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Retrieving precipitation over Brazil
A Quantile Regression Neural Networks approach
INGRID INGEMARSSON
Department of Space, Earth and Environment
Chalmers University of Technology

Abstract
Close and accurate monitoring of precipitation on a global scale is key to understand-
ing our future climate as well as our current weather. Geostationary weather satel-
lites, as opposed to other measuring methods, provide high-resolution information
covering large regions. The sensors carried can not, however, measure precipitation
directly but are restricted to capturing cloud top temperatures (in IR radiation).
Earlier work presents a range of models that aim to relate these geostationary ob-
servations to precipitation, including simple regression as well as more elaborate
machine learning techniques. In this thesis we aim at predicting a posterior distri-
bution instead of a single precipitation value for each set of cloud top temperatures.
To achieve this, we make use of Quantile Regression Neural Networks (QRNNs), a
supervised machine learning approach. The two main questions asked are as fol-
lows: Can this deep learning method be used to improve upon algorithms currently
in operation? and Can spatial information be used to improve the retrieval? The
models are trained on GOES-16 IR data over Brazil with a precipitation product
from the GPM Core Observatory. Our results on held-out test data show that it is
possible to model the precipitation distribution using a QRNN. Additionally, a 20%
decrease in mean squared error and a 25% decrease in mean absolute error is ob-
served on the test data when using the spatially aware model, which illustrates the
general performance improvement by utilizing the spatial information. The QRNN
models also show promising results on an independent rain gauge dataset where
they are compared against the currently-in-operation Hydro-Estimator. Here our
most promising QRNN shows a 30% decrease in mean squared error compared to
the present model.

Keywords: quantile regression, neural networks, CNN, precipitation, GPM, GOES
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1
Introduction

Precipitation plays a crucial role in the global hydrological cycle, which is closely
tied to Earth’s climate system. With global warming, the hydrological cycle is ex-
pected to intensify, likely bringing increased extreme precipitation and risk of floods
(Tabari 2020). It is of great importance for understanding our weather and climate
that accurate and high resolution monitoring of precipitation is achieved on a global
scale. In particular, a good temporal resolution is needed for nowcasting applica-
tions as well as studying the diurnal cycle.

The traditional way of measuring precipitation is by catching it in rain gauges,
which provide point measurements at ground level locations. This is considered the
most accurate method, but it suffers from low spatial coverage in a global perspec-
tive. Kidd et al. (2017) estimate that the broadest reaching available dataset of rain
gauges represent less that 1% of the Earth’s surface, and that the gauges themselves
would cover less than half a soccer pitch if they where gathered up in the same place.

An alternative ground-based measuring technique is weather radars, that sample
larger volumes than the rain gauges. But this method comes with other issues,
such as blind spots cased by limitations in monitoring at higher altitudes and lower
accuracy since the measurements are based on the back-scattered echo of the radar
signal (Tapiador et al. 2012). The problem of sparsity in remote areas and over
the ocean is also present for this method, with the addition of error sources such as
beam blockage (Kidd et al. 2017).

The third option is satellite remote sensing, where instruments that can measure
electromagnetic radiation are put in Earth orbit. The sensors can either be passive,
detecting natural energy reflected by or emitted from the object observed, or active,
sending out radiation and measuring the reflected or back-scattered signal returning
from the target (NASA 2021b). Depending on its frequency, the radiation interacts
with different particles in the atmosphere. Microwave radiation interacts only with
the largest particles which are precipitation, while radiation in the visible and IR
range interacts with the smaller cloud droplets, causing those signals to saturate
further up in the clouds. Basically, this means microwave radiation can ”look” into
clouds, while the visible and IR radiation is constricted to capture cloud top bright-
ness temperatures. Geostationary satellites fly in high orbit and provide good spatial
and temporal coverage, but can only carry visible and IR sensors due to antenna size
constraints. We can have active and microwave sensors with reasonable resolution
on low-flying satellites, however this limits their spatial and temporal coverage.
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1. Introduction

The question is thus: Is it possible to obtain high quality precipitation retrievals
from geostationary observations? Previous efforts have been made, building upon
the general idea that cold cloud tops imply large vertical cloud development, which
in turn would indicate more precipitation.

While all models require some ground-based or low orbit observations as a refer-
ence, the execution differs between them. To generalize, there is on one hand the
more traditional methods that use regression and threshold rules to capture this
relation. To mention a few well known, there is the GOES Precipitation Index
(Arkin and Meisner 1987), the Convective-Stratiform Technique (Adler and Negri
1988), the Autoestimator (Vicente et al. 1998) and the GOES multispectral rainfall
algorithm (Ba and Gruber 2001). On the other hand there is the machine learning
approach, and especially Artificial Neural Networks (ANNs), that have been on the
rise in recent years due to their ability to capture non-linear relations in large data.
In this work we have studied the use of the latter, and this will be further introduced
in section 3.3.

Commonly in previous works, the models consider the retrieval problem as the task
of estimating a scalar quantity from the given observations, disregarding the under-
lying uncertainties in the prediction. In this thesis, we ask instead: Is it possible
to learn a mapping from the observations to a probability distribution over possible
precipitation rates to account for those uncertainties?

In order to do this, we study the use of Quantile Regression Neural Network,
suggested for application to the general retrieval problem by Pfreundschuh et al.
(2018). This thesis was conducted in collaboration with the National Institute for
Space Research (INPE) in Brazil who have provided us with supplementary data
and guidance for studying the geographic region of Brazil. To build a dataset that
covers this region, we collect precipitation rate measurements from the GPM Core
Observatory, and IR input data from the GOES-16 geostationary satellite.
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2
Data

The data collection and processing played a large role in this thesis, and this chapter
gives an introduction to the sources used (section 2.1) and a step-wise description
of the dataset construction (section 2.2).

2.1 Sources
This section presents an overview of the raw data: The input in section 2.1.1, the
ground truth in section 2.1.2 and an independent validation dataset consisting of rain
gauge measurements in section 2.1.3. The Hydro-Estimator (HE) is also included in
section 2.1.4 of this chapter since it was received as a precipitation product ready
to use from INPE.

2.1.1 GOES-16: Input data
GOES-16 is a weather satellite in geostationary orbit, that delivers high spatial and
temporal resolution measurements over the Western Hemisphere1. Figure 2.1 shows
the coverage of the GOES-16 satellite and an example image.

The main instrument on-board of the GOES-16 is the Advanced Baseline Imager
(ABI). It is a passive imaging radiometer with sixteen channels in the visible to IR
range designed to observe Earth’s surface, atmosphere and cloud cover by measuring
emitted and reflected radiation. The ABI can not measure precipitation directly,
but the high resolution and good coverage motivates making the effort of trying to
derive a prediction from its measurements. In this work, we limit ourselves to only
using IR bands to exclude the day and night differences in the visible radiation2.

2.1.2 GPM: Ground truth data
As ground truth precipitation rate we will use the 2BCMB product (Olson 2017),
which is derived by combining measurements from the Microwave Imager (GMI) and
the Dual-frequency Precipitation Radar (DPR). These sensors are found on-board of
the GPM Core Observatory, which is the main satellite in the Global Precipitation

1Temporal resolution of 5-15 minutes and spatial resolutions of 0.5, 1.0 or 2.0 km at nadir
(NOAA/NASA 2021).

2Also, channel 12 is discarded due to its main focus on ozone. Thus, the channels to be used
for this thesis are 8-11 and 13-16.
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2. Data

GOES-16 view GOES-16 geocolor image

Figure 2.1: Left: GOES-16 satellite geostationary view of Earth. Right: Example
of geocolor image captured by the ABI instrument on-board of GOES-16 (image
source CIRA/NOAA, GOES Image Viewer (2021)).

Measurement (GPM) constellation. The combined precipitation product is devel-
oped to provide highly accurate measurements to be set as a reference standard for
other constellation sensors and hence improve measurements globally. This quality
makes it suitable as ground truth also for this task. Validation against the Global
Precipitation Climatology Project (GPCP) shows good agreement in the tropics and
midlatitudes (Grecu et al. 2016).

Figure 2.2: Earth in GOES-16 geostationary perspective (left) and in plate carrée
projection (right), both overlayed with one 2BCMB data swath.

The Core Observatory flies at a 65 degrees inclination to the equator in a non-sun-
synchronous circular orbit which takes about 1.5 hours to complete. As the Earth
rotates, the GPM Core Observatory orbit is shifted and the surface is successively
covered by its swath. Figure 2.2 shows an example of a swath corresponding to one
2BCMB orbit granulate.

4



2. Data

2.1.3 Rain gauges: Reference data
A dataset of hourly rain gauge measurements from December 2020 provided by
INPE is to be used as an independent reference for evaluation. As opposed to the
training data, the rain gauges give a more direct measure in the sense that it cap-
tures rain that certainly has fallen rather than measuring it from a distance which
entails retrieval uncertainties. Thus, comparing our estimates to gauge data is a
way of checking how well the predictions correspond to ’real’ rain.

The dataset consists of 609 rain gauges specified by state, station ID, altitude,
longitude and latitude, each with a corresponding series of timestamps (date, hour)
with precipitation measurements (mm) aggregated over the previous hour. This is
in contrast to the GPM measurements which are instantaneous. Figure 2.3 shows
the spatial distribution of the gauges.
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Figure 2.3: Map of rain gauge positions from the dataset over Brazil. Color legend
corresponding to five regions.

An issue with comparing the gauge data with the models that are to be trained
on the satellite data is the difference in resolution. Where the gauges measure pre-
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cipitation on a very local scale of a decimetre (Kidd et al. 2017), the models give
estimates for a few kilometre. This might have the effect that precipitation systems
on a scale smaller than the prediction resolution appear smeared in the estimates
that present a lower precipitation rate on the whole. In addition to this we have the
difference in temporal resolution as mentioned above.

Note also that missing values occurs quite frequently in the rain gauge dataset,
meaning that not all gauges have available data at all timestamps. A visualization
of this can be found in figure A.1 in appendix.

2.1.4 HE: Baseline model
The Hydro-Estimator (HE) (Scofield and Kuligowski 2003) is an algorithm that pro-
duces precipitation estimates based on a single IR channel input from the GOES
satellite. The HE is a later version of the Auto-Estimator developed by Vicente
et al. (1998) at NOAA. The algorithm (NOAA 2012) was later adapted to South
America conditions and used at the CPTEC/INPE in Brazil. The core of the model
is a power-law expression that relates the measured brightness temperatures to pre-
cipitation rates, and the estimates are returned in a 4 km regular grid.

A technique called Histogram Matching (HM) was applied by Siqueira and Vila
(2019) to adjust the HE estimates to better match the observed precipitation rates
from the radar instruments onboard of GPM and the Tropical Rainfall Measuring
Mission (TRMM), a precursor of the GPM. Different adjustment lookup tables are
available based on season and region. As for the rain gauges the estimates will be
taken for December 2020, and thus the adjustments for October to December. Also,
the regional adjustments (north, northeast, south, southeast, centre-west) will be
applied for the corresponding gauges.

2.2 Processing
This section deals with the accessing, pre-processing and matching of the raw data
that is performed in order to create the main dataset. If C, H, and W represents
number of channels, height and width, then the end result of this section is a set
of input tensors of dimension C ×H ×W containing the GOES channels data that
corresponds to a tensor of dimension H ×W with the GPM precipitation rate at
the same time and location.

2.2.1 Region
The aim is to retrieve precipitation over Brazil, thus a region enclosing the country
is defined that will act as an outer limit for data collection. For convenience, the
region is chosen as a square in the view of the GOES-16 satellite, since this is the
grid coordinate system of the input. Figure 2.4 shows the region in the GOES-16
satellite view (left) and on a plate carrée projection map (right).
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Figure 2.4: Visualization of the region of interest in two different coordinate frames,
the GOES-16 satellite view of Earth (left) and in the plate carrée projection (right).

2.2.2 Time period
Since this dataset will be constructed based on data from two satellites, it is neces-
sary for both of them to be in orbit for the whole time period considered. Because
the GOES-16 was the last of the two to become operational, on December 18, 2017,
this will be used as start time. Both satellites are still active, and are thus constantly
capturing new data which makes it possible to extend the dataset later on, but for
the purpose of this thesis the period end date was set to March 31, 2021.

2.2.3 Selection
The GPM data files are collected from an online archive. In order to only download
the relevant data, i.e. the granulates that actually contain data on Brazil, an online
tool called Earth Data Search (Earthdata Search n.d.) is used. With this tool one
can filter out granulates that have no part of its swath inside a specified region. The
remaining granulates extracted intersect the polygon shown in figure 2.5).

2.2.4 Resampling
Due to the different coordinate systems of the GPM granulates and the region in
the GOES system, the former is to be resampled. This is done by the nearest
neighbour method. To account for the discrepancy between the spatial resolution
of the GOES data (2 km at nadir) and the GPM data (5 km × 5 km), the GOES
data is aggregated to have a resolution of 4 km at nadir before the resampling of
the GPM data. The region (see section 2.2.1) consists of 1024 × 1024 pixels in this
grid.

2.2.5 Cropping
Once a subset of granulates is selected, it is to be further slimmed down by removing
the granulate parts outside of the region presented in section 2.2.1. Now that the
data is matched into the same coordinate system it is straightforward to crop to the
region. But, in order to reduce file sizes and possibly improve temporal matching
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Figure 2.5: Example of granulates intersecting a polygon that encloses Brazil in
the Earth Data Search tool (Earthdata Search n.d.).

in some cases, each granulate is split into several smaller chunks. All operations are
performed in the GOES-16 view coordinate system.

The splitting is done as follows:
i) Start from the center of the region and add a uniformly sampled vertical offset,

call this point ymid.

ii) Place out three squares of 256 × 256 pixels vertically centered about the point
ymid and with their horizontal centers on the swath.

iii) Save all squares that lie entirely within the region.
Step i) is included to reduce the impact of edge effects on a certain subregion. The
offset ensures that the squares are not always placed in the same vertical position.
Figure 2.6 shows an example of a resampled and split up granulate.

2.2.6 Temporal matching

For each GPM granulate chunk a corresponding GOES chunk should be matched.
Since the data is now on the same grid, it is the temporal matching that needs
considering. Each GPM scan is annotated with a timestamp, hence the time period
for each split of the overpasses are known. Given such a start and end time, a GOES-
16 full disk image from this time span can be searched for in another online archive.
To ensure that the overlap is sufficient, a tolerance is applied to the difference
between the mid timestamps.
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Figure 2.6: Example of a GPM granulate that is coordinate transformed and cut
into three 256 × 256 pixel pieces. The shaded gray in the squares marks the area
that lacks GPM data.
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2.2.7 Split
The dataset is split up into subsets to be used for training, validation and testing
respectively. The test set is separated from the train and validation sets by time
period, i.e. the last year of samples is put into the test bin to ensure independence. A
standard random 80/20 split is done to separate the traning data from the validation
data. Table 2.1 shows the compiled split information.

Table 2.1: Time period, number of samples and number of available label pixels
for each split data subset.

Split Period start Period end Samples Label pixels
train 2017-12 2020-03 5 412 83 360 758
validation 2017-12 2020-03 1 354 20 805 499
test 2020-04 2021-03 2 928 44 869 385

2.2.8 Normalization
All channels are standardized based on the training data channel mean and standard
deviation, shown in table 2.2.

Table 2.2: Mean and standard deviation for all GOES channels calculated on the
pixels in the training set with corresponding GPM values.

Channel 8 9 10 11 13 14 15 16
mean 237.2 245.5 253.1 274.4 276.3 275.1 272.5 261.8
std 9.388 11.61 13.48 21.13 22.15 22.57 22.10 17.55

2.3 Dataset properties
The aim of this section is to give an overview of some data characteristics.

2.3.1 Sample
Figure 2.7 shows a sample from the (main) dataset, consisting of an input tensor of
dimension 8×256×256 which corresponds to a label of dimension 256×256 show in
figure 2.8, where the pixels outside the GPM swath is masked out (shown in gray).
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Figure 2.7: Example of an input tensor of standardized GOES channels.

Reference

10-2

10-1

100

101

102

Pr
ec

ip
ita

tio
n 

ra
te 

(m
m

/h
)

Figure 2.8: Example of a GPM label, with precipitation rates (mm/h) and masked
pixels marked in gray.
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2.3.2 Precipitation rate distribution
The intensity of precipitation is highly skewed towards light precipitation, as seen
in figure 2.9 for the GPM training data and the rain gauge data. For the GPM
validation and test distributions, see A.2 and A.3 in appendix A. The rain gauge
data is discrete, in the sense that the precipitation intensities can take the values
of 0.0, 0.2, 0.4, 0.6... and so on with multiples of 0.2. Compare this to the more
continuous GPM distribution. Studying the left subplot in figure 2.9, we notice the
apparent shortage of observations just above zero precipitation in the GPM data.
This is a result of the nominal sensitivity threshold for the DPR and GMI sensors
of around 0.2 mm/h (Skofronick-Jackson et al. 2017). The percentage of non-zero
precipitation is 6% in the GPM datasets, and 8% in the rain gauge dataset.
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Figure 2.9: Precipitation distribution for the GPM training data overalyed by the
rain gauge data, bin width 0.1 mm/h. Note the logarithmic scaling on the vertical
axis. Right image is a close up of the range below 0.4 mm/h with bin width 0.005
mm/h.
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With the dataset ready, it is time to consider the process of fitting a model to
the data. This chapter includes a formulation of the problem, methods used and
evaluation metrics to be applied.

3.1 The retrieval problem
The problem of retrieving precipitation or other atmospheric quantities by remote
sensing can be described as the inverse problem of determining the retrieval quantity
(e.g. the precipitation rate) x from the actual measurements (e.g. the brightness
temperatures) y. Due to measurement errors, approximations and limited sensitivity
at the instruments, this problem is generally not uniquely solvable (Pfreundschuh
et al. 2018).

3.1.1 Bayesian approach
Applying a Bayesian approach to account for the uncertainties in the problem has
been suggested by Rodgers (2000) and Pfreundschuh et al. (2018). The solution to
the inverse problem is then given by the a posteriori distribution p(x|y) which can
be obtained by Bayes’ theorem

p(x|y) = p(y|x)p(x)∫
p(x′,y) dx′ . (3.1)

Methods that use expression (3.1) to compute a solution to the retrieval problem
are referred to as Bayesian retrieval methods. Pfreundschuh et al. (2018) show
that Quantile Regression Neural Network (QRNN) can be applied to estimate the
posterior distribution p(x|y) of Bayesian remote sensing retrievals, and that they
are capable of providing probabilistic predictions on par with such Bayesian meth-
ods. The authors conclude that QRNN may even handle the curse of dimensionality
better than traditional (non-analytical) methods which would make them more suit-
able for the application to high-dimensional retrieval problems. The QRNN will be
formulated in the following section.

3.2 Supervised machine learning
The retrieval problem, disregarding the uncertainties, can be viewed as a simple
multiple regression task that is well suited for supervised machine learning. With a
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set {(y, x)} consisting of pairs of observations y and retrieval quantities x a model
f can be trained to map the input values y to the expected output x. The model is
trained through adjustment of its parameters to minimize the mean of a certain loss
function L(f(y), x) on the training dataset. Commonly, the squared error loss is
used, but as will be seen in section 3.2.1 another loss function will be applied here.

3.2.1 Quantile Regression
Let F (x) be the cumulative distribution function of a probability distribution p(x).
Then the τth quantile xτ of F is given by

xτ = inf{x : F (x) ≥ τ}, (3.2)

or equivalently: xτ is the smallest value of x among all the values for which the
cumulative distribution function exceeds τ . By Koenker (2005), the τth quantile
minimizes the expectation

E(Lτ (xτ , x)) =
∞∫
−∞

Lτ (xτ , x′)p(x′) dx′ (3.3)

of the function

Lτ (xτ , x) =

τ |x− xτ |, xτ < x

(1− τ)|x− xτ |, xτ ≥ x.
(3.4)

If the machine learning model f is trained to minimize the mean of the quantile
loss function Lτ (f(y), x) over the training set {yi, xi}ni=1, then it learns to predict
the quantiles of p(x|y). If the model is trained to estimate multiple quantiles, then
an approximation of the cumulative distribution function Fx|y(x) can be obtained
(Pfreundschuh et al. 2018).

3.3 Artificial Neural Networks
Artificial Neural Networks (ANNs) are a class of flexible nonlinear models that are
well-suited for representing complex relationships in data. They have been applied
to precipitation retrieval problems for quite some time, with an early example be-
ing the PERSIANN algorithm that used IR imagery from geostationary satellites
together with ground-based data to estimate rainfall rates over Japan and Florida
in the late 1990s (Hsu et al. 1997). Numerous adaptions and later versions of the
PERSIANN algorithm can be found, including PERSIANN-CNN that applies Con-
volutional Neural Networks (CNNs) to retrieve precipiation over the continental
U.S. (Sadeghi et al. 2019).

In this section we will introduce some building blocks of ANNs, and thereafter
the specific architectures of the networks trained for this thesis. As one objective
of this thesis is to compare a model that makes use of spatial information to one
that deals with each pixel individually, there will be two different types of models
presented.
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3.3.1 Fully Connected Layer
ANNs consists of layers of nodes, referred to as neurons, arranged in a network
structure. Let x ∈ Rn represent the input to a fully connected layer, and y ∈ Rm

the output. Then the jth element yj of the output is connected to every input xi
by trainable weights wij, as illustrated in figure 3.1. Mathematically, this can be
computed as in

yj = ϕ

(
n∑
i=1

wijxi + bj

)
, (3.5)

with the associated weights wij, bias bj and non-linear activation function ϕ. A
Multilayer perceptron (MLP) has at least three such layers, where the intermediate
layers are called hidden layers.

x1

x2

x3

...
xn

y1

y2

...
ym

Figure 3.1: Fully Connected Layer with input x ∈ Rn and output y ∈ Rm. Each
arrow is associated with a weight wij.

3.3.2 Convolutional Layer
A layer type that is specialised in capturing the spatial structure of the input is
the convolutional layer, which is based on the matematical operation with the same
name (LeCun et al. 1998). Given two functions f, g : Z2 −→ R, their convolution
(in a 2-dimensional setting) at a point (k1, k2) ∈ Z2 is defined as

(f ∗ g)[k1, k2] =
∑
l1∈Z

∑
l2∈Z

f [k1, k2]g[k1 − l1, k2 − l2]. (3.6)

This operation is illustrated in figure 3.2 where an input is convolved by a kernel
which results in a output feature map. In the case of a multiple channel input a
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Figure 3.2: Example of a convolutional filter in the case of a single channel image.
The 3× 3-kernel slides through the 7× 7 input, performing the convolution at each
position, which yields the output.

filter consisting of a stack of kernels is applied. Each channel is convolved with a
kernel, and the outputs are summed-up element-wise.

A convolutional layer is often followed by a pooling layer with the purpose of down-
sampling. 2D-Max-pooling, which is applied in this thesis, is a filter that outputs
the maximum of each input subregion. A convolutional network can be viewed as
a fully connected network with a priori constraints encoded into its structure. This
prior makes sure that the weights for each hidden unit is equal to the weights of
its neighbor shifted in space. This makes convolutional neural networks learn lo-
cal correlations and helps it in becoming invariant to translation. The prior also
ensures that the weights are equal to zero everywhere except for a small spatial
neighborhood to that hidden unit. Further, the pooling operation can be regarded
as a prior that makes each unit invariant to small translations (Goodfellow et al.
2016). This makes convolutional networks suitable for many different computer vi-
sion tasks, where spatial information is important.

In addition, we apply batch normalization (Ioffe and Szegedy 2015) in order to
stabilize and speed up the training. Each input element xi in a mini-batch B is
re-scaled and re-centered according to equation

BNγ,β(xi) = γ
xi − µB√
σ2
B + ε

+ β (3.7)

where µB and σB is the mini-batch empirical mean and standard deviation respec-
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tively and where γ and β are learnable parameters. ε is added for numerical stability.

3.4 Architectures
As stated above, this thesis is intended to compare an independent pixel based
model to a spatially aware model. For this purpose, we will introduce two different
architectures in this section. Common for both of them is the number of input
channels C (or features in the case of independent pixels) which is eight due to
the dimension of the sample described in section 2.3.1. Also, the quantiles to be
predicted are set to τ = 0.01, 0.02, ..., 0.99 for both architectures.

3.4.1 Multilayer perceptron
The MLP to be used as our non-spatial QRNN model has the architecture given in
table 3.1. Here the input x ∈ RC represent a single pixel with eight channel values,
and y ∈ R99 the estimated quantiles of the posterior distribution for this pixel is the
output.

Table 3.1: Architecture of MLP.

Layer Type Activation Hin Hout

Input Linear ReLU 8 256
Hidden Linear ReLU 256 256
Hidden Linear ReLU 256 256
Output Linear None 256 99

As specified in the table 3.1, the activation function ϕ choosen is the rectified linear
unit function (ReLU), given by

ReLU(x) = max (0, x). (3.8)

3.4.2 XceptionFPN
TheXceptionFPN model architecture from the quantnn library (Pfreundschuh 2021)
is based on combining concepts from the Xception network proposed by Chollet
(2017), and Feature pyramid networks (FPN) proposed by Lin et al. (2017).

The first aforementioned network, Xception, is an ’extreme’ version of its predeces-
sor the Inception (Szegedy et al. 2016) and builds upon a hypothesis of decoupled
cross-channel correlations and spatial correlations. The aim is to make the convolu-
tion operation more efficient. The Xception architecture is entirely based upon the
Depth-wise separable convolution consisting of

i) a spatial convolution performed independently over each channel in the input,
ii) a 1× 1-convolution projecting the previous output onto a new channel space,
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Figure 3.3: Illustration of Depth-wise separable convolution applied to a three
channel image. First, an ordinary spatial convolution is applied to each channel
separately. Second, a point-wise convolution (kernel size 1× 1) is performed on the
stack of output feature maps from the first step.

illustrated in figure 3.3.

The second network, the FPN, is a pyramidal structured feature extractor, as indi-
cated by its name. The architecture consists of a bottom-up down-sampling pathway
and a top-down up-sampling pathway, with lateral connections at every level. The
goal is strong semantics on all scales.

Figure 3.4 shows a diagram of the XceptionFPNs general architecture. We recog-
nise the pyramid structure of the FPN to the left, and the Depth-wise separable
convolution as the ’SeparableConv’ in the network blocks. The output of the Xcep-
tionFPN is a tensor with the quantiles of the posterior distribution along the channel
dimension.
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Figure 3.4: Schematic of the XceptionFPN model architecture. To the left: the
general pyramid structure of the entire flow, and to the right: the Downsample/X-
ception flow (where the dashed region only occurs in the downsampling), the Up-
sample flow and the Exit flow respectively. The n in the nXception indicates that
the module is repeated at this position.

19



3. Modelling

3.5 Evaluation
How to fairly and meaningfully evaluate the models is a question in itself, that
is somewhat dependent upon the intended application. The metrics applied for
this thesis are described in this section. Most metrics require a single estimate x̂
for each observed sample x. The estimate is then taken to be the posterior mean
E(x|y) whenever these metrics are applied.

3.5.1 Regression metrics
Common metrics for evaluating regression models are the bias (3.9), Mean Absolute
Error (3.10) and Mean Squared Error (3.11). These will be applied to assess if the
predicted posterior means are close to the ground truth.

Bias(x̂, x) = 1
N

N∑
i=1

(x̂i − xi) (3.9)

MAE(x̂, x) = 1
N

N∑
i=1
|x̂i − xi| (3.10)

MSE(x̂, x) = 1
N

N∑
i=1

(x̂i − xi)2 (3.11)

3.5.2 Categorical metrics
We are interested in how well the models differentiate between no precipitation
and precipitation. The regression metrics do not capture this and therefore we
complement them with categorical metrics. Table 3.2 shows a confusion matrix

Predicted
Precipitation No precipitation

Observed Precipitation True Positives False Negatives
No precipitation False Positives True Negatives

Table 3.2: Confusion matrix of our precipitation/no precipitation categories.

with the classes precipitation and no precipitation. With nk being the number of
predictions in each category k = TP, TN, FP, FN, the categorical metrics True
Positive Rate (3.12) False Positive Rate (3.13) can be computed.

rTPR = nTP

nTP + nFN
(3.12)

rFPR = nFP

nFP + nTN
(3.13)

To divide our continuous data into the two categories precipitation/no precipitation
we apply a threshold as decision rule, i.e. all precipitation rates below the threshold
will belong to the no precipitation class and vice versa. The threshold is set to 10−1

mm/h if not stated otherwise.
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3.5.3 Probabilistic accuracy measures
We have now established the use of standard metrics for evaluating our predictions
summarized as a point prediction x̂ against the observed sample x. But, since the
goal is to estimate the posterior distribution, we would like a means of evaluating
the accuracy of predicted conditional distributions. Such summary measures are
called scoring rules. Ideally, a probabilistic prediction is sharp (i.e. have small un-
certainty) and well calibrated (predicted probabilities match observed frequencies).
To formalize this, there are so called proper scoring rules. A scoring rule is proper if
the highest expected score for a given observation is achieved by reporting its true
probability distribution (Gneiting and Raftery 2007).

The quantile loss function (3.4) used to optimize the QRNN is a proper scoring
rule for quantile estimation and will be used also for evaluating and comparing the
implemented models. Further, we will use the continuous ranked probability score
(CRPS) defined by equation (3.14), which is a proper scoring rule for evaluating an
estimated cumulative distribution function. The CRPS measures the quadric differ-
ence between the cumulative distribution function (F ) and the empirical cumulative
distribution function (Gneiting and Raftery 2007).

CRPS(F, x) =
∞∫
−∞

(F (x′)− 1(x ≤ x′))2
dx′ (3.14)

3.6 Experimental setup
The two models, further on referred to as ”the CNN” and ”the MLP”, described
in section 3.4 were trained on the training dataset, and the validation dataset was
utilized for model selection (split described in section 2.2.7). As stated above, the
loss to be minimized is the mean of equation (3.4), which is calculated on the
pixels where the label data is present. This section contains further details of the
experimental setup.

3.6.1 Data loading
The data is loaded differently for the CNN and the MLP models. Due to the fact that
the MLP only considers single pixels, the inputs of shape C×H×W = 8×256×256
is converted to arrays of shape HW × C with corresponding label arrays of length
HW . Further, the entries without corresponding GPM labels are masked out, and
the remaining arrays are concatenated to a resulting array of shape P × C, where
P is the number of label pixels.

For the CNN the inputs are not reshaped, but since the 256 × 256 sample squares
are all by construction centered around the GPM swath, a cropping step is included
in the loading of the data to support the network in predicting on all parts of the
sample image. Each time a sample is loaded, a random 128 × 128 pixel square is
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returned instead of the whole sample of 256 × 256 pixel. In this way the network
gets to see different parts of the data in different epochs, with the swath located in
different parts of the image.

Additionally, when loading the data for both models, all zero-valued precipitation
rates where reassigned random values in the range 10−4 mm/h to 10−3 mm/h.

3.6.2 Hyperparameters
A cosine annealing learning rate schedule was used for training (Loshchilov and
Hutter 2016), together with the optimizer Adam (Kingma and Ba 2014). The hy-
perparameters were manually tuned and the most promising models were selected
based on the validation dataset metrics computed. The final hyperparameter setup
for the models are given in table 3.3. The batch size was set to the largest that
could fit in memory.

Table 3.3: Hyperparameter setup for the MLP and the CNN models.

Model Initial LR Epochs Batch size
MLP 0.001 100 32786 entries
CNN 0.01 100 64 images
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4
Results

This chapter consists of two main parts, (i) the evaluation of the QRNN models on
the unseen reference test set, and (ii) the comparison against the hydroestimator
on the separate rain gauge dataset. Posterior mean estimates are considered as
predictions, if not otherwise stated.

4.1 Evaluation on test set
The trained and selected MLP and CNN models are evaluated on the test set de-
scribed in section 2.2.7. Figure 4.1 shows an example prediction for illustrational
purposes.
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Figure 4.1: Example predictions of selected QRNN models (right) on a sample
from the test set (left). In the prediction images gray lines mark the edge of the
GPM swath where the ground truth data exists.

In figure 4.2 we see the observed precipitation rate distribution of the test set over-
layed with the distributions of the QRNN posterior mean and 95th quantile esti-
mates. It is clear that both posterior mean estimates fall short of capturing the
heavy precipitation tail. However, the CNN appear to do a bit better than the
MLP. The 95th percentile estimates are also included here. Those are shifted to-
wards higher rates and appear to encase the tail.

Table 4.1 contains regression metric values for both models. The CNN outper-
forms the MLP on all but the 0.1− 1 mm/h range which makes up 2.7% of the true
rates. Comparing the bias and MAE suggest that both models have a tendency to
overestimate low rates 0 − 0.1 mm/h and underestimate rates above 10 mm/h.
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Figure 4.2: Distribution of true and predicted precipitation rates for whole test
data set. Dotted lines show the 95th quantile of the QRNN models predictions,
while solid lines mark posterior means. Right subplot shows a close up of the range
below 10.1 mm/h. Bin width 0.1 mm/h. Logarithmic scaling of the vertical axis.

Table 4.1: Bias, MAE and MSE calculated for the QRNN models posterior mean
on either the whole test set, or on ranges corresponding to values in the reference
data. The intervals are specified by the column ”Ranges”. The column ”Fraction”
displays the ratio of true values in the range and the total amount of true values.
Bold font marks the best value in each row.

Metric Range Fraction MLP CNN
Bias all 1 -0.00952 -0.00980

0 10−1 0.94 0.0788 0.0362
10−1 100 0.027 0.336 0.418
100 101 0.030 -1.69 -0.717
101 103 0.0025 -16.8 -13.4

MAE all 1 0.197 0.148
0 10−1 0.94 0.0789 0.0364

10−1 100 0.027 0.639 0.730
100 101 0.030 2.11 1.97
101 103 0.0025 16.8 13.9

MSE all 1 1.53 1.23
0 10−1 0.94 0.0951 0.0561

10−1 100 0.027 1.10 1.82
100 101 0.030 8.21 7.91
101 103 0.0025 458 351
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Figure 4.3: Difference between true and predicted precipitation rates for whole test
data set. Right subplot shows a close up of the range -10.1 mm/h to 10.1 mm/h.
Bin width 0.1 mm/h. Logarithmic scaling of the vertical axis.

Figure 4.3 shows the distribution of errors on the test set. We see that most errors
are concentrated around zero, with the majority on the positive side i.e. predictions
slightly above the observed values. Both models present a larger left tail. We can
even see a handful of MLP errors larger than 200 mm/h that must originate from
extreme precipitation rates being estimated as very small. On the whole, it seems
that the MLP is more prone to large underestimation errors. When it comes to over-
estimation errors on the other hand, the CNN presents a longer right tail, however
not as extensive as the left one. Note also the surplus of the MLP distribution for
low positive error rates.

Table 4.2: Loss and Continuous Ranked Probability Score (CRPS) mean and
median over over all predicted quantiles calculated for the QRNN models on the
test set. Bold font marks the best value in each row.

Metric MLP CNN
Loss mean 0.0625 0.0504

CRPS mean 0.116 0.0945
median 0.000203 0.000159

Table 4.2 show probabilistic accuracy measures loss (3.4) and CRPS (3.14). Also
here we can note that the CNN yields lower values than the MLP.

Figure 4.4 shows two-dimensional histograms or heatmaps of the predictions in re-
lation to the true labels. Correct predictions fall on the y = x line, drawn as the
dashed diagonal. Due to the shape of the precipitation rate distribution (see figure
2.9) with a heavy predominance of zero and small rates, a linearly spaced heatmap
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Figure 4.4: 2D-histogram showing frequency of predicted and true precipitation
rates. Correct predictions fall on the dashed line. Bin sizes scales logarithmically
along both axes. White bins are empty.
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Figure 4.5: 2D-histogram showing column-wise normalized frequency of predicted
and true precipitation rates. Note the clipped colorbar. Correct predictions fall on
the dashed line. Bin sizes scales logarithmically along both axes. White bins are
empty.
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proved not so useful here. Therefore the bins are not made equal in size, instead
they are logarithmically spaced on both axes which counteracts the rate imbalance.

In this visualization, it seems the CNN predictions lie centered around the diag-
onal, while the MLP predictions seem to fall on a somewhat less steep line. For
completeness, we also include a second visualization, figure 4.5, that shows a similar
heatmap, with the difference being the color scaling. In this figure a column-wise
normalization is applied. This enables us to study where the bulk of the predictions
fall independently for each bin of reference values. Here we can distinguish the same
behavior for the lower rates as in figure 4.4, but also that the predictions defer from
the line at certain points for both models.

As stated in section 3.5.2 we categorize rates below 10−1 mm/h as no precipita-
tion in the context of applying categorical metrics. Figure 4.6 and 4.7 show the
distribution of values corresponding to false positives (no precipitation predicted
as precipitation) and false negatives (precipitation predicted as no precipitation).
First, looking at figure 4.6 we can note that the MLP gives rise to a larger amount
of miss-classified observations, but that the CNN distribution has a longer tail with
a few no precipitation observations being predicted as above 30 mm/h rates.

In figure 4.7 we see instead observed non-zero precipitation rates that have been
miss-classified as no precipitation. Here, the MLP seems to be missing a good deal
more than the CNN throughout all rates except for the lowest ones.

Additionally, we consider figure 4.8 which displays a Receiver Operating Charac-
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Figure 4.6: False Positives. The distribution of predictions above the threshold
10−1 mm/h that correspond to values below the threshold in the reference data.
Right subplot shows a close up of the range below 10.1 mm/h. Bin width 0.1
mm/h. Logarithmic scaling of the vertical axis.
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Figure 4.7: False Negatives. The distribution of reference values above the thresh-
old 10−1 mm/h that correspond to predictions below the threshold. Right subplot
shows a close up of the range below 10.1 mm/h. Bin width 0.1 mm/h. Logarithmic
scaling of the vertical axis.
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Figure 4.8: Curve obtained by varying the precipitation threshold for classifying
predictions as precipitation/no precipitation. Marks at the threshold 0.1 mm/h.
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teristic (ROC) curve that shows the performance in terms of True Positive Rate
(3.12) and False Positive Rate (3.13) of a classifier at varied classifying thresholds.
Here, we consider the classifiers to the QRNN models in combination with applying
a precipitation rate threshold to their predictions. The curve starts out in (0, 0)
for thresholds exceeding all precipitation rates. As the threshold is successively
lowered the curve grows monotonically, to finally end up in (1, 1) for the threshold
0 mm/h. An ideal classifier that identifies all precipitation observations as pre-
cipitation without wrongly classifying no precipitation as precipitation would have
rTPR = 1, rFPR = 0 in the upper left corner. A random guess would give a point on
the diagonal between (0, 0) and (1, 1). In figure 4.8 we can see that both the MLP
and the CNN curves come quite close to the corner.

4.2 Evaluation on rain gauge data
Moving forward in the evaluation, this section contains the comparison of the Hy-
droestimator (HE) and the QRNN models on the rain gauge dataset introduced in
section 2.1.3. Note that the quantity considered here is hourly precipitation (as
opposed to precipitation rate), and thus the retrieval predictions are aggregated to
match these rain gauge measurements. To promote readability, we include only the
CNN and the corrected HE for some of the figures in this chapter. For complemen-
tary figures, see appendix A.

Table 4.3: Bias, MAE and MSE calculated for the QRNN and HE models on the
rain gauge dataset. Bold font marks the best value in each row.

Metric HE HE corr. MLP CNN
Bias 0.104 -0.00655 -0.0213 0.00423
MAE 0.394 0.300 0.265 0.232
MSE 3.94 2.44 2.04 1.70

Table 4.3 displays regression metrics for the models on the rain gauge dataset. Ac-
cording to these metrics, the CNN produces the best results. The MLP does second
best when looking at the MAE and MSE scores, however the corrected HE shows a
better bias.

In figure 4.9 we see the rain gauge distribution overlayed by the distributions of
the HE and QRNN predictions. The standard HE is shifted towards higher values.
It predicts too few non-zero rates below 0.7 mm and too many above, except for in
the tail where it covers the higher precipitation values quite well. The MLP and the
CNN seem to follow the same pattern as in figure 4.2; the MLP distribution starts
off on top, to switch places with the CNN distribution somewhere just above 2 mm.
Both distributions are shifted toward too low. The corrected HE distribution re-
sembles the CNN distribution for most values, but diverges from it in the low range,
where it displays a sharp drop.
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Figure 4.9: Distribution of true and predicted precipitation rates for the rain gauge
dataset. Right subplot shows a close up of the range below 10.1 mm. Bin width 0.2
mm. Logarithmic scaling of the vertical axis.
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Figure 4.10: Difference between true and predicted precipitation rates for the
corrected HE and the CNN on the rain gauge dataset. Right subplot shows a close
up of the range -10.1 mm to 10.1 mm. Bin width 0.2 mm. Logarithmic scaling of
the vertical axis.
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Figure 4.11: 2D-histogram showing frequency of predicted (by the corrected HE
and the CNN) and true precipitation rates for the rain gauge dataset. Correct
predictions fall on the dashed line. Bin width 0.2 mm, logarithmic scaling of both
axes. White bins are empty.
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Figure 4.12: 2D-histogram showing column-wise normalized frequency of predicted
(by the corrected HE and the CNN) and true precipitation rates for the rain gauge
dataset. Note the clipped colorbar. Correct predictions fall on the dashed line. Bin
width 0.2 mm, logarithmic scaling of both axes. White bins are empty.
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Figure 4.10 shows error distributions for the corrected HE and the CNN on the
rain gauge dataset. Both distributions have a longer left tail, and seem to be quite
similar except for in the 0− 4 mm range.

Figure 4.11 and 4.12 show two-dimensional histograms of predictions from the cor-
rected HE and the CNN in relation to the true rain gauge observations. Accurate
predictions fall on the y = x line. It appears as if the predictions from the corrected
HE follow a horizontal line while the CNN predictions lie closer to the diagonal.

Figure 4.13 and 4.14 show the distribution of values corresponding to false posi-
tives and false negatives for the corrected HE and the CNN predictions on the rain
gauge dataset. The false positives distribution (no precipitation predicted as pre-
cipitation) for the two models look to be similar overall, except for in the low range.
The false negative distributions (precipitation predicted as no precipitation) on the
other hand, displays differences. Here, the CNN distribution seems to have a shorter
tail and to lie below the corrected HE for all values.

Figure 4.15 shows ROC curves for precipitation/no precipitation classifiers based
on the HE and QRNN models. Compared to figure 4.8 in the previous section, the
QRNN models do somewhat worse on the gauge dataset. The HE classifier curves
defer early on.
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Figure 4.13: False Positives. The distribution of predictions above the threshold
10−1 mm that correspond to values below the threshold in the rain gauge data.
Right subplot shows a close up of the range below 10.1 mm. Bin width 0.2 mm.
Logarithmic scaling of the vertical axis.
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Figure 4.14: False Negatives. The distribution of rain gauge values above the
threshold 10−1 mm that correspond to predictions below the threshold. Right sub-
plot shows a close up of the range below 10.1 mm. Bin width 0.2 mm. Logarithmic
scaling of the vertical axis.
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Figure 4.15: Curve obtained by varying the precipitation threshold for classifying
predictions as precipitation/no precipitation. Marks at the threshold 0.1 mm.
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Figure 4.16: For each hour (local time) the mean precipitation over all available
locations and dates in the rain gauge dataset and corresponding corrected HE and
CNN predictions. Filled region represent plus minus one standard deviation of the
locations mean over the dates.

The diurnal cycle is an important aspect of climate variability that should be re-
flected by a good model. In figure 4.16, the diurnal variation in the rain gauge
dataset is shown, together with corresponding predictions from the corrected HE
and the CNN. Both follow the fluctuations of the gauges quite closely, except for
in the afternoon. Here, the corrected HE present a shifted peak, and the CNN an
overshoot.

4.2.1 An extreme precipitation event
On December 22nd and 23rd, 2020, an extreme precipitation event was recorded in
Xerém in the municipality of Duque de Caxias, Rio de Janeiro State. 224.2 mm
was measured in less than 24 hours, causing severe flooding and landslides (Davies
2021). Figure 4.17 show the measurements from the Xerém rain gauge together with
predictions from the corrected HE and the CNN. For the latter, the 95th and 99th
quantiles are included – even though the reader is urged to approach these with
some caution, since what is displayed should be viewed as a preliminary approxi-
mation. These hourly uncertainty estimates were computed in the same manner as
the posterior means, disregarding correlation between subsequent retrievals, which
may be a strong assumption to make. However, it is promising that an extreme
precipitation event such as this one might be included in the QRNN distribution
tail.
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Figure 4.17: Hourly observed and predicted precipitation in Xerém, Rio de Janeiro
in the period Dec 22nd to 24th, 2020. Filled regions show hourly means of the CNN’s
estimated 95th and 99th quantile.
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5
Discussion

We restate the main question of this thesis: is it possible to learn a mapping from the
GOES-16 IR observations to a probability distribution over precipitation rates by
use of QRNNs? The results indicate that this is indeed doable, and that the QRNN
model performances go beyond the currently-in-operation HE. Moreover, the com-
parison of the two QRNN models overall suggests that the CNN is the preferred
model for the task. In the following chapter we will shine some light upon the main
findings.

In figure 4.2 we saw that neither the CNN nor the MLP posterior mean estimates
captures the distribution of rates in the test dataset properly. This result is expected
statistically because of the retrieval uncertainties which motivated the probabilistic
approach in the first place. The far right of the distribution tail stems from rare
precipitation occurrences that might rather be explained by the outskirts of the
probability distributions than their posterior means. Another contributing factor
to the underestimation can be attributed to the physics. In order to produce high
precipitation, the clouds need to be very thick and deep, causing saturation of the
IR signal. Nevertheless, what can be read from the plot is that the 95th quantile
estimates encloses the distribution – which means that the observed extreme inten-
sities fall inside the estimated probability distributions.

The CNN comes closer to the observed distribution than the MLP in figure 4.2.
This resonates well with the calculated scoring rules in table 4.2, and most metrics
in table 4.1. The 2D-histograms in figure 4.4 and 4.5 indicates stronger correlation
between predicted and true rates and the ROC curve in figure 4.8 improved classifi-
cation properties for the CNN. In short, the results show that the CNN outperforms
the MLP. This suggests that including spatial information improves the retrieval.

Figure 4.17 shows predictions for an extreme precipitation event where the right
tail quantities display way higher precipitation intensities than the posterior mean,
matching the observed intensities. While this is an interesting result that certainly
highlights the importance of considering uncertainties in the retrieval, the reader
should be aware that the current implementation of the retrieval calculated the per-
centiles of the hourly precipitation rates only approximately. A thorough evaluation
of the predicted uncertainties against independent validation data should therefore
revisit the propagation of uncertainties during the accumulation of the instantaneous
retrieval results to hourly averages.
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5. Discussion

Naturally, retrievals derived by supervised machine learning algorithms will always
be limited by the reference data used in training, in our case the GPM combined
product. This reference is itself a result of satellite retrievals, and therefore arguably
suffers from retrieval uncertainties as well, to some extent. However, the assessment
of the GPM products accuracy is clearly out of scope for this work.
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Conclusion

In this work we have found that using a machine-learning based approach to the
precipitation retrieval problem works better than the algorithm in operation for the
region studied. In addition to this we have also seen that including spatial infor-
mation in the retrieval improves the performance. This points to the potential in
applying neural networks for this task, and the flexibility in the approach opens up
for the opportunity of further boosting the retrieval by switching algorithms, which
is a far lower cost than launching a new satellite.

Our results constitutes a promising first step in developing a new operational re-
trieval algorithm. With this as base, future research is encouraged to extend to all
available GOES-16 channels. Other additional input might also be included, like
land/ocean categories. The need for further validation on and comparison to other
available independent reference datasets and retrieval algorithms are also empha-
sised as well as considering seasonal aspects. The preliminary analysis of the Xerém
case presented in this work illustrates the importance of considering the retrieval
uncertainties, but the retrieval performance for a larger set of extreme precipitation
events should be considered in future studies.
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Figure A.1: Missing values (represented in black) in the rain gauge dataset and
the corresponding HE estimates.
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Figure A.2: Precipitation distribution for the GPM validation data, bin width 0.1
mm. Note the logarithmic scaling on the vertical axis. Right image is a close up of
the range below 10.1 mm/h.
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Figure A.3: Precipitation distribution for the GPM test data, bin width 0.1 mm.
Note the logarithmic scaling on the vertical axis. Right image is a close up of the
range below 10.1 mm/h.
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Figure A.4: Difference between true and predicted precipitation rates for the HE
and the QRNN models on the rain gauge dataset. Right subplot shows a close up
of the range -10.1 mm to 10.1 mm. Bin width 0.2 mm. Logarithmic scaling of the
vertical axis.
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Figure A.5: 2D-histogram showing frequency of predicted (by the HE and the
MLP) and true precipitation rates for the rain gauge dataset. Correct predictions
fall on the dashed line. Bin width 0.2 mm, logarithmic scaling of both axes. White
bins are empty.
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Figure A.6: 2D-histogram showing column-wise normalized frequency of predicted
(by the HE and the MLP) and true precipitation rates for the rain gauge dataset.
Note the clipped colorbar. Correct predictions fall on the dashed line. Bin width
0.2 mm, logarithmic scaling of both axes. White bins are empty.
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Figure A.7: False Positives. The distribution of predictions above the threshold
10−1 mm that correspond to values below the threshold in the rain gauge data.
Right subplot shows a close up of the range below 10.1 mm. Bin width 0.2 mm.
Logarithmic scaling of the vertical axis.
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Figure A.8: False Negatives. The distribution of rain gauge values above the
threshold 10−1 mm that correspond to predictions below the threshold. Right sub-
plot shows a close up of the range below 10.1 mm. Bin width 0.2 mm. Logarithmic
scaling of the vertical axis.
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Figure A.9: Graph displays for each hour (local time) the mean precipitation over
all available locations and dates in the rain gauge dataset and corresponding HE
and MLP predictions. Filled region represent plus minus one standard deviation of
the locations mean over the dates.
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