
From Domain-Specific Language to
Timed Automata
Automatic Translation and Verification of Contract Specifications
Master’s thesis in Algorithms, Logic and Languages

Runa Gulliksson

Department of Computer Science and Engineering
Chalmers University of Technology and
University of Gothenburg
Gothenburg, Sweden, 2016

From Domain-Specific Language to Timed Automata
Automatic Translation and Verification of Contract Specifications

Runa Gulliksson

c© Runa Gulliksson, 2016.

Examiner: Patrik Jansson

Department of Computer Science and Engineering
Chalmers University of Technology and
University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, May 2016

Abstract

Analysis of contracts is becoming an increasingly important subject due to the amount
of agreements on the web. In this thesis a compositional formal language, Simplified
Contract Language, SCL, is used to represent contracts. A translation between SCL
and Timed Automata is designed and implemented, in order to verify contracts using
temporal logic. UPPAAL is used as the timed automata verifying tool.

The translation is shown to preserve the behavioral semantics of the SCL. The trans-
lation is tested thoroughly, using QuickCheck, against an implementation of the seman-
tics in terms of trace acceptance. A case study of a university course, modeled as a
contract, is done. It shows that it is possible to use the SCL and the translation for
analyzing a real world contract with different traces. The case study also shows that
when randomly generating events the state space can get large enough to slow down the
verification speed significantly.

Keywords
Timed Automata, UPPAAL, Contract analysis, Simplified Contract Language,

QuickCheck

Acknowledgements

First I would like to thank John J.Camilleri for his support and collaboration during
this work. His supervision and that of Gerardo Schneider has been of great value for
this work. I would also like to thank Patrik Jansson, my examiner, Robert Kemi for his
interest in opposing on this thesis and Sebastian Olsson for his support.

ii

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Objective . 2
1.3 Scope . 2

2 Theory 4
2.1 Simplified Contract Language (SCL) . 4

2.1.1 Syntax . 4
2.1.2 Structural Operational Semantics 5
2.1.3 Contract evaluation . 7

2.2 Timed Automata . 8
2.2.1 UPPAAL . 9

2.3 QuickCheck testing tool . 11

3 Method 13
3.1 Translation . 13

3.1.1 Construction of Contracts . 13
3.1.2 Global Time . 16
3.1.3 Transition States . 18
3.1.4 Example Translations . 19

3.2 Testing . 21
3.2.1 Automated Property-based Testing 21
3.2.2 Case Study . 22

4 Results and Discussion 25
4.1 Automated Property-based Testing . 25
4.2 Case Study . 26

4.2.1 Trace Tests . 26
4.2.2 Doer and Clock tests . 27

4.3 Conclusion . 28
4.3.1 Limitations . 29

4.4 Future work . 29

iii

References 31

Appendix A Simplified Contract Language 33
A.1 Syntax . 33
A.2 Structural Operational Semantics . 34
A.3 Predicates . 39

Appendix B Case Study Results 40
B.1 Unit Test Cases using Trace set up . 40
B.2 Unit Test Cases using Doer set up . 48

iv

1. Introduction

With the increased use of Internet and web services we are asked to agree to more and
more contracts, and a lot of the time we do this without really knowing what we are
agreeing to [1]. This is a problem since the contracts are legally binding. Usually there
is a large body of text and a juridic jargon making it a tedious task to understand all
conditions of one contract let alone several contracts. This problem is gaining more
interest and some projects exist aimed at helping users understand what they are agree-
ing to [2][3]. Some rely on people reading and analyzing and others on more automatic
approaches, looking for keywords, by means of machine learning etc.

This thesis is part of a larger research project conducted by the Formal Methods &
Language Technology research groups at Chalmers University and University of Gothen-
burg, especially the work by John J. Camilleri [4]. Camilleri is working on the analysis
of legal documents in the form of normative contracts i.e. contracts written in natural
language. An overview of the system being researched can be seen in Figure 1.1. The
contracts are first modelled and then translated into a formal language, Simplified Con-
tract Language (SCL). SCL is a formal language developed by John J. Camilleri. It is
used to represent a contract written in natural language in a formal and unambiguous
way. The formal representations in SCL are then translated into timed automata [5].

Figure 1.1: Overview of the analysis system

Timed automata is a theory for modeling finite automata with clocks. It has fi-
nite sets of nodes and edges, with clock constraints enabling specification of real-time
systems. Several verification tools exist based on timed automata including UPPAAL,

1

KRONOS [6] and CMC [7]. In this project UPPAAL is used for verification and simula-
tion. UPPAAL can test things like safety, liveness and reachability properties [8]. Once
the contracts are modelled in timed automata it is possible to write queries to verify
conditions of the contracts.

This thesis contributes to one part of the analysis system, the translation between
SCL and timed automata, the translation step in Figure 1.1.

1.1 Related work

Some previous work have been done on modeling contracts by using other formal lan-
guages constructed for contracts. One of these formal languages is Contract Logic, CL
[9]. CL models obligations, permissions and prohibitions of actions combined by propo-
sitional dynamic logic. CL does not have time or timing constraints in its language.
Another language for contract modelling is Contract-Oriented (C-O) Diagrams [10]. C-
O Diagrams are similar to SCL, as to the type of conditions they can model but they use
a different non-compositional structure. C-O Diagrams have been translated into timed
automata in order to run verifications with UPPAAL. SCL has a different structure,
which should make it easier to model in timed automata.

Translating models into timed automata and using UPPAAL for verification and
analysis have been done for other languages than SCL and with other systems to ex-
amine. For example, a research project translating Functional Block Diagrams in order
to verify IEC 61131-3 based safety applications, was described in [11]. Translations
of Timed Petri Nets- into timed automata have also been made for different purposes
[12][13]. The language of Timed Petri Nets is often used to model distributed systems.
Neither Functional Block Diagrams nor Timed Petri Nets are used here because their
structure deviates too much from that of contracts. SCL is designed especially for con-
tract representation, making the modeling of normative contracts less complicated, and
more likely to be correct.

1.2 Objective

The objective is to construct an automatic translation between SCL and timed automata
(UPPAAL input format) and to ensure that the translation is correct (i.e. that it
preserves the behavioral semantics and conditions from the SCL code).

1.3 Scope

SCL has been implemented in Haskell as an embedded domain-specific language. The
contracts represented in SCL will be translated to UPPAAL input format, which enables
verification with UPPAAL, from within the code.

Testing the timed automata design will be done using the QuickCheck testing tool
[14]. The testing will be executed against an implementation of the operational seman-

2

tics, in terms of trace acceptance. A case study will be performed in order to further
evaluate the result with a real world problem. In the case study, a contract modeling the
conditions present in a university course will be used. To test if the contract’s properties
hold, queries stating conditions from the course will be verified with UPPAAL.

UPPAAL will be used as the timed automata verifying tool. A proof that the trans-
lation preserves the behavior will not be attempted, due to lack of time. Neither will
optimizing the verification speed in UPPAAL (except for a minimization of the contract
used in the case study).

3

2. Theory

This section starts with a presentation of the SCL. Following this is a description of timed
automata and UPPAAL, which SCL is to be translated into. After this the testing tool,
QuickCheck, is described.

2.1 Simplified Contract Language (SCL)

SCL is a compositional formal language for contracts, based on the atomic deontic
operators for obligation O , permission P and prohibition F . It is developed by John J.
Camilleri with some input from this project.

2.1.1 Syntax

A contract, Contract, is defined as a list of clauses, C. Clauses are recursively defined
so each clause in a contract may be a tree of clauses.

4

Definition 2.1. The SCL syntax is defined by:

Contract := [C]

C := > | ⊥
| O〈a〉 | P〈a〉 | F 〈a〉 where a ∈ Σ

| D〈v,Val〉 where v ∈ V
| Named〈n,C〉 where n ∈ N
| And〈C,C〉 | Or〈C,C〉 | Seq〈C,C〉 | Rep〈C,C〉
|Wait〈Tr, C〉 | After〈Ta, C〉
|Within〈Tr, C〉 | Before〈Ta, C〉
| In〈Tr, C〉 | At〈Ta, C〉
|When〈G,C〉
|WhenWithin〈Tr, G,C〉 | WhenBefore〈Ta, G,C〉

G := done(a) where a ∈ Σ

| sat(n) where n ∈ N
| earlier(Ta) | later(Ta)

| Val < Val | Val = Val | Val > Val

| ¬G | G ∧G | G ∨G
Val := v | i where v ∈ V, i ∈ Z

An action (a), is used to represent an event that may take place; Σ is the integer
set of actions. O〈a〉 means that there is an obligation for action a to take place. V is
a set of variables and N is a set of names. We assume these sets, Σ, V and N , are
disjoint and global. Tr represent relative temporal values while Ta represent an absolute
time stamp. Both these values are treated as natural numbers. There is no clause for
negating subcontracts. To express that something is not allowed the prohibition clause
F 〈a〉 can be used.

2.1.2 Structural Operational Semantics

Contracts are evaluated as time passes and events take place. To represent time changes
and events, traces are used. A trace is a list of events ordered by time. For example, a
trace stating that an order is placed at time 2 and payed for at time 5 can look like:

[2 : order, 5 : pay]

Before and between these events time changes, which may evaluate contracts, but
it is not written out in the trace. The semantics operate in discrete time. The time
progressions and the events are called steps, or transitions. There are 3 kinds of steps;
action, observation and delay steps. During an action step, either an action takes place

5

or an observation is made. During an observation step, a variable is updated. A delay
step increases the time with 1 time unit. Clauses can also be evaluated in between
transitions through simplifications. The transitions and the simplifications are used to
define evaluation rules for clauses. These rules are defined in Appendix A.

The contract has a shared environment where global variables can be stored. It
contains a global clock keeping track on which time step the state is currently in. There
are also mappings between names and contracts, variables and values and actions and
time stamps, stating at which time an action took place. A short description of how
every clause operates is presented below.

• > is always satisfied.

• ⊥ is unsatisfiable.

• Named〈N , C〉 assigns a name to a clause so it can be referenced from a guard.

• D〈v, V 〉 assigns V to v and is then satisfied.

• O〈a〉 obligation, action a must take place.

• P 〈a〉 permission, action a may take place.

• F 〈a〉 prohibition, action a must not take place.

• And〈C,C〉 conjunction, both clauses need to be satisfied.

• Or〈C,C〉 choice, one of the clauses need to be satisfied.

• Seq〈C,C〉 clauses must be satisfied in sequence. The second clause is not activated
until the transition satisfying the first clause is finished.

• Rep〈Cr, C〉 reparation, if the C clause is violated the Cr clause can repair the
result so that the Rep clause may still be satisfied. The reparation is not started
until the transition violating the C clause has ended.

• Wait〈Tr, C〉 waits for Tr time units before evaluating the clause.

• After〈Ta, C〉 waits until time stamp Ta has passed before evaluating the clause.

• Within〈Tr, C〉 the clause needs to be satisfied within Tr time units.

• Before〈Ta, C〉 the clause need to be satisfied before time stamp Ta.

• In〈Tr, C〉 the clause needs to be satisfied in Tr time units. In always waits until
all time has passed before evaluating to > or ⊥.

• At〈Ta, C〉 the clause needs to be satisfied at time stamp Ta. At always waits until
all time has passed before evaluating to > or ⊥.

6

• When〈G,C〉 the guard, G, is checked every transition step. If it evaluates to true
the clause, C, is started. As long as the guard is not true the When clause is
waiting.

• WhenWithin〈Tr, G,C〉 the guard, G, is checked every transition step. If it evalu-
ates to true the clause, C, is started. If the guard is not true within Tr time units
WhenWithin evaluates to >.

• WhenBefore〈Ta, G,C〉 the guard, G, is checked every transition step. If it evaluates
to true the clause, C, is started. If the guard is not true before time stamp Ta

WhenBefore evaluates to >.

For example a contract stating that a bill needs to be paid before the end of the
month can be constructed like below.

[Named〈Bill,Before〈31,O〈pay〉〉〉]

Guards (G) are evaluated as follows:

• done(a) is true if action a has occurred.

• sat(n) is true if name n is mapped to >.

• earlier(t) is true iff the global time is less than t.

• later(t) is true iff the global time is more than t.

• Val comparisons check if values are less, equal to or larger (<,= and >) than other
values.

• ¬G negates G.

• G ∧G is true if both guards are true.

• G ∨G is true if either of the guards are true.

2.1.3 Contract evaluation

When evaluating contracts the root clause in each tree of clauses is initiated. That clause
can in turn initiate other clauses, wait for a result or return a result depending on the
behavior of that specific clause. At each transition step the clauses are evaluated with
a modified tree and updated environment as a result.

The Bill contract from section 2.1.2 is satisfied by trace [2 : y = 3, 5 : pay] since the
action pay takes place at time 5 which is before 31. The evaluation steps for this can be
seen in Table 2.1. The trace also includes an observation step stating that during time
2 the variable y is set to 3, but this will not effect the outcome of the contract. Table
2.2 shows an evaluation of the same contract but without the action pay in the trace.
Naturally without the action pay the contract is violated at the time 31.

7

Contract Trace Environment

[Named〈Bill,Before〈31, 〈O〈pay〉〉〉〉] [2 : y = 3, 5 : pay] t == 0, y == 0, pay == −1

[Named〈Bill,Before〈31, 〈O〈pay〉〉〉〉] [5 : pay] t == 2, y == 3, pay == −1

[Named〈Bill,Before〈31,>〉〉] [] t == 5, y == 3, pay == 5

[Named〈Bill,>〉] [] t == 5, y == 3, pay == 5,
Bill == >

Table 2.1: Example contract evaluated by trace is satisfied

Contract Trace Environment

[Named〈Bill,Before〈31, 〈O〈pay〉〉〉〉] [2 : y = 3] t == 0, y == 0

[Named〈Bill,Before〈31, 〈O〈pay〉〉〉〉] [] t == 2, y == 3

[Named〈Bill,⊥〉] [] t == 31, y == 3,Bill == ⊥

Table 2.2: Example contract evaluated by trace is violated

In addition to contracts being satisfied or violated there is a third possibility. When
a clause without any time constraints is waiting for an action that never takes place,
that clause will never evaluate. For example the contract O〈pay〉 states that there is
an obligation to pay but since there is no deadline specified, the contract might never
evaluate any further. If this contract is evaluated by a trace without the action pay,
the contract will be unevaluated and thus neither > nor ⊥. Unevaluated contracts are
called non-violated and can be useful for some properties in contracts.

2.2 Timed Automata

Timed automata was developed by Alur and Dill in 1994 [15]. It is a simple and powerful
way of modeling state-transition graphs with clock constraints. Clocks are variables
which increase their value as time passes. All clocks progress at the same rate. It is
often used to model and analyze real-time systems. Figure 2.1 shows a timed automaton
modeling a time switch. OFF is the start location. When the transition from OFF to
ON is made, the clock x is reset to 0. The ON node has an invariant stating that x may
be no more than 3 on that node. To avoid a deadlock when the clock becomes larger
than 3 an edge has to be taken from that node. The edge back to the OFF node has a
guard stating that x needs to be equal to 3 for transitions to be allowed. This makes
sure that the progress back to OFF always take place exactly when x is equal to 3. These
attributes present in Figure 2.1 are the main components of timed automata. Real time
systems are usually represented by more than one timed automaton.

8

OFF ON

x = 0

x == 3
x ≤ 3

Figure 2.1: Timed Automata used to model a time switch

2.2.1 UPPAAL

UPPAAL uses an extended version of timed automata [16]. It contains binary synchro-
nization between automata, through channels, and urgency demands on locations and
channels. Another extension is that data variables are allowed as guards and may be
reset during an action transition.

Channels can provide synchronization between two automata (also called templates)
in UPPAAL. ”!” is used to symbolize sending on a channel and ”?” for receiving. This
communication is binary and done one-to-one. However it is possible to use a broadcast
channel where one sender sends to a number of receivers. Figure 2.2 shows two templates
where Template 1 sends on channelA to Template 2. The two templates will progress
on the edges simultaneously, but the transition may be blocked by the guard, x == 5. If
that guard is true (x is equal to 5) then the templates will move on to their next nodes.
If x is not equal to 5 the system will never progress. If channelA is a broadcast channel
Template 1 may progress even when the guard is not true.

C
channelA! channelA?

x == 5

Template 1 Template 2

Figure 2.2: Templates using synchronization in UPPAAL

UPPAAL has been extended with committed locations. If a process is in a committed
location no time is allowed to pass and the next transition needs to be on an edge away
from a committed location. If there is no satisfied edge away from the committed
location, the system will deadlock. In Figure 2.2 the initial node in Template 1 is
committed, so no time can pass before the synchronization on channelA. There is also
a second progress demand setting, urgent. Both locations and channels can be set to
urgent. No time is allowed to pass in urgent locations, and urgent channels will be sent
on without any time delays. If a system is in both a committed and an urgent location
the committed location will be left first. Progress will still be made from the urgent
location before any time can pass.

9

Definitions

The following definitions for UPPAAL models are reproduced from David et al. [17].
David et al. also define the semantics of UPPAAL.

Definition 2.2. A template (single automaton) A in UPPAAL is a tuple
〈L, T, Type, l0〉, where

1. L is a set of locations,

2. T is a set of transitions between two locations, each containing optionally a guard
g, synchronization label s and assignment a,

3. Type : L → {ordinary , urgent , committed} is a typing function that marks each
location as ordinary, urgent or committed, and

4. l0 ∈ L is the initial location.

Definition 2.3. An UPPAAL model M (network of automata) is a tuple

〈
−→
A,Vars, Clocks, Chan, Type〉, where

1.
−→
A is a vector of templates A1, ..., An,

2. Vars is a set of variables,

3. Clocks is a set of clocks,

4. Chan is a set of synchronization channels, and

5. Type is a polymorphic typing function for locations, channels and variables.

To verify models in UPPAAL, properties and expressions are used to construct
queries [8]. Expressions are local or global variables or values, which can be combined
together by a number of operators. The available properties are shown in Table 2.3.

Name Property

Possibly E♦ p
Invariantly A� p

Potentially always E� p

Eventually A♦ p
Leads to p =⇒ q

Table 2.3: Properties for constructing queries in UPPAAL, where p and q are expressions

A query stating that the bill contract from section 2.1.2 can be satisfied can look like
below. The variable status states whether or not the clause named Bill is satisfied.

E♦ Bill.status == SAT

10

2.3 QuickCheck testing tool

QuickCheck is a testing tool that uses property based testing with arbitrary generated
test cases [18]. In order to use QuickCheck a property needs to be defined. A property
has one or several data types as input, and returns a Boolean value stating the test
result. When running the property with QuickCheck a large number of test cases can be
randomly generated for the specified data types in the input parameters. An example
property, that checks that a guard evaluates to the same value after negating it twice,
can be seen in Figure 2.3.

prop :: Guard -> Bool

prop g = eval g == eval (GNot (GNot g))

Figure 2.3: Property for testing double negation of a guard, where eval is a function
evaluating a guard to a Boolean value

It is possible to add conditions on the test cases in the properties. Test cases that
do not satisfy the condition are not evaluated by the property but are still regarded as
passed tests. This makes it important to check the distribution of the cases, when using
conditions, so that there still is a sufficient number of tests actually being evaluated. An
example of this, where a test case is used only when the guard evaluates to True can be
seen in Figure 2.4. When a test case fails to satisfy the property, a counterexample is
presented. QuickCheck shrinks the example before presenting it [19]. This means that
similar and smaller test cases are tested until the smallest counterexample is found. This
is useful when debugging since it removes unnecessary information and focuses on the
actual reason for the failed test.

prop :: Guard -> Bool

prop g = eval g == True ==> eval g == eval (GNot (GNot g))

Figure 2.4: Property that will only use test cases when g evaluates to True

Arbitrary is a class that can be used for generating test cases of a certain type
[14]. With Arbitrary it is possible to generated more specific test cases for common
types or test cases for user-defined data types. To aid in designing generators there
are combinators to choose between options as well as a frequency setting to control the
distribution. An example of a simplified Arbitrary instance for a guard can be seen in
Figure 2.5. When using an Arbitrary type generator a shrinking function needs to be
defined in order to shrink test cases. A shrinking function specifies how the type can be
reduced to create smaller test cases.

11

instance Arbitrary Guard where

arbitrary = do

g1 :: Guard <- arbitrary

g2 :: Guard <- arbitrary

ts :: Time <- arbitraryTime

frequency $ map (\(a,b)- >(a, return b))

[(2, GEarlier ts)

, (2, GLater ts)

, (1, GNot g1)

, (1, GAnd g1 g2)

, (1, GOr g1 g2)

]

Figure 2.5: Arbitrary being used to generate simplified instances of type Guard

12

3. Method

The method sections consist of two parts, the translation and the testing. In the Trans-
lation section it is explained how contracts written in SCL are modelled in UPPAAL
and how the behavioral semantics is preserved. This is followed by the Testing section
that describes the testing method along with the case study.

3.1 Translation

For each of the SCL clause constructors (C) a template, or timed automaton, is built in
UPPAAL, that models the behavior of the clause. Every template representing a clause
has a channel receiver at the start that enables it and one or two response channels at
the end in order to send either a satisfaction or a violation response. In Figure 3.1 the
template for the obligation clause can be seen with enable and response synchronization
channels. Actions are represented by integer variables in UPPAAL.

C
enable[i]? endAct?

activeAct == a
sat[i]!

Init Idle Sat End

Figure 3.1: Obligation template, O〈a〉, where enable and sat are lists of channels, i is
the index of the clause, activeAct is a state variable, a is an action and endAct is a
broadcast channel

3.1.1 Construction of Contracts

The templates are linked together by these start and response channels to form contracts.
For every tree of clauses a start template is used, see Figure 3.2. The start template
enables the root of the tree and then waits for either a violated or a satisfied signal to
be returned. The first location is committed, meaning that the first thing that happens
(before time passes) is the enabling of the first clause.

13

C
enable[i]! vio[i]?

sat[i]?

Init Idle Vio

Sat

Figure 3.2: A Start template, where enable, vio and sat are lists of channels and i is
the index of the clause being started

Contracts are constructed by creating instances of templates in the system declara-
tions in UPPAAL. They are linked together by specifying indexes for the enabling/fin-
ishing channels as parameters. Figure 3.3 shows the declarations for the contract
[And〈O〈a〉,O〈b〉〉]. A Start template will send on the enabling channel on index 0,
which is the index that the And template is listening to. The And template in turn
enables index 1 and 2, (O〈a〉 and O〈b〉). The template instances generated by the dec-
larations in Figure 3.3 can be seen in Figure 3.4. The templates for When, WhenWithin
and WhenBefore are built for every occurrence of them in the contract. This is due to
the fact that they use a guard (G), that can not be used a parameter.

Start(0)
And(0,1,2)

O(1,a)

O(2,b)

Figure 3.3: Declarations for the contract [And〈O〈a〉,O〈b〉〉]

14

C
enable[0]! vio[0]?

sat[0]?

(a) Start template that sends, and then receives a response, on index 0

C C C

C

enable[0]? enable[1]! enable[2]!

vio[1]?

vio[2]?

sat[1]?
sat[2]?

sat[1]?

vio[1]?

sat[2]?

vio[2]?

sat[0]!

vio[0]!

(b) And template, that is enabled on index 0 and then starts templates on index 1 and 2

C
enable[1]? endAct?

activeAct == a
sat[1]!

(c) O template, that is enabled on index 1

C
enable[2]? endAct?

activeAct == b
sat[2]!

(d) O template, that is enabled on index 2

Figure 3.4: Network of templates used to represent the contract [And〈O〈a〉,O〈b〉〉],
where enable, sat and vio are lists of channels, activeAct is a state variable, a and b
are actions and endAct is a broadcast channel. (b) is an implementation of parallel And

15

Templates for clauses lower in a tree are assigned a higher priority compared to those
higher up in the tree. This means child templates will always have a higher priority than
their parents. In contract [And〈O〈a〉,O〈b〉〉] the O templates will have a higher priority
than the And template. The templates are prioritized so that templates higher up are
able to receive responses from those further down, when the templates expire at the
same time.

3.1.2 Global Time

Since SCL operates in discrete time and UPPAAL in real time, discrete time is simulated
in UPPAAL. A global clock t0 is used to keep track of the system time. When t is used
it refers to a local clock (a clock for a specific template). There is also an integer variable,
ticks, which is incremented every time step to always reflect the discrete time. If the
contract should be evaluated by a specific trace, that trace is translated into a template.
If there is no trace, two templates (a Ticker and a Doer) are built to simulate the
passing of time and events taking place.

In a Trace template every transition is predetermined. The next transition is either
a time step, an action, an observation or a simplification. A time step takes place
when time turns from one time unit to another and corresponds to the global clock
moving to a new natural number in UPPAAL. Invariants are used to make sure the time
synchronization is sent at the right time. An example trace is shown in Figure 3.5. The
example trace is [1 : a, 2 : v = j] (action a take place at time 1 and the variable v is
updated to j at time 2).

16

simp!
t == 1
startTick!

activeT ime = ticks
t = 0

ticks+ +

endTick!

activeT ime = −1

simp!

startAct!
activeAct = a

endAction!

activeAct = −1simp!

t == 1
startTick!

activeT ime = ticks
t = 0

ticks+ +

endTick!

activeT ime = −1

simp!

v = j
activeAct = −2

endAct!

activeAct = −1

simp!

Time step Action step

Time step

DoneObservation step

t < 1 t ≤ 1 t < 1 t < 1 t < 1

t < 1 t < 1 t ≤ 1 t < 1 t < 1

t < 1 t < 1 t < 1

Figure 3.5: Trace template showing the example trace [1 : a, 2 : v = j], where a
is an action, v and ticks are variables, j is an integer or a variable, activeTime and
activeAct are state variables, t is a local clock and simp, startTick, endTick, startAct
and endAct are broadcast channels

The other way of simulating steps is to have a Ticker template and a Doer template,
see Figure 3.6 and Figure 3.7. The Ticker template handles the simulation of time.
There is a time limit on the Ticker which can be set as an input option. The time limit
makes it possible to limit the duration of the simulation or verification. The Doer may
generate any action in the contract or change the value of any variable. When a variable
is set it can either be incremented or decremented. This may occur any number of times
during a time unit. Transitions can be generated at any time as long as both the Ticker
and the Doer are in their initial states. Invariants are used in both templates to make
sure the time synchronization is always at the right time.

When running a contract with the Ticker and Doer set up it is possible to set options
for the generation of transition steps. The parameters that can be set are the value that
the variables are incremented/decremented with, limits for how high or low the variables
can be set, the time limit for the simulation mentioned above, and whether or not an
action can be generated more than once.

17

activeT ime = ticks, ticks+ +, t = 0

t == 1
startTick!

endTick!

activeT ime = −1

simp!

t ≤ 1 t0 ≤ ticks t0 ≤ ticks

Figure 3.6: Ticker template, where ticks and activeTime are variables, t is a local
clock and startTick and endTick are broadcast channels

var = j
activeAct = −2

startAct!
activeAct = a

endAct!

activeAct = −1

simp!

t ≤ ticks t ≤ ticks

Figure 3.7: Doer template, where a is an action, j is an integer or a variable, activeAct,
ticks and var are variables, t is a local clock and simp, startAct and endAct are
broadcast channels

3.1.3 Transition States

Since templates in UPPAAL communicate through channels a time or an action synchro-
nization happens at an instance and if a template is not listening then it will miss the
signal. This is quite limiting and makes it hard to represent the conditions in the SCL.
To get more flexibility the ticks variable, an active action and an active time variable
(activeAct and activeTime) is used. The active variables are used to represent active
transition states. The active action variable is -1 if there is no action step taking place.
During an action step it has the value of the index for the action taking place. For
observation steps activeAct is set to -2 since variables do not have unique index values,
like actions do. The active time variable is also set to -1 when inactive and to the current
time when active. Figure 3.5, Figure 3.7 and Figure 3.6 show the active variables being
set to different values.

Each transition step has a couple of channels, one start and one end channel. These
are broadcast channels, used to signal the start and the end of a transition step. They
are listened for on edges in the templates to progress between locations at the right time.
Since broadcast channels are used they can be listened for by any number of receivers.

18

In between every time or action transition a synchronization is sent on a simplification
channel (simp). This is used for evaluations and progress that needs to be made between
active states.

3.1.4 Example Translations

Some of the templates are illustrated in this section to show how the different channels
and states are used to get the desired behavior.

Rep

The Rep template, seen in Figure 3.8, starts by activating its first clause, j. If j is
violated a new clause is started that may still satisfy the Rep template. If the first
clause, j, violates during an active state, the clause enters an idle state until the active
state is over. To progress when there is no active state the simp channel synchronization
is listened for. When there is no active state the second clause, r, is activated.

C C C

C

enable[i]?

enable[j]!

simp? enable[r]? vio[r]? vio[i]!

sat[r]?
sat[i]!

vio[j]?
φ

sat[j]?

vio[j]?
¬φ

Figure 3.8: Rep template, Rep〈r, j〉, where φ is true if there is an active state, j and r
are indexes, simp is a broadcast channel and enable, sat and vio are lists of channels

At

The At clause enables a sub clause, j, and waits for a response. When t time units have
passed the clause returns the response from clause j or violates since there is no more
time to wait for a response. Figure 3.9 shows how this is done in UPPAAL (the nodes in
the figure have been numbered to make them easier to refer to). Node 4 is an idle state
waiting for a response from the j template. If a response is given before t time units
have passed the template moves on to node 6 or 8, depending on the response. These
are waiting nodes where the template is paused until t time units have passed.

If there is no response from template j and time is about to run out node 3 is
entered. Here we may wait for a response until the invariant, t0 ≤ ticks, is about to
become invalid. If no response is given the clause is violated. An invariant is used here
so that the template may wait for responses from templates with a higher priority.

19

1 2,C 3 6

4

9

7,C

5,C

8

enable[i]? enable[j]!

ticks ≥ t

ticks < t

enable[j]!

vio[j]?

ticks == t
sat[j]?

ticks < t

sat[j]?

ticks == t
vio[j]?

ticks < t
vio[j]?

simp?
ticks == t

endTick?
ticks == t

sat[i]!

vio[i]!

endTick?
ticks == t

t0 ≤ ticks

sat[j]?

Figure 3.9: At template, At〈t, j〉, where t is an absolute time value, j is an index, t0
is the global clock, ticks is a variable, simp and endTick are broadcast channels and
vio, sat and enable are lists of channels. (The numbers in the nodes are there to make
referencing easier)

When

When checks at the start and after every step if the guard, G, is satisfied. If the guard
is satisfied it starts the next clause on the next transition step. The When template can
be seen in Figure 3.10.

C C C

C

enable[i]?

G

¬G
G

simp?

enable[j]! vio[j]?

sat[j]?

vio[i]!

sat[i]!

Figure 3.10: When template, When〈G, j〉, where G is a guard, j is a index, simp is a
broadcast channel and vio, sat and enable are lists of channels

20

3.2 Testing

To test the translation two different methods are used. The first is automated property
testing, using QuickCheck. The other is a case study based on the real world conditions
present in a university course.

3.2.1 Automated Property-based Testing

QuickCheck was used to run automated property tests. To use QuickCheck test cases
needed to be generated. A contract is generated arbitrarily by recursively choosing
clauses until all leaf nodes consist of base cases. If a clause in the contract includes a
time, like After or Within, this time is assigned by choosing a random value between 0
and 20. If a clause with a guard is chosen, the guard is generated arbitrarily by the same
method as with contracts. For a contract to be valid there are a couple of conditions
that must hold. All names should be unique and when a guard has a condition including
a name, that name needs to be defined in the contract. In order to evaluate a contract
a trace is also generated. The generated trace consists only of steps with actions and
variables present in the contract. These steps are randomly placed between 0 and 40
time units. A test case consists of both a contract and a trace.

There are shrinking functions for both traces and contracts. To minimize traces
transitions are removed or moved to take place at an earlier time. For contracts, clauses
are removed and time limits lowered. This reduces the counterexamples and makes it
easier to understand what conditions lead to a failed test.

The generated test cases are translated from SCL to timed automata and run in
UPPAAL. The run also includes a query stating that all start clauses should be satisfied
(unevaluated clauses are regarded as unsatisfied). The run results in a Boolean value
that is true if the query is satisfied and false otherwise. This result is compared with the
result from running the same test case with an implementation of the SCL operational
semantics. The property used can be seen in Figure 3.11 and the results from running
the test is presented in Section 4.1.

prop TraceSemantics : : Contract -> Trace -> QuickCheck . Property
prop TraceSemantics cont rac t t r a c e =

l e t
s c l R e s u l t = evalWithSCLSemantics cont rac t t r a c e
uppaalResult = checkWithUPPAAL cont rac t t r a c e

i f s c l R e s u l t == uppaalResult
then True
e l s e Fa l se

Figure 3.11: Property for QuickCheck testing

21

3.2.2 Case Study

To test the translation on a real world problem a contract modelled around the condi-
tions present in a university course was constructed. It models things like deadlines for
registrations and assignments, grading of assignments, grading of exams and conditions
for passing the course.

Course contract

All clauses in the course contract are listed below.

• The course starts at day 0.

• Students need to register for the course before the registration deadline, 1 week
after the course have started.

• Students need to sign up for the exam before exam registration deadline, at day
45.

• The first deadline for assignment 1 is at day 10. If the assignment is not accepted
the student have until final deadline at day 25 to improve the solution and submit
it again.

• The first deadline for assignment 2 is at day 30. If the assignment is not accepted
the student have until final deadline at day 48 to improve the solution and submit
it again.

• Assistants have 7 days from the deadline to correct an assignment

• The exam is at day 60.

• The examiner has three weeks to correct the exams.

• To pass the course the student needs to pass all of the assignments and get a
passing grade on the exam. The grade needs to be registered before day 90.

These conditions are represented in the SCL contract, in Figure 3.12.

22

[
Named〈InCourse,Before〈8,P〈regCourse〉〉〉,
Named〈RegisteredExam,When〈sat(InCourse),Before〈45,P〈regExam〉〉〉〉,
Named〈Ass1,When〈sat(InCourse),Seq〈At〈11,O〈submit1〉〉,Rep〈

Seq〈Before〈26,O〈resubmit1〉〉,Within〈7,O〈accept1〉〉〉,
Within〈7,O〈accept1〉〉〉〉〉〉,

Named〈Ass2,When〈sat(InCourse),Seq〈At〈31,O〈submit2〉〉,Rep〈
Seq〈Before〈49,O〈resubmit2〉〉,Within〈7,O〈accept2〉〉〉,
Within〈7,O〈accept2〉〉〉〉〉〉,

Named〈PassExam,When〈sat(RegisteredExam),After〈60,Seq〈
Within〈1,P〈takeExam〉〉,
Within〈21,O〈passExam〉〉〉〉〉〉,

Named〈PassCourse,Before〈90,When〈sat(PassExam) ∧ sat(Ass1) ∧ sat(Ass2),>〉〉〉
]

Figure 3.12: Course contract written in the SCL

A minimal version of this contract was also used. In it all times in between deadlines
were minimized. It includes just one assignment and has the assumption that the student
takes the exam if registered for it. When assuming that the exam is taken, the takeExam
action is removed. The minimized contract can be seen in Figure 3.13. This minimal
contract was used to reduce the model size in order to make verification faster. This is
discussed further in Section 4.2.2.

[
Named〈InCourse,Before〈1,P〈regCourse〉〉〉,
Named〈RegisteredExam,When〈sat(InCourse),Before〈3,P〈regExam〉〉〉〉,
Named〈Ass1,When〈sat(InCourse),Seq〈At〈2,O〈submit1〉〉,Rep〈

Seq〈Before〈4,O〈resubmit1〉〉,Within〈1,O〈accept1〉〉〉,
Within〈7,O〈accept2〉〉〉〉〉〉,

Named〈PassExam,When〈sat(RegisteredExam),After〈4,Within〈1,O〈passExam〉〉〉〉〉,
Named〈PassCourse,Before〈6,When〈sat(PassExam) ∧ sat(Ass1) ∧ sat(Ass2),>〉〉〉

]
Figure 3.13: Minimized course contract written in the SCL

Unit testing

To check that the contract’s properties hold after the translation to timed automata,
two different kinds of unit tests are used. The first kind uses a trace, a query and a
Boolean variable stating whether or not the trace should satisfy the query. To execute a
test the trace and the regular course contract are translated and run in UPPAAL with
the query. The result from verifying the query is then be compared with the expected

23

outcome to see if the test was successful. An example of a test case for the first kind of
tests can be seen in Table 3.1.

Trace [7 : regCource, 10 : submit1, 18:acceptedAss1, 30 : submit2,
44 : regExam, 48 : reSubmit2, 55 : acceptedAss2,
60 : passExam, takeExam]

Query E♦ PassCourse = SAT

Expected result False

Comment Approving the exam the same day as, but before, the exam
is taken leads to not passing the exam

Table 3.1: Example of a test case using the Trace set up

The second kind of test is based on queries that should always hold. These queries
are run in UPPAAL using the Doer and Ticker set up. By doing this it is possible to
check that the query holds no matter what order or when the action transitions take
place. An example can be seen in Table 3.2. For this type of testing the minimized
contract was used. Since all possible step combinations are generated when verifying
with this set up the state space can become quite big. That is why minimizing the time
span and the number of actions in the contract will limit the possible states and speed
up the verification process.

Query ¬ (InCourse = SAT) =⇒ ¬ (RegisteredExam = SAT)

Comment If InCourse is not satisfied it shouldn’t be possible to
be registered for the exam

Table 3.2: Example of a test case, without a trace, using the Doer and Ticker set up

Listed below are the behaviors that were tested by the test cases. All these are
present in different test cases that can be seen in Appendix B.

• The effect of named contracts on other clauses. For example that the value of
sat(InCourse) leads to the expected behavior for the rest of the clauses.

• Actions taking place after deadlines, too early, or not at all.

• Actions taking place at the right time for satisfying clauses.

• Actions taking place at the right time but in the wrong order.

24

4. Results and Discussion

In the beginning of this section the results are presented and discussed. This is followed
by a conclusion, a more general discussion and some ideas for future work.

4.1 Automated Property-based Testing

The QuickCheck property, comparing the results from evaluating test cases with the SCL
semantics to translating and verifying the contracts in UPPAAL, passed one hundred
thousand tests. It took about 13 hours to complete this test run on the hardware specified
in Table 4.2. Figure 4.1 shows the output and distribution. Negative test cases are the
ones where the contract was not satisfied and in the positive cases all subcontracts where
satisfied by the trace in the test case.

+++ OK, passed 100000 t e s t s :
73% Negative
26% P o s i t i v e

Figure 4.1: Test result from the automated property testing

When generating contracts and traces for the test cases there are quite a lot of dif-
ferent combinations. It may take a lot of tries to generate a test that tests a certain
property and it is not possible to test the entire test space since the number of combi-
nations are infinite. However, when using this test method during development, a lot
of special cases resulting in a failed test were discovered. Most of the issues found were
discovered within the first forty thousand tests. Before the final design was regarded
as properly tested by this method, it executed one hundred thousand tests without any
failed test cases.

25

4.2 Case Study

4.2.1 Trace Tests

All unit test cases based on traces and expected outcome were satisfied. A short section
from the end of the output of the test run can be seen in Figure 4.2. The whole test
result output can be seen in appendix B.

- - - 30 - - -
Accepting exam same day as but be f o r e exam i s taken -> not

pas s ing exam

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , passExam . 6 0 , takeExam
. 6 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 31 - - -
Accepting exam same day as but a f t e r exam i s taken -> passed

exam

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 6 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s s a t i s f i e d .

Test : Sat

- - - 32 - - -
Late grading exam -> not pas s ing exam

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 8 1]

Ve r i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

Passed : 32 / 32

Figure 4.2: End of the output from case study testing with the Trace set up

26

4.2.2 Doer and Clock tests

All queries used for testing the course contract with the Doer and Ticker set up were
satisfied. The end of the output from running these tests can be seen in Figure 4.3, the
full output is shown in in appendix B.

Ver i f y i ng formula 18 : done [passExam] == - 1 - -> PassExam . s t a t u s
!= SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 19 : done [passExam] <= 3 - -> PassExam . s t a t u s
!= SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 20 : E<> done [passExam] > 4 && PassExam .
s t a t u s != SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 21 : E<> done [passExam] == 4 && PassExam .
s t a t u s == SAT

- - Formula i s s a t i s f i e d .

Passed : 21 / 21

Figure 4.3: End of the output from case study testing without a trace, using the Doer
and Ticker set up

Minimized Course Contract

Minimizing the times in the course contract will not affect the results of the test. The
Doer may generate an action at any time which means that the outcome when verifying
a query will not change when changing the window for an action being listened for from
several time units to 1. Using only 1 assignment does not limit the properties that can be
tested. Since both assignments have the same conditions the same kind of property will
hold for both or neither of the assignments. Assuming that the exam is taken somewhat
limits the properties that can be tested.

Making these minimizations was necessary in order to limit the state space to speed
up the verification in order to enable running the tests on the available computer. In
Table 4.1 the memory and CPU usage during a query validation using the regular full
course contract and the minimized course contract can be seen. When comparing the
data in the table it is clear that using a minimized contract limits the memory usage
needed for validating queries. The CPU TIME is lower in the minimized case, this is
because the verification finishes shortly after, so no later state could be documented.
Over the course of time, when using the full course contract, memory usage grows

27

continually and CPU usage decreases until the process either slows down the whole
system or is terminated.

Contract Current CPU % Current MEM % CPU TIME min Result

Full 34,6 80,7 2:35 No result

Minimized 99,8 16,1 1:03 Result

Table 4.1: Memory and CPU usage data from validating queries with different course
contracts

Even only reintroducing the action of taking the exam to the minimized contract
affects the number of states enough so that no results can be produced, with the available
computer. The hardware specifications of the computer used for testing can be seen in
Table 4.2.

CPU

Version Intel R© CoreTM i5-3317U
CPU @ 1.70GHz

Architecture x86 64

Threads per core 2

Cores per socket 2

Sockets 1

BogoMIPS 3392.40

L1d cache 32 K

L1i cache 32 K

L2 cache 256 K

L3 cache 3072 K

Memory

Size 6 GiB

Description SODIMM DDR3
Synchronous 1333 MHz (0,8 ns)

Table 4.2: CPU and memory specifications of the computer used for testing

4.3 Conclusion

The report presents a compositional design of timed automata that follows the behavioral
semantics of the SCL. The design has been tested by a large number of automatically
generated test cases and examined through a case study. This fulfills the objective
of the thesis. The translation has successfully been used to model a real Contract. A
drawback with the timed automata design is that it requires a lot of computer memory for

28

validations when randomly generating actions, which limits its usefulness. A summary
of the contributions is listed below.

• Automatic translation of the SCL to UPPAAL timed automata

• The translation is shown to preserve the behavioral operational semantics via test-
ing

• Application to a realistic contract

4.3.1 Limitations

SCL is very useful when it comes to modeling contracts with timing constraints. There
are lots of variations on how to express them and different combinations of them are easily
evaluated by UPPAAL. However most real world contracts include a limited amount of
time constraints which means they would not really take advantage of the expressiveness
in SCL.

Another limitation to the usefulness is that validating contracts with the Doer and
Ticker set up is limited to contracts with few variables, as can be seen in the case
study. Only using traces when validating a contract restricts the test runs to the users
imagination and also requires time and effort to assemble. An alternative could be to
use QuickCheck and generate arbitrary traces when testing a query. This method is not
as thorough as using the Doer generator since testing cannot cover all possibilities, only
a number of arbitrarily generated ones.

4.4 Future work

To develop the work in this thesis further a formal proof can be constructed that proves
that the behavioral semantics is preserved through the translation. This would require
considering the translation of each constructor and arguing that its corresponding au-
tomaton describes a set of UPPAAL traces which correspond to a sequence of SCL
steps.

Another direction for development would be to extend the SCL language with for
example real time or repetitive behavior. Using real time in SCL would remove the need
to simulate discrete time in UPPAAL, which might limit the number of states and speed
up the query verifications. Repetitive behavior is something that appears in contracts,
for example when something should be done once a month. Being able to model this
would further extend the usefulness of the system. Any extension of SCL would require
extending or modifying the translation as well.

Comparing this work with previous work on analysis of contracts is another possible
extension. For example comparing the verification efficiency in UPPAAL when using
CO-diagrams [10]. Another possibility would be to implement a translation from SCL
to Timed Petri-Nets [13] or a SAT-solver [20] and compare the results. Timed Petri-
Nets are similar to timed automata but they might allow for a neater translation of

29

the SCL. SAT-solvers verify SAT problems, which have entirely different structure from
timed automata. Therefore this would require a vastly different translation. For example
queries would need to be encoded as part of the SAT problem. The advantage with this
approach is that a lot of work has been done on developing fast SAT-solvers [20], which
might be possible to leverage and get a much faster verification system.

30

References

[1] Chavalarias D. The unlikely encounter between von Foerster and Snowden: When
second-order cybernetics sheds light on societal impacts of Big Data. Big Data &
Society. 2016;3(1).

[2] APPS S. Terms of Service; Didn’t Read; 2016. Accessed 2016-04-30. https://

tosdr.org/.

[3] License CCANSI. Privacy Icons; 2016. Accessed 2016-04-30. https://disconnect.
me/icons.

[4] Camilleri J J. Analysing normative contracts: On the semantic gap between natural
and formal languages [Licentiate thesis]. Chalmers University of Technology and
University of Gothenburg. Gothenburg, Sweden; 2015.

[5] Bengtsson J, Yi W. Timed Automata: Semantics, Algorithms and Tools. Uppsala:
Uppsala Universitet; 2004. Available from: http://www.win.tue.nl/~pcuijper/

docs/QEES/TA/timed-automata-intro.pdf.

[6] Bozga M, Daws C, Maler O, Olivero A, Tripakis S, Yovine S. Kronos: A Model-
Checking Tool for Real-Time Systems. Instituto de Computacion, Universidad de
la Republica; 1998.

[7] Laroussinie F, Larsen K G. Formal Description Techniques and Protocol Specifica-
tion, Testing and Verification. In: CMC: A Tool for Compositional Model-Checking
of Real-Time Systems. vol. 6 of IFIP — The International Federation for Informa-
tion Processing. Springer US; 1998. p. 439–456.

[8] UP4ALL AB. GUI REFERENCE; 2012. Accessed 2016-03-30. http://www.

uppaal.com/index.php?sida=216&rubrik=101.

[9] Prisacariu C, Schneider G. CL: An Action-based Logic for Reasoning about Con-
tracts. In: WOLLIC 2009. vol. 5514 of LNCS. Springer; 2009. p. 335–349.

[10] Camilleri J J, Paganelli G, Schneider G. A CNL for Contract-Oriented Diagrams.
In: CNL 2014. vol. 8625 of LNCS. Springer; 2014. p. 135–146.

31

https://tosdr.org/
https://tosdr.org/
https://disconnect.me/icons
https://disconnect.me/icons
http://www.win.tue.nl/~pcuijper/docs/QEES/TA/timed-automata-intro.pdf
http://www.win.tue.nl/~pcuijper/docs/QEES/TA/timed-automata-intro.pdf
http://www.uppaal.com/index.php?sida=216&rubrik=101
http://www.uppaal.com/index.php?sida=216&rubrik=101

[11] Soliman D, Thramboulidis K, Frey G. Transformation of Function Block Diagrams
to UPPAAL timed automata for the verification of safety applications. Annual
Reviews in Control. 2012;36(2):p.338–345.

[12] Gong S. A Translation Method from Time Petri Nets to Timed Automata. In:
International Conference on Convergence Information Technology. ACM; 2012. p.
20–24.

[13] Cicirelli F, Furfaro A, Nigro L. Model checking time-dependent system specifications
using Time Stream Petri Nets and Uppaal. Applied Mathematics and Computation.
2012;218(16):p.8160–8186.

[14] Claessen K, Hughes J. QuickCheck: a lightweight tool for random testing of Haskell
programs. In: ICFP ’00 Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming. ACM; 2000. p. 268 – 279.

[15] Alur R, Dill D. A theory of timed automata. Theoretical Computer Science.
1994;126:p.183–236.

[16] Bengtsson J, Christensen P, Jensen P, Larsen G Kim, Larsson F, Pettersson P, et al.
UPPAAL: a tool suite for validation and verification of real-time systems. Chalmers
University of Technology and University of Gothenburg; 1996.

[17] David A M, Möller O, Yi W. Verification of UML statechart with real-time exten-
sions. Department of Information Technology, Uppsala University; 2003.

[18] Hughes J. QuickCheck: An Automatic Testing Tool for Haskell;. Available from:
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html.

[19] Hughes J. Specification based testing with QuickCheck. In: Formal Methods in
Computer-Aided Design (FMCAD). Austin, TX: IEEE; 2011. p. 17.

[20] Lyde S, Might M. Trends in Functional Programming. In: McCarthy J, editor.
Control-Flow Analysis with SAT Solvers. vol. 8322 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg; 2014. p. 125–133.

32

http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

A. Simplified Contract Language

A.1 Syntax

A contract, Contract, is defined as a list of clauses, C. Clauses are recursively defined
so each clause in a contract may be a tree of clauses.

Contract := [C]

C := > | ⊥
| O〈a〉 | P〈a〉 | F 〈a〉 where a ∈ Σ

| D〈v,Val〉 where v ∈ V
| Named〈n,C〉 where n ∈ N
| And〈C,C〉 | Or〈C,C〉 | Seq〈C,C〉 | Rep〈C,C〉
|Wait〈Tr, C〉 | After〈Ta, C〉
|Within〈Tr, C〉 | Before〈Ta, C〉
| In〈Tr, C〉 | At〈Ta, C〉
|When〈G,C〉
|WhenWithin〈Tr, G,C〉 | WhenBefore〈Ta, G,C〉

G := True | False
| done(a) where a ∈ Σ

| sat(n) where n ∈ N
| earlier(Ta) | later(Ta)

| Val < Val | Val = Val | Val > Val

| ¬G | G ∧G | G ∨G
Val := v | i where v ∈ V, i ∈ Z

An action (a), is used to represent an event that may take place; Σ is the integer set of
actions. O〈a〉 means that there is an obligation for action a to take place. V is a set
of variables and N is a set of names. We assume these sets, Σ, V and N , are disjoint
and global. Tr represent relative temporal values while Ta represent an absolute time
stamp. Both these values are treated as natural numbers. There is no clause for negating

33

subcontracts. To express that something is not allowed the prohibition clause F 〈a〉 can
be used.

A.2 Structural Operational Semantics

Steps Progress is built up by steps. There are 3 kinds of steps, action, observation
and delay steps. During an action step either an action takes place or an observation
is made. During an observation a variable is updated. A delay step increases the time
with 1 time unit (the semantics operate in discrete time). Clauses can also be evaluated
in between transitions through simplifications.

A step is either:

• An action a:
a−→ or an observation

v=2−−→

• A delay of 1 time unit: 1

We use the arrow
·−→ to mean either kind of step.

Environment There is an environment Γ which contains:

• a map from actions to timestamps (Σ 7→ Ta)

• a map from names to clauses (N 7→ C)

• a map from variables to integers (V 7→ Z)

• variable t0 which stores current time in ticks.

The environment is updated as follows:

• action step
a−→ updates an integer variable named a: Γ[a := t0] (record the time

the action was done)

• delay step 1 increments an absolute clock t0: Γ[t0 += 1]

Guards Guards are defined as predicates over the environment Γ:

• done(a) is true if action a has occured (Γ[a] > −1).

• sat(n) is true if name n is mapped to > (Γ[n] = >).

• earlier(t) is true iff Γ[t0] < t and later(t) is true iff Γ[t0] > t.

A.2.1 Contract

1. All clauses in the list are processed together

2. Environment is shared

34

A.2.2 Top, bottom

Top is trivially satisfiable. Bottom is trivially unsatisfiable.

A.2.3 Named

Label a clause with a name so that it can be used in a guard.

Named
C
·−→ C ′

Named〈n,C〉 ·−→ Named〈n,C ′〉
Γ[n := C ′]

A.2.4 Obligation

Action must be performed.

Obl
O〈a〉 x−→ >

a = x

A.2.5 Permission

Action may or may not be performed.

Per
P 〈a〉 x−→ >

a = x

A.2.6 Forbiddance (Prohibition)

Action must not be performed.

For
F 〈a〉 x−→ ⊥

a = x

A.2.7 Declaration (Assignment)

Assign a value to a variable. Evaluated immediately (no step).

DeclV ar

D〈v, x〉
> Γ[v := Γ[x]] DeclInt

D〈v, i〉
> Γ[v := i]

A.2.8 And refinement

Conjunction.

AndThru

C1
·−→ C ′1 C2

·−→ C ′2

And〈C1, C2〉
·−→ And〈C ′1, C ′2〉

AndTop

And〈C1, C2〉
> isTop(C1) ∧ isTop(C2) AndBot

And〈C1, C2〉
⊥ isBot(C1) ∨ isBot(C2)

35

A.2.9 Or refinement

Disjunction.

OrThru

C1
·−→ C ′1 C2

·−→ C ′2

Or〈C1, C2〉
·−→ Or〈C ′1, C ′2〉

OrBot

Or〈C1, C2〉
⊥ isBot(C1) ∧ isBot(C2) OrTop

Or〈C1, C2〉
> isTop(C1) ∨ isTop(C2)

A.2.10 Seq refinement

Sequence.

SeqThru

C1
·−→ C ′1

Seq〈C1, C2〉
·−→ Seq〈C ′1, C2〉

SeqTop

Seq〈C1, C2〉
C2

isTop(C1) SeqBot

Seq〈C1, C2〉
⊥ isBot(C1)

A.2.11 Reparation

Note: the first clause, Cr, is the reparation.

RepThru
C
·−→ C ′

Rep〈Cr, C〉
·−→ Rep〈Cr, C

′〉

RepTop

Rep〈Cr, C〉
> isTop(C) RepBot

Rep〈Cr, C〉
Cr

isBot(C)

36

A.2.12 Wait/After

Wait

Wait a relative amount of time.

Wait1
Wait〈1, C〉 1 C

Wait0
Wait〈0, C〉

C

WaitDel

Wait〈z, C〉 1 Wait〈z − 1, C〉
z > 1

After

Wait until an absolute lower time bound. The bound must be checked straight away
(not only after a delay step).

After
After〈t, C〉

C
Γ ` t0 ≥ t

A.2.13 Within/Before

Within

Inner clause must be satisfied within a relative amount of time.

WithinThru
C

x−→ C ′

Within〈z, C〉 x−→Within〈z, C ′〉

WithinDel
C 1 C ′

Within〈z, C〉 1 Within〈z − 1, C ′〉
z ≥ 1

WithinExp

Within〈0, C〉
⊥ notTop(C)

WithinTop

Within〈z, C〉
> isTop(C) WithinBot

Within〈z, C〉
⊥ isBot(C)

37

Before

Inner clause must be satisfied before an absolute upper bound timestamp.

BeforeThru
C
·−→ C ′

Before〈t, C〉 ·−→ Before〈t, C ′〉
Γ ` t0 < t

BeforeTop

Before〈t, C〉
> Γ ` t0 < t, isTop(C) BeforeBot

Before〈t, C〉
⊥ isBot(C)

BeforeExp

Before〈t, C〉
⊥ Γ ` t0 ≥ t, notTop(C)

Note that:

Before〈t, C〉 6≡When〈earlier(t), C〉

because Before will fail with ⊥ on expiry.

A.2.14 In/At

In

Like Within but we always wait until all time has passed before looking at result. You
must satisfy the inner clause before the expiry, otherwise the whole thing fails.

InThruAct
C

x−→ C ′

In〈z, C〉 x−→ In〈z, C ′〉
z ≥ 1 InThruDel

C 1 C ′

In〈z, C〉 1 In〈z − 1, C ′〉
z ≥ 1

InTop

In〈0, C〉
> isTop(C) InBot

In〈0, C〉
⊥ notTop(C)

At

An absolute version of In (the waiting version of Before).

AtThru
C
·−→ C ′

At〈t, C〉 ·−→ At〈t, C ′〉
Γ ` t0 ≤ t

AtTop

At〈t, C〉
> Γ ` t0 ≥ t, isTop(C) AtBot

At〈t, C〉
⊥ Γ ` t0 ≥ t, notTop(C)

A.2.15 When

Guard which never expires.

WhenSat

When〈G,C〉
C

Γ ` G

38

A.2.16 WhenWithin / WhenBefore

WhenWithin

A guard which expires (with >) after a certain amount of relative time.

WhenWithinSat

WhenWithin〈z,G,C〉
C

Γ ` G

WhenWithinExp

WhenWithin〈0, G,C〉 1 >
Γ 0 G

WhenWithinDel

WhenWithin〈z,G,C〉 1 WhenWithin〈z − 1, G,C〉
Γ 0 G, z ≥ 1

WhenBefore

A guard which expires (with >) after an absolute timestamp.

WhenBeforeSat

WhenBefore〈t, G,C〉
C

Γ ` G, t0 < t

WhenBeforeExp

WhenBefore〈t, G,C〉
> Γ ` t0 ≥ t

A.3 Predicates

isTop(C) :=

{
isTop(C ′) if C = Named(C ′)

C = > otherwise

isBot(C) :=

{
isBot(C ′) if C = Named(C ′)

C = ⊥ otherwise

notTop(C) := ¬isTop(C)

notBot(C) := ¬isBot(C)

39

B. Case Study Results

B.1 Unit Test Cases using Trace set up

- - - 1 - - -
A l l a c t i o n s j u s t in time , passed course should be s a t i s f i e d

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 7 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT
- - Formula i s s a t i s f i e d .

Test : Sat

- - - 2 - - -
A l l a c t i o n s in time , a l l nemed c l a u s e s should be s a t i s f i e d

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 7 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT && (PassExam
. s t a t u s == SAT && (InCourse . s t a t u s == SAT && (
RegisteredExam . s t a t u s == SAT && (Ass1 . s t a t u s == SAT && Ass2
. s t a t u s == SAT))))

- - Formula i s s a t i s f i e d .

Test : Sat

- - - 3 - - -
Missed regExam dead l ine -> not passed exam .

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 7 , submit2 . 3 0 , regExam
. 4 5 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

40

Ver i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 4 - - -
RegExam be fo r e in course -> not passed exam .

[regExam . 7 , regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 7 , submit2
. 3 0 , regExam . 4 5 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam
. 6 0 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 5 - - -
RegExam be fo r e in course -> not r e g i s t e r e d f o r exam .

[regExam . 4 , regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 7 , submit2
. 3 0 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> RegisteredExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 6 - - -
No regExam act i on -> not r e g i s t e r e d f o r exam .

[submit1 . 1 0 , acceptedAss1 . 1 7 , submit2 . 3 0 , regExam . 4 5 ,
reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> RegisteredExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 7 - - -
Late submiss ion o f as s1 -> not passed ass1

41

[regCourse . 7 , submit1 . 1 1 , acceptedAss1 . 1 7 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass1 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 8 - - -
Late grading o f ass1 and no resubmis s ion -> not passed ass1

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass1 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 9 - - -
Grading o f as s1 same time step a f t e r -> not passed ass1 (At

moves on f i r s t when dead l ine f o r submiss ion e x p i r e s)

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 0 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass1 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 10 - - -
Grading o f as s1 1 time step a f t e r submiss ion -> passedAss1

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 1 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass1 . s t a t u s == SAT
- - Formula i s s a t i s f i e d .

Test : Sat

42

- - - 11 - - -
Grading o f as s1 same time step but be f o r e submiss ion -> not

passed ass1

[regCourse . 7 , acceptedAss1 . 1 0 , submit1 . 1 0 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass1 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 12 - - -
No submiss ion o f ass ignment 1 -> not passed ass1

[regCourse . 7 , acceptedAss1 . 1 7 , submit2 . 3 0 , regExam . 4 4 ,
reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> Ass1 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 13 - - -
Not passed ass ignment 1 -> not passed course

[regCourse . 7 , acceptedAss1 . 1 7 , submit2 . 3 0 , regExam . 4 4 ,
reSubmit2 . 4 8 , acceptedAss2 . 5 4 , takeExam . 6 0 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 14 - - -
Late f i r s t submiss ion o f ass2 -> not passed ass2

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 1 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass2 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

43

Test : Sat

- - - 15 - - -
No f i r s t submiss ion o f as s2 -> not passed ass2

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , regExam . 4 4 ,
reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> Ass2 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 16 - - -
Late second submiss ion o f ass2 -> not passed ass2

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 9 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass2 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 17 - - -
Late second grading o f as s2 -> not passed ass2

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 6 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass2 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 18 - - -
Immediate secound grading o f ass2 -> passed ass2 (Before moves

on at once)

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 4 8 , takeExam . 6 0 , passExam
. 8 0]

44

Ver i f y i ng formula 1 : E<> Ass2 . s t a t u s == SAT
- - Formula i s s a t i s f i e d .

Test : Sat

- - - 19 - - -
Grading o f as s2 same t imestep as but be f o r e s u b i s s i o n -> not

passed ass2

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , acceptedAss2 . 4 8 , reSubmit2 . 4 8 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> Ass2 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 20 - - -
Not passed ass2 -> not passed course

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 1 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 21 - - -
Late r e g i s t r a t i o n f o r course -> not in cource

[regCourse . 8 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> InCourse . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 22 - - -
No r e g i s t r a t i o n f o r course -> not in cource

45

[submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam . 4 4 ,
reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> InCourse . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 23 - - -
Late r e g i s t r a t i o n f o r course -> not passed exam

[regCourse . 8 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 24 - - -
No r e g i s t r a t i o n f o r course -> not passed ass1

[submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam . 4 4 ,
reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> Ass1 . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 25 - - -
No r e g i s t r a t i o n f o r course -> not passed course

[submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam . 4 4 ,
reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 26 - - -
Late exam -> not passed exam

46

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 1 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 27 - - -
Early exam -> not passed exam

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 5 9 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 28 - - -
Not tak ing exam -> not passed exam

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , passExam . 8 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 29 - - -
Taking exam to e a r l y -> not passed Course

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 5 9 , passExam
. 8 0]

Ve r i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 30 - - -

47

Accepting exam same day as but be f o r e exam -> not pas s ing exam

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , passExam . 6 0 , takeExam
. 6 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

- - - 31 - - -
Accepting exam same day as but a f t e r exam -> passed exam

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 6 0]

Ve r i f y i ng formula 1 : E<> PassExam . s t a t u s == SAT
- - Formula i s s a t i s f i e d .

Test : Sat

- - - 32 - - -
Late grading exam -> not pas s ing exam

[regCourse . 7 , submit1 . 1 0 , acceptedAss1 . 1 8 , submit2 . 3 0 , regExam
. 4 4 , reSubmit2 . 4 8 , acceptedAss2 . 5 5 , takeExam . 6 0 , passExam
. 8 1]

Ve r i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT
- - Formula i s NOT s a t i s f i e d .

Test : Sat

Passed : 32 / 32

B.2 Unit Test Cases using Doer set up

Ver i f y i ng formula 1 : E<> PassCourse . s t a t u s == SAT
- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 2 : PassExam . s t a t u s == VIO - -> PassCourse .
s t a t u s != SAT

- - Formula i s s a t i s f i e d .

48

Ver i f y i ng formula 3 : Ass1 . s t a t u s == VIO - -> PassCourse . s t a t u s
!= SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 4 : InCourse . s t a t u s == VIO - -> RegisteredExam
. s t a t u s != SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 5 : InCourse . s t a t u s == VIO - -> Ass1 . s t a t u s !=
SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 6 : RegisteredExam . s t a t u s == VIO - -> PassExam
. s t a t u s != SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 7 : done [submit1] == - 1 - -> Ass1 . s t a t u s !=
SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 8 : done [acceptedAss1] == - 1 - -> Ass1 . s t a t u s
!= SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 9 : E<> done [submit1] == - 1 && Ass1 . s t a t u s ==
SAT

- - Formula i s NOT s a t i s f i e d .

Ve r i f y i ng formula 10 : done [submit1] > 1 - -> Ass1 . s t a t u s != SAT
- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 11 : E<> done [submit1] <= 0 && Ass1 . s t a t u s !=
SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 12 : E<> done [submit1] == 1 && Ass1 . s t a t u s !=
SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 13 : E<> done [submit1] > done [acceptedAss1]
&& Ass1 . s t a t u s != SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 14 : done [regCourse] > 1 - -> InCourse . s t a t u s
!= SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 15 : done [regExam] == - 1 - -> RegisteredExam .

49

s t a t u s != SAT
- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 16 : E<> done [regExam] <= 0 && RegisteredExam
. s t a t u s != SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 17 : E<> done [regExam] > done [regCourse] &&
RegisteredExam . s t a t u s != SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 18 : done [passExam] == - 1 - -> PassExam . s t a t u s
!= SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 19 : done [passExam] <= 3 - -> PassExam . s t a t u s
!= SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 20 : E<> done [passExam] > 4 && PassExam .
s t a t u s != SAT

- - Formula i s s a t i s f i e d .

Ve r i f y i ng formula 21 : E<> done [passExam] == 4 && PassExam .
s t a t u s == SAT

- - Formula i s s a t i s f i e d .

Passed : 21 / 21

50

	Introduction
	Related work
	Objective
	Scope

	Theory
	Simplified Contract Language (SCL)
	Timed Automata
	QuickCheck testing tool

	Method
	Translation
	Testing

	Results and Discussion
	Automated Property-based Testing
	Case Study
	Conclusion
	Future work

	References
	Appendix Simplified Contract Language
	Syntax
	Structural Operational Semantics
	Predicates

	Appendix Case Study Results
	Unit Test Cases using Trace set up
	Unit Test Cases using Doer set up

