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ABSTRACT 

The aim of this Master Thesis project was to investigate and identify the quantity of 

steel which could be saved if steel sandwich elements could be utilized in long span 

bridge decks instead of conventional orthotropic plates. Therefore, after a literature 

study about long span bridges and bridge decks, an optimization routine was created 

which could optimize a steel sandwich element cross-section according to the desired 

results. The scenarios studied in this Master Thesis project were the maximization of 

the moment of inertia in the longitudinal direction, the minimization of the steel used 

in the cross-section and the maximization of the length of the steel sandwich element 

between two transverse stiffeners. As a reference bridge, Höga Kusten bridge was 

chosen in order to compare the results. The scenarios had been studied in the 

serviceability limit state taking into account the maximum global deflection that the 

existing orthotropic deck of Höga Kusten bridge. 

The results showed that steel sandwich elements could be provide a much lighter bridge 

deck for long span bridges as far as the SLS is concerned. The plate behaviour of a steel 

sandwich element enabled a better stress distribution in all directions that allowed less 

material in the cross-sectional compared with the conventional orthotropic deck of 

Höga Kusten bridge. 

Key words: steel sandwich, orthotropic, plates, bridge deck 
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SAMMANFATTNING 

Syftet för detta examensarbete var att undersöka och identifiera huruvida 

stålsandwichelement kan nyttjas som brobaneplattor istället för konventionella 

ortotropiska plattor för broar med stora spännviddar. Efter litteraturstudie skapades en 

optimeringsrutin för stålsandwichelements tvärsnitt med avseende på tvärsnittsarea 

eller yttröghetsmoment. Scenarierna som studerats i detta examensarbete var 

maximeringen av tröghetsmomentet i längdriktningen, minimeringen av tvärsnittsarea 

och maximeringen av längden av stålsandwichelement mellan två tväravstyvningar. 

Som referensbro valdes Högakustenbron. Studierna utfördes med avseende på 

brukgränstillståndet. 

Resultaten visade att tillämpning av stålsandwichelement ger ett lättare brodäck för 

broar med stora spinnviddar. Dessutom påvisades att viktreducering kan utnyttjas som 

reducerad tvärsnittsarea eller ökat avstånd mellan tvärskott. 

Nyckelord: stålsandwich, ortotropisk, plattor, brodäck 
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Notations 
Roman upper case letters 

CSC Cross section class 

FEM Finite Element Method

HLAW Hybrid laser arc welding

OSD Orthotropic steel deck

SLS Serviceability limit state

SS Steel sandwich 

SSE Steel sandwich element

Roman lower case letters 

f Closest distance between the stiffeners of the core 

h Height of the steel sandwich element

hc Height of the core of the steel sandwich element 

p Half length of the core repetition 

tf.top Thickness of the top plate 

tf.bot Thickness of the bottom plate 

tc Thickness of the corrugated core 

Greek lower case letters 

α Angle of the core stiffeners with the horizontal axis 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-16-21 5 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis BOMX02-16-21 6 

1 Introduction 
1.1 Background 
In the summer of 2010, the Norwegian Public Road Administration (NPRA) decided to 

initiate a project for a coastal trunk road that will start from Trondheim, in the middle 

of Norway, pass along the western corridor (E39) and end in Kristiansand, in the south 

part of the country. The purpose for the update of this 1330 km highway is to facilitate 

the trade and industry transportation in the south-western Norway, which is still 

hampered by the wide and deep fjord crossings. At the present time, the traffic 

connection in many points is accomplished by ferry boats. This increases the travel time 

needed between the cities in the area. The NPRA want to create an effective 

transportation system in the whole western region as it interconnects areas with large 

populations and substantial trade and industry; E39 is the most crucial route of this 

vision. For the construction of E39, various technological alternatives are examined for 

bridging the fjord crossings still being operated by ferry boats. The proposals include 

new innovative concepts for structural systems, construction methods and materials.  

Many of the fjord crossings in Norway are difficult and expensive to be bridged. 

Particularly Sognefjord, possessing a width of 4km and a depth that reaches 1500m in 

some locations, is an extremely challenging passing. In the attempt of bridging longer 

spans with cable bridges, the construction of lighter and stiffer bridge decks is a 

necessary parameter. Nowadays, the most common deck structure is the orthotropic 

steel deck, consist of a steel plate stiffened by longitudinal open or closed ribs. 

However, orthotropic decks suffer from many disadvantages, such as poor fatigue 

performance and high production costs. 

To counteract these problems steel sandwich elements (SSE) has been proposed to 

replace the conventional orthotropic bridge deck. SSE are light-weight construction 

elements consist of two thin face sheets connected by a core, which can be 

manufactured with different configurations (Beneus & Koc 2014). Their high stiffness 

to weight ratio has made them a considered solution in the shipbuilding and aerospace 

industry and some implementations have been performed (Roland & Reinert 2000). 

Moreover, new innovative technics, concerning laser welding, increased their fatigue 

performance and enabled industrialized manufacture. Today more and more efforts and 

research are made for the integration of these elements in bridge engineering in order 

to exploit all their advantages. 

A box girder cross section is typically a rectangular or trapezoidal box, which is used 

for large scale structures and can be constructed with various materials and techniques. 

The box girders are a quite popular choice in the bridge engineering industry, mainly 

due to their high torsional stiffness (Xanthakos 1993). Moreover, this kind of cross-

section enables much longer spans, while it also possesses other advantages like 

uncomplicated maintenance and visual aesthetics. Box girder cross-sections are mostly 

used in beam bridges and suspension bridges.  

By combining SSE with box girder sections and exploiting their assets, new light-

weight box-girders could be created. These box girder cross sections could be used to 

enable longer bridge spans in a more cost-efficient way. 
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1.2 Scope of study 
The scope of this study is to investigate if it is possible to achieve an essential goal of 

the bridge industry; to decrease the self-weight of the structural elements of the bridge. 

Nowadays, researchers are examining the use of light-weight materials and structural 

elements, which would minimize the construction cost and reduce our CO2 footprint. 

As welding technology advances, SSEs have shown great potential for bridge deck 

applications. Furthermore, although there is a broad bibliography on SSEs, there is no 

similar study done, where the SSEs have been combined with the box girder cross-

section. 

 

1.3 Aim and Objectives 
The purpose of the Master Thesis project is the development of a cross-section that 

would utilize the advantages of the two mentioned systems, the box girder cross section 

and the SSE. This can make it possible to create lighter and more efficient stiffening 

girders for long-span bridge applications. The structural behaviour of the steel deck, for 

instance strength and stiffness parameters, was decided in accordance with the 

Eurocode 3 using numerical analysis. The specific objectives of the project are: 

• Evaluation of the application of SSE in long-span bridges 

• Design of SSE which are optimum for different cases with respect to SLS 

• Design comparison in a case study  

 

1.4 Methodology 
To accomplish the objectives, the steps below were followed: 

• Literature study on suspension bridges 

• Literature study on box girder section 

• Literature study on structural behaviour of steel sandwich bridge decks 

• Calculation of load-carrying capacities of the compressive flange of an existing 

box girder section (Höga Kusten Bridge) 

• Calculation of load-carrying capacities of an optimized SSE  

• Comparison between the conventional section and SSE cross-section 

  

1.5 Limitations 
The Master Thesis project will be focused on the investigation of the structural 

behaviour and design of SSE for suspension bridge applications. Although, fatigue has 

been shown to be a crucial aspect in such constructions, it is not examined in the specific 

project. The centre of attraction of this project will be the structural behaviour of the 

stiffening girder and not the behaviour of the entire bridge.  

Although there are many different core configurations when using SSE, for the needs 

of the specific project, corrugated core SSE will be used. With respect to manufacturing 

and structural performance this core type has been shown to be a suitable option for 

bridge deck applications (Beneus & Koc 2014).  

The comparison between the orthotropic section and the one utilizing SSE will be based 

on the existing bridge geometry. In other words, the positions of the stiffeners will be 

the same with those of the existing bridge.  
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1.6 Outline 
The Master Thesis project will be focused on the investigation of the structural 

behaviour and design of SSE for suspension bridge applications. Although, fatigue has 

been proven to be a crucial aspect in such constructions, it is not examined in the 

specific project. The centre of attraction of this project will be the structural behaviour 

of the stiffening girder and not the behaviour of the entire bridge.  

Although there are many different core configurations when using SSE, for the needs 

of the specific project, corrugated SSE will be used. This is due to the fact that the 

specific configuration can result in light elements, with high bending and shear stiffness 

in both directions, i.e. a low level of orthotropy. Furthermore, the production of this 

element type is feasible.  

The comparison between the orthotropic section and the one utilizing SSE will be based 

on the existing bridge geometry. In other words, the positions of the stiffeners will be 

the same with those of the existing bridge.  
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2 Literature Study 
2.1 Suspension bridges 
2.1.1 History 
Suspension bridges have been used to overcome large spans for almost two hundred 

years. Since new technologies were adapted and construction processes improved, the 

covered main span lengths were continuously increased over the years, to reach a 

maximum distance of approximately 2.000 meters nowadays (Gimsing & Georgakis 

2012). 

The main principle behind the function of suspension bridges, and suspension systems 

in general, is the utilization of tensile elements for the load transfer. This principle has 

been used since ancient times, when the ancient Chinese used ropes and iron chains to 

overcome river spans 2.000 years ago (Xu & Xia 2011). 

The first suspension bridge in the United States was built in the state of Pennsylvania 

in 1796 by James Finley and it was named Jacob's Creek Bridge (Xanthakos 1993). 

Jacob's Creek Bridge used wrought iron chains and a level deck to connect Uniontown 

to Greensburg, see Figure 2.1. Its main span was 21 m long and 3.81 m wide (Finley 

1810). In Europe, the first permanent suspension bridge was built in 1823 in Geneva 

by Marc Seguin and Guillaume-Henri Dufour. It was the Saint Antoine Bridge, which 

had two equal spans of 42 m (Peters 1980). In the 19th century many suspension bridges 

were constructed, with pin-connected eye-bars forming huge chains, being the main 

load-carrying elements (Gimsing & Georgakis 2012). A characteristic example of this 

bridge type is the Clifton Suspension Bridge in Bristol, United Kingdom, which was 

designed by Isambard Kingdom Brunel and opened in 1864. 

 

Figure 2.1  Jacob's Creek Bridge, the first suspension bridge in the United States 
(Finley 1810). 

The first modern suspension bridge is considered to be the Brooklyn Bridge across the 

East river between Manhattan and Long Island in the New York, United States. The 

construction of Brooklyn Bridge started in 1867 under the supervision of John 

Roebling, who was the main designer, and it opened to traffic in 1883. In the 

meanwhile, John Roebling died and the construction was taken over by his son 

Washington. The Brooklyn Bridge had a main span of 486 m and two side spans of 286 
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m and at the time that it opened, it was 50% longer than the previously built bridges 

(Gimsing & Georgakis 2012). 

2.1.2 Structural system 
The typical configuration of a suspension bridge is shown in Figure 2.2. The bridge is 

mainly composed by the stiffening girder with the bridge deck, the cable system, the 

pylons and the anchor blocks. The pylons support the cable system, which in turn 

supports the stiffening girder. The anchor blocks stabilize the cable system vertically 

and horizontally. 

 
Figure 2.2  Suspension bridge with its main components (Gimsing & Georgakis 

2012). 

The side span lengths are usually between 0.2-0.5 times the main span, as shown in 

Figure 2.2 (Gimsing & Georgakis 2012). However, depending on the on-site conditions 

of the bridge, the length of the side spans may differ. For instance, if the side spans of 

the bridge have to be placed over deep water, long side spans are usually preferred, to 

avoid complicated support systems of the pylons in the water. On the other hand, if the 

supporting pylons are placed on land or in shallow water, short side spans can be 

chosen.  

Cable bridges can be characterized depending by the way the cable system is anchored. 

There are two anchorage systems; the earth and the self-anchored. In the former both 

the vertical and the horizontal components of the cable force are transferred to the 

anchor block, whereas in the latter the horizontal component is transferred to the 

stiffening girder, see Figures 2.3 and 2.4. Although both anchorage systems can be 

used, earth anchorage system is mostly used. This is due to the fact that self-anchoring 

suffers from low structural efficiency and construct-ability, resulting in uneconomical 

configurations (Gimsing & Georgakis 2012). 

 

Figure 2.3  Self-anchorage system (left) and earth anchorage system (right) 
(Gimsing & Georgakis 2012). 
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Figure 2.4 Self anchorage system (top) and earth anchorage system (bottom) 
(Gimsing & Georgakis 2012). 

As far as the cable arrangement in the transverse direction is concerned, there are plenty 

of solutions; the most common is the one shown in the Figure 2.5, where the cables 

support the deck in the two edges. This arrangement provides adequate vertical 

stability, as well as additional torsional stiffness. Depending on the expected loading 

conditions and the design of the bridge, other configurations are also possible, see 

Figure 2.6. 

Figure 2.5 Vertical cable planes attached along the edges of the deck (Gimsing & 

Georgakis 2012). 

Figure 2.6 Various cable configurations in the transverse direction (Gimsing & 

Georgakis 2012). 

The choice of the support conditions is the most significant factor regarding the 

structural behaviour of the stiffening girder. For the most simple and frequently used 

three-span suspension bridge, the stiffening girder often consists of three girders, 

simply supported at the pylons and longitudinally fixed at the anchor blocks (Figure 

2.7). 
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Figure 2.7  Supporting conditions in three-span suspension bridge (Gimsing & 

Georgakis 2012) 

It should be noted that in this case, the support conditions are favourable regarding 

deformations caused by temperature changes, because the maximum longitudinal 

displacements will occur next to the pylons, where the hangers have their maximum 

length. Consequently, the change of the inclination of the hangers will be as low as 

possible (Gimsing & Georgakis 2012). 

Another configuration for the stiffening girder is to be continuous all over the length of 

the bridge. A continuous girder will result in a lower value of the maximum moments 

compared with the simply supported option. However, special treatment is needed 

because the bottom flange of the deck will be in compression close to the pylons. An 

example of a configuration with continuous girder is shown in Figure 2.8. In this case, 

special treatment would be needed because the maximum longitudinal displacement 

due to temperature changes is longer than the three-span suspension bridge. In addition, 

the maximum longitudinal displacement due to temperature changes and asymmetric 

traffic loads will occur near the ends of the side spans. In this position the vertical 

hangers have their minimum length and consequently their inclination will be the 

maximum. 

 

Figure 2.8  Continuous bridge deck longitudinally fixed at one pylon (Gimsing & 

Georgakis 2012). 

2.1.3 Orthotropic steel decks  
Modern steel bridges use the orthotropic deck system, in order to distribute traffic loads 

over the structure, as well as to strengthen the slender plate elements under 

compression. Compared with reinforced concrete decks, the Orthotropic Steel Decks 

(OSDs) are lighter and therefore they can cover larger spans. The most common 

configuration of an OSD consists of a flat, thin steel plate, stiffened by transverse floor 

beams or diaphragms and longitudinal ribs, which can be either of closed or open type, 

see Figure 2.9. The selection of the rib type affects the torsional rigidity of the section. 

The closed are advantageous compared to the open ones. Due to this configuration, the 

properties of an OSD vary in longitudinal and transverse direction. The longitudinal 

direction is much stiffer, i.e. the level of orthotropy is high. A typical configuration of 

an OSD, utilized in a box section girder, is shown in Figure 2.10.  
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.

 

Figure 2.9  Types of longitudinal ribs(Chen & Duan 2014). 

 

 

Figure 2.10  General structure of box section girder with orthotropic steel bridge 
deck (Chen & Duan 2014). 

The main reason for utilization of OSD bridges is that they have high stiffness to weight 

ratio. Moreover, the application of OSD solutions results in structures made wholly of 

steel with high degree of standardization in the design. On the other hand, the behaviour 

of OSD with regard to fatigue is considered to be problematic, since fatigue cracking is 

a common problem in such decks due to the complicated welded details (Lebet & Hirt 

2013).  

2.1.4 Box girder section 
The box girder section is often used in steel-bridge structures due to the high 

performance regarding torsional stiffness. Moreover, using box girders can result in 

improved durability compared to open sections, due to the fact that a large proportion 

of the steel is not exposed. In addition, box girder sections are advantageous regarding 

the erection of bridges, as they are more suitable for the cantilevering method and they 

present smaller deformations during the erection. On the other hand, the main 

Flat plate rib Bulb plate rib U rib Trough rib

Open ribs Closed ribs
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disadvantage when choosing box girder sections is the increased cost (Xanthakos 

1993).  

The distortion of a box girder under the effect of eccentric loading is shown in Figure 

2.11a. Figure 2.11b shows the transverse bending moments due to out-of-plane flexure 

of the plates and Figure 2.11c shows the longitudinal stresses due to in-plane bending 

(Hambly 1991).  

 

Figure 2.11  (a) Distortion of box girder; (b) out-of-plane bending moments; (c) in-
plane bending (warping) stresses (Hambly 1991). 

Figure 2.12 shows how distortion forces develop in box girders. The warping constant 

is assumed to be zero and consequently the stresses based on the thin walled beam 

theory response are very small. As a result, the distortion of the box girder leads to 

important plate bending and normal stresses.  

 

Figure 2.12  Stresses in box-section under eccentric load (US Department of 

Transportation 2012b). 
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To show analytically the development of the distortion forces in a box girder, the 

eccentric load in Figure 2.13 can be divided in two loads, a symmetric and an 

antisymmetric. The symmetric component results to vertical bending of the box-girder. 

The antisymmetric load cannot be directly linked with torsion on the box, since pure 

torsion includes a system of shear flows round the cell as shown in Figure 2.13e, so it 

is redrawn and it results in the combination of pure torsion shear flows and distortion 

shear flows as shown in Figure 2.13d. The torque involved in the pure torsion (Figure 

2.13e) is equal to the torque of the antisymmetric loading (Figure 2.13d). The distortion 

shear flows in Figure 2.13f are self-balanced and have no net resultant but at the same 

time they cause distortion of the cell as shown in Figure 2.13c. The box girder section 

is very stiff in pure torsion and most of the twist is due to distortion. Therefore, cross 

bracing is needed to reduce the distortion effects and this is why vertical beams are used 

in box girders (Hambly 1991).  

 

 

Figure 2.13  Distortion forces in box girders (Hambly 1991). 

In some cases, a box girder element underlain to torque is going to present also warping 

stresses. Moreover, every wall element will obtain some shear deformation to establish 

the continuity of axial displacements in the perimeter. The warping distribution does 

not remain the same in every section of the beam, due to the varying torsional moment 

and the different form along the span. 
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Figure 2.14  Warping Torsion in box girder element. 

The structural analysis of a box girder bridge, which is subjected to external load, can 

be simplified by studying a beam located at the centre of gravity of the box girder 

(Figure 2.15). For this simplification to be valid, the following conditions must be 

satisfied: 

• The length of the beam must be considerably greater than the cross section 

dimensions 

• The cross section must not distort because of beam deflections 

• Shear deflections are negligible 

• Stresses are proportional to deformations  

In order to satisfy the 2nd condition, cross bracing is needed as already mentioned. 

 

 

Figure 2.15  Modelling of the bridge (Lebet & Hirt 2013). 

The structural analysis of a bridge includes the calculation of its internal section forces 

due to the external load. To show analytically how the internal moments are calculated, 

an example of a bridge with box girder cross section will be used. As shown in the 

Figure 2.16, the bridge is subjected to the vertical load qz and the horizontal load qy. 
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With the assumption of linear elastic behaviour, the internal moments and forces are 

resolved about the shear centre CT and bending is caused. Moreover, if the loads do 

pass through the shear centre CT, a torque mT will develop on the beam, as shown in 

the Figure 2.17. This torque causes torsional moments Mx about the x axis.  

Then the structural analysis can be carried out, with the calculation of the bending 

moments and shear forces, as well as the torsional moments. It should be noted that the 

choice of the restraints depends on the type of bearings, as well as on the type of piers. 

The calculation of the internal moments and forces through the above steps is shown in 

the Figure 2.18. 

The simplified analysis is valid only if the required conditions are satisfied. In case that 

these conditions are not fulfilled, the three dimensional behaviour of the bridge should 

be considered; for instance when the local effects are of the same magnitude with the 

global effects, more complex analyses are required. 

 

Figure 2.16  Actions on the bridge. 

 

Figure 2.17  Analysis of the forces acting on the cross-section. 

2b

h

qz

qy

y

z

yq

qz·b

h/2

zq

qy·h

qz·b

CTqy·hCT

mT=qz·b·yq+qy·h·zq

= =



CHALMERS, Civil and Environmental Engineering, Master’s Thesis BOMX02-16-21 18 

 

Figure 2.18  Internal moments and forces along the x axis (Lebet & Hirt 2013). 

2.1.5 Stiffening girder 
The stiffening girder of a suspension bridge is the structural component which is 

subjected to the largest proportion of the external load.  This is due to the fact that the 

traffic load is applied directly to it. Moreover, the self-weight and the wind loads are 

usually larger for the stiffening girder than for the cable system. Therefore, the 

stiffening girder must be able to withstand all the global stresses created by its self-

weight and the variable loads, redistribute them and transfer them to the cables. In 

addition, it should have sufficient flexural rigidity to resist the local stresses between 

the hangers.  It should also possess enough torsional stiffness to resist the torsional 

stresses induced by eccentric loading and wind. The axial stiffness is normally not of 

importance for suspension bridges, because the hangers are vertical. Thus, there is no 

horizontal component induced.  

Regarding the stiffness against vertical loads, the stiffening girder should at least be 

able to resist the loads between the hangers. This is the local scale of the loading. For 

the global resistance, the stiffening girder will be assisted by the cable system to carry 

the load and transfer it at the supports.  

The stiffening girder should also have sufficient resistance against lateral loads. In this 

direction there is no assistance from the cable system. Therefore, it is preferable to have 

a continuous bridge stiffening girder, so that the total moment would be distributed 

between the positive moment in the span and the negative moment at the pylons, see 

Figure 2.19. 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-16-21 19 

 

Figure 2.19  Transverse moment distribution with different approaches in the 
bridge stiffening girder (Gimsing & Georgakis 2012) 

When lateral or transverse load acting on the stiffening girder is not passing through 

the shear centre of the beam - shear centre is defined as the point which shear loads do 

not cause twist - apart from bending, twisting will occur as well. When an element is 

symmetrical to all three directions, then the shear centre is located in the centre of the 

element. Likewise, if the element has a cross section symmetrical to two directions, 

then the shear centre is on the centre of the cross section, while if it is has just a 

symmetry axis then the shear centre is moving on that symmetry axis. 

The result of a load, eccentric to the shear centre acting on the element, is double; apart 

from twisting, warping will take place as well.  Warping is the phenomenon of torsion 

that does not permit a twisting plane section to remain plane while rotating. Warping 

can be considered as the second effect of torsional loading. If a cross-section can 

elongate freely, then warping does not induce stresses. This is known as free warping. 

Otherwise, the warping torsion is added to the uniform torsion to counterbalance the 

torque and is referred as non-uniform torsion. In this case, apart from shear stresses, 

axial stresses are induced, as shown in the Figure 2.20. 

 

Figure 2.20  Non uniform torsion: Prevented end warping deters free twisting 
(Institute for Steel Development & Growth 1999). 

Non-uniform torsional resistance is generally the sum of two phenomena; St. Venant’s 
torsion (also referred as pure torsion) and warping torsion. The major parameters 

affecting the non-uniform torsional rigidity are the properties of the material, the length 
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of the member, the dimensions of the cross sections and the supporting conditions. 

Some examples are presented in the Figure 2.21 below. 

 

 
 
Figure 2.21  Examples of pure and warping torsion in simply supported beams and 

cantilevers (Institute for Steel Development & Growth 1999). 

In cable bridges, the required torsional stiffness of the stiffening girder is highly 

dependent on the choice of the cable system. A suspension bridge with a cable system 

centrally placed in the transverse direction requires a more torsional rigid stiffening 

girder, in relation to a bridge with two cable planes on the edges. Generally, the torsion 

is governed by the number and the configuration of the cable planes.  

The torsional moment of a vertical eccentric load can be sustained either by the 

stiffening girder or by the cables or a combination of them, as show in the Figure 2.22. 

The torsion taken from the stiffening girder is imported in the section by the parallel 

action of two components, see Figure 2.23. In the first one a linear distribution of the 

shear stresses along the thickness is noticed, while in the second the shear distribution 

remains constant along the thickness of different components. However, most of the 

times the former is small compared to the latter and therefore is neglected. Similar 

behaviour is also expected for loads parallel to the bridge stiffening girder such as wind, 

earthquake, etc. 

 

Figure 2.22  Various ways of carrying an eccentric load depending on the torsional 
stiffness and the cable system (Gimsing & Georgakis 2012). 
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Figure 2.23  The combined action of the two components to resist pure torsion 
(Waldron 1988). 

The designers’ purpose, when studying the buckling response of a bridge stiffening 
girder is to improve the cross-section. With the term improve meaning that the cross-

section will become more effective in terms of bending stiffness, while providing 

adequate web support to secure post-buckling strength. As in common plate girders, 

linear distribution of stresses is used and failure occurs when the compression flange 

reaches the ultimate stress or the tension flange the yield stress, if no buckling occurs. 

In most cases the flanges of the box girder are reinforced with stiffeners to achieve high 

utilization of thin plates. When stiffeners are used, the upper flange is divided into 

subpanels with smaller dimensions.  

2.1.6 Shear lag effect  
Until today the design of horizontal structural elements is mainly based on the Euler-

Bernoulli beam theory. Euler-Bernoulli Beam Theory is based on a number of 

assumptions. One of the main assumptions is that the cross section of the element 

remains plane during bending. In addition to that, shear deformation impact on 

deflection is neglected. Particularly, in case of beams with flanges, these two 

assumptions lead to lack of shear stresses and strains in the flanges, as well as to 

dependence of the axial displacements of the flanges only by the distance from the 

neutral axis and not to the distance from the webs. 

However, Beam Theory does not fully correspond to reality. What actually happens in 

the behaviour of the beam is that the web and the flanges are interconnected and thus 

the longitudinal strains at the joint between them should be equal. This leads to a shear 

deformation in the flange that creates a non-uniform membrane stress distribution. This 

phenomenon, which is called “Shear Lag Effect”, increases the stresses in the junction 
between the web and the flanges and is particularly obvious in beams with wide and 

short flanges. 

If the “Shear Lag Effect” was neglected, it could result to the underestimation of the 
stress magnitude in the flanges. Consequently, to end up in a sufficient design, an 

effective width should be adopted for the top flange of the box girder, to be equal to the 

actual stresses in the flanges. The effective width beff for shear lag under elastic 

conditions should be determined from:  

beff = β b0     (2.1) 
where the effective factor β is given in (ENV 1993-1-5, Table 3.1) and the width b0 is 

taken according to the Figure 2.24, depending on whether it is an outstand or an internal 

element. 
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Figure 2.24  Notations for shear lag (ENV 1993-1-5). 

beff is the effective part of the flange under uniform stress is in equilibrium with the 

actual non-uniform stress distribution. 

2.1.7 Local distortion mechanisms in bridge deck 
The action of the wheel loads in the bridge deck is responsible for a series of local 

deformation which are shown on Table 2.1 and discussed below. 
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Table 2.1  Orthotropic steel deck deformation mechanisms (US Department of 

Transportation 2012a). 

 

In system 1 the wheel loads are transferred from the deck plate to the supporting ribs. 

The decisive factors for this response are the relative thickness of the deck plate and 

the ribs, as well as the spacing of the ribs. This action can cause fatigue failure in the 

connection between the ribs and the deck plate, but in most cases it is not crucial for 

strength based limit states.  

System 2 represents the deformation of the deck panel under out-of-plane loading 

which results in transverse deck stresses due to the differential displacements of the 

System Action Figure

1

Local Deck 

Plate 

Deformation

2
Panel 

Deformation

3

Rib 

Longitudinal 

Flexure

4
Floorbeam In-

plane Flexure

5
Floorbeam 
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6 Rib Distortion

7 Global

Diaphragm curvature

between ribs

Diaphragm curvature
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F2
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ribs. This system is the most complicated to analyse due to the two-way load 

distribution of the OSD panel. Furthermore, its behaviour is further affected by the type 

of the ribs. 

System 3 represents the behaviour of the ribs in their longitudinal direction. After the 

load distribution in the transverse direction as described in system 2, the ribs transfer 

the load in the longitudinal direction to the transverse beams of the girder. The ribs are 

considered as continuous beams on discrete flexible supports which represent the 

transverse beams. 

Systems 4 and 5 are used to show the mechanisms which are developed during the 

transference of the loads from the ribs to the girders through the transverse beams. The 

transverse beams act as beams between rigid girders and the stresses that develop are 

due to combination of in-plane stress (flexure and shear) and out-of-plane stress 

(twisting) from rib rotation. System 4 describes the former, whilst system 5 describes 

the latter.  

System 6 corresponds to the rotation of the rib in a closed-rib system, when the wheel 

load is at the mid-span and acts eccentric to the axis of the rib. In such loading cases, 

the rib twists about its centre of rotation and results in lateral displacement at the mid-

span.  

Finally, the 7th system describes the behaviour of the primary girder between the global 

supports and the resulting axial, shear and flexural stresses due to the deformations (US 

Department of Transportation 2012a). 

 
2.2 Steel sandwich elements 
2.2.1 Introduction 
Throughout the centuries, the constant need for bigger, lighter and more durable 

constructions has pushed researchers to pursue solutions for innovative materials, new 

structural systems and high performance elements to achieve their most ambitious 

visions. Structural steel was always an outstanding choice for meeting these 

expectations as it provides a variety of advantages; high strength to weight ratio, 

durability, versatility, low cost and sustainability etc. In a continuous attempt for 

exploiting these assets, engineers came up with new configurations; used for different 

applications.  Steel sandwich elements are considered the state of art of this endeavour, 

especially after new welding techniques came to limelight. The sandwich plates 

considered in this Thesis consist of a corrugated plate fastened between two face plates, 

see Figure 2.26. 

2.2.2 History 
Although sandwich elements became more well-known after the second half of the 20th 

century, evidences show their existence since 1849, when they were mentioned in the 

texts of Sir William Fairbairn (Sir William Fairbairn 1849). The first proven sandwich 

application though, was made of wood and it was shown in the ’Mosquito’ aircraft in 

1940s (Vinson 1999). This is considered as the beginning of using sandwich elements 

in the marine and aerospace industry. Until now, a variety of difficulties connected to 

the manufacturing caused SSE limited utilization. Particularly, welding process was 

making the total procedure relatively slow and expensive. Moreover, the lack of 
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knowledge about their long-term behaviour was the main reason that made engineers 

sceptical about their field of application (Wolchuk 1990).  

The last 20 years, steel sandwich panels began to enter drastically to the civil and 

mechanical engineering industry. The main reason why this has happened is laser 

welding, which has replaced the previous conventional spot-welding. Laser welding 

techniques, and especially the combination of laser and gas metal arc welding into a 

hybrid welding process, were proven to be a viable (Roland et al. 2004). HLAW 

minimizes the part distortion and increases the accuracy, while the welding time can be 

10 times faster than common welding methods (Blomquist et al. 2004). Furthermore, it 

provides control of the geometric parameters of the welds and temperature variation, 

high connection quality and excellent surface finish reducing the fairing and fitting 

work in outfitting (Olsen 2009). 

 

Figure 2.25 Production of SSE with HLAW (http://www.esab.com). 

The application of SSE can result in a series of advantages but these can be summarized 

in the following:  

 High stiffness to weight ratio 

 Low level of orthotropy 

 Industrialized construction process 

Laser welded SSE can save approximately 30-50% of material compared with 

conventional steel members (Kujala & Klanac 2005); fact that enables them to be an 

economical solution in terms of manufacturing and transportation. The areas of their 

application are extremely wide, extending from the marine, aerospace and offshore 

industry to wind turbine blades, hoods, hatches, lift floors and bridge decks lately. 

2.2.3 Corrugated core steel sandwich elements 
The steel sandwich elements can be divided into two big categories: elements with steel 

faces bonded with an elastomeric core and elements with both faces and core made of 

steel welded together. The latter includes steel cores that can be manufactured in 

various shapes depending on the type of application. In this specific Master Thesis 

project, the steel sandwich element studied has a corrugated core, as shown in the 

Figure 2.26. A typical section of this type of elements, along with its characteristics, is 

shown in the Figure 2.27. The reason why this type of SSE was examined, is because 

it has been shown to be suitable for bridge decks(Beneus & Koc 2014). 
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Figure 2.26  Corrugated core SSE. 

Taking into account that the steel core of the sandwich has different configuration in 

the two main axes, it is obvious that the element possesses a strong and a weak direction. 

Strong is called the direction where the flexural and shear rigidity is higher; the other 

direction is the weak one lacking mainly in shear stiffness. In such a formation, the 

function of the top and bottom plates is focused on the resistance to the bending 

moments, while the core transmits shear forces. To model the behaviour of the SSE, 

the Reissner-Mindlin plate theory can be applied, in order to transform the 3D sandwich 

element to an equivalent 2D plate, see figure 2.27. This plate will have the elastic 

constants that describe the behaviour of the SSE, see chapter 4.4.  

 

Figure 2. 27 The principle of homogenization of the core properties. 
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Figure 2.28 Typical section of corrugated core SSE. 

 

The variables, which characterize such a structural system (Figure 2.28), are: 

 the length between the core repetition, 2p 

 the height of the core, hc 

 the thickness of the top plate, tf.top 

 the thickness of the bottom plate, tf.bot 

 the thickness of the corrugated core, tc 

 the angle of the core stiffeners with the horizontal axis, α 

 the horizontal distance between two stiffeners, f 

hc

f tf,bot

tf,top

tc

á

2p l
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3 Höga Kusten Bridge 
Höga Kusten bridge, illustrated in Figures 3.1 and 3.2, is a suspension bridge located 

in northern Sweden, between the municipalities of Härnösand and Kramfors. The 

bridge was constructed in 1997 to connect the banks of Ångerman River and replace 

the previously existing Sandö Bridge in the main road connection. The total length and 

width of the bridge comes to 1867 and 22 meters respectively, while the height of the 

two pylons holding the main cables extends more than 180 meters (Structurae.net, 

2015). The long span of the bridge ranks it 3rd in Scandinavia and 4th in Europe among 

the longest suspension bridges. The construction period was almost 4 years.  

 
Figure 3.1  Höga Kusten bridge (http://www.bridge-info.org). 

 

Figure 3. 2  Höga Kusten bridge (http://www.hogakustenstugor.se). 
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The cross section of the Höga Kusten bridge was chosen to be studied for this Master 

Thesis project. This is due to the fact that it is one of the two suspension bridges located 

in Sweden; the other one is the Älvsborg bridge. In addition to this, it is the only one 

combining the box girder cross-section with a suspension system.  

 

3.1 The compression flange 
The compression flange of the box girder is composed by a plate which is stiffened 

longitudinally by stiffeners of closed type. The stiffened compression flange is 

composed by several continuous beams, supported at the diaphragms. The compression 

flanges may be subjected to the following stresses:  

i) Longitudinal stresses caused by the global bending moment on the main girder.  

ii) In-plane shear stress in the flange plate caused by local shear forces and torsion. 

iii) Flexural stresses in the stiffeners caused by the local loads on the deck. 

iv) In-plane transverse stresses in the flange plate caused by the bending of the 

transverse flange stiffeners and the distortion of the box girder section.  

Regardless of the stressing field mentioned above, a series of geometrical complexities 

have to be investigated as well. These are:  

i) The longitudinal continuity over the transverse stiffeners. 

ii) The transverse continuity between parallel stiffeners. 

iii) The different buckling modes. 

iv) Geometrical imperfections and residual stresses in the flange plate and the 

stiffeners. 

Critical for the compression flange is the interaction between local buckling and global 

buckling. This phenomenon can lead to rapid loss of the load resistance. Therefore, the 

design codes for stiffened plate define the geometrical limitations which are not prone 

to buckling and have no initial imperfections. 

 

3.2 Classification of the cross section 
Initially, the orthotropic plate used for the bridge deck was checked with reference to 

local buckling. The cross-section is composed by four parts, each of which has been 

studied as individual plate. The slenderness ratio of each part has been calculated to 

define the rotational capacity and check the sensitivity with regards to local buckling. 

The clear dimensions were specified as the dimension of the middle lines minus the 

thicknesses of the parts, as shown in Figure 3.3. The unit studied is part of the top plate 

of the total box girder cross-section, which is principally subjected to uniform 

compression in the middle span of the bridge. 
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Figure 3.3  Cross-section of the two units. 

After defining the width to thickness ratios for the different components of the 

compression flange, it was proven that the top and bottom horizontal parts belong to 

Class 1. Therefore, their whole cross-sectional area can be used in the design, as they 

can form plastic hinges in a statically indeterminate system. However, the webs of the 

stiffener have a high slenderness ratio and therefore local buckling can take place before 

yielding. These parts, which are classified in the 4th category, do not use their whole 

cross-section regarding the moment and load carrying resistance, i.e. an effective cross-

section should be calculated. The classification and the effective area of each unit are 

illustrated in Figures 3.4 and 3.5 respectively. Finally, the end parts in the edges of the 

top plate were also classified in Class 1. 

 
Figure 3.4  Classification of different parts. 

 

Figure 3.5  Effective areas and gravity centre of the cross-section. 
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3.3 Axial load-carrying capacity 
For defining the moment capacity, the interaction between the column-type and the 

plate-type buckling of the deck has to be studied. From the individual reduction factors 

for each case, a final reduction factor will be obtained according to the following 

equation (EN 1993-1-5): 

𝜌𝑐 = (𝜌 − 𝜒𝑐)𝜉(2 − 𝜉) + 𝜒𝑐     (3.1) 

 

where 𝜉 =
𝜎𝑐𝑟.𝑝

𝜎𝑐𝑟.𝑐
− 1 but   0 ≤ 𝜉 ≤ 1 

 σcr,p is the elastic critical plate buckling stress 

 σcr,c is the elastic critical column buckling stress 

 χc is the reduction factor due to column buckling 

 ρ is the reduction factor due to plate buckling 

 

According to the drawings, the distance between the diaphragms was 4 m. The bridge 

deck is subjected to uniform compression, see Figure 3.6. The normal compressive 

stresses vary along the depth of each unit, as shown in Figure 3.7. To calculate the 

distribution of the stresses, the neutral axis of the whole section, as well as the neutral 

axis of the top plate has been defined. The centre of gravity was defined from the bottom 

flange of the bridge deck, taking into consideration the position of the neutral axis of 

each unit. 

 

Figure 3.6  Cross section of Höga Kusten bridge. 

 

Figure 3.7  Cross-section of one longitudinal stiffener. 

For the column-type behaviour, one of the repeated units has been used, as seen in 

Figure 3.8. The elastic critical column buckling stress was determined from the stiffener 

which is closest to the panel edge and had the highest compressive stress. Its value was 

1.649×103 MPa, while the reduction factor ρ obtained was 0.862. Exact calculations 

can be found in the Appendix A. 
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Figure 3.8  Section for calculation of column-type behaviour. 

On the other hand, for the plate-type behaviour the whole cross-section was utilized, as 

illustrated in Figure 3.9. In the beginning, the relative plate slenderness was defined. 

Then, the elastic critical stress and the reduction factor for the plate-like buckling were 

extracted equal to 1.605×103 MPa and 1 respectively. Thus, the bridge deck behaves as 

a column and will have very little, if any post-critical strength. 

 

 
Figure 3.9  Section for calculation of plate-type behaviour. 

The compressive axial load carrying capacity used in the design is affected by local and 

global instability. The final axial load carrying capacity of the bridge deck was 

6.718×103 kN/m. The axial load for the current case comes mostly from the bending 

moment of the vertical loads, while the axial forces from the acceleration and breaking 

of the vehicles can be neglected. 

3.4 Deflection 
In order to find the local deflection between diaphragms of the bridge deck, a beam 

between two transverse hangers was selected. The whole length of the element extends 

to 20 meters. Supports have been placed every 4 meters, exactly in the positions where 

the diaphragms are located. Figure 3.10 portrays the model in Abaqus/CAE. 
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Figure 3.10  Abaqus/CAE model of the examined element. 

 

Different load combinations were considered, according to (EN 1991-2) and the worst 

case was chosen; it is the one illustrated in the Figure 3.11. In this load combination, 

the uniform load represents the traffic flow and the self-weight, whilst the concentrated 

loads represent the wheel loads of Load Model 1. More analytical calculations can be 

found in Appendix A.  

 

Figure 3.11  Most dominant load combination with regard to deflection.  

 
Figure 3.12  Deflection for the most dominant load combination. 

The maximum allowed deflection for every span has been specified in the Swedish 

National Annex equal to L/400. For the studied case, the final global deflection from 

the worst load combination, illustrated in Figure 3.12, was calculated equal to 5.26 mm, 

which is smaller than L/400 = 10 mm. 
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4 Optimization analysis 
4.1 Introduction 
All indications show that the constant development of welding techniques nowadays 

may allow the reintroduction of SSE as a suitable solution for bridging long spans. In 

the specific Master Thesis project, the replacement of the OSD of Höga Kusten Bridge 

with corrugated core SSE was investigated to prove the previous statement. 

The study was performed only with regard to deflection, which means that only the 

service limit state was taken into account. The optimization routine built was based on         

(Beneus, E., & Koc, I., 2014) but it inserts also the plate behaviour of the SSE through 

Chang’s formula, (Chang, 2004) . Figure 4.1 shows the flow chart of the optimization 

routine. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Flow chart of the optimization routine. 
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The rigidity and behaviour of the new SSE are affected by the geometry of the section. 

The geometry of the section can be defined by 6 parameters, which from this point on 

will be referred as the independent variables. For the needs of this specific Master thesis 

project, these variables set to be the following, see Figure 4.1: 

 

Figure 4.2  Typical section of V-type corrugated SSE. 

 the height of the core, hc.ssp 

 the thickness of the top plate, tf.top 

 the thickness of the bottom plate, tf.bot 

 the thickness of the corrugated core, tc.ssp 

 the angle of the core stiffeners with the horizontal axis, αssp 

 the horizontal part of the core between two stiffeners, fssp 

All the parameters of the algorithm have been defined in relation to the independent 

variables of the SSE. Thus, setting values for the independent variables results in a fully 

defined SSE section; all the dimensions as well as all the stiffness parameters according 

to (Libove, C., & Hubka, R. E., 1951). 

The optimization analysis aims at producing sections which will be optimized for a 

series of different cases. This was performed through a numerical method suitable to 

solve constraint non-linear optimization problems. This iterative method allows a 

property of SSE to be maximized or minimized. To execute this numerical approach, 

the build-in solver of the calculation program Mathcad used.  

In order to obtain the desired results, a number of constraints were set. These constraints 

were the conditions which must be valid to create an appropriate final section. The 

constraints in all of the analyses, as well as the corresponding input in the routine, are 

shown in Table 4.1. The motives behind the selection of these constraints are analysed 

in detail in chapter 4.2. 

Table 4.1 Constraints in the optimization routine. 

Constraint Input 

The top and bottom plates should be at least in class 3. 𝑡𝑓.𝑡𝑜𝑝, 𝑡𝑓.𝑏𝑜𝑡 ≤ 42𝜀 

The corrugated core should be at least in class 3. 𝑡𝑐.𝑠𝑠𝑝 ≤ 42𝜀 

tf.top

tc.ssp

hc.ssp

tf.bot

ássp

fssp
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The global deflection of the SSE in the center of the plate 

should be limited to a value smaller than the smallest 

dimension divided by 400. 
𝑤𝑡𝑜𝑡 ≤

𝐿𝑠𝑠𝑝

400
 

The local deflection between the transverse beams of the 

SSE should be smaller than the length divided by 400. 𝛿𝐼 ≤
𝑙𝑠𝑠𝑝

400
 

The angle of the corrugated core should be ranging 

between 40 and 70°. 
40° ≤ 𝑎𝑠𝑠𝑝 ≤ 70° 

The distance between the inclined stiffeners of the core 

should be between 20mm and 40mm. 
20 𝑚𝑚 ≤ 𝑓𝑠𝑠𝑝 ≤ 40 𝑚𝑚 

 

These constraints should be fulfilled in all the cases studied. The different scenarios 

considered were: 

1) Maximization of the moment of inertia in the longitudinal direction (Ix) 

2) Minimizing the material used 

3) Minimizing the material used, considering an updated main girder configuration 

4) Maximizing the length between the transverse stiffeners 

In every scenario a specific property is chosen to be optimized. To optimize the value 

of a property, the user must enter the corresponding function in the program, 

accompanied by the independent variables by which this property is dependent from. 

All the independent variables should fluctuate in the margin set by the constraints. 

Furthermore, the user must set initial values for the independent variables for the 

program to start running. As explained, the optimization routine is a numerical iterative 

method. That means that during the execution of the routine, the program sets values 

for the independent variables, until the optimum solution is found depending on each 

scenario. The tolerance in the program is set equal to 10-6. 

 

4.2 Choice of the constraints 
The theory behind the calculations of the limiting values of the constraints will be 

discussed in the current section. To begin with, all the individual parts of the cross 

section in the routine were chosen to be in class 3 or better. That means that their whole 

cross-sectional area could be used in the design and be loaded to the yielding point. 

According to (EN 1993-1-1., 2005, Table 5.2), for parts subjected to uniform 

compression, the maximum value of the width to thickness ratio is 42ε, 

where    𝜀 = √235 𝑓𝑦⁄  

Structural steel grade S355 was chosen, with fy = 355MPa, resulting in ε = 0,814. 

Therefore, the width to thickness ratios of the several parts of the cross section should 

be below 34.2.  

Furthermore, the deflection between the diaphragms was set to be smaller or equal than 

their distance, which is 4 meters, divided by 400, i.e. 10 millimetres. The deflection in 

the routine was calculated for a simply supported plate equally wide to the half of the 

total width (9 m) and equally long to the length between the diaphragms (4 m). The 

deflection was calculated using double Fourier series, based on the Mindlin–Reissner 
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plate theory, see (Chang, W.-S., 2004). The distributed load applied consists of the 

traffic load for the main and the secondary lanes which is 9 and 2,5 kN/m2 respectively 

as well as the asphalt load and the self-weight of the construction. The asphalt load is 

1,15 kN/m2 for asphalt 50 mm thick. The self-weight for a section with the same amount 

of material as the orthotropic deck of the Höga Kusten bridge is 1,727 kN/m2. In 

addition to this, there is also the load from two vehicles. The load according to (EN 

1991-2, 2010) is 150 kN per wheel for the main lane and 100 kN per wheel for the 

secondary. The distance between the wheels of each truck is 1,2 m in the direction of 

the traffic flow and 2 m in the transverse direction. The magnitudes and the positions 

of the loads are shown in Figure 4.2. It should be noted that, due to the difficulty to 

calculate the deflection for different uniform loads in different lanes, the uniform loads 

were transformed in an equivalent uniform load which acts all over the plate. The value 

of this load was 4,67 kN/m2. 

 
Figure 4.3 Load magnitudes and positions. 

The calculation of the deflection using a simply supported plate does not represent the 

reality, since there is also the continuity of the plate over the supports which will result 

in a lower deflection value. To find a more accurate deflection between two consecutive 

transverse beams including the effect of the continuity, the Finite Element (FE) program 

Abaqus/CAE was used. Verification of the FE analysis was made, in order to ensure 

that there is correspondence between its results and the analytical solution. The 

verification can be found in chapter 5.5.  

Another constraint was set due to the local deflection. According to this constraint the 

deflection between the core repetitions (δI) should be less than the repetition length (lssp) 

divided by 400, see Figure 4.3. The applied load is the wheel load divided by the width 

of the wheel increased by 100 mm, see Figure 4.4. 
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Figure 4.4 Local deflection of SSE. 

Furthermore, the angle of the corrugated core (αssp), was set between 40 and 70 degrees, 

while the distance between the inclined stiffeners of the core (fssp) was chosen to be 

between 20 and 40 mm. 

 

4.3 The studied scenarios 
4.3.1 Maximization of the moment of inertia in the longitudinal 

direction 
Following the same concept as (Beneus & Koc 2014), the initial purpose was to create 

a steel sandwich element for the Höga Kusten Bridge, which would have a better 

structural behaviour than the existing orthotropic deck. For this purpose, the first use of 

the optimization routine was the design of an SSE which could the same amount of 

material and at the same time better moment of inertia in the longitudinal direction (x-

direction).  

4.3.2 Minimizing the material used 
From the literature study, it was underlined that the main asset of the SSE is its potential 

to behave as a plate and distribute the loads in both directions. Therefore, the total 

deflection of the plate was studied rather than the bending stiffness in the strong 

direction. This was achieved by adjusting the optimization routine to minimize the 

global deflection in the middle of the plate. 

To verify the results a plate model was then created in Abaqus/CAE, where a single 

layer homogenous core was adopted, as described in (Romanoff & Kujala 2002). The 

model was generated as a lamina plate using the engineering constants from the 

optimization routine. The point in which the maximum global deflection appeared in 

the FEM approach was then compared with the point assumed to deflect more in the 

optimization routine; in the specific case the middle of the plate. 

Provided that there should exist no point in the plate with higher deflection than the 

minimum value of Lssp/400 and Bssp/400, the previous optimization routine was rerun, 

searching the deflection in the new spot found and assuming that this point would not 

change due to the different cross-section obtained. The reutilization of the routine 

provided the right value for the maximum deflection. In the end of the procedure, it had 

been verified that the most deflected point stayed immovable. 

300 kN/m 

a  

lssp 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-16-21 39 

However, the results obtained were reflecting the behaviour of a single supported SSE, 

which is not the real case in long-span decks. So, the next step was to take into account 

the continuity of the plates between the diaphragms that form the bridge deck. In this 

occasion the whole deck was modelled in Abaqus/CAE. The deflection of the 

equivalent plate was calculated for a continuous plate 9 m wide, which is the half of the 

deck width, simply supported every 4 m, which is the distance between the transverse 

beams, for a total length of 20 m, which was the distance between the diaphragms in 

the Höga Kusten case. By creating the bridge geometry in Abaqus/CAE, with the 

corresponding loading, the real global deflection could be extracted.  

4.3.3 Minimizing the area by adding a longitudinal stiffener 
In this case, the above analysis and methodology was implemented with the addition of 

a longitudinal stiffener in the middle of the width of the plate. The aim was the creation 

of two more square shaped steel sandwich plates that would grant improved structural 

behaviour compared with the original rectangular plate of the previous scenario. This 

stiffener, which was modelled as a support, resulted in panels 4 m long and 4,5 m wide. 

A new equivalent uniformly distributed load was calculated, as only the main vehicle 

could fit in the deck lane. 

4.3.4 Maximizing the length between the transverse stiffeners 
The final study that was performed was the investigation of the maximum length that 

the SSE could have between two diaphragms. In this case, the routine aimed to optimize 

the plate’s length, while the material used on the SSE section was set equal to the OSD. 

The purpose of the specific study was to investigate if it is possible to reduce the number 

of the transverse beams, and thus, save material. The major advantage of the SSE 

compared to the OSD is the fact that it provides much larger stiffness in the y-direction. 

Therefore, the increment of its length would be beneficial by enhancing the plate 

behaviour of the SSE. Moreover, apart from saving material by decreasing the number 

of the transverse stiffeners, the implementation of longer elements would reduce 

significantly the production time and cost. 

 

4.4 Finite Element Analysis 
As mentioned above, in order to take into account the continuity of the plates between 

diaphragms, the FEM program Abaqus/CAE was used. The Simplified Finite Element 

Approach, as described in (Romanoff & Kujala 2002) was used. The geometry of the 

bridge deck between the diaphragms was modelled for all the examined cases. 

However, the final steel sandwich sections were not modelled in detail as that could not 

give more value to the aim of this Master Thesis project. Instead the elements used were 

3D deformable shell elements including shear-induced vertical displacements. The 

elastic properties of the material were defined using lamina material model and the 

engineer constants for out-of-plane condition were obtained from (Lok & Cheng 2000): 

𝐸𝑥 =
12∙𝐷𝑥

ℎ3
,      (4.1) 

 𝐸𝑦 =
12∙𝐷𝑦

ℎ3
,          (4.2) 

𝐺𝑥𝑦 =
6∙𝐷𝑥𝑦

ℎ3
,      (4.3) 
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𝐺𝑥𝑧 =
𝐷𝑄𝑥

𝑘∙ℎ
,      (4.4) 

𝐺𝑦𝑥 =
𝐷𝑄𝑦

𝑘∙ℎ
,     (4.5) 

where k is the shear correction factor; chosen equal with 5/6. 

Regarding the boundary conditions, the translation in the vertical direction was 

prevented on the outer edges of the plate, as well as in the positions of the transverse 

stiffeners. In addition to this, the longitudinal movement was also prevented where a 

longitudinal stiffener was added in one of the studies.  

For the mesh, 4-node elements were used with quad-dominated shape. The approximate 

size of the elements was 250 mm.  

Finally, the loading was set as pressure for both the uniform distributed load as well as 

for the wheel loads. The uniformly distributed load, which included the self-weight, the 

traffic and the asphalt loads, was 7,544 kN/m2 in the cases where the area of the section 

was equal to the one of the orthotropic section. In the cases where this area is reduced, 

this load somewhat smaller. The wheel loads were set as pressure over an area of 500 

x 500 mm which was defined by (EN 1991-2, 2010) increased by 100 mm, to account 

the height of the asphalt, see Figure 4.4.   

 

Figure 4.5  Distribution of the wheel load in the pavement.  
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5 Results 
In this chapter the results from the different analyses are presented. For detailed 

calculations see Appendix A. 

 

5.1 Study 1 - Maximization of the moment of inertia in the 
longitudinal direction 

Τhe first study has proven that with the specific amount of material given by the cross 

section of Höga Kusten deck and all the constraints considered, it was hard to create a 

steel sandwich element that could have larger moment of inertia in the direction of the 

traffic flow. The reason was that the existing bridge deck consists of quite slender parts 

(i.e. the webs are in class 4). On the other hand, the SSE was constrained to achieve 

cross-sectional properties of class 3 or lower and thus to provide a structural member 

with all the individual parts insensitive to local buckling. 

 

5.2 Study 2 - Minimization of the material used 
The most important conclusion of this scenario was the proof that studying the steel 

sandwich element as a plate did give the opportunity of reducing the area of the cross 

section in long span bridges.  

The first phase of the analysis was the usage of the routine for the acquisition of an 

initial cross-section that could be used for extracting the most deformed point. An FE 

model was then created in Abaqus/CAE, as explained in Chapter 4.3.2. The result for 

the equivalent plate is illustrated in Figure 5.1. 

Table 5.1 Initial cross-section for the formation of the Abaqus/CAE model in Study 2. 

Optimization 
Results 

Function Minimize wtot 

Global deflection (for i,j=1…1) in the 
optimization routine 

wtot mm 6,72 

Height of the core  hc.ssp mm 163,0 

Thickness of the upper plate tf.top mm 6,5 

Thickness of the bottom plate tf.bot mm 5,1 

Thickness of the core tc.ssp mm 5,3 

Angle of the core assp degrees 64,7 

Distance between diagonals f.sp mm 21,6 

Engineering Constants 

Exb N/mm2 55730 

Eyb N/mm2 46170 

Gxy.1 N/mm2 16020 

Gxz N/mm2 4470 

Gyz N/mm2 642,8 

 

To ensure that the deflection values calculated from the hand calculations and 

Abaqus/CAE correspond well to each other, there has been a verification which may 

be found later in this chapter. 
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Figure 5.1  Deflection in the middle of the plate for the equivalent plate in 
Abaqus/CAE. 
It was observed that the maximum deflection was obtained in a different point and not 

in the middle of the plate. That was expected due to the asymmetric traffic loading. The 

point of the maximum deflection had coordinates (X, Y) = (2m, 5,4m). The coordinates 

of this spot as well as the value of its deflection are shown in the Figures 5.1 and 5.2. 

 
Figure 5.2  Maximum deflection point for the equivalent plate in Abaqus. 
Having extracted the most the most deflected point, a new cross-section was searched 

out with the assistance of the optimization routine, which gave the following results 

(Table 5.2).  
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Table 5.2 Cross-section which includes the correct coordinates for the point with the 
maximum deflection and has been used in the continuous plates in Study 2. 

Optimization 

Results 

Function Minimize wtot 

Global deflection (for i,j=1..1) in the 

optimization routine 
wtot mm 6,39 

Height of the core  hc.ssp mm 163,0 

Thickness of the upper plate tf.top mm 6,5 

Thickness of the bottom plate tf.bot mm 5,1 

Thickness of the core tc.ssp mm 5,3 

Angle of the core assp degrees 64,7 

Distance between diagonals fssp mm 21,6 

Engineering Constants 

Exb N/mm2 55730 

Eyb N/mm2 46170 

Gxy.1 N/mm2 16020 

Gxz N/mm2 4470 

Gyz N/mm2 642,8 

Comparison 
between Huga 

Kusten and SSE 

Length between transversal beams ΔLssp  (L.ssp-L.HK)/L.HK - 

Area ΔAssp  (A.ssp-A.HK)/A.HK - 

Moment of Inertia  
ΔIx (I.x.ssp-I.x.HK)/I.x.HK -59,2% 

ΔIy (I.y.ssp-I.y.HK)/I.y.HK 6,6*104% 

Axial Stiffness 
ΔEx (E.x.ssp-E.x.HK)/E.x.HK - 

ΔEy (E.y.ssp-E.y.HK)/E.y.HK -2,850% 

Bending Stiffness 
ΔDx (D.x.ssp-D.x.HK)/D.x.HK -59,2% 

ΔDy (D.y.ssp-D.y.HK)/D.y.HK 6,1*104% 

Torsional Stiffness ΔDxy (D.xy.ssp-D.xy.HK)/D.xy.HK 897,5% 

Transversal Shear Stiffness ΔDQ.x (D.Q.x.ssp-D.Q.x.HK)/D.Q.x.HK 409,705% 

 

The cross-section that was created from the optimization routine was exactly the same 

as the previous analysis and that happened due to the fact that in none case the global 

deflection was exceeding the allowable limit. However, it was noticed that the 

maximum global deflection was smaller than the previous analysis, which happened 

because the analysis was run for i and j equal to 1, i.e. no iterations. Therefore an 

Abaqus equivalent plate was created again. The Abaqus model gave the below results. 
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Figure 5.3  Deflection results for the analysis of the cross-section in Table 5.2. 

The deflection magnitude obtained from Abaqus was 7,35mm. The difference between 

this value and the analytical solution had to do with the number of iterations. For an 

increased number of iterations the two solutions converged. The reason why in the 

specific study i and j were taken equal to 1 was the fact that for increased values of 

them the routine was becoming rather time consuming.  

As described in Chapter 4.3.2, the comparison between the two decks in that point was 

not correct as the global deflection for the OSD was measured for a continuous beam 

while in the SSE was calculated for a simple supported plate. The design of a new FEM 

model with 5 continuous plates between the diaphragms provided the results illustrated 

of the Figure 5.4.  

 
Figure 5.4  Results for deflection using the continuity of the plate in Table 5.2. 

With the continuity condition, the deflection value was 3,96mm. Therefore, it was 

possible to construct an SSE that would have the same deflection with the orthotropic 

section, but less material per unit width. Another optimization routine was run in order 

to minimize the area of the steel sandwich element. The target of the investigation was 

to create a lighter element that would have the same maximum deflection with the 

orthotropic deck. However, to move from the simply supported plate, which was used 

in the optimization, to the continuous one, which was the case in reality, the ratio of the 

deflection for the two cases was used. Thus, the allowable deflection in the optimization 

was multiplied by 7,35mm/3,96mm=1,86. The results, for minimizing the total area of 

the steel sandwich element, were the following:  
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Table 5.3 Cross-section after inserting the deflection ratio due to the continuous plates 
in Study 2. 

Optimization 

Results 

Function Minimize Assp 

Global deflection (for i,j=1…1) in the 

optimization routine 
wtot mm 9,77 

Height of the core  hc.ssp mm 140,9 

Thickness of the upper plate tf.top mm 5,7 

Thickness of the bottom plate tf.bot mm 4,4 

Thickness of the core tc.ssp mm 4,5 

Angle of the core assp degrees 65,4 

Distance between diagonals fssp mm 21,5 

Engineering Constants 

Exb N/mm2 56040 

Eyb N/mm2 46660 

Gxy.1 N/mm2 16010 

Gxz N/mm2 4353 

Gyz N/mm2 451,7 

Comparison 

between Huga 

Kusten and SSE 

Length between transversal beams ΔLssp  (L.ssp-L.HK)/L.HK - 

Area ΔAssp  (A.ssp-A.HK)/A.HK -13,7% 

Moment of Inertia  
ΔIx (I.x.ssp-I.x.HK)/I.x.HK -73,5% 

ΔIy (I.y.ssp-I.y.HK)/I.y.HK 4,3*104% 

Axial Stiffness 
ΔEx (E.x.ssp-E.x.HK)/E.x.HK -13,653% 

ΔEy (E.y.ssp-E.y.HK)/E.y.HK -15,9% 

Bending Stiffness 
ΔDx (D.x.ssp-D.x.HK)/D.x.HK -73,5% 

ΔDy (D.y.ssp-D.y.HK)/D.y.HK 4,0*104% 

Torsional Stiffness ΔDxy (D.xy.ssp-D.xy.HK)/D.xy.HK 543,5% 

Transversal Shear Stiffness 
ΔDQ.x (D.Q.x.ssp-D.Q.x.HK)/D.Q.x.HK 329,0% 

ΔDQ.y (D.Q.y.ssp-D.Q.y.HK)/D.Q.y.HK - 

 

The Abaqus equivalent plate from the above results had the below behaviour (Figure 

5.5). 

 

 
Figure 5.5  Deflection results for the cross-section presented in Table 5.3. 
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Figure 5.6  Global deflection for the SSE presented in Table 5.3 including the 
continuity of the plate.  

The ratio between the simply supported plate and the continuous one was 

11,38mm/6,04mm=1,88. This value was very similar to the obtained ratio from the 

previous analysis. Thus, it was assumed that the ratio remained almost the same 

,independent of the different properties of the lamina plate and so it was acceptable to 

approve the final results. 

However, the assumption that the new SSE would end up with an equal or smaller 

deflection than the OSD was not valid in this case, since the maximum deflection for 

the SSE was 6,04 mm. For that reason, a tighter constraint was set for the area per unit 

width and the optimization routine for minimizing the global deflection was executed 

again. After an iterative procedure, the below results (Table 5.4) were extracted by 

using the 90,55% of the initial area. The SSE was having a global deflection of 8,51mm 

and 5,26mm for the simply supported and the continuous plate respectively.  
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Table 5.4 Final cross-section after allowing a tighter constrain for the area per unit 
width in Study 2. 

 Function Minimize wtot 

Optimization 

Results 

Global deflection (for i,j=1…1) in the 
optimization routine 

wtot mm 8,51 

Height of the core  hc.ssp mm 147,7 

Thickness of the upper plate tf.top mm 5,9 

Thickness of the bottom plate tf.bot mm 4,6 

Thickness of the core tc.ssp mm 4,8 

Angle of the core assp degrees 65,2 

Distance between diagonals fssp mm 21,6 

Engineering Constants 

Exb N/mm2 55904 

Eyb N/mm2 46454 

Gxy.1 N/mm2 15998 

Gxz N/mm2 4395 

Gyz N/mm2 503,4 

Comparison 

between Huga 

Kusten and SSE 

Length between transversal beams ΔLssp  (L.ssp-L.HK)/L.HK - 

Area ΔAssp  (A.ssp-A.HK)/A.HK -9,45% 

Moment of Inertia  
ΔIx (I.x.ssp-I.x.HK)/I.x.HK -69,5% 

ΔIy (I.y.ssp-I.y.HK)/I.y.HK -9,5% 

Axial Stiffness 
ΔEx (E.x.ssp-E.x.HK)/E.x.HK -9,45% 

ΔEy (E.y.ssp-E.y.HK)/E.y.HK -12,0% 

Bending Stiffness 
ΔDx (D.x.ssp-D.x.HK)/D.x.HK -69,5% 

ΔDy (D.y.ssp-D.y.HK)/D.y.HK 4,6*104% 

Torsional Stiffness ΔDxy (D.xy.ssp-D.xy.HK)/D.xy.HK 641,4% 

Transversal Shear Stiffness 
ΔDQ.x (D.Q.x.ssp-D.Q.x.HK)/D.Q.x.HK 354,3% 

ΔDQ.y (D.Q.y.ssp-D.Q.y.HK)/D.Q.y.HK - 

Global deflection for continuous plates (Abaqus) wtot mm 5,26 

Final equivalent distributed load qeq kPa 7,380 

 

 

 
Figure 5.7  Deflection of the SSE cross-section of Table 5.4 including the continuity 
of the plate. 
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The same principle was also used in the optimization routine for minimizing the area 

of the SSE by setting a looser constraint for the deflection. The results were exactly the 

same with the above cross-section showing that the two solutions were converging to 

an optimum one. The Abaqus simulation for the following case is not illustrated as it is 

exactly the same as in the Figure 5.7. However, the table with the results is shown 

below. 

 

Table 5.5 Final cross-section after allowing a looser constrain for the deflection in 
Study 2. 

Optimization 

Results 

Function Minimize wtot 

Global deflection (for i,j=1…1) in the 
optimization routine 

wtot mm 8,515 

Height of the core  hc.ssph.core mm 147,6 

Thickness of the upper plate tf.top mm 5,9 

Thickness of the bottom plate tf.bot mm 4,6 

Thickness of the core tc.ssp mm 4,8 

Angle of the core assp degrees 65,2 

Distance between diagonals fssp mm 21,6 

Engineering Constants 

Exb N/mm2 55940 

Eyb N/mm2 46498 

Gxy.1 N/mm2 16017 

Gxz N/mm2 4391 

Gyz N/mm2 505 

Comparison 

between Huga 

Kusten and SSE 

Length between transversal beams ΔLssp  (L.ssp-L.HK)/L.HK - 

Area ΔAssp  (A.ssp-A.HK)/A.HK -9,46% 

Moment of Inertia  
ΔIx (I.x.ssp-I.x.HK)/I.x.HK -73,5% 

ΔIy (I.y.ssp-I.y.HK)/I.y.HK 4,9*104% 

Axial Stiffness 
ΔEx (E.x.ssp-E.x.HK)/E.x.HK -9,46% 

ΔEy (E.y.ssp-E.y.HK)/E.y.HK -11,9% 

Bending Stiffness 
ΔDx (D.x.ssp-D.x.HK)/D.x.HK -69,5% 

ΔDy (D.y.ssp-D.y.HK)/D.y.HK 4,6*104% 

Torsional Stiffness ΔDxy (D.xy.ssp-D.xy.HK)/D.xy.HK 641,3% 

Transversal Shear Stiffness 
ΔDQ.x (D.Q.x.ssp-D.Q.x.HK)/D.Q.x.HK 353,6% 

ΔDQ.y (D.Q.y.ssp-D.Q.y.HK)/D.Q.y.HK - 

Global deflection for continuous plates (Abaqus) wtot mm 5,26 

Global deflection for simply supported plate (Abaqus) wtot mm  

Final equivalent distributed load qeq kPa 7,380 

 

Summing up, both analyses converge to an SSE that reduces the material used by 9,45% 

compared with the existing bridge deck. That means that it is possible to save 2120 

mm2 of material per unit width (m). Regarding the total length of the bridge this is 

translated in tons of material saved. The cross-section of the new steel sandwich 

element is illustrated below. 
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Figure 5.8  Final cross-section of the new steel sandwich element that minimizes the 
material used. 

 

5.3 Study 3 - Minimizing the material used by adding a 
longitudinal stiffener 

For the third scenario a longitudinal stiffener has been added under the steel sandwich 

element as described in chapter 4.3.3. The methodology followed was exactly the same 

as the previous study. The results are shown in the table and the figures below. The 

maximum deflection turned up in the middle of the plate, while the ratio of the simply 

supported plate to the continuous one was calculated equal with 

4,27mm/2,40mm=1,779. 
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Table 5.6 Initial cross-section obtained in Study 3. 

Optimization 

Results 

Function Minimize wtot 

Global deflection (for i,j=1…1) in the 
optimization routine 

wtot mm 6,39 

Height of the core  hc.ssp mm 163,0 

Thickness of the upper plate tf.top mm 6,5 

Thickness of the bottom plate tf.bot mm 5,1 

Thickness of the core tc.ssp mm 5,3 

Angle of the core assp degrees 64,7 

Distance between diagonals fssp mm 21,6 

Engineering Constants 

Exb N/mm2 55730 

Eyb N/mm2 46170 

Gxy.1 N/mm2 16020 

Gxz N/mm2 4470 

Gyz N/mm2 642,8 

Comparison 

between Huga 

Kusten and SSE 

Length between transversal beams ΔLssp  (L.ssp-L.HK)/L.HK - 

Area ΔAssp  (A.ssp-A.HK)/A.HK - 

Moment of Inertia  
ΔIx (I.x.ssp-I.x.HK)/I.x.HK -59,2% 

ΔIy (I.y.ssp-I.y.HK)/I.y.HK 6,6*104% 

Axial Stiffness 
ΔEx (E.x.ssp-E.x.HK)/E.x.HK - 

ΔEy (E.y.ssp-E.y.HK)/E.y.HK -2,9% 

Bending Stiffness 
ΔDx (D.x.ssp-D.x.HK)/D.x.HK -59,2% 

ΔDy (D.y.ssp-D.y.HK)/D.y.HK 6,1*104% 

Torsional Stiffness ΔDxy (D.xy.ssp-D.xy.HK)/D.xy.HK 897,5% 

Transversal Shear Stiffness 
ΔDQ.x (D.Q.x.ssp-D.Q.x.HK)/D.Q.x.HK 409,7% 

ΔDQ.y (D.Q.y.ssp-D.Q.y.HK)/D.Q.y.HK - 

Global deflection for continuous plates wtot mm 2,40 

Global deflection for simply supported plate wtot mm 4,27 

Final equivalent distributed load qeq kPa 6,833 

 

 

 
Figure 5.9  Deflection results for a simple supported SSE with the properties 
described in Table 5.6. 
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Figure 5.10  Deflection results for the continuous SS plate described in Table 5.6. 

By adopting the ratio mentioned above and aiming for the same deflection as the 

existing orthotropic deck, which was 5,26mm, the optimization routine for minimizing 

the area of the material for the SSE was used. 

Table 5.7 Final cross-section in Study 3. 

Optimization 
Results 

Function Minimize Atot 

Global deflection (for i,j=1..1) in the 

optimization routine 
wtot mm 9,36 

Height of the core  hc.ssp mm 121,3 

Thickness of the upper plate tf.top mm 5,3 

Thickness of the bottom plate tf.bot mm 4,1 

Thickness of the core tc.ssp mm 4,0 

Angle of the core assp degrees 63,3 

Distance between diagonals fssp mm 20,0 

Engineering Constants 

Exb N/mm2 59095 

Eyb N/mm2 50292 

Gxy.1 N/mm2 17437 

Gxz N/mm2 3972 

Gyz N/mm2 471,8 

Comparison 

between Huga 

Kusten and SSE 

Length between transversal beams ΔLssp  (L.ssp-L.HK)/L.HK - 

Area ΔAssp  (A.ssp-A.HK)/A.HK -23,7% 

Moment of Inertia  
ΔIx (I.x.ssp-I.x.HK)/I.x.HK -82,0 % 

ΔIy (I.y.ssp-I.y.HK)/I.y.HK 3*104% 

Axial Stiffness 
ΔEx (E.x.ssp-E.x.HK)/E.x.HK -23,7% 

ΔEy (E.y.ssp-E.y.HK)/E.y.HK -21,2% 

Bending Stiffness 
ΔDx (D.x.ssp-D.x.HK)/D.x.HK -82,0% 

ΔDy (D.y.ssp-D.y.HK)/D.y.HK 2,8*104% 

Torsional Stiffness ΔDxy (D.xy.ssp-D.xy.HK)/D.xy.HK 352,0% 

Transversal Shear Stiffness 
ΔDQ.x (D.Q.x.ssp-D.Q.x.HK)/D.Q.x.HK 238,3% 

ΔDQ.y (D.Q.y.ssp-D.Q.y.HK)/D.Q.y.HK - 

Global deflection for continuous plates wtot mm 5,22 
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Figure 5.8  Final deflection results for the continuous SSE described in Table 5.7. 

The final deflection for the continuous plate was 5,23mm, which is almost the same as 

the deflection of the orthotropic section. Therefore, the SSE with the above 

characteristics was acceptable. With the specific cross-section and configuration, about 

23,7% of material could be saved. That means that a total of 5314 mm2 of material per 

unit width can be saved. Of course this should be decreased by the area of the 

longitudinal stiffeners. To make a rough estimation, a longitudinal stiffener with profile 

IPE 360 was chosen as longitudinal stiffener. For details see Appendix A. This section 

has an area of 7270 mm2.  The total amount of material saved for the half of the width 

is 5314*9 = 47826 mm2, and subtracting the area of the stiffener it end ups to 40556 

mm2 of material saved. This equals to 4506 mm2 material per unit width or 20,1% saved 

material. 

The final cross-section of the SSE for the 4m×4,5m plate is shown in Figure 5.12.  

 

 
Figure 5.12  Cross-section of the new steel sandwich element. 
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5.4 Study 4 - Maximizing the length between the transverse 
stiffeners 

The final study included the maximization of both the plate deflection and the length 

of the SSE by using again the constraints mentioned in chapters 4.1 and 4.2. The 

continuity of the plates was inserted again in the study with the help of Abaqus/CAE. 

The results from the analysis are shown below in the Table 5.8.  

Table 5.8 Initial cross-section obtained in Study 4. 

Optimization 
Results 

Function Max wtot and Lssp 

Length between transversal beams Lssp m 4,64 

Height of the core hc.ssp mm 162,4 

Thickness of the upper plate tf.top mm 6,6 

Thickness of the bottom plate tf.bot mm 5,2 

Thickness of the core tc.ssp mm 5,3 

Angle of the core assp degrees 64 

Distance between diagonals fssp mm 21,3 

Engineering constants 

Exb N/mm2 52251 

Eyb N/mm2 43718 

Gxy.1 N/mm2 15456 

Gxz N/mm2 3984 

Gyz N/mm2 604 

Comparison 

between Huga 

Kusten and SSE 

Length between transversal beams ΔLssp  (L.ssp-L.HK)/L.HK 16,0% 

Area ΔAssp  (A.ssp-A.HK)/A.HK - 

Moment of Inertia  
ΔIx (I.x.ssp-I.x.HK)/I.x.HK -59,3% 

ΔIy (I.y.ssp-I.y.HK)/I.y.HK 6,6*104% 

Axial Stiffness 
ΔEx (E.x.ssp-E.x.HK)/E.x.HK - 

ΔEy (E.y.ssp-E.y.HK)/E.y.HK -2,0% 

Bending Stiffness 
ΔDx (D.x.ssp-D.x.HK)/D.x.HK -59,3% 

ΔDy (D.y.ssp-D.y.HK)/D.y.HK 6,1*104% 

Torsional Stiffness ΔDxy (D.xy.ssp-D.xy.HK)/D.xy.HK 901,1% 

Transversal Shear Stiffness 
ΔDQ.x (D.Q.x.ssp-D.Q.x.HK)/D.Q.x.HK 402,9% 

ΔDQ.y (D.Q.y.ssp-D.Q.y.HK)/D.Q.y.HK - 

Limit for the total deflection L/400 mm 11,6 

Global deflection for continuous plates wtot mm 5,89 

  

From the first analysis, it was acquired an increase in the length equal to 16%. However, 

the global deflection of the plate was still much smaller than the allowed limit. This 

happened because the optimization routine could not take into account the continuity 

of the plates, as mentioned before. So, a looser constraint for the global deflection was 

decided. Furthermore, it was observed that the maximum deflection was very close to 

the centre of the plate although the loading was asymmetric. The reason was that the 

SSE was behaving more like a plate compared with the previous studies, distributing 

the loads in two directions. 
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By setting different constraints for the simply supported case, an iterative analysis was 

used to get the global deflection of the continuous sandwich elements closer to the 

allowed limit. The final iteration gave the results presented in Table 5.9. 

Table 5.9 Final cross-section from Study 4. 
 Function Max wtot and,Lssp 

Optimization 

Results 

Length between transversal beams Lssp m 7,38 

Height of the core hc.ssp mm 160,3 

Thickness of the upper plate tf.top mm 6,7 

Thickness of the bottom plate tf.bot mm 5,4 

Thickness of the core tc.ssp mm 5,3 

Angle of the core assp degrees 63 

Distance between diagonals fssp mm 20,9 

Comparison 

between Huga 

Kusten and SSE 

Length between transversal beams ΔLssp  (L.ssp-L.HK)/L.HK 92,9% 

Area ΔAssp  (A.ssp-A.HK)/A.HK - 

Moment of Inertia  
ΔIx (I.x.ssp-I.x.HK)/I.x.HK -59,6% 

ΔIy (I.y.ssp-I.y.HK)/I.y.HK 6,6*104% 

Axial Stiffness 
ΔEx (E.x.ssp-E.x.HK)/E.x.HK - 

ΔEy (E.y.ssp-E.y.HK)/E.y.HK 0,9% 

Bending Stiffness 
ΔDx (D.x.ssp-D.x.HK)/D.x.HK -59,6% 

ΔDy (D.y.ssp-D.y.HK)/D.y.HK 6,1*104% 

Torsional Stiffness ΔDxy (D.xy.ssp-D.xy.HK)/D.xy.HK 909,3% 

Transversal Shear Stiffness 
ΔDQ.x (D.Q.x.ssp-D.Q.x.HK)/D.Q.x.HK 379,5% 

ΔDQ.y (D.Q.y.ssp-D.Q.y.HK)/D.Q.y.HK - 

Limit for the total deflection L/400 mm 18,46 

Global deflection for continuous plates wtot mm 18,42 

 

 
Figure 5.9 Final deflection results for the continuous SSE described in Table 5.9. 

The conclusions demonstrate that the length of the bridge deck between two transversal 

stiffeners could be increased up to 92,9% by using steel sandwich elements for the case 

of the Höga Kusten bridge. 

 

5.5 Verification of the deflection  
To confirm the correspondence between the analytical calculation of deflection and the 

results from Abaqus/CAE, a comparison between their results was made. This was 

performed for a simply supported plate. For the calculation of the deflection with the 

analytical model the optimized section for each case is used, for 21 iterations.  
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Table 5.10 Difference between hand calculations and Abaqus/CAE for a bigger number 
of iterations. 

      
Deflection between transverse beams 

(mm) 
  

Plate dimensions 
(m) 

Analysis 
Deflection Point  

X, Y 
Hand calculations Abaqus Difference 

4x9 

Part 1 2 , 4.5 6,57 6,71 2,13% 

Part 2 2 , 5.4 7,17 7,35 2,51% 

Part 3 2 , 5.4 11,00 11,24 2,21% 

Part 4 2 , 5.4 9,56 9,80 2,47% 

Part 5 2 , 5.4 9,56 9,80 2,47% 
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5.6 Moment and axial capacity 
As mentioned, the studies performed in this work compared only by the deflection 

between the conventional orthotropic deck of Höga Kusten bridge and the potential 

steel sandwich elements in the SLS. However, any changes in the configuration of the 

cross-section of the bridge deck has impact on the design moment and axial load 

carrying capacity. Therefore, these parameters in relation with the corresponding values 

of the initial deck were studied. The results are summed up in the Tables 5.11 and 5.12 

below, while further calculations could be found in the Appendix B. The calculations 

have been executed according to (EN 1993-1-1, 2005).  

Table 5.11 Moment and axial capacity of the original orthotropic deck as well as the 
SSE created in the different studies. 

Studies Parameter Units Value 

Orthotropic Deck of Höga 

Kusten Bridge 

Reduction factor xρ.c for column-like buckling - 0.862 

Reduction factor xρ.pl for plate-like buckling - 1 

Total reduction factor xρ - 0.886 

Moment capacity kN×m/m 444.129 

Axial capacity kN/m 6.718×103 

Study 2 - Minimizing the 

material used  

Reduction factor xρ.c for column-like buckling - 0.675 

Reduction factor xρ.pl for plate-like buckling - 0.996 

Total reduction factor xρ - 0.852 

Moment capacity kN×m/m 369.125 

Axial capacity kN/m 6.142×103 

Study 3 - Minimizing the 

material used by adding a 

longitudinal stiffener 

Reduction factor xρ.c for column-like buckling - 0.58 

Reduction factor xρ.pl for plate-like buckling - 1 

Total reduction factor xρ - 0.76 

Moment capacity kN×m/m 263.657 

Axial capacity kN/m 4.62×103 

Study 4 - Maximizing the 

length between the 

transverse stiffeners 

Reduction factor xρ.c for column-like buckling - 0.719 

Reduction factor xρ.pl for plate-like buckling - 0.872 

Total reduction factor xρ - 0.62 

Moment capacity kN×m/m 450.696 

Axial capacity kN/m 4.937×103 
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Table 5.12 Comparison between the moment and axial carrying capacity between the 
initial orthotropic bridge deck and the SSEs. 

Comparison of the moment and axial capacities of the different studies with the initial orthotropic bridge 
deck 

Studies Parameter compared Formula Value 

Study 2 - Minimizing the 

material used  

Moment capacity MRd (MRd.ssp1 - MRd) / MRd - 16.888% 

Axial capacity NRd (NRd.ssp1 - NRd) / NRd - 8.564% 

Study 3 – Minimizing the 

material used by adding a 

longitudinal stiffener 

Moment capacity MRd (MRd.ssp2 - MRd) / MRd -40.635% 

Axial capacity NRd (NRd.ssp2 - NRd) / NRd - 31.222% 

Study 4 – Maximizing the 

length between the transverse 

stiffeners 

Moment capacity MRd (MRd.ssp3 - MRd) / MRd 1.479% 

Axial capacity NRd (NRd.ssp3 - NRd) / NRd - 26.504% 

 

However, the carrying capacity of the newly generated SSEs would only have meaning 

if it was directly connected to the loading of the deck. And that is due to the fact that 

changes in the dimensions of the plates in the different studies would affect the acting 

moment on the bridge deck. Therefore, in every study performed the acting moment 

has been extracted in order to calculate the utilization factor with the assistance of 

Abaqus/CAE. Figures 5.14-16 and table 5.13 show the values of the moment in every 

scenario, while table 5.14 demonstrate the respective utilization factors. Furthermore, 

the acting moment of every optimized model was compared to their bending capacity, 

see tables 5.13 and 5.14. 

Table 5.13 Acting moment in the different scenarios. 

 

Studies Parameter compared Notation Value (kNm/m) 

Study 2 - Minimizing the 

material used  
Acting moment MEd.ssp1 MEd.ssp1 76.20 

Study 3 – Minimizing the 

material used by adding a 

longitudinal stiffener 

Acting moment MEd.ssp2 MEd.ssp2  50.20 

Study 4 – Maximizing the 

length between the transverse 

stiffeners 

Acting moment MEd.ssp3 MEd.ssp3 139.40 
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Figure 5.10 Acting moment (76.20 kNm/m) in Study 2. 

 
Figure 5.11  Acting moment (50.20 kNm/m) in Study 3. 

 
Figure 5.126  Acting moment (139.4 kNm/m) in Study 4. 
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Table 5.144 Utilization factor for the moment capacity in the different scenarios. 
Calculation of the utilization factors for the moment capacities of the different studies with the initial 

orthotropic bridge deck 

Studies Parameter compared Formula Value 

Study 2 - Minimizing the 

material used  

Utilization factor for the 

moment 

capacity uM.ssp1 

MEd.ssp1 / MRd.ssp1 0.206 

Study 3 – Minimizing the 

material used by adding a 

longitudinal stiffener 

Utilization factor for the 

moment 

capacity uM.ssp2 

MEd.ssp2 / MRd.ssp2 0.19 

Study 4 – Maximizing the 

length between the transverse 

stiffeners 

Utilization factor for the 

moment 

capacity uM.ssp3 

MEd.ssp3 / MRd.ssp3 0.309 
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6 Discussion 
The purpose of this Master thesis project was the investigation of how effective the 

steel sandwich elements may be, when they were utilized as part of the stiffening girder 

of a suspension bridge. The study was performed in the serviceability limit state. The 

results showed that in almost all the scenarios studied, steel sandwich decks may reduce 

significantly the amount of steel used for the bridging of long spans compared with 

convectional solutions. In the following sub-chapters there is a discussion about the 

results that the different optimization routines produced.  

 

6.1 Study 1 - Maximization of the moment of inertia in the 
longitudinal direction 

In the first case, the optimization aimed to maximize the moment of inertia in the 

longitudinal direction. However, the results showed a significant lower moment of 

inertia compared to the orthotropic steel deck. Taking into consideration the fact that 

the superior property of the orthotropic deck is the moment of inertia in the longitudinal 

direction and that the original OSD was quite slender - web in class 4 -, the result 

seemed to be reasonable.  

 

6.2 Study 2 - Minimization of the material used 
The second case which was examined was an attempt to minimize the material used in 

the cross-section by restraining the deflection of the upper flange of the box girder 

between the transverse beams in the optimization routine. In this scenario the fact that 

in the first attempt the deflection between transverse beams was smaller when using 

sandwich elements than with the OSD led to a sub-study to investigate the possible 

reduction of the area per unit width, if the original section was replaced by an SSE and 

the deflection remained constant. The 10% in material reduction was absolutely an 

amount that could not be unnoticed especially in so large scale constructions like cable 

bridges. The main reason for this result was the two-way plate behaviour of the SSE 

compared with the OSD. This could also conclude, apart from the main deck, to a chain 

material deduction in almost all the parts of the bridge like the hangers, the main cables 

and the pylons, as the self-weight of the bridge deck would be decreased.   

 

6.3 Study 3 - Minimizing the material used by adding a 
longitudinal stiffener 

Another study was conducted to investigate the behaviour of the sandwich section when 

the geometry of the bridge tended to be more square-shaped. In this scenario it was 

assumed that in the half of the bridge deck a longitudinal stiffener was added, resulting 

in smaller almost square plates. The deflection between the transverse beams was again 

equal to the one of the orthotropic section, whilst the area per unit width was reduced 

as much as possible. The results here was a reduction of the area of about 23%, and 

with a rough calculation for the dimensions of the longitudinal stiffener it was 

advantageous compared to the first investigation. However, the reader should keep in 

mind that this solution may increase the cost, as well as the production time, due to the 

increased and more complicated welding. 
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6.4 Study 4 - Maximizing the length between the transverse 
stiffeners 

In this case the aim was to increase the distance between the transverse beams, in order 

to be able to decrease their number and save material that way. This was done by 

maximizing the allowable deflection between the transverse beams up to the limit value, 

which is the length divided by 400. The results showed that using sandwich elements 

could result in a significant increment of the length between transverse beams. 

Particularly the length could be increased by 92.9%, which resulted to plates 7.38 m 

long and 9 m wide in the Höga Kusten bridge case. The logic behind that was that the 

bridge deck was allowed to maximize itself its length keeping the width constant and 

thus take the most optimum shape depending on its stiffness constants.  
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7 Conclusions 
In this master thesis project, the possibility of replacing conventional orthotropic steel 

decks with a steel sandwich bridge deck was investigated with respect to serviceability 

limit state. The results of the different studies conducted is encouraging and allow the 

further research of the topic.  

In general, the concluding remarks from this project could be summed up the following: 

 The utilization of SSE bridge decks could result in smaller deflections between 

the transverse beams compared to conventional orthotropic decks. 

 With equal bending stiffness, the SSE utilizes less material compared to the 

convectional solutions. Width to length aspect ratios close to 7 was shown to 

increase the effectiveness of the SSE bridge deck. 

 The distance between transverse beams could be increased when using SSE 

compared to the convectional solutions. Therefore, material could be saved 

from the reduction of the number of the transverse stiffeners. 

 As far as the bending moment capacity of the newly created SSEs is concerned, 

it was proven that the SSEs had quite lower bending stiffness compared with 

the original OSD due to their smaller total height. However, the Abaqus/CAE 

analysis had proven also that the bending moment acting on the SSEs would 

have also a lower value as their plate behaviour distributed the stresses with a 

more efficient two-way action. 
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