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Abstract 

The continuous growth of the electrical system, resulting in growing electric power 
demand, is putting great emphasis on system operation and control. These topics, 
together with system reliability and security, are becoming more and more of interest 
for the research community, in particular due to the recent trend towards restructuring 
and deregulation of the power supplies. It is under this scenario that Flexible AC 
Transmission Systems (FACTS) Controllers at transmission level and Custom Power 
Devices at distribution level represent both opportunities and challenges for an optimal 
use of the power systems. In particular, the Static Synchronous Compensator 
(STATCOM) is a key device for reinforcement of the stability in an AC power system 
and for mitigation of power quality phenomena. Although typically used for reactive 
power injection only, an upcoming idea today is to equip the STATCOM with an 
energy storage connected on the dc-link of the converter, thus also allowing short-term 
active power support to the power systems.  
This report focuses on the use of energy storage equipped STATCOM (also known 
under the name of E-STATCOM). As first, the current controller used in the 
compensator, which represents the heart of the control system, will be derived. Then, 
two additional control systems, in order to allow frequency control and power 
oscillation damping, will be derived and analyzed. To verify these control systems, a 
simple network will be used as a benchmark model in PSCAD/EMTDC and the results 
from the simulations will be analyzed. The obtained results on the stability 
improvement by aims of the E-STATCOM will be supported by analytical 
investigation. Furthermore, the need for active power support in the actual grid of 
Falbygdens Energi AB (FEAB) will be investigated. Finally, the impact of a 
controllable load, or “smart load”, on the dynamic performance of the investigated 
FEAB’s grid will be shown. In the investigated cases, the smart load will be controlled 
in order to meet the power balance between load and local production in case of 
islanding conditions. 
The obtained results show good dynamical performance of the system. By analyzing the 
results from the simulations it can be concluded that it is possible to temporary control 
the system frequency, given an adequate size of the energy storage. The size of the 
storage is of high importance, in particular in case of islanding operation. It will be 
shown that another important factor for a successful operation of the E-STATCOM is 
its location into the power system. The location of the compensator will impact the 
dynamic performance of the overall system as well as the energy storage ratings, in 
particular when used for power oscillation damping. 
  



 
 

 
  



 
 

Table of content 

 

Chapter 1. Introduction ........................................................................................... 1 

1.1 Background and motivations ......................................................................... 1 

1.2 Previous research ........................................................................................... 2 

1.3 Problem setup ................................................................................................ 2 

Chapter 2. Static synchronous compensator - E-STATCOM ................................ 3 

2.1 Voltage source converter – VSC .................................................................... 3 

2.2 Application for E-STATCOM ....................................................................... 5 

2.3 Representation in PSCAD ............................................................................. 6 

2.4 Control systems ............................................................................................. 8 

2.5 Current controller .......................................................................................... 9 

2.6 Voltage controller ........................................................................................ 12 

2.7 Frequency controller .................................................................................... 13 

2.7.1 Droop ......................................................................................................... 15 

2.8 Power oscillation damping controller ........................................................... 16 

2.9 Modeling of Energy Storage ........................................................................ 18 

2.10 Synchronization system ............................................................................... 19 

2.10.1 Traditional Phase-Locked Loop (PLL) ...................................................... 19 

2.10.2 Auto-Normalizing Phase-Locked Loop (AN-PLL).................................... 20 

Chapter 3. Power oscillation damping................................................................... 23 

3.1 Analytical investigation ............................................................................... 23 

3.1.1 Small signal stability without E-STATCOM ............................................... 24 

3.1.2 Small signal stability with E-STATCOM .................................................... 26 

3.1.3 Comparison with and without E-STATCOM .............................................. 27 

3.2 Simulations on power oscillation damping ................................................... 28 

3.3 Impact on PCC for power oscillation damping ............................................. 29 

Chapter 4. Simulation results ................................................................................ 31 

4.1 Frequency control ........................................................................................ 31 

4.2 Power oscillation damping ........................................................................... 35 

Chapter 5. Falbygdens Energi AB ......................................................................... 37 

5.1 Grid setup .................................................................................................... 37 

5.2 Simulation results ........................................................................................ 38 

5.2.1 Three phase to ground fault & voltage dip .................................................. 38 

5.2.2 Fluctuating power from wind farms ............................................................ 41 

5.2.3 System islanding......................................................................................... 43 

5.2.4 Islanding mode without “smart load” .......................................................... 43 

5.2.5 Islanding mode with “smart load” ............................................................... 47 



 
 

Chapter 6. Conclusions and Future work ............................................................. 51 

6.1 Falbygdens Energi AB ................................................................................. 52 

6.2 Future work ................................................................................................. 53 

APPENDIX ............................................................................................................... 55 

Reference list ............................................................................................................. 57 



1 
 

Chapter 1. Introduction 

1.1 Background and motivations 

The traditional way of producing power is to have a small number of large power plants, 
which in Sweden are often located far away from where the power is needed. The trend 
of today is to increase the renewable energy sources and have more small scale 
production distributed in the grid. This together with new applications as large power 
storage devices and “smart loads” among other things will create a reliable and 
sustainable production of electricity. It will also increase the efficiency of the already 
existing grid so that it will be easier to meet the increase in demand of power. This is an 
important part of the “smart grid” concept.  
 
The small scale production consists of different types of renewable energy sources such 
as solar power, wave power and wind power. All of these are dependent on the type of 
weather and can therefore vary a lot during the day. The production planning is based 
on weather forecast and is consequently not completely reliable. Due to this there has to 
be some options so that power can be delivered at all times without any interruptions.   
 
Wind power is one renewable energy source that is based on forecast and it is also the 
fastest increasing renewable energy source today. The reason for the increase of wind 
power is due to the fact that the green house effect has to be prevented at the same time 
as the power usage in the world is increasing. Today 2.5 TWh is produced from wind 
power in Sweden every year and the goal is to have 30TWh year 2020 [13]. According 
to these numbers, the growth of wind power will continue. One important thing to 
remember is that when a large amount of wind power is installed into the grid, some 
part of it could be weakened. To cope with this, new technologies has to be used to 
provide a safe and sustainable electricity production. Also due to the uncertainties in the 
production from wind power, there has to be some back up. 
 
Energy storage is one option to the above stated problem. It is also an interesting area 
since it can provide additional features which can be related to the “smart grid”. The 
main use of energy storage is to store energy when the produced power exceeds the 
used. This power can then be sold when the demand instead is high, which often is 
during the days. In addition to this it can help to increase the stability of the system, 
especially if the grid is weak. As mentioned this is the case especially when a large 
amount of wind power is used. This technology is therefore very useful for applications 
when large amount of wind power, or some other type of renewable, is present in the 
grid.  
 
This report will focus on the impact of using energy storage devices together with a 
static synchronous compensator (STATCOM) to have a reliable operation of the grid. 
Further down in this report the acronym for this device will be E-STATCOM (Energy 
storage equipped static synchronous compensator). The energy storage device in the 
grid is one new application that will be used in the future grid to increase the reliability.  
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1.2  Previous research 

There has been some research ongoing of using an E-STATCOM for different 
applications in the grid, especially together with wind farms. In [8] the use of E-
STATCOM for smoothing out intermittent wind farm power is discussed. This is 
interesting particularly in the case of weak grids since it in this case could cause power 
quality issues, such as fluctuating voltage or frequency variations. How to control the E-
STATCOM is also treated in this paper. The latest is also done in article [9] where the 
main focus is on how to control the E-STATCOM. The result given in both articles 
shows that a STATCOM attached with a proper energy storage device will be able to 
smooth out the power to avoid power quality issues and to store spare power. 
 
Research has also been done in the area of increasing the stability in the grid. In [10] the 
dynamic performance of the E-STATCOM is instead investigated to see the impact 
when participating in the primary reserve for frequency control. The idea is to aid the 
primary frequency control during a short period of time when for example the blades of 
a turbine are pitched to adjust the mechanical torque. The capability of aiding the 
primary reserve is though dependent on the size of the energy storage. 
 
Another issue that can occur in the grid and cause severe problems is phase angle jumps 
which are often associated with voltage dips. This can cause problems for AC motors 
and their drives since a phase angle jump can cause it to trip. It is shown in [1] that this 
problem can be reduced significantly by using a STATCOM together with energy 
storage, in this case capacitive energy storage.  
 

1.3 Problem setup 

The focus in this report will be on the ability to control the frequency with the help of a 
STATCOM with energy storage capability. The ability of injecting active power will 
give the shunt compensator the potential to affect the grid frequency, particularly in case 
of weak connections or in islanding mode. The E-STATCOM can also be used for 
supporting the grid with spinning reserve that is acting as a “virtual inertia” to damp 
power oscillations. There will be two parts of this project where the first one is to derive 
the different control systems used in an E-STATCOM. These will later on be verified 
by simulations in PSCAD to show that it is possible to control different quantities, such 
as the current. The control systems has also been tested and verified in a model 
representing a real grid. This is a model over the grid around Falköping in Sweden and 
it has been investigated if there is a need for an E-STATCOM from an dynamical point 
of view. 
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Chapter 2. Static synchronous compensator - E-STATCOM 

The system to be investigated in this report is the shunt connected voltage-sourced 
converter STATCOM (static synchronous compensator) [14] and its applications 
together with an energy storage device. In this section the basic operation principle for 
the E-STATCOM will be explained and the reason for why equip it with an energy 
storage device. Also how to derive the main control system of the STATCOM will be 
shown, followed by describing the representation in PSCAD.  
 

2.1 Voltage source converter – VSC 

The STATCOM is a voltage sourced converted, for example an IGBT based two level 
full bridge converter shown in Fig.1. It is not necessarily needed to have two level based 
converters, a three level or more can also be used for this purpose. It can also be 
mentioned that GTO valves have been used in the past. The different switches and 
diodes can be seen in the figure and also the DC-link capacitors. 
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Fig.1 Two level full bridge converter 

 
Fig.2 shows a STATCOM connected to the transmission system via a coupling 
transformer. It is connected in shunt and has the ability to either inject or absorb power 
by controlling the current. The main application for a STATCOM is reactive power 
control where several attributes can be full filled [14]. The different attributes are 
 

• Voltage Control 
• Voltage stability 

• VAR compensation 

• Power oscillation damping 
• Current active filter 

 
Some of the above mentioned applications can be done with passive components such 
as a capacitor bank. The STATCOM can however be controlled very fast with a larger 
precision than for example the capacitor bank where the passive component can only 
either be connected or disconnected.  
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Fig.2 STATCOM connected to the transmission system 

 
The basic operating principle for a voltage-sourced converter is that the grid voltage, 
e(t), and the internal voltage, v(t) are measured. From this information the voltage drop 
over the transformer is calculated and varied by changing the internal voltage v(t). By 
doing this the wanted amplitude and the direction of the current, i(t), can be obtained. If 
the internal voltage is controlled to a higher value than the grid voltage then the 
direction of the current flow will be from the STATCOM into the grid and the opposite 
will occur if the voltage is set to be lower than the grid voltage e(t) [14].   
 
An upcoming idea is to attach the STATCOM with an energy storage device to allow 
active power injection and absorption, Fig.3 . If this is done the operation will be similar 
to an HVDC link with the major difference that the E-STATCOM has a limited amount 
of energy. Apart from the list above more attributes could be added to the list. The 
transient and dynamic stability could be enhanced and the oscillation damping will be 
improved if both active and reactive power is used, which will be discussed further 
down in the report.  

 
Fig.3 E-STATCOM connected to the transmission system 
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2.2 Application for E-STATCOM 

As mentioned the STATCOM has and is still most frequently used for reactive power 
control but that the upcoming idea is to connect an energy storage device to the dc-link 
of the STATCOM to provide additional features that is not feasible with only reactive 
power. As an example it is well known that the reactive power is good when it comes to 
voltage stability issues but if there is a phase angle jump, then active power must be 
used to correct it fast. Phase angle jumps can be dangerous for different drives systems 
since it can cause it to trip. Depending on what application the drive is used for, a phase 
angle jump can cause huge economical losses. As can be understood this is not wanted, 
but since control of active power can fix this problem the E-STATCOM could be very 
useful in this case. 
 
There are mainly two major reasons why to install a STATCOM with energy storage 
capability. The first one is simply to be able to store spare energy which can be used 
during times when additional energy is needed. This is interesting since it could prevent 
the use of expensive peak load generation, such as oil fired power plants. The second 
reason to install an E-STACOM is to prevent power quality issues such as voltage or 
frequency variations. These variations could be caused by a wind farm due to that the 
power delivered is fluctuating which causes the current to change. If the current is 
changing the voltage could also vary due to the impedance in the grid. This is not 
wanted since the voltage should be kept constant around 1 p.u., fortunately it has been 
shown that these power variations can be smoothed out with the help of an E-
STATCOM [8]. 
   
When the E-STATCOM is installed it can be utilized for other applications than the 
above mentioned. It will be described further down that active power is more effective 
than reactive when it comes to damping power oscillations. Hence the active power 
could be used to improve the stability in the grid and increase the damping capability of 
power oscillations in the grid. A too large oscillation can cause a generator to lose 
synchronism from the grid. This is not good since some of the generating units will be 
lost and if this happens in a weak grid this could lead to a cascade effect. For examples 
if there is a tap changer then this can start to operate due to that the voltage goes down 
and after a while the tap changer will not be able to restore the voltage. In this case 
different protection systems will activate and disconnect part of the grid and a shutdown 
is unavoidable.  
 
It can be proposed that the E-STATCOM will have the capability of damping 
oscillations that occurs on a higher grid level than where the connection point is located. 
This could be the case if the E-STATCOM is located as shown in Fig.4 where it is 
connected on distribution level while the generator is connected on the transmission 
level. The E-STATCOM can be used to inject power into the transmission level or 
absorb, to damp oscillations.  
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Fig.4 STATCOM location for power oscillation damping on transmission level 

 
An interesting case of operation of a network containing small scale generation units, 
such as wind power and small scale hydro, is islanding mode. If a piece of the network 
enters islanding mode then there will be no source that sets the frequency to the rated 
frequency and unless the generated power is equal to the absorbed then there will be a 
problem with the frequency. It could be doable to run the system if some of the load is 
abruptly disconnected to meet the generated vs used power criteria. This solution is not 
good since abrupt disconnections can cause transients and it is also not good from a 
customer point of view. If energy storage is used then this could temporarily provide the 
extra energy needed to supply the load to keep the frequency steady at the rated value. 
During this period of time when the energy storage is supplying power other actions can 
be taken. As an example the blades of a turbine could be pitched so that it provides 
more or less power, to meet the requirements. Another interesting case is to have some 
kind of “smart load”, where the load is reduced so that the load equals the generated 
power. It can be arranged so that the least important load is disconnected first. Later on 
in this report two different scenarios will be shown for reducing the load where the first 
case is to reduce the load linearly and the second case is to reduce it in steps. The last 
mentioned case is the most realistic case since it is not impossible to reduce the load 
linearly, some parts has to be disconnected together. All this should be done during the 
time that the E-STATCOM temporarily provides the extra power needed. The key 
solution, to be able to do this, is to have good communication between different parts in 
the grid which leads us back to the smart grid concept where many different 
components should communicate to operate the grid at an optimal level. 
 

2.3 Representation in PSCAD 

To decrease the simulation time and to have a smoother output of the measured 
quantities some simplifications has been done. One simplification done is to represent 
the full bridge converter with three ideal voltage sources, Fig.5. If this is done no PWM 
pattern is needed and the output will be smoother since there will be no ripple from the 
switching of the transistors. Notice that the ripple has almost the same frequency as the 
switching frequency and will therefore not give any information loss since we are only 
interesting in slow variations in this report. Another difference between the real 
converter and the three ideal voltage sources is that the real model has some losses due 
to switching. This is however not taken into consideration in this master thesis. 
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Fig.5 Three ideal voltage sources representing the voltage sourced converter 

 
The ideal voltage source can provide an infinite amount of energy and is therefore not a 
good representation of energy storage. How to make a simple battery to limit the 
amount of energy will be described further down in the project. 
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2.4 Control systems 

There are different control systems for the E-STATCOM where the main controller is 
the current controller. Besides this one additional control system is used to provide the 
reference current to the current controller. The most common additional used controller 
for a STATCOM is the voltage controller which controls the reactive power injection 
and absorption. This is used to regulate the voltage at the connection point of the 
STATCOM. The focus is however not on the voltage controller but instead on the 
frequency- and the power oscillation damping (POD) controller. An overview over the 
control system is given in Fig.6. Its operation can be described as follows. The voltage, 
e(t), at the system bus is measured to be sent to the Phase-Locked Loop (PLL) for angle 
estimation, also the absolute value of the voltage is taken to be compared with the 
reference voltage where the difference is sent to the reactive power controller for 
voltage control. The estimated angle is then used for transformation between the αβ-
coordinate system and the dq-coordinate system. It is also used to provide the reference 
to the frequency controller. The reference current from the reactive power- and 
frequency/POD controllers are compared to the actual current of the system and this 
deviation is sent to the current controller which in turn sends the reference to the pulse 
width modulation (PWM) block that sets the switching pattern for the transistors in the 
converter.  
 
There is also one more controller that is used in a STATCOM and that is the DC voltage 
controller [18] which ensures that the DC-link voltage is kept constant. This controller 
is not shown in the figure for simplicity and it will not be treated in this report. Instead 
the focus will be on describing and deriving the current controller together with the 
frequency and POD controller. Notice also that all the controllers will be derived in the 
dq-system since the integral part of a PI controller can only be used when the quantities 
are in DC. It is also easier to compare the reference with the actual value if it is in DC 
compared to AC. The transformation matrix between three phase and dq can be found in 
APPENDIX A. Also to mention is that the system is voltage oriented so the d 
component corresponds to the active power and the q component is related to the 
reactive power. 
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Fig.6 Overview of the control system 

 
2.5 Current controller 

As mentioned, the main controller for a STATCOM is the current controller. To create a 
current controller the system equation has to be derived. This is done by looking into the 
simple network configuration shown in Fig.7. 
 

 
Fig.7 Simplified connection scheme for the STATCOM 

 
The three-phase network equations are 

�� � �� � ��� � 	
��
�  
 
(2.1) 

�� � �� � ��� � 	
��
�  
 
(2.2) 

� � � � �� � 	 
�
�  
 
(2.3) 

 
Applying the three-phase to αβ transformation on equations (2.1) - (2.3) gives the 
network equation in the stationary αβ-coordinate system (see APPENDIX A for the 
transformation matrix)  
  

������ � ������ � ������� � 	 
������
�  
 
(2.4) 
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Continuing by applying the αβ to dq-system transformation from APPENDIX A, the 
network equation instead looks like: [2] 
 

��� � ��� � 	 
���
� � ����� � ��	� 
 
(2.5) 

 
The last part, ωLi

dq, in this equation comes from the transformation between αβ to dq 
coordinate system. The aim is to control the active and reactive power separately which 
is done by controlling the d component, which is related to the active power, and the q 
component, which is related to the reactive power, separately. This statement holds for a 
voltage oriented system where the d component is aligned with the voltage vector. In 
order to achieve this (2.5) have to be separated into a real and imaginary part and the 
following equations hold: 
 

�� � �� � ��� � 	 
��
� � �	�� 
 
(2.6) 

 

�� � �� � ��� � 	 
��
� � �	�� 
 
(2.7) 

 

 
Fig.8 Block diagram over the current controller and the electrical system 

Fig.8 shows a block scheme over (2.5). Ge(s) is the electrical system described by the 
right hand side of (2.5) and Fc(s) is the current controller. If the transfer function is 
calculated from the voltage error ∆v

dq to the current idq then it can be seen that it is a first 
order system described by (2.8) 
 

����� � 1�	 � � � ��	 

 

 
(2.8) 

jωL is the cross-coupling from the transformation mentioned above. As can be seen in 
(2.6) and (2.7) this cross-coupling term introduce a q-current dependency in (2.6) and a 
d-current dependency in (2.7). This will yield that a change in one of the d or q 
components will affect the other. This is not wanted since the aim is to control them 
separately. It is however removed in (2.8) by using feedback of the current through jωL, 
as shown in Fig.8. The equation will then be reduced to  
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(2.9) 

The current controller, Fc(s), can be described by the following equation 
 

����� � ��� � � ��  
 
(2.10) 

  

One way to calculate the control parameters is to look at the transfer function calculated 
from idq* to idq in Fig.8 and set it equal to a first order filter as in (2.11). A first order 
filter is chosen based on that the electrical system is a first order system and that a step 
response should follow the reference without any overshoot. The bandwidth (αcc) of the 
current controller can be decided according to how fast the control system should be. 

 

�!��� � �����������1 � ����������� � "��� � "�� 

 

 
(2.11) 

If the above equations are used it can be seen that the control parameters can be 
calculated as the following equations [2] 
 ��� � "��	 

 
(2.12) 

 � � � "��� 
 

 
(2.13) 

The following graph shows the behaviour of the current controller, derived with the 
above equations, when a step is applied. The bandwidth is chosen to be 500 Hz in this 
case. This is done in PSCAD in a system representing Fig.7. The reference to the 
controller will later on come from the frequency controller. It can be validated from the 
Fig.9 that the bandwidth of the current controller is 500 Hz by looking at the current 
rise-time which is the time it takes between 10-90% of the final value. 
 

"�� � ln 9�& !� 

 
trise is the rise time of the step response.  
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Fig. 9 d- and q-current when a step is applied in the d-current 

 
Fig. 10 d- and q-current when a step is applied in the q-current 

The step response of the current controller shows that the dynamic performance is good. 
It can be seen that a small step turns up in the opposite current to where the step is 
applied. This comes from the cross-coupling term described before. However, the step 
is very small and therefore it can be concluded that the feedback of the cross-coupling 
gives a good response and decuples the d and q parts as wanted. 
 

2.6 Voltage controller 

The voltage controller is the most commonly additional used controller for the 
STATCOM. One type of a simple voltage controller will be described briefly here, but 
it will not be verified in simulations. The reason for why it is described here is simply 
because the main application of the STATCOM is for voltage control. 
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Fig.11 Block diagram over the voltage controller 

Fig.11 shows the block diagram of a simple voltage controller. The operation of the 
voltage controller is simple, a reference value is compared to the actual voltage at the 
connection point. The error signal is then sent to the voltage controller, Fv(s), which 
often has a droop setting of 3-5% to prevent interaction with other controllers in the 
system [19] (further described later in the report). The reference current is then sent to 
the current controller which controls the current to the reference. 
 

2.7 Frequency controller 

The frequency controller is used to keep the frequency at its nominal value. The 
frequency of the system is estimated with a PLL (described later). The error signal is 
send to a PI controller with a droop setting (described further down), shown in Fig.14, 
which will yield the torque reference that should be applied in order to fix the frequency 
at the reference. The torque itself cannot be sent to the current controller, instead a 
current reference is needed. This can be obtained by considering that the current is equal 
to the torque divided by the flux and if the following equations are followed it can be 
seen that the current reference can be obtained.  
 
 

' � �( & + � ', 

 

 
(2.14) 

+ � �(, � (- 
(2.15) 

  

This is however only valid in steady state when the PLL has found the correct value.  
 
The control parameters of the frequency controller can be calculated in the same way as 
the control parameters of the current controller, with the exception that instead of 
looking at the electrical system we look at the mechanical system, shown in Fig.12. The 
same transfer function as (2.11) will be used but Fe(s) will be replaced by Fω(s) and 
Ge(s) will be replaced by Gm(s). Fω(s) is the frequency controller and Gm(s) is the 
mechanical system. The expressions can be found in (2.16) And (2.17). 
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Fig.12 Block diagram over the mechanical system and the frequency controller 

 

�.��� � ��. � � .�  

 

 
(2.16) 

�/��� � 1�21 � 2 

 

 
(2.17) 

 
where H is the inertia of the system and D is the damping coefficient. Following the 
procedure done in Section 2.5, the control parameters will become. 
 ��. � ".21 
 

(2.18) 

 � . � ".2 (2.19) 

 
 

21 
∆�&
� � (/ � (� � 2∆�& 

 

(2.20) 

Both H and D can be found in the swing equation (2.20) [5]. The last part of this 
equation corresponds to the mechanical damping in the system. Typically it is assumed 
that there is a linear relation between the damping coefficient D and the speed. 
However, in reality this is not the case. The damping coefficient is dependent on for 
example the friction in the machine. Due to these reasons the damping coefficient, D, 
can be hard to know. According to [12], calculated values of D can vary by a factor of 5 
and is therefore very inaccurate. The most common way to find the damping term is to 
run field tests and specify the value for each natural oscillatory frequency of the 
shaft[11], although the manufacturer can never tell exactly what it is in reality. 
Therefore a fictive damping coefficient is introduced. This term is called active 
damping and will represent the damping coefficient. Consider Fig.12 where Gm(s) is 
shown in (2.17). If the active damping term, Da, is introduced as shown in Fig.13 then 
Gm(s) will instead become G’m(s) as (2.21) 
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Fig.13 Block diagram over the mechanical system and the frequency controller with active damping 

 
  

��/��� � 1�21 � 2 � 24 

 

 
(2.21) 

If the inner feedback loop is made as fast as the closed loop system the following hold: 
[2]. 
 2 � 2421 � "/ 

 

 
(2.22) 

From (2.22) the total damping, D+Da, can be calculated based on the bandwidth and the 
inertia constant. The constant D does not necessarily have to be known, instead the sum 
of D+Da will be used.  

2.7.1 Droop 

To avoid interaction with other control systems in the grid a droop setting for the 
frequency control must be used. The principle of the droop is that it allows a small error 
in the controlled signal. This implies that it is also used to reduce the size of the energy 
storage, since it does not have to compensate to 100 %. If this is not used, different 
control systems might start to interact with each other and this might cause instability 
problems. The droop is implemented by feedback of the reference signal through a gain 
which can be seen in Fig.14.  
 

 
Fig.14 Frequency controller with droop 
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The error becomes higher if the droop percentage is increased which is seen in Fig.15. It 
can be seen that for zero droop the error is set to zero so that the frequency returns to its 
rated value of 50 Hz. The droop is then increased with one percentage each step up o a 
total of five percent. How large the deviation will be for each percent depends on the 
grid. Therefore the droop percentage will be individually decided from grid to grid 
according to the grid code shown in Fig.16 [7]  

 
Fig.15 Frequency respons with droop setting 

 

 
Fig.16 Grid Code 

Fig.16 shows the grid code that is valid for the Nordic countries. It shows that if the 
voltage is between 0.9 and 1.05 p.u then the frequency should stay between 49 and 50.3 
Hz for continuous operation, field A. If it is outside A then other actions has to be taken 
which will not be described any further here. If it is of interest more of this can be found 
in [7]. 
 

2.8 Power oscillation damping controller 

Besides the frequency control the E-STATCOM can also be used for damping of 
mechanical oscillations that can occur in the grid due to different reasons, for example a 
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fast load change or grid faults. Power oscillation damping can be achieved by either 
reactive or active power or both at the same time. The procedure is to inject or absorb 
power with the opposite sign of the oscillation of the rotor to force it to fade away. It 
has been shown that active power is more effective to damp power oscillations 
compared to use of only reactive power [16]. One explanation to this is that with 
reactive power the voltage is modulated to damp the oscillations and if too much 
reactive power is injected then the voltage will vary more than is allowed. If instead 
active power is used the voltage will not change in a lossless system and therefore much 
more active power can be injected and hence dampen the oscillations better. It will be 
shown further down in the report that the connection point of the compensator is also 
important when it comes to power oscillation damping. 
 
The most common way to find the reference signal for power oscillation damping is to 
look at the derivative of the variation of transmitted active power, since it will oscillate 
together with the rotor. This statement can be verified by linearizing (2.23) 
 

' � �5�67 sin : 

 

 
(2.23) 

This is the power equation that shows how much power that can be transmitted between 
the two voltages V1 and V2 with the impedance X in between, δ is the power angle. 
If (2.23) is linearized with δ=δ0+∆δ then the equation becomes 
 

∆' � �5�67 cos�:=� ∆: 

 

 
(2.24) 

If the derivative of the variations of transmitted power is taken it can be seen that it is 
related to the rotor speed 
 
∆'
� � �5�67 cos�:=� 
∆:
� � �5�67 cos�:=� ∆� 

 

 
(2.25) 

Another way is to measure the rotor angle directly, although this approach is not 
frequently used in reality since the rotor is often located too far away. The variation of 
the derivative of the voltage can also be used as a reference. This signal can be 
estimated with a newly proposed method called AN-PLL (Auto- Normalizing Phase 
Locked Loop) [15]. This method will be described later on in the report.  
 
If the oscillation of the rotor is known the way to proceed is to inject or absorb active 
power with the opposite sign compared to the oscillation. If the control system is 
designed in a proper way the power oscillations can be damped very fast, depending on 
how large the energy storage is. The damping controller is a pure proportional gain 
where the gain is set equal to the one calculated for the proportional part of the 
frequency controller. 
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Fig.17 Power oscillation damping controller 

 
2.9 Modeling of Energy Storage 

Different aspects can be taken into consideration when the size of the energy storage is 
designed. The size depends on what the E-STATCOM is going to be used for since it 
can be varied to suit different applications. If the application is to provide active power 
during islanding mode then the size of the energy storage should be large enough to 
supply the whole load with power. Depending on the size of the load this could be a 
huge amount of energy and therefore it is not feasible to use for larger applications. 
Another aspect is to design the energy storage so that it can store energy from wind 
farms when they supply energy and then this energy could be used when there is a lack 
of wind power. As a supplementary application it could be controlled so that the system 
can enter islanding mode if the load requires the same amount of power as the energy 
storage can provide. According to the above mentioned it is hard to decide on how large 
the energy storage should be and therefore it is needed to design the size individually 
for each project and according to the applications of the E-STATCOM. 

To provide a limitation in the amount of energy and to have a simple representation of a 
battery a High-Pass (HP) filter is used. This filter is inserted in the reference current 
from the frequency controller, which can be seen in Fig.18 where the HP filter is inside 
the dotted box. The step response of a HP filter is shown in Fig.19 which shows that the 
reference current will be at its maximum in the beginning and hence full power will be 
delivered. As the curve decays the current will also decay and consequently also the 
amount of power that will be injected from the E-STATCOM. The decay will therefore 
represent the discharge of a battery and the size of the battery will be dependent on the 
time constant for the HP filter. The time constant can be changed to fit the amount of 
time the battery should last.  
 

 
Fig.18 Overview of the control system with a HP-filter as battery representation 
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Fig.19 Step response of a HP filter 

 

2.10 Synchronization system 

When connecting a STATCOM to the grid it first has to be synchronized with the grid 
frequency. It will be described in this chapter how to track the frequency of the system 
so that the synchronization can be performed. The information about the grid frequency 
is then further used to control the frequency and to give the transformation angle for the 
αβ to dq-transformation. This can be done with a conventional Phase-Locked Loop 
(PLL) or with a newly proposed approach called Auto-Normalizing Phase-Locked Loop 
(AN-PLL). In addition to frequency tracking it will be described how the AN-PLL can 
be used to find the reference for power oscillation damping. 
 

2.10.1 Traditional Phase-Locked Loop (PLL) 

The most common used method for tracking frequency variations is to use a PLL. It is a 
well known method that shows good performance, especially when the STATCOM is 
connected to a strong grid where the voltage amplitude is fixed. Mathematically the 
PLL can be described as [15] 
 �>? ��� � @5A��� 
 

 
(2.26) 

 BC?��� � ���� � @6A��� 
 

 
(2.27) 

where k1 and k2 are the control parameters and the error signal is 
 

A��� � �D�EF���������G�� � ��,������  

 

 
(2.28) 
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Vp is the voltage amplitude of the positive sequence and vp
dq (t) is the positive sequence 

of the grid voltage. �> is the speed estimate and BC is the position estimate. (2.18) and 
(2.19) says that the speed estimate is updated proportionally to the error signal and the 
position estimate is updated as the integral of the speed estimate with a correction factor 
[2]. According to (2.28) vp,q(t) should be zero so that the error is zero.  
 
It can be seen that the parameters are dependent on the voltage amplitude Vp, and 
therefore the voltage amplitude does not affect the signals when connected to a strong 
grid, since the voltage is fixed in that case. If instead the STATCOM is connected to a 
weaker grid then the voltage amplitude variations could cause the bandwidth of the PLL 
to change due to the described voltage amplitude dependency. The solution to this 
problem could be to use the AN-PLL [15]. 
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Fig. 20 Phase-Locked Loop 

 

2.10.2 Auto-Normalizing Phase-Locked Loop (AN-PLL) 

Compared to the regular PLL the AN-PLL utilizes all the information about the 
complex voltage, not only the argument, by using the complex logarithm [15] 
 logJ�K � logJL�LK � � argJ�K 

 

(2.29) 

)(te η−
( ) )(tv norm

αβ( ) )(tv
αβ ( ) )(tv

dq
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( ) )(, tv
dq

normp

∫

∫

 
Fig.21 Block diagram of the AN-PLL 

Consider Fig.21 which shows the block diagram over the AN-PLL. The logarithm is 
applied to the estimated positive sequence of the complex voltage. This signal is divided 
into two parts as (2.29) and each part is sent to a PI-regulator where the output is shown 
in (2.30) and (2.31).  
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O��� � @� log PQ�����QR � @ S log PQ���T�QR
TU
VW  

 

(2.30) 

���� � @� arg PQ�����QR � @ S arg PQ���T�QR 
TU
VW  

 

(2.31) 

This will yield the variations of the derivative of the voltage (2.30) and the estimated 
angular frequency (2.31). These are integrated to give the grid voltage angle, (2.33), and 
a scaling factor, (2.32), that normalizes the voltage vector to unity. [15] 
 

X��� � S O�T�
TU
VW  

 

(2.32) 

B��� � S ��T�
TU
VW  

 

(2.33) 

From (2.30) to (2.33) it can be seen that all the needed signals are estimated. (2.30) 
gives the reference signal to the power oscillation damping controller, (2.31) gives the 
reference to the frequency controller and (2.33) gives the transformation angle used in 
the αβ- to dq-transformation. The additional properties makes the AN-PLL much more 
reliable in this report since it increases the stability when connected to weak grids and 
also because it gives a signal that can be used for power oscillation damping. Further 
information can be found in [15]. 
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Chapter 3. Power oscillation damping 

As mentioned earlier the principle of damping power oscillations is to either inject or 
absorb power with the opposite sign compared to the oscillations. It was also mentioned 
that the efficiency of damping oscillations is dependent on the connection point of the 
compensator. In this chapter this statements will be described and shown by changing 
the location of connection of the E-STATCOM. Also mathematical calculations will be 
done to verify the simulation and to show that it is possible to increase the stability by 
connecting an E-STATCOM. 
 

3.1 Analytical investigation  

As a comparison to the simulations and to prove that the shunt connected STATCOM 
with energy storage can provide damping with help of active power, an analytical 
investigation will be performed in this chapter. Calculations and simulations will be 
done for a system found in the book “Power System Stability and Control” [5]. 
 
The grid used for this purpose can be seen in Fig.22. The calculations were carried out 
for two cases, with and without an E-STATCOM, where cct 2 is disconnected due to a 
fault. If then the generator is represented by the classical model, which is a constant 
amplitude voltage source behind the transient impedance, and all resistances in the 
network are neglected the circuit can be simplified to Fig.23  
 
The E-STATCOM will be represented by a variable resistance that varies with the 
frequency deviation so that it injects or absorbs the needed active power. The reactive 
part of the STATCOM could also be included in these calculations, but it was left out 
due to the fact that only the active power is of interest in this case. 

 
Fig.22 Grid setup for analytical investigation 

 

 
Fig.23 Reduced grid setup for analytical investigation 



24 
 

3.1.1 Small signal stability without E-STATCOM 

To analyze the small-signal stability characteristics of the system at a steady-state 
condition following a transient, the system has to be linearized around an initial 
operating point [5]. The parameters used are listed and described below 
 
KS = synchronizing torque coefficient in pu torque/rad 
KD = Damping torque coefficient in pu torque/pu speed deviation 
H = Inertia constant in MW*s/MVA 
ω0 = Rated speed in elec.rad/s  
∆ωr = Per unit speed deviation 
δ = Rotor angle in elec.rad 
Tm = Mechanical torque in per unit 
Te = Electrical torque in per unit 
Eg = Voltage amplitude at generator in per unit 
Eb = Voltage amplitude at infinite bus  in per unit 
Et = Voltage amplitude at low voltage side of the transformer in per unit 
XT = Total impedance of the grid in per unit 
Table 1 Table of parameters 

Consider Fig.23, if Eg is used as reference then the current is 
 

+YZ � [Y � [\�cos : � � sin :��7]  

 

(3.1) 

And the complex power is 
 

^_ � ' � �` � [a+bZ � [\ sin :7] � � [YJ[Y � [\ cos :K7]  

 

(3.2) 

In per unit the active power is equal to the torque and hence becomes [5] 
 

(� � '� � [Y[\7] sin : 

 

(3.3) 

Linearizing this equation with δ=δ0+∆δ gives 
 

∆(� � [Y[\7] cos := �∆:� 

 

(3.4) 

Let 
 

�! � [Y[\7] cos := 

 

(3.5) 

The equations of motion in per unit are  
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∆�&
� � 121 �(/ � (� � �c∆�&� 

 

(3.6) 

 

� ∆�& � �=∆�&  

 

(3.7) 

If these two equations are linearized the following is obtained 
 
∆�&
� � 121 �∆(/ � �d∆: � �c∆�&� 

 

(3.8) 


∆:
� � �=∆�&  

 

(3.9) 

 
Written in state space form we get 
 

� e∆�&∆: f � g� �c21 � �d21�= 0 i e∆�&∆: f � g 1210 i∆(/ 

 

 
(3.10) 

From the linearization the following characteristic equation will be found 
 

j6 � �c21 j � �d�=21  

 

(3.11) 

Which is of the same form as: 
 j6 � 2O�kj � �k6 
 

(3.12) 

 
If (3.11) is set equal to (3.12) then it can be seen that the natural frequency of the 
oscillations is 
 

�k � l�d�=21  

 

 
(3.13) 

The damping ratio is 
 

O � �c41�k 

 

(3.14) 

The eigenvalues are 
 j5, j6 � �O�k n �ko1 � O6 
 

(3.15) 
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The damped frequency is 
 �� � �ko1 � O6 
 

(3.16) 

3.1.2 Small signal stability with E-STATCOM 

 
Fig.24 Grid system with shunt compensation 

In the case when the E-STATCOM is connected, Fig.24, the electrical torque will be 
different and hence also the synchronizing torque coefficient KS. The derivation of the 
expression for the generator power in this case is extensive and will not be done here, if 
it is of further interest it can be found in [6]. The final expression for the generator 
power becomes 
 '�:� p � sin : � ��O � cos :�7dqr�!s � �� sin :�7dqrt!s 
 

(3.17) 

Where � � [Y�! J7Y � 7!K⁄  and  O � J[Y �!⁄ KJ7! 7Y⁄ K and XSHC is the short-circuit 

reactance of the system, seen from the connection point of the E-STATCOM. Bsh is the 
susceptance representing the reactive part of the E-STATCOM but in this specific case 
where only the active power of the E-STATCOM is investigated, Bsh is set to zero and 
hence the last part in the above equation is neglected. As mentioned the E-STATCOM 
is represented by a resistance that varies with the frequency. The expression can be seen 
in (3.18) 
 �!s � ��c!U4U�v/∆� 
 

(3.18) 

Gsh is the conductance representing the E-STATCOM, KDstatcom is the proportional gain 
in the power oscillation damping controller. It has been stated that the injection or 
absorption should have the opposite sign to the oscillation of the rotor, therefore a 
minus sign has to be used in (3.18) since otherwise it will increase the oscillations. To 
find KS, (3.17) has to be linearized so that the above described state space matrix can be 
used. This linearization is performed in Wolfram Mathematica which allows non-
numerical calculations and the result is given in state space form according to (3.19) 
 

� e∆�&∆: f � e�55 �56�65 �66f e∆�&∆: f � w�55�65x ∆(/ 

 

 
(3.19) 
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�55 � �2 � � b �c!U4U�v/ b 7dqr�O � cos :=�21  

 

(3.20) 

�56 � �� cos :=21  

 

(3.21) 

 �65 � �= 
 

(3.22) 

�66 � 0 
 

(3.23) 

 
 
If equation (3.20) is compared with a11 in (3.10) then it can be seen that the damping 
coefficient KD contains two parts. The first part is the natural damping, D, of the system 
and the second part comes from the E-STATCOM.   

3.1.3 Comparison with and without E-STATCOM 

The eigenvalues shows where the pole pair of the system is located and this can give 
information about the stability of the system. If the pole pair is located on the right side 
of the imaginary axis then the system will be unstable. If they are located on the 
imaginary axis then the system will not be unstable but it also not damped, so an 
oscillation will be sustained. In order to have a stable system then the pole pairs have to 
be located on the left side of the imaginary axis.  
 
P = 0.9  
Q = 0.3  
Et = 1—36° 
Eb = 0.995∠0° 
H=3.5 MW*s/MVA 
Table 2 Initial values for mathematical calculations 

If the previous mathematical calculations are performed for the examples shown in 
Fig.23 and Fig.24 with the initial conditions (in p.u) shown in Table 2, and with the 
impedance values in Fig.23, the following results will be found. 
 
 Uncompensated E-STATCOM 
KD 0 -12.468 
Eigenvalues λ 0±j5.8304 -0.4708±j5.8114 
Damped frequency ωd 0.9279 Hz 0.9249 Hz 
Damping ratio ξ 0 0.112 
Undamped natural frequency ωn 0.9279 Hz 0.9279 Hz 
Table 3 Results for calculations 

In the uncompensated case the eigenvalues are located on the imaginary axis and 
therefore the system is not unstable but also not damped. If the eigenvalues are plotted, 
Fig.25, it can be seen that the pole pairs have moved into the left half plane. Now the 
system is damped and the stability has increased.  
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Fig.25 Pole-pair locations 

 
3.2 Simulations on power oscillation damping 

As stated before the mathematical calculations are to be compared with simulated 
results from PSCAD. The same system, as shown in Fig.24, is used so that the 
comparison is valid. The method used to find the oscillation in the rotor angle is an AN-
PLL with the bandwidth of 5 Hz [17]. Since the frequency of the oscillation is around 1 
Hz and the bandwidth of the AN-PLL is 5 Hz this will yield that the AN-PLL will be 
reliable and track the frequency with a good accuracy.  
 
The speed of the machine for the example given above can be seen in Fig.26 where the 
solid line is when there is an E-STATCOM connected and the dotted line is when there 
is no compensation.  

 

Fig.26 Speed of the machine following a transient in the grid 
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It can be seen in Fig.26 that the damping of oscillations is improved when an E-
STATCOM is connected, represented by the solid line. According to the pole pairs 
shown in Fig.25 the uncompensated grid should not be damped at all although that it 
can be seen in the figure that the dotted curve is damped. The reason for this is that in 
the mathematical calculations it is assumed that there is no resistance in the grid and 
that the machine is represented by the classical model, which is a simplification. In this 
case there will be no damping. In the simulation on the other hand a complete model of 
the machine is used and not represented by the classical model. In this model the flux 
tries to stay constant and therefore during the oscillation it will try to oppose the 
oscillation and the flux will slowly change [5]. This will cause the oscillations to be 
damped and in addition to this, one damping winding can be found in the machine. The 
damping winding will provide damping at lower frequencies, and since the frequency of 
the oscillation is around 1 Hz this will be affected by the damping winding. The 
important thing to notice when comparing the mathematical calculations with the 
simulated result is that the frequency of the oscillation is the same in both cases. Both 
results also prove that an E-STATCOM will provide damping to the system. Notice that 
they can never show exactly the same result when simplifications are made in the 
mathematical expressions, but a hint that both shows that the stability is improved is 
given. 

3.3 Impact on PCC for power oscillation damping 

The point of connection is important for frequency control but even more important 
when it comes to power oscillation damping. This can be seen in (3.17) where the two 
terms XSHC and ξ change depending on where the connection point is located. The E-
STATCOM will provide larger damping if it is connected closer to the generator. The 
explanation for this is that if the connection point is close to the infinite bus then nearly 
all of the injected current will go into the this bus, due to the lower impedance, and 
affect the oscillation very little. If the connection point is moved closer to the generator 
then the damping will increase due to that more and more of the injected current will aid 
in damping the oscillation. Fig.28 shows the difference in damping when the connection 
point is changed. The grid used is the same as for the example above, and the different 
locations of the connection point can be seen in Fig.27. 
 

 
Fig.27 Connection points of the E-STATCOM 
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Fig.28 Speed of the machine following a transient in the grid for different connection points 

It can be seen in Fig.28 that the damping increases as the connection point moves closer 
towards the generator. This can also be validated with mathematical calculations by 
looking at the pole pair location. This is realised in Fig.29 where it can be seen that the 
stability has increased since the pole pair moves from the imaginary axis further into the 
left half plane as the connection point is moved.  

 
Fig.29 Pole-pair location for different connection point of the E-STATCOM 
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Chapter 4. Simulation results 

In this chapter the results from the simulations in PSCAD are presented. A simple way 
to test the frequency controller is to use the system setup shown in Fig.30. The idea is to 
disconnect breaker “CB” so that the remaining grid is operating in islanding mode. 
Notice also that the generator does not have any speed governor and therefore it will 
only be the E-STATCOM that fixes the frequency. The E-STATCOM will only have a 
controller for the active power and hence it will not be able to inject any reactive power. 
The reactive power is however provided by the rotating machine in the simulations. 
Also the behavior during a fault without any E-STATCOM is analyzed for comparison. 

 
Fig.30 Grid used to test the frequency and power oscillation damping controller 

 
4.1 Frequency control 

As mentioned the frequency controller can be tested by disconnection from the main 
grid and run the system in islanding mode. No limitation in the energy storage is used in 
these simulations. This is done to be able to see the behavior and to see if it is possible 
to control the frequency with only the help of the E-STATCOM.  
 
Consider Fig.31. It can be seen from the dotted line that without an E-STATCOM the 
frequency drops down close to zero. It should be noticed that the system will be shut 
down long before the frequency is close to zero since it should not deviate too much 
from the rated frequency. The solid line shows how the frequency behaves if instead an 
E-STATCOM with a frequency controller is connected. In Fig.32 the time instant where 
the disconnection occurs is zoomed. It can here be seen that the droop setting in the 
frequency controller allows a small deviation from the rated frequency.  Normally a 
droop of 3-5% is used and in this specific grid all the droop values manage to keep the 
frequency above 49 Hz, which is the minimum limit for continuous operation if the 
voltage magnitude is between 0.9- to 1.05 p.u. Fig.16 [7]. The result shows good 
performance of the frequency controller with its droop setting and hence it works as 
intended.  



32 
 

 
 

Fig.31 Frequency behaviour during system islanding. Dotted = without compensation, Solid = with 

compensation 

 

Fig.32 Zoom from Fig.29 
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Now a three phase fault with the clearing time of 1 second is applied at the location 
shown in Fig.33 
 

 
Fig.33 Location of fault in the test grid 

From Fig.34 it can clearly be seen on the dotted curve that without any compensation 
the frequency drifts away due to the fault. The voltage in Fig.35 is also oscillating and 
the conclusion is that the system is lost and a shutdown is unavoidable. If however an E-
STATCOM is connected then it can be seen in Fig.34 on the solid curve that the 
frequency starts to deviate but with the help of active power it is controlled back down 
to the rated frequency. The voltage behaviour in Fig.36 is also good although it is 
reduced during the fault, but this cannot be prevented since no reactive power controller 
is used. With an E-STATCOM the system can continue to operate even after the fault. 

 
Fig.34 Frequency behaviour following a fault 
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Fig.35 Voltage behaviour without E-STATCOM 

 
Fig.36 Voltage behaviour with E-STATCOM 

 
  

5 6 7 8

-30

0

30

Time [s]

V
o

lt
a

g
e

 a
t 

P
C

C
 [

k
V

]

5 7 9 11

-30

0

30

Time [s]

V
o

lt
a

g
e

 a
t 

P
C

C
 [

k
V

]



35 
 

4.2 Power oscillation damping 

It has been shown in Chapter 3 that the E-STATCOM can provide active damping by 
injecting or absorbing active power. Furthermore, in Section 3.3, it has been shown that 
the location of the compensator has a great impact on the ability of the system to 
provide effective damping to power oscillations. Also, different synchronization 
algorithms have been described and can be used to provide the needed signals to the 
damping controller. Here, the dynamic performance of the E-STATCOM when using 
AN-PLL for damping power oscillations in the transmission system is shown. In order 
to trigger a power oscillation, a step in the mechanical torque acting on the generator 
shaft in Fig.30 is applied. As a result, low frequency oscillation in the generator speed, 
resulting in oscillations in the transmitted power, will be excited, as shown in Fig.37 
(dotted line). If the E-STATCOM is connected to the grid and active, the investigated 
control system will react to the oscillation and inject the needed active power in order to 
increase the system damping. This can be seen through the solid line in Fig.37, which 
shows the generator’s rotor speed when the compensator is active. From the 
comparison, ist is possible to observe that the E-STATCOM is capable to increase the 
system damping. The amount of damping that can be provided by the compensator, i.e. 
the time needed to cancel the oscillation, is dependent on the size of the energy storage 
(large storage would allow higher active power injection, thus fast damping action). 
 

 
Fig.37 Speed of machine following a transient without compensation (dotted] and with compensation (solid) 
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Chapter 5. Falbygdens Energi AB 

In this report the different applications for an E-STATCOM has been discussed. Also 
the different control system used in the E-STATCOM have been derived. Results from 
simulations have proven that the dynamic performance of the different controllers is 
good and that they function as intended. In this section the E-STATCOM with all the 
derived controllers will be tested in the grid of Falbygdens Energi AB (FEAB). The 
need for an E-STATCOM from a dynamical point of view during faults and other 
occasions will be evaluated. Also other applications will be taken into account.  
 
The short-circuit power of the system at the connection to the infinite bus is 179 MVA, 
which is ~11 times larger than the installed, 16MW, amount of wind power. This yields 
that the frequency probably will be fixed by the infinite source although that this might 
change if more wind power is installed.  
 

5.1 Grid setup 

A part of the grid in Falköping has been simplified and built in PSCAD. Since it is a 
simplification of the grid, one level above FEAB is not considered and is therefore 
represented by an infinite source behind an impedance that will represent the short-
circuit power. The transformer between the infinite bus and busbar Norra is rated to 
40MVA which brings down the short-circuit capacity to 179 MVA at busbar Norra. The 
load, which is considered to vary between 3.5-30 MVA with a power factor of 0.95, and 
two incoming cables are connected to this busbar. It is also to this bus that the E-
STATCOM will be connected (in the simulations). The two incoming cables connect 
Norra with Östra and from that point one cable goes to the wind farm at Backgården and 
two cables to the wind farm at Källeberg. The wind farm at Backgården consists of 
three 2MW DFIG generators and at Källeberg there are five 2MW DFIG generators. A 
grid overview can be found in Fig.38 
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Fig.38 FEAB grid overview  

 
5.2 Simulation results 

Different simulations have been performed in the model of the FEAB grid to test if 
there is a need for an E-STATCOM from a dynamical point of view. The cases that 
have been performed can be seen in the table below. 
 
Type of occasion Location Additional information 

3-phase fault Cable connecting Östra-
Källeberg 

Close to busbar Källeberg 

3-phase fault Cable connecting Norra-Östra Middle of the cable 
Fluctuating wind power  Not constant power 
Voltage dip Feeding grid 0.7 remaining voltage 
Islanding mode Connection to the main grid No connection to the main 

grid 
Table 4 

Notice that the power delivered from the two wind farms are set to be constant for all 
simulations except for when the power is fluctuating.  

5.2.1 Three phase to ground fault & voltage dip 

The most severe fault is three phase to ground since none of the phases can transmit 
power in this case. This is also the most common fault in FEAB grid since cables are 
used and if something happens to the cable it is most likely that it will affect all three 
phases. Due to these two reasons the faults applied in the simulations are chosen to be 
three phase to ground but with different locations in the grid.  
 
If a three phase to ground fault occurs in one of the two cables connecting busbar Norra 
with Östra, having a clearing time of 1s, a severe voltage drop with less than 0.2 p.u 
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remaining voltage will take place. This can be seen in Fig.39. The consequence is that 
the turbines at the wind farms will stall and a shutdown is unavoidable, which can be 
seen in Fig.40. The only thing that can be noticed in the frequency is the transient 
shown in Fig.41 but this is not serious since it recovers fast. The oscillations that can be 
seen after the fault comes from that the wind turbines are not disconnected in the 
simulation. In reality this will not be present since in that case the wind turbines will be 
disconnected. The same behavior can be seen in the voltage.  
 
Due to that there is no phase deviation the active power from the E-STATCOM is not 
needed when this type of fault occurs. The location of the E-STATCOM also prevents it 
from damping the oscillations of the rotor in the turbines, since most of the current from 
the E-STATCOM will flow into the main grid, due to the lower impedance. Reactive 
power injection might be beneficial to the system, although the majority of the injected 
reactive power will flow into the fault.  

 
Fig.39 Voltage during 1s fault 

 
Fig.40 Rotor speed in p.u during 1s fault 
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Fig.41 Frequency during 1s fault 

If instead the fault is applied on the cable between Östra and Källeberg the fault clearing 
time is reduced to 500ms, the fault is applied at 7s. The results from the simulations 
shows that all the turbines can continue to operate after the fault, see Fig.43. The 
voltage drop is in this case not as heavy as the previous case, but it is still severe. Fig.42 
shows the voltage drop. Due to that the turbines can continue to operate after the fault it 
can be concluded that the E-STATCOM is not needed in this case either. 
 

 
Fig.42 Voltage during 500ms fault 
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Fig.43 Rotor speed in p.u during 500ms fault 

A 0.7 p.u. remaining voltage dip has also been applied in the feeding grid with a fault 
clearing time of 300ms. All of the turbines continue to operate after the fault is cleared. 
One interesting use of the E-STATCOM could in this case be to compensate for the loss 
of active power during the fault. This however requires some other control schemes and 
is therefore not included in this report.  
 

5.2.2 Fluctuating power from wind farms 

The torque to the generators in the wind turbines has been constant during all the 
previous simulations. This means that the wind speed will put a constant force on the 
blades, which is not true in reality since the wind speed varies all the time. Therefore 
data from a real wind turbine has been used in one simulation to see if a more realistic 
wind speed would cause any problems with the voltage or the frequency at busbar 
Norra. The varying power from the wind farm can be seen in Fig.44. The load has in 
this case been reduced so that some of the power is fed into the infinite bus. The 
behaviour of the frequency and the voltage is found in Fig.45 and Fig.46. According to 
the figures there is no problem with the frequency or the voltage. As mentioned this is 
for the current case where 16 MW of wind power is installed in the grid with the short-
circuit capacity of 179 MVA. In the future when the ratio between the short-circuit 
capacity and the amount of wind power decreases the results could be complete 
different. 
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Fig.44 Active power from wind power farm 

 
Fig.45 Frequency 

 
Fig.46 Voltage 
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5.2.3 System islanding 

As mentioned before the frequency controller is mostly needed in case of system 
islanding or if the network is very weak. To be able to operate in islanding mode is 
probably not the main driving force to install a STATCOM with energy storage, but if 
installed it can be used for this application. In this scenario the E-STATCOM can 
temporarily provide energy meanwhile other actions are taken in the local grid, for 
example the use of a “smart load”. The “smart load” adapts the load so that there is a 
power balance between the load and the generated power, in this case the power from 
the two wind farms.  
 
It will be shown, from simulations, that it is possible to run the system in islanding 
mode if an energy storage device is used and if it is large enough to supply the needed 
power. Examples over two different types of “smart load” will also be shown. 
 

5.2.4 Islanding mode without “smart load” 

The figures in this part will show the behaviour of the voltage and the frequency during 
islanding mode for different cases of compensation. First there will be no reactive- or 
active power compensation, then reactive power compensation will be used and last 
both types of compensations will be used simultaneously. In these cases the wind farm 
is set to produce its maximum power and the load is also set to its maximum, which is 
30 MVA. Also to notice is that the E-STATCOM has no limitation in the energy storage 
and can therefore supply as much energy as is needed, this will be further discussed 
later on in the report.  

 

 
Fig.47 Voltage behaviour during islanding operation – No E-STATCOM 
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Fig.48 Frequency behaviour during islanding operation – No E-STATCOM 

Fig.47 and Fig.48 show the voltage and frequency at busbar Norra when the system 
enters islanding mode at 8s, no compensation is used. It can be seen that the voltage 
drops down to zero within 300ms and that the frequency drifts away, hence the system 
is lost. 
 

 
Fig.49 Voltage behaviour during islanding operation –Reactive power compensation 

7 8 9 10

40

50

60

70

80

90

Time [s]

F
re

q
u

e
n

c
y
 [

H
z
]

8 14 20
-20

-10

0

10

20

Time [s]

V
o
lt
a
g
e
 a

t 
P

C
C

 [
k
V

]



45 
 

 
Fig.50 Frequency behaviour during islanding mode – Reactive power compensation 

Fig.49 and Fig.50 shows the behaviour when a simple reactive power controller is used. 
The voltage drops down to zero but it takes longer time than the previous example. The 
system is however lost in this case also. 

 
Fig.51 Voltage behaviour during islanding mode – With E-STATCOM 
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Fig.52 Frequency behaviour during islanding operation – With E-STATCOM 

In Fig.51 and Fig.52 a STATCOM with energy storage capability is used and as can be 
seen the system is kept alive. The voltage behavior is now reduced to a small dip instead 
of dropping down to zero as shown in both previous cases. The frequency is also kept 
close to the rated frequency, it is only the droop that prevents it to reach the rated value. 
Due to these results it is proven that the dynamic performance of the frequency 
controller is very good and that is it possible to continue to operate in system islanding.   
 
The two wind farms produce 10 and 6 MW respectively in these simulations, which 
means that the E-STATCOM needs to inject 13 MW to meet the power demand during 
peak load. Therefore this case will not be true in reality since the limitation for the 
energy storage is set to be 2MW for 15 min in this investigation, which is set by ABB. 
The criteria for enter islanding mode is hence that the load should only require a 
maximum of 2 MW additional power on top of the power produced from the two wind 
farms. So in the case above where the wind farms produce 16 MW the maximum load 
for islanding mode is 18 MW. Notice that this is only feasible for 15 min. If instead the 
load requires less than the produced power, then the extra power can be used to charge 
the energy storage or in the worst case be wasted in the DC-chopper in the STATCOM. 
The frequency response will be the opposite in this case and will increase which can be 
seen in Fig.53. 
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Fig.53 Frequency behaviour if the produced power exceeds the load during islanding mode 

 

5.2.5 Islanding mode with “smart load” 

The limitation mentioned above implies that if 2 MW is injected from the E-STATCOM 
the operation time is limited to 15 min. To increase this time the load could be adapted 
to the produced wind power. In that case the frequency will be kept at the rated value 
without help from the E-STATCOM. The idea is to let the E-STATCOM compensate 
for the extra power needed directly when the islanding operation starts and then slowly 
reduce together with the load until the power from the load is equal or less to the 
produced power from the wind farm. Notice that the load cannot be perfectly matched 
to the produced power since it varies with the wind speed, which is not constant. 
Therefore there are two alternatives when matching the load to the wind power. 
Consider Fig.54 and assume that the power delivered by the wind farm is the same as 
shown in Fig.44, since the power from the wind farm fluctuates. One way is to put the 
load in the middle of the power curve and let the E-STATCOM inject or absorb power 
when it is needed to keep the power balance. Another scenario is instead to adapt the 
load so that it is slightly beneath the fluctuating power from the wind farm, which is 
represented by the lowest curve in Fig.54. The extra power from the wind farm can be 
either used to charge the energy storage device or simply waste it in the DC-chopper of 
the E-STATCOM. 
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Fig.54 Simple representation of smart load and the fluctuating power from wind farm 

With this technique the load could be reduced slowly and disconnected according to a 
prioritizing scheme where less important loads are disconnected first.  

Two different ways of reducing the load will be shown here. The first explained is when 
the load is reduced linearly and the in the second case the load is instead reduced in 
steps.  

In the case when the load is reduced linearly it can be seen in Fig.55 how the E-
STATCOM compensates the power from the grid when the system enters islanding 
operation. It also shows how the injected power decreases with the same slope as the 
load power. This continues until the load equal the power delivered by the wind farms 
and hence the injected power from the E-STATCOM should be zero. It can however be 
seen in Fig.55 that even if there is a power balance between the load and the wind farm 
the E-STATCOM still injects a small amount of power. The reason for this is that it 
compensates for some other impedances in the grid which are not considered in the 
control system for the smart load, since a very simple one is used.  

The frequency behaviour in Fig.56 is slightly different compared to the case where no 
“smart load” is used. It drops down as before but then it slowly increases up to the rated 
frequency again. The explanation for this is that, in the beginning when the load exceeds 
the wind power and the E-STATCOM provides all the extra energy, the droop setting 
affects the frequency. The contribution from the droop decreases as the injected power 
decreases and when there is a power balance between the load and the wind farm then 
the droop setting will have no influence on the frequency.  

Another technique could be to reduce the load in steps as shown in Fig.57. This would 
be a more realistic case compared to if the load is reduced linearly as described above 
since often a part of the load is disconnected simultaneously. The same criteria as above 
are valid for this case and the load should only be reduced so that it either equals the 
produced power or is slightly below. It is most likely that the load will stay below the 
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produced power since the load can only be changed with a certain amount and not 
linearly. The frequency behaviour is slightly different since the load is changed in steps 
but it stays within the accepted limits, Fig.58. 

 

Fig.55 Active power 

 

Fig.56 Frequency behaviour during islanding operation with smart load 
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Fig.57 Active power 

 
Fig.58 Frequency behaviour during islanding operation with smart load 
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Chapter 6. Conclusions and Future work 

The static synchronous compensator together with an energy storage device has been 
described in this thesis. It was first described that it can be used for many different 
applications where the main application is to improve the stability of the grid by 
regulating the voltage. This is done by reactive power control. The idea of today is as 
mentioned to combine it together with some kind of energy storage device, such as a 
battery. The STATCOM is in this case similar to a voltage sourced converter HVDC but 
with a limitation in the active power. One could say that it is an HVDC only consisting 
of the stability enhancement properties and with limitations in the amount of power. 
 
Different control systems for the E-STATCOM have been treated in this report. The 
main controller inside a STATCOM is the current controller. Therefore it has been 
described how to derive a current controller, based on a simple network. The control is 
done in the dq-coordinate system because otherwise the integral part of the controller 
cannot be used and also resonant controller has to be used. The derived current 
controller was then verified in PSCAD. A step was applied in both the d and q 
component of the controller to see the response. According to the graphs, which can be 
found in the described chapter, the current controller shows really good performance. 
Notice that this report focuses on the active power of the E-STATCOM but the current 
controller is derived so that both the active and the reactive power can be controlled. 
 
To provide the reference signal to the current controller additional control systems have 
been derived. As mentioned the most common additional controller is the voltage 
controller, since the main application for a STATCOM is voltage control. This feature is 
briefly described in this report, the focus is instead on the frequency- and power 
oscillation damping controller. In this chapter the PLL and AN-PLL was described. It 
was stated that the AN-PLL was the best choice since it showed a better performance 
when connected to a weak grid. It could also provide a signal to the power oscillation 
damping, which the PLL cannot. 
 
The approach of deriving the frequency controller is similar to the current controller, but 
with another bandwidth. It has been chosen to be 10% of the bandwidth of the current 
controller and hence the current controller is much faster. Also how to implement the 
needed droop setting has been described. This controller has then been verified in 
PSCAD by using a grid where there is no other component controlling the frequency. 
The result shows that it is possible to fully control the frequency but this is however 
dependent on how large the load is compared to the size of the energy storage device. In 
the simulations it was assumed that the load was less than the size of the energy storage 
and therefore it was possible to control the frequency close to the rated value. The only 
thing preventing it from reaching rated frequency was the droop settings in the 
controller. It can therefore be concluded that the frequency controller works as intended 
and that it can be used for the intended purpose.  
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A simple controller for power oscillations damping was also created based on the 
proportional part of the frequency controller and it has been discussed that an E-
STATCOM has the possibility to provide additional power oscillation damping in a 
grid, if it is connected on a proper location. It has been shown in a simple network how 
the oscillations behave following a transient in the grid. It was shown that the stability 
could be improved, and hence the power oscillation damping ability, if an E-
STATCOM was connected on a proper location in the grid. The same network was then 
built and tested in PSCAD to compare with the mathematical calculations. Also in this 
case it could be seen that the stability increased when using an E-STATCOM. It should 
be noticed that the mathematical representation is not exactly the same as the PSCAD 
representation, but it can be seen from both what the frequency of the oscillation is and 
that the stability can be improved by using this technology. The reason for the 
difference between the two models is that in the mathematical model is very simple and 
cannot fully represent reality. 
 
It can be concluded that power oscillations can be damped within one period if active 
power is used and if the energy storage is large enough. This is much better than what 
can be done with only reactive power. This is simply because one cannot change the 
magnitude of the voltage too much but the amount of active power can be changed 
drastically, as discussed earlier. It has also been discussed that the connection point is 
important if the power oscillation damping ability should be optimized and the result 
shows that it should be as close as possible to the generator. 
 

6.1 Falbygdens Energi AB 

The trend of today is to increase the amount of wind power in the grid. As discussed 
before, this creates some problem since it can make the grid weak, especially if the grid 
is weak from the beginning. One example of such a grid is the grid in Falköping. They 
have a goal to increase the amount of wind power and the interim target is to install 16 
MW.  
 
A part of the grid has been created in PSCAD in a collaboration work with Francisco 
Montes Venero. In this model different type of faults and operation modes has been 
tested and analyzed. It has been found out that it depends on the location of the fault if 
the wind turbines will survive or not. Simulations with the E-STATCOM connected to 
the grid has been performed and the results show that it cannot help the grid when a 
fault is applied somewhere in the grid. Therefore it will not be useful from a dynamical 
point of view. If the above is considered it should however be noticed that the model of 
the grid is a simplification of the real system and will therefore not behave exactly as in 
reality. With the first 16 MW of wind power installed the short-circuit power will still 
be around 10 times larger and therefore the system has to be considered to be relatively 
strong. This will probably change in the future when more and more wind power is 
installed and in that case the results could be completely different. 
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It can however be interesting to install an energy storage device for other applications. 
The main driving force in my opinion is to install it to store energy when the wind 
power is producing power and then sell this power when there is no wind. It can in this 
case be used for other additional applications also. These applications have been 
discussed in Chapter 2. One interesting case which has been tested in PSCAD is when 
the system enters islanding mode. It has in this case been proposed to use a “smart load” 
where the E-STATCOM temporarily provides power meanwhile the load is adapted to 
the generated wind farm power. The result shows that it is possible to do this if the 
power absorbed by the load exceeds the generated power from the wind farm with a 
maximum of 2 MW, this is because the proposed size of the energy storage is 2MW. If 
this size is increase the criteria changes and a larger load can be allowed.  
 
The final conclusions are therefore that the E-STATCOM is not needed from a 
dynamical point of view today since there is no phase angle deviation during faults. 
This can however be different in the future when the ratio between the short-circuit 
power and the installed amount of wind power is decreased. It can however be very 
useful today for other applications, as discussed earlier. 
 

6.2 Future work 

The focus has in this work been on the E-STATCOM for frequency control. In addition 
to this feature, many other applications have been purposed but they have not been 
further investigated. Therefore there are many opportunities to continue to investigate 
for future applications. One interesting field would be to continue working on the 
“smart load” control, which was only briefly investigated in this work. The method used 
here was to reduce the load linearly until it matched the produced power from the wind 
farm. A more detailed controller with different options could be one solution and also 
how to prioritize what load should be disconnected first. Another limitation in this work 
is the representation of the battery. This was simplified by a high pass filter to represent 
the discharge of a battery. A more accurate model of the battery could be investigated to 
give a more reliable behavior of how much energy it would be able to supply during 
different modes of operation.  
 
When it comes to the investigation of FEAB grid their aim is to install even more wind 
power and the most significant work that should be done is to increase the amount of 
wind power, and see how the system behaves. 
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APPENDIX 

Three-phase to dq coordinates 

The three-phase to dq transformation is a powerful tool that is useful for detection of 
deviations and to control different quantities. The procedure on how to perform this 
calculation will briefly be described in this topic. 
The dq coordinate system rotates with the stator frequency ω1 and therefore the steady 
state quantities will be represented by dc quantities. Since the steady state operation is 
shown in dc quantities it will be easier to detect and control deviations compared to if 
we directly control a constantly oscillating quantity. Due to this reason all the control 
systems will be created in dq coordinates by first transforming the three phase system 
into the αβ-system and then into the dq system. The equations to perform this 
transformation are shown below.  

Three-phase to αβ 

If we consider a symmetrical three-phase system the zero sequence component can be 
disregarded which means that the sum of the three phase voltages will be zero. And 
since they will be zero each voltage can be described by the two remaining phase 
voltages and hence the three-phase system can be described as a two-phase system 
called the αβ-system. The transformation matrix for transforming three-phase into αβ is 
shown below, if instead the opposite is needed the inverse of this matrix is used. 
 

w����������x � �
yz
z{23 �13 �130 1√3 � 1√3~�

�� ��4����\��������� 

 
Where K is a scaling factor depending on if we want to use peak-value, RMS-value or 
power-invariant scaling. For peak-value scaling K=1 and for power-invariant scaling 

K=o2/3 

αβ to dq 

To transform from αβ coordinates into dq coordinates the following matrix is used. 
 

w����������x � w ��B5 ���B5����B5 ��B5x w����������x 
 
Where 
 

B5 � S�5
� 

As for the three-phase to αβ, if the opposite is instead needed the inverse of the matrix is 
used. 
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