freedom

10 % f = Force vector
11 % bc = Boundary condition vector
12 % ep = Material data
13 % R = Beam radius [m]
14 %
15 % OUTPUT
16 % a = Displacement vector
17 % r = Reaction forces
18 % Ex = x coordinates
19 % Ey = y coordinates
20 % Ez = z coordinates
21 %
22 %--
23 % Created by Alexander Olsson & Mattias Naarttijarvi
24 %--
25

26 global rho
27 % ep = [E G A Iy Iz Kv]
28

XXX

B. Appendix 2 - Matlab code

29 % Size of the system
30 nnodes = length(Coord); % Number of elements
31 s = size(Edof);
32 nel = s(1);
33 ndeg = 6; % Number of degrees of freedom per

node
34 ndof = nnodes * ndeg; % Number of degrees of freedom
35

36 % System matrices
37 K = zeros(ndof, ndof);
38

39 % Beam parameters
40 A = @(r) pi * r^2; % The cross section area
41 m = @(area, h, rho) area * h * rho; % Mass of a beam
42

43 % The moment of inertia
44 Iy = @(r, h, m) m * ...
45 (3 * r^3 + h^2) / 12;
46 Iz = @(r, h, m) m * (3 * r^3 + h^2) / 12;
47

48 % Element properties, topology and coordinates
49 eo = [0, 0, 1]; % Orientation of z axis [xz yz zz]
50 eq = [0, 0, 0, 0]; % Distributed load [qx qy qz qw]
51

52 % Extract coordinates
53 [Ex, Ey, Ez] = coordxtr(Edof, Coord, Dof, 2);
54

55 % Assemple element matrices
56 for i = 1 : nel
57 % Length of each beam
58 beamLength = sqrt((Ex(i, 2) - Ex(i, 1))^2 + ...
59 (Ey(i, 2) - Ey(i, 1))^2 + ...
60 (Ez(i, 2) - Ez(i, 1))^2);
61 beamMass = m(A(R), beamLength, rho);
62 ep(4) = Iy(R, beamLength, beamMass);
63 ep(5) = Iz(R, beamLength, beamMass);
64

65 % Assemble
66 [Ke, fe] = beam3e(Ex(i, :), Ey(i, :), Ez(i, :), eo, ep, eq);
67 [K, f] = assem(Edof(i, :), K, Ke, f, fe);
68 end
69

70 % Solve
71 [a, r] = solveq(K, f, bc);
72 end

B.6 Minor functions

B.6.1 Mass of the structure

1 function m = CalcMass(Ex, Ey, Ez, A)
2 %--
3 % PURPOSE

XXXI

B. Appendix 2 - Matlab code

4 % Calculate the mass of the entire structure.
5 %
6 % INPUT
7 % Ex = x coodinates
8 % Ey = y coodinates
9 % Ez = z coodinates

10 % A = Cross sectional area [m^2]
11 %
12 %
13 % OUTPUT
14 % m = Mass [kg]
15 %
16 %--
17 % Created by Alexander Olsson & Mattias Naarttijarvi
18 %--
19

20 m = 0;
21 s = size(Ex);
22 for i = 1 : s(1)
23 % Length of one beam
24 lb = sqrt((Ex(i, 2) - Ex(i, 1))^2 + ...
25 (Ey(i, 2) - Ey(i, 1))^2 + ...
26 (Ez(i, 2) - Ez(i, 1))^2);
27

28 % Mass of a beam
29 mb = lb * A;
30

31 % Total mass of all beams
32 m = m + mb;
33 end
34 end

B.6.2 Energy absorption

1 function [E, E_list] = CalcEnergyAbsorption(yValues, xValues)
2 %--
3 % PURPOSE
4 % Calculate energy absorption by integrating the input values.
5 %
6 % INPUT
7 % yValue = Array
8 % xValue = Array
9 %

10 % OUTPUT
11 % E = Energy absorption
12 % E_list = Energy absorption array in each step
13 %
14 %--
15 % Created by Alexander Olsson & Mattias Naarttijarvi
16 %--
17

18 % Integrate the stress strain curve
19 E = 0;
20 E_list = zeros(1, length(yValues));

XXXII

B. Appendix 2 - Matlab code

21 for i = 2 : length(yValues)
22 y1 = yValues(i - 1);
23 y2 = yValues(i);
24 x1 = xValues(i - 1);
25 x2 = xValues(i);
26

27 if x2 > x1
28 % No buckling
29 deltaY = (y2 + y1) / 2;
30 deltaX = x2 - x1;
31

32 E = E + deltaY * deltaX;
33 else
34 % Buckling occured here, take next value
35 deltaX = 0;
36 deltaY = 0;
37 end
38

39 % Store energy for every case
40 E_list(i) = deltaY * deltaX;
41 end
42 end

B.6.3 Unit cell height

1 function levelHeights = DescribeLevelHeight(hf, N, htot)
2 %--
3 % PURPOSE
4 % Build the pyramid geometry.
5 %
6 % INPUT
7 % hf = Value Height factor
8 % N = Value Number of unit cells
9 % htot = Value Total height [m]

10 %
11 % OUTPUT
12 % levelHeights = [h1, h2, ..., hN]
13 %
14 %--
15 % Created by Mattias Naarttijarvi
16 %--
17

18 hf_sum = 0;
19 for i = 0 : N - 1
20 hf_sum = hf_sum + hf^i;
21 end
22

23 % First level height
24 h1 = htot / hf_sum;
25

26 % Calculate the height variations
27 levelHeights = zeros(N, 1);
28 for i = 1 : N
29 levelHeights(i) = h1 * hf^(i - 1);

XXXIII

B. Appendix 2 - Matlab code

30 end
31 end

B.7 Build geometries

B.7.1 Geometry factory

1 function [Coord, Edof, Dof, f, bc, nodes] = buildGeometry(H, W, G)
2 %--
3 % PURPOSE
4 % Build the tetrahedron geometry.
5 %
6 % INPUT
7 % H = [h1, h2, ..., hn] Unit cell heights [m]
8 % W = value Width [m]
9 % G = Geometry

10 % 1 = Tetrahedral
11 % 2 = Cellulose
12 % 3 = Pyramid
13 % 4 = Cube
14 %
15 % OUTPUT
16 % Coord = [x1, y1; x2, y2; ...; xn, yn]
17 % Edof = Element degree of freedom matrix
18 % Dof = Degree of freedom
19 % f = Force vector
20 % bc = Boundary condition vector
21 % nodes = Structure for the geometry
22 %
23 %--
24 % Created by Alexander Olsson & Mattias Naarttijarvi
25 %--
26

27 % Create the geometry
28 if G == 1
29 % Tetrahedral
30 [Coord, Edof, Dof, f, bc, nodes] = ...
31 DoTetrahedralGeometry(H, W);
32 elseif G == 2
33 % Cellulose
34 [Coord, Edof, Dof, f, bc, nodes] = ...
35 DoCellularGeometry(H, W);
36 elseif G == 3
37 % Pyramid
38 [Coord, Edof, Dof, f, bc, nodes] = ...
39 DoPyramidGeometry(H, W);
40 elseif G == 4
41 % Cube
42 [Coord, Edof, Dof, f, bc, nodes] = ...
43 DoCubeGeometry(H, W);
44 end
45 end

XXXIV

B. Appendix 2 - Matlab code

B.7.2 Tetrahedron

1 function [Coord, Edof, Dof, f, bc, nodes] = DoTetrahedralGeometry(...
2 levelHeights, sideElementWidth)
3 %--
4 % PURPOSE
5 % Build the tetrahedron geometry.
6 %
7 % INPUT
8 % levelHeights = [h1, h2, ..., hn] [m]
9 % sideElementWidth = value [m]

10 %
11 % OUTPUT
12 % Coord = [x1, y1; x2, y2; ...; xn, yn]
13 % Edof = Element degree of freedom matrix
14 % Dof = Degree of freedom
15 % f = Force vector
16 % bc = Boundary condition vector
17 % nodes = Structure for the geometry
18 %
19 %--
20 % Created by Alexander Olsson & Mattias Naarttijarvi
21 %--
22

23 % Initialize
24 nrOfLevels = length(levelHeights);
25 accumulatedHeight = 0;
26 nodeNr = 1;
27 dofNr = 1;
28 bcNr = 1;
29 nedof = 6;
30 nnodes = (8 * nrOfLevels + 4);
31 ndof = nnodes * nedof;
32

33 % Pre dimensionlize
34 f = zeros(ndof, 1);
35 Coord = zeros(nnodes, 3);
36 Dof = zeros(nnodes, nedof);
37

38 % Create each layer
39 for i = 0 : nrOfLevels - 1
40 for iz = 1 : 2
41 for iy = 1 : 4
42 for ix = 1 : 4
43 connections = [];
44 noNode = 0;
45 if iz == 1
46 % First level, base of tetrahedrals
47 if ix == 1 && iy == 1
48 % 1
49 connections = [...
50 nodeNr + 1, ...
51 nodeNr + 2, ...
52 nodeNr + 4

XXXV

B. Appendix 2 - Matlab code

53];
54 elseif ix == 3 && iy == 1
55 % 2
56 connections = [...
57 nodeNr + 1, ...
58 nodeNr + 2, ...
59 nodeNr + 3, ...
60 nodeNr + 4
61];
62 elseif ix == 2 && iy == 3
63 % 3
64 connections = [...
65 nodeNr + 1, ...
66 nodeNr + 2, ...
67 nodeNr + 3, ...
68 nodeNr + 4, ...
69 nodeNr + 5
70];
71 elseif ix == 4 && iy == 3
72 % 4
73 connections = [...
74 nodeNr + 2, ...
75 nodeNr + 4
76];
77 else
78 noNode = 1;
79 end
80 elseif iz == 2
81 % Middle level
82 if ix == 2 && iy == 2
83 % 5
84 connections = [...
85 nodeNr + 1, ...
86 nodeNr + 2, ...
87 nodeNr + 3, ...
88 nodeNr + 4, ...
89 nodeNr + 5
90];
91 elseif ix == 4 && iy == 2
92 % 6
93 connections = [...
94 nodeNr + 2, ...
95 nodeNr + 4
96];
97 elseif ix == 1 && iy == 4
98 % 7
99 connections = [...

100 nodeNr + 1, ...
101 nodeNr + 2, ...
102 nodeNr + 3, ...
103 nodeNr + 4
104];
105 elseif ix == 3 && iy == 4
106 % 8
107 connections = [...
108 nodeNr + 2, ...

XXXVI

B. Appendix 2 - Matlab code

109 nodeNr + 3, ...
110 nodeNr + 4
111];
112 else
113 noNode = 1;
114 end
115 else
116 % Failsafe
117 noNode = 1;
118 end
119

120 if noNode == 0
121 % Boundary conditions
122 if i == 0 && iz == 1
123 % Floor
124 bc(bcNr, :) = [dofNr + 2, 0];
125 bcNr = bcNr + 1;
126 end
127

128 % Set up node with connections, coordinates and dof
129 node.x = (ix - 1) / 4 * sideElementWidth;
130 node.y = (iy - 1) / 4 * sideElementWidth;
131 node.z = accumulatedHeight + ...
132 (iz - 1) / 2 * levelHeights(i + 1);
133 node.dof = dofNr : dofNr + nedof - 1;
134 node.connections = sort(connections);
135 node.color = 'o blue';
136

137 Coord(nodeNr, :) = [node.x, node.y, node.z];
138 nodes(nodeNr) = node;
139 Dof(nodeNr, :) = dofNr : dofNr + nedof - 1;
140

141 % Increase indication
142 nodeNr = nodeNr + 1;
143 dofNr = dofNr + nedof;
144 end
145 end
146 end
147 end
148

149 accumulatedHeight = accumulatedHeight + ...
150 levelHeights(i + 1);
151 end
152

153 % Set top level, where the load is applied
154 for iy = 1 : 2
155 for ix = 1 : 4
156 connections = [];
157 noNode = 0;
158 if ix == 1 && iy == 1
159 % 9
160 connections = [...
161 nodeNr + 1, ...
162 nodeNr + 2
163];
164 elseif ix == 3 && iy == 1

XXXVII

B. Appendix 2 - Matlab code

165 % 10
166 connections = [...
167 nodeNr + 1, ...
168 nodeNr + 2
169];
170 elseif ix == 2 && iy == 2
171 % 11
172 connections = [nodeNr + 1];
173 elseif ix == 4 && iy == 2
174 % 12
175 connections = [];
176 else
177 noNode = 1;
178 end
179

180 if noNode == 0
181 % Set applied load
182 f(dofNr + 2) = 1;
183

184 % Set up node with connections, coordinates and dof
185 node.x = (ix - 1) / 4 * sideElementWidth;
186 node.y = (iy - 1) / 2 * sideElementWidth;
187 node.z = sum(levelHeights);
188 node.dof = dofNr : dofNr + nedof - 1;
189 node.connections = sort(connections);
190 node.color = 'o blue';
191

192 Coord(nodeNr, :) = [node.x, node.y, node.z];
193 nodes(nodeNr) = node;
194 Dof(nodeNr, :) = dofNr : dofNr + nedof - 1;
195

196 % Increase indication
197 nodeNr = nodeNr + 1;
198 dofNr = dofNr + nedof;
199 end
200 end
201 end
202

203 % Elements
204 EdofNr = 1;
205 elNr = 1;
206 for i = 1:length(nodes)
207 node = nodes(i);
208 for j = 1:length(node.connections)
209 connectNode = nodes(node.connections(j));
210 if i < node.connections(j)
211 Edof(EdofNr,:) = [EdofNr node.dof connectNode.dof];
212 EdofNr = EdofNr + 1;
213 element.connections = [i, node.connections(j)];
214 element.dof = [Dof(i,:),Dof(node.connections(j),:)];
215 Elements(elNr) = element;
216 elNr = elNr + 1;
217 end
218 end
219 end
220

XXXVIII

B. Appendix 2 - Matlab code

221 nrOfAppliedLoadNodes = sum(f);
222 f = -f / nrOfAppliedLoadNodes;
223

224 % Dirchlet boundary conditions on all nodes
225 nDof = length(Coord)*6;
226 Dirchlet.x = 1 : 6 : nDof;
227 Dirchlet.y = 2 : 6 : nDof;
228 Dirchlet.rx = 4 : 6 : nDof;
229 Dirchlet.ry = 5 : 6 : nDof;
230 Dirchlet.rz = 6 : 6 : nDof;
231

232 % Append bc
233 for i_bc = 1 : length(Dirchlet.x)
234 bc_length = length(bc);
235 bc(bc_length + 1, :) = [Dirchlet.x(i_bc), 0];
236 bc(bc_length + 2, :) = [Dirchlet.y(i_bc), 0];
237 bc(bc_length + 3, :) = [Dirchlet.rx(i_bc), 0];
238 bc(bc_length + 4, :) = [Dirchlet.ry(i_bc), 0];
239 bc(bc_length + 5, :) = [Dirchlet.rz(i_bc), 0];
240 end
241

242 end

B.7.3 Cellulose

1 function [Coord, Edof, Dof, f, bc, nodes] = ...
2 DoCellularGeometry(levels, sideElementWidth)
3 %--
4 % PURPOSE
5 % Build the cellulose geometry.
6 %
7 % INPUT
8 % levelHeights = [h1, h2, ..., hn] [m]
9 % sideElementWidth = value [m]

10 %
11 % OUTPUT
12 % Coord = [x1, y1; x2, y2; ...; xn, yn]
13 % Edof = Element degree of freedom matrix
14 % Dof = Degree of freedom
15 % f = Force vector
16 % bc = Boundary condition vector
17 % nodes = Structure for the geometry
18 %
19 %--
20 % Created by Alexander Olsson
21 %--
22

23 % Initialize
24 columns = 2;
25 rows = 2;
26 level = 2*length(levels);
27 nodeNr = 1;
28 dofNr = 1;
29 bcNr = 1;

XXXIX

B. Appendix 2 - Matlab code

30 nedof = 6;
31 ndof = (rows - 1)*(columns - 1)*level * 8 * 6;
32

33 f = zeros(ndof,1);
34 accumulatedHeight = 0;
35

36 % Construct nodes
37 for i = 0 : level - 1
38 if mod(i, 2) == 0
39 startX = 0;
40 for l = 0 : 1
41 for j = 0 : columns - 1
42 for k = 0 : rows - 1
43 connections = [];
44 % Boundaries
45 if j == 0
46 % Left
47 if k == 0
48 % Bottom, j == 0
49 if l == 0
50 if i == 0
51 connections = [nodeNr + 1, nodeNr +

...
52 rows, nodeNr + columns * rows];
53 else
54 connections = [nodeNr + 1, nodeNr +

...
55 rows * columns];
56 end
57 else
58 % l == 1;
59 if i < level - 1
60 connections = [nodeNr + 1, nodeNr +

...
61 columns * rows];
62 else
63 connections = [nodeNr + 1, nodeNr +

...
64 rows];
65 end
66 end
67 elseif k == rows - 1
68 % Top, j == 0
69 if l == 0
70 if i == 0
71 connections = [nodeNr + rows,

nodeNr ...
72 + columns * rows];
73 else
74 connections = nodeNr + columns *

rows;
75 end
76 else
77 % l == 1;
78 if i < level - 1
79 connections = nodeNr + columns *

XL

B. Appendix 2 - Matlab code

rows;
80 else
81 connections = nodeNr + rows;
82 end
83 end
84

85 else
86 % Middle, j == 0
87 connections = nodeNr + 1;
88 if l == 0
89 if i == 0
90 connections = [connections, nodeNr

...
91 + rows, nodeNr + columns * rows

];
92 else
93 connections = [connections, nodeNr +

...
94 columns * rows];
95 end
96 else
97 % l == 1, j == 0
98 if i < level-1
99 connections = [connections, nodeNr

+ ...
100 columns * rows];
101 else
102 connections = [connections, nodeNr

+ ...
103 rows];
104 end
105 end
106 end
107 elseif j == columns - 1
108 % j == columns - 1
109 % Right side
110 if k ~= rows-1
111 % Top, j == columns - 1
112 if l == 0
113 connections = [nodeNr + 1, nodeNr + ...
114 columns * rows];
115 else
116 % l == 1;
117 if i < level - 1
118 connections = [nodeNr + 1,nodeNr +

...
119 rows * columns - rows, ...
120 nodeNr + columns * rows];
121 else
122 connections = nodeNr + 1;
123 end
124 end
125

126 else
127 if l == 0
128 connections = nodeNr + rows * columns;

XLI

B. Appendix 2 - Matlab code

129 else
130 if i < level - 1
131 connections = [nodeNr + columns *

...
132 rows - rows, nodeNr + rows *

...
133 columns];
134 else
135 % No more connections
136 end
137 end
138 end
139 else
140 % Middle columns
141 if k ~= rows - 1 % top, j == columns - 1
142 if l == 0
143 if i == 0
144 connections = [nodeNr + 1, nodeNr +

...
145 rows, nodeNr + columns * rows];
146 else
147 connections = [nodeNr + 1, nodeNr +

...
148 columns * rows];
149 end
150

151 else
152 % l == 1;
153 if i < level - 1
154 connections = [nodeNr + 1, nodeNr +

...
155 rows * columns - rows, nodeNr +

...
156 columns * rows];
157 else
158 connections = [nodeNr + 1, nodeNr +

...
159 rows];
160 end
161 end
162

163 else
164 % Top row in middle columns
165 if l == 0
166 if i == 0
167 connections = [nodeNr + rows * ...
168 columns, nodeNr + rows];
169 else
170 connections = nodeNr + rows *

columns;
171 end
172 else
173 if i < level - 1
174 connections = [nodeNr + columns *

...
175 rows - rows, nodeNr + rows *

XLII

B. Appendix 2 - Matlab code

...
176 columns];
177 else
178 connections = nodeNr + rows;
179 end
180 end
181 end
182 end
183

184 % Boundary conditions
185 if i == 0
186 bc(bcNr, :) = [dofNr + 2, 0];
187 bcNr = bcNr + 1;
188 end
189

190 % Applied load
191 if i == level - 1
192 f(dofNr + 2) = 1; % Fz
193 end
194

195 levelHeight = levels(ceil((i + 1) / 2)) / 2;
196

197 %Set up the node with coordinates and dof
198 node.y = sideElementWidth * k;
199 node.x = j * sideElementWidth + startX;
200 node.z = accumulatedHeight + l * levelHeight;
201 node.dof = dofNr : dofNr + nedof - 1;
202 node.connections = sort(connections);
203 Dof(nodeNr,:) = dofNr : dofNr + nedof - 1;
204 node.color = 'o blue';
205 Coord(nodeNr,:) = [node.x, node.y, node.z];
206 nodes(nodeNr) = node;
207 nodeNr = nodeNr + 1;
208 dofNr = dofNr + nedof;
209

210 end
211 end
212 end
213 else
214 %------------------------ Next plane

-----------------------------%
215 startX = sideElementWidth / 2;
216 for l = 0 : 1
217 for j = 0 : columns - 1
218 for k = 0 : rows - 1
219 connections = [];
220 % Boundaries
221 if j == 0
222 % Left
223 if k == 0
224 % Bottom, j == 0
225 if l == 0
226 connections = [nodeNr + 1, nodeNr + ...
227 columns * rows];
228 else
229 if i < level - 1

XLIII

B. Appendix 2 - Matlab code

230 connections = [nodeNr + 1, nodeNr +
...

231 rows * columns, nodeNr + rows +
...

232 rows * columns];
233 else
234 connections = [nodeNr + 1, nodeNr +

...
235 rows];
236 end
237 end
238 elseif k == rows - 1
239 % Top, j == 0
240 if l == 0
241 connections = nodeNr + columns * rows;
242 else
243 if i < level - 1
244 connections = [nodeNr + rows * ...
245 columns, nodeNr + rows + rows *

...
246 columns];
247 else
248 connections = nodeNr + rows;
249 end
250 end
251

252 else
253 % Middle, j == 0
254 if l == 0
255 connections =[nodeNr + 1, nodeNr + ...
256 columns * rows];
257 else
258 % l == 1, j == 0
259 if i < level - 1
260 connections = [nodeNr + 1, nodeNr +

...
261 columns * rows, nodeNr + ...
262 columns * rows + rows];
263 else
264 connections = [nodeNr + 1, ...
265 nodeNr + rows];
266 end
267 end
268 end
269 elseif j == columns - 1
270 % Right side
271 if k == 0
272 % Bottom
273 if l == 0
274 connections = [nodeNr + 1, nodeNr + ...
275 columns * rows];
276 else
277 if i < level - 1
278 connections = [nodeNr + 1, nodeNr +

...
279 columns * rows];

XLIV

B. Appendix 2 - Matlab code

280 else
281 connections = nodeNr + 1;
282 end
283 end
284 elseif k == rows - 1
285 % Top, j == columns-1
286 if l == 0
287 connections = nodeNr + columns * rows;
288 else
289 if i < level - 1
290 connections = nodeNr + rows *

columns;
291 else
292 % We are at the top and have no

further
293 % connections
294 end
295 end
296 else
297 % Middle rows in j == columns-1
298 if l == 0
299 connections = [nodeNr + 1, nodeNr +

rows ...
300 * columns];
301 else
302 if i < level - 1
303 connections = [nodeNr + 1, nodeNr +

...
304 columns * rows];
305 else
306 connections = nodeNr + 1;
307 end
308 end
309 end
310 else
311 % Middle columns
312 if k ~= rows - 1
313 if l == 0
314 connections = [nodeNr + 1, nodeNr + ...
315 rows * columns];
316 else
317 if i < level - 1
318 connections = [nodeNr + 1, nodeNr +

...
319 rows * columns, nodeNr + rows *

...
320 columns + rows];
321 else
322 connections = [nodeNr + 1, nodeNr +

...
323 rows];
324 end
325 end
326 else
327 % We are in top row in middle columns
328 if l == 0

XLV

B. Appendix 2 - Matlab code

329 connections = nodeNr + rows * columns;
330 else
331 % l== 1 in middle columns top row
332 if i < level - 1
333 connections = [nodeNr + columns *

...
334 rows, nodeNr + columns * rows

...
335 + rows];
336 else
337 connections = nodeNr + rows;
338 end
339 end
340 end
341 end
342

343 % Applied load
344 if i == level - 1
345 f(dofNr + 2) = 1; % Fz
346 end
347 levelHeight = levels(ceil((i + 1) / 2)) / 2;
348

349 % Set up the node with coordinates and dof
350 node.y = sideElementWidth * k;
351 node.x = j * sideElementWidth + startX;
352 node.z = accumulatedHeight + l * levelHeight;
353 node.dof = dofNr : dofNr + 5;
354 Dof(nodeNr,:) = dofNr : dofNr + 5;
355 node.color = 'o red';
356 Coord(nodeNr,:) = [node.x ,node.y, node.z];
357 node.connections = sort(connections);
358 nodes(nodeNr) = node;
359 nodeNr = nodeNr + 1;
360 dofNr = dofNr + nedof;
361 end
362 end
363 end
364 end
365 accumulatedHeight = accumulatedHeight + levels(ceil((i + 1) / 2))

/2;
366 end
367 EdofNr = 1;
368 for i = 1 : length(nodes)
369 node = nodes(i);
370 for j = 1 : length(node.connections)
371 connectNode = nodes(node.connections(j));
372 if i < node.connections(j)
373 Edof(EdofNr, :) = [EdofNr node.dof connectNode.dof];
374 EdofNr = EdofNr + 1;
375 element.connections = [i, node.connections(j)];
376 element.dof = [Dof(i, :), Dof(node.connections(j), :)];
377 end
378 end
379 end
380

381 % Force

XLVI

B. Appendix 2 - Matlab code

382 nrOfAppliedLoadNodes = sum(f);
383 f = -f / nrOfAppliedLoadNodes;
384

385 % Dirchlet bouncary condition
386 nDof = length(Coord)*6;
387 Dirchlet.x = 1 : 6 : nDof;
388 Dirchlet.y = 2 : 6 : nDof;
389 Dirchlet.rx = 4 : 6 : nDof;
390 Dirchlet.ry = 5 : 6 : nDof;
391 Dirchlet.rz = 6 : 6 : nDof;
392

393 % Append bc
394 for i_bc = 1 : length(Dirchlet.x)
395 bc_length = length(bc);
396 bc(bc_length + 1, :) = [Dirchlet.x(i_bc), 0];
397 bc(bc_length + 2, :) = [Dirchlet.y(i_bc), 0];
398 bc(bc_length + 3, :) = [Dirchlet.rx(i_bc), 0];
399 bc(bc_length + 4, :) = [Dirchlet.ry(i_bc), 0];
400 bc(bc_length + 5, :) = [Dirchlet.rz(i_bc), 0];
401 end

B.7.4 Pyramid

1 function [Coord, Edof, Dof, f, bc, nodes] = DoPyramidGeometry(...
2 levelHeights, sideElementWidth)
3 %--
4 % PURPOSE
5 % Build the pyramid geometry.
6 %
7 % INPUT
8 % levelHeights = [h1, h2, ..., hn] [m]
9 % sideElementWidth = value [m]

10 %
11 % OUTPUT
12 % Coord = [x1, y1; x2, y2; ...; xn, yn]
13 % Edof = Element degree of freedom matrix
14 % Dof = Degree of freedom
15 % f = Force vector
16 % bc = Boundary condition vector
17 % nodes = Structure for the geometry
18 %
19 %--
20 % Created by Mattias Naarttijarvi
21 %--
22

23

24 % Initialize
25 nrOfLevels = length(levelHeights);
26 accumulatedHeight = 0;
27 nodeNr = 1;
28 dofNr = 1;
29 bcNr = 1;
30 nedof = 6;
31 nnodes = (9 * nrOfLevels + 4);

XLVII

B. Appendix 2 - Matlab code

32 ndof = nnodes * nedof;
33

34 % Pre dimensionlize
35 f = zeros(ndof, 1);
36 Coord = zeros(nnodes, 3);
37 Dof = zeros(nnodes, nedof);
38

39 % Create each layer
40 for i = 0 : nrOfLevels - 1
41 for iz = 1 : 2
42 for iy = 1 : 3
43 for ix = 1 : 3
44 connections = [];
45 noNode = 0;
46 if iz == 1
47 % Square level, base of pyramid
48 if iy == 1 && ix == 1
49 % First corner
50 connections = [...
51 nodeNr + 1, ... % Next corner
52 nodeNr + 2, ... % Previous corner
53 nodeNr + 6, ... % Center of next level
54 nodeNr + 4]; % Diagonal beam
55 elseif iy == 1 && ix == 3
56 % Second corner
57 connections = [...
58 nodeNr + 2, ... % Next corner
59 nodeNr + 5, ... % Center of next level
60 nodeNr + 6]; % Diagonal beam
61 elseif iy == 3 && ix == 1
62 % Third corner
63 connections = [...
64 nodeNr + 1, ... % Next corner
65 nodeNr + 4, ... % Center of next level
66 nodeNr + 3]; % Diagonal beam
67 elseif iy == 3 && ix == 3
68 % Forth corner
69 connections = [...
70 nodeNr + 3, ... % Center of next level
71 nodeNr + 5]; % Diagonal beam
72 else
73 noNode = 1;
74 end
75 elseif iz == 2
76 % Middle level, top of pyramid
77 if iy == 1 && ix == 2
78 connections = [nodeNr + 6];
79 elseif iy == 2 && ix == 1
80 connections = [nodeNr + 4];
81 elseif iy == 2 && ix == 2
82 % Center node
83 connections = [...
84 nodeNr + 3, ...
85 nodeNr + 4, ...
86 nodeNr + 5, ...
87 nodeNr + 6];

XLVIII

B. Appendix 2 - Matlab code

88 elseif iy == 2 && ix == 3
89 connections = [nodeNr + 5];
90 elseif iy == 3 && ix == 2
91 connections = [nodeNr + 3];
92 else
93 noNode = 1;
94 end
95 else
96 noNode = 1;
97 end
98

99 if noNode == 0
100 % Boundary conditions
101 if i == 0 && iz == 1
102 % Floor
103 bc(bcNr, :) = [dofNr + 2, 0];
104 bcNr = bcNr + 1;
105 end
106 if ix ~= 2 && iy ~= 2
107 % Dirchlet boundary conditions at edge nodes
108 bc(bcNr, :) = [dofNr, 0];
109 bc(bcNr + 1, :) = [dofNr + 1, 0];
110 bc(bcNr + 2, :) = [dofNr + 3, 0];
111 bc(bcNr + 3, :) = [dofNr + 4, 0];
112 bc(bcNr + 4, :) = [dofNr + 5, 0];
113 bcNr = bcNr + 5;
114 end
115

116 % Set up node with connections, coordinates and dof
117 node.x = (ix - 1) / 2 * sideElementWidth;
118 node.y = (iy - 1) / 2 * sideElementWidth;
119 node.z = accumulatedHeight + ...
120 (iz - 1) / 2 * levelHeights(i + 1);
121 node.dof = dofNr : dofNr + nedof - 1;
122 node.connections = sort(connections);
123 node.color = 'o blue';
124

125 Coord(nodeNr, :) = [node.x, node.y, node.z];
126 nodes(nodeNr) = node;
127 Dof(nodeNr, :) = dofNr : dofNr + nedof - 1;
128

129 % Increase indication
130 nodeNr = nodeNr + 1;
131 dofNr = dofNr + nedof;
132 end
133 end
134 end
135 end
136

137 accumulatedHeight = accumulatedHeight + ...
138 levelHeights(i + 1);
139 end
140

141 % Set top level, where the load is applied
142 for iy = 1 : 2
143 for ix = 1 : 2

XLIX

B. Appendix 2 - Matlab code

144 connections = [];
145 if ix == 1 && iy == 1
146 % First corner
147 connections = [...
148 nodeNr + 1, ...
149 nodeNr + 2];
150 elseif ix == 1 && iy == 2
151 connections = [nodeNr + 1];
152 elseif ix == 2 && iy == 1
153 connections = [nodeNr + 2];
154 end
155

156 % Dirchlet boundary conditions at edge nodes
157 bc(bcNr, :) = [dofNr, 0];
158 bc(bcNr + 1, :) = [dofNr + 1, 0];
159 bc(bcNr + 2, :) = [dofNr + 3, 0];
160 bc(bcNr + 3, :) = [dofNr + 4, 0];
161 bc(bcNr + 4, :) = [dofNr + 5, 0];
162 bcNr = bcNr + 5;
163

164

165 % Set applied load
166 f(dofNr + 2) = 1;
167

168 % Set up node with connections, coordinates and dof
169 node.x = (ix - 1) * sideElementWidth;
170 node.y = (iy - 1) * sideElementWidth;
171 node.z = sum(levelHeights);
172 node.dof = dofNr : dofNr + nedof - 1;
173 node.connections = sort(connections);
174 node.color = 'o blue';
175

176 Coord(nodeNr, :) = [node.x, node.y, node.z];
177 nodes(nodeNr) = node;
178 Dof(nodeNr, :) = dofNr : dofNr + nedof - 1;
179

180 % Increase indication
181 nodeNr = nodeNr + 1;
182 dofNr = dofNr + nedof;
183 end
184 end
185

186

187 % Elements
188 EdofNr = 1;
189 elNr = 1;
190 for i = 1:length(nodes)
191 node = nodes(i);
192 for j = 1:length(node.connections)
193 connectNode = nodes(node.connections(j));
194 if i < node.connections(j)
195 Edof(EdofNr,:) = [EdofNr node.dof connectNode.dof];
196 Edof2(EdofNr,:) = [i,node.connections(j)];
197 EdofNr = EdofNr + 1;
198 element.connections = [i, node.connections(j)];
199 element.dof = [Dof(i,:),Dof(node.connections(j),:)];

L

B. Appendix 2 - Matlab code

200 Elements(elNr) = element;
201 elNr = elNr + 1;
202 end
203 end
204 end
205

206 % Force
207 nrOfAppliedLoadNodes = sum(f);
208 f = -f / nrOfAppliedLoadNodes;
209

210 end

B.7.5 Cube

1 function [Coord, Edof, Dof, f, bc, nodes] = ...
2 DoCubeGeometry(levelHeights, sideElementWidth)
3 %--
4 % PURPOSE
5 % Build the cube geometry.
6 %
7 % INPUT
8 % levelHeights = [h1, h2, ..., hn] [m]
9 % sideElementWidth = value [m]

10 %
11 % OUTPUT
12 % Coord = [x1, y1; x2, y2; ...; xn, yn]
13 % Edof = Element degree of freedom matrix
14 % Dof = Degree of freedom
15 % f = Force vector
16 % bc = Boundary condition vector
17 % nodes = Structure for the geometry
18 %
19 %--
20 % Created by Alexander Olsson
21 %--
22

23 % Initialize
24 columns = 2;
25 rows = 2;
26 level = length(levelHeights);
27 levelH = [0 levelHeights'];
28 nodeNr = 1;
29 dofNr = 1;
30 bcNr = 1;
31 nedof = 6;
32 nnodes = rows * columns * (level + 1);
33 ndof = nnodes * 6;
34 accumulatedHeight = 0;
35

36 % Pre dimensionlize
37 f = zeros(ndof, 1);
38 Coord = zeros(nnodes, 3);
39 Dof = zeros(nnodes, nedof);
40

LI

B. Appendix 2 - Matlab code

41 for i = 1 : level + 1
42 for j = 0 : columns - 1
43 for k = 0 : rows - 1
44 connections = [];
45 % Left
46 if j == 0
47 % Bottom
48 if k == 0
49 if i ~= level + 1
50 connections = [nodeNr + 1, nodeNr + rows,

...
51 nodeNr + columns * rows];
52 else
53 connections = [nodeNr + 1, nodeNr + rows];
54 end
55 % Top
56 elseif k == rows - 1
57 if i ~= level + 1
58 connections = [nodeNr + rows, nodeNr + ...
59 columns * rows];
60 else
61 connections = nodeNr + rows;
62 end
63 end
64 % Right
65 elseif j == columns - 1
66 % Bottom
67 if k == 0
68 if i ~= level + 1
69 connections = [nodeNr + 1, nodeNr + ...
70 columns * rows];
71 else
72 connections = nodeNr + 1;
73 end
74 % Top
75 elseif k == rows - 1
76 if i ~= level + 1
77 connections = nodeNr + columns * rows;
78 end
79 end
80 end
81

82 % Applied force
83 if i == level + 1
84 f(dofNr + 2, :) = 1;
85 end
86

87 % Set up the node with coordinates and dof
88 node.y = sideElementWidth * k;
89 node.x = j * sideElementWidth;
90 node.z = accumulatedHeight + levelH(i);
91 node.dof = dofNr : dofNr + nedof - 1;
92 node.connections = sort(connections);
93 Dof(nodeNr, :) = dofNr : dofNr + nedof - 1;
94 Coord(nodeNr, :) = [node.x, node.y, node.z];
95 nodes(nodeNr) = node;

LII

B. Appendix 2 - Matlab code

96 nodeNr = nodeNr + 1;
97

98 % Boundary conditions
99 if i == 1

100 bc(bcNr, :) = [dofNr 0];
101 bc(bcNr + 1, :) = [dofNr + 1 0];
102 bc(bcNr + 2, :) = [dofNr + 2 0];
103 bcNr = bcNr + 3;
104 else
105 bc(bcNr, :) = [dofNr 0];
106 bc(bcNr + 1, :) = [dofNr + 1 0];
107 bcNr = bcNr + 2;
108 end
109 dofNr = dofNr + nedof;
110 end
111 end
112 accumulatedHeight = accumulatedHeight + levelH(i);
113 end
114

115 % Elements
116 EdofNr = 1;
117 for i = 1:length(nodes)
118 node = nodes(i);
119 for j = 1:length(node.connections)
120 connectNode = nodes(node.connections(j));
121 if i < node.connections(j)
122 Edof(EdofNr,:) = [EdofNr node.dof connectNode.dof];
123 EdofNr = EdofNr + 1;
124 element.connections = [i, node.connections(j)];
125 element.dof = [Dof(i,:),Dof(node.connections(j),:)];
126 end
127 end
128 end
129

130 % Force
131 nrOfAppliedLoadNodes = sum(f);
132 f = -f / nrOfAppliedLoadNodes;
133 end

B.8 Plot and store data

B.8.1 Generate plot

1 function fig = PlotFactory(x, y, startIndex, endIndex)
2 %--
3 % PURPOSE
4 % Plots a 2D graph of desired test data for global test structure.
5 %
6 % Value on axis
7 % 1 = Mass, 2 = Energy_s, 3 = Width, 4 = Number of unit cells,
8 % 5 = Height factor, 6 = Max load
9 % 7 = Geometry, 8 = Buckled unit cells, 9 = Radius,

10 % 10 = Specific energy absorption, 11 = Energy absorption

LIII

B. Appendix 2 - Matlab code

11 %
12 % INPUT
13 % x = value on x axis
14 % y = value on y axis
15 % startIndex = Test number to start with, 0 if first
16 % endIndex = Test number to start with, 0 is last
17 %
18 % OUTPUT
19 % fig = The figure
20 %
21 %--
22 % Created by Mattias Naarttijarvi
23 %--
24

25 global mainData testStructure plotMode;
26 acceptFailure = plotMode.acceptFailure;
27 figureNr = plotMode.figureNr;
28

29 if (startIndex == 0)
30 startIndex = 1;
31 end
32

33 fig = figure(figureNr);
34 for i_test = 1:length(testStructure)
35 % Tetrahedral
36 if (testStructure(i_test) == 1)
37 tetrahedronPassed.x = [];
38 tetrahedronPassed.y = [];
39 tetrahedronFailed.x = [];
40 tetrahedronFailed.y = [];
41

42 if (endIndex == 0)
43 endIndex = length(mainData.tetrahedral(:, x));
44 end
45

46 for i = startIndex : endIndex
47 if (mainData.tetrahedral(i, 6) == 0)
48 % Failed tests
49 if (acceptFailure == 1)
50 tetrahedronFailed.x = [tetrahedronFailed.x, ...
51 mainData.tetrahedral(i, x)];
52 tetrahedronFailed.y = [tetrahedronFailed.y, ...
53 mainData.tetrahedral(i, y)];
54 end
55 else
56 % Passed tests
57 tetrahedronPassed.x = [tetrahedronPassed.x, ...
58 mainData.tetrahedral(i, x)];
59 tetrahedronPassed.y = [tetrahedronPassed.y, ...
60 mainData.tetrahedral(i, y)];
61 end
62 end
63

64 % Create the plots
65 if ~isempty(tetrahedronPassed.x)
66 plot(tetrahedronPassed.x, tetrahedronPassed.y, 'bo');

LIV

B. Appendix 2 - Matlab code

67 hold on;
68 end
69 if ~isempty(tetrahedronFailed.x)
70 plot(tetrahedronFailed.x, tetrahedronFailed.y, 'b*');
71 hold on;
72 end
73 end
74

75 % Cellulose
76 if (testStructure(i_test) == 2)
77 cellulosePassed.x = [];
78 cellulosePassed.y = [];
79 celluloseFailed.x = [];
80 celluloseFailed.y = [];
81

82 if (endIndex == 0)
83 endIndex = length(mainData.cellulose(:, x));
84 end
85

86 for i = startIndex : endIndex
87 if (mainData.cellulose(i, 6) == 0)
88 % Failed tests
89 if (acceptFailure == 1)
90 celluloseFailed.x = [celluloseFailed.x, ...
91 mainData.cellulose(i, x)];
92 celluloseFailed.y = [celluloseFailed.y, ...
93 mainData.cellulose(i, y)];
94 end
95 else
96 % Passed tests
97 cellulosePassed.x = [cellulosePassed.x, ...
98 mainData.cellulose(i, x)];
99 cellulosePassed.y = [cellulosePassed.y, ...

100 mainData.cellulose(i, y)];
101 end
102 end
103

104 % Create the plots
105 if ~isempty(cellulosePassed.x)
106 plot(cellulosePassed.x, cellulosePassed.y, 'bo');
107 hold on;
108 end
109 if ~isempty(celluloseFailed.x)
110 plot(celluloseFailed.x, celluloseFailed.y, 'b*');
111 hold on;
112 end
113 end
114

115 % Pyramid
116 if (testStructure(i_test) == 3)
117 pyramidPassed.x = [];
118 pyramidPassed.y = [];
119 pyramidFailed.x = [];
120 pyramidFailed.y = [];
121

122 if (endIndex == 0)

LV

B. Appendix 2 - Matlab code

123 endIndex = length(mainData.pyramid(:, x));
124 end
125

126 for i = startIndex : endIndex
127 if (mainData.pyramid(i, 6) == 0)
128 % Failed tests
129 if (acceptFailure == 1)
130 pyramidFailed.x = [pyramidFailed.x, ...
131 mainData.pyramid(i, x)];
132 pyramidFailed.y = [pyramidFailed.y, ...
133 mainData.pyramid(i, y)];
134 end
135 else
136 % Passed tests
137 pyramidPassed.x = [pyramidPassed.x, ...
138 mainData.pyramid(i, x)];
139 pyramidPassed.y = [pyramidPassed.y, ...
140 mainData.pyramid(i, y)];
141 end
142 end
143

144 % Create the plots
145 if ~isempty(pyramidPassed.x)
146 plot(pyramidPassed.x, pyramidPassed.y, 'bo');
147 hold on;
148 end
149 if ~isempty(pyramidFailed.x)
150 plot(pyramidFailed.x, pyramidFailed.y, 'b*');
151 hold on;
152 end
153 end
154

155 % Cube
156 if (testStructure(i_test) == 4)
157 cubePassed.x = [];
158 cubePassed.y = [];
159 cubeFailed.x = [];
160 cubeFailed.y = [];
161

162 if (endIndex == 0)
163 endIndex = length(mainData.cube(:, x));
164 end
165

166 for i = startIndex : endIndex
167 if (mainData.cube(i, 6) == 0)
168 % Failed tests
169 if (acceptFailure == 1)
170 cubeFailed.x = [cubeFailed.x, ...
171 mainData.cube(i, x)];
172 cubeFailed.y = [cubeFailed.y, ...
173 mainData.cube(i, y)];
174 end
175 else
176 % Passed tests
177 cubePassed.x = [cubePassed.x, ...
178 mainData.cube(i, x)];

LVI

B. Appendix 2 - Matlab code

179 cubePassed.y = [cubePassed.y, ...
180 mainData.cube(i, y)];
181 end
182 end
183

184 % Create the plots
185 if ~isempty(cubePassed.x)
186 plot(cubePassed.x, cubePassed.y, 'bo');
187 hold on;
188 end
189 if ~isempty(cubeFailed.x)
190 plot(cubeFailed.x, cubeFailed.y, 'b*');
191 hold on;
192 end
193 end
194 end
195

196 % Set axis labels
197 switch x
198 case 1
199 xlabel('Mass [kg]');
200 case 2
201 xlabel('Energy absorption from sigma - epsilon [J/kg]');
202 case 3
203 xlabel('Width [m]');
204 case 4
205 xlabel('Number of unit cells');
206 case 5
207 xlabel('Height factor');
208 case 6
209 xlabel('Max load [F]');
210 case 7
211 xlabel('Geometry');
212 case 8
213 xlabel('Buckled unit cells');
214 case 9
215 xlabel('Beam radius [m]')
216 case 10
217 xlabel('Specific energy absorption [J/kg]')
218 case 11
219 xlabel('Energy absorption [J]')
220 end
221 switch y
222 case 1
223 ylabel('Mass [kg]');
224 case 2
225 ylabel('Energy absorption from sigma - epsilon [J/kg]');
226 case 3
227 ylabel('Width [m]');
228 case 4
229 ylabel('Number of unit cells');
230 case 5
231 ylabel('Height factor');
232 case 6
233 ylabel('Max load [F]');
234 case 7

LVII

B. Appendix 2 - Matlab code

235 ylabel('Geometry');
236 case 8
237 ylabel('Buckled unit cells');
238 case 9
239 ylabel('Beam radius [m]')
240 case 10
241 ylabel('Specific energy absorption [J/kg]')
242 case 11
243 ylabel('Energy absorption [J]')
244 end
245

246 % Legend
247 figure(figureNr)
248 grid on;
249 if (max(testStructure == 1) == 1 && length(testStructure) == 1)
250 % Tetrahedron
251 if ~isempty(tetrahedronPassed.x) && ~isempty(tetrahedronFailed.x)
252 % Both passed and failed
253 legend('Tetrahedron', 'Tetrahedron failed', 'location', '

northoutside')
254 elseif ~isempty(tetrahedronPassed.x)
255 % Only passed
256 legend('Tetrahedron', 'location', 'northoutside')
257 elseif ~isempty(tetrahedronFailed.x)
258 % Only failed
259 legend('Tetrahedron failed', 'location', 'northoutside')
260 end
261

262 elseif (max(testStructure == 2) == 1 && length(testStructure) == 1)
263 % Cellulose
264 if ~isempty(cellulosePassed.x) && ~isempty(celluloseFailed.x)
265 % Both passed and failed
266 legend('Cellulose', 'Cellulose failed', 'location', '

northoutside')
267 elseif ~isempty(cellulosePassed.x)
268 % Only passed
269 legend('Cellulose', 'location', 'northoutside')
270 elseif ~isempty(celluloseFailed.x)
271 % Only failed
272 legend('Cellulose failed', 'location', 'northoutside')
273 end
274

275 elseif (max(testStructure == 3) == 1 && length(testStructure) == 1)
276 % Pyramid
277 if ~isempty(pyramidPassed.x) && ~isempty(pyramidFailed.x)
278 % Both passed and failed
279 legend('Pyramid', 'Pyramid failed', 'location', 'northoutside')
280 elseif ~isempty(pyramidPassed.x)
281 % Only passed
282 legend('Pyramid', 'location', 'northoutside')
283 elseif ~isempty(pyramidFailed.x)
284 % Only failed
285 legend('Pyramid failed', 'location', 'northoutside')
286 end
287

288 elseif (max(testStructure == 4) == 1 && length(testStructure) == 1)

LVIII

B. Appendix 2 - Matlab code

289 % Cube
290 if ~isempty(cubePassed.x) && ~isempty(cubeFailed.x)
291 % Both passed and failed
292 legend('Cube', 'Cube failed', 'location', 'northoutside')
293 elseif ~isempty(cubePassed.x)
294 % Only passed
295 legend('Cube', 'location', 'northoutside')
296 elseif ~isempty(celluloseFailed.x)
297 % Only failed
298 legend('Cube failed', 'location', 'northoutside')
299 end
300 end
301 set(gca, 'fontsize', 18)
302

303 plotMode.figureNr = figureNr + 1;
304 end

B.8.2 Plot geometry

1 function fig = PlotGeometry(chosenStructure, w, N, hf)
2 %--
3 % PURPOSE
4 % Plot a 3D figure of the structure
5 %
6 % INPUT
7 % chosenStructure = Value 1 to 4
8 % w = value Unit cell width [m]
9 % N = value Number of unit cells

10 % hf = value Height factor
11 %
12 %
13 % OUTPUT
14 % fig = The figure
15 %
16 %--
17 % Created by Alexander Olsson & Mattias Naarttijarvi
18 %--
19

20 global plotMode height
21

22 % Set each level height
23 levelHeights = DescribeLevelHeight(hf, N, height);
24

25 % Mass of the system
26 [Coord, Edof, Dof, ~, ~, ~] = buildGeometry(...
27 levelHeights, ...
28 w, ...
29 chosenStructure);
30 [Ex, Ey, Ez] = coordxtr(Edof, Coord, Dof, 2);
31

32 % Structure and deformed mesh of best solution
33 plotMode.figureNr = plotMode.figureNr + 1;
34 fig = figure(plotMode.figureNr);
35 eldraw3(Ex, Ey, Ez, [1 1 0]), hold on;

LIX

B. Appendix 2 - Matlab code

36 grid on;
37 set(gca, 'fontsize', 18)
38 end

1 function PlotStructure(Ex, Ey, Ez, Edof, a)
2 %--
3 % PURPOSE
4 % Plot a 3D figure of the structure with displacement
5 %
6 % INPUT
7 % Ex = x coordinates
8 % Ey = y coordinates
9 % Ez = z coordinates

10 % Edof = Element degree of freedom
11 % a = Displacement vector
12 %
13 %--
14 % Created by Alexander Olsson & Mattias Naarttijarvi
15 %--
16

17 % Draw the structure
18 eldraw3(Ex, Ey, Ez);
19

20 % Extract element displacement and display deformed mesh
21 Ed = extract(Edof, a);
22 eldisp3(Ex, Ey, Ez, Ed, [2 4 1]);
23 end

B.8.3 Store data

1 function StoreData(m, e, w, N, hf, f, b, r, e_F, testNr, testStructure)
2 %--
3 % PURPOSE
4 % Store data into global mainData structure.
5 %
6 % INPUT
7 % m = value Mass [kg]
8 % e = value Energy absorption sigma - eps. [J

]
9 % w = value Unit cell width [m]

10 % N = value Number of unit cells
11 % hf = value Height factor
12 % f = value Max load [N]
13 % b = value Number of buckled unit cells
14 % r = value Beam radius [m]
15 % e_F = value Energy absorption F - delta [J]
16 % testNr = value Test identification number
17 % testStructure = value 1 - 4
18 %
19 %--
20 % Created by Alexander Olsson
21 %--
22 global mainData

LX

B. Appendix 2 - Matlab code

23

24 % Store data and results
25 if testStructure == 1
26 % 1 = tetrahedral
27 mainData.tetrahedral(testNr,1) = m;
28 mainData.tetrahedral(testNr,2) = e;
29 mainData.tetrahedral(testNr,3) = w;
30 mainData.tetrahedral(testNr,4) = N;
31 mainData.tetrahedral(testNr,5) = hf;
32 mainData.tetrahedral(testNr,6) = f;
33 mainData.tetrahedral(testNr,7) = 1;
34 mainData.tetrahedral(testNr,8) = b;
35 mainData.tetrahedral(testNr,9) = r;
36 mainData.tetrahedral(testNr,10) = e_F / m;
37 mainData.tetrahedral(testNr,11) = e_F;
38

39 elseif testStructure == 2
40 % 2 = cellulose
41 mainData.cellulose(testNr,1) = m;
42 mainData.cellulose(testNr,2) = e;
43 mainData.cellulose(testNr,3) = w;
44 mainData.cellulose(testNr,4) = N;
45 mainData.cellulose(testNr,5) = hf;
46 mainData.cellulose(testNr,6) = f;
47 mainData.cellulose(testNr,7) = 2;
48 mainData.cellulose(testNr,8) = b;
49 mainData.cellulose(testNr,9) = r;
50 mainData.cellulose(testNr,10) = e_F / m;
51 mainData.cellulose(testNr,11) = e_F;
52

53 elseif testStructure == 3
54 % 3 = pyramid
55 mainData.pyramid(testNr,1) = m;
56 mainData.pyramid(testNr,2) = e;
57 mainData.pyramid(testNr,3) = w;
58 mainData.pyramid(testNr,4) = N;
59 mainData.pyramid(testNr,5) = hf;
60 mainData.pyramid(testNr,6) = f;
61 mainData.pyramid(testNr,7) = 3;
62 mainData.pyramid(testNr,8) = b;
63 mainData.pyramid(testNr,9) = r;
64 mainData.pyramid(testNr,10) = e_F / m;
65 mainData.pyramid(testNr,11) = e_F;
66

67 elseif testStructure == 4
68 % 4 = cube
69 mainData.cube(testNr,1) = m;
70 mainData.cube(testNr,2) = e;
71 mainData.cube(testNr,3) = w;
72 mainData.cube(testNr,4) = N;
73 mainData.cube(testNr,5) = hf;
74 mainData.cube(testNr,6) = f;
75 mainData.cube(testNr,7) = 3;
76 mainData.cube(testNr,8) = b;
77 mainData.cube(testNr,9) = r;
78 mainData.cube(testNr,10) = e_F / m;

LXI

B. Appendix 2 - Matlab code

79 mainData.cube(testNr,11) = e_F;
80 end
81 end

LXII

	List of Figures
	List of Tables
	Introduction and background
	Objectives
	Challenges and limitations

	Literature study and relevant research in the field
	Personal protection - Helmets
	Foams
	Energy absorbing structures in nature
	Bones
	Teeth
	Tree

	Energy absorption fundamentals
	Numerical simulation of energy absorption
	Failure criteria for structure - General buckling

	Theory
	Energy Absorption
	Finite Element Method
	The FEM problem
	CALFEM

	Methodology
	Geometries and structures
	Cellulose
	Tetrahedron
	Pyramid

	Material
	Applied force
	Design variables
	Identification of design space
	Rough combination mesh
	Optimization algorithm

	Compression test simulation
	Determination of unit cell height
	Build geometry
	Buckling
	Specific energy absorption

	Results and discussion
	Design variable range and test setup
	Design variables impact on the mass
	Screening results from rough mesh
	Optimization algorithm
	Refinement of design variables

	Final geometries and their ranking
	Performance of the optimization procedure

	Conclusion
	Future work and recommendations

	Bibliography
	Appendix 1 - Result
	Tetrahedron result
	Pyramid result

	Appendix 2 - Matlab code
	Main
	Rough combination
	Optimization algorithm
	Simulate compression test
	Solve FEM problem
	Minor functions
	Mass of the structure
	Energy absorption
	Unit cell height

	Build geometries
	Geometry factory
	Tetrahedron
	Cellulose
	Pyramid
	Cube

	Plot and store data
	Generate plot
	Plot geometry
	Store data

