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Abstract

Vehicle mass is an important parameter when developing features which improve
drivability and performance feel for passenger cars. A vehicle’s mass naturally
depends on the load and the number of passengers. Therefore it is desired to have
a fast, accurate and robust mass estimation algorithm.

In this thesis an extended Kalman filter is used to estimate the mass of a
passenger car. The filter uses the wheel torque, vehicle speed and road slope as
input, where the road slope is measured by an accelerometer.

The estimation algorithm is tested on real data and in simulated environments.
The results show that the filter is fast and sufficiently accurate; it often reaches
within 5% of the true mass after a few seconds. However, the results also show how
changes in the environmental parameters can reduce the possibilities of getting an
accurate estimation.

Keywords: Extended Kalman filter, mass estimation, road slope estimation,
accelerometer, vehicle dynamics, nonlinear system
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List of parameters

Af largest cross-section of vehicle

a accelerometer acceleration

α road slope

Cd drag coefficient

g gravitational acceleration

K Kalman gain

m vehicle mass

µ coefficient of rolling resistance

P error covariance matrix

Pp predicted error covariance matrix

Q process disturbance covariance matrix

R measurement disturbance covariance matrix

r wheel radius

ρ air density

T torque acting on the wheels

Ts sampling time

u control signals

v longitudinal speed of the vehicle

vw headwind speed

x states

x̂ estimated states

x̂p predicted states
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Chapter 1

Introduction

Automotive companies compete in delivering the best driving experience. One
important factor is the performance feel, e.g. how the vehicle responds to the
driver’s commands. To be able to deliver the desired performance feel and improve
drivability it is important to estimate certain parameter values more accurately.
The mass of the vehicle and the road slope strongly affects how the vehicle behaves.
In order to assure that the correct force is delivered, as demanded by the driver,
it is important to estimate these two parameters.

1.1 Related work

Several vehicle mass and road slope estimation studies have been made. In these
studies, trucks have mainly been studied since the total weight of such a vehicle
can change dramatically depending on the type of load.

In Adaptive Vehicle Weight Estimation [1] the mass of a truck is estimated
by measuring engine torque, as well as shaft and vehicle speed. The estimator is
modelled such that multiple measurements form a linear equation, and from the
tangential slope of this equation the mass is given. With the mass known, the
road slope can be calculated. Estimation is done during both acceleration and
gear shifting, with an accuracy of ±10%.

A study on road slope estimation for automatic transmission control [2] com-
pares two methods for road slope estimation. One method determines the slope by
the difference between acceleration measured by an accelerometer and the deriva-
tive of the vehicle velocity. The other method relies on an engine torque estimation
to determine the slope, but is paused during braking and gear shifting. The method
using an accelerometer proved simpler and more accurate.

The same conclusion is drawn in Road Slope and Vehicle Mass Estimation Using
Kalman Filtering [3] which uses an extended Kalman filter for mass estimation.
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CHAPTER 1. INTRODUCTION

The advantages of using an accelerometer are also shown in Vehicle Mass and
Road Grade Estimation Using Kalman Filter [4] which presents a method to es-
timate vehicle mass and road grade using an extended Kalman filter, with and
without an accelerometer. The estimator is paused during gear shifting (as op-
posed to [1]), braking and for certain limits on speed and torque.

Compression Braking Control for Heavy-Duty Vehicles [5] uses an MRAC (Model
Reference Adaptive Controller) for longitudinal speed control in heavy-duty vehi-
cles by braking, which requires vehicle mass and road slope estimation. A control
law is designed which finds the true mass and road grade within 45 s. If the pa-
rameters leave the regions which they are known to physically lie within, then the
estimator is paused.

Road Grade and Vehicle Parameter Estimation for Longitudinal Control Using
GPS [6] estimates the road slope, vehicle mass, rolling resistance and aerodynamic
drag for a passenger car using GPS antennas. Two configurations are compared.
The first configuration consists of a single antenna, where the vertical and hori-
zontal speed ratio is compared to find the slope. The second configuration obtains
the slope using two antennas with fixed positions by measuring their relative dis-
placement. Other measurements required for the mass estimation include engine
propulsion force, vehicle acceleration and vehicle speed. Turning, braking and
wheel slip is not taken into consideration. Using a single equation relating the
measurements and the unknown parameters, together with lots of measurement
points and an unspecified recursive algorithm, the mass, rolling resistance and aero-
dynamic drag can be determined. The result is that the estimated mass converges
to within 2% of the true value in 12 s.

1.2 Purpose

The purpose of this thesis is to develop a model in MATLAB/Simulink which
estimates a vehicle’s mass. In order to accurately calculate the mass, the road
slope also needs to be estimated. The mass estimator should be implemented and
tested in a real vehicle; therefore it is desired to be as robust as possible.

1.3 Objectives

The estimated mass should be within 5% of the true mass, in less than five minutes
of driving.

2



CHAPTER 1. INTRODUCTION

1.4 Method

The available signals are the vehicle’s measured speed, acceleration, proper accel-
eration (as measured by a longitudinal accelerometer) and the wheel torque.

With the use of the accelerometer the road slope is estimated. When the slope
is known the mass can be derived from Newton’s second law using the wheel torque,
acceleration, rolling resistance and aerodynamic drag. A Kalman filter is used for
mass estimation and to reduce the influence of disturbances.

The estimator is tested in simulation environments and on real data, collected
from several driving sessions with a Volvo V60 with an automatic gearbox.

1.5 Delimitations

The scope of the thesis is to estimate vehicle mass and road slope, not how these
can be used to improve drivability.

The model is created for use in passenger cars, not heavy vehicles, under normal
driving conditions (e.g. not off-road), possibly with a trailer or caravan.

The following simplifications and assumptions are made:

• The true mass is assumed to lie between 1800 and 5000 kg.

• Estimation of the slope only considers longitudinal slopes of max ±35%
(≈ 20◦). The estimator will not be tested for steeper slopes.

• The change in pitch of the vehicle at certain driving situations or with uneven
load distributions is not considered separately, but is part of the road slope
estimation.

• Wheel slip is assumed to be negligible.

• The effects of lateral forces are neglected.

1.6 Report outline

In chapter 2, the theory necessary to understand the estimation algorithm is pre-
sented. Chapter 3 motivates and presents the choice of estimator algorithm. The
testing environments are described in chapter 4 and results from the tests are
shown and discussed in chapter 5. Finally, in chapter 6, the main conclusions are
presented.
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Chapter 2

Background theory

This chapter gives an overview of the vehicle dynamics used in the simulation
environment and the theory behind the mass estimating Kalman filter.

2.1 Vehicle dynamics

A moving vehicle is subject to several forces, as seen in figure 2.1. The longitudinal
equation of motion becomes:

mv̇ = Ftraction − Fair − Fµ − Fg (2.1)

𝐹𝑇 

𝐹µ 

𝐹𝑔 

𝐹𝑎𝑖𝑟 

𝛼 

𝑣 

Figure 2.1: Forces acting on a vehicle.
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CHAPTER 2. BACKGROUND THEORY

The traction force Ftraction is the propulsive force of the vehicle, which depends on
the torque acting on the wheels T and the wheel radius r:

Ftraction =
T

r
(2.2)

The air resistance Fair depends on the density of the air ρ, the headwind speed vw
and the aerodynamic properties of the vehicle Cd, as well as its longitudinal speed
v and its largest cross-section Af :

Fair =
1

2
ρCdAf (v + vw)2 (2.3)

Another force acting against the direction of movement is the rolling resistance
Fµ, which is due to friction and the deformation of the wheels. It depends on the
coefficient of rolling resistance µ, the road slope α, the vehicle mass m and the
gravitational acceleration g:

Fµ = µmg cosα (2.4)

The deformation generally increases with the speed, but only significantly for
speeds well over common speed limits [7]. Therefore µ is assumed to be speed
independent.

In addition to these forces, the gravitational pull Fg can act as either an accelerating
or decelerating force, depending on the road slope. Vehicle mass, road slope and
the gravitational acceleration determines the magnitude of the force:

Fg = mg sinα (2.5)

General reference: Bosch Automotive Handbook [8].

2.2 Discrete Kalman filter

The discrete Kalman filter estimates the states of a linear system described by the
difference equation

x(k) = Ax(k − 1) +Bu(k − 1) + w(k − 1) (2.6)
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CHAPTER 2. BACKGROUND THEORY

by treating it as an optimization problem, solved by minimizing the estimator error
covariance P . Available measurements of states are given by

z(k) = Hx(k) + v(k) (2.7)

where the process disturbance w∼N(0, Q) is normally distributed white noise,
with zero mean and variance Q, and the measurement disturbance v∼N(0, R) is
normally distributed white noise with zero mean and variance R.

The Kalman filter makes predictions of the states based on previous estimated
states and control signals. Then it calculates an observer gain K based on prop-
erties of the system and process disturbances. The estimates are calculated by
weighing predicted states and measured states against each other, such that it
minimizes P [9].

Since only the estimates of the states can be determined, x will henceforth be
approximated with the estimated states x̂.

The procedure of the Kalman filter for one sample [10]:

1. Predict states:
x̂p(k) = Ax̂(k − 1) +Bu(k − 1) (2.8)

2. Predict error covariance:

Pp(k) = AP (k − 1)A> +Q (2.9)

3. Compute the Kalman gain:

K(k) = Pp(k)H>(HPp(k)H> +R)−1 (2.10)

4. Estimate the states by correcting the predictions with measurements:

x̂(k) = x̂p(k) +K(k)(z(k) −Hx̂p(k)) (2.11)

5. Update the error covariance:

P (k) = (I −K(k)H)Pp(k) (2.12)

2.3 Extended Kalman filter

The regular Kalman filter works well for linear processes, but has to be modified
when used for nonlinear processes. In such cases the Kalman filter has to be
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CHAPTER 2. BACKGROUND THEORY

linearized around the estimated states at every sample, thus becoming an extended
Kalman filter (EKF).

The process can more generally be described by the nonlinear difference equa-
tion

x(k) = f(x(k − 1), u(k − 1), w(k − 1)) (2.13)

with measurements
z(k) = h(x(k), v(k)) (2.14)

and with disturbances w∼N(0, Q) and v∼N(0, R) as before.
The main difference between the EKF and the standard Kalman filter is the

required linearization of the nonlinear system equation. Since the values of w
and v are unknown at each time step, an approximation is to linearize around
w = 0, v = 0.

The procedure of the EKF for one sample [10]:

1. Predict states:
x̂p(k) = f(x̂(k − 1), u(k − 1), 0) (2.15)

2. Linearize:

A[i,j] =
∂fi
∂xj

(x̂(k − 1), u(k − 1), 0) (2.16)

W[i,j] =
∂fi
∂wj

(x̂(k − 1), u(k − 1), 0) (2.17)

H[i,j] =
∂hi
∂xj

(x̂p(k), 0) (2.18)

V[i,j] =
∂hi
∂vj

(x̂p(k), 0) (2.19)

3. Predict error covariance:

Pp(k) = A(k)P (k − 1)A>(k) +W (k)Q(k − 1)W>(k) (2.20)

4. Compute the Kalman gain:

K(k) = Pp(k)H>(k)(H(k)Pp(k)H>(k) + V (k)R(k)V >(k))−1 (2.21)

5. Estimate the states by correcting the predictions with measurements:

x̂(k) = x̂p(k) +K(k)(z(k) − h(x̂p(k),0)) (2.22)

6. Update the error covariance:

P (k) = (I −K(k)H(k))Pp(k) (2.23)
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Chapter 3

Estimator model

Out of the two methods for road slope estimation suggested by [2] the use of an
accelerometer is the most advantageous. Since an accelerometer is available in the
Volvo V60, there is no extra cost associated with it. The use of an accelerometer
is further supported by [3].

The drive torque directly at the wheels is accessible; therefore no modelling of
the driveline is required. Since the estimation is mainly done for the Volvo V60,
which has an automatic gearbox, estimation during gear shifting as in [1] is not
possible. The extended Kalman filter presented in [3] seems suitable in theory, and
is shown to be so when put into practice in [4]. The MRAC suggested by [5] also
seems feasible; it was however only tested in a simulation environment.

Although [6] was one of the few projects which was designed for and imple-
mented in a passenger car instead of a truck, the use of antennas to estimate
the road slope is not feasible in and beyond the scope of this thesis. The mass
estimation was only tested for straight driving, but is fast and accurate.

The EKF is a filter widely used for estimation and has performed well in pre-
vious studies. Therefore it was chosen as the mass estimator. In this chapter, the
design of the estimator is explained.

3.1 Road slope estimator

An accelerometer measures proper acceleration. This means that if the vehicle is
standing still on a slope then the amount of gravitational acceleration acting on
the car can be measured and the slope calculated. Since the acceleration of the
vehicle also is measured, the difference between the two accelerations determines
the road slope also when moving, as follows:

α = arcsin
a− v̇

g
(3.1)
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3.2 Mass estimator

Combining the vehicle dynamic equations (2.1) - (2.5) results in the following
continuous equation:

v̇ =
T

rm
− 1

2m
ρCdAf (v + vw)2 − µg cosα− g sinα (3.2)

With this equation describing the system, the states are chosen as x1 = v, x2 =
1/m, x3 = α and the control signal as u = T . Since m is constant x2 could be
considered a slowly varying parameter with a small disturbance wm. x3 is also
modelled as an unknown parameter with disturbance wα.

The choice of x2 = 1/m instead of x2 = m simplifies the linearization of the
Kalman filter. This also turned out to give a faster filter which was less sensitive
to the choice of initial mass.

With process disturbances w1 = wT , w2 = vw, w3 = wm, w4 = wα added, the
state space equations become:

ẋ1 = f1 =
(u+ w1)x2

r
− x2

2
ρCdAf (x1 + w2)

2 − µg cosx3 − g sinx3 (3.3)

ẋ2 = f2 = w3 (3.4)

ẋ3 = f3 = w4 (3.5)

In order to implement the model it must be discrete. Discretization was done
using the forward Euler method, which approximates the continuous differential
equation

ẋ = f(t, x(t))

with a difference equation

x(k + 1) = x(k) + Tsf(kTs, x(kTs))

where Ts is the step time.
Discretizing with a step time Ts results in the system equations

x̂1(k + 1) = x̂1(k) + Ts

(
(u(k) + w1(k))x̂2(k)

r
+

− x̂2(k)

2
ρCdAf (x̂1(k) + w2(k))2 − µg cos x̂3(k) − g sin x̂3(k)

)
(3.6)

x̂2(k + 1) = x̂2(k) + Tsw3(k) (3.7)

x̂3(k + 1) = x̂3(k) + Tsw4(k) (3.8)

10
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with measurements:

z(k) = Hx(k) + V v(k) =

[
1 0 0

0 0 1

]
x̂(k) +

[
1 0

0 1

]
vk (3.9)

To linearize around the latest estimate x̂(k− 1), the matrices A and W have to be
recalculated at each time step:

A =


∂f1
∂x1

. . . ∂f1
∂x3

...
. . .

...
∂f3
∂x1

. . . ∂f3
∂x3

 =

 A1 A2 A3

0 1 0

0 0 1


A1 = 1 − TsρCdAf x̂1(k − 1)x̂2(k − 1)

A2 = Ts(
u(k − 1)

r
− ρCdAf x̂

2
1(k − 1)

2
)

A3 = Tsg(µ sin x̂3(k − 1) − cos x̂3(k − 1)

W =


∂f1
∂w1

. . . ∂f1
∂w4

...
. . .

...
∂f3
∂w1

. . . ∂f3
∂w4

 =

 W1 W2 0 0

0 0 Ts 0

0 0 0 Ts


W1 = −TsρCdAf x̂1(k − 1)x̂2(k − 1)

W2 =
Tsx̂2(k − 1)

r

Since (3.9) is already linear there is no need to linearize H nor V .

On/off logics

The torque measurements are not accurate when braking, which will result in
large errors in the mass estimation. Since it is enough to know when the vehicle
is breaking, the estimation algorithm is paused when the estimated brake force is
not zero, in order to avoid this problem.

To pause the algorithm, the states x̂ and the error covariance matrix P are
held constant. In other words, the states will not be updated as long as the vehicle
is braking and the internal parameters of the filter will not change. Note that this
applies for all states, but this is not an issue since the only interesting output from
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the filter is the mass. The measurements of the other two states are considered
trustworthy.
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Chapter 4

Testing environments

This chapter describes the various simulation environments that were used to test
and tune the estimator.

4.1 SimDriveline

SimDriveline is a Simscape based library in the Simulink environment that models
and simulates drivetrain systems. The full drivetrain model called sdl vehicle was
used to initially test the behaviour of the Kalman filter for simple driving scenarios.
However, this model did not fulfill all the requirements, so a new, simple car model
was created.

4.2 A simple car model

The simple car model that was created was based on exactly the same physics as
the Kalman filter. The vehicle model used wheel torque and road profile as input.
The wheel torque was provided by a ”driver block”, which basically was a simple
PI-regulator following a reference speed graph. See figure 4.1 for an overview of
the system. The model was mainly used to see how the filter handled disturbances,
such as wind and measurement noise, and the filter was tuned accordingly.

4.3 Volvo V60: Off-line

To properly test the estimator, real data was collected in several driving scenarios.
A computer was connected to a Volvo V60 and the interesting signals were logged
with INCA software. All signals were re-sampled at 100 Hz when imported into
MATLAB.

13
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Road topography

Distance Road slope
EKF

Speed

Torque

Road slope

Mass

 Road slope

Driver

Speed

Reference speed

Torque

Car

Torque

Road slope

Speed

 Torque

 Road slope

Distance

Figure 4.1: Schematic overview of the Simulink model.

The data collection was performed on different roads and with different loads. The
estimator was tested on the following roads:

Torslanda 1: Short, flat test track.

Torslanda 2: Long route with varying road slope (public road).

Test track 1: Flat test track considerably bigger than Torslanda 1.

Test track 2: A typical country road with varying road slope.

Test track 3: Gravel road with varying road slope.

4.4 Volvo V60: On-line

To implement the mass estimator, the Simulink model was converted using
TargetLink. Code was generated and downloaded into the V60.

At the end of the project a series of tests were made to ensure that the estimator
gives similar result in the car as in the simulation environment.
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Chapter 5

Results and discussion

In this chapter, the behaviour of the mass estimation filter is presented and dis-
cussed. This is done for both simulated and collected data. Finally, sources of
error and possible future improvements are discussed.

5.1 Simulation results

In this section, results based on simulated input data are presented. The vehicle
model followed a simple reference speed graph (see figure 5.1b) on a road with
realistic slope (figure 5.1d). Based on the speed, road slope and wheel torque
(figure 5.1c) the filter estimated the mass (figure 5.1a). Note that the on/off-logic
was not used in the simulated environment.

The test shows that the filter is fast and accurate; the estimated mass lies well
within 5% of the true mass after a few seconds. The road slope estimation follows
the true slope rather well.
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Figure 5.1: Inputs and outputs of the filter for the Simple car model.

5.2 Test results

Results based on real input data are presented in this section. The off-line es-
timations are made in Simulink and the on-line estimations are results from the
estimation algorithm running in real time in a Volvo V60.

16



CHAPTER 5. RESULTS AND DISCUSSION

5.2.1 Off-line mass estimation

Mass estimation results for the more interesting driving scenarios are presented
below. Data for different velocities, inclinations and loads were collected in order
to test the performance and robustness of the filter in a variety of environments.

Torslanda 1 and 2

Initially, data was collected on Torslanda 1, which is a short and flat test track, by
driving several laps. The advantage of testing on a flat track is that the road slope
is close to zero, which makes it easier to determine possible sources of error. The
other test route, Torslanda 2, is a public road with varying road slope, different
speed limits and natural start-stop situations. This test represents a normal driving
scenario. Both these test drives were performed with a Volvo V60 carrying three
persons.

Mass estimation results, and the signals used in the estimation algorithm, are
presented in figure 5.2 and figure 5.3. The road slope is calculated from accelerom-
eter measurements, while the torque and the velocity are directly available as
measurements.
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Figure 5.2: Inputs and outputs of the filter for the test on Torslanda 1.

Mean velocity [km/h] Active estimation [%]

39.9 0.686

Table 5.1: Additional data for Torslanda 1.
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Figure 5.3: Inputs and outputs of the filter for the test on Torslanda 2.

Mean velocity [km/h] Active estimation [%]

55.8 0.776

Table 5.2: Additional data for Torslanda 2.

The signals in figure 5.2b-d are the signals that are used by the EKF to estimate
the vehicle mass, seen in figure 5.2a.

The estimated mass quickly settles within the desired 5% limits. It is not as
accurate as the simulation result shown earlier (figure 5.1a), but roughly as fast.
The real car is subject to more disturbances than the simulated car, such as a

19
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more uneven road surface and wind from different directions. In addition, the
brake torque measurement is not as accurate as in the simulated version; therefore
the on/off-logics are used. The performance in this test is more than acceptable.

As can be seen in the road slope plot (figure 5.2d), the track is probably not
completely flat. The estimated road slope is varying between -2% and +2%. This
is most likely a combination of small road grade variations, an uneven road sur-
face and changes in the vehicle pitch angle. The large changes in road slope at
approximately 180 and 260 seconds occur while braking, stopping and reversing
the vehicle. The on/off-logics counter this effect such that it does not affect the
mass estimation noteworthily.

Figure 5.3 shows the corresponding results and signals for the test on a public
road, Torslanda 2. The mean velocity is higher than in the previous case, the
estimation algorithm is active for a higher percentage of the time (see tables 5.1
and 5.2) and the road slope is varying. The estimated mass plot is not as smooth
as in figure 5.2, but still accurate and fast enough. The difference is likely due to
more distinct accelerations on the test track than on the public road.

Since there is no true road slope to compare the estimated slope with, and
it is considered accurate enough for the mass estimation algorithm, it is not very
interesting when analysing the mass estimation. The wheel torque is related to the
propulsion of the vehicle, i.e. accelerations and countering outer forces acting on
the vehicle, but is not necessary to understand the performed tests. These signals
will therefore not be shown in following cases. The vehicle velocity is interesting
because it is closely related to the air resistance, and because it gives a picture of
how the test was carried out.

Test track 1, 2 and 3

In order to further test the filter, additional tests were performed. Results from
the combinations of three different test tracks and two different kinds of load are
presented in this section.

In the first three cases (shown in figure 5.4) the car was loaded with 200 kg
of extra weight and was carrying two persons. In the next three cases (figure 5.5)
the extra weight was removed and a caravan weighing 1300 kg attached. The tests
with a caravan were performed to observe how the estimation algorithm behaves
when the factors Cd and Af in equation (2.3) deviates from the filter model.

Figure 5.4 and figure 5.5 show mass estimation results and measured velocities
for the flat road of Test track 1 (subfigures a and b), the varying country road in
Test track 2 (subfigures c and d) and the gravel road of Test track 3 (subfigures e
and f).
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b: Vehicle velocity, Test track 1.
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c: Estimated mass, Test track 2.
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d: Vehicle velocity, Test track 2.
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e: Estimated mass, Test track 3.
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f : Vehicle velocity, Test track 3.

Figure 5.4: Estimated masses and vehicle velocities on different test tracks, without a caravan.
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b: Vehicle velocity, Test track 1.
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c: Estimated mass, Test track 2.
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d: Vehicle velocity, Test track 2.

0 50 100 150 200

3000

3200

3400

3600

3800

time [s]

m
as

s 
[k

g]

 

 

m
est

m
true

m
true

 ± 5%

e: Estimated mass, Test track 3.
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Figure 5.5: Estimated masses and vehicle velocities on different test tracks, with a caravan.
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Figure 5.4 shows that the mass estimation is working as intended on the asphalt
roads (subfigures a and c) but settles on a value outside the 5% margins for the
gravel road data (subfigure e). Even though this test is for a smaller time interval,
it does not show the same tendencies to approach the true mass as the other cases.
The reason for the behaviour on the gravel road is due to a higher rolling resistance
coefficient, which is dependent on the road surface. The effects of changes in the
rolling resistance coefficient are discussed in section 5.3.

Note that the effects of the on/off-logics clearly can be seen in figure 5.4a where
the mass is held constant for longer periods than in the other cases, resulting in
flat sections in the graph.

The estimator is not accurate enough for any of the caravan cases, as can be
seen in figure 5.5. This is because the caravan changes the vehicle’s aerodynamical
properties, CdAf . In figure 5.5a it is clear that the high velocities together with the
changed aerodynamical parameters result in large estimation errors. However, the
estimation is initially very accurate while the velocity is still low. This is because
the aerodynamic drag depends on the square of the velocity. This issue is further
discussed in section 5.3. A similar behaviour is shown in figure 5.5c, but since the
velocities generally are lower the error is not as large. The velocities for the test
on the gravel road (figure 5.5e) are even lower, but the rolling coefficient is higher,
resulting in estimation errors outside the set margins, but in an unexpected way.
Generally a higher rolling resistance results in much larger initial errors than seen
in the figure.

5.2.2 On-line mass estimation

The estimator showed the same behaviour when tested in real-time in a car as
in the off-line estimations. This shows that the code generating stage went as
intended and that this does not provide an obstacle for implementing the model
in a car.
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5.3 Filter sensitivity

To show the influences of errors in µ and CdAf , the collected data from Torslanda
1 is reused in additional mass estimations with these parameters changed. Factors
kµ and kCdAf

were added to µ and CdAf to show how these parameters were
changed. A k-value of 1 naturally corresponds to the original parameter value.
The resulting mass can be seen in figure 5.6 for different values of kµ and in figure
5.7 for different values of kCdAf

.
kµ < 1 corresponds to driving on a rougher surface than what the filter is

designed for, i.e. rougher than asphalt, such as gravel road. kµ > 1 corresponds
to driving on a very smooth surface with special tyres.

kCdAf
< 1 means that the aerodynamic properties are worse than expected, e.g.

due to an attached caravan or similar. In the same sense a kCdAf
> 1 means that

the aerodynamics are better, which is highly unlikely but still shown for illustrative
purposes.

As seen in figure 5.6b the mass deviation is immediately evident for changes in
kµ, while in figure 5.7b the mass does not deviate immediately. This is due to that
an error in CdAf only noticeably affects the air resistance for higher velocities, due
to the squared velocity dependency.

Since the changes are made in the filter parameters and not in the test envi-
ronment (the car or the road), only the general behaviour of such parameter errors
are shown. The errors shown will therefore not be of the same size as they would
have been if the rolling resistance coefficient of the road or the aerodynamical
properties of the vehicle were changed. Using the same data and changing the
filter parameters makes the results directly comparable.

Since the wind influences the air resistance equation (2.3) as much as the vehicle
velocity does, it can easily affect the estimation. It is however hard to take this
into account since it can change rapidly and is difficult to measure.

Due to simplifications in the filter model, influences by lateral forces and the
wheel slip are neglected. However, these are generally not considered to affect the
mass estimation to any large extent.

24



CHAPTER 5. RESULTS AND DISCUSSION

0 50 100 150 200 250 300 350
2100

2200

2300

2400

2500

2600

time [s]

m
as

s 
[k

g]

a: Changed kµ, overview.

0 10 20 30 40 50
2200

2250

2300

2350

2400

2450

2500

2550

2600

time [s]

m
as

s 
[k

g]

 

 

k
µ
 = 1

k
µ
 = 1/4

k
µ
 = 1/2

k
µ
 = 2

m
true

b: Changed kµ, first 50 s.

Figure 5.6: Estimated mass for different rolling resistance values.
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Figure 5.7: Estimated mass for different aerodynamical property values.
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Sources of error

The following will, or are likely to, cause an erroneous mass estimation.

Aerodynamics: Caravans, trailers, roof boxes or even open windows will change
the aerodynamics of the vehicle.

Lateral forces: The lateral forces occurring due to steering has not been taken
into account.

Rolling resistance: Dependent upon road surface, tyres and vehicle speed, al-
though the speed is considered a minor issue at normal velocities.

Wheel slip: As with the lateral forces it is considered negligible but could poten-
tially change the results slightly.

Wind: Can change rapidly, is therefore difficult to model.

5.4 Future work

As seen in the tests with a caravan and in the sensitivity analysis, errors in the
filter parameters can lead to large mass estimation errors. Cd, Af and µ are pa-
rameters that are likely to vary in day-to-day usage, it would therefore be desirable
to allow for these changes and estimate these parameters for improved mass es-
timation. The wind speed will probably be a problem when trying to estimate
the aerodynamical parameters. Instead of a separate CdAf estimation, where the
wind speed would be a problem, the wind speed disturbances could be accounted
for in an estimation of the entire air resistance Fair.

The influence of lateral forces and wheel slip could also be included in an
estimator model. However, previous research in the area shows that the effects are
negligible.
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Chapter 6

Conclusions

The mass estimation algorithm works very well in cases when the aerodynamic
parameters are known and the rolling resistance coefficient in the filter corresponds
to the road surface. The filter is particularly good in driving scenarios with several,
more distinct accelerations, such as in the test performed on Torslanda 1 (figure
5.2). There is some room for deviations in the filter parameters since the estimated
mass lies well within the 5% limit in most tests. Adding a caravan is an example
of something which makes the estimated mass go outside the margins, since the
aerodynamics of the complete vehicle are greatly affected.

The initial goal of getting an estimation that settles within 5% of the true
mass in less than 5 minutes of driving is easily achieved; it is often reached within
seconds.

Even though several tests were made, the filter does not always behave as
expected (see figure 5.5e). If this mass estimation algorithm is to be used in a
passenger car, which was part of the initial objective, further testing and tuning is
required. The main desired improvement to the filter is to increase its robustness by
making it more adaptable to changes in µ and CdAf . It would also be advantageous
to implement an algorithm which decides when the estimation is ”good enough”
and then stops the estimation.
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University; 1998.

[2] Ohnishi H, Ishii J, Kayano M, Katayama H. A study on road slope estimation
for automatic transmission control. JSAE Review. 2000;21(2):235–240.

[3] Lingman P, Schmidtbauer B. Road Slope and Vehicle Mass Estimation Using
Kalman Filtering. Vehicle System Dynamics. 2002;37(Suppl.):12–23.

[4] Jonsson Holm E. Vehicle Mass and Road Grade Estimation Using Kalman
Filter [Master’s Thesis]. Linköping University; 2011.
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