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Abstract
Type 2 diabetes is a disease characterized by poor control of blood glucose levels.
Continuous Glucose Monitoring (CGM) is an increasingly popular technology for
studying glucose levels and evaluating treatment effects. Although CGM technology
gives potential for granular insights into disease characteristics, more can be done
in terms of exploiting this rich and dense data source to the fullest. This study
aims to investigate the usefulness of Gaussian process regression as a framework for
modelling blood glucose dynamics. The CGM data were collected from a previous
clinical trial on a cohort of overweight and obese type 2 diabetes patients. Gaussian
process modelling tools were used to capture short-term and recurring trends while
adjusting for long-term changes in glucose control. Results indicate that structure
such as periodicity can be successfully modelled. Interpreting specific modelling
results showed to be challenging due to a high degree of uncertainty in the model
hyperparameters. Non-stationary models should be considered to better account
for the irregular occurrence of meal-related glucose spikes and differences between
day and night glycemic variability. Finally, the periodic properties of blood glucose
dynamics should be further explored.

Keywords: Gaussian Processes, Continuous Glucose Monitoring, Periodograms,
Type 2 Diabetes
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1
Introduction

Diabetes is a growing worldwide health challenge. There are two types of diabetes.
Type 1 diabetes, in which the body’s capability to produce insulin is severely di-
minished or absent, and type 2 diabetes in which an impaired insulin production
is also coupled with low responsiveness to the hormone. For both diabetes types,
a characteristic feature is poor control of blood glucose levels. In recent years, ad-
vancements in technology for Continuous Glucose Monitoring (CGM) has enabled
diabetes patients to track their glucose level trajectories in close to real time via
providing measurements of blood glucose levels as often as once every 5 or 15 min-
utes. The technology aids patients in avoiding severe short term issues as well as
long term complications associated to hyper- and hypoglycemia, for example via
signalling when blood glucose levels reach dangerous levels [1].

Due to its potential for giving granular insights, CGM is used in clinical trials
to evaluate treatment effects and better understand the disease symptomatology.
It is of interest to uncover non-trivial patterns in CGM data that might not be
captured or revealed by the conventional measures. Potential insights into sources
of glucose variability could help researchers evaluate treatment efficacy, and in the
long run improve the situation for subjects suffering from diabetes. In addition, a
mathematical model with strong predictive power could be used to guide subjects
or machines regarding when to e.g. consume food or inject insulin, so as to avert
future complications. Such a model must be flexible enough to handle the many
sources of variability in blood glucose levels, for example meals and exercise.

1.1 Background
In recent years, a new class of medications, the Glucagon-like peptide-1 receptor
agonists - also knows as GLP-1 receptor agonists - has been introduced for the
treatment of type 2 diabetes. The D5670C00011 study is a phase 2, randomised,
double-blind, placebo-controlled study to evaluate the efficacy, safety, tolerability,
and pharmacokinetics of different doses of MEDI0382 in overweight and obese sub-
jects with type 2 diabetes mellitus [2]. MEDI0382 is a synthetic peptide with both
glucagon-like peptide-1 (GLP-1) and glucagon receptor co-agonist activity [3]. The
primary objective of this study was to assess the effects of MEDI0382 on glucose
control and body weight versus placebo after 49 days of treatment. Other sec-
ondary objectives of that study included the characterization of the safety profile
and tolerability of MEDI0382, while one of the exploratory objectives focused on

1



1. Introduction

the assessment of the effect of MEDI0382 on glucose lowering during different meals
and times of the day as measured by CGM. The study was divided in two cohorts.
39 subjects were randomized for Cohort 1 divided between two arms, one receiving
MEDI0382 and the other placebo. Cohort 1 evaluated the efficacy, safety, tolera-
bility, and pharmacokinetics of MEDI0382. The drug was titrated up, i.e given in
increasing doses, in weekly intervals from 50 to 300 µg and administered over 49
days. Cohort 2 consisted of 24 subjects and explored an alternative 2-week titration
schedule. Each dose of MEDI0382 was administered as a subcutaneous injection
each morning. Cohort 1 subjects used a Freestyle Libre® Pro CGM device to mea-
sure interstitial glucose levels during the study. The Freestyle Libre® Pro CGM
device measures interstitial glucose levels every 15 minutes for 2 weeks continuously.
The study results and mechanistic insights of MEDI0382 are discussed in detail in
Efficacy, Safety, and Mechanistic Insights of Cotadutide, a Dual Receptor Glucagon-
Like Peptide-1 and Glucagon Agonist [4]. Details around the study protocol, study
population and statistical methods for analysis can be found in the statistical anal-
ysis plan [2].

A distinction is sometimes made between glycemic control, which relates to the
long-term levels of blood or glucose values, and glycemic variability (GV), which
relates to variations seen on a shorter time-frame. Examples of popular measures of
GV are the Coefficient of Variation (CV) which is the standard deviation of blood
glucose values divided by its mean, and "% time spent in hyper- or hypoglycemia"
which counts the minutes spent in these phases [5]. Typical signals of hyperglycemia
are spikes in glucose levels following a meal, called post-prandial peaks. A measure
of these, and other glucose spikes, is the Mean Amplitude of Glycemic Excursion
(MAGE). Due to difficulties in determining what constitutes such an excursion and
exactly what is meal-related, there is no consensus on the best way to quantify these
peaks, or in fact GV in general [6]. Despite the lack of consensus on what the best
measure is, a major proportion of GV measures are concerned either with ampli-
tudes of variations or times in different states, whereas few explicitly take the rate of
change, or frequency of oscillations, into account. A notable exception is the recently
proposed measure Glycemic Variability Percentage, which compares the piecewise
length of an observed glucose trace to an ideal straight line, thus accounting for
rates of change in blood glucose levels as well as amplitude [7]. However, the au-
thors mention caveats of the method such as its dependency of the units for glucose
concentration and gaps in data, leaving room for the development of other measures.
Therefore, it is necessary to explore new methods to analyse dense and information-
rich CGM data to obtain granular insights that will help to better understand the
mechanistic action of various treatments in diabetes.

1.1.1 Modelling blood glucose dynamics with Gaussian pro-
cesses

The fluctuating blood glucose levels of a person can be viewed as a continuous time
stochastic process and CGM devices as a means of sampling from this latent process,
with noise. Gaussian processes (GPs) are a flexible class of stochastic processes
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1. Introduction

which via a Bayesian approach can be used in a regression framework. Therefore,
they might be ideal to model GV. Generally, any GP is completely specified by
its mean and covariance function and much flexibility of this class comes from the
freedom in choosing these functions and their hyperparameters. The covariance
function, also known as the kernel, can for example encode smoothness, periodicity
and general noise level [8]. Such properties are in many cases clearly visible from the
kernel structure, which gives GPs the benefit of interpretability and has inspired e.g.
automatic GP modelling and translation of modelling results to plain English [9].
In terms of predictive power, a class of kernels called Spectral mixture kernels have
been shown to extrapolate well, while simultaneously uncovering and highlighting
patterns such as periodicity in data [10]. Moreover, GPs have been used before as
a part of developing an artificial pancreas, albeit in a simulated environment where
subject meal-times were known [11].

1.2 Aim
This project aims to propose methods for, and investigate the usefulness of, Gaussian
process regression modelling of blood glucose levels in patients with type 2 diabetes.
This in an effort to obtain clinical insights and complement conventional methods for
evaluating treatment effects and gain granular insights on the mechanism of action
of specific medications of diabetes.

1.2.1 Research questions
1. What combinations of kernels can be used to analyse CGM data and which

aspect of a CGM-trace is captured by each part of the GP model?
2. To what extent can specific combinations of kernels and their hyperparameters

unveil features that can be interpreted in clinical/biological terms?
3. Regarding Spectral mixture kernels: To what extent does the spectral density

of such stationary kernels unveil hidden periodicities in blood glucose levels?

1.3 Scope
This project is an initial attempt of using GPs to model CGM data and does not
aim to develop methods for GP modelling in general. Thus, the project will not
cover numerical methods to train GP models in detail, but rather rely on present
computer programs for this task. Therefore, the project is limited to using kernel
functions that are reasonable to construct within these programs.

In terms of relating patient characteristics to GP-modelling, it is conceivable to in-
corporate metadata, such as medical history or occurrences of adverse events, into
the mean and covariance functions directly. However, such an approach will not be
attempted in this work, since it could lead to less generalisable models and it would
require knowledge of relevant features to incorporate a-priori. Moreover, the project
will not address non-Gaussian likelihood choices when training models. This means

3



1. Introduction

that the measurement errors associated with each observation are assumed to be
i.i.d. mean zero Gaussians.

Finally, GP modelling is sometimes performed in a fully Bayesian manner where
priors on kernel hyperparameters are set up. That way, via for example Markov
chain Monte Carlo methods one can obtain estimates of the uncertainty of hyper-
parameters to incorporate when making predictions. Such a procedure is beyond
the scope of this work and we resort to point estimates of kernel hyperparameters,
obtained primarily via Maximum Likelihood estimation.
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2
Theory

A stochastic (random) process can be seen as a collection of random variables
{X(t), t ∈ T}, where T is an index set. The possible values of X(t), t ∈ T is
called the state space. If both the state space and parameter set are continuous, the
process is called a continuous-state process. A Gaussian process (GP) is an example
of such a continuous state process, and specifies a distribution over functions. We
write

f ∼ GP (m(t), k(t, t′)) (2.1)

if f is a GP with mean function m(t) = E[f(t)] and covariance function k(t, t′) =
cov(f(t), f(t′)) for t, t′ ∈ RP . For the purposes of this thesis, P = 1 since time is
the only measured dimension that the blood glucose variations takes place over. A
GP is a generalization of the Gaussian probability distribution, in the sense that for
any finite collection of n points [t1, ...., tn],

[f(t1), ..., f(tn)] ∼ N(m(t1), ....m(tn), K(t1, ....tn)) (2.2)

is an n-dimensional multivariate Gaussian distribution. Its mean vector m has
entries mi = m(ti) and its covariance matrix K has entries Ki,j = k(ti, tj) [12].
An important note is that the covariance is only a function of the inputs in ti, i ∈
[1, ....n], and thus does not take into account any process values at any particular
point. Just like Gaussian distributions are probabilistically determined by their
mean and covariance, GPs are completely specified by their mean and covariance
functions, the latter often being called a kernel or kernel function. It is precisely the
choice of these functions that determines what type of structure any GP regression
model can capture [8].

2.1 Gaussian process regression

Throughout this chapter, f(T ) will denote the Gaussian distribution given by the
GP f viewed at a finite collection of points T . f may also denote a Gaussian
distribution, in which case it should be clear from the context.
Equation (2.2) shows that specifying a mean- and covariance function is a way to put
a prior over functions. Consider evaluating the GP at a finite collection of points.
That is equivalent do drawing samples from a multivariate normal distribution, and
each resulting trace will be a realization of that prior over functions.
Now, consider two Gaussian distributions taken from a GP with a zero mean function

5



2. Theory

and shared covariance function , that is

f(T ) ∼ N(0, K(T, T )), (2.3)
f(T ∗) ∼ N(0, K(T ∗, T ∗)) (2.4)

where T and T* denote vectors of points where the GP is queried and K is the
covariance function. Then, Gaussianity gives that the joint distribution of
[f = f(T ), f ∗ = f(T ∗)] is also Gaussian and takes the form:

p

(
f
f∗

)
∼ N

[(
0
0

)
,

(
K(T, T ) K(T, T ∗)
K(T ∗, T ) K(T ∗, T ∗)

)]
. (2.5)

where the off-diagonal matrices K(T ∗, T ) and K(T, T ∗) are cross covariances be-
tween all time points in T and T ∗. Now, for inference purposes, it is of interest to
use observations to update prior beliefs and make predictions. By use of Bayes rule
and normal-normal conjugacy, a closed form expression for the posterior distribution
of f ∗ = f(T ∗) given f(T ) is obtained as:

p(f ∗ | T ∗, T, f) ∼ N
(
K(T ∗, T )K(T, T )−1f,

K(T ∗, T ∗)−K(T ∗, T )K(T, T )−1K(T, T ∗)
)
.

(2.6)

Now, making predictions of values for f ∗ is simply a matter of sampling from the
Gaussian distribution given in equation (2.6) or evaluating its posterior mean. The
posterior covariance conveniently gives a direct measure of uncertainty for all such
points. Although the prior mean was zero, the posterior mean in equation (2.6) can
adapt to the data given a suitable choice of covariance function. This emphasizes the
importance of that choice and justifies the common principle of assigning zero-mean
priors when fitting GP models[8].

Equations (2.5) and (2.6) can be thought of as prior and posterior distributions
of GPs where observations f are taken without noise. However, we often assume
process values are observed with some noise as in the following hierarchical model:

ε ∼ N (0, σ2) (2.7)
f ∼ GP (m(t), k(t, t′)), [t, t′] ∈ R (2.8)

y(T ) = f(T ) + ε (2.9)

That is, we are assuming our observations y are realizations of a GP f observed at
times T with centered, i.i.d, Gaussian noise. σ2 is referred to as the noise parameter.
For such a model, the joint prior distribution can instead be written as

p

(
y
f ∗

)
∼ N

[(
0
0

)
,

(
K(T, T ) + σ2 · I K(T, T ∗)

K(T ∗, T ) K(T ∗, T ∗)

)]
, (2.10)

and the posterior distribution can be written as

p(f ∗ | T ∗, T,y) ∼ N
(
K(T ∗, T )[K(T, T ) + σ2 · I]−1y,

K(T ∗, T ∗)−K(T ∗, T )[K(T, T ) + σ2 · I]−1K(T, T ∗)
)
,

(2.11)
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2. Theory

where I is an identity matrix with dimensions the same as K(T, T ). This added
uncertainty for example allows for the mean of the posterior predictive distribution
at points [T ∗i ∈ T ] to deviate from the observed values.

2.2 Kernels
In this study, all GP models are given a prior mean of zero. Thus, differences in
properties between investigated models are completely determined by their kernels,
or covariance functions. By restricting the properties of the covariance function,
one introduces inductive biases that are necessary for a GP-model to learn anything
from data via application of equation (2.11). Each kernel itself has a number of
parameters, which modify the shape of the covariance function and thus also the
GP itself. These parameters are often referred to as hyperparameters.

2.2.1 The RBF kernel
The Radial Basis Function (RBF) kernel, also known as the Squared Exponential,
can be written as

kRBF(t1, t2) = σ2 exp
(
−|t1 − t2|2

l2

)
(2.12)

where the outputscale σ2 controls the overall amplitude of the signal variations, and
l is a lengthscale parameter, which determines how quickly the functions are allowed
to vary in time, or equivalently how fast the covariance decays with distance.
An illustration of the effect of varying the hyperparameters σ and l on the kernel
function itself and its corresponding GP-prior over functions is shown in figure 2.1.

Figure 2.1: Covariance function and samples from GPs with RBF kernels with
three different hyperparameter setups.

Notice how smooth the sample paths are in figure 2.1. Indeed, the RBF kernel
implies the process to be modelled is infinitely differentiable, an assumption that

7



2. Theory

makes the kernel ill fit to model processes that can not be assumed to vary smoothly
over time [8].

2.2.2 Matérn kernels
The Matérn family of kernels can be written as,

kMatern(t1, t2) = σ2 21−ν

Γ(ν)

(√
2ν |t1 − t2|

l

)ν
Kν

(√
2ν |t1 − t2|

l

)
,

where Kν is a modified Bessel function, Γ() is the gamma function, ν is a positive
parameter determining differentiability , l is a lengthscale parameter and the out-
putscale σ2 determines the overall variance. For ν=0.5,1.5 and 2.5 the expressions
for Matérn covariances simplify greatly to

ν = 0.5 : kMatern05(t1, t2) = σ2 exp
(
−|t1 − t2|

l

)
(2.13)

ν = 1.5 : kMatern15(t1, t2) = σ2
(
1 +
√

3|t1 − t2|
)

exp
(√

3|t1 − t2|
l

)
(2.14)

ν = 2.5 : kMatern25(t1, t2) = σ2
(

1 +
√

5|t1 − t2|
l

+ 5|t1 − t2|2

3l2

)
exp

(√
5|t1 − t2|

l

)
.

(2.15)

Depending on the choice of ν, the corresponding GP will be very rough or more
smooth [8]. As with the RBF-kernel, the lengthscale l determines how quickly the
functions are allowed to vary in time, and the outputscale σ2 the overall variance
or amplitude of the process variability. An illustration of the dependence on ν is
shown in figure 2.2.

Figure 2.2: Sample paths from GPs with Matérn covariance functions with differ-
ent values of the roughness parameter ν. All kernel outputscales are set to 1.
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Notice in figure 2.2 the increasingly squiggly or rough behaviour as ν decreases,
suggesting the Matérn class of kernels are superior to the RBF kernel when modelling
rougher signals.

2.2.3 Periodic kernels
The Matérn and RBF kernels share the trait that the covariance between two points
decreases monotonically with their distance. However, if the process of interest
is known to co-vary at specific time intervals, periods, it may be of interest to
incorporate such a property into the GP-prior. Two examples of kernels that place
periodic behaviour over the GP priors are the Cosine kernel, given as

kCosine(t1, t2) = σ2 cos (2π|t1 − t2|/p) , (2.16)

where p is the period length and σ2 controls the overall variance/amplitude, and the
Periodic kernel, given as

kPeriodic(t1, t2) = σ2 exp
(
−2 sin2 (π|t1 − t2|/p)

`2

)
, (2.17)

which also has a lengthscale parameter l. While the Cosine kernel generates and
models perfectly sinusoidal signals, the Periodic kernel can be thought of as mod-
elling perfectly repeating patterns. The hyperparameter l in the Periodic kernel
controls the flexibility with which a function can vary within a period. This is
analogous to the lengthscale’s influence on the RBF and Matérn kernels [9].
Figure 2.3 illustrates the behaviour of both these kernels, along with the impact of
varying the lengthscale parameter for the Periodic kernel. The shorter lengthscale
allows for more within-period fluctuations.

Figure 2.3: Covariance functions and sample paths from GPs with Cosine and
Periodic kernels. All kernel outputscales are set to 1.
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Important to note is that these kernel functions encode exact periodicity in the
GP-prior, which is a very strong assumption to place on a stochastic process. How-
ever, as shall be seen in section 2.2.4, there are simple ways to mitigate this strong
assumption.

2.2.4 Constructing new kernels from old
Any valid covariance function must be positive semi-definite. This restricts the space
of functions that can be considered valid kernels and can make it hard to construct
valid kernels. However, it is well known that for any two valid kernels, both their
sum and their product are valid covariance functions. This flexibility allows the
user to construct, train and test expressive kernels based on using simple kernels as
building blocks. Further instructive examples of this are provided by Duvenaud et
al. [13].

A commonly used product kernel is the so called Locally periodic kernel, which
is constructed by multiplying the Periodic kernel with a kernel parametrized by a
lengthscale, for example from the Matérn family. That lengthscale is called the
Decay lengthscale. This multiplication relaxes the exact periodicity enforced by
the Periodic kernel so as to allow for variations in patterns and amplitudes across
periods. This is illustrated in figure 2.4, where the covariance function and sam-
ples drawn from GPs constructed as Periodic Kernel*Matérn25 kernel, are shown.
Clearly, the shorter the Decay lengthscale, the faster the covariance function tends
to zero, and the less periodic are samples from the Locally periodic GP-prior.
Using the Matérn25 kernel to make the periodicity local also adds a certain squigly-
ness to the GP-prior, allowing such a kernel to model rougher processes.

Figure 2.4: Covariance functions and sample paths from GPs with Locally pe-
riodic kernels, given by multiplying the Periodic and Matern25 kernel. All kernel
outputscales are set to 1.
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2.2.5 Spectral mixture kernels and stationarity
All kernels covered in this thesis are stationary, as can be seen from the fact that
their function values are only dependent on the distance between two evaluated
points, that is K(t1, t2) = K(|t1 − t2|). In terms of GPs over the time domain, this
means to assume that the statistical properties of the signal do not change over time.
As an example, the Locally periodic kernel can accommodate slight differences in
variability between periods, but it does not accommodate for the disappearance of
periodicity altogether. Although stationarity is a strong assumption to make, it also
has a number of favorable properties, one of them being that every valid stationary
kernel has a well defined spectral density, as given by its Fourier transform. The
spectral density quantifies the frequency content of a signal. The covariance func-
tion of a stationary process is completely determined by its spectral density, which
many times can be more interpretable than the signal itself [10]. This idea rests at
the core of the Spectral mixture kernels class.

Spectral mixture kernels (SM-kernels) are a class of stationary kernel functions that
can be thought of as a special type of composite kernels. In the one dimensional
case, they are parametrized as

kSM(τ) =
Q∑
q=1

wq cos (2πµqτ) · exp
(
−2π2τ 2v2

q

)
, (2.18)

where τ = |t − t′|. This makes them equivalent to a weighted sum of products
between Cosine- and RBF-kernels where 1

µq
is each components period. The SM-

kernel’s Fourier dual, or spectral density, is a mixture of Q Gaussians, symmetrized
around zero where the qth Gaussian has mean µq, variance v2

q and is scaled by
the weight wq. That means the spectral density at frequency s can be computed
analytically as

S(s) =
Q∑
q=1

wq
φq(s) + φ(−s)

2 , (2.19)

where φq(s) = 1√
2πv2

q

exp
(

(s−µq)2

2v2
q

)
is the probability density function of the normal

distribution with mean µq and variance v2
q . This allows the SM-kernel’s spectral

density to take on many different forms, meaning the SM-kernel can approximate
other stationary kernels, since approximating a kernel’s spectral density means that
the kernel function itself will be approximated.

This flexibility allows for a seemingly automatic selection of relevant kernel prop-
erties and the researcher can ideally gain insights into the data by studying the
fitted hyperparameters of a Spectral mixture model. Indeed, its inventor showcases
the capability of the SM-kernels to pick up various patterns and extrapolate well,
along with being interpretable via its power spectrum [10]. Figure 2.5 illustrates the
relationship between the analytic power spectrum of a SM-kernel and its covariance
function. It may be hard to see from the kernel function itself that it encapsulates a
4- and 11-periodic sinusoidal component, along with a decaying 7-periodic compo-
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nent. That is more clear the peaks in the analytic power spectrum, where the width
of each Gaussian bell indicates how fast the corresponding component is decaying.

Figure 2.5: Characteristics of a four component Spectral mixture kernel with
means µ=[1/11, 1/4, 1/7, 1/82], weights w=[1.6, 1.1, 1.6, 0.4] and variances
v2=[0.00312, 0.00642, 0.04792, 0.00172].

Note that the SM-kernels’ flexibility comes at a cost. Drawing conclusions from
models with such kernels requires a great confidence in that the best hyperparame-
ters and number of mixture components are properly inferred via the optimization
method employed by the researcher. Such an optimization has been shown to be dif-
ficult for the SM-kernels and methods that go beyond this thesis’s scope have been
proposed to tackle this issue [14]. Without such methods, it is of great importance
to have a good starting point for optimizing the SM-kernel parameters.

It is suggested by Wilson [10] that one could initialize the SM-kernel components
starting from an estimation of the power spectral density of the signal. In particular,
since the SM-kernel’s Fourier dual is a mixture of Gaussians, one can fit a Gaussian
mixture model (GMM) with the desired number of mixture components to the power
spectral density of the data, and then initialize the SM kernel components based
on the means, variances and weights of those GMM components. A more detailed
account of GMMs is found in Appendix A.

2.2.6 Example predictions
To illustrate the impact of kernel choice on the predictive performance of a GP, four
of the discussed kernel types were fitted to the same data, by applying equation
(2.11). Data was simulated from a GP with a Periodic kernel with lengthscale 5 and
period length 12, whereafter zero- mean i.i.d noise with variance 0.01 was added.
The observation noise parameter was set to 0.01, allowing for some uncertainty of
predictions at observed points.
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Figure 2.6: Predictions using four different GP models. The confidence region
covers two standard deviations.

Figure 2.6 shows the predictions from the four models. The Matérn model, which
had a very short lengthscale, quickly reverts back to predicting a zero mean, whereas
the periodic kernel predicts the same pattern indefinitely. The RBF model varies
too slowly to capture the observations, due to its very long lengthscale. To make
better predictions than this, one should turn to optimizing the hyperparameters.

2.3 Training Gaussian processes
The problem of training or optimizing a GP model mainly consists of two tasks:
Choosing a kernel and tuning its hyperparameters.
A method to evaluate a GP model’s fit is to study the negative log marginal likeli-
hood (NLML) of the observations, given the model. To understand why this is, first
consider the marginal likelihood, also known as evidence, given as equation (2.20),

p(y | T, θ, σ) =
∫
p(y|f, σ)p(f |Kθ(T ))df, (2.20)

where θ denotes the kernel hyperparameters for the kernelKθ which is the covariance
function for the GP prior over functions f , y are the observations and σ is the
standard deviation of observation noise at the observation points T . The name
"marginal" comes from the fact that the latent process f is integrated out, meaning
that p(y | T, θ, σ) is simply the likelihood of your observations at time points T
being generated from a process with parameters θ and σ.
Since both factors in the integral in equation (2.20) are Gaussian, Normal-Normal
conjugacy allows for obtaining an exact expression for the marginal likelihood, and
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therefore its logarithm as well. The latter is more useful to work with since the
likelihood itself will take on extremely small values when multiple observations are
made. The NLML can be expressed as

− log(p(y | T, θ)) = 1
2y

T [Kθ(T ) + σ2 · I]−1y + 1
2 log(| [Kθ(T ) + σ2 · I] |) + n

2 log(2π),
(2.21)

where | ∗ | denotes the determinant and I the identity matrix [12]. The terms of the
NLML in equation (2.21) are interpretable, in the sense that the the first addend de-
termines the data fit, while the second addend determines model complexity (and is
independent of the measurements). Complexity here refers to the range of probable
functions that may be generated from the GP-prior, and is not necessarily tied to
the number of model hyperparameters [10]. The property of the NLML to penalize
overly flexible/complex models while favoring data fit is sometimes referred to as
an automatic Occams razor, and mitigates the risk of over-fitting when training the
model. It is one of the reasons NLML optimization is popular [8]. Now, to train the
model amounts to taking the derivative of the NLML with respect to all parameters
[θ,σ] and seek a minimum where that gradient is zero.
Training GPs can be computationally expensive as it naively scales cubically with
the number of input points due to the necessity of computing the inverse of a large
covariance matrix when evaluating the NLML in equation (2.21). There are a num-
ber of proposed ways to tackle this, such as inducing point methods which aim to
effectively reduce the number of training points. One such method called KISS-GP,
works for stationary kernels in particular which makes it suitable for this project
[15].

2.3.1 Choosing between kernels
Hyperparameter optimization via minimizing the NLML requires that the kernel
itself, with its unique set of hyperparamters, is already specified when optimization
begins. The final choice between kernels can however be made after optimization of
multiple models, via comparing the NLML corresponding to the optimal hyperpa-
rameter setup for each kernel under investigation. The difference in NLML between
models has for example been used to detect degrees of periodicity in oscillating gene
expressions, in a study where a Locally periodic model and Matérn05 model were
compared [16]. Naturally, such a comparison is only reasonable if the data fed into
the different models is identical.

2.3.2 Non-convexity of optimization
A known issue with with optimizing kernel hyperparameters via minimizing the
NLML is the multi-modality of the NLML loss surface. In other words, the op-
timization problem is not convex and one can not guarantee any obtained set of
hyperparameters is in fact corresponding to a unique global optimum [17]. This is
particularly expressed for kernels expressing periodic behaviour, or composite ker-
nels formed by adding and multiplying together simpler kernels, such as the Spectral
mixture kernels [14].
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This issue must be minded at all times when one wishes to interpret the opti-
mized hyperparameters of a GP model, or use them in some down-stream statistical
analysis procedure. For such purposes, and in terms of obtaining good predictive
performance, it is therefore key that well motivated initialization procedures are in
place throughout the search for appropriate kernels and hyperparameters.

2.4 Decomposing Gaussian processes
As stated in the research questions, it is of interest to understand what aspect of a
trace is captured by which part of a GP model. Part of the strong interpretability
of GPs stem from the fact that if the kernel is a sum of covariance functions, its
corresponding GP can be viewed as a sum of separate GPs, each having one of the
kernel terms as a covariance function. For example, if we consider the GP f =
f1 + f2 where f1(T ) ∼ N (0, K1(T, T ) and f2(T ) ∼ N (0, K2(T, T ), the distribution
for f1(T ∗) conditioned on observing f(T ) = f1(T ) + f2(T ) can be written as

p (f1|(f1(T ) + f2(T )) ∼ N
(
K∗T1 (K1 +K2)−1[f1(T ) + f2(T )],

K∗∗1 −K∗T1 (K1 +K2)−1K∗1
)
,

(2.22)

where K∗∗1 = K(T, T ∗), K1 = K1(T, T ), K2 = K2(T, T ) and T denotes a transpose
[13]. The formula for decomposing the process generalizes to sums of i > 2 kernels
if K1 +K2 is replaced with ∑iKi. An example of such a decomposition, where the
kernel used to model the signal consisted of three components, is shown in figure
2.7.

Figure 2.7: Decomposition of a process into three separate processess: 1: Aperiodic
process given my Matérn15 kernel. 2: Repeating pattern process given by Periodic
kernel. 3: Sinusoidal process given by Cosine kernel. Only the means of the three
posterior distributions are shown.
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2.5 Periodograms & Lomb-Scargle
Biological processes often vary periodically. A periodogram is an estimate of the
power spectral density of a signal. If there are periodicities in the signal being
observed, these ideally show up as peaks in such a periodogram. Lomb-Scargle’s
method of estimating signal power spectral densities is useful since it’s robust to
gaps or unevenly sampled data [18].
As an example, figure 2.8 shows the power spectral densities of the sample paths
given by the Locally periodic kernels shown in the right pane of figure 2.4. Recall
that these samples come from processes with an approximate 12 hour periodicity and
correspondingly there are strong peaks around 12 in the Lomb-Scargle periodograms.

Figure 2.8: Lomb-Scargle periodograms of sample traces from GPs with Locally
periodic kernels. The colors match the corresponding traces in figure 2.4.
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Methods

For the purposes of this work clinical trial data as described in the Introduction
were accessed. This chapter covers the main aspects of the workflow. Given the
exploratory nature of this study, several secondary modelling aspects were developed
ad hoc according to interim analysis results. The majority of the details pertaining
to each GP model are therefore covered in the Results chapter.

3.1 Data characteristics and pre-processing
The data made available for this project consisted of blood glucose measurements
from overweight and obese subjects suffering from type 2 diabetes. The study par-
ticipants were randomly assigned to be either in a placebo or treatment group. 13
subjects were originally placed in the placebo group and 26 subjects were placed
in the treatment group. Throughout the study, each participant in the treatment
group was given an increasing dose of the drug under investigation over the first
three weeks, whereafter a constant and high dose was administered daily for the
remainder of the study period. The placebo group received none of the drug, but
rather a pharmacologically inactive substitute. The objective of the study was to
assess both drug tolerability and treatment effects [2]. Blood glucose values were
measured over a period of about two months, and sampled every 15 minutes. For
all subjects, there were multiple gaps in the data throughout this time period, likely
corresponding to device malfunctions or bi-weekly scheduled sensor changes.

Since the data was given in the format of YYYY-MM-DD Hour:Minute:Second, for
example 2017-10-04 12:28:00 with different initial start times for different subjects,
it was decided that each subjects times should be converted to hours, such that the
first reading of their CGM device would correspond to time zero. The conversion
was facilitated via the R function fasttime::fastPOSIXct.

To characterize treatment effects, the idea was to train GP models on both the initial
and final phase of the study and compare modelling results. This would require
largely complete data during these phases. During explorations of the raw data,
it was observed that most subjects had largely complete CGM readings during the
first 12 day phase. In five cases, subjects had gaps larger than 24 hours throughout
this phase, wherefore they were excluded from all subsequent analysis. It was also
decided that any subject with any gap exceeding 72 hours, or having less that three
weeks of readings in total throughout the final four week phase of the study, should
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be excluded from the analysis. After filtering the data based on both these criteria,
30 subjects remained, 20 from the treatment arm and 10 from the placebo arm.

3.1.1 Study material and data considerations
For the purposes of this work participants in the placebo arm of the study are iden-
tified with letter P preceding a capital letter and similarly patients in the treatment
arm are identified by the letter T preceding a capital letter. In addition, no meta-
data such as age, medical history, weight etc. is reported, since it was determined
this would not substantially improve the quality of this thesis report but merely be
an unnecessary exposure of such patient characteristics.

3.2 Software
Python 3.7.9 was the programming language used for GP modelling throughout
this thesis project. The software used for fitting GP-models was GPyTorch version
1.3.1 [19]. It was selected based on its extensive documentation available online,
an implementation of Spectral mixture Kernels at present and being comparatively
fast. Since all kernels used throughout the thesis work were stationary, the scalable
inference method KISS-GP was used to speed up hyperparameter optimization in
cases where GPyTorch’s standard methods were severely time consuming [15]. This
includes all results up until section 4.3. It should be noted that when making
predictions, the KISS-GP models were converted back to regular and more exact
GP models, since time was never an issue for such inference purposes.

3.3 Optimization
Optimization here refers to finding a set of hyperparameters for a certain kernel on
a given data set that minimises the NLML, given in equation (2.21). GPyTorch is
built on PyTorch [20] functionality, meaning it offers the same type of options for
optimizers. PyTorch version 1.7.1 was used in this project. Although a number of
optimizers including L-BFGS were explored, all results shown in the report were
obtained by use of the Adam optimizer with a learning rate set to 0.4. GPyTorch
reports the NLML divided by number of training points, which in practice meant
this loss gave magnitudes around 0-10. The reason for choosing Adam was partly
its superior speed but also the tendency for other optimizers to crash due to vari-
ous numerical issues. All computations were made with double (64 bit) precision to
avoid an otherwise commonly occurring problem with near-singular matrices. Based
on the heuristic that optimization can halt whenever the loss has stopped decreas-
ing, the optimization scheme was implemented such that optimization ended if the
variance of the losses through the last five epochs was below 10−5, or the number of
iterations exceeded 100. The minimum number of epochs was set to 21.

An interesting observation concerns the impact of the scale of the CGM-data. Values
of hyperparameters did not seem to change over optimization epochs when the input
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data was on its original scale. However, once data was normalized to have a variance
of one, optimization became more flexible. This is clearly a desirable feature, where-
fore all optimization was done in this way. The only affected kernel hyperparameters
are the scale parameters σ, which can at any time be re-scaled via multiplying with
the original standard deviation of the CGM-trace under investigation.

3.3.1 Fixating the noise parameter
The GP models under consideration can be expressed as:

Hyperparameters: = θ

GP Prior : p(f | T, θ) ∼ N (0, Kθ(T, T ))
Likelihood : p(y | f) ∼ N (f, σ2)

The likelihood noise parameter σ2 is what connects the latent GP to the observed
blood glucose levels and models the uncertainty of observed values.
In theory, since this is a parameter that enters the kernel matrix, as seen in equa-
tion (2.11), and the log marginal likelihood, it can be inferred via optimization along
with other hyperparameters.

Throughout the early analyses made on this particular type of CGM data, an obser-
vation was that this parameter was always optimized to values close to its theoretical
limit at zero. These results are in conflict with information from the CGM device
manufacturers, which report a Mean absolute Relative Difference (MARD) of around
10%. MARD is calculated by comparing estimated blood glucose values between
the CGM device and a more refined reference method which is assumed to give the
true value. A closer look at how blood glucose values are reported, as exemplified
in figure 3.1, revealed that observations are confined to a discrete set of values.
Therefore it was deemed unreasonable to try to optimize the noise parameter and
it was fixed to 10% of the signal variance. Exact modelling results, e.g optimized
hyperparameter values, will vary depending on where this parameter is fixed at, but
in this investigation, the conclusions were not altered when the value was set to a
lower level of 1%, wherefore such results are omitted in this report. In addition, this
"binning" of glucose values as a consequence of sensor technology likely makes the
observed process very rough. With this in mind, the RBF kernel was avoided when
modelling short term variations, since that covariance function models very smooth,
infinitely differentiable, functions.

3.4 Detecting and quantifying periodicities
To detect periodicities in the CGM-traces, Lomb-Scargle’s method for estimating
power spectral densities was used. The peaks of the periodograms dictated the use
of kernels encoding periodicity and guided the choice of where to initialize such ker-
nels. The computation of normalized periodograms was performed via the Python
implementation scipy.signal.lombscargle. Normalization amounts to dividing all
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Figure 3.1: Left pane: Fragment of a reported CGM trace. All observations land
precisely on the horizontal lines. Right pane: Count of all unique blood glucose
values for patient TB.

powers by the sum of squared residuals of a mean-zero constant model, and multiply-
ing by two. This makes PSD values end up in the range 0 to 1, which is convenient
when comparing data sets.

Regarding the range of frequencies for the method to try, the upper limit was set
to 1/hour and the lower limit to 1/48 hours. The lower limit was set after trying
lower value and seeing no further peaks in the periodograms. This corresponds to
the method not indicating any long-term periodic trends in the data. The number
of points to evaluate frequencies at between the upper and lower limit was set to
10000.

3.5 Model selection and comparisons
Model selection refers to the construction of kernels as sums and products of simple
kernel functions. Model comparisons refer to comparing NLML fit for a given patient
and time-frame, and comparing fitted hyperparameters of models with training data
either belonging to the first 12 days (initial phase) of the study, or the final 14
days (final phase). Increasingly complex models to evaluate and compare between
subjects were primarily selected based on emerging research questions in relation to
CGM data. The models discussed in detail throughout the Results, Discussion and
Conclusions are all mean-zero models, with either of the following kernels:

1. Matérn05
2. Matérn15
3. Matérn05 + Periodic · Matérn25
4. Matérn15 + Periodic · Matérn25

To tackle the problem of getting stuck in local optima, multiple random restarts

20



3. Methods

were performed based on re-initializing the model hyperparameters with draws from
pre-defined distributions. For reproducibility, these draws were made with a fixed
random seed so as to make the initialization sites identical across different patients,
when using the same kernel. The details of these initializations are described in the
Results section.

To evaluate whether any model outperformed another on the data, the NLML was
computed between the ten best fitting models for each kernel choice and patient. For
example, when comparing the Matérn05 and Matérn15 models throughout the final
14 days of treatment, the NLML of the top ten Matérn05 models were subtracted
from the NLML of the top ten Matérn15 models, for each patient individually.

An idea was to compare fitted hyperparameters between models based on the initial
and final phase, respectively, for each patient individually. This in an effort to
find systematic differences between the treatment and placebo group. The methods
with which to compare fitted hyperparameters across the final and initial phase were
highly dependent on the model under investigation, wherefore they are covered in
detail in the Results section. An overarching idea was that one must verify that the
best models with respect to NLML for a given data set had similar hyperparameters,
before any attempts at comparisons of hyperparameters between data sets could be
made.

3.6 Detrending and decomposing signals

Using GPs, a long-term trend can be estimated jointly with short-term variations
by summing kernels with variance at very different lengthscales. In practice it was
found that such attempts mostly ended up in any long-term component getting a
variance of zero, even in cases of obvious trends. Therefore, in cases where it was
of interest to capture or remove long-term variations separately, a detrending step
was included.

To avoid the problem of specifying a functional form for the long-term trends, a
GP consisting of a single RBF kernel with a lengthscale l of four days was fitted
to the data. The lengthscale parameter was chosen so as to mitigate the risk of
the GP capturing any short-term or daily variations. The noise parameter σ2 was
set to 10% of the total signal variance. The posterior predictive mean of this GP
model was subtracted from the initial blood glucose values to perform the detrend-
ing. A variant of this method has been implemented before in a study that aimed
to identify oscillating gene expressions masked by potential long-term trends [16].
An illustration of this method is shown in figure 3.2
In cases where sums of kernels were used, posterior decompositions were made in
order to evaluate what aspects of the signal, for example the commonly occurring
strong peaks, were captured by the different components.
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Figure 3.2: Illustration of the detrending procedure. Left pane: Original trace of
patient TO. Right pane: Detrended trace of patient TO

3.7 Predictions via Spectral mixture kernels
The Spectral mixture kernels were explored with respect to how well they could
predict future blood glucose values after being trained on detrended data. If predic-
tions were successful, it would indicate that the SM-models had picked up hidden
patterns in the data, which would warrant a further inspection of their fitted hyper-
parameters and analytic power spectra.

Before evaluating the prediction power of GPs with SM-kernels on CGM data, they
were evaluated on simulated data. Data was simulated by sampling from GPs with
three different kernel functions, after which Gaussian noise with a variance of 10% of
the simulated signal variance was added to the data. Since the covariance functions
of these three stationary processes were known, it also allowed for an investigation
into the capability of SM-kernels to approximate other stationary kernels. The
kernels used to simulate the data were:

1. Periodic kernel with period 12 and lengthscale 0.2 plus Cosine kernel with
period 4.

2. Periodic kernel from 1 plus Cosine kernel with period 7 plus RBF kernel with
lengthscale 20 plus Matérn15 kernel with lengthscale 1.

3. Periodic Kernel with period 12 and lengthscale 0.03 + Matérn15 kernel with
lengthscale 1.

These kernels have defining characteristics such as repeating patterns, sinusoids and
short-term fluctuations, as inspired by insights into CGM data characteristics.

The number of Spectral mixture components to use in each Spectral mixture GP
model was selected by counting the number of peaks in the periodogram of the sim-
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ulated signals. The GP models were fitted to the first 80% of the simulated data
and evaluated at the final 20%, and the noise parameter σ2 was fixed to 10% of the
signal variance for all investigated data sets.

Throughout the simulation study, the learning rate of the Adam optimizer was set
to 0.1, since a larger value resulted in the optimized kernel mimicking a Short-
term kernel with no extrapolation capabilities. When evaluating the performance
of SM-kernels for predictions, both a visual inspection of the predicted trace and
computations of the mean squared error of predictions were used.

3.7.1 Initializing the Spectral mixture kernel hyperparam-
eters

For the spectral mixture kernel, initializations were made via fitting a Gaussian Mix-
ture Model (GMM) to the subjects normalized power spectral density as computed
by Lomb-Scargle’s method. GMMs are described in appendix A. The method was
adapted from existing code in GPyTorch that employed Fast Fourier Transforms
to estimate the PSD, a technique which assumes all observations are evenly spaced
apart in time. This motivated the change to Lomb-Scargle’s method, since the CGM
data often contained multiple gaps.

Since the present implementation is based on a normalized power spectrum, the
weights of the fitted GMM were multiplied with the variance of the data prior to
assigning these as the Spectral mixture component weights wq in equation (2.18).
That way, the prior variance at any time would be equivalent to the variance of the
data under consideration. It was assumed that due to the inherent stochasticity in
fitting GMMs to data, several restarts of this initialization method would lead to
different starting points being explored.
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Results

The main focus of this work was to evaluate if certain GP models can provide
insights into Glycemic Variability. In section 4.1, models based on Matérn kernels
are investigated in terms of model fit and whether their hyperparameters can be
interpreted in clinical terms. In section 4.2.2, composite kernels accounting for
periodicity are investigated similarly. In section 4.3, Spectral mixture kernels are
investigated as a means to make predictions of future glucose values, and provide
insights into periodic trends in CGM data.

4.1 Matérn kernels to evaluate treatment effects
A review of common measures of Glycemic Variability, revealed that many measures
are concerned with the amplitude of signal variations (Standard Deviation, Coef-
ficient of Variation) and don’t take into account how rapidly glucose values swing
between high and low levels [1]. It is of desire to control both these phenomena [7].
The family of kernels that are parametrised by a lengthscale and outputscale pa-
rameter, as for example the Matérn kernels, have the potential to characterize both
these aspects. As is seen in figure 2.1, a shorter lengthscale corresponds to a process
with rapid fluctuations, whereas a longer lengthscale corresponds a slowly varying
process. The outputscale σ2 instead controls the over all amplitude of the variability.
With this in mind, it was hypothesized that by fitting a GP model with a simple
Matérn kernel to all patients, differences in Glycemic Variability between the initial
and final phase of the study that might not be revealed by measures such as Coef-
ficient of Variation, could be uncovered. Both the Matérn15 and Matérn05 kernels
were investigated.
The workflow for each of the 30 patients can be summarized as follows:

1. Split data into initial 12 days and final 14 days
2. Normalize data according to standard deviation of the initial 12 days
3. Fit 50 GP-models starting from different initial conditions, according to pre-

determined initializaton schemes.
4. Check that the best models with respect to NLML have similar hyperparam-

eter values.
5. Compare fitted hyperparameters across the two time frames and treatment

groups.
The initialization scheme for these kernels was to sample outputscales uniformly
from the range 0.5-1.5, and lengthscales uniformly from the range 2-8. The ratio-
nale behind this was that outputscales should largely match the variance of the
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normalized data, and that short term variations should not have strong correlations
to glucose values more than 8 hours away.

To begin with, it was observed that the Matérn15 kernel gave a better fit with
respect to NLML than the rougher Matérn05 kernel for virtually all patients, both
throughout the initial and final phase. To illustrate this, the differences in NLML
between the 10 best Matérn15 and Matérn05 models for each patient over the final
14 day phase are shown in figure 4.1. The Matérn05 model NLMLs were subtracted
from the Matérn15 model NLMLs. Thus, a negative value means the Matérn15 is
favored.

Figure 4.1: Difference in NLML between Matérn05 and Matérn15 models. Almost
all values are negative, meaning that for each patient, the Matérn15 model gave a
better fit.

Therefore, only results from models based on the Matérn15 kernels were analysed
further.

In figure 4.2, the fitted hyperparameters for Matérn15 models, computed from the
final 14 days of the treatment group, are shown. Only the hyperparameters of the top
ten models with respect to NLML for each patient are shown. The quotients between
the lengthscale and outputscale parameters for every patients top ten models are
shown in the right pane.
There is great uncertainty in the optimized hyperparameters as can be seen by the
spreads for all patients in figure 4.2. For a given patient, the optimized values of
lengthscale and outputscales seem correlated, making analysis of one parameter in
isolation of the other problematic. As illustrated in the right pane of figure 4.2, the
LO-quotient Lenghthscale

Outputscale
between the two measures is more concentrated. This was
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Figure 4.2: Left pane: Fitted outputscales and lengthscales. Right pane: Quo-
tients of fitted lengthscales/outputscales. Parameters are taken from the top ten
Matérn15 models for each patient in the treatment group based on the final 14 day
phase.

particularly true in the final phase of the treatment group. For the other three data
sets, the spread of quotients across the top ten optimized models were significantly
larger.

This LO-quotient has a neat interpretation in terms of glycemic variability, as it is
desirable to both have a low variance and slowly fluctuating levels, the latter cor-
responding to long lengthscales. To compare between the initial and final phases
of this study, the LO-quotient for both phases was computed for the two phases
respectively. The quotient corresponding to the best model for each phase and pa-
tient was selected. Then the fold change, as defined by the quotient of LO quotients
between the final and the initial phase, was computed. Results are shown in figure
4.3.
Figure 4.3 indicates a number of subjects in the treatment group have strong im-
provements between the initial and final phase, as evidenced by a higher LO-quotient
in the final phase, corresponding to a value above 1 on the y-axis in the figure. Re-
call that the input data for fitting models in both phases was normalized to the
standard deviation of the initial 12 days. Thus, any strong long-term trend su-
perimposed on the Short-term fluctuations would skew the results with respect to
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Figure 4.3: Fold changes in Lengthscale/Outputscale (LO) quotients between the
final and initial phase of all patients, colored by study group. Fold changes are
computed as the LO-quotients in the final phase over the LO-quotients in the initial
phase.

estimating the relative outputscale between the two phases. Such a trend would also
violate the assumptions of stationarity associated with using a Matérn kernel, mak-
ing its hyperparameter estimates unrepresentative. Figure 4.4 illustrates that this is
exactly the case for the two subjects that showed the strongest improvements in LO-
quotient. This motivated the next step, which was to remove the long-term trend
via detrending prior to looking for differences among the model hyperparameters.

4.1.1 Comparisons on detrended data
Recall the distinction between glucose control and Glycemic Variability (GV), where
the former relates to the overall level of glucose values whereas the latter relates to
temporary fluctuations [5]. Detrending can be thought of as an attempt to remove
variability due to changing glucose control, to better estimate GV only.

After detrending all subject traces according to the procedure detailed in section 3.6,
models were fitted with a Matérn15 kernel as described in 4.1, with the difference that
values were normalized by the standard deviation of the detrended trace of the initial
12 days. This way, any long-term trend would not affect the comparison between
phases. Figure 4.5 illustrates how the strong correlation between fitted outputscales
and lengthscales persists for the detrended models, hindering any direct comparisons
between such parameters across groups.
The LO-quotient shown in 4.5 was yet again only stable for the final phase of the
treatment group. In the other three conditions, the spread of quotients across the
top ten optimized models were significantly larger. Thus, figure 4.6 which illustrates
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Figure 4.4: Glucose traces of most improved subjects with respect to the LO-
quotient throughout their final and initial phase. Both display long term trends in
the initial phase.

changes in LO-quotients between the best models across the two phases on the
detrended data, can not be said to provide reliable evidence of changes in GV.

Figure 4.6: Fold changes in Lengthscale/Outputscale quotients between the final
and initial phase of all patients, colored by study group and computed on detrended
data. Fold changes are computed as the LO-quotients in the final phase over the
LO-quotients in the initial phase.
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Figure 4.5: Left pane: Fitted outputscales and lengthscales. Right pane: Quo-
tients of fitted Lengthscales/Outputscales. Parameters are taken from the top ten
Matérn15 models for each patient in the treatment group, based on the final 14 day
phase on detrended data.

4.2 Incorporating structure: periodicity

One potential shortcoming of the simple Matérn model is that it assumes no repeat-
ing structure of the CGM traces. However, a circadian rhythm is well documented
for blood glucose variations. Thus, adding periodicity assumptions into the GP-
priors could be a means of capturing such rhythms. To guide the choice of which
periodicities to encode into the GP-priors, periodograms were computed from the
full two months of data for all patients.
Figure 4.7 illustrates four typical periodograms of the CGM data. A defining feature
of most patients is a very strong peak around at 24, often accompanied with one at
12 as well. This was the case both in the treatment and placebo group. 26 out of 30
patients displayed an approximate 24 hour peak, 19 displayed a 12 hour peak and
only 3 lacked these peaks completely. There were a few occurrences of 6 and 8 hour
peaks. Based on these periodograms, it was decided that a kernel component with
an almost 24 hour periodicity should be included in the models.
To model the periodicity, the Periodic kernel which models repeating patterns was
selected. It was multiplied by a Matérn25 kernel so as to reduce both its smooth-
ness and exact periodicity assumptions. In an attempt to also capture variability
that was not associated with any periodic behaviour, a Short-term component was
added to this Locally periodic model. Two variants of the Short-term component
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Figure 4.7: Four typical periodograms for the CGM data. The bottom left pane
shows a patient who was deemed to display no periodicity.

were investigated, the Matérn05 kernel and the Matérn15 kernel. The former is char-
acterized by being rougher than the latter, and as discussed in section 4.1 was shown
to give a worse fit across virtually all patients, when used on itself.

To summarize, the two kernels under investigation were:

Rough Short-term+Locally periodic: Matérn05 + Periodic ·Matérn25 (4.1)
Smoother Short-term + Locally periodic: Matérn15 + Periodic ·Matérn25 (4.2)

In order to avoid a potential masking effect of long-term trends, an identical de-
trending and normalization procedure to that of section 4.1.1 was performed on
each individual data set. Therefore, a simple model comparison via computing the
difference in NLML between these composite models and the previously studied
Matérn15 was enabled.

When optimizing the models, 50 different initial conditions were tested. They were
identical for the two models under investigation. The initialization scheme for the
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Short-term components was to sample its outputscale uniformly from 0.5-1.5 and
the lengthscale uniformly from 2-8. As for the Locally periodic component, the
period lengths were sampled from a normal distribution with mean 24 and variance
0.8, since the intention was to model a circadian rhythm. The periodic lengthscale
controlling for within period flexibility was sampled uniformly between 1/8 and
1/4 of the period length, and the Decay lengthscale was sampled uniformly from
between 3 and 4 times the period length, allowing for slight between day variations.
The Locally periodic kernel outputscale parameter was sampled uniformly between
0.1 and 0.9.

4.2.1 Hypotheses for Locally periodic models
Four hypotheses in relation to CGM variability were set up to be evaluated via these
models:

1. Can the Locally periodic component reliably capture the regularly occuring,
presumably meal related spikes in the data, also known as post-prandial peaks?

2. If the Locally periodic component can capture the meal related peaks, can
the Short-term component model between-meal variability or Fasting Glucose
Levels.

3. Amplitudes of post-prandial peaks are known to vary across days. Can this
difference in amplitude between days be captured by the Short-term compo-
nent, while the Locally periodic component captures what’s similar on each
day?

4. Are Locally periodic models favored over Matérn15 models?

4.2.2 Analysing Locally periodic models
Throughout this section, the two Locally periodic models based on the kernel func-
tions in equation (4.1) are referred to multiple times. To distinguish between the
two, the one set up with a Matérn05 kernel for its Short-term component will be
referred to the Rough model. The other will be referred to as the Smoother model
to reflect these models’ relative smoothness.

The Smoother model gave a lower NLML than the Rough model for virtually every
patient among its top ten models, as shown in figure 4.8. Only the results from the
final phase are shown but the same holds true for the initial 12 day phase.
To quantify to which extent the periodic component captures any variability, one
could think to study differences in fitted outputscales between a model’s Locally pe-
riodic and Short-term components. Before doing so, the decomposition property of
GPs given in equation (2.22), was used to split the CGM-traces into two processes,
based on the Short-term and Locally periodic components respectively.

In figure 4.9, such a decomposition is shown for a patient, both for the initial 12 days
of the study and the final 14 days. The original trace plus three and the long-term
trend are also included in the illustration, along with the variance of the respective
traces and components.
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Figure 4.8: Difference in NLML between the top ten Rough and Smoother models
for each patient in the final phase. A negative value indicates the Smoother model
gave a better fit.

In figure 4.9 a strong regularity in peak occurrences is visible, e.g in the final phase
there are roughly three peaks per day at similar times apart. It can be seen that the
periodic component captures much of the peaks in the data, but that the Short-term
component also captures some of that variability. This suggests it may be useful
to compare the outputscale parameter of the Short-term component between the
initial and final phases, to get an estimate of changes in how variable the peaks are
between days. However, such an analysis could be problematic, based on two factors.

Firstly, the tendency for the top ten models within each patient and phase to have
variable optimized hyperparameters holds true for the Smooth and Rough models
as was the case with the simple Matérn15 models investigated in section 4.1.
Secondly, as is illustrated in figure 4.10, there are examples of patients where the
Locally periodic component has negligible variance in one of the phases. This is re-
flected in the hyperparameters with an extremely small outputscale for the Locally
periodic component of that patient and phase. In such cases, the short-term compo-
nents of the different phases can not be said to model the same type of variability.

If it were uncommon for the Locally periodic component outputscale to be set to
zero, perhaps the corresponding patients could simply be ruled out of the analysis.
However, as is illustrated in figure 4.11, where each blue dot represents a model
where the outputscale of the Local Periodic component has been optimized to be-
low 0.1, this is not the case. The illustration covers the top ten models fitted to
the final 14 days for each patient for both the Rough and Smoother models, but
results are similar for the initial phase. Figure 4.11 also shows that in cases where
the outputscales/variances of the Locally periodic components have been estimated
near zero, their periodic lengthscale hyperparameters take on particularly variable
values. This is unsurprising, since if there is little contribution from the Locally
periodic kernel to the overall covariance function, changing its hyperparameters will
have little or no effect on the model’s performance. On the other hand, in virtually
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Figure 4.9: Detrended and decomposed signal for both the initial and final phase
of patient TB. The decomposition was based on the best Smooth model with respect
to NLML.

Figure 4.10: Detrended and decomposed signal for both the initial and final phase
of patient TS. The decomposition was based on the best Smooth model with respect
to NLML.
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Figure 4.11: Optimized periodic lengthscales of the top ten Rough and Smoother
models for each patient. Each dot represents a model and the blue color indicates
that particular model had its Locally periodic outputscale parameter optimized to
below 0.1.

all cases where the Locally periodic component outputscales are larger than 0.1, the
periodic lengthscale is set to a very small value, between 0.01 and 0.5. Recall that
this hyperparameter controls the flexibility with which the process can vary within
a period. With values as small as 0.01, the correlation between points as little as 15
minutes apart is minimal.

To investigate why the Rough model had a tendency to support periodicity more
often than the Smooth model, their fitted hyperparameters were investigated. A
marked difference is illustrated in figure 4.12, which displays histograms over the %
changes from initial to optimized values of the Decay lengthscale among the top ten
models for each patient in the final phase. The histograms show there is a tendency
for the Decay lengthscale to be optimized to be shorter in the Rough models, and
longer in the Smoother models. Recall that they were initialized to the same values.

Figure 4.13 illustrates an example where only the Rough model captured variations
via its Locally periodic component. Here,the Rough model has a much lower Decay
lengthscale at 41 compared to its Smoother counterpart at 96, and note the trace of
its Locally periodic component does vary considerably in both amplitude and overall
pattern across different days.
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Figure 4.12: % Changes from the initial guess to optimized values of the Decay
lengthscale parameter among the top ten models for each patient in the final phase.
Left pane: Results for Rough model. Right pane: Results for Smoother model.

Figure 4.13: True signal, long term component and decomposition based on the
best Rough and Smoother model for the initial phase of patient TD. Left Pane:
Rough model, Right Pane: Smoother model.

To investigate the hypotheses regarding periodic models being favored over aperiodic
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models, the difference in NLML between the aperiodic Matérn15 model and the
ocally periodic Smoother model on was computed. This is illustrated in figure 4.14,
where the top ten Smoother and Matérn15 models of all patients throughout the final
phase are compared. This result indicates the model incorporating periodic structure
is favored for many patients. In cases where the outputscale of the Locally periodic
component was optimized to near-zero, the difference is consistently smaller, in line
with the idéa that in such cases, the two models encode very similar structure.

Figure 4.14: Comparison of NLML between top ten Matérn15 and Smoother mod-
els for each patient throughout the final phase. A negative value means the Smoother
model is favored for that patient. A blue dot indicates the Locally periodic compo-
nent outputscale in the Smoother model was optimized to a value below 0.1.

4.3 Extrapolations with Spectral mixture kernels
For GP-models to extrapolate, they must have covariance functions that do not
decay fast toward zero, since otherwise they can not learn from past values. This is
illustrated in figure 2.6, which compares kernels in terms of predictions. For short-
lengthscale Matérn models, predictions quickly revert back to its mean-zero prior,
whereas periodic models predict the same pattern indefinitely. Models based on
Spectral mixture kernels, as defined by sums of locally periodic kernels, can ideally
find a good trade off between the behaviour of those models.

4.3.1 Spectral mixture kernels on simulated data
The kernels used to simulate the data for this study are listed in section 3.7. These
kernel functions are referred to as the ground truth in this section.
Figure 4.15 shows the modelling results for the Periodic+Cosine kernel simulation.
The model effectively manages to discover the source of variability, as evidenced by
the estimated covariance function very closely matching the true covariance function.
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The initialization based on Lomb-Scargle’s method was also fairly close to the ground
truth.

Figure 4.15: SM modelling of data simulated from Periodic + Cosine kernel. Top
pane: True and estimated covariance function. Middle pane: Initial and optimized
analytic power spectrum of the SM-kernel. Bottom pane: The simulated signal and
SM-kernel prediction. The confidence region covers two standard deviations

Figure 4.16 shows the results for the Periodic+Cosine+Matérn15+RBF kernel sim-
ulation, where a 10 component SM-model was fitted to the data. The estimated
covariance function is slightly off, but the extrapolation is fairly accurate. Again,
the optimized kernel function is not very far off from the initialization based on
Lomb-Scargle’s method. Notice that the analytic spectrum corresponding to the
optimized hyperparameters has a "bell"-shape starting from about zero, which is
how the Fourier transform of an RBF-kernel looks. This indicates the model has
found the hidden long-term trend simulated via an RBF kernel with a lengthscale
of 20.
Figure 4.17 shows the results for the simulation from a Periodic kernel with period 12
and lengthscale 0.03 plus Matérn15 with lengthscale 1. 15 mixture components were
used, since the observed spectra contained that many peaks. This kernel choice was
made based on the observation that on the CGM data, the Locally periodic kernels
tended to get such short periodic lengthscales, as evidenced in figure 4.11.
For the Periodic + Matérn15 simulation, the SM-model failed to accurately estimate
the ground truth covariance function, as seen in figure 4.17. In particular, it failed
to obtain a near-zero covariance in between the 12 units spaced-out peaks. Corre-
spondingly, the extrapolation is poor as can be seen from the prediction line not
coinciding with the recurring peaks in the simulated data.
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Figure 4.16: SM modelling of data simulated from the Periodic+Cosine+Matérn15
+ RBF kernel. Top pane: True and estimated covariance function. Middle pane:
Initial and optimized analytic power spectrum of the SM-kernel. Bottom pane:
The simulated signal and SM-kernel prediction. The confidence region covers two
standard deviations

4.3.2 Spectral mixture kernels on CGM data
Just like in sections 4.1 and 4.2.2, the CGM-data was detrended prior to being fitted
with an SM-kernel, so as to mitigate the effects of non-stationary long term trends.
To incorporate the long-term trend in predictions, one could simply add its predic-
tive mean after predicting the shorter-term variations separately.

As an example of the SM-kernels predictive performance on CGM data, a 10 com-
ponent model was fitted to the the initial 12 days of patient PC, who’s periodogram
showed a very strong 12 hour peak, as seen in figure 4.7. The two following days
were used for evaluating the extrapolation. For completeness, both the model with
the lowest NLML on the train data, and the model with the lowest mean squared
error of prediction on the evaluation data, are displayed.
Figure 4.18 shows the results for the minimum NLML model. The initialization
method pushes the model toward a kernel with a 12 hour periodicity, as we can see
a "hill" around 12 in the kernel function. This "hill" is still present in the optimized
model, and the covariance function resembles that of a cosine kernel. With respect
to predictions, the model fails to capture the magnitude of the peaks and valleys in
the data.
Figure 4.19 shows the results for the model with the minimum mean squared error
of prediction. For this model, the optimized parameters suggest an approximately 8-
periodic model as opposed to the 12-periodicity given by the initialization. In terms
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Figure 4.17: SM modelling of data simulated from the Periodic+Matérn15 ker-
nel. Top pane: True and estimated covariance function. Middle pane: Initial and
optimized analytic power spectrum of the SM-kernel. Bottom pane: The simu-
lated signal and SM-kernel prediction. The confidence region covers two standard
deviations

of predictions, this model also fails to capture the magnitude of the CGM trace
peaks altogether. Figures 4.19 and 4.18 are merely examples from a single patient,
but throughout testing on other subjects, no case was observed when the SM-models
accurately predicted the magnitude of the peaks, even on a short timescale.
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Figure 4.18: Spectral mixture modelling results on detrended initial 12 days of
patient PC. The model depicted had the lowest NLML on training data.

Figure 4.19: Spectral mixture modelling results on detrended initial 12 days of
patient PC. The model depicted had the smallest mean squared error of prediction
on the evaluation data.
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In section 4.1, GP models based on Matérn kernels were analysed, in an attempt
to provide a reliable, interpretable and robust measure of glycemic variability (GV)
that is more granular than measures such as the Coefficent of Variation. It was
observed that the optimized hyperparameters for each subject were highly variable
throughout random restarts, as exemplified in figure 4.2. This variability made
comparisons of fitted hyperparameters, e.g the quotient Lengthcale

Outputscale
between the final

and initial phase of the study period, unfeasible. It was hypothesised that observed
long-term trends could be a cause of the uncertainties in hyperparameter optimiza-
tion, since such trends contradict the assumptions of stationarity associated with the
Matérn kernels. However, computations on detrended data yielded hyperparameter
variability similar to that on the original scale, thus the models based on Matérn
kernels did not yield any measures that were considered useful to characterize GV.

In section 4.2, the value of incorporating periodicity into the GP models was investi-
gated. The approach was motivated by strong peaks in Lomb-Scargle periodograms
of the CGM data, as exemplified in figure 4.7, and executed via addition of a Locally
periodic kernel to the simpler Matérn models investigated in the previous section.
Four hypotheses, as stated in section 4.2.1, were investigated.

The hypothesis that the Locally periodic component could "control" for the fre-
quently occuring peaks, to allow analysis of the short-term noise as a proxy for
Fasting Glucose Levels, was not supported by the results, as exemplified in figure
4.9, where the peaks in the true data are captured both by the Locally periodic
and Short-term components. The hypothesis that the Locally periodic components
could reliably capture the common peaks is not supported by the results either. As
exemplified in figure 4.10 there are cases where that component has a negligible vari-
ance. The example in figure 4.10 also suggests comparisons between the Short-term
outputscale of the final and initial phases would be inadequate, since sometimes the
signal variance is shared between components and sometimes it’s carried completely
by the Short-term component.

Nevertheless, figure 4.11 shows that in virtually all cases where the Locally periodic
outputscale component was not forced toward having zero variance, its periodic
lengthscale parameter was optimized to a very small value. An explanation for this
phenomenon could be that the periodic component is indeed trying to fit to the pre-
sumably meal related peaks. Consider that close to a peak, we expect large changes
in glucose values. A correlation function that assumes high correlations to nearby
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points, such as a long-lengthscale kernel, would assign a high likelihood of staying
at the peak. This is unprecedented in the data and therefore, the lengthscale of the
Locally periodic component is forced toward small values.

The study of differences in optimized hyperparameters between models parameter-
ized with Matérn05 kernels as opposed to s Matérn15 kernels for their Short-term
components, revealed that the Decay lengthscale was often optimized to be much
shorter in the Matérn05 case, as seen in figure 4.12. This tendency coincided with
fewer Short-term Matérn05 models having a Locally periodic component outputscale
pushed toward zero, and might be an explanation to this phenomenon. To see why,
recall that the Decay lengthscale governs to which extent the periodic pattern can
vary across periods, with a long Decay lengthscale forcing the model to have near
exactly repeating patterns and a short one allowing for both changes in amplitude
and overall pattern across nearby days, as seen in figure 2.4. With a short enough
Decay lengthscale, the Locally periodic kernel might not encode any clearly dis-
tinguishable periodicity at all, as appears to be the case in figure 4.13. In such
scenarios it’s conceivable that the Locally periodic component would not be forced
toward zero, even when the trace being modeled is not particularly periodic.

Overall, the strong dependency on the Decay lengthscale regarding what type of vari-
ability the Locally periodic kernel can capture, suggests it is not ideal for modelling
what is similar in peaks across different days. Accordingly, the Short-term compo-
nent in the investigated models is likely not ideal for modelling differences in peaks
across different days. Still, the comparison of NLML between the Locally periodic
models and completely a-periodic Matérn models, shown in figure 4.14 indicated
that the Locally periodic models were favored in many cases, in particular when
their periodic component was not pushed toward zero. This result suggests incor-
porating structure such as periodicity in CGM-models may be favorable. However,
results do not support that single Locally periodic kernels are immediately useful to
characterize clinically relevant features of CGM data, such as post-prandial peaks.
It appears more sophisticated models are needed to reliably account for these strong
and variable peaks.

Regarding the use of Spectral mixture kernels for extrapolation, simulations indicate
the current initialization and optimization method works well for certain types of
traces, such as those seen in figures 4.15 and 4.16. However, figure 4.17 indicated
that for data simulated from a simple periodic kernel with a short periodic length-
scale, it can be difficult for the SM-kernels to approximate its covariance function
and extrapolate well, given the current optimization procedure. Recall that the anal-
ysis of Locally periodic models suggested many CGM data sets are best modeled
with such a short periodic lengthscale, as shown in figure 4.11. These observations
might explain the poor predictive performance of the Spectral mixture models on
the CGM data, as exemplified in figures 4.19 and 4.18. This highlights the need for
more advanced optimization methods than those implemented in the scope of this
project, if the SM-kernels and their spectra are to be interpreted in clinical terms.
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Figure 5.1: Example trace of blood glucose values, colored by night and day time.
Night time was defined as times between 00:00 and 06:00. The horizontal lines
denote the limits for hypo- and hyperglycemia.

Resorting to Lomb-Scargle’s method for analysing the frequency content of CGM
traces could also be considered, since that on itself indicated there are strong periodic
tendencies in blood glucose dynamics of most patients, and heterogeneity between
patients. Perhaps the lack of periodicity is associated with relevant clinical features,
such as adverse events affecting food intake?

5.1 Study limitations
None of the attempts at modelling blood glucose dynamics detailed in sections
4.1,4.2.2 and 4.3 could be said to provide immediately useful insights for clinicians.
As the search over models has not been exhaustive, one can not conclude GPs are
not useful for modelling CGM traces.

Importantly, all the investigated kernels throughout this project were stationary,
which means the CGM-traces were assumed to be realizations of stationary pro-
cesses. A violation of this assumption was apparent when the occurrence of long-
term trends was observed. To remedy this, data was detrended prior to being
modelled. However, long-term trends are not the only sources of non-stationarity.
It is for example known that blood glucose levels are different between nights and
days, with hypoglycemia being more common at night [21]. An example of this
tendency from the CGM data is shown in figure 5.1.
In addition to lower levels, overall GV during nights might be different than during
days. Figure 5.2 illustrates this, where the ratios of blood glucose variance between
night and day were computed for both the final and initial weeks, across both treat-
ment groups. The analysis was made on detrended data so as not to obscure the
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variability of interest with any long-term trends.

Figure 5.2: Histogram of ratios of variance of blood glucose levels between night-
and day time on detrended data, for all patients. A value above 1 indicates the day
time variance is higher. Night time was defined as times between 00.00 and 06.00.

Figure 5.2 supports the claim that for most patients, the night time variance is lower
than its day time counterpart. The few exceptions may be of interest to study more
closely. Perhaps some events occurred during the study which dramatically changed
those patients daily routines. This result suggests that a model which somehow in-
corporates the time-of-day in its covariance function, might be favorable. Naturally,
this would be a non-stationary model.

Another cause of non-stationarity concerns meal times. If it is a-priori known when
meals occur, it’s also known when peaks are more likely to occur. Thus, the statisti-
cal properties of the signal are different throughout different times of day, certainly
for patients with regular meal times. In a study where GPs were used as part of an
artificial pancreas system, data-points following a meal were for example excluded
from the training data set, so as not to worsen predictions throughout the rest of
the day [11]. They were possible to exclude because the meal times were simulated
and known, and this allowed the researchers to use the stationary Periodic · Ex-
ponential kernel to model the blood glucose dynamics. It was beyond the scope of
this investigation to figure out how to infer meal times and potentially incorporate
that information into the kernel function. A starting point for future attempts at
building non-stationary GP-models could be to consider the approaches detailed by
Cheng et al. [22], which tailor specifically toward clinical data.

As mentioned in section 3.3.1, the assumption of Gaussian observation noise was
already violated for this data. However, there are also other causes for concern in
terms of Gaussianity of the CGM traces. Due to the common occurrence of several-
standard-deviation peaks, CGM data is naturally skewed to the right, and heavy
tailed. The skewness issue is accentuated by the fact that corresponding dips in
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glucose levels are physiologically impossible. This is illustrated in figure 5.3 where
histograms of the glucose values of all individual patients are shown, both on original
and detrended data. In addition, the distribution of skewnesses across all subjects
in this study are shown. For reference, the skewness of a Gaussian distribution is 0,
since its mean and median coincide.

Figure 5.3: Illustration of the skewness of CGM data. Histograms of glucose values
for all patients across the full study period are shown, and the skewness computed
for each patient separately. The left panes regard original data and the right panes
regard detrended data.

Skewness is known to be problematic in GP regression [23]. As an example of why,
consider that all priors over the latent process being observed are symmetric, since
they are all Gaussian themselves. Thus, any such prior over functions will have
a low probability of generating asymmetric traces such as those observed in this
study, making the prior a poor guess. Recall also that the marginal likelihood used
to evaluate model fit, given in equation 2.20, is itself Gaussian. Thus, the extreme
values corresponding to blood glucose peaks will have a strong impact on the value
of this likelihood, potentially making it an unreliable measure and hyperparameter
optimization based on minimizing the NLML, uncertain.
Certain transformations, such as the natural log or square root, would reduce the
right-skewedness of the CGM traces and potentially make them more Normal-like.
An effect of such a transform would be that the impact on regression of hypo-
glycemic episodes would be weighted up while hyperglycemic episodes would be
weighted down.

Finally, it is strongly advised to consider the technical details of the CGM device
used with regards to how it reports blood glucose values. It might be the case,
as was observed in this study, that observations are rounded off or confined to a
discrete set of values. If so it might be best to fix the noise parameter to a high
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value so as to avoid inferring an underestimated noise level.
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6
Conclusions

For this work, several GP models were fitted to clinical trial CGM data, with the aim
to interpret their optimized hyperparameters in clinical/biological terms. Results
showed support for locally periodic GP models on CGM data in favor of completely
aperiodic models. Moreover, results indicate that Locally Periodic kernels with
an approximately 24-hour periodicity can to some extent model the frequently oc-
curring peaks in blood glucose levels. It remains to extend these models so as to
more reliably capture such peaks, which are a defining characteristic of CGM traces.

Due to the observed uncertainty in the optimized hyperparameters of the inves-
tigated models, results indicated that the hyperparameters do not reliably reflect
features that can be interpreted in clinical or biological terms. A potential cause
for the observed uncertainty in optimized hyperparameters may be the frequently
occurring peaks in blood glucose levels. These peaks make the distributions of CGM
data right-skewed, which contradicts the Gaussianity assumptions of GP models. To
handle this deviation from Gaussianity in future studies, one could try square root-
or log transforming the data prior to fitting any GP models.

A limitation of the investigated locally periodic models is their assumption of station-
arity. Although long term changes in glucose control were handled via detrending,
there are other sources of non-stationarity in CGM data, including irregular meal
times and differences in glycemic variability between night and day. This motivates
development of non-stationary GP models for CGM data. To that end, methods
proposed by Cheng et al. [22] may provide a good starting point.

Finally, GP models with Spectral mixture kernels were investigated in terms of how
well they could predict future blood glucose values, and how their power spectral
density could reveal hidden periodicities in CGM data. Results indicate that these
models can not accurately predict the characteristic peaks in blood glucose val-
ues, given the present implementation. However, periodograms obtained by Lomb-
Scargle’s method as such provided insights into numerous periodic tendencies of
glycemic variability, and a closer study into the spectral properties of CGM traces
might prove useful for characterising disease symptomatology or treatment effects.
A starting point could be to investigate the cause for lack of an approximately 24
hour peak in some patients’ periodograms.

49



6. Conclusions

50



Bibliography

[1] Grazia Aleppo. Approaches for Successful Outcomes with Continuous Glucose
Monitoring. Role of Continuous Glucose Monitoring in Diabetes Treatment.
Arlington, VA: American Diabetes Association, pages 13–18, 2018. URL https:
//www.ncbi.nlm.nih.gov/books/NBK538974/.

[2] Statistical Analysis Plan for Protocol D5670C00011. A Phase 2, Randomised,
Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, Tol-
erability, and Pharmacokinetics of Different Doses of MEDI0382 in Overweight
and Obese Subjects with Type 2 Diabetes Mellitus. https://clinicaltrials.
gov/ProvidedDocs/00/NCT03244800/SAP_001.pdf, 2017. [Online; accessed
16-May-2021].

[3] Philip Ambery, Parker Victoria, Stumvoll Michael, Posch Maximilian, Heise
Tim, Plum-Moerschel Leona, Tsai Lan-Feng, Robertson Darren, Jain Meena,
Petrone Marcella, Rondinone Cristina, Hirshberg Boaz, and Jermutus Lutz.
Medi0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight
patients with type 2 diabetes: a randomised, controlled, double-blind, ascending
dose and phase 2a study. The Lancet, 391:2607–18, 2018.

[4] Rajaa Nahra, Wang Tao, Oscarsson Jan, Repetto Enrico, Gadde Kishore,
Stumvoll Michael, Jermutus Lutz, Hirshberg Boaz, and Ambery Philip. Ef-
fects of Cotadutide (MEDI0382) on Biomarkers of Nonalcoholic Steatohepatitis
in Overweight or Obese Subjects with Type 2 Diabetes Mellitus: A 26-Week
Analysis of a Randomized Phase 2b Study, 2019.

[5] Guillermo E Umpierrez and Boris P Kovatchev. Glycemic Variability: How
to Measure and Its Clinical Implication for Type 2 Diabetes. The American
journal of the medical sciences, 356(6):518–527, 2018. URL https://doi.org/
10.1016/j.amjms.2018.09.010.

[6] David Rodbard. Glucose Variability: A Review of Clinical Applications and
Research Developments. Diabetes technology & therapeutics, 20(S2):S2–5, 2018.
URL https://www.liebertpub.com/doi/10.1089/dia.2018.0092.

[7] Thomas A Peyser, Andrew K Balo, Bruce A Buckingham, Irl B Hirsch, and
Arturo Garcia. Glycemic Variability Percentage: A Novel Method for Assessing
Glycemic Variability from Continuous Glucose Monitor Data. Diabetes technol-
ogy & therapeutics, 20(1):6–16, 2018. URL https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5846572/.

51

https://www.ncbi.nlm.nih.gov/books/NBK538974/
https://www.ncbi.nlm.nih.gov/books/NBK538974/
https://clinicaltrials.gov/ProvidedDocs/00/NCT03244800/SAP_001.pdf
https://clinicaltrials.gov/ProvidedDocs/00/NCT03244800/SAP_001.pdf
https://doi.org/10.1016/j.amjms.2018.09.010
https://doi.org/10.1016/j.amjms.2018.09.010
https://www.liebertpub.com/doi/10.1089/dia.2018.0092
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846572/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846572/


Bibliography

[8] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006. URL http://www.gaussianprocess.org/gpml/chapters/
RW.pdf.

[9] David Duvenaud. Automatic model construction with Gaussian processes. PhD
thesis, University of Cambridge, 2014. URL https://www.cs.toronto.edu/
~duvenaud/thesis.pdf.

[10] Andrew Gordon Wilson. Covariance kernels for fast automatic pattern discov-
ery and extrapolation with Gaussian processes. PhD thesis, University of Cam-
bridge Cambridge, UK, 2014. URL https://www.cs.cmu.edu/~andrewgw/
andrewgwthesis.pdf.

[11] Lukas Ortmann, Dawei Shi, Eyal Dassau, Francis J Doyle, Berno JE Misgeld,
and Steffen Leonhardt. Automated Insulin Delivery for Type 1 Diabetes Melli-
tus Patients using Gaussian Process-based Model Predictive Control. In 2019
American Control Conference (ACC), pages 4118–4123. IEEE, 2019.

[12] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari,
and Donald B Rubin. Bayesian Data Analysis, Third Edition. CRC press, 2013.

[13] David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Ghahra-
mani Zoubin. Structure Discovery in Nonparametric Regression through Com-
positional Kernel Search. In Proceedings of the 30th International Confer-
ence on Machine Learning, pages 1166–1174. PMLR, 2013. URL http:
//proceedings.mlr.press/v28/duvenaud13.html.

[14] Fergus Simpson, Vidhi Lalchand, and Carl Rasmussen. Marginalised Spectral
Mixture Kernels with Nested Sampling. 2020. URL https://arxiv.org/pdf/
2010.16344.pdf.

[15] Andrew Wilson and Hannes Nickisch. Kernel Interpolation for Scalable Struc-
tured Gaussian Processes (KISS-GP). In International Conference on Machine
Learning, pages 1775–1784. PMLR, 2015. URL http://proceedings.mlr.
press/v37/wilson15.pdf.

[16] Nick E Phillips, Cerys Manning, Nancy Papalopulu, and Magnus Rat-
tray. Identifying stochastic oscillations in single-cell live imaging time se-
ries using Gaussian processes. PLoS computational biology, 13(5):1–30,
2017. URL https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi.1005479.

[17] Subhasish Basak, Sébastien Petit, Julien Bect, and Emmanuel Vazquez. Numer-
ical issues in maximum likelihood parameter estimation for Gaussian process
regression. arXiv preprint arXiv:2101.09747, 2021. URL https://arxiv.org/
pdf/2101.09747.pdf.

[18] Tanya L Leise. Analysis of Nonstationary Time Series for Biological Rhythms
Research. Journal of Biological Rhythms, 32(3):187–194, 2017. URL https:
//doi.org/10.1177/0748730417709105.

52

http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://www.cs.toronto.edu/~duvenaud/thesis.pdf
https://www.cs.toronto.edu/~duvenaud/thesis.pdf
https://www.cs.cmu.edu/~andrewgw/andrewgwthesis.pdf
https://www.cs.cmu.edu/~andrewgw/andrewgwthesis.pdf
http://proceedings.mlr.press/v28/duvenaud13.html
http://proceedings.mlr.press/v28/duvenaud13.html
https://arxiv.org/pdf/2010.16344.pdf
https://arxiv.org/pdf/2010.16344.pdf
http://proceedings.mlr.press/v37/wilson15.pdf
http://proceedings.mlr.press/v37/wilson15.pdf
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005479
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005479
https://arxiv.org/pdf/2101.09747.pdf
https://arxiv.org/pdf/2101.09747.pdf
https://doi.org/10.1177/0748730417709105
https://doi.org/10.1177/0748730417709105


Bibliography

[19] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and An-
drew Gordon Wilson. GPyTorch: Blackbox Matrix-Matrix Gaussian Process
Inference with GPU Acceleration. In Advances in Neural Information Process-
ing Systems, 2018. URL https://arxiv.org/abs/1809.11165.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[21] Long Vu, Sarah Kefayati, Tsuyoshi Idé, Venkata Pavuluri, Gretchen Jackson,
Lisa Latts, Yuxiang Zhong, Pratik Agrawal, and Yuan-Chi Chang. Predicting
Nocturnal Hypoglycemia from Continuous Glucose Monitoring Data with Ex-
tended Prediction Horizon. In AMIA Annual Symposium Proceedings, volume
2019, pages 874–882. American Medical Informatics Association, 2019. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153099/.

[22] Li-Fang Cheng, Bianca Dumitrascu, Michael Zhang, Corey Chivers, Michael
Draugelis, Kai Li, and Barbara Engelhardt. Patient-Specific Effects of Medi-
cation Using Latent Force Models with Gaussian Processes. In International
Conference on Artificial Intelligence and Statistics, pages 4045–4055. PMLR,
2020. URL http://proceedings.mlr.press/v108/cheng20c.html.

[23] Alessio Benavoli, Dario Azzimonti, and Dario Piga. Skew Gaussian processes
for classification. Machine Learning, 109(9):1877–1902, 2020.

[24] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, Second Edition.
Springer Science & Business Media, 2009.

53

https://arxiv.org/abs/1809.11165
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153099/
http://proceedings.mlr.press/v108/cheng20c.html


Bibliography

54



A
Appendix 1

Gaussian Mixture Models (GMMs) were used to initialize the Spectral Mixture
Kernel hyperparameters. In the one dimensional case, fitting a GMM amounts to
finding Q components, weights wq, means µq and variances σ2

q such that the function

f(x) =
Q∑
q=1

wqφq(x),

where φq(x) = 1√
2πσ2

q

exp
(

(x−µq)2

2σ2
q

)
is the probabilty density function of the Normal

distribution, matches the data under investigation closely. It is usually accomplished
by use of the EM-algorithm [24].
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