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Auto-scaling cloud infrastructure with Reinforcement Learning
A comparison between multiple RL algorithms to auto-scale resources in cloud in-
frastructure
DANIEL EDSINGER
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
With an increasing use of cloud services for both personal and professional use,
the competition for bringing the best product becomes harder as more companies
provide this type of service. Not only do they want to save cost, but also improve
the stability to better handle sudden, unexpected problems that can decrease the
performance and responsiveness of their cloud service. Therefore, the purpose of
this project was to propose and evaluate different solutions that can auto-scale the
cloud infrastructure based on its resource usage. Also included in the report are al-
gorithms that did not provide any usable results or could not handle the complexity
of the problem. We developed three different reinforcement learning algorithms in
Python, using the Tensorflow framework to train neural networks, and compared
their performances in terms of both cost and stability. These algorithms were im-
plemented to work on virtual machines with Apcera installed and were trained with
data collected through Apceras API. The training was done in a simulation of the
cloud cluster. The results of this project shows a noticeable difference between these
three algorithms. While all three work to some degree, one stands out and performs
significantly better than the other two in terms of cost and the stability of the clus-
ter. Conclusively, we have an algorithm that can accurately predict how to scale the
cloud cluster based on the time of day, and the current resource usage.

Keywords: Computer, science, Q-learning, SARSA, machine learning, reinforcement
learning, cloud computing, EC2, AWS, Apcera.
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1
Introduction

This chapter will go through the motivation behind this project, its goals and limi-
tations.

1.1 Background

Cloud computing services such as Amazon Web Services (AWS) are easily accessible
and can be used for computational power, database storage, applications and other
IT resources through a cloud services platform via the internet with pay-as-you-go
pricing. These services allow one to rent one or multiple virtual machines (VM) to
run their own programs or services. In order to keep performance high and avoid
slowdowns, it is important to regulate the computational power between these VMs,
e.g. keep all resources such as CPU, memory, disk, and network from maxing out.
The objective of this project is to work with Ericsson’s cloud service to investigate,
evaluate and identify opportunities and challenges for applying machine learning,
artificial intelligence, or similar technologies in their cloud platform environment.
The environment consists of a cluster of Instance Managers (IM) which are part of
a run-time environment for Docker containers, a packaging software for deploying
and running jobs/apps [1]. Each IM is a VM rented from AWS with the Apcera
platform installed and is where these Docker containers are deployed. The use-cases
that this thesis will focus on are the following:

• Distributing the workload on containers across the system
• Auto-scaling of applications and infrastructure

The current method of assigning new instances of a container to an IM with Apcera
is based on a score calculated from available CPU, disk, memory, and network. All
IMs then immediately return that score and the best IM is selected to run said
instance. It will not take into account any fluctuations in CPU, disk or network
usage of said jobs over time, nor can a job transfer between IMs to better distribute
the load. This problem is connected to the first use-case.
For the moment, Ericsson’s cloud service only has one type of VM that they rent
from AWS while there are many more configurations available [2]. There could
instead be an option to add or remove an IM with different resource configurations
and cost. Exactly what type to remove/add depends on how much resources are
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1. Introduction

used across the cluster at any given time. This problem is connected to the second
use-case.
In summary, these two use-cases can help the cluster handle under-/over-utilization
of one or multiple IMs. The solutions to these problems are meant to address issues
on the servers such as responsiveness and resilience of the system.
The solutions are meant to work with Ericsson’s connected vehicle ecosystem and
are expected to improve the overall robustness of the system, reduce down-time
and increase the level of automation. Ideally, the final algorithm will result in a
system that is fully automated and automatically scales resources up/down based
on demand. For this thesis, it is important to explore the different technologies in
relation to each use-case and to list the pros and cons of each method.

1.2 Context

In a survey made by Chandola, Banerjee, and Kumar, they investigated how dif-
ferent techniques in machine learning could be used while searching for different
types of anomalies [3], such as Intrusion Detection, Industrial Damage Detection,
etc. The investigated techniques have multiple designs with both advantages and
disadvantages. This survey does not investigate exactly the kind of data that we
will use, but it will help give an understanding on what options are available. It is
possible that we can correlate a detection technique they used for a specific area, to
one that we will use in this project and directly translate that.
Teodoro, Verdejo, Fernández and Vázquez studied anomaly detection focusing solely
on network intrusion detection [4]. Here they discuss what techniques are appropri-
ate for network intrusion. Just like in their study, we would have to adjust what
kind of algorithm we use to solve a specific problem.
Reinforcement learning (RL) is a known technique when optimizing the workload
of VMs [5] [6]. While these two papers in the previous paragraphs focus explicitly
on read/write (I/O) and network performance for VMs, this project will include the
optimization of CPU, memory and disk resources over a whole cluster. How these
clusters work and look is described in more detail in Section 3.4.

1.3 Goal

The goal of the project is to investigate different types of algorithms and evaluate
if they are suitable for the concerned use-case described in Section 1.1. We will list
the pros and cons for each approach and propose an appropriate solution to our
problem. This includes an analysis of availability of input data, expected accuracy,
efforts needed to implement it and how resource (CPU/Memory) demanding it would
be. This also includes investigating whether or not machine learning is in fact the
right way to go for all use-cases, or if some of them can be solved using simpler
statistical models.

2



1. Introduction

The same use-case could be implemented in many different ways (e.g. simple logic in
bash scripts, statistical models, machine learning, deep neural networks etc.). The
question is to figure out which is the appropriate way.
However, because the data collected from the cluster lack any sort of annotations,
there are limitations on what methods can be used. Methods using supervised
learning are not capable to solve this problem, as they are designed to classify each
input [7], but also need annotations to learn. Therefore, RL is more suitable as it
can learn using rewards and punishments without knowing exactly how a problem
should be solved [3].
The different methods tested/evaluated in this project are several RL algorithms:
Q-Learning [8], SARSA [9], Double Deep Q-Learning [10] and AC3 [11]. The com-
parison between these algorithms will include their speed, cost and if they made
any improvements on the system. They will all have the same state inputs, reward
function and possible actions to take. Their differences will be how they predict
good actions at each state.
The information required to test the algorithms consists of different configurations
of how many IMs and job instances are currently running, and how much resources
are used at any given time. This data can be collected from the real configuration
in Ericsson’s system.

1.4 Limitations

This project will only test the solution on a simulation instead of a real system.
The simulation environment will have the additional functions of choosing where to
put a container and transferring them between VMs. While Apcera has no such
feature, those functionalities can be found in a similar program called Kubernetes
when using nodeselector [12].
It is important to understand that with reinforcement learning, as the environ-
ment state-space increases, the complexity of the problem will also increase. In this
project, state-space will depend on the number of VMs and containers. That is why
Deep Q-learning is a suggested algorithm in Section 1.2, as the problem can become
too complex for the Q-learning and SARSA algorithms. On the other side, it is
harder to change the input and output for the neural network in Deep Q-Learning,
e.g. if the number of VM types change, the network will have to re-train everything.
To clarify the scope of this project, the following problems will not be explored in
this project, but are still related to the subject:

• Preemptive fault detection
• Automatic fault recovery
• Automatic resource profiling of applications
• Other anomalies or deviations on the platform

3
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2
Theory

This chapter will describe the theory requisites needed to understand the different
methods and technologies that are used in this project. Specifically how we can
train a computer to make decision in order to achieve the best outcome. It will also
explain a common technique applied to problems that otherwise would be to hard
or slow so solve because of the its complexity.

2.1 Reinforcement learning

As stated in Section 1.3, RL can solve problems using a function as a reward or
penalty. An agent interacts with an environment by carrying out actions, then
receives rewards depending on how "good" the actions were. How this works can be
seen in Figure 2.1.

Figure 2.1: How an agent uses actions on an environment.

Each action the agent takes will result in a new state and a reward depending on
how good that state is. These rewards will reinforce good behaviors and the agent
learns what actions will result in the highest reward.

2.1.1 Markov decision process

In RL, problems are modeled as a Markov decision process (MDP) [13] [14]. The
environment can then be modeled as a transition probability between states s and
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2. Theory

s′ with Pa(s, s′). The probability depends on the current state s and each action a
that can be taken at that state. The MDP model of an environment consists of a
tuple {S,A, Pa(s, s′), Ra(s, s′), γ} whose components denote the following:

• S a finite set of states
• A a finite set of actions
• Pa(s, s′) : S ×A× S → [0, 1] the probability of reaching state s′ with action a
• Ra(s, s′) : S ×A× S → R the immediate reward of taking action a in state s,

reaching state s′

• γ ∈ [0, 1] the discount factor of future rewards.
The reward function Ra(s, s′) depends on both the agents current state before the
transition, and the action it chooses. Performing a specific action a at state s will
result in the agent reaching an arbitrary state s′ with a reward. The MDP can
be defined with rewards only at terminal states, on all states or no rewards at all.
Although, an MDP model with no rewards is already solved as there are no paths
that can result in a bigger rewards, hence it is already optimal.
For an MDP model, there is an agent that will act upon it, taking actions that
cause transitions between states. Figure 2.2 shows how the agent uses actions to get
rewards. At each state s, when an action a is taken by the agent, the environment
will return a new state s′ and a reward Ra(s, s′).

Figure 2.2: An MDP with transitions from state to state, each with a reward R.
P is the transition probability from state s to s′ with action a.

2.1.2 Policy

A policy π describes an appropriate decision for any state s in the form of state-
action pairs. The goal of using an MDP is to find an optimal policy π∗ which predicts
a "best" path with the highest possible expected reward [15]. That is, from an initial
state s, it will achieve the highest reward possible. The total reward is the sum of
all rewards Ra(s, s′) from all states that are visited.
We define π as the general solution to the MDP model, and π(s) as solution to any
specific state s. The policy function π(s) will generate an action made by its policy
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2. Theory

π so that the decided action a is the value generated from the function value π(s),
for both the reward and probability function Ra(s, s′) and Pa(s, s′). These functions
can therefore instead be written as Rπ(s)(s, s′) and Pπ(s)(s, s′) for any state s using
an arbitrary policy π.
For each s ∈ S there exists a function value V (s) which is defined as the expected
future reward for state s. The expected value function following a policy π can be
written as an infinite-horizon discounted model [14]:

V π(st) :=
[
Rπ(st)(st, st+1) + γRπ(st+1)(st+1, st+2) + · · ·+ γnRπ(st+n)(st+n, st+n+1) + . . .

]
(2.1)

We can observe in Equation 2.1 that since the the discount factor γn is exponential,
the expected future reward becomes smaller as the number of steps increases, unless
γ is 1. The same function can also be written as:

V π(st) :=
( ∞∑
t=0

γtRπ(st)(st, st+1)
)

(2.2)

Although this function describes the solution to the MDP, we need a way to solve
the problem in finite time. To describe the function as finite, we rewrite V π(s) and
introduce the probability function Pa(s, s′):

V π(s) :=
∑
s′
Pπ(s)(s, s′)× (Rπ(s)(s, s′) + γV (s′)) (2.3)

Here Rπ(s)(s, s′) is the immediate reward for performing an action a at state s
determined by a policy π, and γV (s′) is the discounted expected future reward for
reaching the next state. Note that∑ s′Rπ(s)(s, s′)+γV (s′) equals the infinite-horizon
model in Equation 2.1 and 2.2 but is solvable in finite time, as V (s′) is the reward
for all future states and Rπ(s)(s, s′) for the current state.
The variable γ decides how much influence future states have on the current state
value. A lower γ means a lower reward from the future states.
We also have to define the policy function in order to complete the value function:

π(s) := argmax a

{∑
s′
Pa(s, s′)× (Ra(s, s′) + γV (s′))

}
(2.4)

To compute the value of a state s (V (s)), we need to know the already calculated
value of V (s′) for the next state, so it is necessary to store all state-values in an
array the size of the state space S.
In order to find the optimal policy π∗, we need to iterate the value function V (s) for
all states. That is possible by using the previous value function V i−1 to update the
next iteration of the function V i. The value iteration loop can be seen in Algorithm
1. This will simulate the infinite horizon discount reward in a finite amount of time.
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2. Theory

Algorithm 1 Value iteration
1: V 0 := arbitrary value function for all states
2: i := 0
3: repeat
4: i = i+ 1
5: for each state s ∈ S do
6: V i(s) = maxa

{∑
s′
Pa(s, s′)× (Ra(s, s′) + γV i−1(s′))

}
7: end for
8: until V i − V i−1 < threshold

The value iteration will continue until the difference between V i−1 and V i has
reached a certain threshold. The threshold is generally set to a small number but
can be altered depending on the problem. Given enough time and value iterations,
the policy will converge as long as no state is excluded from the value and policy
iterations.
The optimal policy theorem was proved by Ross in 1983 [15] [16], and there exist at
least one optimal policy solution π∗ so that we also have an optimal value function
V ∗(s) ≡ V π∗(s) [8]:

V π∗(s) = max
a

{∑
s′
Pa(s, s′)× (Ra(s, s′) + γV π∗(s′))

}
(2.5)

Note that this method only is possible if the whole model is known. We cannot
perform value iteration if the reward or probability function are not given. These
become harder to provide as the complexity of the problem increases.

2.1.3 Q-learning

We can solve small MDPs fast and reliably when the entire MDP model is available.
It can be solved by finding a greedy policy π for the problems.
The name "greedy" comes from the policy always choosing the action resulting in
the highest reward in the following state, as seen in Equation 2.4. As such, we
update the value function with "greedy" actions when performing value iterations.
When the model is known, we can update all the expected rewards for all states,
also called value iteration, and ensure that the policy is optimal. This method is
however not very practical since for most problems we are trying to solve, the model
is not known.

2.1.3.1 Q-values

Q-learning is a form of model-free RL [8] and introduces an ε-greedy policy written
as π′, and state-action pairs Q(s, a), also called q-values, for choosing actions. The q-
valuesQ(s, a) for a state s is a collection of the expected reward V π′(s) for performing
different actions. E.g., if there are four possible actions at state st, then Q(st, a)

8



2. Theory

consists of four different values. The required size of the array to store all values, is
the state space S times the action space A. Equation 2.6 shows how these q-values
are calculated.

Qπ(s, a) = Ra(s, s′) + γ
∑
x

Pa(s, x)V π(x) (2.6)

where for the immediate reward Ra(s, s′), the state s′ is the outcome of taking action
a at state s, likewise for x.
We can say that the highest expected reward from a state s is the q-value of Q(s, a)
with the argument a that yields the maximum value:

V ∗(s) ≡ V π∗(s) = max
a

{
Ra(s, s′) + γ

∑
x

Pa(s, x)V π∗(x)
}

= max
a

Q(s, a) (2.7)

If the outcome of performing an action a at state s is always the same, i.e. the
probability function Pa(s, s′) returns the same value for any states and actions, then
we can simplify and rewrite Equation 2.6 by replacing the value function:

Qπ(s, a) = Ra(s, s′) + γmax
a

Q(s′, a) (2.8)

2.1.3.2 ε-greedy policy

The procedure of the ε-greedy policy is the following:
• With probability ε ∈ [0, 1] take a uniformly random action.
• Otherwise choose the best action according to the estimated state-action pairs

from the q-values Q(s, a).
Just like the normal policy π from Section 2.1.2, π′ chooses an action based on the
value function V π′ . The modification is to take a random action with a probability
of ε. The ε variable helps the algorithm explore paths that the policy otherwise
would not choose, and it often decreases over time as the training progresses.
In a model-free MDP we only know how many states there are, not the reward
or probability function Ra(s, s′) and Pa(s, s′). Therefore we can not perform value
iteration, but instead have to go from state to state in order to update the expected
reward in forms of episodes.
These episodes are training periods made to update the value function by trial
and error. Each episode will start at state s0 and traverse between states with
actions chosen by the policy π′, while updating the q-value function for each state
it visits. When finally reaching a terminal state, it starts over and resets the model
while keeping the updated q-value function. The cycle continues for M number of
episodes and will perform the following steps:

• A state sn in the N:th episode.
• Choose an ε-greedy action an to maximize the reward.

9
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• Update Qn(sn, an) with the expected reward from the earlier episode n − 1
with a learning rate α. This is shown in Equation 2.9.

Qn(sn, an) =


(1− α)Qn−1(sn, an)︸ ︷︷ ︸

old value

+α
learned value︷ ︸︸ ︷

(Ra(sn, s′n)︸ ︷︷ ︸
reward

+γmax
a

Qn−1(s′n, a)︸ ︷︷ ︸
future reward

) if s is not terminal

Qn−1(sn, an) else
(2.9)

2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) consists of a network of neurons connected to
each other. These neurons are placed in three different layers: input layer, hidden
layer, and output layer, as seen in Figure 2.3. The hidden layer can consist of
multiple neuron layers with different types of connections. For a fully connected
network, every neuron in a layer passes its value to each neuron in the next layer.

Figure 2.3: An Artificial Neural network. The hidden layer consists of several
layers of neurons.

Figure 2.4 shows a closer look inside the neural network (NN). The value y inside the
last node is the sum of all inputs times their respective weight w so that y = xᵀW ,
where W is the collection of all weight, but with the addition of an activation
function φ we get the output value ŷ as seen in Equation 2.10. The output value is
then sent to all other connected neurons in the next layer.
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Figure 2.4: How several inputs x with an assigned weight w creates an output ŷ.

ŷ = φ(xᵀW ) (2.10)

Each connection sends the output of a neuron i as an input to a neuron j and has
a weight wij. Neuron i has an output ŷi that depend on the neuron’s input.
The propagation function (Equation 2.11) computes the input for neuron j from all
connections in the previous layer in the network:

pj =
∑
i

ŷi × wij ⇒ ŷ = φ(pj) (2.11)

The weights in a network are all the parameters θ of the network that can be tuned,
i.e., θ is the vector of all weights. If we adjust the weights w in the connections
between two layers, not only is the output ŷ affected, but also the neurons in the
later layers that are connected to that neuron.
The goal of an ANN is to predict an output based on the network input data.
Sending in data to a neural network with random weights will not produce any
usable result. It is therefore necessary to update all connections to produce more
accurate results. That is done by performing back-propagation for each training
value:

1. Propagate forward to produce a prediction (network output)
2. Calculate the error E based on the prediction and the actual value
3. Propagate the neuron outputs backwards through the network to generate

gradients for the weights to minimize the error
4. Apply the gradients to the weights in the network
5. (Optional) Update the weights in smaller steps. Subtract only a ratio α (learn-

ing rate) of the weights based on the gradients.
A common technique to better estimate the gradients for the network when updating
its weights is averaging the gradient over multiple tranining examples, which are
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referred to as mini-batches. By looking at a randomly selected training set of size
x, often 128 or 256, back-propagation calculates the gradient using all training
examples and applies the average gradient to the network [17]. Although this method
is slower at first in terms of calculation time, it increases the prediction accuracy and
will further improve as the batch-size increases by getting a less noisy estimate of
the gradient. That way, it will handle noise in the training better, but also in most
cases be a faster alternative than computing each individual training example.
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Methods

This chapter will go through the the implementation of the data collection, the
structure of the environment simulation and the algorithms used in this project.
Here we will, with the theory presented in the last chapter, describe how to solve
the problems presented in Chapter 1.

3.1 Structure of project

The project consists of two phases. The first phase is to focus on a theoretical
investigation and outline proposals to solve our problems. We would have to create
a hypothesis about what method would be the best solution for each use-case. This
is to not put unnecessary work into a method that is not optimal or does not work
at all. The second phase focuses on implementing one or more use-cases to verify
theory vs. actual outcome in a simulation of a cloud environment. It does not mean
that it is necessary to implement the solution to Ericsson’s production system, but
rather build a simulation and train an algorithm using real data from the vehicle
ecosystem.

The RL algorithm requires certain information that must be built into the environ-
ment to function properly. For each IM in the system, the environment needs to
know the usage of CPU, disk, memory, and network at any given time, as the reward
function of the algorithm is dependent on these parameters. The algorithms used in
this project will use that information to determine what actions are better at each
state. These actions are constrained to how much memory each IM has available
and how much of its computational resources it has left.

3.2 Implementation

This environment will be built with help from OpenAI Gym [18], which is a toolkit
for developing and comparing RL algorithms. It is used to design the environment
and compare the results from the different algorithms. This was done in Python 3.6
and the data collection, described in Section 3.3, was programmed in Java.
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3.3 Collecting data

The resource information collected from each IM is the following:

• CPU usage

• Disk usage

• Memory usage

• Network usage

• VM type

Figure 3.1: 1: Apcera job connected to the Test cluster API. 2: MySQL
database. 3: Remote machine (AWS EC2 VM) running the algorithms.

Figure 3.1 visualizes the setup behind the data collection. We created an Apcera
job running on the Proto cluster connected to the Test cluster’s API. Because all
clusters are online 24/7, the job can collect data without any interruptions. While
running, it will store the data to the database, as seen in Appendix A, and can be
used by the remote machine to train at a later time.

The reason why we connect to the Test cluster through the Proto cluster is mostly
security, but also the potential performance impact of running the job on the real
cluster itself. Because the Apcera job works in bursts every 60 seconds, connecting
to the API and the database multiple times, we wanted to neglect that burst impact
on the real cluster by deploying it to a different cluster.
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3.4 Environment

The environment is built as a simulation of the Apcera system. An illustration of
how Apcera works can be seen in Figure 3.2. When training, the action taken from
state si is sent to the simulation and will then return the next state si+1. The effect
of each action is built to work like the real system, e.g. adding an IM will result in
more resources available for the cluster.

Figure 3.2: The Apcera platform. Each IM has several jobs running inside them.

Each IM has a specified size of each resource. CPU is a time resource measured in
ms, and disk, memory and network are measured in GB. The size of these resources
depends on what type of VM is rented from AWS. Certain VMs are memory opti-
mized, CPU optimized or even all-round machines [2]. In this project, two types of
VMs with different specifications and prices are used and the VM specifications can
be seen in Table 3.1.
The number of types can be extended for a more complex problem solving. Obvi-
ously, increasing the number of VM types will increase the complexity of the problem
and influence the performance of the algorithms. Therefore only two types are used
in this project, as that is the minimum to showcase the usefulness of the algorithms.

VM Type CPU Disk Memory Network Cost
i3.xlarge 4000 ms/s 475 GB 30.5 GiB 1 GB/s 0.214$/h
c5d.2xlarge 8000 ms/s 475 GB 16 GiB 1 GB/s 0.216$/h

Table 3.1: The different IM types and their available resources

Everything in the current and the following subsections are shared among all algo-
rithms tested, i.e. all states, actions, rewards etc. in the MDP are the same. This
is in order to keep the comparisons fair by retaining the pre-conditions.
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3.4.1 States

The state variable of the MDP is defined as:
• S = {time, cpu, disk,mem, net, nr1, nr2}, where:

– time is the time of day. 0 ≤ time ≤MaxTime

– cpu is the CPU usage of the system. 0 ≤ cpu ≤ 100
– disk is the disk usage of the system. 0 ≤ disk ≤ 100
– mem is the memory usage of the system. 0 ≤ mem ≤ 100
– net is the network usage of the system. 0 ≤ net ≤ 100
– nr1 is the number of IMs of type 1. 0 ≤ nr1 ≤ 20
– nr2 is the number of IMs of type 2. 0 ≤ nr2 ≤ 20

The variable time is a looping variable that cycles through day, starting at 00:00
with a value of 0, later ending at 23:59 with a value of MaxTime. The MaxTime
variable is dependant on the interval t of each measurement:

MaxTime = 24× 60× 60
t

= 86400
t

(3.1)

For example, if the interval t is 10 seconds, then MaxTime = 86400
10 = 8640.

For this project, the interval is set to 600 seconds, or 10 minutes, which gives us
MaxTime = 144. That means the variable time can have 144 different values.
The result of all variables is a model where the state space has 144× 1014 × 202 =
58×1011 unique states. It is possible to shrink the state space at the cost of precision,
e.g. halve the precision of the usage or increase the interval t.

3.4.2 Actions

In an MDP environment {S,A, Pa(s, s′), Ra(s, s′), γ}, an action from the action space
A changes the state si to the next state si+1.
The size of the action space A is linear to the number of VM types that are used.
There are two actions available for each VM type: remove and add a VM. Apart from
these actions, there is always an option to do nothing. This results in up to 2×x+1
available actions, where x is the number of VM types. For this environment setup
with two VM types, we have 2×2+1 = 5 actions. The amount of actions is directly
tied to the number of VM types used in the model and will require alterations in
the models state space for compatibility. The actions used in this project with two
VM types are listed as the following:

• a1: Add a VM of type 1
• a2: Add a VM of type 2
• a3: Remove a VM of type 1
• a4: Remove a VM of type 2
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• a5: Do nothing
The algorithm’s job is to determine which is the best action in each given state,
and it has to choose from one of the actions mentioned above. In Section 3.4.3, it
is explained that the actions a1 − a4 should have an immediate, negative reward to
avoid alternating between adding and removing VMs. All actions except the "Do
nothing" action are penalized.

3.4.3 Reward function

The reward function is what decides what actions are good and bad in every state.
A higher reward is better. This function will guide the MDP through states with
the least amount of negative rewards, so a lot of focus is put on this part of the
environment.
The calculated expected reward E[R] is the same value function discussed in Section
2.1.2 and allows the algorithms to predict the future discounted rewards of all states:

E[R] = E

( ∞∑
t=0

γtRπ(st)(st, st+1)
)

(3.2)

where the discount value γ is 0.95. As mentioned in Section ??, so γ should have a
lower value than 1.
The reward at each state taking action a is defined in Equation 3.3:

Rπ(st)(s, s′) = (β × C(a, s′) + (1− β)× P (s′))× Pmult (3.3)

C(a, s′) = cfrac × a+ cvm × us′ × t (3.4)

P (s′) = Pc

3600 × t×


(

1 + u− Plimit
Plimit

)
∀u ∈ U , if u > Plimit

0 else
(3.5)

Pmult =

5 if ∃u ∈ U where 100 ≤ u, or us′ < 3
1 else

(3.6)

where:
• π is an arbitrary policy.
• β is a balance variable that acts like a weight between the cost and the penalty

rewards.
• C(a, s′) is a cost function of running the cluster and adding/removing IMs.
• P (s′) is a penalty function (negative reward) for situations when the resource

usage is too high. It help the algorithm to avoid scenarios where a resource
usage exceeds a certain limit. When this penalty is activated depends on Plimit.
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• Pmult = 5 is a penalty multiplier. We multiply all costs and penalties with
a factor of 5 if: the usage of any resource reaches 100%, or if there are less
than three IMs available, as three IMs is the recommended minimum number
of IMs in production stated in the Apcera documentation [19].

• cfrac = cvm
3600 × t × 5 is an immediate penalty for adding or removing a VM.

The penalty is the cost of running a VM for 5 steps.
• a is the number of IMs removed or added to the cluster, as described in Section

3.4.2
• cvm is the cost of running a VM. The prices are specified in Table 3.1
• us′ is the number of IMs being online at state s′. That means, after action a

at state s has been taken, we have u IMs online at the next state.
• t is the time interval between steps specified in Section 3.4.1.
• Pc is the penalty cost of using too much resources from the cluster. We used
Pc = 5$/h.

• u ∈ U represents the usage of each resource in the cluster.
• Plimit is a limit on when a penalty should be added for using more resources

than said limit. We used Plimit = 0.7, and when a resource in U exceeds the
limit, an increasing penalty is added.

The goal and reasoning behind these penalty functions are the following:
• Lower the cost of running the cluster.
• Always have enough extra resources if an IM crashes or disconnects from the

cluster.
• Not have the resources reach or exceed 100%.

The reason for the actions having an extra immediate cost in C(a, s′) is to penalize
excessive switching between adding and removing VMs. This will in turn encourage
the algorithm to choose action 5 and do nothing.

3.5 Simulation

As stated in Section 3.1, a simulation of the Apcera platform was built for the
environment to train with instead of a real system. Every action taken by the
algorithms will affect the resources available in the simulations, and the first thing
the simulation does when starting an algorithm is to connect to the database and
load the following values:

• The current number of IMs being online
• The resources available for each VM type
• The total resource usage of the cluster

The number of IMs being online is a variable that the algorithms have direct con-
trol over by performing a certain action. Four of the actions described in Section
3.4.2 will either increase or decrease the number of IMs, while the last action does
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nothing. For each episode in the simulation, the number of IMs is randomized to
help the algorithm to experience different configurations and be able to adapt to
any situation.
Furthermore, the resources available for each VM type are static values that cannot
be affected by the algorithm. It is only used to calculate the usage percentage based
on how many IMs are online and how much resources is actually used in the cluster.
Finally, the total resource usage is another value the algorithm cannot change, but
will instead change on its own between any two steps. For when initializing the
simulation, it loads all usage values with an interval of t seconds from the database
into an array. E.g. in Figure 3.3 which show some test data collected from an
already existing cloud, we can see the memory usage varies between 335 GB and
200 GB during the day. After each taken step, the simulation traverses through
these values until the training episode stops. This applies for all resources described
in Section 3.3.

Figure 3.3: 288 samples (two days) of the normal memory resource usage in the
cloud cluster.

3.6 Algorithms

There are many different types of machine learning algorithms that can solve differ-
ent kinds of problems. For this project, without any annotated data to train with,
we chose to focus on RL algorithms that can instead rely on a reward function to
determine how good the current state is.
In the case of algorithms such as Q-Learning and SARSA that we wanted to explore,
there are limitations on how big a problem can be. Both these methods were un-
suitable to solve the problem at hand due to the size of the problem. The two tables
we need to solve our problem, a state value table V (s) and a q-value approximation
table Q(s, a), are considerably large with the state space used for this problem.
The state value function V (s) would require an array with 7 dimensions with a size of
[101, 101, 101, 101, 144, 20, 20], and an action-value function Q(s, a) of 8 dimensions
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with a size of [V (s), 5]. These functions where introduced in Section 2.1.2 and 2.1.3.
In Section 3.4.1, we calculated that there are 58 × 1011 unique states in S, which
results in 29 × 1012 unique state-action pairs. Keeping track of so many different
float values is not viable. Therefore, there will not be any results of the performance
for Q-Learning in Chapter 4.
However, we can still implement Q-Learning and SARSA with a neural network
(NN) as an alternative to a table of arrays, and instead approximate the q-value
with the network’s output nodes.
For all the following algorithms implemented, a mini-batch size of 128 was used. It
means that after 128 training samples have been collected, the algorithms can start
to train the neural network.

3.6.1 Deep Q-Learning

Deep Q-Learning (DQL) follows the same principles as the Q-Learning algorithm.
The difference is, instead of using an array to store all rewards, it approximates the
optimal policy using a neural network as an equivalent of Q(s, a) from Section 2.1.3.
The layers in the network are the following for all algorithms in this project:

• Input layer: 7 neurons, one for each state variable described in Section 3.4.1
• Hidden layer: fully connected with 100 neurons
• Hidden layer: fully connected with 60 neurons
• Output layer: 5 neurons, one for each action described in Section 3.4.2

There are no tables for the action or state reward in this algorithm, i.e., the functions
Q(s, a) and V (s). Instead we get the q-values from the output layer of the neural
network by inserting the state as an input. With the network parameters θ, we
denote the q-value by writing Q(s, a; θ). By inserting an input state s into the
network, we get the output q-values for all actions.
However, we have to update the neural network’s parameters θ in order to better
choose the appropriate action to take at each state. We do that by calculating the
target value, also called temporal difference (TD-target) Yt as seen in Equation 3.7.

Y DQN
t ≡ Rt+1 + γmax

a
Q(st+1, a; θt) (3.7)

To update the parameters of the network, we use an adaptive learning approach
called RMSprop, proposed by Geoff Hinton [20] [21]. In Equation 3.8, we update
the parameters of θt with its old parameters towards the target Yt. It divides the
learning rate α by an exponentially decaying average of squared gradients E[Y 2]
[20]. E[Y 2] in Equation 3.10 is a mean square error function of the TD-target Yt.

θt = θt + ∆θt (3.8)

∆θt = − α√
E[Y 2]t + ε

Yt (3.9)
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E[Y 2]t = γE[Y 2]t−1 + (1− γ)Y 2
t (3.10)

where:
• α = 0.0001
• γ = 0.95
• ε = 0 (Not the same ε for selecting random actions)

The appropriate parameter changes in θ, in Equation 3.9, are calculated using back-
propagation [22] and is handled by Keras in Python [21].
Algorithm 2 for DQL is performed for a number M of episodes. When there are
at least 1000 transitions in the replay memory D, it will start to randomize mini-
batches of these transitions and train the network.

Algorithm 2 Deep Q-Learning
1: Initialize replay memory D
2: Initialize network parameters θ
3: for episode = 1,M do
4: Reset environment φ
5: Reset state: s1 ← φ1
6: for t = 1, T do
7: Get policy: π ← argmax

a
Q(st, a; θ)

8: Select action at from π with a probability of ε
9: else select random action

10: Perform action at
11: Get next state/reward/terminal: st+1, rt+1, ter,← φ(st, at)
12: Store transition D ← (st, at, rt+1, st+1, ter)
13: if 1000 < D then
14: Sample minibatch of transitions (sj, aj, rj+1, sj+1) from D

15: Yt =

rj+1 if episode terminates at sj+1

rj+1 + γmax
a

Q(Sj+1, a; θ) else
16: θ ← θ + ∆θ from Equation 3.9 using Yt
17: end if
18: end for
19: end for

3.6.2 Double Deep Q-learning

The advantage of using DDQL over DQL is that it avoids overestimating the reward
when calculating the TD-target [10]. To achieve this, DDQL uses an additional neu-
ral network so that it has both an online and an offline network, with the parameters
θ and θ− respectively. The target value is calculated from the offline network using
the best action according to the online network, as seen in Equation 3.11. The tar-
get value is then applied on the online network as in Equation 3.8 using RMSprop.
Every time an update is applied on the online network, the networks switch places
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with a probability of 50%. The algorithm is very similar to DQL and can be seen
in Algorithm 3.

Y DDQL
t ≡ Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θt); θ−t ) (3.11)

Algorithm 3 Double Deep Q-Learning
1: Initialize replay memory D
2: Initialize online network parameters θ
3: Initialize offline network parameters θ−
4: for episode = 1,M do
5: Reset environment φ
6: Reset state: s1 ← φ1
7: for t = 1, T do
8: Get policy: π ← argmax

a
Q(st, a; θ)

9: Select action at from π with a probability of ε
10: else select random action
11: Perform action at
12: Get next state/reward/terminal: st+1, rt+1, ter ← φ(st, at)
13: Store transition D ← (st, at, rt+1, st+1, ter)
14: if 1000 < D then
15: Sample minibatch of transitions (sj, aj, rj+1, sj+1) from D

16: Yt =

rj+1 if episode terminates at sj+1

rj+1 + γQ(Sj+1, argmax
a

Q(Sj+1, a; θ); θ−) else
17: θ ← θ + ∆θ from Equation 3.9 using Yt
18: Randomly switch θ and θ−
19: end if
20: end for
21: end for

3.6.3 SARSA

SARSA (State–action–reward–state–action) [23] is very similar to Q-learning, but
in its algorithm loop, as seen in Algorithm 4, it predicts the next action after it has
already taken a step, hence the last "action" in the name.

Unlike Q-learning, SARSA’s target value, in Equation 3.12, does not estimate the
future reward like DQL and DDQL do. Instead, it estimates the reward from the
actual action taken in state st+1 using an epsilon-greedy policy while training. That
makes it learn from actual experience and actions the NN choose.

Y SARSA
t ≡ Rt+1 + γQ(St+1, At+1; θt) (3.12)
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Algorithm 4 SARSA
1: Initialize replay memory D
2: Initialize network parameters θ
3: for episode = 1,M do
4: Reset environment φ
5: Reset state: s1 ← φ1
6: Get policy: π ← argmax

a
Q(st, a; θ)

7: Select action a1 from π with a probability of ε
8: else select random action
9: for t = 1, T do

10: Perform action at
11: Get next state/reward/terminal: st+1, rt+1, ter,← φ(st, at)
12: Get policy: π ← argmax

a
Q(st+1, a; θ)

13: Select action at+1 from π with a probability of ε
14: else select random action
15: Store transition D ← (st, at, rt+1, st+1, at+1, ter)
16: if 1000 < D then
17: Sample minibatch of transitions (sj, aj, rj+1, sj+1, aj+1) from D

18: Yt =

rj+1 if episode terminates at sj+1

rj+1 + γQ(sj+1, aj+1; θ) else
19: θ ← θ + ∆θ from Equation 3.9 using Yt
20: end if
21: end for
22: end for

3.6.4 AC3

Unlike the other algorithms, Asynchronous Actor-Critic Agents (AC3) can utilize
multiple or all cores in a CPU making it multi-threaded [11] (asynchronous), but it
also uses the same neural network for both action decision and future value estima-
tion (actor-critic).

The NN has two output layers, one for the policy estimation Q(s, a) (the actor),
and one for value estimation V (s) (the critic). The rest of the network is shared, so
when the network is updated with gradients, both outputs are affected.

At the start, the AC3 algorithm creates multiple agents, one for each CPU core with
their own NN and environment. How each agent behaves can be seen in Algorithm
5, and the structure can be seen in Figure 3.4. At the start, they explore the
environments separately, and every n:th step they update the global network with
the gradients made from their own local network. They also update their local
networks parameters from the global network periodically to stay updated.
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Algorithm 5 AC3 - pseudocode for each actor
1: //Assume global shared θ, and local θ−
2: Initialize local network parameters from the global network θ− ← θ
3: Initialize network gradients ∆θ ← 0
4: for episode = 1,M do
5: Reset environment φ
6: Reset state: s1 ← φ1
7: for t = 1, T do
8: Get policy: π ← argmax

a
Q(st, a; θ)

9: Select action at from π with a probability of ε
10: else select random action
11: Perform action at
12: Get next state/reward/terminal: st+1, rt+1, ter,← φ(st, at)

13: Yt =

ri+1 if episode terminates at sj+1

ri+1 + γmax
a′

Q(si+1, a
′; θ−) else

14: ∆θ ← ∆θ + ∆θt from Equation 3.9 using Yt
15: if t mod Itarget == 0 then
16: Update target network θ− ← θ
17: end if
18: if t mod IAsyncUpdate == 0 or st is terminal then
19: Update global network parameters θ ← θ + ∆θ
20: Clear gradients ∆θ ← 0
21: end if
22: end for
23: end for
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Figure 3.4: AC3 structure. Multiple agents train simultaneously on their
separate environment to train the global network.
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4
Results

This chapter will present the result of the algorithms and their performances during
the training, and how it handles auto-scaling after training for 1000 episodes.
Unfortunately, no results from AC3 were usable. One possible reason is the shared
network for both the policy and value output in the NN. Applying one gradient to
minimize the error of the policy estimation will affect the value output, and vice
versa. The end result is always a policy that chooses action 1 from Section 3.4.2,
i.e. it will always try to add a VM at each time step. It will stop at 20 VMs, as the
max number in the cloud, and then stay there forever.

4.1 Training results

Analyzing the training results can seem counterproductive as it cannot give any
insight as to how each algorithm behaves. However, the results during training can
still explain as to why one algorithm performs better than the others.

4.1.1 Episode reward

The episode rewards shows how good the algorithms perform during training. The
results in Appendix B shows how each algorithm explores new paths and solutions
for 1000 episodes.
As discussed in Section 2.1.3, we used an ε-greedy policy with ε decreasing after
each episode. While ε decreases, so does the number of random actions taken, and
the algorithms instead choose actions to maximize the reward. This results in the
reward variations gradually shrink, but the overall rewards increase as the training
progresses.
As seen in Appendix B, the rewards for SARSA are more concentrated than for both
DQL and DDQL, but the graph also shows that the rewards contain more prominent
spikes. The higher reward concentration results in the mean rewards being lower
for SARSA than the rest of the algorithms shown in Table 4.1. These rewards are
the total returns from the reward function after 288 steps. Column 1 shows the
mean reward for all episodes, and column 2 is the the reward after 1000 episodes of
training. The last column is from running a simulation of two days with 288 steps
without any random actions.
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Even though DDQL has the worst mean reward during training, it still ends up with
the best reward in the end of the training and the simulation while both DQL and
SARSA fall behind.

Algorithm Training Mean Reward Training End Reward Simulation Reward
DQL -142.55 -87.99 -86.43
DDQL -143.26 -86.93 -84.31
SARSA -123.78 -87.87 -85.02

Table 4.1: The mean and end reward after training for 1000 episodes, as well as
the reward for running it through a simulation. Results from Appendix B. Higher

is better.

The simulation reward reflects how well the algorithms perform, and from the table
above we can see that DDQL is the best. We can alter the value of several variables
in the environment mentioned in Section 3.4 to change the desired behavior of the
algorithms, e.g., how close the resource limit we should be, or how conservative the
algorithms should be with adding or removing IMs. For all combinations of values
assigned to each variable, DDQL will follow the altered reward function better than
DQL and SARSA.

4.1.2 Episode cost

Compared to episode rewards, episode cost only takes the cost of running the cloud
cluster into consideration, i.e. paying for the VMs that are online.
The results from the episode cost correlate with the pricing of running the cluster,
so if the cost during training is high, so will the cost in the simulation be. The cost
after training will be shown later in Section 4.2.3.
In Table 4.2, we can see that, even though the training reward for SARSA is better
than DQL, the pricing differs by quite a lot, especially the mean cost. SARSA falls
behind on both the mean and end cost, while DDQL’s performance is better.

Algorithm Mean Cost End Cost
DQL 0.591 0.525
DDQL 0.550 0.507
SARSA 0.688 0.608

Table 4.2: The mean cost and end reward after training for 1000 episodes.
Results from Appendix C. Lower is better.

The weight between the cost and penalties can be altered in the environment to
encourage other behaviours, e.g. avoiding reaching a certain resource usage limit,
or lowering the cost.
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4.2 Comparisons

To make a proper comparison between the algorithms used in Section 3.6, we need
to define what abilities and attributes are desired for the cloud infrastructure.
The first attribute that will be compared is the speed of the algorithms, i.e. how
long it takes to train for 1000 episodes. Since more training will give better result,
speed will affect the outcome of the choices made by each algorithm.
Another interesting aspect of each algorithm is how much resources it uses in per-
centage during a simulation. In the training, a penalty will initiate when a resource
usage reaches 70% and will grow linear with the usage. Lastly, the cost of running
the IM cluster with each algorithm will be compared. This is the most important
aspect of the end result.
All of these results will be compared after each algorithm has completed 1000
episodes of training. They can all be seen in Appendix D, E, F, and G.

4.2.1 Speed

The computation time for each algorithm can be seen in Table 4.3, and as shown,
DQL and SARSA have very similar results but DDQL takes much longer to com-
plete. This is a consequence of the two neural networks DDQL uses. When calculat-
ing the TD-target, DDQL has to predict the output for two neural networks instead
of one. This doubles the prediction time, for predicting 128 training samples, from
0.5ms to 1ms for each training step for DDQL compared to DQL and SARSA.

Algorithm Time (s) % faster than DDQL
DQL 953s 28.0%
DDQL 1323s —
SARSA 971s 26.6%

Table 4.3: The time it takes for each algorithm to complete 1000 episodes of
training. DDQL is the baseline for the speed comparison.

As the complexity of the NN increases, the more noticeable the time differences will
be, as the output prediction for each state s will take longer.

4.2.2 Stability

In Section 3.4.3 we introduced a limit variable to avoid reaching a certain resource
usage. It is not a hard limit, but after reaching 70% usage a penalty activates and
grows linearly with the usage of each resource.
The resource limit is made to encourage resource overhead in case any VM or data-
center goes down. There are always other VMs that can take over the processes
from the VMs that disappeared. This is to avoid slowdown or instabilities in the
cluster.
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Reaching a resource usage over 90% is not considered stable and should be avoided.
In terms of stability, SARSA performs best here and does not exceed 75% resource
usage at any given time in the simulation. Although SARSA is more stable than
both DQL and DDQL, its stability results in a higher cost as presented later in
Section 4.2.3.

Algorithm Mean Over 70% Over 75% Over 80% Over 85% Over 90%
DQL (CPU) 68.8% 51% 45% 39% 29% 9%
DDQL (CPU) 76.8% 76% 58% 42% 20% 0%
SARSA (CPU) 62.0% 17% 0% 0% 0% 0%
DQL (Mem) 62.8% 37% 4% 0% 0% 0%
DDQL (Mem) 76.5% 78% 58% 38% 25% 0%
SARSA (Mem) 65.6% 19% 0% 0% 0% 0%

Table 4.4: How much resources are used during a simulation with multiple limits
to compare. Results from Appendix E.

4.2.3 Pricing

In terms of cost, Table 4.5, just like in Table 4.2, shows that DDQL is better than
both DQL and SARSA. That is because, as stated in Section 4.2.2, DDQL’s resource
usage stays closer to the resource limit.

To get a sense on how much cheaper each algorithm is compared to a cluster without
any auto-scaling, we use a baseline cost of 0.6$ per step, the maximum cost of DDQL
per step from Table 4.5, to calculate the total cost of running the cluster for two
days. The cost for this scenario adds up to 173$ and the resource usage would
instead look like Figure 4.1.

Algorithm Cost Max cost/step Mean cost/step Savings $ Savings %
Base 173$ 0.60$ 0.60$ - -
DQL 167$ 0.63$ 0,58$ 11$ 3.5%
DDQL 142$ 0.60$ 0,49$ 31$ 17.9%
SARSA 171$ 0.71$ 0,59$ 2$ 1.2%

Table 4.5: The cost of running the cluster for two days with decisions made from
each algorithm. Results from Appendix G.
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Figure 4.1: The resource usage on cluster without auto-scaling.
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5
Discussion

This chapter will discuss and evaluate the results from Chapter 4, suggest changes
to the current solution as well as possible future work.

5.1 Evaluating results

In this section, we will evaluate the resource usage from each algorithm and its
stability. These evaluations will focus on the results from Appendix D and E, as
presented in Section 4.2.2.

5.1.1 CPU/Memory

The algorithms only needed to keep track of the CPU and memory usage. We can
see in Appendix F that they choose to use more ’i3.xlarge’ VMs than ’c5d.2xlarge’,
as the cluster generally needs more memory than CPU resources.
This reflects the resource usage percentage of the cluster, shown in Appendix E, and
the load on both resources only differ by a few percentages. This behaviour is caused
by the reward function discouraging the cluster to reach 70% usage or higher of any
resource. The result is that the algorithm will try to balance the load between the
different resources, as that is the most cost effective alternative.

5.1.2 Disk/Network

As seen in Appendix D, both the disk and network usage data collected from the
cluster were so low that they had no impact on the algorithms choices. There is no
instance where these resources reaches 70% usage or higher. Therefore, the VMs
used to keep the CPU and memory usage down, will create an excess amount of disk
and network resources available.

5.1.3 Stability

The stability of the cluster depends on how many VMs that are online and the
current resource load. The different algorithms will react VM and reacts , and is
decided on the resource limit.
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The limit can be set to any value or function type. The function type will affect
how harsh the penalties are when reaching a certain resource usage.

The kind of changes we can do to the limit function are: adjust the resource limit or
limit cost, make the function exponential or linear, remove the penalty, or implement
a hard limit to completely avoid reaching the limit. This function will have the most
impact on the reliability of the system and how the algorithms will behave after
training.

The results in Appendix D shows an example of a soft limit where it is possible for
the cluster to exceed the limit, given that the resource usage will go down eventually.

5.2 Algorithm efficiency

One thing to take into consideration is that the potential savings made by each
algorithm are linked to how the clusters usage fluctuates. If the usage is mostly
static from day to night, then there are no real improvements to be made if we
already have an optimal configuration of IMs. However, these algorithms can still
help decide how to create these static configurations.

With or without fluctuations in resources, the algorithms can configure the cluster
better than any human ever could, given that the problem is complex enough. Using
one or possibly two VM types, the cluster could be configured manually by a human,
but it becomes increasingly harder to consider all parts, four resources plus the cost,
with even more VM types to reach maximum efficiency.

5.3 Future work

Further development can introduce features such as:

• Instance placement. Determine in what VM type to place a job and its in-
stances.

• Scale the cluster for each VM type individually instead of all types.

• Determine between two VM types which one is better for a specific cloud
configuration and usage.

• Simulate random VM or data-center crashes.

Instance placement in conjunction with scaling each VM type individually can im-
prove the cloud optimization even further, potentially making it more stable in the
process by avoiding overloading certain IMs. As stated in Section 1.4, there is no
functionality at the moment to make an active choice of in which IM to put a job
instance with Apcera. This is simply a limitation in Apcera’s functionality.
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5.3.1 Neural network improvements

There are several alternatives to improve or adjust the current solution in this
project. Since this project did not focus on finding the best NN model, there is
potential for improvements in training speed and/or model performance. Neural
networks are a great tool for problems solving, but what truly makes them great
is when they are designed to specifically handle a certain problem. That requires
more time and effort than what was put into this project and is therefore an aspect
that could be improved upon.
The NN model created for this project was sufficient to give proper results. Al-
though, if more VM types were to be introduced, it can become harder for the NN
to predict the right action. The complexity of the NN might have to be increased
which will require more training time.
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6
Conclusion

Solving a problem of this size requires efficiency and scalability that certain methods
are not viable anymore. In this project, we focused on algorithms that either already
had a neural network in its design, or altered an already existing method to include
one, such as Q-Learning and SARSA. Without it, the computational power required
would have been too high.
After training three algorithms for 1000 episodes, we observe several differences be-
tween them. While DDQL is the more time consuming algorithm tested in this
project, it makes up for it in performance while training and the potential cost re-
duction of running the cloud cluster. The somewhat higher training reward indicates
that DDQL will adjust better to any changes made to the reward function in Section
3.4.3, and as a result function better than both DQL and SARSA.
Worst of is SARSA which only marginally improves the cost by 1.2%, but it still
raises the overhead for resources more efficiently during the simulation than without
any auto-scaling. SARSA is therefore considered the most stable alternative. While
DQL is cheaper to use, it is still the most unstable algorithm to perform auto-scaling
with. It also only improves the cost by 3.5%. DDQL is best in terms of optimizing
the price and lowers the cost by 17.9% according to the simulations made in this
project.
These possible saving is enough to consider this solution viable and can possibly
be improved further by optimizing the neural network used. Not only is it saving
money but also an automated solution, removing the need for human input to keep
the cluster optimized.
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Figure D.1: The DQL algorithm adjusting the resources in a simulation.
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D. Cluster resource usage

Figure D.2: The DDQL algorithm adjusting the resources in a simulation.

Figure D.3: The SARSA algorithm adjusting the resources in a simulation.
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Figure E.1: The DQL algorithm resource usage in percentages each step.
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Figure E.2: The DDQL algorithm resource usage in percentages each step.

Figure E.3: The SARSA algorithm resource usage in percentages each step.
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Figure E.4: How much CPU resources exceed a certain limit for each algorithm.

Figure E.5: How much disk resources exceed a certain limit for each algorithm.
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Figure E.6: How much memory resources exceed a certain limit for each algorithm.

Figure E.7: How much network resources exceed a certain limit for each algorithm.
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