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Abstract

Numerical solutions of the rotor-stator interaction using OpenFOAM-1.5-dev was
investigated in the ERCOFTAC Centrifugal Pump, a testcase from the ERCOF-
TAC Turbomachinery Special Interest Group [1]. The case studied was presented by
Combès at the ERCOFTAC Seminar and Workshop on Turbomachinery Flow Pre-
diction VII, in Aussois, 1999 [2]. It has 7 impeller blades, 12 diffuser vanes and 6%
vaneless radial gap, and operates at the nominal operating condition with a Reynolds
number of 6.5 ∗ 105 at a constant rotational speed of 2000 rpm.

2D and 3D models were generated to investigate the interaction between the
flow in the impeller and that in the vaned diffuser using the finite volume method.
The incompressible Reynolds-Averaged Navier-Stokes equations were solved together
with the standard k-ε turbulence model. Both steady-state and unsteady simulations
are employed for the 2D and 3D models. A Generalized Grid Interface (GGI) is
implemented both in the steady-state simulations, where the GGI is used to couple
the meshes of the rotor and stator, and in unsteady simulations, where the GGI is
applied between the impeller and the diffuser to facilitate a sliding approach [3].

Several numerical schemes are considered such as Euler, Backward and Crank-
Nicholson (with several off-centering coefficients) time discretization, and upwind
and linear upwind convection discretization. Furthermore, the choice of different
maximum Courant number and different unsteady solvers have been studied, and
the required computational time has been compared for all the cases. The ensemble-
averaged velocity components and the distribution of the ensemble-averaged static
pressure coefficient at the impeller front end are calculated and compared against
the available experimental data provided by Ubaldi [4].

The computational results show good agreement with the experimental results,
although the upwind convection discretization fails in capturing the unsteady impeller
wakes in the vaned diffuser. The case with a maximum Courant number of 4 is
regarded as having the most efficient set-up, predicting the unsteadiness of the flow
with a large time-step.

Keywords: CFD, OpenFOAM, Turbomachinery, GGI, ERCOFTAC Centrifugal Pump
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Preface

This work has been carried out from January 2010 to June 2010 at the Division of
Fluid Dynamics, Department of Applied Mechanics at Chalmers University of Technol-
ogy, Göteborg, Sweden. In this study, 2D steady-state simulation was first performed,
and those results were used as initial conditions for the unsteady simulations. A similar
procedure was used for the 3D simulations.

The appendix includes all the results from all the cases, showing comparisons between
the numerical results and all the available experimental data.
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Nomenclature

A pipe cross-sectional area

b impeller blade span

C̃p ensemble-averaged static pressure coefficient

cr radial absolute velocity

cu tangential absolute velocity

D1 impeller inlet blade diameter

D2 impeller outlet diameter

D3 diffuser inlet vane diameter

D4 diffuser outlet vane diameter

Gi impeller circumferential pitch

k turbulent kinetic energy

L a characteristic linear dimension, (traveled length of fluid)

n rotational speed

p static pressure

pt total pressure

Q flow rate

r radial coordinate

Re Reynolds number, Re = ρV L
µ

= V L
ν

= QL
νA

Rn meridional curvature radius

T temperature

Ti impeller blade passing period

t time

t̄ circumferential-averaged time

U0 inlet radial speed

U2 peripheral velocity at the impeller outlet

V mean fluid velocity

wr radial relative velocity

wu tangential relative velocity

yi circumferential coordinate in the relative frame
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Z axial thickness

zd number of diffuser vanes

zi number of impeller blades

ε dissipation

µ dynamic viscosity of the fluid

ν kinematic viscosity, ν = µ
ρ

ω angular velocity

ψ total pressure rise coefficient, ψ = 2 (pt4 − pt0) /ρU2
2

ρ air density

θ angular coordinate

ϕ flow rate coefficient, ϕ = 4Q/ (U2πD
2
2)

� diffuser vane position

H impeller blade position

Subscripts

0 in the suction pipe

1 at the impeller leading edge

2 at the impeller outlet

3 at the diffuser inlet

4 at the diffuser outlet

d relative to the diffuser

i relative to the impeller

m relative to the measuring point

r in the radial direction

u in the tangential direction

z in the axial direction
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1 Introduction

In this section, the history of pumps will be mentioned as well as the development of the
centrifugal pumps. Then the ERCOFTAC Centrifugal Pump studied in this work will be
described including the previous studies.

1.1 Background

Pumps are designed to increase the pressure of a fluid. This principle is used in hydraulic
pumps, ventilating fans and blowers since the earliest ages [5]. According to Reti [6], the
Brazilian soldier and historian of science, the first machine that could be regarded as a
centrifugal pump was a mud lifting machine in 1475 in a treatise by the Italian Renaissance
engineer Francesco di Giorigio Martini. Real centrifugal pumps did not appear until the late
1600’s, when Denis Papin made one with straight vanes [6]. The curved vane was invented
by the British inventor John Appold in 1851 [6]. Afterward, due to the increasingly larger
number of engines required for vehicle and aircraft propulsion, the centrifugal pumps have
developed greatly. Due to the centrifugal pumps could be designed smaller for the same
efficiency than the other pumps, they were preferred as the main element of engines.

In principle, the centrifugal pumps use a rotating impeller with blades to give rotation
to the fluid, which is sucked through an inlet pipe. To optimize the design of centrifugal
pumps, a lot of measurements are carried out. However, since experiments are limited by
the facilities and the costs, computational fluid dynamics (CFD) is also used to complement
the experiments. The lead times and costs of new designs may then be substantial reduced.

As an open-source, license-free, and object oriented C++ CFD toolbox, OpenFOAM
(Open Field Operation and Manipulation) is becoming more and more popular for numeri-
cal simulations. Released as open source in 2004, it is the most widespread general purpose
open-source CFD package, providing the option to modify the source code to fit the user’s
unique requirements.

This study uses OpenFOAM with a recently implemented Generalized Grid Interface
(GGI) method [7] to conduct the steady-state simulation and the transient flow analysis of
the ERCOFTAC Centrifugal Pump [4], shown in Fig.1.1. The report covers the relevant
numerical methodologies together with the associated numerical approach of computational
models and describe the simulation set-up of 2D and 3D models. In the end, the obtained
dynamic flow results of several different numerical solutions are presented together with
the comparison against the experimental performance.

1.2 Testcase description

The original ERCOFTAC Centrifugal Pump case was presented by Combès at a Turboma-
chinery Flow Prediction ERCOFTAC Workshop [2]. It is a simplified model of a centrifugal
turbomachine which consists of a rotor with an outlet diameter of 420 mm and 7 backward
impeller blades, and a rotatable vaned diffuser with 12 vanes and a 6% vaneless radial gap.
The geometry illustrated in Fig.1.2 is given in Ubaldi et al. [4]. The measuring techniques
used were a constant-temperature hot-wire anemometer with single sensor probes and fast
response pressure transducers. The viscous and potential flow effects in the small radial
gap between rotor and vaned diffusers in the ERCOFTAC Centrifugal Pump have been
investigated. Also LDV measurements were performed by Ubaldi et al. [8] in the impeller
and in the diffuser of the ERCOFTAC Centrifugal Pump by means of a four-beam two-color
laser Doppler velocimeter. Recently, two-component LDV measurements of the unsteady
boundary layer of the vane were published by Canepa, Cattanei, Ubaldi and Zunino [9].
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Figure 1.1: Centrifugal pump model [4].

Detailed flow measurements within the impeller and the vaneless diffuser were published
by Ubaldi, Zunino and Ghiglione [10].

Figure 1.2: Impeller and vaned diffuser geometry [4].

The pump operates in an open circuit with air directly discharged into the atmosphere
from the radial diffuser at the nominal operating condition with a constant rotational speed
of 2000 rpm. The geometric data is shown in Tab.1.1, whereas the operating conditions
are summarized in Tab.1.2.
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Table 1.1: Geometric data [4].

Impeller Diffuser

inlet blade diameter D1=240 mm inlet vane diameter D3=444 mm
outlet diameter D2=420 mm outlet vane diameter D4=664 mm
blade span b=40.4 mm vane span b=40.4 mm
number of blades zi=7 number of vanes zd=12

Table 1.2: Operating conditions [4].

Operating conditions

rotational speed n=2000 rpm
flow rate coefficient ϕ=0.048
total pressure rise coefficient ψ=0.65
Reynolds number Re=6.5 ∗ 105

temperature T=298 K
air density ρ=1.2 kg/m3

1.3 Related computational studies

There have been some numerical studies of the flow generated in the ERCOFTAC Centrifu-
gal Pump and other similar devices. Based on a 2D model of the ERCOFTAC Centrifugal
Pump, both steady and unsteady simulation were carried out using a finite element Navier-
Stokes code by Bert, Combès and Kueny [11]. Good agreements were found compared with
the experimental data. However, the main differences explained by the 3D secondary flows
generated by the unshrouded impeller can be improved by 3D modeling simulations. A 2D
model of the ERCOFTAC Centrifugal Pump corresponding to a meridional plane with a
radial inlet, and a 3D model were initially analyzed by Combès, Bert and Kueny [12]. A
multidomain method was implemented in a Navier-Stokes finite element code developed in
the Research Division of Electricite de France. The results showed that the computational
method developed was able to reproduce the unsteady flow effects and also complement
the unsteady flow analysis performed by Ubaldi et al. [4]. Transient simulation of in-
compressible flow in the impeller and diffuser clearance in the ERCOFTAC Centrifugal
Pump was performed by Torbergsen and White [13]. They also discussed how the veloc-
ity and pressure distribution can be related to the calculation of the dynamic forces. A
2D impeller and diffuser of the ERCOFTAC Centrifugal Pump model was simulated with
the k-ε turbulence model. Those gave satisfactory agreement with published test results
of radial velocities and pressure distributions in the impeller and diffuser clearance area
[4], but was less good for the tangential velocity distribution. Sato and He [14][15][16]
performed a 3D unsteady simulation of a single impeller and two diffuser blade passages
in the ERCOFTAC Centrifugal Pump, and also of a complete 3D model. A 3D unsteady
incompressible Navier-Stokes method based on the dual-time stepping and the pseudo-
compressibility method was used. The predicted unsteady flow results showed reasonable
agreement with the experimental data. They also gave a prediction of a mesh-independent
trend where maximum efficiency is achieved when the radial gap is largest, and efficiency is
decreased as the radial gap decreases. Unsteady rotor-stator simulations for the 2D com-
plete (7 impeller blades/12 stator vanes) and simplified model (1 impeller blades/2 stator
vanes) of the ERCOFTAC Centrifugal Pump using CFX-TASCflow code were performed
by Page, Théroux and Trépanier [17]. The results from the detailed comparison with the
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experimental data showed that the rotor-stator interactions were captured. However, the
computational results can be improved by extending the 2D model to 3D. Page and Beau-
doin [18] have shown that OpenFOAM can produce similar results as other CFD codes for
Frozen Rotor computations.

Although there are many CFD research activities on the flow in centrifugal pumps,
most of them are based on 2D modeling but few of them succeed in simulating unsteady
3D flow on the whole rotor-stator mesh.

1.4 Approach in the present work

The block-structured mesh was generated by ICEM-HEXA with the Frozen Rotor ap-
proach for steady-state simulation and with the sliding grid approach for the unsteady
simulation. A GGI method is used in the steady-state simulation to couple the meshes of
rotor and stator, while in the unsteady simulation the GGI method is applied between the
impeller and the diffuser to facilitate a sliding approach. In the unsteady simulation, the
incompressible Reynolds-Averaged Navier-Stokes equations using a standard k-ε turbu-
lence model are solved using the finite volume method. The choices of time discretization,
convection discretization, maximum Courant number and solver are evaluated thoroughly,
as well as the required computational time. For post-processing Paraview and Gnuplot are
used. To verify the accuracy of the numerical solution with OpenFOAM there are many
comparisons between numerical results and experimental data. As part of the activities in
the OpenFOAM Turbomachinery working group [1], the aim of this work is to validate the
simulation of the ERCOFTAC Centrifugal Pump as an application of turbomachines.
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2 Data processing

In this section, the data processing of the available experimental data and simulated nu-
merical results will be described together with some assumptions of unknown parameters.
Using the assumptions and available measured data, the experimental performance will be
replotted. To compare with the experimental data, the position used to investigate the
features of the computed flow will be illustrated.

2.1 Data processing of the experimental results

The experimental data was provided by Ubaldi [4]. In order to reconstruct the distribution
of the ensemble-averaged velocity (wr and wu), 17 measuring points were traversed in the
axial direction at the impeller outlet (Dm/D2 = 1.02) by hot-wire probes. To investigate

the distribution of the ensemble-averaged static pressure coefficient (C̃p), 10 radial measur-
ing locations were used from the impeller inlet to the outlet (Rm/R2 from 0.53333 to 1.02),
taken by means of miniature fast response transducers mounted at the stationary casing of
the impeller. For each measuring point in both investigations, the probe was maintained
at a fixed position with respect to the absolute frame of reference and the various relative
probe-diffuser vane positions by rotation of the diffuser. Therefore, the distribution of the
ensemble-averaged velocity (wr and wu) and the ensembled-averaged static pressure coeffi-

cient (C̃p) were investigated as a function of the relative frame circumferential coordinate
yi/Gi at the time instant t,

Figure 2.1: Sketch of the blades and reference coordinates [4].

Fig.2.1 shows a sketch of the reference coordinates. The circumferential coordinate for
the probe fixed in point M in the mth diffuser passage with respect to the circumferential
position θk of the diffuser is defined as following:

yi(Pm) = ωrt̄+ rθk + (m− 1)
2πr

zd
(2.1)

Gi =
2πr

zi
(2.2)

In order to reconstruct the distribution of the ensemble-averaged relative velocity (wr
and wu) and the static pressure coefficient (C̃p), it is assumed that t̄ = 0 and m = 1. Then
based on the Eqs.2.1 and 2.2, the instantaneous distributions of the ensemble-averaged
radial (wr) and tangential (wu) relative velocity at the impeller outlet (Dm/D2 = 1.02) at
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midspan position (z/b = 0.5) were replotted using the experimental data from Ubaldi et
al. [4] as shown in Fig.2.2.

Figure 2.2: Original data file of radial (cr) and tangential (cu) absolute velocity [4].

According to the data shown in Fig.2.2, the radial relative velocity wr, which is same as
the radial absolute velocity cr (in Fig.2.2), as a function of the relative frame circumferential
coordinate yi/Gi at the midspan position z/b = 0.5 could be plotted using the measured
radial absolute velocity cr as shown in the left-hand side of Fig.2.3. The tangential relative
velocity wu, which can be calculated by the measured tangential absolute velocity cu (in
Fig.2.2), could be plotted as a function of the relative frame circumferential coordinate
yi/Gi at the midspan position z/b = 0.5 as shown in the right-hand side of Fig.2.3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2

w
r/U

2

yi/Gi

t/Ti=0.126

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

 0  0.5  1  1.5  2

w
u/

U
2

yi/Gi

t/Ti=0.126

Figure 2.3: Ensemble-averaged distribution of the radial wr (left) and tangential wu (right)
relative velocity at the impeller outlet Dm/D2 = 1.02, at the midspan position z/b = 0.5.

Using the available experimental data, the instantaneous pictures of the ensemble-
averaged radial (wr) and tangential (wu) relative velocity at the impeller outlet (Dm/D2 =
1.02) with different span distance (z/b from 0 to 1) could be plotted shown in Fig.2.4, using
the same method as plotting the instantaneous distribution of the ensemble-averaged radial
(wr) and tangential (wu) relative velocity at the impeller outlet (Dm/D2 = 1.02) at the
midspan position (z/b = 0.5).
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Figure 2.4: Instantaneous pictures of the ensemble-averaged radial (wr) (left) and tangen-
tial (wu) (right) relative velocity at the impeller outlet (Dm/D2 = 1.02) with different span
distance (z/b from 0 to 1).

Under the same definition of the relative frame circumferential coordinate system in
Eqs.2.1 and 2.2, the instantaneous distribution of C̃p at the impeller outlet using the
experimental data from Ubaldi et al. [4] is shown in Fig.2.5.

Figure 2.5: Original data file of C̃p [4].

With the same assumptions of t̄ = 0 and m = 1, for the first position shown in the
first line of Fig.2.5 (with the value Teta(deg) = 4.274), assuming that the second column
(Teta(deg)) is θk, Eqs.2.1 and 2.2 yield

yi(Pm)| eCp=0.62056 = rθk = 1.01905R2 × 4.274× π

180
(2.3)

Gi =
2πr

zi
=

2π × 1.01905R2

zi
(2.4)

where R2 = 0.21m, zi = 7. From Eqs.2.3 and 2.4, the x-axis value of point P can be
calculated as:

(yi/Gi)| eCp=0.62056 =
1.01905× 0.21× 4.274× π

180
2π
7
× 1.01905× 0.21

=
0.016

0.192
= 0.083 (2.5)

Then, according to the result from Eq.2.5, the distribution of C̃p is shown in the left-
hand side of Fig.2.6. The point described above is the left-most point in the left-hand side
of Fig.2.6. For comparison, the plot of the distribution of C̃p on the paper of Ubaldi et al.
[4] is shown in the right-hand side of Fig.2.6.
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C~
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yi/Gi

(0.083, 0.62056)
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point(0.083 0.62056)

Figure 2.6: Instantaneous distribution of C̃p at the impeller outlet Dm/D2 = 1.02 for the
replot using experimental data (left) and the original plot (right).

The plot in the left-hand side of Fig.2.6 shows some similarity with the one in the
right-hand side of Fig.2.6 except for a shift in the x-axis of yi/Gi, which is probably due
to a wrong understanding from the part of the circumferential coordinate relative to the
rotor in the left-hand side plot of Fig.2.6, of the measuring point M using the second
column (Teta(deg)). By a trial-and-error method, the most similar plot was obtained
by shifting the x-scale, yielding an addition of 4.6 degrees to the angles of Fig.2.5. This
results in Fig.2.7 which is used to compare the numerical results of OpenFOAM with the
experimental data.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.5  1  1.5  2

C~
p

yi/Gi

t/Ti=0.0

Figure 2.7: Modified plot of instantaneous distribution of C̃p at the impeller outlet
Dm/D2 = 1.02.

Based on the above assumptions, for each radial measuring location (Rm/R2 from
0.53333 to 1.02), the instantaneous pictures of the ensemble-averaged static pressure coef-

ficient C̃p could be replotted as well using the available experimental data shown in Fig.2.8
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Figure 2.8: Instantaneous pictures of the ensemble-averaged static pressure coefficient C̃p
for each radial measuring location (Rm/R2 from 0.53333 to 1.02).

2.2 Data processing of the numerical results

To compare with the experimental data, the numerical results are plotted along two im-
peller blades and three diffuser vanes at the small gap (Dm/D2 = 1.02) between the impeller
and the diffuser. For time t/Ti = 0.126, the relative position of the runner and stator is
shown in Fig.2.9. Also the three positions (Probe 1, 2 and 3) used to put probes to monitor
the pressure value during the simulations are shown in Fig.2.9, which has radials of 0.121
m, 0.2142 m and 0.32 m, respectively.

Figure 2.9: Position of the sampling of the simulated data for t/Ti = 0.126.

Furthermore, the simulated distribution of C̃p uses the same normalization as that used
by Ubaldi et al. [4]:

Cp = 2(p− p0)/ρU
2
2 (2.6)

The parameter p0 is the static pressure in the suction pipe. An assumption of p0 in the
numerical results is made by trying to obtain a similar level of C̃p as the one presented by
Ubaldi et al. [4], yielding p0 = 700Pa. The same assumption has been used for plotting

the instantaneous pictures of the ensemble-averaged static pressure coefficient C̃p for each
radial measuring location (Rm/R2 from 0.53333 to 1.02) using numerical results. The

positions for plotting such instantaneous pictures of C̃p for each radial measuring location
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(Rm/R2 from 0.53333 to 1.02) are shown in Fig.2.8, where is between two impeller blades
with respect to the position of the related diffuser vanes.
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3 Theory

In this section, the governing equations and turbulence model used in the numerical sim-
ulations are described. Several time discretization methods and convection discretiza-
tion schemes available in OpenFOAM are discussed together with the choice of maximum
Courant number. Based on this analysis, the set-up for the simulation cases are presented.

3.1 The general transport equation

The general form of the transport equation for the flux φ is given by [19]

∂(ρφ)

∂t︸ ︷︷ ︸
temporal derivative

+ div(ρUφ)︸ ︷︷ ︸
convection term

− div(Γφ(divφ))︸ ︷︷ ︸
diffusion term

= Sφ︸︷︷︸
source term

(3.1)

For an incompressible fluid the density ρ is constant, therefore the above equation
becomes [19]

ρ
∂φ

∂t
+ ρ(div(Uφ))− div(Γφ(divφ)) = Sφ (3.2)

3.2 The k-ε turbulence model

There are many different turbulence models, of which the k-ε model is used in this study.
The k-ε model is the most common type of turbulence model. In the k-ε model the
transport equations for the turbulent kinetic energy, k, and the dissipation, ε, are solved.
For incompressible flow the equations read [19]

∂k

∂t
+
∂(Uik)

∂xi
=

∂

∂xi
[(ν +

νt
σk

)
∂k

∂xi
] + Pk − ε (3.3)

∂ε

∂t
+
∂(Uiε)

∂xi
=

∂

∂xi
[(ν +

νt
σε

)
∂ε

∂xi
] +

ε

k
(cε1Pk − cε2ε) (3.4)

Where Pk is the production term and νt is the turbulent viscosity, which are expressed
as [19]

Pk = νt(
∂Ui
∂xi

)2 (3.5)

νt = cµ
k2

ε
(3.6)

Coefficients cµ, cε1, cε2, σk and σε in Eqs.3.3 - 3.6 are empirical constants, and the
default values in OpenFOAM are shown in Tab.3.1.

Table 3.1: Values of the constants for the standard k-ε model.

Constants Values

cµ 0.09
cε1 1.44
cε2 1.92
σk 1
σε 1.3
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Eqs.3.3 and 3.4 are discretized and solved by a number of iterations until the solution
is converged. A criteria is used to judge if the solution is converged by means of residuals.

3.3 Time discretization

In this section three different time discretization schemes are described, namely the first-
order Euler Implicit discretization and two second-order schemes: Backward Differencing,
and the Crank-Nicholson method.

The general form of the transport equation for the incompressible fluid is described
above as Eq.3.2, which can be rewritten as [20]

∫ t+4t

t

[ρ
∂

∂t

∫
VP

φdV + ρ

∫
VP

div(Uφ)dV −
∫
VP

div(Γφ(divφ))dV ]dt =

∫ t+4t

t

(

∫
VP

Sφ(φ)dV )dt

(3.7)

Where VP is the control volume. Assuming that the control volume does not change in
time, and the density and diffusivity in the control volume do not change in time as well,
then Eq.3.7 becomes

ρφP (t+4t)− ρφP (t)

4t
VP + A[φf (t+4t) + φf (t)]−B[(divφ)f (t+4t) + (divφ)f (t)] = S

(3.8)

Where A and B are coefficients.

3.3.1 Euler

The Euler Implicit discretization only uses the value of the present time (t + 4t) in all
terms except the time term in Eq.3.8, yielding [20]

ρφP (t+4t)− ρφP (t)

4t
VP + Aφf (t+4t)−B(divφ)f (t+4t) = S (3.9)

It can be seen from Eq.3.9 that the flux of node P is only related to the face flux at
t + 4t. Therefore, the Euler Implicit scheme is only first-order accurate in time. The
main error introduced by the first-order Euler scheme is given by the difference between
the flux at t+4t and the flux at t, which is not include in the higher-order schemes. For
this reason, the Euler method is less accurate than other higher-order methods, such as
Crank-Nicholson and backward. On the other hand it can be more stable.

OpenFOAM provides the Euler time scheme for solving not only the first time derivative
∂
∂t

terms but also any second time derivative ∂2

∂t2
terms and it is the only scheme available

for solving the second time derivative terms.

3.3.2 Crank-Nicholson

The form of Eq.3.8 is called the Crank-Nicholson method, which shows that the flux of
node P is related not only to the face flux at t + 4t but also to the face flux at t. It
means the Crank-Nicholson method is second-order accurate in time. The Crank-Nicholson
method provided by OpenFOAM has a off-centering coefficient, which refers to pure Crank-
Nicholson when the off-centering coefficient is equal to 1, and refers to pure Euler time
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discretization when the off-centering coefficient equals to 0. In the range of 0 to 1, the off-
centering coefficient is used to combine the second-order Crank-Nicholson and first-order
Euler discretization schemes in time. The Crank-Nicholson method is less stable than the
fully implicit scheme. However, with sufficiently small time steps, in principle, it is possi-
ble to achieve considerably accuracy with the Crank-Nicholson method in time. Compared
with the Euler time discretization scheme, the Crank-Nicholson has an additional adjust-
ment term the face flux at t, which makes the Crank-Nicholson time discretization scheme
more suitable to the time-dependent problem than the Euler time discretization method.

3.3.3 Backward differencing

The second-order Backward Differencing in time is an implicit method and still neglects
the variation of the flux value at the face of the cell. The discretized form is obtained by
using the Taylor series expansion of the flux values φ(t) and φ(t−4t) [20]

φ(t) = φ(t+4t)− ∂φ

∂t
4t+

1

2

∂2φ

∂t2
4t2 +O(4t3) (3.10)

φ(t−4t) = φ(t+4t)− ∂φ

∂t
(24t) +

1

2

∂2φ

∂t2
(24t)2 +O((24t)3) (3.11)

Eq.3.11 can be rewritten as

φ(t−4t) = φ(t+4t)− 2
∂φ

∂t
4t+ 2

∂2φ

∂t2
4t2 +O(4t3) (3.12)

Then from Eqs.3.10 and 3.12 it can be derived as [20]

∂φ

∂t
=

2
3
φ(t+4t)− 2φ(t) + 1

2
φ(t−4t)

4t
(3.13)

Thus the final discretized equation with Backward Differencing in time is given by [20]

2
3
ρφ(t+4t)− 2ρφ(t) + 1

2
ρφ(t−4t)

4t
VP + A[φf (t+4t)]−B[(divφ)f (t+4t)] = S

(3.14)

3.3.4 Maximum Courant number

The limitation for the Courant number is that the system might become unstable if the
Courant number is too large, Therefore, the maximum Courant number defined per control
volume face is used to guarantee stability of the system, i.e.

Co =
δtUf
δx

(3.15)

where δx is the distance between the adjacent cell centers. It can be seen from Eq.3.15
that, for the same mesh, the Courant number is directly proportional to the time step.
OpenFOAM provides the possibility to specify either a constant time step, or a constant
Courant number. The higher the Courant number the larger the time-step will be adjusted,
of course, which can be adjusted automatically in OpenFOAM.
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3.4 Convection discretization

The convection term of Eq.3.2 can be discretized in many different ways. The two alter-
nations that have been used in the present work are described in the following sections.

3.4.1 The upwind

The upwind convection scheme is a numerical discretization method for solving differen-
tial equations by using differencing biased in the direction of the flux. Based on a one-
dimensional control volume, consider the flux at the east face of the control volume with
the node P in the center of the control volume and the west neighbor node of W and the
east neighbor node of E as shown in Fig.3.1

Figure 3.1: Upwind convection discretization.

The flux value at the east face is determined according to the direction of the flow,
according to

φe = { φP if the direction of the flux at the east face is out of the control volume
φE if the direction of the flux at the east face is into the control volume

(3.16)

This scheme is always bounded but only first-order. Usually the upwind convection
scheme is used in the initial phase of a simulation for unsteady flows, and a higher-order
scheme is then used to get accurate results.

3.4.2 The linear-upwind

The spatial accuracy of the first-order upwind scheme can be improved by choosing an
additional correction. In addition to the first-order upwind estimation φP the linear-upwind
convection scheme assume the linear variation of flux between P and N as shown in Fig.3.2
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Figure 3.2: The linear-upwind convection discretization.

The flux value at the east face for the case where the flux is out of the control volume
is calculated according to [19]

φe = φP +
(φP − φW )

δx

δx

2
= φP +

1

2
(φP − φW ) (3.17)

The linear-upwind scheme has a second-order accuracy.
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4 Numerical approach

In this section, the computational mesh will be described, as well as the algorithms and
the solvers. Boundary conditions and case settings used for the 2D and 3D simulations
will be discussed as well.

4.1 Computational mesh

The block-structured mesh, see Fig.4.1 was generated by ICEM-HEXA, and the rotor and
the stator were meshed separately. The mesh consists of about 94 000 cells for the 2D
cases and 2 000 000 cells for the 3D cases. To couple the two parts of the mesh (rotor and
stator) the Generalized Grid Interface (GGI) is used. Developed by M. Beaudoin and H.
Jasak [7], the purpose of the GGI is to couple multiple non-conformal meshes. The GGI
interface is widely used in turbomachinery, where complicated geometries can be coupled
together.

Figure 4.1: Grid mesh with GGI [7].

In the steady-state simulation, the GGI is used to couple the meshes statically. In the
unsteady simulation, the GGI is applied between the rotor and the stator yielding a sliding
approach [3].

4.2 Pressure-velocity coupling

The SIMPLE algorithm and the PISO algorithm are used for coupling the pressure-velocity
system. The SIMPLE pressure-velocity coupling procedure by Patankar [21] is used in the
simpleTurboMFRFoam solver (see section 4.3.2) and the transientSimpleDyMFoam solver
(see section 4.3.3). The PISO procedure proposed by Issa [22] is used in the turbDyMFoam
solver (see section 4.3.1) [20].

4.2.1 The SIMPLE algorithm

The SIMPLE algorithm has been used for the pressure-velocity coupling in some of the
simulations of the present work. Much larger time-steps are allowed with the SIMPLE
algorithm compared with the PISO algorithm. The main procedure of the SIMPLE al-
gorithm is described in [19]. To get more proximity pressure, more times for solving the
pressure equation is defined by the parameter named nNonOrthogonalCorrectors in the
SIMPLE function located in the file named fvSolution in the folder of system.
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4.2.2 The PISO algorithm

For transient flow calculations of the pressure-velocity coupling is solved by the PISO
algorithm. The main procedure of the PISO algorithm is described in [19]. In Open-
FOAM there are three parameters defined in the PISO algorithm, namely nCorrectors,
nOuterCorrectors and nNonOrthogonalCorrectors. The parameter nNonOrthogonalCor-
rectors defines how many times the pressure equation is solved in case the mesh is not
good enough. How many times the pressure equation is iterated is defined by the param-
eter of nCorrectors. While nOuterCorrectors is used to control the number of iterations
of the Reynolds-Averaged Navier-Stokes equations, which includes the pressure and the
velocity components.

4.3 Solvers

In this section three different solvers are described, which are the turbDyMFoam solver used
in the unsteady simulation of the 2D model, the simpleTurboMFRFoam solver used in the
steady-state simulation for both the 2D and 3D models, and the transientSimpleDyM-
Foam solver used in the unsteady simulation for both the 2D and 3D models. The steady
Reynolds-Averaged Navier-Stokes equation is first solved in the steady-state simulation
with the help of the simpleTurboMFRFoam solver, and then the time-dependency un-
steady Reynolds-Averaged Navier-Stokes equation is resolved by the turbDyMFoam solver
or the transientSimpleDyMFoam solver.

4.3.1 The turbDyMFoam solver

The turbDyMFoam solver is used as a transient solver for incompressible turbulent flow of
Newtonian fluids with moving mesh. The turbDyMFoam solver uses the PISO algorithm for
pressure-velocity coupling and uses libraries for mesh motion and deformation of polyhedral
meshes [3]. It solves the Reynolds-Averaged Navier-Stokes equations at each time step,
then the rotating part rotates and the procedure is repeated for the next time step. The
coupling between the rotating and stationary parts is done through a sliding GGI interface.
The time-step limitation of the PISO algorithm makes the turbDyMFoam solver less robust
for the 3D unsteady simulation in this work.

4.3.2 The simpleTurboMFRFoam solver

The solver used in this work for both 2D and 3D steady-state simulations, namely simple-
TurboMFRFoam, is a finite volume steady-state solver for incompressible, turbulent flow
of non-Newtonian fluids, using the SIMPLE algorithm for pressure-velocity coupling. The
solver uses the Multiple Reference Frame (MRF) approach, which requires no relative mesh
motion of the rotating and the stationary parts (also referred to as the Frozen Rotor ap-
proach). The momentum equations are solved by a mix of inertial and relative velocities
in the relative frame together with the additional Coriolis term for the rotating part, i.e.

∇ · (−→uR ⊗−→uI ) +
−→
Ω ×−→uI︸ ︷︷ ︸

Coriolis term

= −∇(p/ρ) + ν∇ · ∇(−→uI ) (4.1)

∇ · −→uI = 0 (4.2)

The simpleTurboMFRFoam solver is quick and provides a good starting guess for un-
steady simulation, but does not predict the transient behavior of the flow.
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4.3.3 The transientSimpleDyMFoam solver

The transientSimpleDyMFoam solver is also a transient solver for incompressible turbulent
flow of Newtonian fluids with dynamic mesh. However, a SIMPLE-based algorithm in
time-stepping mode is implemented in the transientSimpleDyMFoam solver. The turbu-
lence model solution is moved inside the SIMPLE loop, which makes it more robust than
the turbDyMFoam solver. The transientSimpleDyMFoam solver allows big time-step to be
taken but still always with a proper number of iterations within each time-step. Therefore,
in this study the 3D unsteady simulations are carried out with the transientSimpleDyM-
Foam solver.

4.4 Boundary conditions

The boundary conditions used in all the simulations are shown in Tab.4.1. It should be
noted that the 2D cases have a radial inlet, while the 3D cases have an axial inlet. The
Z thickness of the 2D cases is due to the fact that OpenFOAM needs a one-cell-thickness.
The inlet velocity is however eveluated using the physical Z thickness.

Table 4.1: Boundary conditions for all the cases.

Calculated data for the 2D cases Boundary conditions for the 2D cases
Inlet Diameter D0=200 mm At the inlet Vradial=U0

Z thickness Z=1 mm µT
µ

=10 (viscosity ratio)

Flow rate Q=
ϕU2πD2

2

4
=0.292 m3/s k=3

2
U2

0 I
2=0.48735 m2/s2

(I=5%)

Inlet radial speed U0=
Q
A0

= Q
2πr0∗0.04

=11.4 m/s ε=Cµρk2

µT
= Cµρk2

µ(µT /µ)
= Cµk2

ν(µT /µ)

Rotating speed ω = 2000rpm At the outlet Average static pressure 0

Calculated data for the 3D cases Boundary conditions for the 3D cases
Inlet Diameter D0=184 mm At the inlet Vaxial=U0

Z thickness Z=40 mm µT
µ

=10 (viscosity ratio)

Flow rate Q=
ϕU2πD2

2

4
=0.292 m3/s k=3

2
U2

0 I
2=0.4521 m2/s2

(I=5%)

Inlet axial speed U0=
Q
A0

= Q
2πr0∗0.04

=10.98 m/s ε=Cµρk2

µT
= Cµρk2

µ(µT /µ)
= Cµk2

ν(µT /µ)

Rotating speed ω = 2000rpm At the outlet Average static pressure 0

4.5 Case set-up

The computational cases included in this work were constructed to evaluate numerous
aspects concerning analysis of turbomachinery with OpenFOAM. The main elements of
consideration were convection schemes, time discretization methods for unsteady simula-
tions, choice of different maximum Courant Number as well as required computational time
for unsteady numerical solutions. The list of all the simulation cases is shown in Tab.4.2.
The case names are designed to reflect the differences between the cases. Learning to
understand the case names help understatnding the presentation of the results. Further-
more, four listings of the essential computational settings characterizing the numerical
simulations are shown in Tab.4.3-Tab.4.6.
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Table 4.2: Description of the different cases and BOLD text build up the case names.

Name of case Simulation
type

Time
scheme

convection
scheme

maxCo solver

2DSteady 2D
steady-
state
simulation

- linearUpwind - simpleTurbo-
MFRFoam

2DEulerU0.5T 2D un-
steady
simulation

Euler upwind 0.5 turbDyMFoam

2DEulerL0.5T 2D un-
steady
simulation

Euler linearUpwind 0.5 turbDyMFoam

2DBackL0.5T 2D un-
steady
simulation

Backward linearUpwind 0.5 turbDyMFoam

2DCN0.2L0.5T 2D un-
steady
simulation

Crank-
Nicholson
0.2

linearUpwind 0.5 turbDyMFoam

2DCN0.5L0.5T 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 0.5 turbDyMFoam

2DCN0.8L0.5T 2D un-
steady
simulation

Crank-
Nicholson
0.8

linearUpwind 0.5 turbDyMFoam

2DCN1.0L0.5T 2D un-
steady
simulation

Crank-
Nicholson
1.0

linearUpwind 0.5 turbDyMFoam

2DCN0.5L1.0T 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 1.0 turbDyMFoam

2DCN0.5L2.0T 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 2.0 turbDyMFoam

2DCN0.5L4.0T 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 4.0 turbDyMFoam

2DCN0.5L0.5S 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 0.5 transientSim-
pleDyMFoam

3DSteady 3D
steady-
state
simulation

- linearUpwind - simpleTurbo-
MFRFoam

3DBackL0.5S 3D un-
steady
simulation

Backward linearUpwind 0.5 transientSim-
pleDyMFoam
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4.5.1 2D steady-state simulation

In the 2D steady-state simulation the Frozen Rotor approach is used, where the rotor
and stator have fixed relative position with respect to each other. It greatly simplifies the
problem, shortening the computational time. This allows many parameters to be compared
to the experimental data, but the results are not as accurate as unsteady results [3]. The
settings of the 2D steady-state case is listed in Tab.4.3.

Table 4.3: Settings for the 2D steady-state simulation.

Schemes Convection schemes of U linearUpwind
k,ε upwind

Solvers p GAMG
smoother GaussSeidel
tolerance 1.0e-08
relTol 0.05

U,k,ε smoothSolver
smoother GaussSeidel
tolerance 1.0e-07
relTol 0.1

4.5.2 2D unsteady simulation

Using the converged results from the 2D steady-state simulation as initial guess, 2D un-
steady simulations have been performed. Because of the time-dependency, 2D unsteady
simulations are more complex than steady-state simulations. In the unsteady simulation
a sliding grid approach is applied, where the rotor mesh rotates with respect to the stator
mesh. The interaction between the rotor and stator is thus fully resolved [3]. The settings
of the 2D unsteady cases are listed in Tab.4.4.
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Table 4.4: Settings for the different 2D unsteady simulations.

Schemes Time discretization
schemes

backward/Euler/Crank-Nicholson(0.2/0.5/0.8/1.0)

Convection schemes
of

U upwind/linearUpwind
k,ε upwind

Control Time step maxCo 0.5/1/2/4

Correctors for solver
turbDyMFoam

nCorrectors 2
nOuterCorrectors 1
nNonOrthogonalCorrectors 1

Correctors for solver
transientSim-
pleDyMFoam

nCorrectors 0
nOuterCorrectors 1
nNonOrthogonalCorrectors 0

Solvers p,U,k,ε BiCGStab
preconditioner DILU
tolerance 1.0e-07
relTol 0

pcorr BiCGStab
preconditioner DILU
tolerance 1.0e-02
relTol 0

pFinal BiCGStab
preconditioner DILU
tolerance 1.0e-09
relTol 0

To compare the results of the 2D unsteady cases with the experimental data, the
solutions need to get fully developed. The pressure fluctuations of case 2DCN0.5L0.5T
observed at three different points (Probe 1, 2 and 3 in Fig.2.9) are shown in Fig.4.2. The
results for all the 2D unsteady cases are considered developed after 0.3s, which is used to
stop the simulations.
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Figure 4.2: Pressure fluctuations of case 2DCN0.5L0.5T at Probe 1, 2 and 3.

4.5.3 3D steady-state simulation

From the 2D analysis, the best parameters are underlined, and used to perform the 3D
analysis. A steady-state simulation is first performed to quickly obtain a general flow
behavior. The settings for the 3D steady-state simulation are listed in Tab.4.5.
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Table 4.5: Settings for the 3D steady-state simulation.

Schemes convection schemes of U linearUpwind
k,ε upwind

Solvers p,U,k,ε GAMG
smoother GaussSeidel
tolerance 1.0e-08
relTol 0.05

4.5.4 3D unsteady simulation

3D unsteady simulations are performed using the transientTurbDyMFoam solver and the
converged value of the 3D steady-state case result as initial guess. The settings for the 3D
unsteady case are listed in Tab.4.6.

Table 4.6: Settings for the 3D unsteady simulation.

Schemes Time discretization schemes backward
convection schemes of U linearUpwind

k,ε upwind
Control time step maxCo 0.5

Correctors nCorrectors 0
nOuterCorrectors 1
nNonOrthogonalCorrectors 0

Solvers U PBiCG k,ε PBiCG
preconditioner DILU preconditioner DILU
smoother DILU smoother DILU
minIter 1 minIter 1
maxIter 4 maxIter 3
tolerance 1.0e-07 tolerance 1.0e-07
relTol 0 relTol 0

p PCG pcorr,pFinal PCG
preconditioner DIC preconditioner DIC
tolerance 1.0e-05 tolerance 1.0e-05
relTol 0.002 relTol 0.001
minIter 2 minIter 2
maxIter 140 maxIter 280

The 3D unsteady simulation need to be fully developed to be compared with the exper-
imental data. The pressure fluctuations of case 3DBackL0.5S observed at three different
points (Probe 1, 2 and 3 in Fig.2.9) are shown in Fig.4.3. Although the pressure value at
Probe 1 still has very small development at the time very close to 0.3s, the results of the
3D unsteady case 3DBackL0.5S is considered developed at 0.3s, which is used to stop the
simulation.
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Figure 4.3: Pressure fluctuations of case 3DBackL0.5S at Probe 1, 2 and 3.
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5 Results and discussions

In this section, the numerical results are compared with all the available experimental
data. The differences between different numerical solutions are discussed with respect to
the influence on the case set-ups and to the prediction of unsteady flow features. The 2D
steady-state simulation is first discussed followed by the 2D unsteady simulations. Then
the 3D steady-state simulation is followed by the 3D unsteady simulation.

5.1 2D steady-state simulation

A 2D representation of the geometry is used together with the Frozen Rotor approach and
the simpleTurboMFRFoam solver. The 2D steady-state simulation was stopped after 5000
iterations, since all the residuals are below 10−5, as shown in Fig.5.1.
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Figure 5.1: Residuals of velocity components, pressure, k and ε for case 2DSteady.

Since the Frozen Rotor approach resembles a snapshot of the real flow in the pump,
the position of the impeller and the diffuser are fixed to each other. Therefore, the wakes
in the diffuser region are not physical [3], as shown in Fig.5.2.

Figure 5.2: Relative velocity magnitude (left) and static pressure (right) for case 2DSteady.

The computed velocities and static pressure coefficient at the impeller outlet (Dm/D2 =
1.02) are shown in Fig.5.3. Compared to the experimental data, they have some similarities
but still do not perfectly agree, which is probably due to the Frozen Rotor approach rather
than the OpenFOAM implementation [3].
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Figure 5.3: Radial (top left) and tangential (top right) velocity, and the static pressure
coefficient (bottom) for case 2DSteady.

5.2 2D unsteady simulation

The 2D unsteady simulations are performed using the converged results of the 2D steady-
state simulation as the initial guess. Since the flow in the centrifugal pump have an
unsteady behavior, the unsteady solution is expected to have a better agreement with the
experimental data.

5.2.1 Comparison of convection discretization schemes

The main mechanisms of the unsteady flow in the ERCOFTAC centrifugal pump are the
wake and potential flow effects around the blades. The following discussions are mainly
focused on the difference between the results from the linear upwind and upwind convec-
tion schemes, which have second-order and first-order accuracy, respectively. The second-
order linear upwind convection scheme predicts flow unsteadiness better than the first-
order upwind convection scheme. The results of the two numerical solutions are shown
in Fig.5.4. The wakes of the rotor blades can be observed in the diffuser blade passages,
in the 2DEulerL0.5T case, but not in the 2DEulerU0.5T case, as shown in Fig.5.4. That
means that the upwind discretization scheme with first-order behavior fails to capture the
wakes of the unsteady flow.

, Applied Mechanics, Master’s Thesis 2010:13 25



Figure 5.4: Relative velocity magnitude (left) and static pressure (right) for cases
2DEulerU0.5T (top) and 2DEulerL0.5T (bottom).
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Figure 5.5: Radial (top left) and tangential (top right) velocities, and static pressure
coefficient (bottom) for cases 2DEulerU0.5T and 2DEulerL0.5T.

Furthermore, the distributions of the radial and tangential relative velocities are com-
pared with the experimental data in the gap between the rotor and stator, as shown in
Fig.5.5. It is apparent that case 2DEulerL0.5T with the second-order linear upwind con-
vection scheme has more accurately computed velocities than case 2DEulerU0.5T with the
first-order upwind convection scheme. Both of the two cases show some similarity with the
measured data as seen in Fig.5.5. However, the first-order upwind convection scheme does
not predict the peaks of the velocities as the second-order linear upwind convection scheme
does at the same position as in experimental data due to the principle of the upwind-biased
estimation. It is clearly seen that case 2DEulerU0.5T has a more smooth curve than case
2DEulerL0.5T with the second-order linear upwind scheme, which is due to the fact that
the first-order upwind convection scheme smears out the wakes behind the rotor blades.

Furthermore, the oscillations of the static pressure are influenced by the convection
scheme as shown in Fig.5.6. It can be seen that case 2DEulerU0.5T cannot reach the same
static pressure level as case 2DEulerL0.5T with the second-order linear upwind convection
scheme observed in the three different points (Probe 1, 2 and 3 in Fig.2.9)

The instantaneous pictures of the ensemble-averaged static pressure coefficient (C̃p)
for different radius (Rm/R2 from 0.53333 to 1.02) are also investigated with respect to
the experimental data as shown in Fig.5.7, which is looking in the other direction of the
spanwise than in the other figures. The gradients of the static pressure coefficient in cases
2DEulerU0.5T and 2DEulerL0.5T are quite similar to each other but neither give perfect
correspondence with the experimental result. One possible explanation to this is that the
outlet boundary is too close in the numerical simulations.

Based on the above analysis of the second-order linear upwind and the first-order up-
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Figure 5.6: Oscillations of the static pressure at Probe 1 (top left), 2 (top right) and 3
(bottom) for cases 2DEulerU0.5T and 2DEulerL0.5T.
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(a) 2DEulerU0.5T (b) 2DEulerL0.5T

(c) Experimental

Figure 5.7: Static pressure coefficient (C̃p) distribution for cases 2DEulerU0.5T (top left),
2DEulerL0.5T (top right), and experimental data (bottom).
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wind convection schemes, the second-order linear upwind convection scheme is considered
to predict more accurately the flow unsteadiness in the ERCOFTAC centrifugal pump.

5.2.2 Comparison of time discretization schemes

Three temporal discretization schemes are used to predict the unsteady flow features in
the ERCOFTAC centrifugal pump, i.e. Euler, backward and Crank-Nicholson. In the
comparison between those schemes, a Crank-Nicholson coefficient of 0.5 has been used.
The three results are very similar. The wakes in the diffuser region at time 0.3 s for
case 2DBackL0.5T are shown in Fig.5.8, which represents the results of all three time
discretization schemes.

Figure 5.8: Relative velocity magnitude (left) and static pressure (right) for case
2DBackL0.5T.

The distributions of the velocity components and static pressure coefficient at the im-
peller outlet for the three cases compared with the experimental data are shown in Fig.5.9.
The results for the three temporal discretization schemes are very close to each other, and
the accuracy of them are reasonable but do not perfectly predict the unsteadiness of the
flow. The predictions of radial and tangential velocities are different, the tangential veloc-
ities are over-predicted, but the radial velocities do under-predict the wakes of the rotor
blades shown in Fig.5.9.

The distribution of the static pressure coefficient at the impeller outlet at midspan
position is displayed in Fig.5.9. It shows good agreement with the experimental data
except for some differences in the level, which is likely due to a wrong assumption of the
static pressure in the suction pipe.

Pictures of the ensemble-averaged static pressure coefficient for two impeller blade
passages are shown in Fig.5.10 for case 2DCN0.5L0.5T and the experimental results. Those
show similar pressure coefficient distributions.
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Figure 5.9: Radial (top left) and tangential (top right) velocity profile, and the static
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(a) 2DBackL0.5T (b) Experimental

Figure 5.10: Static pressure coefficient for two impeller blade passages for case
2DBackL0.5T (left) and experimental (right).

Since the three temporal discretization schemes predict the unsteadiness of the flow
similarly, the focus shifted towards the efficiency of the different discretization schemes, in
term of computational time. The results shown in Tab.5.1. The three schemes are similar
also with respect to the computational time.

Table 5.1: Computing time for cases 2DEulerL0.5T, 2DBackL0.5T and 2DCN0.5L0.5T.

Case 2DEulerL0.5T 2DBackL0.5T 2DCN0.5L0.5T
t=0 to t=0.3s 22.7 hours 22 hours 23.9 hours

5.2.3 Comparison of Crank-Nicholson time discretization scheme with differ-
ent off-centering coefficients

To investigate the influence of the blending coefficient of the Crank-Nicholson scheme, four
cases have been compared. They have all the same parameters except for the blending
coefficient of Crank-Nicholson scheme, which are 0.2, 0.5, 0.8 and 1, respectively. It is
found that case 2DCN1.0L0.5L with the pure Crank-Nicholson method (coefficient 1.0)
crashed after running almost three laps, which reflects that the pure Crank-Nicholson
scheme is unstable.

The distributions of the radial and tangential velocities, and the static pressure coeffi-
cient at the impeller outlet with respect to the measured data is shown in Fig.5.11. The
under-prediction of the radial velocity and over-prediction of the tangential velocity still
exist in Fig.5.11 no matter what the off-centering coefficient of Crank-Nicholson method
is. Similarly, predicting the distribution of static pressure coefficient, Fig.5.11 shows that
these three cases give correspondence with each other but not good enough to agree with
the measured data.

However, the oscillation levels of the static pressure are quite different, which can be
seen in Fig.5.12. Case 2DCN0.8L0.5T shows the highest level of oscillation, which shows
that the results become more unstable as a pure Crank-Nicholson scheme is approached.

Finally, the computing time is listed in Tab.5.2 to investigate the efficiency of these
three numerical solutions. There are no major differences considering that changing the
blending coefficient does not effect the prediction of the flow features, and the needed
computation time for each cases, the case 2DCN0.2L0.5T can be considered as the best
case for this comparison.
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Figure 5.11: Radial (top left) and tangential (top right) velocities, and static pressure
coefficient (bottom) for cases 2DCN0.2L0.5T, 2DCN0.5L0.5T and 2DCN0.8L0.5T.
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Figure 5.12: Oscillations of the static pressure at Probe 2 for cases 2DCN0.2L0.5T (top
left), 2DCN0.5L0.5T (top right) and 2DCN0.8L0.5T (bottom).
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Table 5.2: Computing time for cases 2DCN0.2L0.5T, 2DCN0.5L0.5T and 2DCN0.8L0.5T.

Case 2DCN0.2L0.5T 2DCN0.5L0.5T 2DCN0.8L0.5T
t=0 to t=0.3s 22.4 hours 23.9 hours 23.8 hours

5.2.4 Comparison of maximum Courant number

In OpenFOAM the time stepping can be chosen such that a maximum Courant number is
preserved. In order to investigate the accuracy dependency on the size of the time-step, the
flow was calculated with the Crank-Nicholson 0.5 temporal discretization and a maximum
Courant number of 0.5, 1, 2 and 4, respectively.

It is found that the simulation crashes for Courant number larger than 4.
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Figure 5.13: Radial (top left) and tangential (top right) velocities, and static pres-
sure coefficient (bottom) for cases 2DCN0.5L0.5T, 2DCN0.5L1.0T, 2DCN0.5L2.0T and
2DCN0.5L4.0T.

Fig.5.13 shows that the distributions of the velocities and pressure coefficient at the
impeller outlet are quite similar for maximum Courant number 0.5, 1, 2 and 4. It can
be seen that the results smear out as the Courant number increases. Therefore, for good
temporal accuracy, it is essential to keep the Courant number at a acceptable level.

The computational time for these four different cases are listed in Tab.5.3.
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Table 5.3: Computing time for cases 2DCN0.5L0.5T, 2DCN0.5L1.0T, 2DCN0.5L2.0T and
2DCN0.5L4.0T.

Case 2DCN0.5L0.5T 2DCN0.5L1.0T 2DCN0.5L2.0T 2DCN0.5L4.0T
t=0 to t=0.3s 23.9 hours 11.7 hours 6.4 hours 3.5 hours

Considering the very different computational time for different maximum Courant num-
ber and the similar results these four numerical solutions gave, the 2DCN0.5L4.0T case is
considered to be the most efficient.

5.2.5 Comparison of solvers

A new solver shared by Auvinen [23], named transientSimpleDyMFoam, is examined for the
2D unsteady simulation. The performance of this new solver is compared to the previous
solver, turbDyMFoam. The wakes in the diffuser region are shown in Fig.5.14. The wakes
predicted by the transientSimpleDyMFoam solver are more smeared out, while the complete
wakes predicted by the turbDyMFoam solver reach the outlet. This can be seen by looking
at the diffuser blade suction side boundary layer iso-line, as well as the pressure contours.

Figure 5.14: Relative velocity magnitude (left) and static pressure (right) for cases
2DCN0.5L0.5T (top) and 2DCN0.5L0.5S (bottom).

The distributions of the velocity components and the static pressure coefficient at the
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small gap between the rotor and stator are plotted in Fig.5.15. It shows that the tran-
sientSimpleDyMFoam solver does not predict as well as the turbDyMFoam solver, which is
probably due to the turbulence model used for the unsteady simulation is not fitting the
flow unsteadiness in the present work rather than the transientSimpleDyMFoam solver.
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Figure 5.15: Radial (top left) and tangential (top right) velocities, and static pressure
coefficient (bottom) for cases 2DCN0.5L0.5T and 2DCN0.5L0.5S.

5.3 3D steady-state simulation

In this section, a 3D representation of the geometry and the simpleTurboMFRFoam solver
are used. The 3DSteady case was stopped after 7000 iterations, since all the residuals are
below 10−5. Using the same Frozen Rotor approach as in case 2DSteady, the position of
the impeller and the diffuser are fixed to each other. The wakes in the diffuser region at
the midspan position are shown in Fig.5.16, which is just a snapshot of the real flow in the
pump. The computed velocities and static pressure coefficient at the impeller outlet at the
midspan position can be compared with the experimental results, as shown in Fig.5.17. It
is found that the 3DSteady case has the similar peak level for the radial and tangential
velocities as the experimental results have, which is better than the under-prediction of the
radial velocity and over-prediction of the tangential velocity in the previous 2D simulations.
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Figure 5.16: Relative velocity magnitude (left) and static pressure (right) at the midspan
position for case 3DSteady.
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Figure 5.17: Radial (top left) and tangential (top right) velocities, and static pressure
coefficient (bottom) for case 3DSteady and experimental results.

Furthermore, due to the 3D model has the real span thickness of the pump, the dis-
tributions of the velocities with respect to different span position at the impeller outlet
can also be compared with the experimental data, as shown in Fig.5.18. Compared to the
experimental results, the case 3DSteady has the similar value regions. But the iso-lines of
the value are more smoother than the experimental one. Some similarity could be seen be-
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tween the case 3DSteady and the experimental results but still not good enough, therefore,
the following 3D unsteady simulation is expected to get better results.

(a) Radial velocities for case 3DSteady. (b) Tangential velocities for case 3DSteady.

(c) Radial velocities for experimental. (d) Tangential velocities for experimental.

Figure 5.18: Radial (left) and tangential (right) velocities for case 3DSteady (top) and
experimental (bottom).

5.4 3D unsteady simulation

The best parameters found for the 2D unsteady cases were used to predict the flow in the
3D model. Actually, the turbDyMFoam solver was used for the 3D unsteady simulation
first of all. But it was found crashed many times and running extremely slow. Then
the transientSimpleDyMFoam solver based on the SIMPLE algorithm is applied in case
3DBackL0.5S instead of the turbDyMFoam solver due to numerical stability problems, and
the PCG for solving the velocity and pressure equations is used instead of the GAMG
solver.

The relative velocity magnitude and static pressure at the midspan position of case
3DBackL0.5S are shown in Fig.5.19. The wakes can be seen clearly at the diffuser blade
suction side boundary layer iso-lines, as well as at the pressure contours. It shows the
possibility for the 3D unsteady simulation by the transientSimpleDyMFoam solver, and
wake-prediction can be seen in both velocity magnitude and pressure coefficient contours,
but not good enough. It probably means that the present k-ε turbulence model is not
suitable for the transientSimpleDyMFoam solver. Other turbulence models therefore worth
to try.
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Figure 5.19: Relative velocity magnitude (left) and static pressure (right) at the midspan
position for case 3DBackL0.5S.
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Figure 5.20: Radial (top left) and tangential (top right) velocities, and static pressure
coefficient (bottom) at the midspan position for the case 3DBackL0.5S.

The distributions of the velocity components and static pressure coefficient for case
3DBackL0.5S are compared to the experimental results as shown in Fig.5.20, which are
plotted at the small gap between the impeller blades and the diffusers at the midspan posi-
tion. The radial velocity is still under-predicted, while the tangential velocity is predicted
better than the over-prediction in the previous 2D unsteady cases. It is noticed that the
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wakes predicted by case 3DBackL0.5S is more smeared out both for the radial and tangen-
tial velocities, which means the transientSimpleDyMFoam solver needs more validations
and testings in the future.

(a) Radial velocities for the case 3DBackL0.5S. (b) Tangential velocities for the case 3DBackL0.5S.

(c) Radial velocities for experimental. (d) Tangential relative velocities for experimental.

Figure 5.21: Radial (left) and tangential (right) velocities for case 3DBackL0.5S (top)
at the impeller outlet for the different spanwise positions, compared to the experimental
(bottom).

The distributions of the radial and tangential vleocities with respect to the spanwise
position are plotted and compared to the experimental data in Fig.5.21. Case 3DBackL0.5S
has the similar contours and the similar value regions, compared to the experimental
results. Since the wake-prediction are not good enough as discussed before, the 3D unsteady
simulation needs to be tried by other numerical solutions. The distributions of the static
pressure coefficient with respect to the radius are plotted and compared to the experimental
data in Fig.5.22. The results of case 3DBackL0.5S are similar to the experimental reuslts.
The gradient of the value and the position of the value regions are quite similar to each
other, but case 3DBackL0.5S more smoother contours than the experimental one, which
means the wake-prediction is more smeared out. The results in Figs.5.21 and Fig.5.22 in
accordance with the investigation results of the wake-prediction in Fig.5.19.
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(a) 3DBackL0.5S (b) Experimental

Figure 5.22: Static pressure coefficient at the midspan position for case 3DBackL0.5S (left)
and experimental (right).
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6 Conclusion

Numerical solutions of rotor-stator interaction using OpenFOAM-1.5-dev have been inves-
tigated in the ERCOFTAC Centrifugal Pump and compared with experimental results.
Both steady-state simulations and unsteady simulations for 2D and 3D grid meshes have
been performed. Good agreement has been shown with respect to the experimental data,
although the upwind differencing scheme failed in preserving the wakes of the impeller
blades in the diffuser vane passages. Furthermore, the unsteady simulations show better
behavior of the wakes than the steady-state simulations. A series of comparison for dif-
ferent parameters have been performed, and the most efficient parameter were selected
and underlined. Three different time discretization schemes, which are Euler, Backward
and Crank-Nicholson, were found no much differences to each other, and were found some
similarities compared with the experimental results. The stability problems were also in-
vestigated for the Crank-Nicholson time discretization scheme with different off-centering
coefficients in the 2D unsteady cases. The SIMPLE-based transientSimpleDyMFoam solver
was applied for the 2D unsteady simulation, which was found smeared the flows for the
current k-ε turbulence model. On the other hand, the turbDyMFoam solver has difficulties
to predict the flow in 3D, while the transientSimpleDyMFoam solver shows the possibility
for the 3D unsteady simulation. Although a strong tendency of damping the flow, the
transientSimpleDyMFoam solver proved to be a very promising stable solver, predicting
accurately the unsteadiness of the flow in 3D cases. The wake was predicted much similar
compared with the experimental results, but not perfect prediction, more validations and
more testings therefore needs to be evaluated in the future.
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7 Future work

In this work the Reynolds-Averaged Navier-Stokes (RANS) equations supplemented with
the k-ε model were used to model the time-dependent turbulent flow in the ERCOFTAC
Centrifugal Pump, and quite good results were achieved. However, there are other tech-
niques for solving numerically the turbulent Navier-Stokes equations, such as Large-Eddy
Simulation (LES). LES is computationally more expensive than RANS models, but could
produce better results than RANS since the larger turbulent scales are explicitly resolved.
Therefore, the LES approach with OpenFOAM should be evaluated in the future. An in-
termediate step would be to apply some Detached Eddy Simulation (DES) models, which
is a mix of RANS and LES.

The k-ε SST (Shear Stress Transport) model is an eddy-viscosity model that is also
worth to be evaluated. It is a combination of the k-ε model (in the outer region of and
outside of the boundary layer) and the k-ω model (in the inner boundary layer). The k-ε
model has weakness on its over-prediction of the shear stress in adverse pressure gradient
flows, while the k-ω model is better at adverse pressure gradient flow. However, the
standard k-ω model has the disadvantage of dependent on the free-stream value of ω.
It shows some improvements, to some extent, to combine the two models [24]. Further,
Gyllenram [25] developed a filtering technique for the k-ω SST method, moving it into the
DES framework. That model has been implemented in OpenFOAM [26] and should be
evaluated also for the ERCOFTAC Centrifugal Pump.
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8 Appendix

Tab.8.1 shows all the simulated cases.
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Table 8.1: Description of the different cases and BOLD text build up the case names.

Name of case Simulation
type

Time
scheme

convection
scheme

maxCo solver

2DSteady 2D
steady-
state
simulation

- linearUpwind - simpleTurbo-
MFRFoam

2DEulerU0.5T 2D un-
steady
simulation

Euler upwind 0.5 turbDyMFoam

2DEulerL0.5T 2D un-
steady
simulation

Euler linearUpwind 0.5 turbDyMFoam

2DBackL0.5T 2D un-
steady
simulation

Backward linearUpwind 0.5 turbDyMFoam

2DCN0.2L0.5T 2D un-
steady
simulation

Crank-
Nicholson
0.2

linearUpwind 0.5 turbDyMFoam

2DCN0.5L0.5T 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 0.5 turbDyMFoam

2DCN0.8L0.5T 2D un-
steady
simulation

Crank-
Nicholson
0.8

linearUpwind 0.5 turbDyMFoam

2DCN1.0L0.5T 2D un-
steady
simulation

Crank-
Nicholson
1.0

linearUpwind 0.5 turbDyMFoam

2DCN0.5L1.0T 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 1.0 turbDyMFoam

2DCN0.5L2.0T 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 2.0 turbDyMFoam

2DCN0.5L4.0T 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 4.0 turbDyMFoam

2DCN0.5L0.5S 2D un-
steady
simulation

Crank-
Nicholson
0.5

linearUpwind 0.5 transientSim-
pleDyMFoam

3DSteady 3D
steady-
state
simulation

- linearUpwind - simpleTurbo-
MFRFoam

3DBackL0.5S 3D un-
steady
simulation

Backward linearUpwind 0.5 transientSim-
pleDyMFoam
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8.1 2D steady-state simulation results

Figure 8.1: Relative velocity magnitude (left) and static pressure (right) for case 2DSteady.
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Figure 8.2: Radial (left) and tangential (right) velocities at the impeller outlet for case
2DSteady.
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Figure 8.3: Static pressure coefficient at the impeller outlet for case 2DSteady.
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8.2 2D unsteady simulation results

Figure 8.4: Relative velocity magnitude (left) and static pressure (right) for cases
2DEulerU0.5T (top) and 2DEulerL0.5T (bottom).
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Figure 8.5: Radial (left) and tangential (right) velocities for cases 2DEulerU0.5T and
2DEulerL0.5T.
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Figure 8.6: Static pressure coefficient at the impeller outlet for cases 2DEulerU0.5T and
2DEulerL0.5T.
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Figure 8.7: Oscillations of the static pressure at Probe 1 (top left), 2 (top right) and 3
(bottom) for cases 2DEulerU0.5T and 2DEulerL0.5T.
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(a) 2DEulerU0.5T (b) 2DEulerL0.5T

(c) Experimental

Figure 8.8: Instantaneous pictures of the static pressure coefficient at the front end of the
impeller for cases 2DEulerU0.5T (top left), 2DEulerL0.5T (top right) and experimental
(bottom).
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Figure 8.9: Relative velocity magnitude (left) and static pressure (right) for cases
2DEulerL0.5T (top), 2DBackL0.5T (middle) and 2DCN0.5L0.5T (bottom).
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Figure 8.10: Radial (left) and tangential (right) velocities for cases 2DEulerL0.5T,
2DBackL0.5T and 2DCN0.5L0.5T.
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Figure 8.11: Static pressure coefficient at the impeller outlet for cases 2DEulerL0.5T,
2DBackL0.5T and 2DCN0.5L0.5T.

(a) 2DBackL0.5T (b) 2DEulerL0.5T

(c) 2DCN0.5L0.5T (d) Experimental

Figure 8.12: Instantaneous pictures of the static pressure coefficient at the front end of
the impeller for cases 2DBackL0.5T (top left), 2DEulerL0.5T (top right), 2DCN0.5L0.5T
(bottom left) and Experimental (bottom right).
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Figure 8.13: Relative velocity magnitude (left) and static pressure (right) for cases
2DCN0.2L0.5T (top), 2DCN0.5L0.5T (middle) and 2DCN0.8L0.5T (bottom).
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Figure 8.14: Radial (left) and tangential (right) velocities for cases 2DCN0.2L0.5T,
2DCN0.5L0.5T and 2DCN0.8L0.5T.
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Figure 8.15: Static pressure coefficient at the impeller outlet for cases 2DCN0.2L0.5T,
2DCN0.5L0.5T and 2DCN0.8L0.5T.
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Figure 8.16: Pressure oscillations of Probe 2 in cases 2DCN0.2L0.5T (top left),
2DCN0.5L0.5T (top right) and 2DCN0.8L0.5T (bottom).
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(a) 2DCN0.2L0.5T (b) 2DCN0.5L0.5T

(c) 2DCN0.8L0.5T (d) Experimental

Figure 8.17: Instantaneous pictures of the static pressure coefficient at the front end of the
impeller for cases 2DCN0.2L0.5T (top left), 2DCN0.5L0.5T (top right), 2DCN0.8L0.5T
(bottom left) and Experimental (bottom right).
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Figure 8.18: Relative velocity magnitude (left) and static pressure (right) for cases
2DCN0.5L0.5T, 2DCN0.5L1.0T, 2DCN0.5L2.0T and 2DCN0.5L4.0T.
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Figure 8.19: Radial (left) and tangential (right) velocities for cases 2DCN0.5L0.5T,
2DCN0.5L1.0T, 2DCN0.5L2.0T and 2DCN0.5L4.0T.
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Figure 8.20: Static pressure coefficient for cases 2DCN0.5L0.5T, 2DCN0.5L1.0T,
2DCN0.5L2.0T and 2DCN0.5L4.0T.
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(a) 2DCN0.5L0.5T (b) 2DCN0.5L1.0T

(c) 2DCN0.5L2.0T (d) 2DCN0.5L4.0T

(e) Experimental

Figure 8.21: Instantaneous pictures of the static pressure coefficient at the front end of the
impeller for cases 2DCN0.5L0.5T (top left), 2DCN0.5L1.0T (top right), 2DCN0.5L2.0T
(middle left), 2DCN0.5L4.0T (middle right) and Experimental (bottom).
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Figure 8.22: Relative velocity magnitude (left) and static pressure (right) for cases
2DCN0.5L0.5T (top) and 2DCN0.5L0.5S (bottom).
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Figure 8.23: Radial (left) and tangential (right) velocities for cases 2DCN0.5L0.5T and
2DCN0.5L0.5S.
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Figure 8.24: Static pressure coefficient at the impeller outlet for cases 2DCN0.5L0.5T and
2DCN0.5L0.5S.

(a) 2DCN0.5L0.5T (b) 2DCN0.5L0.5S

(c) Experimental

Figure 8.25: Instantaneous pictures of the static pressure coefficient at the front end of the
impeller for cases 2DCN0.5L0.5T (top left), 2DCN0.5L0.5S (top right) and experimental
(bottom).
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8.3 3D steady-state simulation results

Figure 8.26: Relative velocity magnitude (left) and static pressure (right) at the midspan
position for case 3DSteady.
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Figure 8.27: Radial (left) and tangential (right) velocities at the impeller outlet at the
midspan position for case 3DSteady.
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Figure 8.28: Static pressure coefficient at the impeller outlet at the midspan position for
case 3DSteady.
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(a) Radial velocities for the case 3DSteady. (b) Tangential velocities for the case 3DSteady.

(c) Radial velocities for experimental. (d) Tangential velocities for experimental.

Figure 8.29: Radial (left) and tangential (right) velocities at the impeller outlet for the
different span positions for case 3DSteady (top) and experimental (bottom).

8.4 3D unsteady simulation results

Figure 8.30: Relative velocity magnitude (left) and static pressure (right) for case
3DBackL0.5S.
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Figure 8.31: Radial (left) and tangential (right) velocities at the impeller outlet at the
midspan position for case 3DBackL0.5S.
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Figure 8.32: Static pressure coefficient at the impeller outlet at the midspan position for
case 3DBackL0.5S.
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(a) Radial velocities for the case 3DBackL0.5S. (b) Tangential velocities for the case 3DBackL0.5S.

(c) Radial velocities for the case 3DBackL0.5S. (d) Tangential velocities for the case 3DBackL0.5S.

(e) Radial velocities for the case 3DBackL0.5S. (f) Tangential velocities for the case 3DBackL0.5S.

(g) Radial velocities for the case 3DBackL0.5S. (h) Tangential velocities for the case 3DBackL0.5S.

Figure 8.33: Radial (left) and tangential (right) velocities at the impeller outlet for the
different span positions for case 3DBackL0.5S.
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(a) 3DBackL0.5S (b) Experimental

Figure 8.34: Instantaneous pictures of the static pressure coefficient at the front end of the
impeller for case 3DBackL0.5S (left) and experimental (right).
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