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Energy-Optimal Platooning with Hybrid Vehicles
MATTIAS HOVGARD, OSCAR JONSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The objective of this master thesis is to present a control strategy capable of minimizing the
fuel consumption of hybrid electric vehicles traveling in a platoon on a road with a known
topography. The main idea is to minimize the amount of energy that is wasted because of the
air resistance and by braking with the mechanical brakes. The former is achieved by having
the vehicles drive close after one another. The latter can be achieved by either allowing the
speed to vary and thereby avoid braking altogether, or by using the electric machine to brake
and storing the kinetic energy of the vehicle as electric energy in the battery. The control
strategy finds the optimal states: velocity, battery state of charge, travel time, gear and engine
state. It also finds the optimal control signals: the force from the engine, electric machine
and mechanical brakes as well as switching gear and changing engine state. To make it less
computationally demanding the optimization formulation is divided into two layers. One that
finds the optimal velocity, battery state of charge and travel time using convex optimization
and one that finds the optimal gear and engine state using dynamic programming. The control
strategy is then applied to several test cases to evaluate its performance and to compare the
fuel consumption of different types and sizes of platoons. Most notably, the test cases show that
the fuel consumption can be reduced up to 10 % with a platoon of four hybrid electric vehicles
compared to the single vehicle case. Finally, the results are discussed and possible future work
is suggested.

Keywords: energy optimization, platooning, hybrid electric vehicle, model predictive control,
dynamic programming, adaptive cruise controller, cooperative adaptive cruise controller.
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1
Introduction

Reducing the energy consumption of moving vehicles is desirable for several reasons. One
of them is to reduce the fuel costs, and low fuel consumption is an important selling point
for vehicle manufactures. For example, a survey conducted by the American Transportation
Research Institute [2] shows that US trucking companies 2014 on average spent 34 % of their
expenditures on fuel. In recent years, another driving factor have emerged, which is the desire
to reduce the negative effects vehicle emissions have on human health and the environment.
According to the European Environmental Agency, air pollution (which transportation is a
major contributor to) in 2014 caused 40 000 deaths in the European Union alone [3]. On
the subject of global warming, data from Eurostat shows that around 23 % of the greenhouse
emissions in the European Union 2014 came from transportation [4].

One way to reduce energy consumption is to utilize some form of Adaptive Cruise Controller
(ACC) [5], and use information from the surrounding environment (e.g. topography of the road
ahead) to optimize the speed, and thereby save fuel. For example, it is unnecessary to speed
up just before a downhill and then have to use the mechanical brakes to not exceed the speed
limits. If the vehicle instead is aware of the downhill ahead, it does not have to speed up,
and less energy will be wasted due to mechanical braking. However, because of surrounding
traffic and speed limits etc. some energy will inevitably be wasted using the mechanical brakes.
This issue can to some extent be solved using a Hybrid Electric Vehicle (HEV), since an HEV
can utilize its electric machine for braking. In other words, transferring the kinetic energy of
the vehicle to electric energy, which can be stored in a battery and later be used, thus saving
additional fuel. Furthermore, an HEV can turn off the engine during parts of the driving cycle,
which also saves fuel.

A more advanced version of ACC is the Cooperative Adaptive Cruise Controller (CACC) [6].
A CACC communicates information between vehicles, making it possible to form tight vehicle
formations, known as platooning. With this comes another possibility to save fuel, namely
to reduce the air resistance the vehicles are exposed to during movement. This is a major
contributing factor of fuel consumption for trucks, since there are limitations to how aerody-
namically efficient they can be built. With the CACC, the vehicle distance can be kept very
small (compared to the case with only manual control) and a significantly reduced air resistance
for the members of the platoon can be achieved, even for the leading vehicle.

1



1. Introduction

1.1 Background

There are many techniques to minimize the fuel consumption for conventional vehicles by using
information of the road ahead. One such technique is presented by [7] which uses a Model Pre-
dictive Controller (MPC) [8] that is solved using Dynamic Programming (DP) [9]. However,
due to the rapid increase in states when considering a platoon of vehicles, DP becomes imprac-
tical. Therefore, optimization of an entire platoon often involves dividing the optimization into
multiple sub-problems. Some examples are three earlier master projects ([10], [11] and [12]) as
well as an article [13] published in the subject. In these projects, MPCs are designed which
optimizes the velocity and gear selection separately. The velocity is optimized by formulating
the problem as a convex optimization problem which can be solved efficiently using commercial
solvers. The gear selection is optimized using DP or simply by always choosing the highest
possible gear. The conclusion is that up to 10 % can be saved when traveling in a platoon
compared to alone. However, they only looked at conventional vehicles and recent development
suggests that HEVs will play a major role in the transportation systems in the future, and more
research are conducted in that area [14].

Energy optimization of HEVs is more complex than that of conventional vehicles. This is mainly
because any optimization strategy must manage an additional energy storage, the electric
battery. It also introduces extra states, the battery state of charge (SOC) and engine on/off
state, as well as extra control signals for deciding electric machine power and turning the engine
on or off. Energy optimization for a single HEV has previously been examined in [15] and [7].
The former uses MPC and formulates the velocity optimization as a Quadratic programming
(QP) problem, and a separate DP-scheme to optimize the gear selection. The decision of when
to turn on/off the engine is managed by filtering the result from the QP-problem and using a
simple rule of thumb about how often the engine can be turned on. The results show that up
to 5 % of fuel can be saved compared to a conventional vehicle. The authors in [7] introduces a
method utilizing fuel equivalents which relates the use of electric energy to fuel consumption,
to manage the battery energy. It seems reasonable to assume that when combining the use of
HEVs with the possibility to drive in platoons and to adjust the velocity depending on the road
ahead, a significant reduction of fuel consumption can be achieved.

1.2 Aim

The main aim of this project is to construct a control strategy for optimizing speed, battery
SOC, travel time, gear and engine state for a number of HEVs, traveling in a platoon, on a road
with a known topography. A secondary aim is to use the above-mentioned control strategy,
with different road profiles as well as different combinations of vehicles with different properties
and compare them to each other. This will give insight to what the optimal control strategy
for different types of platoons are, as well the difference in fuel consumption. For example, how
much fuel can be saved by using a platoon of HEVs, compared to a single HEV or platoon with
conventional vehicles?

2



1. Introduction

1.3 Contributions

This project uses a similar control strategy as [13]. The main contribution is to extend the
control strategy to also include HEVs. This means that the mathematical descriptions of the
electric machine and battery are included in the problem formulation. These descriptions are
also simplified to fit the convex optimization formulation. The DP is modified to be able to
handle the discrete decision of when to turn on/off the engine. This is made possible using fuel
equivalents for the energy management of the battery. Additionally, some interesting test-cases
are examined to compare the optimal control strategy of HEVs to conventional vehicles.

1.4 Delimitations

The control strategy is only designed to find the optimal solutions. If it is to be used in a real
vehicle, some additional work must be done. First, the control strategy will probably have to
be simplified, to make it more efficient to solve. A control layer will also have to be added, to
compensate for the model mismatch between the ideal models used in the controller, and the
actual dynamics of the vehicles. In case studies, only perfect driving conditions are assumed
and no other vehicles are present. It is also assumed that the vehicles never have to slow down
or stop for traffic lights for example. This project is limited to only consider optimization of
the entire platoon as a whole. Another alternative would be to use a greedy approach, where
each vehicle is optimized separately. Furthermore, the models that are used, such as the model
of the vehicles and the air drag, are deterministic, and stochastic models are not in the scope
of this project.

1.5 Method

Already existing control strategies and how to model hybrid vehicles are studied with the help
from the literature and previous works in the area. A mathematical formulation of the control
strategy is then created, which is simplified in several different ways in order to make it efficient
to use. This includes dividing the optimization into two sub-problems and making these sub-
problems convex. The simplified mathematical formulation is then implemented in MATLAB
(version 2016b from The MathWorks Inc), and solved using an optimization software called
CVX (version 2.1 from CVX Research, Inc.) [16]. Finally, different test cases are designed and
carried out, to evaluate the performance of the control strategy.

3



1. Introduction

1.6 Thesis Outline

The thesis starts with the modelling in Chapter 2, which contains all of the physical models
used in this project. First for a single HEV, including the power equations regarding the
movement of the vehicles and the power balance of the electrical components, as well as models
of the vehicle components. Then the models are adapted to multiple HEVs and models for
the air drag reduction are included. The control strategy is presented in Chapter 3, which
starts with an overview of the optimization problem, which is then divided into two different
optimization layers, a top layer and a bottom layer. The top optimization layer is described
in Section 3.3, where it is first simplified using linearization and variable changes, before the
final form is presented. The bottom optimization layer is presented in Section 3.4. A summary
of the complete control algorithm is given in Section 3.5. In Chapter 4, some case studies
and results are presented, which includes the sections: single vehicle, multiple vehicles, special
investigations and performance. A discussion about the results and the project as a whole can
be found in Chapter 5. Finally, a conclusion and suggestions for future work are presented in
Chapter 6 and 7 respectively.

4



2
Physical Modelling

This chapter describes the physical model of an HEV as well as how multiple vehicles interact
with each other. The models are mainly inspired from [13], and the model data are provided
from Volvo Group. More details about the model parameters can be found in Table A.1 in
Appendix A.

2.1 Single vehicle

In this section, models of the components in an HEV are presented, as well as the differential
equations of the mechanical and electrical power balance.

2.1.1 Vehicle model

An overview of an HEV is presented in Figure 2.1. The vehicle is equipped with an Internal
Combustion Engine (ICE), which either can be on or off, as well as an Electric Machine (EM).
The EM is powered by a battery, which in turn can be charged by the EM by using it as a
generator. Both the ICE and EM are connected to the same gearbox. However the ICE is
connected to the driving shaft, while the EM is connected to the countershaft via an additional
gear. This means that the EM and ICE will have different gear ratios. The HEV can be
modeled as a lumped mass with two real valued dynamic states, the velocity v and the battery
energy EB. There are also two integer states γ, χ which represents the gear and ICE state
(on/off) respectively. Therefore, the model is a hybrid system with mixed real- and integer
valued states and control signals dependent on the time t.

The equation of motion of the vehicles has the form

mev̇(t) = FV(t)− FVd(v(t), α(s(t)))−mg sin (α(s(t))) (2.1)

where m is the mass, me is the equivalent mass which includes the actual vehicle mass and
terms representing inertia of rotational parts. The force FV is the total traction force delivered
at the wheels, g is the gravitational acceleration, and α is the road gradient which is a function
of the distance traveled s(t). Lastly, FVd represent dissipative forces depending on the air- and

5



2. Physical Modelling

[+] [ ]

Battery

Fuel tank

Gearbox

EM

ICE

Figure 2.1: Overview of the powertrain of an HEV, showing how the ICE, electric machine
(EM), battery, gearbox and differential gear are connected. Note that the ICE is connected to
the driving shaft, while the EM is connected to the countershaft via an additional gear. This
means that the EM and ICE will have different gear ratios.

rolling resistance, which are modeled as

FVd(v(t), α(s(t))) = Fair(v(t)) + Frol(α(s(t))) = ρaAfcd

2 v2(t) +mgcr cos (α(s(t))) (2.2)

where ρa is the air density, Af is the frontal area of the truck, cd is the aerodynamic drag
coefficient and cr is the rolling resistance coefficient.

The mechanical power balance is expressed as

PE(t) + PM(t)− Pbrk(t) = FV(t)v(t) + PTd(γ(t), χ(t), PE(t), PM(t), uγ(t), uχ(t)) (2.3)

where PE is the power from the ICE, PM is the power from the EM, Pbrk ≥ 0 is the mechanical
braking power and PTd includes all power dissipation from transitions and state changes as well
as losses in the transmissions.

The electrical power balance is expressed as

PB(t) = PM(t) + PMd(v(t), PM(t)) + PBd(PB(t)) + PA (2.4)

where PB is the battery power, PMd and PBd are the dissipative power from the electric machine
and the battery respectively. PA is the power consumed by auxiliary devices and is simplified
to have a constant value.

The gear and ICE state are defined in the domains Γ and X respectively, and can take the
values

γ ∈ [1, . . . , γmax], χ ∈ [0(off), 1(on)]. (2.5)
The states in the next time instance γ+, χ+ is a function of the current state and the commands
to switch gear, uγ ∈ Uγ = [−1, 0, 1] and change state of the ICE uχ ∈ Uχ = [−1, 0, 1],

γ+ = γ + uγ, (2.6)
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2. Physical Modelling

χ+ = χ+ uχ. (2.7)

Each time the gear is changed or the ICE is turned on, some additional fuel is used, which is
represented by Wγ and Wχ respectively.

2.1.2 ICE model

The fuel consumption of the ICE, denoted µ, depends both on the torque TE and the engine
speed ωE of the ICE. It can be described by fitting a function to the measurements of the fuel
rate over torque and engine speed and is formulated as

µ(ωE(t), TE(t)) = a0 + a1ωE(t) + a2ω
3
E(t) + a3ω

5
E(t) + a4ωE(t)TE(t) + a5ωE(t)T 2

E(t). (2.8)

The measurements and fitted model can be observed in Figure 2.2. It turns out that a good fit
can be obtained by putting the coefficients a1 and a2 to zero, so that model is used from now
on. The engine torque TE and angular velocity ωE can be related to the vehicle speed v and
longitudinal force FE delivered by the ICE as

ωE(t) = rE(γ)v(t), TE(t) = FE(t)
ηrE(γ) (2.9)
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Figure 2.2: Fuel consumption of the ICE plotted as a function of torque for some different
engine speeds. The circles represent measured data and the lines are the fitted function, which
is quadratic in torque.
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Figure 2.3: Torque limits of the ICE plotted as a function of engine speed. The dashed line
represents the measured data and the solid lines are the fitted functions. The efficiency of the
ICE is also shown.

where η is the efficiency from the engine to the wheels and represents losses in the transmission,
and rE is defined as

rE(γ) = rf
E(γ)
Rw

(2.10)

where rf
E(γ) is the total gear ratio of the gearbox to the ICE including the differential gear for

gear γ, and Rw is the radius of the wheels. The maximum torque the engine can deliver as a
function of engine speed is plotted in Figure 2.3. After converting to force and vehicle speed
using equation (2.9), the longitudinal force limits can be formulated with three constraints.
The first constraint is approximated by a quadratic function of the vehicle speed,

FE(t) ≤ ηrE(γ)
(
b1 + b2r

2
E(γ)v2(t)

)
. (2.11)

The second one depends on the peak engine torque b0,

FE(t) ≤ ηrE(γ)b0. (2.12)

The third constraint depends on the rated engine power PEmax,

FE(t) ≤ ηPEmax

v(t) . (2.13)

Finally, the delivered force can not be negative,

FE(t) ≥ 0. (2.14)
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2. Physical Modelling

Note that with this formulation it is assumed that the ICE cannot be used to brake, that
is included in the mechanical braking force instead. To express these constraints in terms of
power, the constraints (2.13)-(2.14) are multiplied with the velocity v, which in a more compact
form gives

PE(t) ≤ ηPEmax,

PE(t) ∈ ηrE(γ)v(t)
[
0,min

{
b0, b1 + b2r

2
E(γ)v2(t)

}
χ(t)

]
.

(2.15)

Note that the last expression includes χ to ensure that the ICE cannot deliver any force when
it is off.

2.1.3 EM model

For the EM the total ratio rM between the engine and the wheels are calculated as

rM(γ) = rf
M(γ)
Rw

, (2.16)

where rf
M(γ) is the total ratio of the gearbox and the differential gear to for gear γ. The

relationship between the angular velocity ωM and the vehicle speed v is similar as for the
ICE,

ωM(t) = rM(γ)v(t). (2.17)
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The relationship between the torque TM from the EM to the force FM at the wheels are also
similar as for the ICE. However, how the efficiency of the transmission is included depends on
if the EM is used for propulsion of the vehicle or as a generator,

TM(t) =


FM(t)
ηrM(γ) if FM(t) ≥ 0
ηFM(t)
rM(γ) if FM(t) < 0

⇐⇒ TM(t) = 1
rM(γ) max

{
FM(t)
η

, ηFM(t)
}
. (2.18)

The maximum torque delivered by the EM is modeled with the functions

TMmax(t) = min
{
c12,

c21

ωM(t) + c22

}
(2.19)

where c12, c21 and c22, are constants to fit measurements of the maximum torque data. An
illustration of the measurement data, fitted data as well as the efficiency of the EM can be seen
in Figure 2.4. Similar constraints can be found for the negative torque

TMmin(t) = max
{
b12,

b21

ωM(t) + b22,
PBmax

ωM(t)

}
. (2.20)

Note however that an additional constraint has been added, which depends on the maximum
charging power of the battery (PBmax), and has been included here for convenience. The
measurements, the efficiency for the EM as well as the modeled constraints are plotted in
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are the measured data and the solid lines are the fitted functions. The dot-dashed line depicts
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Figure 2.5. The maximum/minimum wheel force delivered by the EM becomes

FMmax(t) = ηrM(γ) min
{
c12,

c21

rM(γ)v(t) + c22

}
,

FMmin(t) = rM(γ)
η

max
{
b12,

b21

rM(γ)v(t) + b22,
PBmax

rM(γ)v(t)

}
.

(2.21)

The maximum/minimum power of the EM is obtained by multiplying (2.21) with the velocity
v, which yields

PMmax(t) = ηrM(γ)v(t) min
{
c12,

c21

rM(γ)v(t) + c22

}
,

PMmin(t) = rM(γ)v(t)
η

max
{
b12,

b21

rM(γ)v(t) + b22,
PBmax

rM(γ)v(t)

}
.

(2.22)

The power losses from the EM is modeled as
PMd(t) = h1ωM(t) + h2ω

3
M(t) + h3ω

5
M(t) + h4ωM(t)TM(t) + h5ωM(t)T 2

M(t), (2.23)
where the constants hj, j = 1, . . . , 5, are obtained from fitting a function to measured data.
Similar to the model of the fuel consumption some constants are put to zero, in this case h1
and h3. The power losses in terms of force and velocity then becomes

PMd(t) = h2r
3
M(γ)v3(t)+h4v(t) max

{
FM(t)
η

, ηFM(t)
}

+ h5v(t)
rM(γ) max

{
FM(t)
η

, ηFM(t)
}2

. (2.24)
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Figure 2.6: Power consumption of the electric machine as a function of torque for some
different engine speeds. The circles represent measured data and the lines are the fitted function,
which is quadratic in torque.
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The total power consumed by the EM (PM + PMd) is plotted in Figure 2.6.

2.1.4 Battery model

The energy of the battery is a state which is governed by the following equation

ĖB(t) = −PB(t). (2.25)

It is assumed that there is no limit on how much power the battery can deliver and a charging
limit has already been included in the EM model. The only constraint left regarding the battery
is the minimum and maximum usable energy,

EB(t) ∈ [SOCmin, SOCmax]EBmax, (2.26)

where EBmax is the maximum energy capacity of the battery and SOCmin, SOCmax limits the
lower and upper bounds of the state of charge (SOC) which is defined as

SOC = EB(t)
EBmax

. (2.27)

The power loss of the battery is modeled using a constant open voltage (Voc) in series with a
constant resistance (R),

PBd(t) = R

V 2
oc
P 2

B(t). (2.28)

2.2 Multiple vehicles

With multiple vehicles two additional factors must be taken into consideration, safety con-
straints and air drag reduction. Several vehicles in a platoon are illustrated in Figure 2.7. The
equations and models presented above are applied to all the vehicles, and in order to distin-
guish the mathematical expressions between different vehicles, the subscript i is added to the
variables denoting that they belong to the vehicle i = 1, . . . , N , where N is the number of
vehicles in the platoon.

Figure 2.7: Several vehicles forming a platoon in a hilly terrain.
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2. Physical Modelling

2.2.1 Safety constraints

To prevent that the vehicles drive too close to each other, there are safety constraints included
in the formulation. They are expressed as

ti ≥ ti−1 + thi, (2.29)

which states that the vehicles must at minimum have a time headway of thi. The time headway
is defined as the time it takes for vehicle i to reach the current position of vehicle i − 1. This
can also be represented as a minimum distance headway constraint as

dji(t) ≥ dhi, (2.30)

where dhi is the minimum distance between the vehicles. The variable dji is the distance between
vehicle i and j and is defined as

dji(t) = |sj(t)− si(t)| − Lji, (2.31)

where si and sj are the longitudinal position of the vehicles, and Lji is a parameter depending
on the length of the vehicles. The position si can be obtained from

ṡi(t) = vi(t), (2.32)

together with the initial value si(t0) = s0i.

2.2.2 Aerodynamic drag reduction

While driving in a platoon, the vehicles experience aerodynamic drag reduction caused by
the other nearby vehicles around. The effect depends on several factors, for example vehicle
geometry, speed, and inter-vehicle distance. The air drag reduction model that is implemented
is a function depending of the inter-vehicle distance and consists of three contributions from
the nearby surrounding vehicles; the pull from the two closest vehicles ahead and the push from
the vehicle directly behind. The aerodynamic drag is modelled as

Fairi(vi(t), dji(t)) = F o
airi(vi(t))

1−
∑
j

fd(dji(t))
 , (2.33)

where F 0
airi is the air resistance if no other vehicles are present nearby. The sum represents the

total air drag reduction from the surrounding vehicles j = {i + 1, i − 1, i − 2} ∩ {1, . . . , N}
on the vehicle i. i + 1 is the vehicle behind, i − 1 is the first vehicle in front and i − 2 and
is the second vehicle in front. The air drag reduction function fd is modeled as a sum of two
exponential functions

fd(dji(t)) = a1ji exp (−b1jidji(t)) + a2ji exp (−b2jidji(t)) (2.34)

where the constants a1ji, a2ji, b1ji, b2ji are obtained by fitting measurement data. A comparison
of the total air drag reduction between the measurements and fited model can be seen in Figure
2.8.
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Figure 2.8: Total air drag reduction for each vehicle in a platoon of size 3. It is assumed that
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3
Control Strategy

This chapter includes an in-depth description of the control strategy used to minimize the fuel
consumption of a vehicle-platoon. It also presents the simplifications made to the problem to
reduce complexity and make it more efficient to solve.

3.1 Overview

The controller is a predictive CACC which aims at finding the optimal trajectories for the
states: velocity v∗, battery energy E∗B, traveled distance s∗, gear γ∗ and ICE state χ∗, which
minimizes the total energy consumed by all the member vehicles of a platoon over the horizon
t ∈ [t0, tf]. Note that the horizon in this case consists of the whole driving cycle and that the
optimization is only run once. The control signals are the real valued powers PE, PM and Pbrk,
and the integer variables uγ and uχ.

It is assumed that the vehicles are given a constant cruising speed v̄. However, they may not be
able to keep the cruising speed in steep uphills. Therefore, the reference speed v̂ is lowered in
those parts of the driving cycle where the vehicles cannot drive with the cruising speed. More
details of how to obtain the reference velocity can be found in Appendix B. The vehicles are
allowed to vary their speed ±∆v from the reference speed. With a given driving cycle the total
horizon length in distance sf − s0 can be obtained. Since the reference velocity is known as a
function of time, the total travel time for the driving cycle with this velocity can be calculated.
This time is denoted Tmax which constrains the final time as tf ≤ t0 + Tmax. This means that
even if the velocity is allowed to vary from the reference, the vehicles still have to complete the
driving cycle within the same time frame as if they were driving with the reference speed. It
is also assumed that the battery have the same charge, or higher, at the end of the horizon as
it started with. Therefore the only relevant aspect to take into account in the cost function is
the total fuel consumed by the ICE.

Two different driving cycles are mainly used for the vehicles to travel on and they are pre-
sented in Figure 3.1. One is a short driving cycle that is 20 km long. It is used with the
purpose for illustrations, and the sample distance for the cycle is 80 m. The other cycle is
the Borås-Landvetter-Borås driving cycle (BLB), and represents the real road between Borås
and Landvetter. It is 86.9 km long and will be used when comparing data between different
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(b) Borås-Landvetter-Borås (86.9 km)

Figure 3.1: The road altitudes for the driving cycles mainly used when solving the optimiza-
tion problem.

configurations. The sample distance for this cycle is 100 m.

The optimization problem for a platoon of vehicles (i = 1, . . . , N) is formulated as

minimize J =
N∑
i=1

(∫ tf

t0
(µi(·) +Wγi(·) +Wχi(·) +Wci(·)) dt

)
(3.1a)

subject to ∀ i = 1, . . . , N
PEi(t) + PMi(t)− Pbrki(t) = FVi(t)vi(t) + PTdi(·) (3.1b)
PBi(t) = PMi(t) + PMdi(vi(t), PMi(t)) + PBdi(PBi(t)) + PAi (3.1c)
meiv̇i(t) = FVi(t)− Fairi(vi(t), dji(t))+
−mig(sin (α(s(t))) + cr cos (α(s(t)))) ∀j ∈ {i+ 1, i− 1, i− 2} ∩ {1, . . . , N} (3.1d)
ĖBi(t) = −PBi(t) (3.1e)
ṡi(t) = vi(t) (3.1f)
vi(t0) = v0i (3.1g)
vi(t) ∈ [vmini(t), vmaxi(t)] (3.1h)
si(t0) = s0i, si(tf) = sfi (3.1i)
t ∈ [t0, tf] (3.1j)
tf − t0 ≤ Tmax (3.1k)
PEi(t) ≤ ηPEmaxi, (3.1l)
PEi(t) ∈ ηrE(γi(t))vi(t)

[
0,min

{
b0, b1 + b2r

2
E(γi(t))v2

i (t)
}
χi(t)

]
(3.1m)

PMi(t) ∈ [PMmini(vi(t), γi(t)), PMmaxi(vi(t), γi(t))] (3.1n)
Pbrki(t) ≥ 0 (3.1o)
EBi(t0) = EB0i, EBi(tf) ≥ EBfi (3.1p)
EBi(t) ∈ [SOCmini, SOCmaxi]EBmaxi (3.1q)
γ+
i (t) = γi(t) + uγi(t), γi(t) ∈ Γ, uγi(t) ∈ Uγ (3.1r)
χ+
i (t) = χi(t) + uχi(t), χi(t) ∈ X, uχi(t) ∈ Uχ (3.1s)
dji(t) ≥ dhi i = 2, . . . , N, j = i− 1 (3.1t)
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3. Control Strategy

The term Wc is a comfort penalty, which purpose is to penalize non-smooth behavior. Note
that the losses from the transmission (except the once caused by the transitions) have been
included by using the constant efficiency (η), so the term PTd now only includes losses from
transitions and state changes. This optimization problem contains both real valued and integer
optimization variables and states. These types of problems are hard and computationally
demanding to solve. Therefore, a hierarchical control scheme will be presented, which divides
the optimization problem into layers.

3.2 Hierarchical control scheme

An overview of the hierarchical control scheme can be seen in Figure 3.2. It consists of two
layers, which both tries to minimize the cost function (3.1a), but with regards to different
variables.

• The top layer uses given gear (γ) and ICE state (χ) trajectories to find the optimal
values of the states: velocity (v), distance (s) and battery energy (EB) for all the member
vehicles of the platoon. The control signals are the powers from the ICE (PE), EM (PM)
and braking (Pbrk). The optimization problem is solved using convex optimization. The
top layer sends the optimal velocity as well as the optimal costate (λB) corresponding to

Velocity/costate Gear/ICE state

Bottom layer

Vehicle 2Vehicle N Vehicle 1...

States: battery energy, gear, ICE state

Control signals: Powers (EM, ICE), gear selection, ICE on/off

Optimization Method: Dynamic programming

Top layer

States: veloctiy, distance, battery energy

Control signals: Powers (EM, ICE, braking)

Optimization Method: Convex optimization

Figure 3.2: Illustration of the hierarchical control scheme which consists of two layers. The
top layer finds the optimal speed and optimal battery costate. Using this information, the
bottom layer finds the optimal gear and ICE state. Note that the bottom layer optimization
can be done separately for each of the vehicles.
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the optimal battery energy, to the bottom layer. The costate commonly referred to as
fuel equivalent and is discussed further in Section 3.4.

• The bottom layer uses dynamic programming to find the optimal gear (γ) and ICE
state (χ). The control signals are the power from the ICE and EM as well as the gear
select and ICE on/off commands. The bottom layer can be solved completely separately
for each of the vehicles.

These two layers are solved iteratively until the solution converge (more on this in Section
3.5).

3.3 Top optimization layer

The top optimization layer is similar to the original optimization formulation (3.1), but the
main difference is that the discrete decision variables have been removed. However, additional
simplifications must be made in order to make the problem more efficient to solve. Most
importantly the problem needs to be made convex [17]. If an optimization problem is convex
it can be written on the form

minimize f(x) (3.2)
subject to g(x) ≤ 0, i = 1, ...,m (3.3)

h(x) = 0, i = 1, ..., p (3.4)

Where the functions f, g1, ..., gm are convex, and h1, ..., hp are affine. For example, 2.11 is a
constraint that cannot be written on this form. Note that the max-function, that is used in
some of the constraints, are convex as long as the inputs are convex. Similarly, the min-function
is concave as long as its inputs are concave.

3.3.1 Change of variables

The first step is to reformulate the optimization problem from time domain to space domain,
thus making the traveled distance (s) an independent variable instead of time (t). This makes
time a state with the dynamics

t′(s) = dt

ds
= 1
v(s) . (3.5)

Another advantage of sampling in distance rather than in time is that the data of the road
topography is given in space coordinates, and it would be more complicated and more inac-
curate to convert the data as a function of time. When working in space domain it is more
convenient to work with forces instead of powers. Therefore, the following variable changes are
introduced

FE(s) = PE(s)
v(s) , FM(s) = PM(s)

v(s) , FB(s) = PB(s)
v(s) , Fbrk(s) = Pbrk(s)

v(s) . (3.6)
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The fuel consumption is also modified as

µ̃(·) = µ(·)
v(s) . (3.7)

where µ̃(·) denotes the fuel consumption per distance traveled. The next step is to express the
optimization problem in terms of kinetic energy instead of velocity,

EV(s) = mev
2(s)

2 . (3.8)

This is a common strategy and has been used in previous works. It makes some constraints
linear, for example (2.11). Finally, with these variable changes, the state equations for the
vehicle and the battery energy are also modified and become

mev̇(t) =⇒ E ′V(s),
ĖB(t) = −PB(t) =⇒ E ′B(s) = −FB(s).

(3.9)

3.3.2 Simplifications and approximations

Due to the change of variables, expressions which are proportional to 1/v(s) will in turn be
proportional to 1/

√
EV(s). To make those expressions convex, the function

1
v(s) = ft(EV(s)) =

√
me

2EV(s) , (3.10)

is linearized around the reference kinetic energy ÊV(s), which is simply the kinetic energy of
the vehicle when driving with the reference speed. The linearization yields

f lin
t (EV(s)) =

√
me

2ÊV(s)
+ ∂ft
∂EV

∣∣∣∣
ÊV

∆EV(s), (3.11)

where ∆EV(s) = EV(s)−ÊV(s). This linearization is for example applied on the term consisting
of the auxiliary power, thus PA/v(s) ≈ PAf

lin
t (EV(s)). The subscript t in ft denotes that

ft = t′(s).

3.3.2.1 ICE model

Since the gear trajectory is already set when solving problem (3.1), it is possible that the ICE
is unable to deliver enough force to keep a velocity within the limits. This is very likely if
the gear is chosen poorly and may cause infeasibility. The force delivered from the ICE FE is
therefore divided into two forces

FE(s) = FE1(s) + FE2(s), (3.12)
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where FE1(s) is the force delivered from the current gear and FE2(s) is a force that possibly
could be delivered for any other choice of gear. FE2(s) is an abstract force and will only be
used if FE1(s) fails to deliver a force satisfying (2.11). The constraints for the force limits of
the ICE will in the new variables have the form

FE1(s) + FE2(s) ≤ ηPEmax

√
me

2EV(s) (3.13)

which is linearized using (3.11) and yielding

FE1(s) + FE2(s) ≤ ηPEmaxf
lin
t (EV(s)). (3.14)

The constraint for FE1 is now expressed as

FE1(s) ∈ ηrE(γ)
[
0,min

{
b0, b1 + 2b2r

2
E(γ)
me

EV(s)
}
χ(s)

]
. (3.15)

3.3.2.2 Electric machine model

The constraints of the wheel force from EM will in the new variables have the form

FMmax(EV(s)) = ηrM(γ) min
{
c12,

c21

rM(γ)

√
me

2EV(s) + c22

}
,

FMmin(EV(s)) = rM(γ)
η

max
{
b12,

b21

rM(γ)

√
me

2EV(s) + b22,
PBmax

rM(γ)

√
me

2EV(s)

}
.

(3.16)

Since this does not define a convex set, the constraints are linearized using (3.11). This gives
the constraints

FMmax(EV(s)) = ηrM(γ) min
{
c12,

c21

rM(γ)f
lin
t (EV(s)) + c22

}
,

FMmin(EV(s)) = rM(γ)
η

max
{
b12,

b21

rM(γ)f
lin
t (EV(s)) + b22,

PBmax

rM(γ)f
lin
t (EV(s))

}
.

(3.17)

The force losses from the electric machine will in the new variables become

FMd(s) = 2h2r
3
M(γ)
me

EV(s) +h4 max
{
FM(s)
η

, ηFM(s)
}

+ h5

rM(γ) max
{
FM(t)
η

, ηFM(t)
}2

, (3.18)

which is an equality that is linear in EV(s) but quadratic in FM(s), which is a problem. As
mentioned earlier equality constraints must be affine in the variables, which this expression is
not. To solve this issue, (3.18) is relaxed to become an inequality constraint instead (replace =
with ≥). This makes the convex expression at the right side allowed. This modification does
not affect the solution. At the optimum, equality will hold anyway because it will always be
optimal for the losses to be as small as possible.
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3.3.2.3 Battery model

The battery force dissipation in the new variables becomes

FBd(s) = R

V 2
oc

√
2EV(s)
me

F 2
B(s) ≈ R

V 2
oc

√√√√2ÊV(s)
me

F 2
B(s), (3.19)

where the kinetic energy is replaced with its reference to avoid multiplying different optimization
variables, which would have made the problem non-convex. Note that the losses is quadratic
in FB(s).

3.3.2.4 Aerodynamic drag model and safety constraints

The aerodynamic drag reduction will in the new variables have the form

Fairi(EVi(s), dji(s)) = F o
airi(EVi(s))

1−
∑
j

fd(dji(s))
 . (3.20)

with j = {i + 1, i − 1, i − 2} ∩ {1, . . . , N}. The function fd(dji(s)) is both nonlinear and
non-convex and thereby a linearization is made around d̂ji(s) which denotes the inter-vehicle
distance that is computed from the reference velocity of vehicle i and j. After linearizing around
both ÊVi(s) and d̂ji(s) the air drag reduction model becomes

F lin
airi(EVi(s), dji(s)) = caEVi(s)

1−
∑
j

fd(d̂ji(s))
− caÊVi(s)

∑
j

(
dji(s)− d̂ji(s)

) ∂fd
∂dji

∣∣∣∣
d̂ji

,

(3.21)
with ca = ρaAfcd

mei
and ÊVi(s) is the reference kinetic energy for vehicle i. The inter-vehicle

distance dji(s) is now expressed as

dji(s) = |xj(s)− xi(s)| − Lji, (3.22)

where xi(s) and xj(s) are the longitudinal position of the vehicles as before but is now a function
of the space coordinate s. By putting x1(s) = s, the positions for the vehicles behind will be
obtained from

x′i(s) = vi(s)
v1(s) , (3.23)

which is both a nonlinear and non-convex function. Equation (3.23) is instead approximated
by linearizing around 1/v̂i(s) and 1/v̂1(s) which results in

x′i(s) ≈
v̂i(s)
v̂1(s)(1 + v̂1(s)t′1(s)− v̂i(s)t′i(s)). (3.24)

With the assumption that the velocities v̂i(s) do not vary too much from the cruising velocity
v̄, the simplification that v̂i(s) can be replaced with v̂i(s) ≈ v̄ in (3.24) is made. By integrating
(3.24) on both sides and insert in (3.22) results in

dji(s) ≈ |x0i − x0j + v̄((tj(s)− t0j)− (ti(s)− t0i))| − Lji. (3.25)
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3. Control Strategy

The first vehicle has the properties x1(0) = 0 and t1(0) = 0. Since the vehicles are not controlled
until they reach position zero, the vehicles are considered to drive with the cruising velocity v̄
until then, which gives x0i = −v̄t0i and simplifies (3.25) to

dji(s) ≈ v̄|tj(s)− ti(s)| − Lji. (3.26)

Finally the safety constraint will become

ti(s) ≥ ti−1(s) + thi, (3.27)

where ti(s) is the time for vehicle i when it reaches the position s.

3.3.3 Final SOCP formulation

The complete simplified top layer optimization problem results in a convex Second Order Cone
Problem (SOCP), which is formulated as

minimize J̃ =
N∑
i=1

(∫ sf

0
(µ̃i(·) +Wγi(·) +Wχi(·) +Wci(·) + q(EVi(s))) ds

)
(3.28a)

subject to ∀i = 1, . . . , N
t′i(s) = f lin

ti (EVi(s)) (3.28b)
E ′Vi(s) = FE1i(s) + FE2i(s) + FMi(s)− Fbrki(s) + F lin

airi(EVi(s), dji)+
−mig(sin(α(s)) + cr cos(α(s))) ∀j ∈ {i+ 1, i− 1, i− 2} ∩ {1, . . . , N} (3.28c)

E ′Bi(s) = −FBi(s) (3.28d)

FBi(s) ≥ max
{
FMi(s)
η

, ηFMi(s)
}

+ FMdi(s) + FBdi(s) + PAif
lin
ti (EVi(s)) (3.28e)

ti(sf) ≤ tfi (3.28f)

ti(0) = t0i, EVi(0) = meiv
2
0i

2 (3.28g)

EVi(s) ∈
me

2
[
v2

mini(s), v2
maxi(s)

]
(3.28h)

FE1i(s) + FE2i(s) ≤ ηPEmaxif
lin
ti (EVi(s)) (3.28i)

FE1i(s) ∈ ηrE(γ)
[
0,min

{
b0, b1 + 2b2r

2
E(γ)

mei
EVi(s)

}
χ(s)

]
(3.28j)

Fbrki(s) ≥ 0, FE2i ≥ 0 (3.28k)
FMi(s) ∈ [FMmini(EVi(s)), FMmaxi(EVi(s))] (3.28l)
EBi(0) = EB0i, EBi(sf) ≥ EBfi (3.28m)
EBi(s) ∈ [SOCmini, SOCmaxi]EBmaxi (3.28n)
ti(s) ≥ ti−1(s) + thi i = 2, . . . , N (3.28o)
γ+
i (s) = γi(s) + uγi(s), γi(s) ∈ Γ, uγi(s) ∈ Uγ (3.28p)
χ+
i (s) = χi(s) + uχi(s), χi(s) ∈ X, uχi(s) ∈ Uχ (3.28q)
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3. Control Strategy

For each vehicle there are three states, t, EV, and EB, and four control signals, FE1, FE2, FM,
and Fbrk. The term q(·) in the cost function represents a penalty term that depends of the
linearization error of the kinetic energy. If this error is zero, then q = 0. The constraint (3.28e)
is a relaxed version of (3.1c), which allows electric energy to be wasted. Wasting electric energy
will only be optimal when no more energy can be put in the battery, (hitting the upper limit
of (3.28n)), and the braking force comes into use.

The optimization problem is now convex and there exist efficient methods to solve such prob-
lems, for example the interior point method [18]. In this project, it is solved using a commercial
solver named MOSEK (version 7.1.0.12 from Mosek ApS) [19].

3.4 Bottom optimization layer

The bottom layer receives the optimal speed and costate/fuel equivalent from the top layer and
based on that the total demanded force FV is found using (2.1). Even if FV is known, how it
is divided between FM and FE is not known and has to be calculated. This will be referred
to as the power split. With the optimal power split, the optimal trajectories for gear can be
calculated, and is returned to the top layer. Note that the results from the power split never is
used outside of the bottom layer. The bottom layer solves the following optimization problem

minimize J =
∫ tf

0
(µ(FE, γ, χ) +Wγ(γ) +Wχ(χ)) dt (3.29a)

subject to (3.29b)
ĖB(FM, γ, χ) = −PB(FM, γ) (3.29c)
FV(t) = FE(t) + FM(t) (3.29d)

PB(FM, γ, χ) = max
{
FM(t)
η

, ηFM(t)
}
v(t) + PMd(γ, FM) + PBd(PB) (3.29e)

FE(t) ≤ ηrE(γ)PEmax

ω(γ, χ, t) (3.29f)

FE(t) ∈ ηrE(γ)
[
0,min

{
b0, b1 + b2ω

2
E

}
χ(t)

]
(3.29g)

FM(t) ≤ ηrM(γ) min
{
c12,

c21

ωM(γ, χ, t) + c22

}
(3.29h)

FM(t) ≥ rM(γ)
η

max
{
b12,

b21

ωM(γ, χ, t) + b22,
PBmax

ωM(γ, χ, t)

}
(3.29i)

EBi(t0) = EB0i, EBi(tf) ≥ EBfi (3.29j)
EBi(t) ∈ [SOCmini, SOCmaxi]EBmaxi (3.29k)
γ+(t) = γ(t) + uγ(t), γ(t) ∈ Γ, uγ(t) ∈ Uγ (3.29l)
χ+(t) = χ(t) + uχ(t), χ(t) ∈ X, uχ(t) ∈ Uχ (3.29m)

This problem is similar to the original optimization problem (3.1), but here the constraints
are expressed in terms of forces instead of powers. Also, since v∗ is known, some constraints
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3. Control Strategy

have been removed. Note for example that the state equations for the time and velocity are
no longer present and since this optimization can be done completely separate for each of the
vehicles, the subscript i has been omitted. Problem (3.29) is solved using basic knowledge in
optimal control theory [20]. The first step is to form the Hamiltonian.

H(FE, PB, γ, χ) = µ(γ, χ, FE) +Wγ(γ) +Wχ(χ)− λB(t)PB(χ, γ, FM), (3.30)

where λB is the costate/fuel equivalent corresponding to (3.29d), and it is obtained from the top
layer. Before presenting the solution, an important property for λB can be found by examining
the necessary condition of optimality, namely(

∂H
∂EB

)∗
− d

dt

(
∂H
∂ĖB

)∗
= 0 =⇒ λ̇B(t) = 0. (3.31)

In other words, since neither µ, Wγ or Wχ is a function of EB, λB is constant over time as long
as EB does not hit any constraint. In practice, it is likely that EB does hit a constraint, which
means that λB will be piecewise constant. However, in this project a large enough battery is
used so that is never the case. Another property of λB is that it is negative. This can be
concluded from the Hamiltonian, knowing that the cost should increase if the electric machine
is used.

3.4.1 Power split

To solve (3.29) with regards to the power split, the Hamiltonian needs to be rewritten in terms
of FM (for the moment assuming that γ and χ are given). Starting with PB

PB = PM + PMd(FM) + PBd(PB) = ωM

rM
FM + h2ω

3
M + h4ωM

rM
FM + h5ωM

r2
M

F 2
M + R

V 2
oc
P 2

B. (3.32)

This a polynomial of degree 2 in PB and is solved using the quadratic formula, which gives the
following expression

PB(FM) = V 2
oc

2R −

√√√√ V 4
oc

4R2 −
h2ω3

MV
2

oc
R

− (h4 + 1)ωMV 2
oc

RrM
FM −

h5ωMV 2
oc

Rr2
M

F 2
M. (3.33)

The fuel consumption µ can be expressed in terms of FM by simply substituting FE = FV−FM.
This gives the following expression for the Hamiltonian

H(FM) = +a0 + a3ω
5
E + a4ωE

rE
(FV − FM) + a5ωE

r2
E

(FV − FM)2 − λB
V 2

oc
2R+

+ λB

√√√√ V 4
oc

4R2 −
h2ω3

MV
2

oc
R

− (h4 + 1)ωMV 2
oc

RrM
FM −

h5ωMV 2
oc

Rr2
M

F 2
M +Wγ +Wχ

(3.34)

To simplify further calculations, the following constants are introduced

k0 = a0 + a3ω
5
E + a4ωE

rE
FV + a5ωE

rE
F 2

V − λB
V 2

oc
2R, (3.35)
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k1 = −a4ωE

rE
− 2a5ωE

rE
FV, (3.36)

k2 = a5ωE

rE
, (3.37)

k3 = V 4
oc

4R2 −
h2ω

3
MVoc

R
, (3.38)

k4 = −(h4 + 1)ωMV
2

oc
RrM

, (3.39)

k5 = −h5ωMV
2

oc
Rr2

M
, (3.40)

which simplifies (3.34) to

H(FM) = k0 + k1FM + k2F
2
M + λB

√
k3 + k4FM + k5F 2

M +Wγ +Wχ. (3.41)

This function can be shown to always be convex. First of all, the terms that are constant
or affine in FM are all convex. The term k2F

2
M is also convex because k2 is positive. Since

λB is negative, the square root must be concave. It can be proven that a function g(f(x)) is
concave, as long as g(·) is concave and nondecreasing, and f(x) is concave. These conditions
hold in this case since the square root function indeed is concave and nondecreasing, and k5 is
negative. Because (3.41) is convex, its minimum can be found by differentiating it with respect
to FM,

∂H(FM)
∂FM

= k1 + 2k2FM + λB
k4 + k5FM

2
√
k3 + k4FM + k5F 2

M

= 0. (3.42)

By rearranging and taking the square of the terms, (3.42) becomes

λ2
B(k4 + k5FM)2 = 4(k1 + 2k2FM)2(k3 + k4FM + k5F

2
M). (3.43)

Expanding the expression above gives a fourth order equation in FM, which can be solved
using the quartic formula [21]. The details will not be presented here but the solution will be
referred to as F a

M. This analytically solution does not take the constraints of the forces from
the ICE and EM into consideration. If the analytical solution in fact does break any of the
constraints, the solution will be on one of the constraints instead. Furthermore, if the ICE is off
then FM = FV. To conclude how the optimal value of the Hamiltonian is found, the following
formula is applied,

H(FM)∗ =


H(FV) , χ = 0
H(F a

M) , FEmax − FV ≤ F a
M ≤ FMmax

H(FMmax) , F a
M ≥ FMmax

H(FEmax − FV) , F a
M ≤ FEmax − FV

(3.44)

Now, the optimal cost at each time and for a given gear and ICE state can be found. However,
which combination of gear and engine states to use over the horizon is still left to decide. This
will be solved using dynamic programming.
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3.4.2 Dynamic programming

The state variables are the different gears and ICE state. The different combinations of the two
state variables together creates the state ξ = [γ, χ]T. The DP starts at sample k = K−1, where
K is the number of samples. It then runs backwards in time and at each time instance and for
each state, calculates the least possible cost to reach a feasible state at time K. This cost will
be referred to as J(ξ(k), k) and using Bellman’s principle of optimality, it can be calculated
as

J(ξ(k), k) = min
ξ(k+1)∈Ξfeas

{C(ξ(k), ξ(k + 1), k) + J(ξ(k + 1), k + 1)} , (3.45)

where C is the cost of being at state ξ at time k, and is the optimal value of the Hamiltonian
from (3.44). Ξfeas = [Γfeas, Xfeas]T is the set of all the states at time k + 1 from where it is
possible to reach state ξ at time k, and it is defined by

Γfeas = Γ ∩ (γ(k) + Uγ) Xfeas = X ∩ (χ(k) + Uχ) . (3.46)

The penalty terms Wγ,Wχ (in the Hamiltonian) consists of a weight wγ, wχ and a variable
yγ, yχ, which decides when the penalties should be added. The value of wγ is tuned such that
the gear is not changed too often. For example, if the gear is shifted up at one time instance
and then shifted down again directly afterwards, that is probably not a desired behavior, and
it is removed by increasing the value of wγ. The value of wχ is tuned such that when the engine
has been turned on, it must run for at least 20 s. The cost wγ is added when the gear at time
k is not the same as the gear at time k + 1. The cost wχ is added if the engine is on at time
k + 1 but not at time k. This can be expressed as

yγ(γ(k), γ(k + 1)) =
{

1 , γ(k) 6= γ(k + 1)
0 , otherwise (3.47)

yχ(χ(k), χ(k + 1)) =
{

1 , χ(k) = 0 and χ(k + 1) = 1
0 , otherwise (3.48)

When the DP algorithm has reached time k = 1, it runs forward in time choosing the path
with the least possible cost that reaches the final time k = K. This is calculated as

ξ∗(k + 1) = arg min
ξ(k+1)∈Ξfeas

{C(ξ∗(k), ξ(k + 1), k) + J(ξ(k + 1))} , (3.49)

where ξ∗(k) is the optimal state at time k.

3.4.3 Finding the fuel equivalent

This bottom optimization problem (3.29) has similar properties to the top one (3.28), but there
are some major differences, due to model mismatches between the two problems. Especially
for long horizons it becomes apparent that the λB from the top layer is not the optimal one to
be used in the bottom layer. It will provide a first good guess, but it will have to be improved
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iteratively by running the DP algorithm multiple times. While running the DP algorithm EB
is calculated according to (3.29d). At the end of the horizon the error of EB is calculated

Eerror
B = EB(0)− EB(N) (3.50)

For simplicity, it is assumed here that EB(0) = 0, which simplifies (3.50) to Eerror
B = EB(N).

Knowing that the optimal λB must ensure that EB(N) ≈ 0, λB is adjusted accordingly after
each iteration. For example, if EB(N) < 0, λB must be bigger in order to penalize the use of the
electric machine more. If EB(N) switches sign between two iterations, the optimal solutions
have been passed, and the size of the adjustment can be decreased in order to improve the
solution. The iterations continues until EB(N) are acceptably small. The whole procedure can
be described using the following pseudo code:

1. run DP-algorithm, calculate E[l]
B (N).

2. If E[l]
B (N) ≥ threshold, go to 3. else end loop.

3. λ[l+1]
B = λ

[l]
B − sign(EB(N)) ·∆.

4. If sign(E[l]
B (N)) = −sign(E[1−1]

B (N)) go to 5, else go to 6.

5. ∆ := ∆
2 .

6. l := l + 1, go to 1.

3.5 Summary of control strategy

The complete optimization problem, including (3.28) and (3.29) is solved repeatedly until the
solutions have converged within a certain tolerance level, or a maximum number of iterations
have been reached. The algorithm is illustrated in Figure 3.3 and can be summarized as

1. Given a preferred cruise velocity, feasible reference speed trajectories v̂i(s) are obtained
for all vehicles in the platoon.

2. Gear trajectory, ICE state trajectory, and kinetic energy ÊVi(s) used for linearization are
obtained. In the first iteration gear is guessed, e.g. highest gear all the time, the ICE
is always on, and ÊVi(s) are calculated from the reference speed v̂i(s). In the following
iterations ÊVi(s) are obtained from the following equation,

Ê
(n+1)
Vi (s) = Ê

(n)
Vi (s) + β(E∗(n)

Vi (s)− Ê(n)
Vi (s)), (3.51)

where (n) and (n + 1) represent two following iterations and β ∈ (0, 1] is the step size
that affects the converging rate of the algorithm.

3. The top layer optimization problem (3.28) is solved and sends the optimal speed trajectory
and costate/fuel equivalent to the bottom layer.
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4. The bottom layer optimization problem (3.29) is solved using the solution from step 3 to
obtain the optimal gear and ICE state trajectories. This step may be iterated a number
of times if needed to find a suitable costate/fuel equivalent.

5. For next update, go to step 2.

Top layer
(SOCP)

Start, read
parameters
and filter
speed

Bottom
layer (DP)

Update
parameters

EB within
thresh-
old?

Modify λB

Under
threshold
for con-
vergence?

Finish

No

Yes

No

Yes

Figure 3.3: Flowchart of the complete algorithm including the two optimization layers.
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4
Results

This chapter presents the results from some different case studies and comparisons between
them. In the first part of the chapter only the case with a single vehicle is considered to show
the basic functionality of the algorithm. The case with multiple vehicles is considered further
down in the report, where the focus is mainly on the differences in fuel consumption between
platoons of different types and sizes.

The following vehicle settings are chosen for the main case studies:

• Conventional vehicle with fixed velocity.

• Conventional vehicle with varying velocity.

• HEV with fixed velocity.

• HEV with varying velocity.

The settings with fixed velocity and conventional vehicle (sometimes referred to as CV) are only
used to show what improvements that can be made by allowing the velocity to vary and using
an HEV. The vehicles with varying velocity are allowed to vary ±10 km/h from its reference
and the mass of the vehicles are set to 41.8 t.

4.1 Case studies with a single vehicle

By investigate how a single vehicle behaves, some differences between the various vehicle settings
can be seen. This is also a suitable approach to showcase the solutions given by the optimization
algorithm. The small driving cycle of 20 km is used. The results that are presented contains
the trajectories of the velocity, gear selection and ICE state, in addition to the forces acting on
the system which are the control signals. First the case with a conventional vehicle is presented
followed by the case with a hybrid vehicle.
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4. Results

4.1.1 Conventional vehicle with fixed velocity

The velocity trajectory along with the gear trajectory are shown in Figure 4.1 for a single
conventional vehicle with fixed velocity. The road altitude is shown in the background. Note
that in some uphills the velocity is forced to decrease in order to make the solution feasible.
It is also shown that the vehicle is using a lower gear in the uphills and a higher gear in the
downhills.
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Figure 4.1: The velocity trajectory for a conventional vehicle with fixed velocity as a function
of traveled distance. The plot also shows the optimal gear choice.

The forces acting on the vehicle can be seen in Figure 4.2, where the force from the ICE along
with its limit as well as the braking force are shown. As expected the utilization of the ICE
increases in the uphills and decreases in the downhills, were instead braking occurs to keep the
fixed velocity.
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Figure 4.2: The forces acting on a conventional vehicle with fixed velocity as function of
traveled distance. The plot shows the optimal force from the ICE and the braking force.
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4.1.2 Conventional vehicle with varying velocity

The velocity trajectory along with the gear trajectory are shown in Figure 4.3 for a single
conventional vehicle with varying velocity. The limits of the velocity are also shown. Note
that the same gear is used during the whole driving cycle. The velocity profile shows that the
velocity is at its lower limit just before a major downhill. It is increasing while the vehicle is
driving down the hill and hit its upper limit at the end of the hill. This is because the solver is
aware of the approaching downhill and by lowering its velocity, it can store the energy gained
by the downhill as kinetic energy and avoids braking.
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Figure 4.3: The velocity trajectory for a conventional vehicle with varying velocity as a
function of traveled distance. The plot also shows the optimal gear choice.
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Figure 4.4: The forces acting on a conventional vehicle with varying velocity as function of
traveled distance. The plot shows the optimal force from the ICE and the braking force.

The forces acting on the vehicle can be seen in Figure 4.4, where the force from the ICE along
with the braking force is shown. Compared to Figure 4.2, less braking force is used in this case.
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This is because now the energy can be stored as kinetic energy in the vehicle (by increasing
the velocity) instead of wasting it by braking. Also note that braking is only used in the larger
downhills when the velocity has reached its upper limit.

4.1.3 HEV with fixed velocity

The velocity trajectory along with the gear and ICE state trajectory are shown in Figure 4.5
for a single HEV with fixed velocity. The battery level in percentage (SOC) is also shown,
which decrease in uphills (when the EM is used to power the vehicle) and increases in downhills
(when the EM is used as a generator). The velocity profile is the same as in the conventional
case. Note that the engine is off during the downhills of the driving cycle and that the gear
remains the same all the time.
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Figure 4.5: The velocity and SOC trajectories for an HEV with fixed velocity as a function
of traveled distance. The plot also shows the optimal gear choice and ICE state.

The forces acting on the vehicle can be seen in Figure 4.6. The plot is similar as for the
conventional vehicle case, but also includes the force from the EM along with its limits. In the
uphills the EM force is positive to support the ICE. In the downhills the electric force is instead
negative and is thereby charging the battery. Note that compared to the conventional vehicle
(Figure 4.2), the hybrid to a large extent avoids wasting energy by using the mechanical brakes
and instead stores the energy in the battery. The mechanical brakes are only used when the
EM hits its limits.
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Figure 4.6: The forces acting on an HEV with fixed velocity as function of traveled distance.
The plot shows the optimal force from the ICE, EM and the braking force. The ICE state is
also presented.

4.1.4 HEV with varying velocity

The velocity trajectory along with the gear and ICE state trajectories are shown in Figure 4.7
for a single HEV with varying velocity. The battery level in percentage (SOC) is also shown
which has similar behavior as the previous case. Some differences compared to Figure 4.5 is
that the ICE has fewer state changes.
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Figure 4.7: The velocity and SOC trajectories for an HEV with varying velocity as a function
of traveled distance. The plot also shows the optimal gear choice and ICE state.

The forces acting on the vehicle can be seen in Figure 4.8. In this case, the force from the EM
does not hit its limit that often, but most importantly no energy is wasted with the mechanical
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brakes. This is achieved by allowing the velocity to increase and store the energy as kinetic
energy, and when that is not possible, store it as electric energy in the battery instead.
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Figure 4.8: The forces acting on an HEV with varying velocity as function of traveled distance.
The plot shows the optimal force from the ICE, EM and the braking force. The ICE state is
also presented.

4.2 Case studies with multiple vehicles

For investigations with multiple vehicles, platoons up to the size of five vehicles (all homo-
geneous) are taken into consideration. Some results for conventional vehicles and HEVs in a
4-vehicle platoon can be seen in Figure 4.9 which shows the inter-vehicle distance, and in Figure
4.10 which shows the optimal velocity, gear and ICE state trajectories for all the vehicles in the
platoon.
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Figure 4.9: Inter-vehicle distance measured in time between the vehicles in a platoon consist-
ing of four vehicles. The different lines represent the time distance between different vehicles,
in this case 3 distances.
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Figure 4.10: Velocity, gear and ICE status for all vehicles in a platoon of size four, plotted
on top of each other.

For both the conventional and hybrid case, the inter-vehicle distances between the platoon
members are mostly on the constraint for the minimum time-lag (which is 1.35 s in this case).
It is only increasing in the downhills. This is because the trailing vehicles due to reduced air
resistance would need to brake in the downhills to not hit the vehicles in front, if the minimum
inter-vehicle distance is kept. Instead it is better for the trailing vehicles to stop using the
engine a bit earlier before the downhill (than the vehicle in front) because they will catch up
anyway. The HEVs will charge the battery as much as possible, but when no more energy
can be put into the battery, they will behave as the conventional vehicles. Figure 4.10 is only
included to show that all platoon members have a similar behavior regarding the velocity, gear
and engine state. Note that the bottom line represents the ICE state (upper position means
on) and that all the vehicles are plotted on top of each other. No force plots are presented here,
because they look very similar to the single vehicle case.

The fuel consumption per vehicle for different types of vehicles and platoon sizes can be seen in
Table 4.1. The chosen driving cycle is Borås-Landvetter-Borås which has a length of 86.9 km.
As expected, HEVs are consuming less fuel than their conventional counterpart. Even HEVs
with fixed velocity is consuming less fuel than conventional vehicles with varying velocity. There
is also an improvement by increasing the size of the platoon, but the additional saving of fuel
seems to get smaller for each vehicle added to the platoon. This applies for all vehicle types.
As can be read from Table 4.1, the fuel consumption can be reduced by different approaches
namely platooning vehicles, allowing the velocity to vary within an interval, or changing from
conventional vehicles to HEVs. These approaches will now be presented in more details.

Table 4.1: Average fuel consumption per vehicle measured in l/100 km for different types of
vehicles and platoon sizes. The number of vehicles in the platoon is represented by N .

N CV fixed vel. CV varying vel. HEV fixed vel. HEV varying vel.
1 32.83 29.18 28.84 26.80
2 31.75 28.01 27.53 25.42
3 31.11 27.34 26.73 24.57
4 30.79 27.00 26.34 24.16
5 30.60 26.80 26.10 23.91
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4.2.1 Benefit of platooning

Due to reduction of air drag when driving in platoon, there are possibilities to save fuel by just
letting several vehicles drive after each other. This is shown in Figure 4.11, where a comparison
of the losses between an average platoon member and a single vehicle is plotted, for both the
conventional and hybrid case.
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Figure 4.11: Comparisons of the losses from air resistance and braking forces between an aver-
age platoon member (of a platoon with four vehicles) and a single vehicle, both for conventional
vehicle and HEV.

The platoon has four members and only the losses that show the biggest differences between
the test cases are shown, which are the forces from the air resistance and the mechanical brakes.
It can be seen that the platoon member has significantly lower losses than the single vehicle
(both for conventional and platooning).

Figure 4.12 shows the reduction of fuel consumption for different platoon sizes in percentage,
compared to the single vehicle counterpart for respective vehicle type. That is why the number
of vehicles goes from 2 to 5. One interesting observation is that it seems to be more beneficial
to make platoons of HEVs than of conventional vehicles. This can be understood by looking at
Figure 4.11. The conventional platoon members have more mechanical braking losses than the
single vehicle. This is because the trailing vehicles in the platoon experience less air resistance
than the vehicles in front, and in the downhills they must therefore use the mechanical brakes
to not run in to the vehicle in front. This behavior can be compared to the HEV case where
almost no extra mechanical braking force have to be used. The HEV can brake using the EM
and charge the battery instead.

Returning to Figure 4.12, when the velocity is allowed to vary, there is additional improvement
when platooning compared to the case with fixed velocity for both conventional vehicles and
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Figure 4.12: The improvement in average fuel consumption per vehicle of platooning from
size 2 to size 5 for different types of vehicles compared to the fuel consumption for a single
vehicle for respective type.

HEVs. This is probably because the air resistance is quadratic in velocity, which means that
a vehicle which is varying its velocity will in total experience more losses, than a vehicle that
keeps a constant velocity. Because of this, vehicles with varying velocity have more to gain
by platooning than vehicles with constant velocity. It is also shown from Figure 4.12 that
platooning is more beneficial for HEVs with fixed velocity than for conventional vehicle with
varying velocity.

4.2.2 Benefit with varying velocity

Less usage of braking can be achieved by allowing the velocity to vary for the vehicles, and
thereby saving fuel. The improvement from having fixed velocity to varying for different platoon
sizes is shown is Figure 4.13, where the reduction of fuel for both conventional vehicles and HEVs
are presented. The conventional vehicles gain more improvement for allowing the velocity to
vary rather than having a fixed one compared with HEVs. This is because conventional vehicles
are able to reduce much more braking force, since HEVs are primarily storing energy in the
battery there is less braking force to begin with, and thereby less potential of improvements.
The improvements are also increasing with the size of the platoon, but it seems that lesser
additional improvements are gained when increasing the platoon size further.
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Figure 4.13: The improvement in average fuel consumption per vehicle of allowing the velocity
to vary within an interval compared of having a fixed velocity. Both conventional vehicles and
HEVs in platoons up to size 5 are presented.

4.2.3 Benefit with HEV

As expected it is possible to save fuel by using HEVs instead of conventional vehicles, otherwise
it would not be any point to invest resources into this topic. The reason behind this is already
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Figure 4.14: The improvement in average fuel consumption per vehicle when comparing
conventional vehicles with HEVs of the same platoon size. Both vehicles with fixed and varying
velocity in platoons up to size 5 are presented.
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discussed for the single vehicle case, and once again has to do with the fact that less energy has
to be wasted on braking. The reduction of fuel consumption by changing from conventional
vehicles to HEVs can be seen in Figure 4.14 for different platoon sizes, where the improvement
of having fixed velocity varying velocity are presented. The vehicles with fixed velocity are
gaining more benefits by using HEVs than the vehicles with varying velocity. As similar to
previous results, there is less additional improvement gaining for increasing the platoon size
even further.

4.3 Special investigations

This section presents some special investigations, where other effects other than platooning
and vehicle type are taken into consideration. These investigations are about how to order the
vehicles when the platoon is consisting of a mixture of conventional vehicles and HEVs, and
how the velocity variation and reduced air resistance are affecting the fuel consumption.

4.3.1 Mixed platoon of conventional vehicles and HEVs

Previous results only considered homogeneous platoons where each individual vehicle in the
platoon had exactly the same properties. By allowing the platoon to consist of a mixture of
conventional vehicles and HEVs, the result depends of how the vehicles are ordered. Here the
case with a platoon consisting of four vehicles, where two of them are conventional and two are
hybrid (otherwise identical) is investigated. There are 6 combination when ordering 2 vehicles
among 4 vehicles. The result for all different combinations is shown in Table 4.2, where crossed
boxes represent the positions of the conventional vehicles in the platoon driving to the right.
Least fuel is used when the conventional vehicles are positioned in the front of the platoon. The
reason for this is that conventional vehicles cannot fully utilize the reduction of air drag when
being positioned at the middle or the rear of the platoon. To avoid driving too close to the
vehicle ahead, it either needs to brake or increase the inter-vehicle distance. The HEVs have
on the other hand the opportunity to put the excess energy in the battery instead. Therefore,
less fuel is used when the conventional vehicles are driving first.

Table 4.2: Average fuel consumption per vehicle when there are 2 conventional vehicles and
2 HEVs in a platoon. The position of the conventional vehicles in the platoon is marked with
�, and the platoon is driving to the right.

Position Fuel consumption (l/100 km) Percentage of the minimum consumption (%)
� � � � 24.89 100.00
� � � � 24.94 100.23
� � � � 24.91 100.09
� � � � 25.07 100.72
� � � � 25.04 100.60
� � � � 25.08 100.80
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4.3.2 Velocity variation

By allowing the velocities of the vehicles to vary within a specific interval ±∆v, there is an
opportunity to store kinetic energy in the vehicles. Depending on the size of this interval, the
reduction in fuel consumption becomes different. The case with a 4-vehicle platoon is solved
for different allowed velocity intervals and the comparison between a platoon of conventional
vehicles and a platoon of HEVs can be seen in Figure 4.15. The improvements of the fuel
consumption are with respect to the fixed velocity case of respective vehicle type. The result
is heavily affected by how hilly the terrain is for the used driving cycle.
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Figure 4.15: The improvement in average fuel consumption per vehicle for conventional
vehicles and HEVs in a 4-vehicle platoon for different sizes of the allowed velocity interval ∆v

compared to having a fixed velocity for the platoon.

The effect of increasing the interval of allowed velocity variation is affecting the conventional
vehicles more than the HEVs. For the HEVs, the improvements seems to flatten out by at
around 14 %, while the conventional case still seems to gain some improvements even beyond
a velocity variation of ±40 km/h. The reason for this behavior has a lot to do with the usage
of braking force. With increasing velocity gap, the HEVs can avoid to brake and instead store
the energy in the battery or as kinetic energy. With a velocity variation of about ±30 km/h
and onward the HEVs are not using any braking force and thereby not continuing to increase
its improvement. The conventional vehicles do not have the option to store energy in a battery
and will entirely use braking to dispose surplus energy. By increasing the allowed velocity gap,
more energy can be stored as kinetic energy and less braking force is needed. Unlike the HEVs,
the conventional vehicles are still using braking forces at a velocity variation of ±40 km/h due
to the absence of a battery. That is the reason why the conventional vehicles are gaining
much more improvement with respect to velocity gap than the HEVs. By just allowing velocity
variance of ±5 km/h, there is around 8 % improvement for a conventional vehicle and 5 % for
an HEV, and it is probably not even noticeable by the driver. More details regarding the fuel
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consumption and the improvements can be found in Table C.1 in Appendix C.

4.3.3 Reduced air drag coefficient

The air resistance the vehicles are experiencing depends on the velocity, air density, frontal area
and the aerodynamic constant, see equation (2.2). In the previous case studies, the aerodynamic
constant cd has a value of 0.6, which is a typical value for trucks. In this subsection some
comparisons are made between the case with an aerodynamic coefficient of 0.6 and the case
with an aerodynamic coefficient of 0.3, which is a typical value for cars. The data from these
comparisons are presented in Table C.2 in Appendix C, where also Figure C.2 can be seen
showing the velocity profiles for the two different cases. The velocity profiles are not affected
significantly by the difference in air resistance. It is also worth mentioning that the distances
between the vehicles are not affected significantly either, even if no figures are presented to
show this.

With a lower air resistance, less fuel are consumed in general for all different kinds of pla-
toons. However, what is most interesting is how the improvement in fuel consumption between
different vehicle configurations are affected by the air resistance. In Table 4.3, the percentage
improvement in fuel using HEVs in a 4-vehicle platoon is presented for the two different air drag
coefficients. First of all, it is more to gain by platooning when the air resistance is high. This is
because, the higher the air resistance is the higher the losses are. Therefore, there is more fuel
to save by reducing these losses for the case with high air resistance compared to the case with
low air resistance. It can also be seen that the gain of changing from conventional vehicles to
HEVs becomes larger for a lower value of cd. The reason behind the increased improvement is
that the force from the EM makes up a larger part of the total force from both the ICE and the
EM and since the fuel consumption is quadratic in force the improvement gets bigger.

Table 4.3: Improvement in average fuel consumption per vehicle for different air drag coeffi-
cients. The comparisons are made between a single HEV vs a 4-vehicle platoon of HEVs and
between a 4-vehicle platoon of conventional vehicles vs a platoon of HEVs with the same size.

Improvement (%)
cd HEV: platoon (of 4) vs single platoon (of 4): HEV vs CV
0.6 9.8 10.5
0.3 6.2 15.1

4.3.4 Reduced mass

In all the previous test cases the vehicles had a mass of 41.8 t. In this subsection, some test
cases are made with a platoon consisting of vehicles with a mass of 18.5 t, which is roughly
the mass of a vehicle with no load. Table C.3 in Appendix C, the data from these case studies
is presented, where also Figure C.1 can be seen showing the velocity profiles of the vehicles
for the two different platoons. From the figure it can be seen that the velocity profiles for the
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heavy vehicles are varying a lot more around the reference speed than for the light vehicles. It
is also worth mentioning that the distance between the vehicles does not seem to be affected
significantly by the different masses.

In Table 4.4, a comparison is made between the two different cases, regarding how much
improvements that can be made by platooning with HEVs. First of tall it seems like it is more
to gain by platooning with lighter vehicles. This is because the losses due to air resistance is a
bigger part of the total losses for the lighter vehicles compared to the heavier ones. Therefore,
there are more improvements in percentage to be made with the lighter vehicles. It also seems
like it is more to gain by platooning when the vehicles are heavy. This is because the heavier the
vehicles are, the more energy is wasted with the conventional vehicles on braking, and therefore
there are more potential for improvements with HEVs.

Table 4.4: Improvement in average fuel consumption per vehicle for different masses. The
comparisons are made between a single HEV vs a 4-vehicle platoon of HEVs and between a
4-vehicle platoon of conventional vehicles vs a platoon of HEVs with the same size.

Improvement (%)
Mass (t) HEV: platoon (of 4) vs single platoon (of 4): HEV vs CV
41.8 9.8 10.5
18.5 14.4 7.0

4.4 Computation time performance

The computation times for the top layer (SOCP) and bottom layer optimization (DP) are pre-
sented in Figure 4.16. In Figure 4.16a the relationship between computation time and horizon
length are investigated. It seems like the relationship is linear for the DP and quadratic or
exponential for the SOCP. Similar results can be found in Figure 4.16b, where the computation
time is plotted over platoon size. Once again, the relationship is linear for the DP and quadratic
or exponential for the SOCP. This behavior is reasonable since the DP is done separately for
each of the vehicles, while the SOCP is done for the whole platoon. In Figure 4.17 the total
computation time of the control algorithm is presented, which includes several iterations of
the top and bottom layers. Not surprisingly, the trend seems to be quadratic here as well.
The big variance in the computation time is probably because the computations are done on
a standard PC, which is not deterministic. For a short horizon of 5 km the computation takes
around 1.9 s. This means that the computation is done before the next sample, which is desired
if this control strategy is to be used in an MPC-scheme. This comparisons are of course not
completely relevant for the case with real vehicles, since different hardware and software would
be used, but the results are still promising.

42



4. Results

0 50 100 150 200 250

Horizon length (km)

0

5

10

15

20

25

30

35

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Top layer

Bottom layer

(a) Computation time over horizon length for a
platoon with four vehicles.
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Figure 4.16: Average computation time on a standard PC (Intel Core i5-2450M 2.5 GHz and
4 GB RAM), for one iteration of each of the two optimization layers as a function of horizon
length and platoon size. The computation time for the top layer seems to increase quadratic
or exponential with both those things, while for the lower layer the increment is linear.
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Figure 4.17: Total computation time of the control algorithm with a platoon of four vehicles
as a function of horizon length. The computations are done on a standard PC (Intel Core
i5-4200U 2.30 GHz and 8 GB RAM).
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5
Discussion

This chapter discuss the results presented in the previous chapter. Discussions regarding the
models and the optimization algorithm is also included as well as some sustainability and ethical
aspects connected to the outcome of the project.

5.1 Validity of the models and results

All the simplifications applied to the problem are affecting the validity of the results. One
simplification is to divide the optimization problem into two layers to avoid mixed real and
integer formulations. There is then the possibility of model mismatch between the layers, since
for example the top layer is using the reference velocity/kinetic energy as linearization point,
while the bottom layer is using the velocity directly. However, the most essential modelling
aspects are still included in the formulations, like not having constant efficiency of the ICE and
EM, and that the loss functions are nonlinear.

No serious attempts have been made to verify that the solutions of the controller really are
the optimal ones. However, it is worth mentioning that in [13], they do verify the control
algorithm by comparing it to an exact solution, that is found using DP. The result shows that
the controller does find the optimal solution. The control algorithm used in this project is
very similar to the one used in [13], so at least the principal is sound. However, they did not
consider HEVs which of course could change the result significantly. If the controller in this
project would be verified, the method of choice would probably also be to compare it with an
exact solution obtained with DP. This would however be very computational demanding.

In the bottom layer, it is not allowed to use the ICE when the demanded force is negative
and the EM acts like a generator. This is not because of physical limitations on the engine,
but rather to make it easier to solve the power split. However, there might be scenarios where
it is beneficial to do so. For example, during a downhill when the EM does not hit its lower
constraint and it is possible to convert energy from the ICE to the battery. The extra energy
in the battery can later be used in uphills to reduce the use if the ICE. Since the losses are
quadratic it is more profitable to use small forces during a long interval than to use large forces
during a short interval.
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The comparison between a conventional vehicle and a hybrid vehicle is not straight forward. In
the comparisons in this project, the same ICE is used for both conventional vehicles and HEVs,
which means that HEVs can utilize more power with the addition of the EM. The total power
from the engines is thereby different for the two vehicle types. In reality the ICE implemented
in the HEVs might be slightly weaker so the total power is about the same for both types.
It is also worth mentioning that while driving without load, the HEVs are slightly heavier
than conventional vehicles due to the inclusion of the battery and the EM. This implies that
the HEVs transport less goods compared with conventional vehicles when the same total mass
is used for both types of vehicles as presented in the results. This effect is for simplicity not
taking into consideration when making comparisons between the vehicles, even though it would
be more correct.

5.2 Sustainability and ethical aspects

It has already been mentioned in the introduction that fuel costs is a large part of trucking
companies expenditures [2]. The test cases have shown that the designed controller have the
potential so significantly lower the fuel consumption of moving vehicles, and thereby contribut-
ing to economical sustainability. Furthermore, this project can be seen as a part in a more
general development in the automotive industry, towards self-driving vehicles. This have the
potential to remove a lot of jobs in the transportation business in the coming years [22], which
could also contribute to economical sustainability. Another conclusion from [2] was that on
average 35 % of the expenditures for trucking companies are labor wages and benefits. This
means that there a lot of money to be saved if no drivers are needed.

The question is if this potential loss of jobs is ethically and socially sustainable or not. A
recent study published in the American Journal of Industrial Medicine [23] shows that truck
drivers compared to the general population, are more exposed to negative health effects such
as obesity, lack of physical activity and lack of sleep. With this in mind it may be argued that
it is socially sustainable to remove the job as a driver, making it possible for people to spend
their time on something else. On the other hand, the direct effect for people losing their job
may of course be negative. Especially if they are old and with no other education, it may be
difficult to find a new job.

The potential reduction of fuel also contributes to ecological sustainability. Less fuel consump-
tion means less diesel emissions, which is known to have several negative effects on human
health and the environment. Diesel emissions can cause cancer [24], and it contributes to
global warming as well as pollution of air and water [25].
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6
Conclusion

In this project the dynamics of a platoon consisting of HEVs, have been modelled and a control
algorithm capable of minimizing the fuel consumption for such a platoon have been designed.
The models include mathematical formulations of the ICE, EM, battery, gearbox and air resis-
tance, as well as the differential equations of the vehicle dynamics and mechanical- and electrical
power balance.

Using these models an optimization problem has been formulated, and a control algorithm has
been designed, which divides the optimization into two layers. The top layer handles the velocity
and is solved by simplifying the mathematical formulations and using convex optimization. The
bottom layer handles the gear and ICE state and is using DP.

The control algorithm uses three approaches to save fuel. One is to use information of the
topography of the road ahead, to plan the speed of each of the vehicles, and thereby avoid
using the mechanical brakes. Another one is to save excess kinetic energy of the vehicle as
electric energy in the battery to be used for later. The last one is to have the trucks drive close
after one another to reduce the air resistance.

The control strategy has been tested and applied in case studies, both for the case with a
single vehicle, to show the functionality of the algorithm, but also for the case with multiple
vehicles. For the case with multiple vehicles several tests have been performed with different
vehicle configurations to see how platooning, varying velocity and hybridization are affecting
the fuel consumption. For the case with platooning, results show that up to 10 % can be saved
for an HEV traveling in a platoon of 4 vehicles compared to on its own. For the case with
hybridization, up to 11 % can be saved when using a platoon of hybrid vehicles compared to
a platoon of conventional vehicles if they both drive with the optimal velocity. Finally, the
performance of the algorithm have been investigated, which showed that the computation time
is below 2 s for an horizon of 5 km.
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7
Future Work

The controller is mainly designed to use in simulations. If it is to be used for real vehicles,
more work needs to be done. For example, on a real vehicle there will be model mismatches
between the models that are used in the controller and the actual dynamics of the vehicle.
This may require the addition of another control layer similarly as to what is presented in [15].
Furthermore, the control algorithm may need to be simplified to enable faster computation.
One possibility would be to simplify the optimization formulations (3.28) and (3.29) to make
them suitable for a QP problem. Another problem that needs to be handled when using real
vehicles is too find a preferable horizon length for the MPC. In this project, the horizon is the
entire driving cycle, and the optimization is only done once for the entire horizon. This works
because no disturbances are considered. For real vehicle, the horizon would be shorter and the
optimization would be done more often. However, for the energy management of the battery
to be meaningful, the horizon cannot be too short.

Another possibility for future work is to do more case studies. There is a large amount of
combinations of vehicle configurations to test. In this project, only a few of the most interesting
test cases have been made, but there are other tests and comparisons that could be interesting
as well, for example comparing different masses and engine power. The case studies could also
be more detailed. For example, include disturbances or to model the communication delay that
exists when using V2V communications. It would be interesting to see if these modifications
would have any significant impact on the results.

It is only considered that the vehicles are driving in highway speed without any other sur-
rounding vehicles. It may be useful to look at other environments as well, for example a city
environment, where the speed is much lower and starts and stops occur due to traffic lights for
example.

One important aspect to take into consideration when platooning is the ordering of the vehicles.
With the controller used in this project, the order of the vehicles is fixed. It would be useful if
the controller itself could find the optimal ordering of the vehicles. Maybe even allow overtaking
to be able to use different ordering for different parts of the driving cycle as this may be the
optimal solution. However, this would probably be very computational demanding.

The vehicle models that have been used can be made more detailed. Perhaps most relevant is
to model the engine braking. In the controller that has been used in this project, there is no
difference between braking with the brakes or with the engine. However, with a real vehicle it
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7. Future Work

is preferred to avoid using the brakes, to reduce the wear on them. Another aspect that has a
lot of room for improvements is the air drag, which is rather complex to model, and the models
that are used are very simplified. For example, the data that are used to create the models
comes from a platoon with three vehicles with equal inter-vehicle distances. In the simulations,
the inter-vehicle distances may wary, and the platoons consists of more than three vehicles.
Additionally, the air drag model that is used assumes that there is no crosswind, which could
have a huge impact on the air resistance.

Finally, the controller optimizes the energy consumption of the entire platoon as a whole. It is
perhaps too optimistic to assume that real drivers and companies would cooperate this nicely. If
each vehicle would do their optimization separately, the result regarding fuel consumption would
probably be worse. However, it would still contribute to the progress of making transportation
more efficient and sustainable.
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A
Model Parameters

Table A.1: Values of the model parameters that are used in the case studies.

Parameter Notation Value Unit
Aerodynamic drag coefficient cd 0.6 -
Air density ρa 1.1839 kg/m3

Auxiliary power PA 1.6 kW
Battery open voltage Voc 637 V
Battery resistance R 0.173 Ω
Cruising velocity v̄ 80 km/h
Frontal area Af 10.2 m2

Gear efficiency (including differential gear) η 0.9506 -
Gravitational acceleration g 9.81 m/s2

Highest gear γmax 12 -
Maximum acceleration amax 0.2 m/s2

Maximum battery charging power PBmax 100 kW
Maximum battery energy capacity EBmax 19 kWh
Maximum EM power PMmax 180 kW
Maximum ICE power PEmax 350 kW
Maximum SOC level SOCmax 0.65 -
Minimum SOC level SOCmin 0.20 -
Penalty for gear change wγ 0.00005 kg/s
Penalty for ICE on/off wχ 0.0007 kg/s
Rolling resistance coefficient cr 0.0047 -
Vehicle mass m 41.8 t
Wheel radius Rw 0.491 m
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B
Pre-filter to Obtain Feasible Reference

Speed

A pre-filter similar used in [13] is applied before the start of the optimization algorithm to
obtain a reference velocity v̂(s) from the chosen cruising speed v̄, speed limits vroad

min (s), vroad
max (s)

and the road information for the driving cycle. Note that the variables are expressed in the
space coordinate s. It is assumed that v̄ ∈ [vroad

min (s), vroad
max (s)] and ∀s ∈ [0, sf].

The maximum net force that can be delivered to the wheels by the ICE at gear γ for a single
vehicle at velocity v̂(s) can be expressed as

FWmax(v̂(s), γ) = FEmax(v̂(s), γ)− F o
air(v̂(s))−mg(sin (α(s))) + cr cos (α(s))). (B.1)

Only the force from the ICE is considered and not from the electric machine so the comparisons
between conventional vehicles and HEVs becomes more fair. The reference velocity is obtained
by numerically solving

v̂(s) = min
{
v̄,
∫ sf

0
min

{
amax

v̂(s) ,max
γ

{
FWmax(v̂(s), γ)

mev̂(s)

}}
ds

}
, (B.2)

where amax is the maximum acceleration that is allowed in order to experience a comfortable
drive. The initial condition is v̂(0) = v̄. If it happens that v̂(s) < vroad

min (s) for some instances s,
the limit has to be modified accordingly to avoid infeasibility. The velocity limits used in the
algorithm are calculated as

vmin(s) = max
{
vroad

min (s), v̂(s)−∆v

}
,

vmax(s) = min
{
vroad

max (s), v̂(s) + ∆v

}
,

(B.3)

where ∆v is the maximum allowed speed variation from the reference speed. The maximum
traveling time Tmax is obtained from the reference speed according to

Tmax =
∫ sf

0

1
v̂(s) ds. (B.4)
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C
Additional Details from Case-studies

Table C.1: Improvement in fuel consumption (l/100 km) per vehicle for a platoon of 4 vehicles
compared to a single vehicle for different allowed velocity intervals. Each vehicle type (CV and
HEV) are compared to their own single vehicle type.

Interval (km/h) 4 HEV (l/100 km) Improv (%) 4 CV (l/100 km) Improv (%)
0 26.34 0 30.79 0
2.5 25.49 3.243 29.25 4.996
5 24.90 5.447 28.24 8.291
7.5 24.47 7.091 27.50 10.67
10 24.16 8.267 27.00 12.30
15 23.63 10.27 26.15 15.06
20 23.25 11.71 25.55 17.03
25 23.01 12.64 25.00 18.79
30 22.83 13.33 24.58 20.17
35 22.78 13.52 24.30 21.07
40 22.74 13.66 24.11 21.68

Table C.2: Average fuel consumption per vehicle for a 4-vehicle platoon of conventional
vehicles and HEVs and for a single HEV, for different values of the aerodynamic constant cd.

cd 4 CV (l/100 km) 4 HEV (l/100 km) 1 HEV (l/100 km)
0.6 27.00 24.16 26.80
0.3 23.98 20.36 21.71

Table C.3: Average fuel consumption per vehicle for a 4-vehicle platoon of conventional
vehicles and HEVs and for a single HEV, for different masses.

Mass t 4 CV (l/100 km) 4 HEV (l/100 km) 1 HEV (l/100 km)
41.8 27.00 24.16 26.80
18.5 17.73 16.48 19.26
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C. Additional Details from Case-studies
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Figure C.1: Comparison of the velocity profiles between a light (18.5 t) 4-vehicle platoon and
a heavy (41.8 t) 4-vehicle platoon, for all the members of the platoon.
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Figure C.2: Comparison of the velocity profiles between a 4-vehicle platoon with low air
resistance (cd = 0.3) and 4-vehicle platoon (cd = 0.6), for all the members of the platoon.
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