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Non-Supersymmetric AdS Solutions in Type IIB String Theory
Using S-folds to Test Swampland Criteria for Effective Field Theories to be Consis-
tent with Quantum Gravity
Johan Wikström
Department of Physics
Chalmers University of Technology

Abstract
The task of finding a satisfactory theory of quantum gravity has turned out to be
extremely challenging. In the context of string theory, which is a potential frame-
work of quantum gravity, this problem is represented by the vast number of possible
string compactifications. The swampland program is an effort to sort through these
possibilities and define what makes some theories of quantum gravity inconsistent.
The result is a number of so-called swampland conjectures. This thesis studies an
AdS vacuum in type IIB string theory that is relevant to one of these conjectures. It
is explicitly shown that this vacuum, which is an S-fold of the form AdS4 ×S1 ×S5,
satisfies the type IIB equations of motion. The S-fold originates from uplifting a
non-compact gauging of the 4-dimensional N = 8 supergravity. A more simple case
illustrating non-compact gaugings, related to the gauge group SO(8), is treated here.
Also discussed is the topology of the S-fold, which features a non-trivial SL(2, Z)
monodromy when the S1 is encircled, making the background non-geometric.

The connection to the swampland program appears when a 2-parameter deformation
of the AdS vacuum is used to break supersymmetry. Locally, these deformations
only amount to a coordinate redefinition, which protects the vacuum solution from
some non-perturbative decay channels. As the non-supersymmetric S-folds are also
perturbatively stable, they have been suggested as a potential challenge to the Non-
SUSY AdS conjecture. However, more evidence of non-perturbative stability is likely
needed to make a solid case for non-supersymmetric AdS vacua in quantum gravity.

Keywords: quantum gravity, the swampland, supergravity, type IIB string theory,
S-fold, non-compact gauging
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1
Introduction

1.1 Unification and quantum gravity
Some of the most important achievements in physics can be classified as unifica-
tions. One celebrated example is the unification of electricity and magnetism, done
by Maxwell in 1865. The unified theory, called electromagnetism, was able to re-
solve inconsistencies in previous descriptions and also predicted new phenomenon,
like electromagnetic waves [1].

Today, the main theories for elementary physics are general relativity and the Stan-
dard Model. General relativity describes gravity and the Standard Model describes
electroweak- and strong interactions. Although both theories have had great experi-
mental success, each have their respective problems [2]. First of all, general relativity
is not renormalisable. This means that high energy virtual processes cause ultravio-
let (UV) divergences that permeate into physical predictions [1]. General relativity
can thus not be seen as a consistent quantum field theory. The Standard Model
on the other hand, is renormalisable and thus consistent. However, there are still
phenomena it has trouble explaining, such as neutrino masses and dark matter [3].

1.2 String theory/M-theory
String theory turns out to be a framework in which gravity appears in a very natu-
ral way, while still being compatible with quantum mechanics [1]. In string theory,
the concept of point-like particles are replaced by a fundamental string whose vi-
brational modes correspond to physical particles. The framework of string theory
can be described in 5 different ways [4]. These various formulations are related by
duality transformations. They are also related to the effective field theory (EFT) of
M-theory, a non-perturbative theory in 11 spacetime dimensions. This connection
is illustrated in figure 1.1.

The low-energy effective theory of M-theory is called 11-dimensional supergravity
[4]. From there, type IIA superstring theory can be reached via compactification
to 10 dimensions. This is done by making one of the space coordinates periodic,
replacing its topology R with a circle S1. The other string theory formulations are
also 10-dimensional. This appearance of extra dimensions may seem to contradict
what is obvious; there are only 4 spacetime dimensions. However, if the remaining
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1. Introduction

Figure 1.1: The amoeba diagram illustrates how 11-dimensional supergravity and
the five string theories relate to M-theory [5]. While 11-dimensional supergravity is
the low-energy limit of M-theory, the superstring theories are connected to M-theory
via their low-energy supergravities [4].

extra dimensions are compact and very small, the possibility cannot be completely
rejected. At length scales similar to the size of additional compact dimensions, there
would be great effects on for example gravity. Gravitational experiments have not
yet been able to dismiss such extra dimensions if their size is below 1µm [6]. In
most contexts however, compact spaces are considered to have sizes as small as the
Planck length lP ≈ 1.6 · 10−35m [4].

Other than the size, the geometry of the compact space is also of great importance.
In particular, the topology is what largely determines what physics are obtained [2].
The compactification on S1 which takes 11-dimensional supergravity to type IIA
string theory is relatively straightforward since the compact space is 1-dimensional.
When the compact space instead is 6- or 7-dimensional, the number of possible
geometries becomes very large [1]. Finding the compactification that is in agreement
with our nature turns out to be a daunting task.

1.3 The swampland program
Instead of looking for the correct compactification, recent efforts have been focused
on finding more general features of background geometries. This effort, known as
the swampland program, does not only encompass models in string theory, but also
other theories of quantum gravity. There is however a notion of string universality,
claiming that all consistent theories of quantum gravity can be described in string
theory, but it is not proven [2]. Until further notice, the more general purpose of
the swampland program is to form conditions that determine if an EFT can be UV
completed to a consistent quantum gravity theory. If it can, it is said to be part of
the landscape. EFTs that cannot are said to be in the swampland. The landscape

2



1. Introduction

and the swampland are distinguished by swampland constraints. These constraints
should be a consequence of some properties of quantum gravity, but as these are not
yet understood, there are only conjectures so far [2]. In the context of string theory,
the swampland conjectures serve to classify the plausible background geometries,
and some can even be proven. Being able to differentiate between EFTs in the
landscape and swampland is of great importance in quantum gravity. It provides a
unique way to associate physics at the Planck energy, the energy scale of quantum
gravity, to physics at very low energies, even as low as the neutrino sector of the
Standard Model at ≪ 1eV. The Standard Model possibly being incorrect is thus
something that can be connected to quantum gravity.

The swampland conjectures do not only deal with compactifications as the geometry
of the 4-dimensional spacetime is relevant as well. There are three types categorised
by the sign of the cosmological constant Λ [7]. If Λ > 0 the spacetime is de Sitter
(dS), if Λ = 0 it is Minkowski and if Λ < 0 it is anti-de Sitter (AdS). Even though
Λ has been measured to be positive it is still of interest to study the other cases as
they may provide clues to quantum gravity in general.

A swampland conjecture that is relevant for this thesis is the Non-SUSY AdS conjec-
ture [8]. It claims that a vacuum with AdS spacetime has to be unstable unless it is
supersymmetric (SUSY). Supersymmetry refers to an exchange-symmetry between
fermions and bosons, which leaves the theory unchanged [9]. As this is a conjecture,
it could be disproven by finding an example of a stable non-supersymmetric AdS
vacuum solution in string theory. This method is however not very realistic since
there could always be unknown channels through which the vacuum decays. How-
ever, it is still possible to challenge the conjecture by finding vacua that pass the
known stability tests.

1.4 Outline of thesis
This thesis focuses on an AdS vacuum solution of type IIB string theory presented
in [10]. Its geometry is described by an S-fold where deformations are introduced
to break supersymmetry. The solution does not appear to be unstable, so it has
been proposed as a challenge to the Non-SUSY AdS conjecture. The purpose of
this thesis is to verify that the proposed vacuum satisfies the type IIB equations of
motion, and to investigate some features of the solution. Specifically, non-compact
gaugings, S-folds and stability are explored, mostly through more simple examples.
Following is the thesis outline.

Chapter 2 introduces 11-dimensional supergravity and gives a first example of com-
pactification to 4 dimensions via the Freund-Rubin ansatz. Another compactifica-
tion, this time on a 7-torus, is then considered, in particular how the 4-dimensional
theory can be gauged using non-compact groups while avoiding negative energies.

Chapter 3 gives a description of type IIB string theory and its equations of motion.
The SL(2, R) invariance of the field theory is also showcased. The vacuum solution

3



1. Introduction

to type IIB string theory that was suggested as a contradiction to the Non-SUSY
AdS conjecture is then presented. In particular, the S-fold geometry and the super-
symmetry breaking deformations are discussed. Finally, the equations of motion are
also verified.

Chapter 4 discusses some modes of instability for vacuum solutions in string theory,
and how these affect the type IIB S-fold given in [10]. The general conclusions of
the thesis are then given.

Appendix A gives the definitions of the Levi Civita symbol and the generalised Kro-
necker delta that are used in the thesis. Differential forms are also defined and some
general properties are given.

Appendix B derives the equations of motion from the Lagrangian of 11-dimensional
supergravity.

Appendix C calculates the Riemann tensor for AdS4 via Cartan’s structure equa-
tions with zero torsion. This method is later used in appendix E and I.

Appendix D is based on [11] and derives N = 8 supergravity from 11-dimensional
supergravity by dimensional reduction. Only the bosonic sector is considered.

Appendix E focuses on the Hopf fibration of S3, which has some topological prop-
erties similar to those of the S-fold.

Appendix F derives the type field equations of type IIB string theory. This is done
by varying an action that is complemented by the self-duality condition on the 5-
form field strength.

Appendix G calculates the field strengths for the 2-form and 4-form fields of the
type IIB AdS vacuum that is of interest in this thesis.

Appendix H shows that the AdS vacuum satisfies all type IIB equations of motion,
except Einstein’s equations.

Appendix I computes the Ricci tensor and curvature scalar for the AdS vacuum.
These quantities are needed for appendix J.

Appendix J shows that Einstein’s equations in type IIB string theory are fulfilled
by the AdS vacuum.
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2
11-dimensional supergravity

11-dimensional supergravity is the low-energy limit of M-theory and as the name
suggests, it is a supersymmetric theory. In particular, it has N = 1 local supersym-
metry invariance [11]. The theory obtained from dimensional reduction to D = 4
spacetime dimensions turns out to be more supersymmetric. The spinors in D = 11
are 32-dimensional, and split into 8 sets of 4-dimensional spinors, implying that the
D = 4 theory has N = 8 supersymmetry [12]. Having N > 8 supersymmetry is
not possible in 4 dimensions since it introduces fields with spin greater than 2 [9],
which do not exist in nature [12]. This constraint of spin ≤ 2 in the 4-dimensional
theory is what determines D = 11 as the highest dimension in which supergravity
is consistent [12].

The field content and supersymmetry transformations of D = 11 supergravity are
given in section 2.1, as well as the bosonic Lagrangian and the corresponding equa-
tions of motion. Section 2.2 focuses on how the 11-dimensional theory is prone to
compactify spontaneously to 4 spacetime dimensions, which is motivated by the
Freund-Rubin ansatz. The N = 8 supergravity in D = 4 is presented in section 2.3.
Section 2.4 describes gaugings of N = 8 supergravity, in particular how non-compact
gauge groups can be used without introducing ghosts. This is of relevance since the
type IIB AdS vacuum also features a non-compact gauging.

2.1 Lagrangian and equations of motion
A virtue of doing supergravity in 11 dimensions, opposed to D = 4, is that the
field content is much simpler. There is an elfbein e A

M corresponding to the gravi-
ton, a gravitino described by the vector-spinor ΨM and a 3-form gauge field AMNP

[12]. The capital latin indices M, N, P,... denote curved spacetime indices in 11
dimensions, while A, B, C,... are indices of the locally flat frame. The elfbein
e A
M thus relates the curved spacetime metric gMN to the flat Minkowski metric
ηAB = diag(−1, 1,..., 1) via

gMN = e A
M e B

N ηAB. (2.1)

For the determinant e = det
(
e A
M

)
this implies that

g = det(gMN) = det
(
e A
M e B

N ηAB
)

= −e2, (2.2)

since det(ηAB) = −1. The fields make up 128 fermionic and 128 bosonic degrees of
freedom, where the bosonic are split as 44 + 84 among e A

M and AMNP respectively

5



2. 11-dimensional supergravity

[12]. The fields are related via the N = 1 local supersymmetry transformations
given by

δe A
M = iϵ̄ΓAΨM , (2.3)

δΨM = DMϵ− 1
288(Γ PQRS

M − 8δ P
M ΓQRS)(FPQRS − 3Ψ̄[PΓQRΨS])ϵ, (2.4)

δAMNP = 3iϵ̄Γ[MNΨP ], (2.5)

where the parameter ϵ is anticommuting [13]. The Γ-matrices obey {ΓA, ΓB} = 2ηAB
and more indices are added via ΓA1...Ap = Γ[A1 ...ΓAp]. The covariant derivative is de-
fined as DM = ∂M + 1

4ωMABΓAB where ωMAB are the Lorentz connection coefficients
[14]. The 3-form and its field strength, FMNPQ = 4∂[MANPQ], differs by a factor 2
from some literature, for example [12] and [14], so that Ahere

MNP = 2Athere
MNP .

The supersymmetry transformations (2.3)-(2.5) make the Lagrangian of D = 11 su-
pergravity unique up to higher order derivative terms [12]. The Lagrangian encodes
how the 3 different types of fields interact. When looking for vacuum solutions to
the theory, it is however necessary to set the vacuum expectation values (VEVs)
of the fermionic fields to zero, ⟨ΦM⟩ = 0, to obtain solutions with maximal space-
time symmetry [12, 13]. For this purpose only the bosonic Lagrangian of D = 11
supergravity is required. It is given by

L = 1
2κ2

11
e
[
R − 1

2 · 4!FMNPQF
MNPQ

]
+

− 1
12κ2

11

1
3!(4!)2 ε

M1...M11AM1M2M3FM4M5M6M7FM8M9M10M11 ,
(2.6)

where κ2
11 = 8πG(11), G(11) being Newton’s constant in 11 dimensions [13, 14]. The

Levi-Civita tensor density in 11 dimensions is εM1...M11 , whereas the totally antisym-
metric tensor is denoted by ϵM1...M11 , see appendix A. The bosonic field equations,
given by variation of gMN and AMNP respectively, are

RMN − 1
2gMNR = 1

12

(
FMPQRF

PQR
N − 1

8gMNF
2
)
, (2.7)

∇MF
MNPQ = 1

1152ϵ
NPQR1...R8FR1R2R3R4FR5R6R7R8 . (2.8)

The full derivation of the field equations is given in appendix B.

2.2 Spontaneous compactification
As was discussed in section 1.2, the 7 extra dimensions of D = 11 supergravity have
to disappear, possibly via compactification. It is however not satisfactory to just
force the 7 space dimensions to compactify. Instead, the compactification should
appear spontaneously [12, 15]. In other words, the theory should have a vacuum
solution with the topology M4 ×M7, where M4 is a maximally symmetric spacetime
and M7 is compact. This turns out to be the case for D = 11 supergravity, which can
be shown in a relatively straightforward way. First, the 11-dimensional coordinates

6



2. 11-dimensional supergravity

are split as xM = (xµ, ym), so that xµ, µ = 0,..., 3, denote 4-dimensional spacetime
coordinates and ym, m = 1,..., 7, denote 7-dimensional internal coordinates [12, 15].
To find a M4 ×M7-type solution the metric VEV is set as

⟨gMN⟩ = g̊MN =
(
g̊µν(x) 0

0 g̊mn(y)

)
, (2.9)

so that the M4 metric VEV g̊µν does not depend on the internal coordinates, and
vice versa [12]. The next step is to make the Freund-Rubin ansatz for the field
strength VEV

⟨F µνρσ⟩ = F̊ µνρσ = −6mϵµνρσ, (2.10)
where ⟨Fmnrs⟩ = ⟨F µnrs⟩ = ⟨F µνrs⟩ = ⟨F µνρs⟩ = 0 [15]. The parameter m is
constant and associated with the radii of M4 and M7. The Freund-Rubin ansatz
trivially satisfies (2.8) since the left hand side is proportional to ∇Mϵ

MNPQ = 0,
and the right hand side either features ϵNPQR1...R8 with repeated indices or that
F̊R1R2R3R4F̊R5R6R7R8 = 0. The Bianchi identity

∇MRMN = 1
2∇NR, (2.11)

is also fulfilled which follows from acting with ∇M on (2.7), since the right hand
side becomes zero. The Ricci scalar VEV is found by contracting (2.7) with gMN

R̊ − 11
2 R̊ = 1

12

(
F̊ 2 − 11

8 F̊
2
)
, (2.12)

which implies that

R̊ = 1
12

1 − 11
8

1 − 11
2
F̊ 2 = 1

122 F̊
2 = −624!

122 m
2 = −6m2, (2.13)

where the squared field strength is given by

F̊ 2 = F̊µνρσF̊
µνρσ = 62m2ϵµνρσϵ

µνρσ = −624! m2. (2.14)

It is now possible to compute the Ricci tensor in the external coordinates xµ, and
the internal coordinates ym. In four spacetime dimensions

R̊µν = 1
2 g̊µνR̊ + 1

12

(
g̊ωνF̊µρσξF̊

ωρσξ − 1
8 g̊µνF̊

2
)

=

= −6m2

2 g̊µν + 62m2

12 g̊ωνϵµρσξϵ
ωρσξ + 624!m2

12 · 8 g̊µν =

= (−3 − 18 + 9)m2g̊µν = −12m2g̊µν ,

(2.15)

using that ϵµρσξϵωρσξ = −3!δωµ , see appendix A. The Ricci tensor for the compact
space is

R̊mn = 1
2 g̊mnR̊ + 1

12

(
0 − 1

8 g̊mnF̊
2
)

=
(

−6
2 + 624!

12 · 8

)
m2g̊mn =

= (−3 + 9)m2g̊mn = 6m2g̊mn.

(2.16)
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2. 11-dimensional supergravity

The equations for the Ricci tensor on M4 and M7, which follow from the Freund-
Rubin ansatz of (2.10), turn out to give the desired topological properties for spon-
taneous compactification. First off, the equation R̊µν = −12m2g̊µν describes AdS4
with radius L = 2

m
, which is a maximally symmetric space [13]. See also appendix

C for the metric and Ricci tensor of AdS4. Furthermore, the internal space M7 de-
scribed by R̊mn = 6m2g̊mn has constant positive curvature and is compact [12, 16].
There are still infinitely many solutions for M7, where one of the possibilities is the
7-sphere S7.

As this vacuum solution satisfies the equations of motion, it shows that D = 11
supergravity can spontaneously compactify to a product space between AdS4 and a
compact space M7. The compactification to 4 spacetime dimensions happens in a
natural way because of the 4 indices in the field strength FMNPQ, allowing for the
ansatz in (2.10) [15]. It should also be noted that the ansatz F̊mnpq ∼ ϵmnpq is equally
viable. The result is a vacuum solution on AdS7 ×M4, where M4 is compact. There
are however reasons to believe that compactification to 4-dimensional spacetime may
be naturally preferred [12].

2.3 N = 8 supergravity
The N = 8 supergravity is obtained by dimensional reduction of 11-dimensional su-
pergravity on a 7-torus [11], which is performed in appendix D. Its massless spectrum
contains 1 graviton, 8 gravitinos, 28 vectors, 56 Majorana spinors and 70 scalars,
35 of which are pseudoscalars. Since the fermion VEVs are set to zero for vacuum
solutions, only the bosonic part of the theory is considered. The field equations of
N = 8 supergravity have a global invariance under E7(+7). The Lagrangian has a
local SU(8)/Z2 symmetry and a global symmetry under SL(8, R), both which are
subgroups of E7(+7) [11].

2.3.1 The exceptional group E7(+7)

E7 is a 133-dimensional simple group of rank 7 [11]. The non-compact real form
of E7 considered here is E7(+7) whose algebra has 63 compact generators, spanning
su(8), and 70 non-compact generators. The signature of the Cartan-Killing form is
thus 70 − 63 = +7, consequently E7(+7). The Lie algebra of E7(+7) is denoted by
e7(+7). A general element of the complex 56-dimensional representation of e7(+7) can
be written as (

Λ KL
IJ ΣIJPQ

Σ̄MNKL Λ̄MN
PQ

)
, (2.17)

where Λ KL
IJ = Λ [K

[I δ
L]

J ] [17]. The traceless 8 × 8 matrices Λ J
I are antihermi-

tian, Λ̄J
I = −Λ J

I , and the generators of the maximal compact subalgebra su(8).
The capital indices I, J, ... = 1,..., 8 are thus fundamental SU(8) indices. The
completely antisymmetric, complex tensor ΣIJKL, which is self-dual Σ̄MNPQ =
1
4!ηϵ

IJKLMNPQΣIJKL, contains the 70 non-compact generators [17]. The general

8



2. 11-dimensional supergravity

phase η is chosen as +1.

The E7(+7) algebra element in (2.17) reveals two 63-dimensional maximal subal-
gebras. The first one is su(8) whose embedding in e7(+7) is obtained by setting
ΣIJKL = 0. Note however that the corresponding maximal compact subgroup of
E7(+7) is SU(8)/Z2 [11]. The second subgroup is found by taking the complex gen-
erators Λ J

I and ΣIJKL as real. Denoting the real-valued generators with indices
i, j,... = 1,..., 8, the 28 antisymmetric Λ j

i generate so(8). The 28 Λ j
i along with the

35 non-compact Σijkl form the general element(
Λ kl
ij Σijpq

Σmnkl Λmn
pq

)
, (2.18)

of the maximal subalgebra sl(8, R) [17]. The lower-case indices i, j,... are SO(8)
vector indices.

2.3.2 The ungauged N = 8 supergravity
The ungauged bosonic Lagrangian of N = 8 supergravity takes a simple form since
all interaction terms involve fermions. Schematically, it is written as

L0 = 1
2e R + LS + LV , (2.19)

where e = det
(
e α
µ

)
is the determinant of the 4-dimensional vierbein [11, 17]. Along-

side the Einstein-Hilbert term 1
2e R, there is a scalar kinetic term LS and a vector ki-

netic term LV . The 70 scalars live in the coset space E7(+7)/(SU(8)/Z2) parametrised
by

V =
(
u KL
IJ vIJPQ

v̄MNKL ūMN
PQ

)
, (2.20)

in the fundamental 56 representation of E7(+7) [18]. Here I, J, K... = 1, ..., 8 are
indices of the fundamental 8 of SU(8). It transforms like

V → U(x)V E−1, (2.21)

under the action of E7(+7), where U(x) ∈ SU(8)/Z2 and E ∈ E7(+7). V can also be
written as an exponential of the E7(+7) Lie algebra, V = exp(Y ), where

Y = S

(
0 −1

4

√
2φIJKL

−1
4

√
2φ̄IJKL 0

)
. (2.22)

The element S ∈ su(8) can be set to unity in the so called symmetric gauge, which
makes it possible to identify the 70 scalars with the 70 non-compact generators
ΣIJKL = −1

4

√
2φIJKL of e7(+7) [18]. The scalars enter the Lagrangian via the kinetic

term
LS = − 1

24e tr
([
DµV · V −1

]2)
, (2.23)

where Dµ is a SU(8) covariant derivative. The SU(8) connection in Dµ is defined
so that it cancels the contributions of the compact generators in the Lie algebra

9



2. 11-dimensional supergravity

element V −1∂µV [11].

The 28 vector fields Aijµ transform in the 8 of SL(8, R) under E7(+7) and are thus
written with SO(8) indices [18]. Specifically, the transformation under E7(+7) is
given by

δAijµ = (Λij
kl − Σijkl)Aklµ . (2.24)

The corresponding field strengths F ij
µν = 2∂[µA

ij
ν] couple via a positive definite matrix

N(φ)IJ,KL in the vector kinetic term LV [18]. The matrix is defined as

N(φ)IJ,KL =
(

1 + y(φ)
1 − y(φ)

)
IJ,KL

, (2.25)

where 1IJ,KL = 1
2(δIKδJL − δILδJK). The dependence on the scalar fields enters via

y(φ)IJ,KL = −(u−1) MN
IJ vMNKL. The vector kinetic term of the Lagrangian reads

[17]
LV = −1

8e F
+
µνijN(φ)ij,klF+µν

kl + h.c., (2.26)

where F+
µν is the self-dual component of Fµν . The anti-self-dual component is denoted

by F−
µν . The full bosonic Lagrangian is then

L0 = 1
2e R − 1

8e
(
F+
µνijN(φ)ij,klF+µν

kl + h.c.
)

− 1
24e tr

([
DµV · V −1

]2)
. (2.27)

2.4 Gaugings of N = 8 supergravity
Gaugings of non-compact groups are often problematic as some of the vector par-
ticles in the gauged theory become unphysical, so-called ghosts [19]. These ghosts
appear with negative kinetic energy in the standard vector kinetic term of the La-
grangian, LV ∼ −KABF

A
µνF

Bµν , since the Cartan-Killing metric KAB is not positive
definite. Considering the non-compact group SL(2, R) as an example, the Cartan-
Killing metric is

KAB = tr
(
aAaB

)
=

2 0 0
0 2 0
0 0 −2

 , (2.28)

so that the corresponding term of the Lagrangian is

LV ∼ −2F 1
µνF

1µν − 2F 2
µνF

2µν + 2F 3
µνF

3µν . (2.29)

The 3 generators a1, a2, a3 of sl(2, R) are given by

a1 = h =
(

1 0
0 −1

)
, a2 = e+ f =

(
0 1
1 0

)
, a3 = e− f =

(
0 1

−1 0

)
. (2.30)

Only a3 is compact as it generates SO(2) which corresponds to S1. Non-compact
generators instead generate R [4]. Replacing KAB with a positive definite metric
such as δAB would break the gauge invariance. In some cases however, like the N = 8

10



2. 11-dimensional supergravity

supergravity, a positive definite metric can be constructed from the scalar fields so
that gauge symmetry of a non-compact group still is possible [19].

The ungauged N = 8 supergravity has a global symmetry under SL(8, R) transfor-
mations. Candidates for gauge symmetries are thus subgroups K ⊂ SL(8, R). To
avoid introducing new particles, the dimension of K should be less than or equal to
28, the number of vector fields Aijµ in the theory [19].

2.4.1 The SO(8) gauging
As a starting point, the gauged theory of SO(8), which is the maximally compact
subgroup of SL(8, R), is considered. The SO(8) gauge theory is obtained by adding
minimal gauge couplings to the vectors and the scalars [18]. The field strength
becomes

Fµν = 2∂[µAν] + g[Aµ, Aν ] = 2∂[µAν] + gAkl[µA
mn
ν] f

ij
kl,mn Λij, (2.31)

which amounts to replacing ∂µ in the ungauged field strength Fµν = 2∂[µAν], with
a SO(8) covariant derivative. Here Aµ = AijµΛij, where the 28 antisymmetric 8 × 8
matrices Λij generate so(8)

[Λkl, Λmn] = f ij
kl,mn Λij = 4Λ[k[mδn]l], (2.32)

and i, j,... = 1,..., 8 are thus SO(8) vector indices. In a similar fashion, the SU(8)
covariant derivative Dµ, which appears in the scalar kinetic term via DµV · V −1,
has to be changed to a SU(8)×SO(8) covariant derivative Dµ given by

DµV · V −1 = DµV · V −1 − 2gV ·D(Aµ) · V −1, (2.33)

where D(Aijµ ) is in the so(8) subalgebra of e7(+7)

D(Aµ) =
A [k

µ[i δ
l]

j] 0
0 −A [k

µ[i δ
l]

j]

 . (2.34)

These modifications will however break supersymmetry, which is restored by adding
g-dependent terms to the supersymmetry transformations, as well as the Lagrangian
[17]. By writing these terms, along with the minimal couplings, as Lg, the La-
grangian with local SO(8) gauge symmetry can be written as

L = L0 + Lg, (2.35)

where L0 is the ungauged Lagrangian of N = 8 supergravity. The non-compact
gaugings can be obtained in a similar way, however this method depends on some
complicated identities [18]. The non-compact gaugings can instead be found in a
more simple manner by utilising the SO(8) gauging.

11



2. 11-dimensional supergravity

2.4.2 The non-compact gaugings
The SL(8, R) invariance of the ungauged Lagrangian L0 is no longer present in
the Lagrangian L = L0 + Lg of the SO(8) model. Instead there is the local SO(8)
invariance L SO(8)→ L. Acting with the remainder SL(8, R)\SO(8), which is the
non-compact part of SL(8, R), results in the transformation

L = L0 + Lg
SL(8, R)\SO(8)→ L′ = L0 + L′

g, (2.36)

since L0
SL(8, R)→ L0 [17]. Only the terms involving gauge coupling dependent terms

are modified. If the coupling constant g also is rescaled in a certain way, an equiv-
alent gauge theory with a new gauge group is obtained [17]. The transformation in
the non-compact part of SL(8, R) is performed via the one-parameter subgroup

E(t) = etY , Y =
(

0 Xijkl

X ijkl 0

)
, (2.37)

where the real, self-dual 4-form Xijkl is SO(p)×SO(q) invariant and i, j,... = 1,..., 8
again denote SO(8) vector indices. The 4-form Xijkl can be constructed from the
8 × 8 matrix

Xab =
(
α1p 0
0 β1q

)
, (2.38)

where a, b,... = 1,..., 8 are right-handed SO(8) spinor indices. Xab is symmetric and
traceless via the condition αp + βq = 0. The 4-form Xijkl is then constructed from
the SO(8) gamma matrices Γabi like [18]

Xijkl = −1
8(Γ[iΓjΓkΓl])abXab. (2.39)

Considered as a 28 × 28 matrix, Xij,kl has the eigenvalues α, β and γ = 1
2(α + β).

Their degeneracies are dα = dim SO(p) = 1
2p(p − 1), dβ = dim SO(q) and dγ = pq,

so that Xij,kl is traceless via
1
2p(p− 1)α + 1

2q(q − 1)β + pq
1
2(α + β) = 1

2(αp+ βq)(p+ q − 1) = 0. (2.40)

The matrix Xij,kl can be written in terms of the projection operators P ij,kl
α , P ij,kl

β

and P ij,kl
γ associated with the eigenspaces

X ij,kl = αP ij,kl
α + βP ij,kl

β + γP ij,kl
γ . (2.41)

Acting on the algebra so(8), Pα (Pβ) projects onto the subalgebra so(p) (so(q))
and Pγ projects onto the generators of the remainder SO(8)\{SO(p) × SO(q)}. The
scalars and vectors transform like

V → V E(t)−1, Aµ → e−tXAµ, (2.42)

which follows from (2.21) and (2.24). Since the different projections commute,
[Px, Py] = 0 for x, y = α, β, γ, and square to themselves, P 2

x = Px, the expo-
nential e−tX becomes

e−tX = e−αtPα + e−βtPβ + e−γtPγ = e−αt
(
Pα + ξPβ +

√
ξPγ

)
= e−αtP, (2.43)

12



2. 11-dimensional supergravity

where ξ = e(α−β)t. Similarly

etX = eαt
(
Pα + 1

ξ
Pβ + 1√

ξ
Pγ

)
= eαtP−1. (2.44)

The rescaling of the coupling constant is chosen as

g → g′ = geαt, (2.45)

in order to obtain the non-compact gaugings. In the transformation of Aµ, P acts
on the so(8) generators like

Λ → Λ′ = PΛ = Λα + ξΛβ +
√
ξΛγ, (2.46)

so that
Aµ → e−tXAµ = e−αtAijµP

ij,klΛkl = e−αtAijµΛ′
ij. (2.47)

Since the metric transforms like

N(φ)ij,kl →
(
etX

)ij,mn
N(φ)mn,pq

(
etX

)pq,kl
, (2.48)

the vector kinetic term transforms like

N(φ)ij,klF+
µνijF

+µν
kl + h.c. → N(φ)ij,klF ′+

µνijF
′+µν

kl + h.c., (2.49)

where
F ′
µν = etX

(
2∂[µ[e−tXAν]] + g′[e−tXAµ, e

−tXAν ]
)
. (2.50)

The new primed field strength becomes

F ′
µν = 2∂[µAν] + gP−1[PAµ, PAν ]. (2.51)

It is now essential to figure out what happens with the second term. To do this
the commutator [Λ′, Λ′] that appears in [PAµ, PAν ] is needed. First, consider the
structure of the so(8) algebra which can be schematically written as

[Λα, Λα] ∼ Λαδ, [Λβ, Λβ] ∼ Λβδ, [Λγ, Λγ] ∼ Λαδ + Λβδ,

[Λα, Λβ] ∼ 0, [Λα, Λγ] ∼ Λγδ, [Λβ, Λγ] ∼ Λγδ.
(2.52)

Using this and Λ′
α = Λα, Λ′

β = ξΛβ, Λ′
γ =

√
ξΛγ, the Lie algebra of the primed

generators becomes

[Λ′
α, Λ′

α] ∼ Λ′
αδ, [Λ′

β, Λ′
β] ∼ ξΛ′

βδ, [Λ′
γ, Λ′

γ] ∼ ξΛ′
αδ + Λ′

βδ,

[Λ′
α, Λ′

β] ∼ 0, [Λ′
α, Λ′

γ] ∼ Λ′
γδ, [Λ′

β, Λ′
γ] ∼ ξΛ′

γδ.
(2.53)

The algebra, corresponding to the subgroup K ⊂ SL(8, R), that the Λ′ generate is

[Λ′
ij, Λ′

kl] = f ′ mn
ij,kl Λ′

mn = 4Λ′
[i[kηl]j], (2.54)

where the metric is
ηij =

(
1p 0
0 ξ1q

)
. (2.55)
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2. 11-dimensional supergravity

If ξ = −1 is chosen then K = SO(p, q) and if ξ = 0 then K is the group contraction
CSO(p, q) [18]. Setting ξ = 1 returns the SO(8) model. The second term of (2.51)
becomes

gP−1[PAµ, PAν ] = gP−1Akl[µA
mn
ν] [Λ′

kl,Λ′
mn] =

= gAkl[µA
mn
ν] f

′ ij
kl,mn (P−1)ij,rsΛ′

rs =
= gAkl[µA

mn
ν] f

′ ij
kl,mn Λij.

(2.56)

The gauge coupling of the vector fields changes under a transformation parametrised
by E(t) and the field strength

F ′
µν = 2∂[µAν] + g[Aµ, Aν ]ξ, (2.57)

where the commutator [., .]ξ is the one of (2.54), is gauge invariant under the non-
compact subgroup K with parameter ξ. For the scalar kinetic term, acting with
E(t) yields that

DµV · V −1 → D′
µV · V −1 − 2gV E(t)−1D(A′

µ)E(t)V , (2.58)

where D′
µ denotes that the coupling constant g has transformed to g′ = eαtg in the

SU(8) connection [18]. By defining

D′(Aµ, t) = E(t)−1D(A′
µ)E(t), (2.59)

the SU(8)×SO(8) covariant derivative Dµ instead becomes SU(8)×K covariant since

[D′(Λ1, t), D′(Λ2, t)] = E(t)−1 [D(Λ′
1), D(Λ′

2)]ξ E(t) =
= E(t)−1D([Λ′

1, Λ′
2]ξ)E(t) =

= D′([Λ1, Λ2]ξ, t).
(2.60)

The SO(8) model is thus altered to become locally gauge invariant under the sub-
group K instead. This was achieved by a transformation in the non-compact part of
SL(8, R), that is SL(8, R)/SO(8), via the one-parameter subgroup E(t). The trans-
formation acts on the SO(8) generators that appear in the gauge coupling terms
of L so that the transformed generators span the algebra of K, defined in (2.54).
Depending on how the parameter η is chosen, K can be non-compact. In particular,
K = SO(p, q) if η = −1.

The type IIB AdS vacuum also features a non-compact gauging of the more compli-
cated subgroup [SO(1, 1) × SO(6)]⋉R12 ⊂ E7(+7) [20]. This gauging is also done in
N = 8 supergravity after which it is uplifted to type IIB string theory. The SO(p, q)
gaugings shown here thus provide a more simple example of how non-compact gauge
groups may be used without ghosts appearing. As a final note, there is a swamp-
land conjecture called the Completeness Hypothesis which implies that continuous
gauge groups must be compact [2]. Hence, there is a wide belief that non-compact
gaugings induce instability. This aspect of non-compact gaugings in regards to the
AdS vacuum is not mentioned in [10].
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3
Type IIB string theory and the

AdS vacuum

Type IIB string theory is indirectly related to D = 11 supergravity via its T-duality
with type IIA string theory. Both the type IIA and IIB theories are based on closed
superstrings that exist in 10 dimensions, however type IIB is chiral while IIA is not
[4]. This chapter starts off by introducing the Lagrangian and the field equations of
type IIB string theory in section 3.1, where extra emphasis is put on the SL(2, R)
invariance of the field theory. This symmetry is relevant for the topology of the
S-fold vacuum that is proposed to contradict the Non-AdS SUSY conjecture. This
vacuum is presented in section 3.2, where its S-fold geometry and the supersymmetry
breaking deformations are discussed. Section 3.2.5 is devoted to showing that the
AdS vacuum satisfies the type IIB equations of motion.

3.1 Lagrangian and global SL(2, R) symmetry
In the massless bosonic sector, both type IIA and type IIB string theory contain a
graviton, a dilaton ϕ and a 2-form B2 [4]. The remaining bosonic field content of
the two theories differs however. The type IIB spectrum includes another real scalar
χ, occasionally called an axion, another 2-form C2, as well as a 4-form C4. The field
strength of C4 is self-dual, which is a feature that cannot easily be incorporated in
an action [4]. Writing down a covariant action for type IIB string theory is therefore
difficult, although it can be done [21]. It is typically easier to use the action

S = 1
2κ2

∫
d10x e

(
R − 1

12HT
µνρMHµνρ + 1

4 tr{∂µM∂µM−1}
)

+

− 1
8κ2

(∫
d10x e

∣∣∣F̃5

∣∣∣2 +
∫
εijC4 ∧H

(i)
3 ∧H

(j)
3

)
,

(3.1)

given in the Einstein-frame, that together with the imposed self-duality condition

F̃5 = ⋆F̃5, (3.2)

yields the correct bosonic equations of motion [4]. The spacetime indices µ, ν, ρ,...
are 10-dimensional and the norm is given by |F |2 = 1

n!g
µ1ν1 ...gµnνnFµ1...µnFν1...νn . In

(3.1), the two 2-forms and their field strengths have been combined into 2-component
vectors

B2 =
B(1)

2

B
(2)
2

 =
B2

C2

 , H3 = dB2 =
H(1)

3

H
(2)
3

 =
H3

F3

 , (3.3)
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3. Type IIB string theory and the AdS vacuum

and the SL(2, R) axion-dilaton matrix that contains the scalar particles is

M = eϕ
(

|λ|2 −χ
−χ 1

)
, (3.4)

where λ = χ + ie−ϕ. Under a global SL(2, R) transformation, the complex scalar
transforms via a Möbius transformation

λ → aλ+ b

cλ+ d
, Λ =

(
d c
b a

)
∈ SL(2, R), (3.5)

while the axion-dilaton matrix transforms like M → (Λ−1)TM(Λ−1) [4]. The com-
bined 2-form transforms like B2 → ΛB2, showing that the type IIB theory has a
global SL(2, R) symmetry, since the Einstein-frame metric, the 4-form C4 and the
self-dual field strength

F̃5 = dC4 − 1
2C2 ∧H3 + 1

2B2 ∧ F3 = dC4 + 1
2εijB

(i)
2 ∧H

(j)
3 , (3.6)

are SL(2, R) invariant. The global SL(2, R) symmetry of the field theory is however
broken to the discrete SL(2, Z) in the full string theory due to various effects [4].
A special case of the SL(2, Z) symmetry, namely when λ → − 1

λ
, results in the

transformation eϕ → e−ϕ when evaluated at χ = 0. This is an example of a S-
duality transformation under which type IIB string theory is invariant.

3.1.1 Bosonic equations of motion
The equations of motion are found by variation with respect to each field and then
imposing the self-duality condition (3.2) [21]. The full derivation is found in ap-
pendix F and provides six equations

δϕ : ∇µ(e−ϕ∂µe
ϕ) − e2ϕ∂µχ∂

µχ = 1
12
(
eϕFµνρF

µνρ − 2eϕχFµνρHµνρ+

+ [eϕχ2 − e−ϕ]HµνρH
µνρ
)
,

(3.7)

δχ : ∇µ
(
e2ϕ∂µχ

)
= 1

6e
ϕ (χHµνρH

µνρ − FµνρH
µνρ) , (3.8)

δBµν : ∇ρ(eϕ|λ|2Hµνρ − eϕχF µνρ) = 1
3! F̃

µνρσξFρσξ, (3.9)

δCµν : ∇ρ(eϕχHµνρ − eϕF µνρ) = 1
3! F̃

µνρσξHρσξ, (3.10)

δCµνρσ : ∇ξ

(
F̃ µνρσξ

)
= 1

(3!)2 ϵ
µνρσµ1...µ6Hµ1µ2µ3Fµ4µ5µ6 , (3.11)

δgµν : Rµν − 1
2Rgµν = 1

8

(
tr{∂ρM∂ρM−1} − 1

3H
T
ρσξMHρσξ

)
gµν+

+ 1
4

(
HT
µρσMH ρσ

ν − tr{∂µM∂νM−1}+

+ 1
4! F̃µρσξω F̃

ρσξω
ν

)
,

(3.12)
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3. Type IIB string theory and the AdS vacuum

along with the self-duality condition (3.2). Note that the C4 field equations have
been used to write the 2-form equations of motion on the form given in (3.9) and
(3.10).

3.1.2 Compactification on AdS5 ×M5

A Freund-Rubin type compactification, similar to the one in section 2.2, can be
done in type IIB string theory where the resulting geometry is AdS5 ×M5 [13]. The
10-dimensional spacetime indices are split as xµ = (xµ̄, ym), where µ̄ = 0,..., 4 and
m = 1,..., 5. The metric VEV g̊µν is again taken on the block diagonal form of (2.9).
All field VEVs are set to zero, except for the self-dual field strength for which the
ansatz

˚̃F5 = 4m (ϵ5 + ⋆ϵ5) , (3.13)
is made [13]. The parameter m relates to the radii of AdS5 and M5, and ϵ5 is the
volume form of M5

(ϵ5)mnpqr = ϵmnpqr. (3.14)

It obeys ⋆ ⋆ ϵ5 = ϵ5 so that ⋆˚̃F5 = ˚̃F5. All field equations are trivially fulfilled,
except for the type IIB Einstein’s equations (3.12) that can be used to find the Ricci
tensor of the external and internal manifolds. Since the 10-dimensional Ricci scalar
is R = 0, which is a consequence of F̃µνρσξF̃ µνρσξ = 0 [22], (3.12) reduces to

R̊µν = 1
4 · 4!

˚̃Fµρσξω ˚̃F ρσξω
ν . (3.15)

The Ricci tensors are evaluated as

R̊µ̄ν̄ = 1
4 · 4!

˚̃Fµ̄ρσξω ˚̃F ρσξω
ν̄ = 1

4 · 4!16m2ϵµ̄ρ̄σ̄ξ̄ω̄ϵ
ρ̄σ̄ξ̄ω̄
ν̄ = −4m2g̊µ̄ν̄ , (3.16)

for the external space and

R̊mn = 1
4 · 4!

˚̃Fmρσξω ˚̃F ρσξω
n = 1

4 · 4!16m2ϵmpqrsϵ
pqrs
n = 4m2g̊mn, (3.17)

for the internal space. The compactification is thus on AdS5 × M5, where M5 is
compact since it has positive and constant curvature [12, 16].

3.2 The AdS vacuum
Another possible compactification of the type IIB theory is the AdS vacuum which
has been proposed as a possible contradiction to the Non-SUSY AdS conjecture of
the swampland program. This vacuum solution to the type IIB equations of motion
is an S-fold, further discussed in section 3.2.3, and is of the form AdS4 × S1

η × S5,
where η is the parameter of S1

η [10]. The S5 refers to a squashed 5-sphere that is
parametrised by two 2-spheres connected via an angular interval such that S5 =
Iα × S2

1 × S2
2 , where α ∈ [0, π2 ] [23]. At the endpoints of Iα, the 2-spheres contract

to become point-like. This is similar to parametrising the regular 2-sphere S2 with
the spherical coordinates θ and φ. The polar angle θ parametrises the interval [0, π]
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3. Type IIB string theory and the AdS vacuum

and φ parametrises a circle S1
φ which corresponds to the equator at θ = π

2 . When
moving away from θ = π

2 , the S1
φ shrinks and eventually contracts to a single point

at θ = 0 and θ = π.

This AdS vacuum stems from an uplift of a particular non-compact gauging of the
4-dimensional N = 8 supergravity. As was described in section 2.4.1, g-dependent
terms have to be added when gauging N = 8 supergravity to preserve supersymme-
try. Among these terms is a complicated scalar potential that non-linearly depends
on the 70 scalars and the choice of gauge group [17, 24]. Finding minima of this
scalar potential is equivalent to finding vacuum solutions of gauged models in N = 8
supergravity [24]. The gauging for the AdS vacuum considered here uses the non-
compact subgroup [SO(1, 1) × SO(6)] ⋉ R12 of E7(+7) [20]. 4-dimensional vacua of
this particular gauging, corresponding to extrema of the scalar potential, can then
be uplifted to 10-dimensional S-fold vacua of type IIB string theory [25].

3.2.1 The metric
The metric VEV of the AdS4 × S1

η × S5 vacua is given by the line element [10]

ds2
10 = ∆−1

[
1
2ds

2
AdS4 + dη2 + dα2 + cos2 α

2 + cos 2αdΩ1 + sin2 α

2 − cos 2αdΩ2

]
, (3.18)

where ∆ is a non-singular warping factor defined by

∆−4 = 4 − cos2(2α). (3.19)

With ordinary 2-spheres Ω1 and Ω2, this vacua is N = 4 supersymmetric and thus
perturbatively stable [26]. However, by performing a flat deformation with param-
eters χi, i = 1, 2, on the azimuthal angles

dΩi = dθ2
i + sin2 θi dφ

′2
i , dφ′

i = dφi + χidη, (3.20)

a new type of vacua is obtained that is generally non-supersymmetric, unless χ1 =
−χ2 for which it possesses N = 2 supersymmetry [10]. Written out explicitly, the
metric is

gµν = 1
∆



1
2 g̃µν

1 + x2
1χ

2
1 sin2 θ1+

+x2
2χ

2
2 sin2 θ2

x2
1χ1 sin2 θ1 x2

2χ2 sin2 θ2

1
x2

1
x2

1χ1 sin2 θ1 x2
1 sin2 θ1

y2

x2
2χ2 sin2 θ2 x2

2 sin2 θ2


, (3.21)

where the α-dependent parameters x1 and x2 are given by

x2
1 = cos2 α

2 + cos(2α) , x2
2 = sin2 α

2 − cos(2α) . (3.22)
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3. Type IIB string theory and the AdS vacuum

The indices in (3.21) are µ, ν = t, ρ, θ, φ, η, α, θ1, φ1, θ2, φ2 in order, so that gtt is
the top left element and gφ2φ2 is in the bottom right. The indices of the metric on
AdS4 with radius L = 1

g̃µν =


− cosh2 ρ

1
sinh2 ρ

sinh2 ρ sin2 θ

 , (3.23)

are understood to only take the values t, ρ, θ, φ. The zehnbein, with the AdS4
vierbein denoted as ẽ a

µ , is given by

e a
µ = 1√

∆



1√
2 ẽ

a
µ

1 χ1x1 sin θ1 χ2x2 sin θ2
1

x1
x1 sin θ1

x2
x2 sin θ2


, (3.24)

where the flat index a takes the values 0,..., 9, with ẽ a
µ only being non-zero for

a = 0,..., 3. For e a
µ , the lower µ-indices are rows and the upper a-indices are

columns. The inverse zehnbein e µ
a , where instead the flat a-indices are the rows,

reads

e µ
a =

√
∆



√
2ẽ µ

a

1 −χ1 −χ2
1

1
x1 1

x1 sin θ1 1
x2 1

x2 sin θ2


. (3.25)

Using the notation g = gµν , e = e a
µ , e−1 = e µ

a , the metric and its inverse can be
calculated as

g = eeT , g−1 = (eeT )−1 = (e−1)T (e−1). (3.26)

Explicitly, the inverse metric takes the form

gµν = ∆



2 g̃µν
1 −χ1 −χ2

1
x−2

1
−χ1 χ2

1 + 1
x2

1 sin2 θ1
χ1χ2

x−2
2

−χ2 χ1χ2 χ2
2 + 1

x2
2 sin2 θ2


. (3.27)
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3. Type IIB string theory and the AdS vacuum

Going back to the standard notation, the determinant of the zehnbein, e = det
(
e a
µ

)
,

is simply given by multiplying the diagonal elements of (3.24)

e = 1
√

24
1

√
∆10 ẽ x

2
1 x

2
2 sin θ1 sin θ2 = 1

4∆−5 ẽ
cos2 α sin2 α

4 − cos2(2α) sin θ1 sin θ2 =

= 1
16∆−1 ẽ sin2(2α) sin θ1 sin θ2,

(3.28)

using the definition of the warping factor in (3.19). The metric determinant g =
det(gµν) is then given by

g = −e2 = 1
16 g̃ ∆−2 cos4 α sin4 α sin2 θ1 sin2 θ2, (3.29)

where g̃ = −ẽ2 is used. While the metric is dependent on the deformation parameters
χi, they do not appear in the determinants e and g.

3.2.2 The VEVs of the fields
The dilaton ϕ and axion χ VEVs are given by

eϕ =
√

2e−2η 2 − cos(2α)√
7 − cos(4α)

= e−2η

√√√√2 − cos(2α)
2 + cos(2α) , χ = 0. (3.30)

The 2-forms have the VEVs

B2 = −2
√

2e−η cos3 α

2 + cos(2α)volΩ1 , C2 = −2
√

2eη sin3 α

2 − cos(2α)volΩ2 , (3.31)

where volΩi
= sin θi dθi∧dφ′

i are the volume forms of the 2-sphere metrics. By using
two new 1-forms Ai = − cos θidφ′

i, such that dAi = volΩi
, and the 3-form ω3 that

satisfies dω3 = volAdS4 with AdS radius 1, the 4-form VEV is given by

C4 = 3
2ω3 ∧

(
dη + 2

3 sin(2α)dα
)

− 1
2f(α)dα ∧ (A1 ∧ volΩ2 + volΩ1 ∧ A2) , (3.32)

where the function f(α) is

f(α) = sin2(2α) cos(4α) − 55
(7 − cos(4α))2 . (3.33)

These VEVs, along with the metric (3.21), satisfy the type IIB equations of motion,
which is discussed further in section 3.2.5.

3.2.3 S-folds
This type of vacuum topology, with or without the χi-deformations, is referred to
as an S-fold [25]. The name comes from a non-trivial S-duality monodromy when
encircling the S1

η . Note that a translation in η, given by the SL(2, R) transformation

A(η) =
(
e−η 0
0 eη

)
, (3.34)
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3. Type IIB string theory and the AdS vacuum

affects only the 2-forms and the dilaton. Since S1
η is compact, the coordinate η must

have some periodicity η ≃ η+T [27]. However, going around S1
η highlights that the

monodromy

MS1 = A−1(η)A(η + T ) =
(
e−T 0
0 eT

)
, (3.35)

arises when the periodicity is forced onto η. Although the transformation MS1 does
not change the topological position, it alters the 2-form and dilaton fields. The
background is thus globally non-geometric, although it is well-defined locally. This
is reminiscent of the Hopf fibration of S3, where S3 = S2 × S1 locally, but globally
there is a twist of the S1 fiber when encircling the equator of the S2, see appendix
E. The monodromy can be generalised to belong to SL(2, Z), the global symmetry
group of the full type IIB string theory, where it takes the form

M(n) = −ST n =
(
n 1

−1 0

)
, S =

(
0 −1
1 0

)
, T =

(
1 0
1 1

)
. (3.36)

Here S, T ∈ SL(2, Z) are the generators of inversions z → −1
z

and translations
z → z + 1, respectively [27]. The SL(2, Z) monodromy is obtained by replacing the
twist in (3.34) with

A(n) = A h(n), h(n) = 1
(n2 − 4)1/4

1
2(−n+

√
n2 − 4) −1

1
2(n+

√
n2 − 4) 1

 , (3.37)

and restricting the periodicity to T (n) = ln
(
n−

√
n2 − 4

)
− ln(2), where n ∈ N and

n ≥ 3 [27]. The SL(2, Z) and SL(2, R) monodromies are then related by

M(n) = h−1MS1h. (3.38)

3.2.4 Flat deformations
The flat deformations appear only via the azimuthal angles in (3.20), where they
can be absorbed through a change of coordinates

φ′
i = φi + χiη. (3.39)

In general, this coordinate redefinition is only valid locally, because φ′
i picks up a

term χiT when going around S1
η . Only in the special case of χi = ni

2π
T

, where
ni ∈ Z, can φ′

i be considered a globally well-defined coordinate. Due to a subtlety
of spinors on S1

η however, the deformation parameters χi have the periodicity 4π
T

,
rather than 2π

T
[10].

The local coordinate redefinition (3.39) can still be applied to the equations of
motion, since they hold in all reference frames. In other words, the flat deformations
do not affect the equations of motion. The deformation parameters can therefore be
set as χi = 0 when evaluating the field equations and other covariant expressions.
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3. Type IIB string theory and the AdS vacuum

3.2.5 Evaluating the field equations for the AdS vacuum
The evaluation of the field equations is essentially split into two parts; Einstein’s
equations (3.12) and the other ones. As showing Einstein’s equations is more in-
volved, this step is saved for last. The equations of motion are formulated in terms
of the field strengths, which are computed in appendix G, where the deformation
parameters are set to χi = 0. Since the axion VEV is zero, the field equation (3.8)
becomes trivial and the other equations are greatly simplified. In, particular, the
B2 and C2 field equations become related by a SL(2, Z) transformation, described
in appendix H.4. It is thus sufficient to show only that (3.9) is satisfied, and (3.10)
will then follow.

The field equations (3.7)-(3.11) are evaluated in appendix H. The scalar equations
are considered first as they do not have any free indices. To evaluate the 2-form
and 4-form equations, the same methodology can be used. The right hand side is
only non-zero for a specific combination of free indices. The majority of the work
consists of rewriting the left hand side so that it becomes clear that it equals the
right hand side for this set of free indices. All other cases amount to showing that
the left hand side vanishes, which always happens because the derivative acts on
something constant.

This leaves only Einstein’s equations. The difference compared to the other field
equations is that the Ricci tensor is needed. The Ricci tensor is found using the
torsion-less structure equations of Cartan and the calculations are performed via
the zehnbein 1-forms ea = dxµe a

µ , which can be read off from (3.24). Appendix C
describes this methodology in more detail, where it was used to find the Riemann
tensor of AdS4. Another simple example using S2 is found in E.1.4. The Ricci tensor
for the AdS vacuum is computed in appendix I. Besides the increased number of
dimensions, the main complication compared to AdS4 and S2 is the α-dependent
warping factor ∆, defined in (3.19), which enters all ea. As a consequence, the Ricci
tensor becomes α-dependent in a somewhat messy way. For example, the Ricci
scalar reads

R = −24∆ − 2∆5
[
5 − 18 sin2(2α)

]
+ 2∆9

[
168 + 37 sin2(2α) − 5 sin4(2α)

]
. (3.40)

The Ricci tensor Rab is diagonal and fortunately, not all elements have to be cal-
culated independently. The AdS4 components are naturally the same, except the
sign difference for R00, which is also seen in appendix C. From the S2 calculation in
E.1.4 it is also clear that the diagonal Ricci tensor elements corresponding to the two
angles of a 2-sphere are the same. As such, R66 = R77, where the flat coordinates
(6, 7) correspond to the 2-sphere angles (θ1, φ1). Similarly, R88 = R99 for the other
2-sphere. The elements R66 and R88 can also be related by a shift α → α+ π

2 , which
exchanges the factors x2

1 = cos2 α/(2 + cos 2α) and x2
2 = sin2 α/(2 − cos 2α) that

distinguish the 2-spheres in the metric (3.18).

With the Ricci tensor ready, Einstein’s equations are then evaluated in appendix J.
The equation is trivially satisfied for all off-diagonal cases of free indices µν, except
for µν = ηα. The rest comes down to finding common expressions of the left- and
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right hand sides for the diagonal cases of the free indices. This is done so that the
metric factors. Consider for example the left hand side with some specified curved
index µ

Rµµ − 1
2Rgµµ = e a

µ e
a
µ Raa − 1

2Rgµµ =
(
Raa − 1

2R
)
gµµ, (3.41)

since gµν and e a
µ are diagonal when χi = 0. The flat Raa can thus be used even

though the evaluation is performed in a general frame.
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4
Stability and conclusions

This final chapter discusses the stability of the AdS vacuum presented in 3.2, and
comments on its relation to the Non-SUSY AdS conjecture. The first test is to
evaluate the perturbative stability of the vacuum. This is done by finding the
Kaluza-Klein spectrum in 4 dimensions and checking that the squared masses are
properly bound from below [10]. The perturbative stability criterion, in the context
of the Freund-Rubin compactification of D = 11 supergravity, is treated in section
4.1. Non-perturbative instability is also discussed in section 4.2, where one example
is decay via bubbles of nothing. Finally, the conclusions regarding the thesis and
the AdS vacuum are given.

4.1 The Breitenlohner-Freedman bound
Stability is guaranteed if there is an unbroken supersymmetry since the condition
H = |Q|2 ≥ 0 follows from the SUSY algebra [28, 29]. However non-supersymmetric
vacua can still be classically stable under certain conditions [13]. Consider the
AdS4 × M7 vacuum obtained by Freund-Rubin compactification of D = 11 super-
gravity in section 2.2. The perturbative stability of this vacuum can be studied via
the D = 4 mass spectrum [26]. The obtained spectrum contains spin 2, 3

2 , 1, 1
2 and

0 states, where the non-zero spin states are classically stable if the squared mass
matrix is positive semi-definite

M2 ≥ 0, (4.1)

so that there are no tachyons. For spin 0 states in AdS spacetime however, the
criterion is the more lenient

M2 ≥ −m2, (4.2)

where m is the constant from the Freund-Rubin ansatz F̊µνρσ = −6mϵµνρσ [26].
This is because a spin 0 field ϕ propagates in AdS spacetime according to the
wave equation −□ϕ + αϕ = 0 where α relates to the cosmological constant Λ via
α ≥ 3Λ/4, which is required for non-negative AdS energy [26]. Classical stability is
always fulfilled for all but the 0+(2) tower. The criterion (4.2), along with the mass
operator for 0+(2), takes the form

∆L ≥ 3m2, (4.3)

where ∆L is the Lichnerowicz operator acting like

∆Lhab = −□hab − 2Racbdh
cd + 2R c

(a hb)c, (4.4)
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on transverse, tracefree and symmetric tensors hab in the compact space [26]. Gen-
eral constraints like (4.3) on ∆L are usually very hard to obtain.

A corollary of (4.3) is that compact product spaces M7 = M(1) ×M(2) are unstable,
given that the Freund-Rubin constant m ̸= 0. This is because a transverse and
traceless mode

h̃ab =
(
ϵ1g

(1)
a1b1 0
0 ϵ2g

(2)
a2b2

)
, tr

(
h̃ab
)

= ϵ1 dim(M(1)) + ϵ2 dim(M(2)) = 0, (4.5)

always can be created, where g
(1)
a1b1 and g

(2)
a2b2 are the metrics on M(1) and M(2)

respectively [26]. The eigenvalue of the mode is ∆Lh̃ab = 0, which violates the
stability bound (4.3). At first glance, this seems to imply that the type IIB AdS
vacuum is unstable since the compact space is of the form S1

η × S5. However, the
monodromy when encircling the S1

η indicates that S1
η × S5 is not a simple product

space. Indeed, the Kaluza-Klein spectrum of the S-fold vacuum shows that it is
perturbatively stable for all values of χi [10]. This stability also holds in higher
dimensions [25].

4.2 Non-perturbative stability and conclusions
The classical stability covered by the Breitenlohner-Freedman bound is however only
a first test, as the vacuum may decay via non-perturbative means as well. As non-
perturbative string theory is not understood, it is not currently possible to fully
prove stability of any vacua. Still, a number of non-perturbative decay modes are
known, which can be used to argue for or against stability. A possible decay mode
for non-supersymmetric vacua is via bubbles of nothing [10]. This is the case for the
original Kaluza-Klein vacuum M4 ×S1, where M4 denotes 4-dimensional Minkowski
space. In the decay of M4 ×S1, which is perturbatively stable, a hole spontaneously
appears in spacetime [30]. On the boundary of this hole, the radius of the compact S1

shrinks to zero. This bubble does not contain some other spacetime, it is completely
empty, and after a very short time it expands at the speed of light. An unstable
vacuum usually falls into a stable state, but the bubble decay causes the spacetime
to just vanish [30]. The deformed S-fold vacua are not prone to bubble decay since
the S1

η and S5 of its compact space cannot collapse like the S1 of M4 × S1 does
on the boundary of the bubble [10]. There are however more intricate bubbles of
nothing through which decay is more difficult to rule out. The non-supersymmetric
S-folds have also been checked for standard brane-jet instabilities [10].

Although some arguments against non-perturbative decay have been made, more
is needed to reach a final verdict on stability [25]. Further investigations on non-
perturbative stability will either cast the S-folds into the swampland, or strengthen
their case. A decent bit more evidence for stability is likely needed to pose a serious
case against the Non-SUSY AdS conjecture [8]. Still, there are notable features of the
S-folds, in particular how supersymmetry is broken via flat deformations. Since the
deformation parameters χi can be locally reabsorbed into the azimuthal angles φi,
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the vacuum behaves like it is supersymmetric on a local level. The S-folds thus enjoy
some benefits of supersymmetry, which saves it from some non-perturbative instabil-
ity modes, while remaining non-supersymmetric globally [10]. The local coordinate
redefinition also protects the S-fold solutions from higher-derivative corrections of
type IIB string theory [10]. Hopefully, further research on S-folds can shed more
light on their role in terms of the Non-SUSY AdS conjecture and quantum gravity
in general.
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A
Definitions

In this appendix the conventions of the Levi-Civita symbol and the generalised
Kronecker delta are given. The Minkowski metric is always taken as ”mostly plus”
in this thesis. The basics of differential forms are also given in A.2.

A.1 The Levi-Civita symbol
The Levi-Civita symbol is a tensor density that is given by

εµ1...µD , ε012...d = 1, (A.1)

in D = d+ 1 dimensions. The indices can be lowered using the metric

εµ1...µD
= gµ1ν1 ...gµDνD

εν1...νD , (A.2)

where
ε0...d = ±1 (A.3)

The + sign is true for Riemannian manifolds and the − sign is true for Lorentzian
manifolds [31]. Other ± signs should also be interpreted like this. Contracting two
Levi-Civita symbols yields that

εα1...αpβ1...βqεα1...αpγ1...γq = ±p! q! δβ1...βq
γ1...γd

, (A.4)

where the generalised Kronecker delta is defined as

δ
α1...αp

β1...βp
= δα1

[β1
...δ

αp

βp], where δ
α1...αp

β1...βp
aβ1...βp = a[α1...αp]. (A.5)

The Levi-Civita symbol can also be used to create a totally antisymmetric tensor in
D dimensions

ϵµ1...µD
= e εµ1...µD

, ϵµ1...µD = e−1 εµ1...µD , (A.6)
where e = √

±g and g = det(gµν).

A.2 Differential forms
A p-form ωp is defined as

ωp = 1
p!dx

µ1 ∧ .. ∧ dxµp ωµ1...µp , (A.7)
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where
dxµ1 ∧ ... ∧ dxµD = dDx εµ1...µD = dDx e ϵµ1...µD . (A.8)

The wedge product of a p-form αp and a q-form βq is

(αp ∧ βq)µ1...µp+q = (p+ q)!
p!q! (αp)[µ1...µp(βq)µp+1...µp+q ]. (A.9)

It is associative
(αp ∧ βq) ∧ γr = αp ∧ (βq ∧ γr), (A.10)

and (anti-)commutative if pq is even (odd)

αp ∧ βq = (−1)pqβq ∧ αp. (A.11)

The exterior derivative d = dxµ∂µ, which satisfies d2 = 0, of a p-form ωp is defined
as

(dωp)µ1...µp+1 = (p+ 1)∂[µ1(ωp)µ2...µp+1]. (A.12)

The Hodge dual of ωp is

(⋆ωp)µ1...µD−p
= 1
p!ϵµ1...µD−pν1...νp(ωp)ν1...νp . (A.13)
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B
D = 11 supergravity field equations

In this appendix, the field equations of D = 11 supergravity, which is described in
section 2.1, are derived. The Lagrangian of D = 11 supergravity is again given by
[13]

L = 1
2κ2

11
e
[
R − 1

2 · 4!FMNPQF
MNPQ

]
+

− 1
12κ2

11

1
3!(4!)2 ε

M1...M11AM1M2M3FM4M5M6M7FM8M9M10M11 .
(B.1)

There are only two bosonic fields gMN and AMNP , which can be used to vary the
Lagrangian.

B.1 Varying with respect to gMN

Starting off with gMN , the relevant terms are

δ
(
eR − 1

2 · 4!eFMNPQF
MNPQ

)
= δ(eR) − 1

2 · 4!δ(eFMNPQF
MNPQ). (B.2)

The first term becomes

δ(eR) = δe R + e δgMNRMN + e gMNδR
MN . (B.3)

The variation δe can be related to δgMN via the identity [7]

δ det(M) = det(M) tr{M−1δM}. (B.4)

Applying this relation to the metric yields that

δg = g gMNδgMN = −g gMNδg
MN , (B.5)

where δgMN = −gMPgNQδgPQ has been used. The variation of the elfbein determi-
nant thus becomes

δe = δ
√

−g = − 1
2√

−g
δg = − g

2√
−g

gMNδgMN =

= 1
2e g

MNδgMN = −1
2e gMNδg

MN ,

(B.6)
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so that

δ(eR) = δe R + e RMNδg
MN = −1

2e R gMNδg
MN + e RMNδg

MN =

= e
(
RMN − 1

2R gMN

)
δgMN .

(B.7)

Now, the second term is
δ(eFPQRSF PQRS) = δe FPQRSF

PQRS + 4e FMPQRF
PQR

N δgMN =

= e
(

−1
2gMNFPQRSF

PQRS + 4FMPQRF
PQR

N

)
δgMN ,

(B.8)

and thus Einstein’s equations in D = 11 supergravity are given by

RMN − 1
2R gMN = 1

12

(
FMPQRF

PQR
N − 1

8gMNFPQRSF
PQRS

)
. (B.9)

B.2 Varying with respect to AMNP

Next, variation with respect to AMNP is considered. The kinetic term becomes
δ(e FMNPQF

MNPQ) = 2e δFMNPQF
MNPQ = 8e δ(∂[MANPQ])FMNPQ =

= 8e ∂M(δANPQ)FMNPQ = −8∂M(e FMNPQ)δANPQ,
(B.10)

where the boundary term is discarded. The topological term, written schematically
as δ(εAFF ), becomes

δ(εAFF ) = εM1...M11δAM1M2M3FM4M5M6M7FM8M9M10M11+
+ εM1...M11AM1M2M3δFM4M5M6M7FM8M9M10M11+
+ εM1...M11AM1M2M3FM4M5M6M7δFM8M9M10M11 =

= εM1...M11δAM1M2M3FM4M5M6M7FM8M9M10M11+
+ 2εM1...M11AM1M2M3δFM4M5M6M7FM8M9M10M11 =

= εM1...M11δAM1M2M3FM4M5M6M7FM8M9M10M11+
− 8εM1...M11δAM5M6M7∂M4(AM1M2M3FM8M9M10M11) =

= εM1...M11δAM1M2M3FM4M5M6M7FM8M9M10M11+
− 2εM1...M11δAM5M6M7FM4M1M2M3FM8M9M10M11+
− 8εM1...M11δAM5M6M7AM1M2M3∂M4(FM8M9M10M11)

= 3εM1...M11δAM1M2M3FM4M5M6M7FM8M9M10M11 ,

(B.11)

after manipulating the indices a bit and noting that ∂M4(FM8M9M10M11) = 0 in the
final step. The second set of field equations are thus

− 1
2 · 4!(−8∂M(e FMNPQ)) − 1

6
1

3!(4!)2

(
3εNPQM4...M11FM4M5M6M7FM8M9M10M11

)
= 0,

(B.12)
which can be written as

∇MF
MNPQ = 1

1152ϵ
NPQR1...R8FR1R2R3R4FR5R6R7R8 , (B.13)

by using that ∇MF
MNPQ = 1

e
∂M(eFMNPQ) since FMNPQ is antisymmetric.
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C
AdS4 spacetime

This appendix focuses on anti-de Sitter spacetime in 4 dimensions which is the most
relevant type for this thesis. In particular, the Riemann tensor of AdS4 is calculated,
from which the Ricci tensor and scalar are easily computed. The Riemann tensor is
calculated via Cartan’s structure equations when the torsion is zero [32]. The same
method is used to find the Riemann tensor of the type IIB AdS vacuum AdS4×S1

η×S5
and some calculations carry over. There is however an α-dependent warping factor
present for the type IIB vacuum which complicates things a little, see section 3.2.
The procedure of calculating the Riemann tensor will be done explicitly here, so
that other similar computations can be performed more speedily.

C.1 The Riemann tensor of AdS4

The metric on AdS4 is given by the line element

ds2 = − cosh2 ρ dt2 + 1
a2dρ

2 + 1
a2 sinh2 ρ (dθ2 + sin2 θ dϕ2), (C.1)

where the parameter a is related to the AdS radius via L = 1/a. The metric then
reads

gµν = 1
a2


−a2 cosh2 ρ

1
sinh2 ρ

sinh2 ρ sin2 θ

 . (C.2)

The line element can also be used to read off the vierbein 1-forms ea

ds2 = gµνdx
µdxν = dxµdxνe a

µ e
b
ν ηab = eaebηab, (C.3)

that contract with the flat Minkowski metric. The greek µ, ν,... denote curved
indices while the latin a, b,... are flat. The vierbein 1-forms for AdS4 are thus

e0 = cosh ρ dt, e1 = 1
a
dρ, e2 = 1

a
sinh ρ dθ, e3 = 1

a
sinh ρ sin θ dϕ. (C.4)

The first step towards the Riemann tensor is Cartan’s structure equation for the
torsion 2-form T a = 1

2dx
µ ∧ dxνT a

µν given by

T a = dea + ωab ∧ eb, (C.5)

where ωab is the spin connection 1-form [7, 32]. Since there is always a torsion-free
connection, T a can be set to zero in (C.5) [7]. The structure equation (C.5) then
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C. AdS4 spacetime

uniquely defines the connection 1-forms ωab via dea + ωab ∧ eb = 0. First off, the
exterior derivative of the vierbein 1-forms are

de0 = d(cosh ρ dt) = sinh ρ dρ ∧ dt = a
sinh ρ
cosh ρ(1

a
dρ) ∧ (cosh ρ dt) =

= −a tanh ρ e0 ∧ e1,

(C.6)

de1 = 1
a
ddρ = 0, (C.7)

de2 = 1
a
d(sinh ρ dθ) = 1

a
cosh ρ dρ ∧ dθ = a

cosh ρ
sinh ρ (1

a
dρ) ∧ (1

a
sinh ρ dθ) =

= a coth ρ e1 ∧ e2,

(C.8)

de3 = 1
a
d(sinh ρ sin θ dϕ) =

= 1
a

cosh ρ sin θ dρ ∧ dϕ+ 1
a

sinh ρ cos θ dθ ∧ dϕ =

= a coth ρ e1 ∧ e3 + a
cot θ
sinh ρe

2 ∧ e3.

(C.9)

The torsion-free structure equation (C.5) can be rewritten as

dea = ηacωbc ∧ eb. (C.10)

Since the left hand side dea consists of terms proportional to ei ∧ ej, where i, j ==
0, 1, 2, 3, the connection 1-forms are written as

ωab = ωiabe
i, (C.11)

so that the components ωiab can be extracted from (C.10). The case where a = 0 is
considered first. The relation (C.10) then reads

−a tanh ρ e0 ∧ e1 = η00ωib0e
i ∧ eb =

= −e0 ∧ e1(ω010 − ω100) − e0 ∧ e2(ω020 − ω200)+
− e0 ∧ e3(ω030 − ω300) − e1 ∧ e2(ω120 − ω210)+
− e1 ∧ e3(ω130 − ω310) − e2 ∧ e3(ω230 − ω320) =

= −e0 ∧ e12ω[01]0 − e0 ∧ e22ω[02]0 − e0 ∧ e32ω[03]0+
− e1 ∧ e22ω[12]0 − e1 ∧ e32ω[13]0 − e2 ∧ e32ω[23]0.

(C.12)

What follows is that 2ω[01]0 = a tanh ρ and all other ω[ij]0 = 0. Next is the case
where a = 1 which reads

0 = ωib1e
i ∧ eb, (C.13)

implying that all ω[ij]1 = 0. For a = 2

a coth ρ e1 ∧ e2 = ωib2e
i ∧ eb, (C.14)
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C. AdS4 spacetime

so that 2ω[12]2 = a coth ρ and all other ω[ij]2 = 0. Lastly, a = 3

a coth ρ e1 ∧ e3 + a
cot θ
sinh ρe

2 ∧ e3 = ωib3e
i ∧ eb, (C.15)

yields that 2ω[13]3 = a coth ρ, 2ω[23]3 = a cot θ
sinh ρ and the other ω[ij]3 = 0. Now that

the relation (C.10) is exhausted, the actual connection components ωabc should be
extracted from the ω[ab]c. This can be done via the antisymmetry properties of the
connection which implies that

ωabc = −ωacb =⇒ ωabc = ω[ab]c + ω[ca]b − ω[bc]a. (C.16)

The non-zero ωabc are thus

ω010 = ω[01]0 − ω[10]0 = 2ω[01]0 = a tanh ρ,
ω212 = ω[21]2 − ω[12]2 = −2ω[12]2 = −a coth ρ,
ω313 = ω[31]3 − ω[13]3 = −2ω[13]3 = −a coth ρ,

ω323 = ω[32]3 − ω[23]3 = −2ω[23]3 = −a cot θ
sinh ρ,

(C.17)

and the connection 1-forms are

ω01 = ω001e
0 = −a tanh ρ e0, ω12 = ω212e

2 = −a coth ρ e2,

ω02 = 0, ω13 = ω313e
3 = −a coth ρ e3,

ω03 = 0, ω23 = ω323e
3 = −a cot θ

sinh ρe
3,

(C.18)

where ωaa = 0 because of the antisymmetry. The goal of finding the ωab is that the
curvature 2-form Θab now can be evaluated as [32]

Θab = dωab + ωac ∧ ωcb. (C.19)

Like the connection, Θab is antisymmetric in ab which implies that Θaa = 0. The
curvature 2-form will later be associated with the Riemann tensor. The first term
of (C.19) is the exterior derivative of ωab. A useful relation for this calculation is
that

d(coth ρ) = − 1
sinh2 ρ

dρ, (C.20)
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C. AdS4 spacetime

which follows from cosh2 ρ− sinh2 ρ = 1. The non-zero dωab are thus
dω01 = −a d(tanh ρ e0) = −a(1 − tanh2 ρ)dρ ∧ e0 − a tanh ρ de0 =

= a2(1 − tanh2 ρ+ tanh2 ρ)e0 ∧ e1 = a2e0 ∧ e1,

dω12 = a

sinh2 ρ
dρ ∧ e2 − a coth ρ de2 = a2

sinh2 ρ
e1 ∧ e2 − a2 coth2 e1 ∧ e2 =

= −a2e1 ∧ e2,

dω13 = a2

sinh2 ρ
e1 ∧ e3 − a coth ρ de3 = −a2e1 ∧ e3 − a2 coth ρ cot θ

sinh ρ e2 ∧ e3,

dω23 = a
1

sin2 θ

1
sinh ρdθ ∧ e3 + a cot θ cosh ρ

sinh2 ρ
dρ ∧ e3 − a

cot θ
sinh ρde

3 =

= a2

sin2 θ sinh2 ρ
e2 ∧ e3 + a2 coth ρ cot θ

sinh ρ e1 ∧ e3+

− a2 coth ρ cot θ
sinh ρ e1 ∧ e3 − a2 cot2 θ

sinh2 ρ
e2 ∧ e3 =

= a2

sinh2 ρ
e2 ∧ e3.

(C.21)

The second term of (C.19) can be written as ω̃ab = ωac ∧ ωcb, where ω̃aa = 0. The
ω̃ab are calculated to be

ω̃01 = 0,
ω̃02 = ω01 ∧ ω12 = a2e0 ∧ e2,

ω̃03 = ω01 ∧ ω13 = a2e0 ∧ e3,

ω̃12 = ω13 ∧ ω32 = −a2 coth ρ cot θ
sinh ρ e3 ∧ e3 = 0,

ω̃13 = ω12 ∧ ω23 = a2 coth ρ cot θ
sinh ρ e2 ∧ e3,

ω̃23 = ω21 ∧ ω13 = −a2 coth2 ρ e2 ∧ e3,

(C.22)

so that the curvature 2-forms are
Θ01 = a2e0 ∧ e1,

Θ02 = a2e0 ∧ e2,

Θ03 = a2e0 ∧ e2,

Θ12 = −a2e1 ∧ e2,

Θ13 = −a2e1 ∧ e3 − a2 coth ρ cot θ
sinh ρ e2 ∧ e3 + a2 coth ρ cot θ

sinh ρ e2 ∧ e3 =

= −a2e1 ∧ e3,

Θ23 = a2

sinh2 ρ
e2 ∧ e3 − a2 coth2 ρ e2 ∧ e3 =

= −a2e2 ∧ e3.

(C.23)

The 2-form Θab is related to the Riemann tensor [32]

Θab = 1
2Rabcde

c ∧ ed, (C.24)
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which allows the non-zero Rabcd to be read off as

R0101 = a2, R0202 = a2, R0303 = a2

R1212 = −a2, R1313 = −a2, R2323 = −a2.
(C.25)

The Ricci tensor is then just given by Rbd = ηacRabcd

R00 = R1010 +R2020 +R3030 = 3a2,

R11 = −R0101 +R2121 +R3131 = −3a2,

R22 = −R0202 +R1212 +R3232 = −3a2,

R33 = −R0303 +R1313 +R2323 = −3a2,

(C.26)

which implies that
Rab = −3a2ηab. (C.27)

The Ricci scalar is
R = ηabRab = −3a2ηabηab = −12a2. (C.28)

This also shows that AdS4 is a maximally symmetric space, since the Ricci and
Riemann tensor can be written like

Rab = R

D
ηab, Rabcd = R

D(D − 1) (ηacηbd − ηadηbc) , (C.29)

where D = 4 is the number of spacetime dimensions [33].
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D
Derivation of N = 8 supergravity

This appendix focuses on the derivation of N = 8 supergravity via dimensional
reduction from D = 11 supergravity. The appendix follows [11] closely, and focuses
only on the bosonic sector. Note also that the choice of metric signature and the
scaling of the 3-form fields differs from [11]. The metric signature used here is
”mostly plus”, in contrast with ”mostly minus” which is used in [11]. The flat
metric of the compact space used here is thus δab, instead of −δab. The 3-forms are
related via Ahere

MNP = 2Athere
MNP .

D.1 Dimensional reduction of D = 11 supergravity
The bosonic Lagrangian of 11-dimensional supergravity is given by

κ2
11L = 1

2V R − 1
2 · 48V FMNPQF

MNPQ+

− 1
2 · 124 ε

M1...M11AM1M2M3FM4M5M6M7FM8M9M10M11 ,
(D.1)

where V = det{e A
M } and M, N,P,... denote 11-dimensional spacetime indices. The

gravitational constant κ2
11 = 8πG(11) only appears as an overall factor and is thus set

to 1 for the sake of convenience. The bosonic Lagrangian is invariant under general
coordinate transformations in 11 dimensions, xM → xM − ξM , so that the elfbein
and 3-form transform like

δe A
M = e A

N ∂Mξ
N + ξN∂Ne

A
M , (D.2)

δAMNP = 3AQ[MN∂P ]ξ
Q + ξQ∂QAMNP , (D.3)

local SO(1, 10) Lorentz transformations, xA → xBΛ A
B

δe A
M = −e B

M Λ A
B , (D.4)

δAMNP = 0, (D.5)

and abelian gauge transformations of the 3-form with parameter ζMN = −ζNM

δe A
M = 0, (D.6)

δAMNP = ∂[MζNP ]. (D.7)

N = 8 supergravity is the 4-dimensional theory obtained from dimensional reduction
of D = 11 supergravity on a 7-torus. Specifically, the bosonic part of the N = 8
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D. Derivation of N = 8 supergravity

theory is found by compactifying the Lagrangian given in (D.1). For this purpose,
the elfbein e A

M is divided into 4 blocks

e A
M =

(
e α
µ B r

µ e
a
r

e α
m e a

m

)
. (D.8)

The different indices correspond to

curved flat
11-dimensional M, N, P,... A, B, C,...

4-dimensional spacetime µ, ν, ρ,... α, β, γ,...

7-dimensional compact i, j, k,... a, b, c,...,

(D.9)

which is the same notation as the one used in section 2.2. The off-diagonal part of
the local SO(1, 10) invariance can be used to set all e α

m = 0 so that the elfbein and
its inverse read

e A
M =

(
e α
µ B r

µ e
a
r

0 e a
m

)
, e M

A =
(
e µ
α −e µ

α (B r
µ e

a
r )e m

a

0 e m
a

)
. (D.10)

The 55 degrees of freedom of local SO(1, 10) invariance are thus reduced to 27 by
setting the 28 components of e α

m = 0. Remaining are a vierbein e α
µ , 7 gauge fields

B i
µ and an internal seibenbein e a

m , which is an element of the group GL(7) and
contains 49 scalar degrees of freedom.

The 3-form AMNP is divided into 4 types of fields: 35 pseudoscalars Aijk, 21 pseu-
dovectors Aµij, 7 Aµνi fields and Aµνρ. The 4-dimensional 3-form Aµνρ can only
appear in L through its field strength Fµνρσ. In 4 dimensions, Fµνρσ is exact, and
can thus be taken as the independent variable instead of Aµνρ. However, the Fµνρσ
field does not contribute to the bosonic Lagrangian.

The dimensional reduction should now be applied to the bosonic Lagrangian in
(D.1), which can be schematically written as

L = H +H ′ +H ′′, (D.11)

where H is the Einstein-Hilbert term, H ′′ is the 3-form kinetic term and H ′′ is the
topological term. The D = 11 supergravity Lagrangian will thus be written in terms
of the 4-dimensional field content, giving the N = 8 supergravity. First up is the
Einstein-Hilbert term.

D.1.1 The Einstein-Hilbert term H

The Einstein-Hilbert term is given by

H = 1
2V R = 1

2V (dωAB + ωAC ∧ ωCB)AB. (D.12)
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The torsion-free spin connection with flat indices can be expressed as

ωABC = 1
2(ΩABC − ΩBCA + ΩCAB), (D.13)

using the anholonomy coefficients ΩABC = −2e M
[A ∂B]eMC . The symmetry proper-

ties of ωABC and ΩABC are

ωABC = −ωACB, ΩABC = −ΩBAC . (D.14)

To simplify the dimensional reduction, H is first rewritten in terms of the anholon-
omy coefficients in 11 dimensions. This is done as follows. By performing a partial
integration, the first term in (D.12) becomes

V (dωAB)AB = V e M
A e N

B (dωAB)MN = 2V e M
A e N

B ∂[Mω
AB

N ] = {P.I.} =
= −2∂[A(V )ω AB

B] − 2V ∂[A(e M
B )ω AB

M ] +
− 2V ∂[M(e M

A )ω AB
B] =

= 2∂B(V )ω AB
A − 2V ∂M(e M

[A )ω AB
B] − 2V ∂[A(e M

B] )ω AB
M =

= 2V ∂B(log V )ω AB
A + 2V ∂M(e M

B )ω AB
A +

− 2V e M
[A ∂B](e C

M )ω AB
C =

= {∂B log V = Γ A
AB = ω A

A B − ∂Me
M

B } =
= 2ω A

A Cω
BC

B + Ω C
AB ω AB

C .

(D.15)

The second term is then expanded

(ωAC ∧ ωCB)AB = e M
A e N

B (ωAC ∧ ωCB)MN = 2e M
A e N

B ω A
[M Cω

CB
N ] =

= ω A
A Cω

CB
B − ω A

B Cω
CB

A ,
(D.16)

so that the Einstein-Hilbert term can be written as

H = 1
2V R = 1

2V [Ω C
AB ω AB

C − ω A
B Cω

CB
A + ω AC

A ω B
B C ] =

= 1
2V [(Ω C

AB − ω C
B A)ω AB

C + ω A
A Cω

BC
B ] =

= 1
2V [ω C

AB ω AB
C + ω A

A Cω
BC

B ].

(D.17)

To express H in terms of the anholonomy coefficients, first note that

ω C
AB ω AB

C = 1
4
[
(ΩABC − ΩBCA + ΩCAB)(ΩCAB − ΩABC + ΩBCA)

]
=

= 1
4
[

− ΩABCΩABC + 2ΩABCΩBCA
]

=

= 1
4
[

− ΩABCΩABC + 2ΩABCΩCAB
]
,

(D.18)
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and secondly that

ω A
A Cω

BC
B = 1

4
[
(Ω A

A C︸ ︷︷ ︸
= 0

− ΩA
CA︸ ︷︷ ︸

−Ω A
CA

+Ω A
CA )(Ω BC

B︸ ︷︷ ︸
= 0

− ΩBC
B︸ ︷︷ ︸

−ΩC B
B

+ΩC B
B )

]
=

= 1
4
[
4Ω A

CA ΩC B
B

]
.

(D.19)

The Einstein-Hilbert term becomes

H = 1
2V R = −1

8V [ΩABCΩABC − 2ΩABCΩCAB − 4Ω A
CA ΩC B

B ]. (D.20)

D.1.1.1 Weyl transformation

Before continuing with the the dimensional reduction, note that the elfbein deter-
minant factors like

V = det{e A
M } = det{e α

µ } det{e a
m } = e

√
∆, (D.21)

in the e α
m = 0 gauge. A Weyl transformation can be used to eliminate the

√
∆-

factor in front of the Einstein-Hilbert term. The Weyl transformation used is

gµν → ĝµν = ∆−1/2gµν , =⇒ e α
µ → ê α

µ = ∆−1/4e α
µ . (D.22)

The determinant of the vierbein then transforms like

e → ê = det{∆−1/4e α
µ } = ∆−1e. (D.23)

Applying the Weyl transformation on the anholonomy coefficients Ωαβγ = 2e µ
α e ν

β ∂[µeν]γ
yields that

Ωαβγ → Ω̂αβγ = 2∆1/2e µ
α e ν

β ∂[µ(∆−1/4e δ
ν] ηδγ) =

= 2∆1/4e µ
α e ν

β ∂[µeν]γ + 2∆1/4e µ
α e ν

β e
δ

[ν| ηδγ∆1/4∂|µ]∆−1/4 =

= {∆1/4∂α∆−1/4 = ∂α log ∆−1/4 = −1
4∂α log ∆} =

= ∆1/4(Ωαβγ − 1
2ηγ[β∂α] log ∆).

(D.24)

D.1.1.2 Reducing the Einstein-Hilbert term

Writing out the coefficient ΩABC with 4-dimensional indices and internal 7-dimensional
indices yields three types of components that are non-zero

Ωαβγ = 2e µ
α e ν

β ∂[µeν]γ,

Ωαβc = ercG
r
αβ, Gr

αβ = 2e µ
α e ν

β ∂[µ(B a
ν] e

r
a ),

Ωαbc = e µ
α e m

b ∂µemc.

(D.25)

The dimensionally reduced Einstein-Hilbert term is thus

Ω2
ABC − 2ΩABCΩCAB − 4Ω A

CA ΩC B
B = −4R4 + Ω2

αβc + 2Ω2
αbc − 2ΩαbcΩcαb+

− 8Ω α
γα Ωγ b

b − 4Ω a
γa Ωγ b

b ,

(D.26)
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where
−4R4 = Ω2

αβγ − 2ΩαβγΩγαβ − 4Ω α
γα Ωγ β

β . (D.27)

The Weyl transformation can now be used to eliminate the persisting
√

∆-factor.
The −4R4 term is considered first and the relevant coefficients transform like

Ω̂2
αβγ = ∆1/2(Ω2

αβγ − Ωα β
β ∂α log ∆ + 3

8 [∂α log ∆]2),
Ω̂αβγΩ̂γαβ = ∆1/2(ΩαβγΩγαβ + 1

2Ωα β
β ∂α log ∆ − 3

16 [∂α log ∆]2),
Ω̂ α
γα Ω̂γ β

β = ∆1/2(Ω α
γα Ωγ β

β − 3
2Ωα β

β ∂α log ∆ + 9
16 [∂α log ∆]2),

(D.28)

which gives the Weyl transformation of R4 as

−4R4 → −4R̂4 = Ω̂2
αβγ − 2Ω̂αβγΩ̂γαβ − 4Ω̂ α

γα Ω̂γ β
β =

= ∆1/2(−4R4 + 4Ωα β
β ∂α log ∆ − 3

2[∂α log ∆]2).
(D.29)

The other terms in (D.26) can be Weyl-transformed using

Ω̂2
αβc = ∆(Ga

αβ)2, Gr
αβ = 2e µ

α e ν
β ∂[µ(B a

ν] e
r
a ),

Ω̂2
αbc = ∆1/2Ω2

αbc,

Ω̂αbcΩ̂cαb = ∆1/2ΩαbcΩcαb,

Ω̂ α
γα Ω̂γ b

b = ∆1/2Ωα b
b Ω β

αβ − 3
4∆1/2Ωα b

b ∂γ log ∆,
Ω̂ a
γa Ω̂γ b

b = ∆1/2(Ω b
αb )2.

(D.30)

The reduced and transformed Einstein-Hilbert term H = 1
2V R is then

Ĥ = −1
8e
[

− 4R4 + 4Ωα β
β ∂α log ∆ − 3

2[∂α log ∆]2 − 8Ωα β
β Ω b

αb +

+ 6Ωα b
b ∂α log ∆ −

(
4Ω2 b

αb + 2ΩαbcΩcαb − 2Ω2
αbc

)
+

√
∆(Ga

αβ)2
]
.

(D.31)

By noting that Ω b
αb = 1

2∂α log ∆, which can be read off from ∂α log V = ω B
B α−∂µe µ

α

as
∂α log V = (∂α log e) + [∂α log

√
∆] = (ω β

β α − ∂µe
µ
α ) + [Ω b

αb ], (D.32)

the terms with Ωα β
β cancel. Other terms with Ω b

αb become linear in [∂α log ∆]2.
The terms 2Ω2

αbc − 2ΩαbcΩcαb can also be rewritten since

∂αgmn∂
αgmn = ∂α(e a

m e b
n ηab)∂α(ηcde m

c e n
d ) =

= ηabη
cd(e a

m ∂αe
b
n + e b

n ∂αe
a

m )(e m
c ∂αe n

d + e n
d ∂

αe m
c ) =

= 2∂αe b
m ∂αe m

b + 2ηabηcde a
m e n

d ∂αe
b
n ∂

αe m
c =

= 2ΩαbcΩcαb − 2Ω2
αbc.

(D.33)

The Einstein-Hilbert term becomes

Ĥ = 1
2e R4 − 1

8e
√

∆(Ga
αβ)2 − 1

16e [∂α log ∆]2 + 1
8e ∂αgmn∂

αgmn. (D.34)
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Aside from the 4-dimensional Einstein-Hilbert term there is a term containing the
field strength of the 7 gauge fields B r

µ and two terms containing the scalar de-
grees of freedom. The scalars appear in the action only through gmn, recall that
∆ = det{gmn}, which is symmetric with 28 degrees of freedom. The difference in di-
mension from the 49 of e a

m ∈ GL(7) is 21, which corresponds to the local invariance
group SO(7). The scalars thus live in the coset space of GL(7)/SO(7). Fixing the
SO(7) gauge would, along with the condition e α

m = 0, reduce the 55 parameters of
local SO(1, 10) invariance to 6, which corresponds to the local SO(1,3) invariance
of the 4-dimensional theory.

D.1.2 Gauge invariance and field redefinitions
Before moving on to the other terms of the Lagrangian, how the reduced 3-form
fields change under the gauge transformations should be considered. The N =
8 supergraviy Lagrangian should be formulated in terms of gauge invariant field
strengths. The D = 11 Lagrangian is invariant under the transformations given
in (D.2)-(D.6) under which the elfbein e A

M , its inverse e M
A and the 3-form AMNP

transform like
e A
M → e A

M + ∂Mξ
Ne A

N + ξN∂Ne
A

M + e B
M Λ A

B ,

e M
A → e M

A − ∂Nξ
Me N

A + ξN∂Ne
M

A + Λ B
A e M

B ,

AMNP → AMNP + 3∂[Mξ
QANP ]Q + ξQ∂QAMNP + 3∂[MζNP ].

(D.35)

Here, the e α
m = 0 gauge is preserved by the condition that ∂mξµ = 0. The B m

µ

fields transform as gauge fields

B m
µ → B m

µ + ∂µξ
m, (D.36)

under coordinate transformations xm → xm − ξm. When describing a 4-dimensional
theory, the fields and field strengths should be independent of such internal trans-
formations, which is why the B m

µ fields should only appear as field strengths in the
Lagrangian.

Out of the fields obtained by reducing AMNP to 4 dimensions, the 21 pseudo vectors
Aµij and the 7 Aµνi fields have to be modified in order to transform nicely. They are
not invariant under the internal coordinate change xm → xm − ξm. The new fields A′

µij = Aµij −B k
µ Akij,

A′
µνi = Aµνi − 2B p

[µ Aν]ip +B i
µ B

p
ν Aipq,

(D.37)

are thus defined, which are invariant under ξm transformaions. Under ζij and ζµi
gauge transformations, the primed A fields transform likeδA

′
µij = ∂µζij,

δA′
µνi = 2∂[µζν]i − 2B p

[µ ∂ν]ζip.
(D.38)
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While the field strength F ′
µνij is gauge invariant, modifications are needed for F ′

µνρi

since
δF ′

µνρi = −3Gp
[µν∂ρ]ζip. (D.39)

The correct modification is

F ′′
µνρi = F ′

µνρi + 3Gp
[µνA

′
ρ]ip, (D.40)

since δA′
ρip = ∂ρζip. With the gauge invariant field strengths F ′

µνij and F ′′
µνρi the

remaining terms of the Lagrangian can be considered.

D.1.3 The 3-form kinetic term H ′

The second term of the Lagrangian is

H ′ = − 1
2 · 48e

√
∆FMNPQF

MNPQ. (D.41)

Expanding the squared field strength in the flat frame yields 4 different terms

F 2 = F 2
MNPQ = F 2

αβγδ + 4F 2
αβγd + 6F 2

αβcd + 4F 2
αbcd. (D.42)

The formulation using curved indices is found via the definitions
Fαbcd = e µ

α e i
b e

j
c e

k
d ∂µAijk,

Fαβcd = e µ
α e ν

β e
i
c e

j
d F̃µνij,

Fαβγd = e µ
α e ν

β e
ρ
γ e

i
d F̃µνρi,

(D.43)

where
F̃µνij = F ′

µνij +Gk
µνAijk, F̃µνρi = F ′′

µνρi. (D.44)

Using these field strengths and applying the Weyl transformation gµν →
√

∆gµν of
section D.1.1.1 results in the transformation

F 2 → ∆2F 2
αβγδ + 4∆3/2gµσgντgρλgijFµνρiFστλj+

+ 6∆1gµρgνσgikgjlFµνijFρσkl + 4∆1/2gµνgilgjmgkn∂µAijk∂νAlmn.
(D.45)

The second term of the Lagrangian becomes

Ĥ ′ = − 1
96e∆

3/2F 2
αβγδ − 1

24e∆F̃µνρiF̃
µνρi − 1

16e∆
1/2F̃µνijF̃

µνij+

− 1
24e g

ilgjmgkn∂µAijk∂
µAlmn.

(D.46)

D.1.4 The topological term H ′′

The third term of the Lagrangian, which is invariant under the Weyl transformation,
can be written as

H ′′ = − 1
2 · 124 ε

M1...M11FM1...M4FM5...M8AM9M10M11 =

= 1
2 · 123 ε

µνρσεijklmno(4Fµνρi∂σAjklAmno − 9FµνijFρσklAmno),
(D.47)
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where the terms with fields of the type Aµij and Aµνi have been integrated by parts.
The topological term H ′′ should be expressed in terms of the field strengths F̃µνij
and F̃µνρi. By using Fµνρi = F̃µνρi − 3B p

[µ F̃νρ]ip + 3B p
[µ B

q
ν ∂ρ]Aipq,

Fµνij = F̃µνij − 2B p
[µ ∂ν]Aijp,

(D.48)

it is found that

H ′′ = 1
2 · 123 ε

µνρσεijklmno
(
4F̃µνρi∂σAjklAmno − 12B p

µ F̃νρip∂σAjklAmno+

+ 12B p
µ B

q
ν ∂ρAipq∂σAjklAmno+

− 9F̃µνijF̃ρσklAmno + 36F̃µνijB q
ρ ∂σAklqAmno+

+ 36B p
µ B

q
ν ∂ρAijp∂σAklqAmno

)
.

(D.49)

The second term can be rewritten by noting that an antisymmetric tensor with more
than seven internal indices is zero, meaning that F̃νρ[ip∂σAjklAmno] = 0. Note that
any space-time indices µ, ν, ... should be completely ignored in the antisymmetri-
sation bracket. Expanding this relation yields the result, where the antisymmetry
[ijklmno] is understood

B p
µ F̃νρip∂σAjklAmno = 3

2B
q

µ F̃νρij∂σAklqAmno − 3
2B

q
µ F̃νρijAklq∂σAmno =

= 3F̃µνijB q
ρ ∂σAklqAmno + 3

2G
p
µνB

q
ρ ∂σAijpAklqAmno+

− 3
4 F̃µνijG

q
ρσAklqAmno.

(D.50)

The expression after the second equals sign is reached after integrating the second
term by parts, where the non-trivial Bianchi identity ∂σF̃µνij = Gp

σµ∂νAijp is used.
In a similar way ∂ρA[ip|q|∂σAjklAmno] = 0 can be used to find

∂ρAipq∂σAjklAmno = −3
2∂ρAijp∂σAklqAmno + 3

2∂ρAijpAklq∂σAmno.
(D.51)

Note that the left hand side and the first term are explicitly antisymmetric in p and
q, which implies that the second term also is antisymmetric in p and q. Applying
the relations (D.50) and (D.51) to H ′′ simplifies it like

H ′′ = 1
2 · 123 ε

µνρσεijklmno
(
4F̃µνρi∂σAjklAmno − 9F̃µνijF̃ρσklAmno+

+ 9F̃µνijGq
ρσAklqAmno+

− 18Gp
µνB

q
ρ ∂σAijpAklqAmno+

+ 18B p
µ B

q
ν ∂ρAijp∂σAklqAmno+

+ 18B p
µ B

q
ν ∂ρAijpAklq∂σAmno

)
=

= 1
2 · 123 ε

µνρσεijklmno
(
4F̃µνρi∂σAjklAmno − 9F̃µνijF̃ρσklAmno+

+ 9F̃µνijGq
ρσAklqAmno+

− 9Gp
µνB

q
ρ ∂σ(AijpAklq)Amno

)
.

(D.52)
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The second equals sign of the above equation is reached by integrating the term
with ∂σAmno by parts. This leaves a term including Gp

µνB
q
ρ which is symmetric in p

and q. All explicit dependence on the B-fields in the Lagrangian must either cancel,
or be absorbed in a field strength. This is done by using the relation

∂σ(AijpAklq)Amno = 2AijpAklq∂σAmno, (D.53)

which can be derived by expanding A[ij|p|Aklq∂σAmno] = 0 whilst demanding sym-
metry between p and q

Aij(p|Akl|q)∂σAmno = −2
3Ai(pq)Ajkl∂σAmno + Aij(p|∂σAkl|q)Amno =

= 1
2∂σ(AijpAklq)Amno.

(D.54)

The term with explicit B-dependence can then be integrated by parts

Gp
µνB

q
ρ ∂σ(AijpAklq)Amno = 2Gp

µνB
q
ρ AijpAklq∂σAmno =

= Gp
µνG

q
ρσAijpAklqAmno+

− 2Gp
µνB

q
ρ ∂σ(AijpAklq)Amno,

(D.55)

by using (D.53). This implies that the B q
ρ is absorbed into a field strength via

3Gp
µνB

q
ρ ∂σ(AijpAklq)Amno = Gp

µνG
q
ρσAijpAklqAmno. (D.56)

The Weyl-invariant topological term H ′′ = Ĥ ′′ is thus found as

Ĥ ′′ = 1
2 · 123 ε

µνρσεijklmno
(
4F̃µνρi∂σAjklAmno − 9F̃µνijF̃ρσklAmno+

+ 9F̃µνijGq
ρσAklqAmno − 3Gp

µνG
q
ρσAijpAklqAmno

)
.

(D.57)

D.1.5 Duality transformation

The field strengths F̃µνij and F̃µνρi can be set as the independent variables of the
Lagrangian instead of the corresponding 3-form fields. The Bianchi identities then
have to be incorporated via constraints with Lagrange multipliers φi and B ij

µ =
−B ji

µ . The terms H ′′′ and H ′′′′ given by

H ′′′ = 1
12φ

iεµνρσ∂µ(F̃νρσi − 3Gp
νρA

′
σip) =

= 1
12ε

µνρσ∂σφ
iF̃νρσi − 1

8φ
iεµνρσGp

ρσF̃µνip,
(D.58)

and

H ′′′′ = 1
4B

ij
σ ε

µνρσ∂ρ(F̃µνij −Gp
µνAijp) =

= −1
8ε

µνρσGij
ρσF̃µνij − 1

4ε
µνρσBij

σ G
p
µν∂ρAijp,

(D.59)
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thus have to be added to the Lagrangian. Here, some of the terms have been inte-
grated by parts, and the field strength of the Lagrange multiplier Bij

µ is defined as
Gij
µν = 2∂[µB

ij
µ] . Finding the equations of motion for the field strengths F̃µνij and

F̃µνρi and inserting them back into the Lagrangian will provide the dual transfor-
mation of the Lagrangian.

D.1.5.1 The F̃µνρi-terms of the Lagrangian

The part of the Lagrangian with all of the terms containing F̃µνρi is

K1 = − 1
24e∆F̃µνρiF̃

µνρi + 2
(12)3 ε

µνρσεijklmnoF̃µνρi∂σAjklAmno+

+ 1
12ε

µνρσ∂σφ
iF̃µνρi =

= − 1
24e∆F̃µνρiF̃

µνρi + 1
12ε

µνρσ
(
∂σφ

i + 1
6

√
∆ ∗ Aijkl∂σAjkl

)
F̃µνρi,

(D.60)

where

∗Aijkl = 1
12

√
∆
εijklmnoAmno. (D.61)

Varying with respect to δF̃µνρi, the equations of motion are found as

− 1
12e∆F̃

µνρi + 1
12ε

µνρσ
(
∂σφ

i + 1
6

√
∆ ∗ Aijkl∂σAjkl

)
= 0. (D.62)

In other words

F̃
µνρi = 1

∆ϵ
µνρσ(∂σφi + 1

6

√
∆ ∗ Aijkl∂σAjkl),

F̃µνρi = 1
∆giqϵµνρλ(∂

λφq + 1
6

√
∆ ∗ Aqrst∂λArst).

(D.63)

Inserting these expressions of F̃ back in the Lagrangian returns

K1 = −1
4
e

∆giqg
µν
(
∂µφ

i + 1
6

√
∆ ∗ Aijkl∂µAjkl

)
×

×
(
∂νφ

q + 1
6

√
∆ ∗ Aqrst∂νArst

)
.

(D.64)

The duality transormation has revealed that the 3-form fields A′
µνi describe scalars.
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D.1.5.2 The F̃µνij-terms of the Lagrangian

The part of the Lagrangian containing F̃µνij is

K2 = − 1
16e∆

1/2F̃µνijF̃
µνij − 1

32 · 12ε
µνρσεijklmnoF̃µνijF̃ρσklAmno+

+ 1
32 · 12ε

µνρσεijklmnoF̃µνijG
q
ρσAklqAmno − 1

8φ
iεµνρσGp

ρσF̃µνip+

− 1
8ε

µνρσGij
ρσF̃µνij =

= − 1
16e

√
∆
(
F̃µνijF̃

µνij + 1
2ϵ

µνρσ ∗ AijklF̃µνijF̃ρσkl
)

+

− 1
8e ϵ

µνρσ
(
Gij
ρσ − 1

4
√

∆ ∗ AijklAklqGq
ρσ+

+ 1
2
[
φiGj

ρσ − φjGi
ρσ

] )
F̃µνij.

(D.65)

Note that the spacetime indices are either contracted by two metrics gµρgνσ, as is the
case for F 2, or by 1

2ϵ
µνρσ. Since (gµτgνλ)(gτρgλσ) = δµρ δ

ν
σ and (1

2ϵ
µντλ)(1

2ϵτλρσ) = −δµνρσ ,
it is possible to omit the spacetime indices by making the replacements gµρgνσ → 1
and 1

2ϵ
µνρσ → i, where i2 = −1. In this notation K2 reads

K2 = − 1
16e

√
∆
(
F̃ijF̃

ij + i ∗ AijklF̃ijF̃kl
)

+

− 1
4ie

(
Gij − 1

4
√

∆ ∗ AijklAklqGq + 1
2
[
φiGj − φjGi

])
F̃ij =

= − 1
16e

√
∆(M−1)ij,klF̃ijF̃kl+

− 1
4ie

(
Gij − 1

4
√

∆ ∗ AijklAklqGq + 1
2
[
φiGj − φjGi

])
F̃ij,

(D.66)

where the matrix (M−1)ij,kl is given by

Mij,kl =
(
gij,kl − i ∗ Aijkl

)−1
, (D.67)

where gij,kl = 1
2(gikgjl − gilgjk). Varying with respect to δF̃ij yield the equations of

motion as

(M−1)ij,klF̃kl = − 2i√
∆

(
Gij − 1

4
√

∆ ∗ AijklAklqGq + 1
2[φiGj − φjGi]

)
, (D.68)

which can also be written as

F̃ij = − 2i√
∆

Mij,kl

(
Gkl − 1

4
√

∆ ∗ AklmnAmnpGp + 1
2[φkGl − φlGk]

)
. (D.69)

Inserting the equations of motion back into the Lagrangian returns

K2 = −1
4

e√
∆

Mij,pq

(
Gij − 1

2
√

∆ ∗ AijklAklqGq + 1
2[φiGj − φjGi]

)
×

×
(
Gpq − 1

2
√

∆ ∗ ApqrsArstGt + 1
2[φpGq − φqGp]

)
.

(D.70)
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D.1.6 The reduced Lagrangian
To summarise the results thus far, the Lagrangian reduced to 4 dimensions is

L = 1
2eR + LS + LV , (D.71)

having dropped the hat on the Weyl-transformed Lagrangian L̂ and the 4 on the
4-dimensional Ricci scalar R4. The terms of L describing the scalars are

LS = 1
8e ∂µgmn∂

µgmn − 1
16e [∂µ log ∆]2 − 1

24eg
ilgjmgkn∂µAijk∂

µAlmn+

− 1
4
e

∆giqg
µν
(
∂µφ

i + 1
6

√
∆ ∗ Aijkl∂µAjkl

)
×

×
(
∂νφ

q + 1
6

√
∆ ∗ Aqrst∂νArst

)
,

(D.72)

where ∆ = det(gmn). There are 70 real scalar degrees of freedom in total. The
internal metric gmn contains 28, the Lagrange multipliers φi contain 7 and the 3-
form remnant Aijk contains 35. Furthermore, the Aijk are pseudoscalars so that
70 = 35 scalars + 35 pseudoscalars. The 28 vector degrees of freedom are mostly
coupled via the scalars in

LV = −1
8e

√
∆(Ga

αβ)2 − 1
96ε

µνρσ ∗ AijklAijpAklqGp
µνG

q
ρσ + 1

8ε
µνρσGij

µνG
k
ρσAijk+

− 1
4

e√
∆

Mij,pq

(
Gij − 1

4
√

∆ ∗ AijklAklqGq + 1
2
[
φiGj − φjGi

])
×

×
(
Gpq − 1

4
√

∆ ∗ ApqrsArstGt + 1
2 [φpGq − φqGp]

)
,

(D.73)

where 7 are contained in the gauge fields Gi
µν originating from the off-diagonal part

of the elfbein e A
M . The other 21 are from the Lagrange multipliers Gij

µν , where the
ij-indices are antisymmetric.

D.2 Restoring symmetry
The Lagrangian in (D.71) contains hidden symmetries. For example, since there are
28 vectors, it is tempting to extend the 7-dimensional indices i, j, k,... = 1,..., 7
to 8-dimensional ones, i′, j′, k′ = 1,..., 8. Then 1

2n(n − 1) = 28 for n = 8. The
8-dimensional indices are also useful for dealing with the scalars.

D.2.1 The 35 true scalars
Omitting the pseudoscalars Aijk, the 35 true scalars are described by the Lagrangian

L+
S = 1

8e ∂µgmn∂
µgmn − 1

4
e

∆gij∂µφ
i∂µφj − 1

16e
∂µ∆
∆

∂µ∆
∆ . (D.74)
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By using the 8-dimensional indices i′, j′,..., it can be written in the more compact
form

LS
+ = 1

8e ∂µS
i′j′
∂µSi′j′ , (D.75)

where the 8 × 8 matrix Si′j′ and its inverse are given by

Si
′j′ = ∆−3/4

(
∆gij + φiφj −φi

−φj 1

)
, Si′j′ = −∆−1/4

(
gij φi
φj ∆ + φ2

)
. (D.76)

To show that (D.74) and (D.75) are equal, gij∂µgij = ∂µ∆/∆ is a useful relation. The
matrix Si′j′ is an elements of SL(8, R) since detSi′j′ = 1 follows from det(gmn) = ∆.
Then L+

S is globally invariant under SL(8, R) and its subgroup SO(8). The 28 scalars
gmn were part of the coset space GL(7, R)/SO(7), as was discussed in section D.1.1.2.
The global GL(7, R) symmetry is however extended to SL(8, R) when combining
the true scalars.

D.2.2 The vectors, without the pseudoscalars
The terms of LV that do not couple to the pseudoscalars are given by

L+
V = −1

8e
√

∆Gi
µνG

µνjgij+

− 1
4

e√
∆

MR
ij,pq

(
Gij
µν + 1

2φ
iGj

µν − 1
2φ

jGi
µν

)
×

×
(
Gµνpq + 1

2φ
pGµνq − 1

2φ
qGµνp

)
,

(D.77)

where
MR

ij,pq = 1
2 (gipgjq − giqgjp) . (D.78)

The vector field strengths can be combined to a common form Gi′j′
µν where i′ = (i, 8).

This is done with a rescaling

Gi,8
µν = −1

2G
i
µν , G8,i

µν = 1
2G

i
µν . (D.79)

The terms in L+
V can then be collected like

L+
V = −1

4e
1
2 (Si′p′Sj′q′ − Si′q′Sj′p′)Gi′j′

µν G
µνp′q′

. (D.80)

Again, global SL(8, R) invariance is discovered, which suggests that the total La-
grangian L might also possess this symmetry.

D.2.3 Local SO(8) gauge invariance
The 28 scalars gmn were concluded to live in the coset space GL(7, R)/SO(7) in
section (D.1.1.2). The reason was that the equation

gmne a
m e b

n = δab, (D.81)
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does not uniquely define the seibenbeins e a
m , which are element of GL(7, R). The

flat metric is invariant under local SO(7) transformations, meaning that (D.81) only
defines the class of seibenbeins {e a

m Λ b
a }, where Λ b

a is an arbitrary SO(7) rota-
tion. The physical scalar fields of gmn can thus equivalently be described using the
class {e a

m Λ b
a }, which is valued in the coset space GL(7, R)/SO(7). The only com-

pact generators of gl(7, R) are those that span so(7). This is essential, since the
Cartan-Killing metric becomes positive definite when there are only non-compact
generators. As the global GL(7, R) symmetry is extended to SL(8, R), the local
SO(7) symmetry group should also grow to SO(8), which is the maximal compact
subgroup of SL(8, R). This indeed happens, and is shown in [11]. By also noting
the global E7(+7) invariance of the field equations, the bosonic N = 8 supergravity
Lagrangian can be rewritten to the form given in section 2.3.2.
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E
Hopf fibration of S3

This appendix is dedicated to the Hopf fibration of S3, which describes the 3-sphere
as a fiber bundle of S1 over S2. The Hopf fibration is of interest since it features a
twist of the S1 when going around the equator of the S2. This is a global property
that is similar to the monodromy of the S-fold described in section 3.2.3. First
off, the 2-sphere is treated in E.1, specifically the metric and the stereographic
projection. The transition function defined via the stereographic projection is of
particular use when the Hopf fibration is treated in E.2

E.1 The 2-sphere S2

E.1.1 The metric
The metric on R3 is given by the line element

ds2 = δijdx
idxj = dx2 + dy2 + dz2. (E.1)

The S2-metric can be found by embedding a 2-sphere in R3. This is done via the
S2-constraint in R3

S2 : x2 + y2 + z2 = R2. (E.2)

By using polar coordinates in the xy-plane, x = r cosφ and y = r sinφ so that
x2 + y2 = r2, the third coordinate is determined via the S2-constraint as z =
±

√
R2 − r2, where dz = ∓rdr/

√
R2 − r2. The R3 line element can now be rewritten

in terms of r and φ

ds2 = (dr2 + r2dφ2) + r2

R2 − r2dr
2 = R2

R2 − r2dr
2 + r2dφ2. (E.3)

By setting r = R sin θ where dr = R cos θ dθ, the line element takes the alternative
form

ds2 = R2dθ2 +R2 sin2 θdφ2, (E.4)

which describes the geometry of S2 with the radius R.

E.1.2 Stereographic projection
There is a useful mapping from the 2-sphere to the flat equatorial plane called the
stereographic projection. Consider again the 2-dimensional sphere S2 with radius
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E. Hopf fibration of S3

R. The north pole N and the south pole S of the 2-sphere are defined by

Ai = Aiẑ = (−1)iRẑ, i = 1, 2, =⇒ S = A1 = −Rẑ, N = A2 = Rẑ. (E.5)

To project a point P on S2 to a point in the xy-plane, a line passing through P
and either N or S is drawn. The intersection of this line with the xy-plane is then
the projected point Q. As either N or S can be chosen, there are two projections,
denoted by Φi. However, if the line is drawn through N, then N itself is mapped
to infinity on the xy-plane, rather than a single point. The same is true for S if the
south pole is chosen. The stereographic projections are thus

Φi : S2 \ Ai → R2. (E.6)

The explicit projections are found by drawing the lines Li

Li = Ai + λi(P − Ai) = (λix, λiy, Ai + λi(z − Ai)) , (E.7)

where P = (x, y, z), and finding the intersections where z = 0. This is the case
when

Ai + λi(z − Ai) = 0, =⇒ λi = Ai
Ai − z

. (E.8)

The stereographic projection is thus given by

Φi : S2 \ Ai → R2 = (x, y, z) → (ξi, ηi) = Ai
Ai − z

(x, y), z ̸= Ai, (E.9)

where ξi and ηi are the coordinates of the projected plane. Similarly, the inverse
projections Φ−1

i : R2 → S2 \ Ai are found by drawing new lines between the flat
plane and the poles

Ki = Ai + λ′
i(Qi − Ai) = (λ′

iξi, λ
′
iηi, Ai − λ′

iAi) , (E.10)

where Qi = (ξi, ηi, 0). The intersection with S2 happens when

(λ′
iξ)2 + (λ′

iη)2 + A2
i (1 − λ′

i)2 = R2, =⇒
=⇒ λ′2

i (ξ2 + η2) +R2 +R2λ′2
i − 2λ′

iR
2 = R2,

=⇒ λ′
i = 2R2

ξ2 + η2 +R2 .

(E.11)

The inverse projection is found as

Φ−1
i = (ξi, ηi) → (x, y, z), (E.12)

where

(x, y, z) =
(

2R2ξi
ξ2
i + η2

i +R2 ,
2R2ηi

ξ2
i + η2

i +R2 , Ai

[
1 − 2R2

ξ2
i + η2

i +R2

])
. (E.13)

More generally, the stereographic projection is a map onto a 2-dimensional plane
from two different patches Ui on S2. Each patch contains only one pole, N ∈ U1
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and S ∈ U2, so that the projections are defined as Φi : Ui → R2. On the overlap
U1 ∩U2, both projections Φ1 and Φ2 are well-defined and it is possible to define the
transition function

Φ12 = Φ1 ◦ Φ−1
2 : R2 → R2 = (ξ2, η2) → (ξ1, η1), (E.14)

where
(ξ1, η1) =

(
ξ1[x(ξ2, η2), y(ξ2, η2), z(ξ2, η2)]
η1[x(ξ2, η2), y(ξ2, η2), z(ξ2, η2)]

)
, (E.15)

following (E.9) and (E.13). Evaluating (E.15) and defining the complex coordinates
z1 = ξ1 − iη1, z2 = ξ2 + iη2 allows Φ12 to be expressed as map from C to C where

z1 = R2

z2
. (E.16)

The points zi = 0 are not allowed since they map to either S or N, which are not
in the overlap U1 ∩ U2.

E.1.3 Metric from stereographic projection
Consider R2 parametrised by the Cartesian coordinates (p, q) ∈ R2. The inverse
stereographic projections Φ−1

i (p, q) = (x, y, zi) makes it is possible to move to Ui
on S2. Changing to polar coordinates on R2, so that p = ρ cosα and q = ρ sinα,
allows the patch Ui to be parametrised by

(x, y, zi) =
(

2R2ρ cosα
ρ2 +R2 ,

2R2ρ sinα
ρ2 +R2 , Ai

[
1 − 2R2

ρ2 +R2

])
. (E.17)

Using this projection, the metric on Ui can be evaluated via ds2(Ui) = dx2+dy2+dz2
i .

Following

dx = −2R2 ρ

ρ2 +R2 sinα dα+ 2R2
(

1
ρ2 +R2 − 2ρ2

(ρ2 +R2)2

)
cosα dρ =

= −2R2 ρ

ρ2 +R2 sinα dα+ 2R2 R2 − ρ2

(ρ2 +R2)2 cosα dρ,

dy = 2R2 ρ

ρ2 +R2 cosα dα+ 2R2 R2 − ρ2

(ρ2 +R2)2 sinα dρ,

dzi = 2R2Ai
2ρ

(ρ2 +R2)2dρ,

(E.18)

the metric on Ui becomes

ds2 =
(

4R4 (R2 − ρ2)2

(ρ2 +R2)4 + 4R4A2
i

4ρ2

(ρ2 +R2)4

)
dρ2 + 4R4 ρ2

(ρ2 +R2)2dα
2 =

= 4R4

(ρ2 +R2)4

(
R4 + ρ4 − 2R2ρ2 + 4R2ρ2

)
dρ2 + 4R4

(ρ2 +R2)2ρ
2dα2 =

= 4R4

(ρ2 +R2)2

(
dρ2 + ρ2dα2

)
.

(E.19)
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Since A2
i = 1, both Φ−1

i lead to the same metric which, by returning to Cartesian
coordinates, can be written as

ds2(S2) = 4R4

(p2 + q2 +R2)2

(
dp2 + dq2

)
, (E.20)

which is the metric on S2. The R2 spaces that are associated with each patch are
however different, and their metrics ds2(Ui) should be written using the proper ξi
and ηi coordinates. By again using the complex coordinates z1 = ξ1 − iη1 and
z2 = ξ2 + iη2, the metrics on Ui take form

ds2(Ui) = 4R4dzidz̄i

(R2 + |zi|2)2
. (E.21)

By the rescalings zi → zi/2 and R → R/2 it can be seen that ds2(Ui) is equivalent
to the Fubini-Study metric

ds2 = dzdz̄

(1 + |z|2)2
. (E.22)

On the overlap U1 ∩ U2, the transition function Φ12, which exchanges coordinates
via z1 = R2/z2, does not alter the form of the metric

ds2(U1) = 4R4dz1dz̄1

(R2 + |z1|2)2
= 4R4dz2dz̄2

(R2 + |z2|2)2
= ds2(U2). (E.23)

E.1.4 The scalar curvature of S2

In this section, the scalar curvature of S2 is calculated. The procedure is analogous
to appendix C, where it is described in more detail. The main difference here is that
the flat metric σab on S2 is taken to be off-diagonal.

The S2 line element in complex coordinates is given by

ds2(S2) = 4R4dwdw̄

(R2 + |w|2)2
. (E.24)

By defining dwi = (dw, dw̄), the line element can be written using the S2 metric gij

ds2(S2) = gijdw
idwj = eaebσab = 2e1e2, (E.25)

where the flat metric σab is defined as

σab = e i
a e

j
b gij =

(
0 1
1 0

)
. (E.26)

The zweibein 1-forms are thus

e1 =
√

2R2

(R2 + |w|2)
dw, e2 =

√
2R2

(R2 + |w|2)
dw̄. (E.27)
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Their exterior derivatives are calculated as

de1 = −
√

2R2

(1 + ww̄)2w dw̄ ∧ dw = w√
2R2

e1 ∧ e2,

de2 = −
√

2R2

(1 + ww̄)2 w̄ dw ∧ dw̄ = − w̄√
2R2

e1 ∧ e2,

(E.28)

so that the equation dea = σacωibce
i ∧ ec can be evaluated for a = 1, 2

a = 1 : w√
2R2

e1 ∧ e2 = e1 ∧ e22ω[12]2,

a = 2 : − w̄√
2R2

e1 ∧ e2 = e1 ∧ e22ω[12]1.
(E.29)

The non-zero ωabc are thus

ω121 = − w̄√
2R2

, ω212 = − w√
2R2

, (E.30)

which leaves the connection 1-form as

ω12 = ω112e
1 + ω212e

2 = w̄√
2R2

e1 − w√
2R2

e2. (E.31)

The next step is to evaluate Θ12 = dω12 + ω1a ∧ ωa2. The second term vanishes,
ω1a ∧ ωa2 = 0, which leaves

Θ12 = dω12 = 1√
2R2

dw̄ ∧ e1 + w̄√
2R2

de1 − 1√
2R2

dw ∧ e2 − w√
2R2

de2 =

= −R2 + |w|2

2R4 e1 ∧ e2 + |w|2

2R4 e
1 ∧ e2+

− R2 + |w|2

2R4 e1 ∧ e2 + |w|2

2R4 e
1 ∧ e2 =

= − 1
R2 e

1 ∧ e2.

(E.32)

The only non-vanishing Riemann tensor component is

R1212 = − 1
R2 , (E.33)

and the Ricci tensor, calculated via Rbd = σacRabcd

R11 = σacRa1c1 = R1121 +R2111 = 0,

R12 = σacRa1c2 = R1122 +R2112 = 1
R2 ,

R22 = σacRa2c2 = R1222 +R2212 = 0,

(E.34)

becomes
Rab = 1

R2σab. (E.35)

The Ricci scalar is
R = σabRab = 2

R2 . (E.36)
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E.2 Hopf fibration of S3

As a starting point, consider the 1-dimensional complex space

CP 1 =
{
(z1, z2) ∈ C2 \ {0}

∣∣∣ (z1, z2) ≡ λ(z′
1, z

′
2), λ ∈ C \ {0}

}
. (E.37)

CP 1 is the space of all straight lines that intersect the origin in C2. The lines are
thus characterised only by their slope, which can be defined as either z1/z2 or z2/z1.
The two choices work equally well except for the two lines given by z1 = 0 and
z2 = 0. Consequently, there are two patches on CP 1 with different well-defined
coordinates

U1 : z = z1

z2
, z2 ̸= 0,

U2 : w = z2

z1
, z1 ̸= 0,

(E.38)

and on the overlap U1 ∩ U2, the coordinates z and w are related via

z = 1
w
. (E.39)

The transition function between U1 and U2 is the same as the one in (E.16) for the
unit 2-sphere. This implies that CP 1 and S2 are actually the same.

The metric on S3 can be inbedded into C2, similarly to how S2 was inbedded in R3

in appendix E.1.1. The S3 constraint in C2 is

S3 : z1z̄1 + z2z̄2 = R2. (E.40)

This condition is invariant under U(1) transformations zi → eiφzi, which alludes to
a S1 ≡U(1) structure of S3. The S1 structure will be shown more explicitly later.
Now, by using the z coordinate from (E.38), the constraint can be written as

R2 =
(
1 + |z|2

)
|z2|2, (E.41)

however, this is only valid on U1 where z2 ̸= 0. The line element of S3 is thus found
via the flat metric on C2

ds2(S3, U1) = dz1dz̄1 + dz2dz̄2 = (z̄dz̄2 + z̄2dz̄) + dz2dz̄2 =
=
(
1 + |z|2

)
dz2dz̄2 + zz̄2dz2dz̄ + z2z̄dzdz̄2 + |z2|2dzdz̄ =

= R2
(

|dz2|2

|z2|2
+ |dz|2

1 + |z|2

)
+ (z2dz̄2z̄dz + c.c.) ,

(E.42)

where dz1 = zdz2 + z2dz was used. An equivalent formulation is given by

ds2(S3, U1) =
∣∣∣∣∣Rdz2

z2
+ |z2|2

R
z̄dz

∣∣∣∣∣
2

+R2
(

|dz|2

1 + |z|2
− |zdz|2

(1 + |z|2)2

)
=

=
∣∣∣∣∣Rdz2

z2
+ |z2|2

R
z̄dz

∣∣∣∣∣
2

+R2 dzdz̄

(1 + |z|2)2
,

(E.43)
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where the last term corresponds to the Fubini-Study metric on the unit 2-sphere

ds2(S2) = dzdz̄

(1 + |z|2)2
, (E.44)

which makes it clear that there is a connection between S3 and S2. The coordi-
nate z which parametrises the 2-sphere is however also present in the first term of
ds2(S3, Ui), which makes the relation non-trivial. To further investigate this term, z2
can be written in polar coordinates z2 = seiψ. The S3 contraint (1 + |z|2)|z2|2 = R2

then implies that

s2 = R2

1 + |z|2
, =⇒ ds

s
= −1

2
zdz̄ + z̄dz

1 + |z|2
. (E.45)

Then
dz2

z2
= 1
seiψ

(
eiψds+ idψ seiψ

)
= ds

s
+ idψ, (E.46)

which can be used to rewrite the inside of the first square as

R
dz2

z2
+ |z2|2

R
z̄dz = R

ds

s
+ iRdψ + s2

R
z̄dz =

= −R

2
zdz̄ + z̄dz

1 + |z|2
+ iRdψ +R

z̄dz

1 + |z|2
=

= iR

(
dψ − i

2
z̄dz − zdz̄

1 + |z|2

)
.

(E.47)

The metric on S3 it thus

ds2(S3, U1) = R2
∣∣∣∣∣dψ − i

2
z̄dz − zdz̄

1 + |z|2

∣∣∣∣∣
2

+R2 dzdz̄

(1 + |z|2)2
. (E.48)

Note that the S3 constraint also can be written as R2 =
(
1 + |w|2

)
|z1|2 on U2. This

implies that the metrics ds2(S3, U1) and ds2(S3, U2) will take the same form since
the calculation is completely analogous. The metric ds2(S3, U2) is therefore just

ds2(S3, U2) = R2
∣∣∣∣∣dψ − i

2
w̄dw − wdw̄

1 + |w|2

∣∣∣∣∣
2

+R2 dwdw̄

(1 + |w|2)2
. (E.49)

Now, by expressing the S2 metric in terms of the angular coordinates (θ, ϕ), ds2(S3, U1)
can be rewritten as

ds2(S3, U1) = R2
(
dψ + 1

2(1 − cos θ)dϕ
)2

+R2
(
dθ2 + sin2 θdϕ2

)
. (E.50)

The second term is clearly the S2 metric obtained in (E.4) with radius R. As for
the first term, it contains the coordinate ψ which parametrises the fiber S1. The
3-sphere thus contains both S1 and S2, and can be described as the fiber bundle
of S1 over S2. This implies that S3 = S1 × S2 locally, which is not globally true
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since there is a 1-form gauge field for a monopole on U1 that also enters the metric
(E.50). The gauge field is

A1(U1) = 1
2(1 − cos θ)dϕ = i

2
zdz̄ − z̄dz

1 + |z|2
−−→
z→0

0. (E.51)

It is well-defined as z → 0, which is the preferred coordinate on U1, the patch that
corresponds to the upper half-sphere of S2 which contains the north pole N. Note
however that on the overlap U1 ∩ U2, the transition function z = 1/w implies that

A1(U2) = − i

2

dw̄
w

− dw
w̄

1 + |w|2
−−−→
w→0

∞. (E.52)

The monopole field that is well-defined on the lower half-sphere U2 instead takes the
form

A2(U2) = 1
2(−1 − cos θ)dϕ = i

2
wdw̄ − w̄dw

1 + |w|2
−−−→
w→0

0. (E.53)

On U1∩U2, A1 and A2 are connected via a gauge transformation A1−A2 = dϕ, which
means that the field strengths still are equal everywhere on S2, F1 − F2 = ddϕ = 0.

The field strength F on S2 is thus not exact, meaning that it cannot be written as
F = dA since there is no field A that is defined globally on S2. This has consequences
for a topoloical number on S2, namely the first Chern number C1. It is calculated
as

C1 = − 1
2π

∫
S2
F = − 1

2π

(∫
U1
dA1 +

∫
U2
dA2

)
=

= − 1
2π

∫
S1

(A1 − A2) = − 1
2π

∫
S1
dϕ = −1,

(E.54)

where the patches U1 and U2 are chosen so that their boundaries are the equator
of S2. The implication of C1 = −1 is that traversing around the equator on the S2

also corresponds to circuiting the S1 once. This is the global property of the Hopf
fibration that is not encoded in the local expression S3 = S1 × S2. A more simple
example of a similar phenomenon is the Möbius strip. Locally, the Möbius strip is a
cylinder S1 ×R. However, if one starts on the inside of the Möbius strip, encircling
the S1 once leads to the outside of the strip. A Möbius strip is thus not S1 × R
globally.

This kind of global feature is also present in the S-fold vacuum AdS4 × S1
η × S5,

which is described in section 3.2.3. In particular, there is a non-trivial S-duality
monodromy when encircling S1

η .
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F
Type IIB field equations

This appendix is dedicated to deriving the type IIB field equations that are given
in section 3.1.1. The action for type IIB string theory is

S = 1
2κ2

∫
d10x e

(
R − 1

12HT
µνρMHµνρ + 1

4 tr{∂µM∂µM−1}
)

+

− 1
8κ2

(∫
d10x e

∣∣∣F̃5

∣∣∣2 +
∫
εijC4 ∧H

(i)
3 ∧H

(j)
3

)
,

(F.1)

where the axion-dilaton matrix and its inverse are given by

M = eϕ
(

|λ|2 −χ
−χ 1

)
, M−1 = eϕ

(
1 χ

χ |λ|2
)
, (F.2)

and λ = χ+ ie−ϕ [4]. The equations of motion are found by varying the action with
respect to the different fields and then applying the self-duality condition F̃5 = ⋆F̃5
[21]. Some terms of the action can be written out more explicitly using

HT
µνρMHµνρ = eϕ(|λ|2HµνρH

µνρ − 2χFµνρHµνρ + FµνρF
µνρ) (F.3)

1
4 tr{∂µM∂µM−1} = −1

2(∂µϕ∂µϕ+ e2ϕ∂µχ∂
µχ), (F.4)

εijC4 ∧H
(i)
3 ∧H

(j)
3 = 2C4 ∧H3 ∧ F3. (F.5)

The self-dual field strength is again given by

F̃µνρσξ = Fµνρσξ − 5CµνHρσξ + 5BµνFρσξ, (F.6)

and its norm is
∣∣∣F̃5

∣∣∣2 = 1
5!g

µ1ν1 ...gµ5ν5F̃µ1...µ5F̃ν1...ν5 .

F.1 Varying with respect to ϕ

Starting off with the dilaton ϕ, there are 2 terms that contribute:

δ
(1

4e tr{∂µM∂µM−1}
)

= −1
2δ
(
e [∂µϕ∂µϕ+ e2ϕ∂µχ∂

µχ]
)

=

= −1
2
(
2e ∂µϕ∂µδϕ+ 2e e2ϕ∂µχ∂

µχδϕ
)

=

=
(
∂µ(e∂µϕ) − e e2ϕ∂µχ∂

µχ
)
δϕ,

(F.7)
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and

δ
(

− 1
12e H

T
µνρMHµνρ

)
= − 1

12e δ
(
eϕ
[
|λ|2HµνρH

µνρ − 2χFµνρHµνρ+

+ FµνρF
µνρ
])

=

= − 1
12e δ

([
eϕχ2 + e−ϕ

]
HµνρH

µνρ+

− 2eϕχFµνρHµνρ + eϕFµνρF
µνρ
)

=

= 1
12e

([
e−ϕ − eϕχ2

]
HµνρH

µνρ+

+ 2eϕχFµνρHµνρ − eϕFµνρF
µνρ
)
δϕ.

(F.8)

The field equation for ϕ is thus given by

0 = ∂µ(e∂µϕ) − e e2ϕ∂µχ∂
µχ+

+ 1
12e

([
e−ϕ − eϕχ2

]
HµνρH

µνρ + 2eϕχFµνρHµνρ − eϕFµνρF
µνρ
)
.

(F.9)

The first term can alternatively be written as

∂µ(e∂µϕ) = ∇µ(e−ϕ∂µe
ϕ), (F.10)

so that the equation of motion for ϕ reads

∇µ(e−ϕ∂µe
ϕ) − e2ϕ∂µχ∂

µχ = 1
12
(
eϕFµνρF

µνρ − 2eϕχFµνρHµνρ+

+ [eϕχ2 − e−ϕ]HµνρH
µνρ
)
.

(F.11)

F.2 Varying with respect to χ

The χ-dependent terms of the action are the same as the ones that were considered
when varying with respect to ϕ. Varying with respect to χ is however slightly easier
since

δ
(1

4e tr{∂µM∂µM−1}
)

= −1
2δ
(
e [∂µϕ∂µϕ+ e2ϕ∂µχ∂

µχ]
)

=

= −1
22e e2ϕ∂µχ∂

µδχ =

= ∂µ
(
e e2ϕ∂µχ

)
δχ,

(F.12)

and

δ
(

− 1
12e H

T
µνρMHµνρ

)
= − 1

12e δ
(
eϕ
[
|λ|2HµνρH

µνρ − 2χFµνρHµνρ+

+ FµνρF
µνρ
])

=

= − 1
12e e

ϕδ
(
χ2HµνρH

µνρ − 2χFµνρHµνρ
)

=

= −1
6e e

ϕ (χHµνρH
µνρ − FµνρH

µνρ) δχ.

(F.13)
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The field equation for χ becomes

∂µ
(
e e2ϕ∂µχ

)
− 1

6e e
ϕ (χHµνρH

µνρ − FµνρH
µνρ) = 0, (F.14)

which can be written as

∇µ
(
e2ϕ∂µχ

)
= 1

6e
ϕ (χHµνρH

µνρ − FµνρH
µνρ) . (F.15)

F.3 Varying with respect to C4

Varying with respect to C4 involves the
∣∣∣F̃5

∣∣∣2-term, which becomes

δ(e
∣∣∣F̃5

∣∣∣2) = 1
5!δ(e F̃µνρσξF̃

µνρσξ) = 2
5!e F̃

µνρσξδF̃µνρσξ =

= 2
5!5e F̃

µνρσξ∂µδCνρσξ = − 1
2 · 3!∂µ

[
e F̃ µνρσξ

]
δCνρσξ =

= − 1
2 · 3!∂ξ

[
e F̃ µνρσξ

]
δCµνρσ,

(F.16)

as well as the topological term

δ (2 C4 ∧H3 ∧ F3) = 2 δC4 ∧H3 ∧ F3. (F.17)

Written in terms of component the variation of the topological term becomes

2 δC4 ∧H3 ∧ F3 = 2
3! · 3! · 4!d

10x εµνρσµ1...µ6Hµ1µ2µ3Fµ4µ5µ6δCµνρσ, (F.18)

so that the field equations for C4 read

− 1
2 · 3!∂ξ

[
e F̃ µνρσξ

]
+ 2

3! · 3! · 4!ε
µνρσµ1...µ6Hµ1µ2µ3Fµ4µ5µ6 = 0, (F.19)

which simplifies to

∇ξ

[
F̃ µνρσξ

]
= 1

(3!)2 ϵ
µνρσµ1...µ6Hµ1µ2µ3Fµ4µ5µ6 . (F.20)

F.4 Varying with respect to B2

The 2-form B2 is involved in 3 terms of the action, the first being

δ
(

− 1
12e H

T
µνρMHµνρ

)
= − 1

12e δ
(
eϕ
[
|λ|2HµνρH

µνρ − 2χFµνρHµνρ+

+ FµνρF
µνρ
])

=

= − 1
12e e

ϕ
(
6|λ|2Hµνρ∂µδBνρ − 6χF µνρ∂µδBνρ

)
=

= 1
2
(
∂µ
[
e eϕ|λ|2Hµνρ

]
− ∂µ

[
e eϕχF µνρ

])
δBνρ =

= 1
2
(
∂ρ
[
e eϕ|λ|2Hµνρ

]
− ∂ρ

[
e eϕχF µνρ

])
δBµν ,

(F.21)
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the second is

δ(−1
4e

∣∣∣F̃5

∣∣∣2) = − 1
4 · 5!δ(e F̃µνρσξF̃

µνρσξ) = − 2
4 · 5!e F̃

µνρσξδF̃µνρσξ =

= − 2
4 · 5!e F̃

µνρσξ 5(−3Cµν∂ρδBσξ + δBµνFρσξ) =

= − 1
8 · 3!e F̃

µνρσξ(−3Cρσ∂ξδBµν + δBµνFρσξ) =

= − 1
8 · 3!(3∂ξ[e F̃

µνρσξ]Cρσ + e F̃ µνρσξFξρσ+

+ e F̃ µνρσξFρσξ)δBµν =

= (− 1
16∂ξ[e F̃

µνρσξ]Cρσ − 1
24e F̃

µνρσξFρσξ)δBµν ,

(F.22)

and the final is the topological term

δ
(

−1
2C4 ∧H3 ∧ F3

)
= −1

2C4 ∧ δH3 ∧ F3 = −1
2C4 ∧ dδB2 ∧ F3 =

= 1
2dC4 ∧ δB2 ∧ F3 = −1

2δB2 ∧ F3 ∧ F5,

(F.23)

which becomes

−1
2δB2 ∧ F5 ∧ F3 = −1

2
1

10!d
10x εµνµ1...µ8

10!
2! · 5! · 3!δBµνFµ1µ2µ3Fµ4...µ8 =

= − 1
4 · 5! · 3!d

10x εµνµ1...µ8Fµ1µ2µ3Fµ4...µ8δBµν ,

(F.24)

in component form. The field equations for B2 are thus

0 = 1
2
(
∂ρ
[
e eϕ|λ|2Hµνρ

]
− ∂ρ

[
e eϕχF µνρ

])
− 1

16∂ξ[e F̃
µνρσξ]Cρσ+

− 1
24e F̃

µνρσξFρσξ − 1
4 · 5! · 3!ε

µνµ1...µ8Fµ1µ2µ3Fµ4...µ8 .
(F.25)

By using the covariant derivative they instead read

∇ρ

[
eϕ|λ|2Hµνρ − eϕχF µνρ

]
= 1

8∇ξ

[
F̃ µνρσξ

]
Cρσ + 1

12 F̃
µνρσξFρσξ+

+ 1
2 · 5! · 3!ϵ

µνµ1...µ8Fµ1µ2µ3Fµ4...µ8 .
(F.26)
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The B2 equations of motion can however be simplified further by using the C4 field
equations on the ∇ξF̃

µνρσξ-term and then rearranging some indices

∇ρ

[
eϕ|λ|2Hµνρ − eϕχF µνρ

]
= 1

8∇ξ

[
F̃ µνρσξ

]
Cρσ + 1

12 F̃
µνρσξFρσξ+

+ 1
2 · 5! · 3!ϵ

µνµ1...µ8Fµ1µ2µ3Fµ4...µ8 =

= 1
8 · (3!)2 ϵ

µνρσµ1...µ6CρσHµ1µ2µ3Fµ4µ5µ6+

+ 1
12 · 5!ϵ

µνρσξµ1...µ5FρσξF̃µ1...µ5+

+ 1
12 · 5!ϵ

µνµ1...µ8Fµ1µ2µ3Fµ4...µ8 =

= − 1
12 · 4!ϵ

µνµ1...µ8Fµ1µ2µ3Cµ4µ5Hµ6µ7µ8+

+ 1
12 · 5!ϵ

µνµ1...µ8Fµ1µ2µ3F̃µ4...µ8+

+ 1
12 · 5!ϵ

µνµ1...µ8Fµ1µ2µ3Fµ4...µ8 =

= 1
12 · 5!ϵ

µνµ1...µ8Fµ1µ2µ3(−5Cµ4µ5Hµ6µ7µ8+

+ F̃µ4...µ8 + Fµ4...µ8).

(F.27)

Since ϵµνµ1...µ8Fµ1µ2µ3(5Bµ4µ5Fµ6µ7µ8) = 0 the right hand side can be written as

r.h.s. = 1
12 · 5!ϵ

µνµ1...µ8Fµ1µ2µ3(F̃µ4...µ8 + Fµ4...µ8+

− 5Cµ4µ5Hµ6µ7µ8 + 5Bµ4µ5Fµ6µ7µ8) =

= 1
12 · 5!ϵ

µνµ1...µ8Fµ1µ2µ3(2F̃µ4...µ8) = 1
6( 1

5!ϵ
µνµ1...µ8F̃µ4...µ8)Fµ1µ2µ3 =

= 1
6 F̃

µνρσξFρσξ.

(F.28)

The final expression for the B2 equations of motion is

∇ρ

[
eϕ|λ|2Hµνρ − eϕχF µνρ

]
= 1

3! F̃
µνρσξFρσξ. (F.29)
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F.5 Varying with respect to C2

The C2-dependent terms are the same as for B2. Under variation with respect to
C2 they become

δ
(

− 1
12e H

T
µνρMHµνρ

)
= − 1

12e δ
(
eϕ
[
|λ|2HµνρH

µνρ − 2χFµνρHµνρ+

+ FµνρF
µνρ
])

=

= − 1
12e e

ϕ (−6χHµνρ∂µδCνρ + 6F µνρ∂µδCνρ) =

= 1
2
(
−∂µ

[
e eϕχHµνρ

]
+ ∂µ

[
e eϕF µνρ

])
δCνρ =

= 1
2
(
−∂ρ

[
e eϕχHµνρ

]
+ ∂ρ

[
e eϕF µνρ

])
δCµν ,

(F.30)

and

δ(−1
4e

∣∣∣F̃5

∣∣∣2) = − 1
4 · 5!δ(e F̃µνρσξF̃

µνρσξ) = 2
4 · 5!e F̃

µνρσξδF̃µνρσξ =

= − 2
4 · 5!e F̃

µνρσξ 5(3Bµν∂ρδCσξ − δCµνHρσξ) =

= − 1
8 · 3!e F̃

µνρσξ(3Bρσ∂ξδCµν − δCµνHρσξ) =

= − 1
8 · 3!(−3∂ξ[e F̃ µνρσξ]Bρσ − e F̃ µνρσξHξρσ+

− e F̃ µνρσξHρσξ)δCµν =

= ( 1
16∂ξ[e F̃

µνρσξ]Bρσ + 1
24e F̃

µνρσξHρσξ)δCµν

(F.31)

and finally

δ
(

−1
2C4 ∧H3 ∧ F3

)
= −1

2C4 ∧H3 ∧ δF3 = −1
2C4 ∧H3 ∧ dδC2 =

= −1
2dC4 ∧H3 ∧ δC2 = 1

2δC2 ∧H3 ∧ F5,

(F.32)

where
1
2δC2 ∧H3 ∧ F5 = 1

4 · 5! · 3!d
10x εµνµ1...µ8Hµ1µ2µ3Fµ4...µ8δCµν . (F.33)

The field equations for C2 become

0 = 1
2
(
−∂ρ

[
e eϕχHµνρ

]
+ ∂ρ

[
e eϕF µνρ

])
+ 1

16∂ξ[e F̃
µνρσξ]Bρσ+

+ 1
24e F̃

µνρσξHρσξ + 1
4 · 5! · 3!ε

µνµ1...µ8Hµ1µ2µ3Fµ4...µ8 ,
(F.34)

or equivalently

∇ρ

[
eϕχHµνρ − eϕF µνρ

]
= 1

8∇ξ[F̃ µνρσξ]Bρσ + 1
12 F̃

µνρσξHρσξ+

+ 1
2 · 5! · 3!ϵ

µνµ1...µ8Hµ1µ2µ3Fµ4...µ8

. (F.35)
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Analogously to the B2 case, the C4 equations of motion can again be used to simplify
the right hand side

r.h.s. = 1
8∇ξ[F̃ µνρσξ]Bρσ + 1

12 F̃
µνρσξHρσξ+

+ 1
2 · 5! · 3!ϵ

µνµ1...µ8Hµ1µ2µ3Fµ4...µ8 =

= 1
8 · (3!)2 ϵ

µνµ1...µ8Bµ1µ2Hµ3µ4µ5Fµ6µ7µ8+

+ 1
12 · 5!ϵ

µνµ1...µ8Hµ1µ2µ3F̃µ4...µ8+

+ 1
12 · 5!ϵ

µνµ1...µ8Hµ1µ2µ3Fµ4...µ8 =

= 1
12 · 5!ϵ

µνµ1...µ8Hµ1µ2µ3(5Bµ4µ5Fµ6µ7µ8 + F̃µ4...µ8 + Fµ4...µ8) =

= 1
12 · 5!ϵ

µνµ1...µ8Hµ1µ2µ3(F̃µ4...µ8 + Fµ4...µ8+

− 5Cµ4µ5Hµ6µ7µ8 + 5Bµ4µ5Fµ6µ7µ8) =

= 1
6 F̃

µνρσξHρσξ,

(F.36)

which results in the C2 field equations taking the form

∇ρ

[
eϕχHµνρ − eϕF µνρ

]
= 1

3! F̃
µνρσξHρσξ. (F.37)

F.6 Varying with respect to gµν

Finally, Einstein’s equations for type IIB string theory are derived. Varying the
action with respect to gµν yields that

δ
(
e
[
R − 1

12H
T
µνρMHµνρ + 1

4 tr{∂µM∂µM−1} − 1
4
∣∣∣F̃5

∣∣∣2]) = 0. (F.38)

The first term is
δ(eR) = e(Rµν − 1

2Rgµν)δg
µν , (F.39)

the second term is

δ
(

− 1
12e H

T
µνρMHµνρ

)
= − 1

12
(
δe HT

µνρMHµνρ+

+ 3e HT
µρσMH ρσ

ν δgµν
)

=

= − 1
12e

(
− 1

2gµνH
T
ρσξMHρσξ+

+ 3HT
µρσMH ρσ

ν

)
δgµν ,

(F.40)
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the third term is

δ(1
4e tr{∂µM∂µM−1}) = 1

4
(
δe tr{∂µM∂µM−1}+

+ e tr{∂µM∂νM−1}δgµν
)

=

= 1
4e
(

− 1
2gµν tr{∂ρM∂ρM−1}+

+ tr{∂µM∂νM−1}
)
δgµν ,

(F.41)

and the fourth term is

δ(−1
4e

∣∣∣F̃5

∣∣∣2) = − 1
4 · 5!(δe F̃µνρσξF̃

µνρσξ + 5e F̃µρσξω F̃ ρσξω
ν δgµν) =

= − 1
4 · 5!e (−1

2gµνF̃µ1...µ5F̃
µ1...µ5 + 5F̃µρσξω F̃ ρσξω

ν )δgµν .
(F.42)

The field equations for gµν become

Rµν − 1
2Rgµν = 1

12

(
−1

2gµνH
T
ρσξMHρσξ + 3HT

µρσMH ρσ
ν

)
+

− 1
4

(
−1

2gµν tr{∂ρM∂ρM−1} + tr{∂µM∂νM−1}
)

+

+ 1
4 · 5!

(
−1

2gµνF̃µ1...µ5F̃
µ1...µ5 + 5F̃µρσξω F̃ ρσξω

ν

)
=

= 1
8

(
−1

3H
T
ρσξMHρσξ + tr{∂ρM∂ρM−1} −

∣∣∣F̃5

∣∣∣2) gµν+
+ 1

4

(
HT
µρσMH ρσ

ν − tr{∂µM∂νM−1} + 1
4! F̃µρσξω F̃

ρσξω
ν

)
,

(F.43)

which can be written as

Rµν − 1
2Rgµν = 1

8

(
tr{∂ρM∂ρM−1} − 1

3H
T
ρσξMHρσξ

)
gµν+

+ 1
4

(
HT
µρσMH ρσ

ν − tr{∂µM∂νM−1} + 1
4! F̃µρσξω F̃

ρσξω
ν

)
,

(F.44)

using the self-duality condition F̃5 = ⋆F̃5.
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G
The B2, C2 and C4 field strengths

This appendix focuses on calculating the field strengths of B2, C2 and C4, which are
needed when evaluating the equations of motion in appedix H and J. First off, the
VEVs of the field content are restated. In the background, the dilaton and axion
are

eϕ =
√

2e−2η 2 − cos(2α)√
7 − cos(4α)

= e−2η

√√√√2 − cos(2α)
2 + cos(2α) , χ = 0. (G.1)

The VEVs of the 2-form fields are given by

B2 = −2
√

2e−η cos3 α

2 + cos(2α)volΩ1 , C2 = −2
√

2eη sin3 α

2 − cos(2α)volΩ2 . (G.2)

The deformation parameters can be set as χi = 0, see section 3.2.4, so that the
volume forms of the 2-spheres read

volΩi
= sin θi dθi ∧ dφi. (G.3)

The 4-form VEV is

C4 = 3
2ω3 ∧ (dη + 2

3 sin(2α)dα) − 1
2f(α)dα ∧ (A1 ∧ volΩ2 + volΩ1 ∧ A2). (G.4)

G.1 2-form field strengths H3 and F3

To tackle the IIB equations of motion, the field strengths of the 2-forms are needed.
Starting with H3 = dB2

H3 = ∂η

(
−2

√
2e−η cos3 α

2 + cos(2α)

)
dη ∧ volΩ1+

+ ∂α

(
−2

√
2e−η cos3 α

2 + cos(2α)

)
dα ∧ volΩ1 .

(G.5)
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The derivative with respect to α is evaluated with some useful double angle identities

∂α

(
−2

√
2e−η cos3 α

2 + cos(2α)

)
= −2

√
2e−η

(
− 3 cos2 α sinα

2 + cos(2α) +

− cos3 α (−2 sin(2α))
(2 + cos(2α))2

)
=

= −
√

2e−η sin(2α) cosα
2 + cos(2α)

(
−3 + 4 cos2 α

2 + cos(2α)

)
=

= −
√

2e−η sin(2α) cosα
(2 + cos(2α))2 ×

×
(
−3(2 + cos(2α)) + 4 cos2 α

)
=

=
√

2e−η sin(2α) cosα 4 + cos(2α)
(2 + cos(2α))2 .

(G.6)

The field strength of the 2-form is then

H3 = 2
√

2e−η cos3 α

2 + cos(2α)dη ∧ volΩ1+

+
√

2e−η sin(2α) cosα 4 + cos(2α)
(2 + cos(2α))2dα ∧ volΩ1 .

(G.7)

The calculation of the other field strength F3 is analogous and yields that

F3 = −2
√

2eη sin3 α

2 − cos(2α)dη ∧ volΩ2+

−
√

2eη sin(2α) sinα 4 − cos(2α)
(2 − cos(2α))2dα ∧ volΩ2 .

(G.8)

Their components then read

Hηθ1φ1 = 2
√

2e−η cos3 α
2+cos(2α) sin θ1,

Hαθ1φ1 =
√

2e−η sin(2α) cosα 4+cos(2α)
(2+cos(2α))2 sin θ1,

(G.9)

and Fηθ2φ2 = −2
√

2eη sin3 α
2−cos(2α) sin θ2,

Fαθ2φ2 = −
√

2eη sin(2α) sinα 4−cos(2α)
(2−cos(2α))2 sin θ2.

(G.10)
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The square of H3 is calculated as

H2 = HµνρH
µνρ = 3!(Hηθ1φ1H

ηθ1φ1 +Hαθ1φ1H
αθ1φ1 +Hηαθ1H

ηαθ1) =
= 3!

(
Hηθ1φ1Hηθ1φ1g

ηηgθ1θ1gφ
′
1φ

′
1 +Hαθ1φ1Hαθ1φ1g

ααgθ1θ1gφ
′
1φ

′
1
)

=

= 3! ∆3

x4 sin2 θ1

(
8e−2η cos6 α

(2 + cos(2α))2 sin2 θ1+

+ 2e−2η sin2(2α) cos2 α
(4 + cos(2α))2

(2 + cos(2α))4 sin2 θ1

)
=

= 8 · 3!∆
3

x4 e
−2η cos4 α

(2 + cos(2α))2

(
cos2 α + sin2(α)(4 + cos(2α))2

(2 + cos(2α))2

)
=

= 8 · 3!∆3e−2η
(

cos2 α + sin2(α)(4 + cos(2α))2

(2 + cos(2α))2

)
=

= 8 · 3!∆3e−2η

(2 + cos(2α))2

(
cos2 α

[
4 + cos2(2α) + 4 cos(2α)

]
+

+ sin2 α
[
16 + cos2(2α) + 8 cos(2α)

] )
=

= 8 · 3!∆3e−2η

(2 + cos(2α))2

(
4 + cos2(2α) + 4 cos(2α)+

+ 12 sin2 α + 4 sin2 α cos(2α)
)

=

= 24∆3e−2η 19 − cos(4α)
(2 + cos(2α))2 .

(G.11)

The calculation for F 2 is similar and the results of the squared 2-form field strengths
are

H2 = 24∆3e−2η 19 − cos(4α)
(2 + cos(2α))2 , F 2 = 24∆3e2η 19 − cos(4α)

(2 − cos(2α))2 . (G.12)

G.2 Self-dual field strength F̃5

The field strength of the 4-form C4 is given by

F5 = dC4 = 3
2dω3 ∧ dη + sin(2α)dω3 ∧ dα + f(α)dα ∧ volΩ1 ∧ volΩ2 . (G.13)

The AdS4 volume form is

dω3 = volAdS4 = ẽ dt ∧ dx ∧ dy ∧ dz, ẽ =
√

− det(g̃µν), (G.14)

where g̃µν is the metric on AdS4. The F5 components are


Ftxyzη = 3
2 ẽ,

Ftxyzα = sin(2α) ẽ,
Fαθ1φ1θ2φ2 = f(α) sin θ1 sin θ2.

(G.15)
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The relevant field strength for the equations of motion however, is the self-dual

F̃µνρσξ = Fµνρσξ − 5C[µνHρσξ] + 5B[µνFρσξ]. (G.16)

The components with AdS4-indices are the same as the ones for F5 since there is no
contribution from the 2-forms. The other F̃5-components can be calculated using
(G.16), but are more easily obtained from Ftxyzη and Ftxyzα via the self-duality
condition. There are two other components, the first being

F̃αθ1φ1θ2φ2 = 1
5!ϵαθ1φ1θ2φ2µ1...µ5g

µ1ν1 ...gµ5ν5F̃ν1...ν5 =

= 5!
5!e εαθ1φ1θ2φ2txyzηg

ttgxxgyygzzgηηF̃txyzη =

= −e εtxyzηαθ1φ1θ2φ2g
ttgxxgyygzzgηηF̃txyzη =

=
( 1

16 ẽ ∆−1 sin2(2α) sin θ1 sin θ2

)(
16∆5 1

g̃

)(3
2 ẽ
)

=

= 3
2∆4 sin2(2α) sin θ1 sin θ2

ẽ2

g(AdS4)
= {ẽ2 = −g̃}

= −3
2∆4 sin2(2α) sin θ1 sin θ2,

(G.17)

and the second being

F̃ηθ1φ1θ2φ2 = 1
5!ϵηθ1φ1θ2φ2µ1...µ5g

µ1ν1 ...gµ5ν5F̃ν1...ν5 =

= 5!
5!e εηθ1φ1θ2φ2txyzαg

ttgxxgyygzzgααF̃txyzα =

= e εtxyzηαθ1φ1θ2φ2g
ttgxxgyygzzgααF̃txyzα =

= −
( 1

16 ẽ∆
−1 sin2(2α) sin θ1 sin θ2

)(
16∆5 1

g̃

)
(sin(2α)ẽ) =

= −∆4 sin3(2α) sin θ1 sin θ2
ẽ2

g̃
= {ẽ2 = −g̃}

= ∆4 sin3(2α) sin θ1 sin θ2.

(G.18)

The components of the self-dual F̃5 are
F̃αθ1φ1θ2φ2 = −3

2∆4 sin2(2α) sin θ1 sin θ2,

F̃ηθ1φ1θ2φ2 = ∆4 sin3(2α) sin θ1 sin θ2,

F̃txyzη = 3
2 ẽ,

F̃txyzα = sin(2α) ẽ.

(G.19)
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H
Evaluation of the scalar, 2-form

and 4-form field equations

In this appendix all of the type IIB equations of motion, except Einstein’s equations
which are treated in appendix J, are evaluated for the AdS vacuum given in 3.2.
A brief description of the procedure is given in section 3.2.5. The deformation
parameters are set to χi = 0 as the field equations are local, see section 3.2.4.

H.1 The axion equation of motion

The background value of the axion being χ = 0 drastically simplifies its equation of
motion to

FµνρH
µνρ = 0. (H.1)

This is satisfied since there are no three common indices for which both Hµνρ and
Fµνρ are non-vanishing.

H.2 The dilaton equation of motion

Since χ = 0 the dilaton equation of motion reads

∇µ(e−ϕ∂µe
ϕ) = 1

12(eϕF 2 − e−ϕH2), (H.2)

where

eϕ =
√

2e−2η 2 − cos(2α)√
7 − cos(4α)

. (H.3)
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H. Evaluation of the scalar, 2-form and 4-form field equations

Starting with the right hand side of (H.2), it is simplified as

r.h.s. = 1
12(eϕF 2 − e−ϕH2) =

= 2∆3(19 − cos(4α))
[

e2ϕeϕ

(2 − cos(2α))2 − e−2ϕe−ϕ

(2 + cos(2α))2

]
=

= 2∆3(19 − cos(4α))
 √

2(2 − cos(2α))√
7 − cos(4α)(2 − cos(2α))2

+

− 1√
2

√
7 − cos(4α)

(2 − cos(2α))(2 + cos(2α))2

 =

=
√

2∆3 19 − cos(4α)
2 − cos(2α)

 2√
7 − cos(4α)

−

√
7 − cos(4α)

(2 + cos(2α))2

 =

=
√

2∆3 19 − cos(4α)
2 − cos(2α)

2(2 + cos(2α))2 − (7 − cos(4α))√
7 − cos(4α)(2 + cos(2α))2

=

=
√

2∆3 19 − cos(4α)
2 − cos(2α)

8 + 2 cos2(2α) + 8 cos(2α) − 7 + cos(4α)√
7 − cos(4α)(2 + cos(2α))2

=

(1)=
√

2∆3 19 − cos(4α)
2 − cos(2α)

2 + 2 cos(4α) + 8 cos(2α)√
7 − cos(4α)(2 + cos(2α))2

=

(2)= 2
√

2∆3 19 − cos(4α)
2 − cos(2α)

2 cos2(2α) + 4 cos(2α)√
7 − cos(4α)(2 + cos(2α))2

=

= 4
√

2∆3 cos(2α)19 − cos(4α)
2 − cos(2α)

2 + cos(2α)√
7 − cos(4α)(2 + cos(2α))2

=

= 4
√

2∆3 19 − cos(4α)√
7 − cos(4α)

cos(2α)
(2 − cos(2α))(2 + cos(2α)) =

= 4
√

2∆3 cos(2α) 19 − cos(4α)√
7 − cos(4α)

1
4 − cos2(2α) =

= 4
√

2∆7 cos(2α) 19 − cos(4α)√
7 − cos(4α)

,

(H.4)

where the identity 2 cos2(2α) = cos(4α)+1 is used at (1) and cos(4α) = 2 cos2(2α)−1
is used at (2). As for the left hand side, since eϕ only depends on η and α it becomes

l.h.s. = ∇µ(e−ϕ∂µe
ϕ) = 1

e
∂µ(e e−ϕgµν∂νe

ϕ) =

= 1
e

[
∂η(e e−ϕgηη∂ηe

ϕ) + ∂α(e e−ϕgαα∂αe
ϕ)
]
.

(H.5)

Since e−ϕ∂ηe
ϕ = −2 and the metric is independent of η, the first term vanishes. The

left hand side is thus

l.h.s. = ∇µ(e−ϕ∂µe
ϕ) = 1

e
∂α(e ∆ e−ϕ∂αe

ϕ) = ∂α(e ∆)
e

e−ϕ∂αe
ϕ + ∆∂α(e−ϕ∂αe

ϕ).
(H.6)
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H. Evaluation of the scalar, 2-form and 4-form field equations

Breaking this calculation down, the first factor is
∂α(e ∆)

e
= ∂α(cos2 α sin2 α)

∆−1 cos2 α sin2 α
= 2∆cos3 α sinα− cosα sin3 α

cos2 α sin2 α
=

= 2∆cos2 α− sin2 α

cosα sinα = 4∆cos(2α)
sin(2α) = 4∆ cot(2α).

(H.7)

Next, the derivative of the dilaton is

∂αe
ϕ =

√
2e−2η

 2 sin(2α)√
7 − cos(4α)

− 1
2

2 − cos(2α)
(7 − cos(4α))3/2 (4 sin(4α))

 =

= 2
√

2 e−2η sin(2α)√
7 − cos(4α)

[
1 − 2 cos(2α)(2 − cos(2α))

7 − cos(4α)

]
=

= 2
√

2 e−2η sin(2α)
(7 − cos(4α))3/2

[
7 − cos(4α) − 4 cos(2α) + 2 cos2(2α)

]
=

= 2
√

2 e−2η sin(2α)
(7 − cos(4α))3/2 [8 − 4 cos(2α)] =

= 8
√

2e−2η sin(2α) 2 − cos(2α)
(7 − cos(4α))3/2 ,

(H.8)

which implies that
e−ϕ∂αe

ϕ = 8 sin(2α)
7 − cos(4α) . (H.9)

Finally the derivative of e−ϕ∂αe
ϕ is

∂α(e−ϕ∂αe
ϕ) = 16 cos(2α)

7 − cos(4α) − 8 sin(2α)
(7 − cos(4α))2 (4 sin(4α)) =

= 16 cos(2α)
7 − cos(4α)

[
1 − 4 sin2(2α)

7 − cos(4α)

]
=

= 16 cos(2α)
(7 − cos(4α))2

[
7 − cos(4α) − 4 sin2(2α)

]
=

= 16 cos(2α) 5 + cos(4α)
(7 − cos(4α))2 .

(H.10)

The left hand side becomes to

l.h.s. = ∆
[
4 cot(2α) 8 sin(2α)

7 − cos(4α) + 16 cos(2α) 5 + cos(4α)
(7 − cos(4α))2

]
=

= 16∆ cos(2α)
(7 − cos(4α))2 [2(7 − cos(4α)) + (5 + cos(4α))] =

= 16∆ cos(2α) 19 − cos(4α)
(7 − cos(4α))2 ,

(H.11)

leaving the dilaton equation of motion as

l.h.s. = 16∆ cos(2α) 19 − cos(4α)
(7 − cos(4α))2

?= 4
√

2∆7 cos(2α) 19 − cos(4α)√
7 − cos(4α)

= r.h.s.,

(H.12)
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which reduces to
4

(7 − cos(4α))3/2
?=

√
2∆6. (H.13)

This is true since

∆−4 = 4 − cos2(2α) = 1
2(7 − cos(4α)), =⇒ ∆6 = 2

√
2

(7 − cos(4α))3/2 , (H.14)

which shows that the dilaton equation of motion is fulfilled.

H.3 The C4 equations of motion
The equations of motion for C4 are

∇ξF̃
µνρσξ = 1

(3!)2 ϵ
µνρσµ1...µ6Hµ1µ2µ3Fµ4µ5µ6 . (H.15)

This equation should be satisfied for all combinations of its four free indices µνρσ.
The order of the indices is not important however, since all indices are completely
antisymmetric. Because of H3 and F3, the right hand side is only non-zero if µνρσ =
txyz. This case will be dealt with first. All other cases are trivial in the sense that
they amount to 0 = 0. They are thus validated by showing that the left hand side
vanishes unless µνρσ = txyz.

H.3.1 The non-trivial case µνρσ = txyz

The non-vanishing right hand side is

r.h.s. = 1
(3!)2 ϵ

txyzµ1...µ6Hµ1µ2µ3Fµ4µ5µ6 =

= ϵtxyzαθ1φ1ηθ2φ2Hαθ1φ1Fηθ2φ2 + ϵtxyzηθ1φ1αθ2φ2Hηθ1φ1Fαθ2φ2 =
= ϵtxyzηαθ1φ1θ2φ2 (−Hαθ1φ1Fηθ2φ2 +Hηθ1φ1Fαθ2φ2) =

= 2
e

sin2(2α)
(

sin2 α (4 + cos(2α))
(2 − cos(2α))(2 + cos(2α))2 +

− cos2 α (4 − cos(2α))
(2 + cos(2α))(2 − cos(2α))2

)
sin θ1 sin θ2 =

= 2
e

∆8 sin2(2α)
[

sin2 α (4 + cos(2α))(2 − cos(2α))+

− cos2 α (4 − cos(2α))(2 + cos(2α))
]

sin θ1 sin θ2 =

= 2
e

∆8 sin2(2α)
[
−2 cos(2α) − (8 − cos2(2α)) cos(2α)

]
sin θ1 sin θ2 =

= −2
e

∆8 sin2(2α) cos(2α)
[
10 − cos2(2α)

]
sin θ1 sin θ2 =

= −1
e

∆8 sin2(2α) cos(2α) [19 − cos(4α)] sin θ1 sin θ2.

(H.16)
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H. Evaluation of the scalar, 2-form and 4-form field equations

The left hand side for µνρσ = txyz becomes

l.h.s. = ∇ξF̃
txyzξ = ∇ηF̃

txyzη + ∇αF̃
txyzα = ∇αF̃

txyzα, (H.17)

since F̃ txyzη and the metric are independent of η. Evaluating further

l.h.s. = ∇αF̃
txyzα = 1

e
∂α
(
e F̃txyzαg

ttgxxgyygzzgαα
)

=

= 1
e
∂α

(
[ 1
16 ẽ ∆−1 sin2(2α) sin θ1 sin θ2][ẽ sin(2α)][∆5161

g̃
]
)

=

= 1
e
∂α
(
−∆4 sin3(2α)

)
sin θ1 sin θ2 =

= 1
e

(−4∆3∂α∆ sin3(2α) − 6∆4 sin2(2α) cos(2α)) sin θ1 sin θ2 =

= 2
e

∆3 sin2(2α)(−2∂α∆ sin(2α) − 3∆ cos(2α)) sin θ1 sin θ2.

(H.18)

Using the derivative of the warping factor

∂α∆ = ∂α
(
(4 − cos2(2α))−1/4

)
=

= −1
4(4 − cos2(2α))−5/4(4 cos(2α) sin(2α)) =

= −∆5 sin(2α) cos(2α),

(H.19)

the left hand side becomes

l.h.s. = 2
e

∆3 sin2(2α)(2∆5 sin2(2α) cos(2α) − 3∆ cos(2α)) sin θ1 sin θ2 =

= 2
e

∆8 sin2(2α) cos(2α)(2 sin2(2α) − 3(4 − cos2(2α))) sin θ1 sin θ2 =

= −1
e

∆8 sin2(2α) cos(2α)[19 − cos(4α))] sin θ1 sin θ2,

(H.20)

which makes it clear that

l.h.s. = −1
e

∆8 sin2(2α) cos(2α)[19 − cos(4α))] sin θ1 sin θ2 = r.h.s.. (H.21)

H.3.2 The trivial case µνρσ ̸= txyz

If the free indices µνρσ ̸= txyz, the left hand side should vanish. There are four
non-vanishing F̃5-components. The two that appear when µνρσ = txyz are F̃txyzη
and F̃txyzα, where the derivative contracted with the indices η and α respectively. If
the derivative contracts with t however, the left hand side becomes

l.h.s. = ∇tF̃
txyzµ = 0, µ = η, α, (H.22)

since the metric and all F̃5-components are independent of t. If t is not among the
free indices the left hand side vanishes. The same is true for x, y and z

l.h.s. = ∇xF̃
txyzµ = 1

e
∂x(e F̃txyzµgttgxxgyygzzgµµ) ∼ ∂x(ẽ ẽ ẽ−2) = 0, (H.23)
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since e ∼ F̃txyzµ ∼ ẽ (for µ = η, α) and gttgxxgyygzz ∼ g̃−1 ∼ ẽ−2 because all x, y, z-
dependence is encoded in ẽ. The two remaining F̃5-components are F̃αθ1φ1θ2φ2 and
F̃ηθ1φ1θ2φ2 . Similar to the case with t, there is no dependence on η, φ1 or φ2, implying
that if they are not among the free indices, the left hand side is zero. To show that
this is also the case for θ1 and θ2, the zehnbein determinant, the F̃5-components and
the relevant inverse metric components are considered

e ∼ F̃µθ1φ1θ2φ2 ∼ sin θ1 sin θ2, gφ1φ1gφ2φ2 ∼ 1
sin2 θ1 sin2 θ2

, µ = η, α. (H.24)

This results a vanishing the left hand side

l.h.s. = ∇θi
F̃ µθ1φ1θ2φ2 ∼ ∂θi

(e F̃µθ1φ1θ2φ2g
φ1φ1gφ2φ2) = 0, µ = η, α, (H.25)

leaving l.h.s. = ∇αF̃
αθ1φ1θ2φ2 as the only case left to check. The α-dependence of

the relevant quantities are given by

e ∼ ∆−1 sin2(2α), F̃αθ1φ1θ2φ2 ∼ ∆4 sin2(2α),

gααgθ1θ1gφ1φ1gθ2θ2gφ2φ2 ∼ ∆5 1
x4

1x
4
2

∼ ∆5
(

∆−8 1
sin4(2α)

)
∼ ∆−3 1

sin4(2α) .
(H.26)

Again the α-dependence cancels out and the left hand side vanishes

l.h.s. = ∇αF̃
αθ1φ1θ2φ2 ∼ ∂α(e F̃αθ1φ1θ2φ2g

ααgθ1θ1gφ1φ1gθ2θ2gφ2φ2) = 0, (H.27)

which finally shows that the C4 equations of motions are satisfied by the AdS vac-
uum.

H.4 The B2 and C2 equations of motion
The B2 and C2 equations of motion with χ = 0 are given by

∇ρ(e−ϕHµνρ) = 1
3! F̃

µνρσξFρσξ, ∇ρ(eϕF µνρ) = − 1
3! F̃

µνρσξHρσξ. (H.28)

However, these equations are actually S-dual to eachother. This can be seen by first
writing the field equations in terms of differential forms [22]

d(e−ϕ ⋆ H3) = F3 ∧ F̃5, d(eϕ ⋆ F3) = −H3 ∧ F̃5. (H.29)

Consider the transformation given by the SL(2, Z) element

Λ =
(

0 1
−1 0

)
, (H.30)

which transforms the 2-forms and their field strengths like

Λ
(
B2
C2

)
=
(
C2

−B2

)
, =⇒ Λ

(
H3
F3

)
=
(
F3

−H3

)
. (H.31)
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The dilaton transforms like eϕ → e−ϕ according to (3.5), and all other fields are
unchanged. The equations in (H.29) are dual under this SL(2, Z) transformation
and it is thus sufficient to only show that only

∇ρ(e−ϕHµνρ) = 1
3! F̃

µνρσξFρσξ, (H.32)

is satisfied. The right hand side is only non-zero when the free indices are µν = θ1φ1.
This case is treated first.

H.4.1 The non-trivial case µν = θ1φ1

The right hand side is

r.h.s. = 1
3! F̃

µνρσξFρσξ = F̃ θ1φ1ηθ2φ2Fηθ2φ2 + F̃ θ1φ1αθ2φ2Fαθ2φ2 =

= 1
5!ϵ

θ1φ1ηθ2φ2µ1...µ5F̃µ1...µ5Fηθ2φ2 + 1
5!ϵ

θ1φ1αθ2φ2µ1...µ5F̃µ1...µ5Fαθ2φ2 =

= ϵtxyzηαθ1φ1θ2φ2
(
F̃txyzαFηθ2φ2 − F̃txyzηFαθ2φ2

)
=

= 1
e

(
F̃txyzαFηθ2φ2 − F̃txyzηFαθ2φ2

)
=

= 16∆
ẽ sin2(2α) sin θ1 sin θ2

ẽ
(

sin(2α)Fηθ2φ2 − 3
2Fαθ2φ2

)
=

= − 16
√

2eη∆ sinα
sin(2α) sin θ1 (2 − cos(2α))2 ×

×
(

2 sin2 α (2 − cos(2α)) − 3
2(4 − cos(2α))

)
=

= 4
√

2∆ eη

sin θ1 cosα (2 − cos(2α))2 (7 + 3 cos(2α) − cos(4α))).

(H.33)

Next, dealing with the left hand side of the equation

l.h.s. = ∇ρ

[
e−ϕHθ1φ1ρ

]
= 1
e
∂η
[
e e−ϕHηθ1φ1

]
+ 1
e
∂α
[
e e−ϕHαθ1φ1

]
=

= 1
e
∂η
[
e e−ϕHηθ1φ1g

ηηgθ1θ1gφ1φ1
]

+

+ 1
e
∂α
[
e e−ϕHαθ1φ1g

ααgθ1θ1gφ1φ1
]

=

= 1
e
∂η

[
e e−ϕHηθ1φ1

∆3

x4
1 sin2 θ1

]
+ 1
e
∂α

[
e e−ϕHαθ1φ1

∆3

x4
1 sin2 θ1

]
,

(H.34)

where the only η dependence in the first term is e−ϕHηθ1φ1 ∼ eη, making the partial
derivative ∂η redundant. To continue evaluating the left hand side, the derivative

∂α(∆ e)
e

= 4∆ cot(2α), (H.35)
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which was calculated in (H.7), will be needed. The left hand side becomes

l.h.s. = ∆3

x4
1 sin2 θ1

e−ϕHηθ1φ1 + 1
e
∂α

[
e e−ϕHαθ1φ1

∆3

x4
1 sin2 θ1

]
=

= ∆3

x4
1 sin2 θ1

e−ϕHηθ1φ1 + ∆2

x4
1 sin2 θ1

e−ϕHαθ1φ1

∂α(∆ e)
e

+

+ ∆
sin2 θ1

∂α

[
∆2

x4
1
e−ϕHαθ1φ1

]
=

= ∆3

x4
1 sin2 θ1

e−ϕHηθ1φ1 + 4∆3 cot(2α)
x4

1 sin2 θ1
e−ϕHαθ1φ1+

+ ∆
sin2 θ1

∂α

[
∆2

x4
1
e−ϕHαθ1φ1

]
..

(H.36)

The derivative in the last term is

∂α

(
∆2

x4
1
e−ϕHαθ1φ1

)
= ∂α

∆2 (2 + cos(2α))2

cos4 α
eη

√
7 − cos(4α)

2 − cos(2α) ×

× sin(2α) cosα 4 + cos(2α)
(2 + cos(2α))2 sin θ1

 =

= eη sin θ1 ∂α

∆2 4 + cos(2α)
cos3 α

√
7 − cos(4α)

2 − cos(2α) sin(2α)
 =

= {
√

7 − cos(4α) =
√

2∆−2} =

= 2
√

2eη sin θ1 ∂α

(
sinα (4 + cos(2α))
cos2 α (2 − cos(2α))

)
=

= 2
√

2eη sin θ1

(
(4 + cos(2α))

cosα (2 − cos(2α))+

− 2 sinα sin(2α)
cos2 α (2 − cos(2α))+

+ 2 sin2 α (4 + cos(2α))
cos3 α (2 − cos(2α)) +

− 2 sinα sin(2α) (4 + cos(2α))
cos2 α (2 − cos(2α))2

)
=

= 2
√

2eη sin θ1

cos3 α (2 − cos(2α))2

(
(4 + cos(2α))×

×
[
− sin2(2α)(cos2 α + 2 sin2 α)(2 − cos(2α))

]
+

− sin2(2α)(2 − cos(2α))
)

=

= 1√
2
eη sin θ1

35 − 27 cos(2a) + 11 cos(4α) + cos(2α) cos(4α)
cos3 α (2 − cos(2α))2 .

(H.37)
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The left hand side becomes

l.h.s. =
(

∆3(2 + cos(2α))2

cos4 α sin2 θ1

) e2η
√

2

√
7 − cos(4α)

2 − cos(2α)

×

×
(

2
√

2
eη

cos3 α

2 + cos(2α) sin θ1

)
+

+ 4∆ cot(2α)
(

∆2(2 + cos(2α))2

cos4 α sin2 θ1

) e2η
√

2

√
7 − cos(4α)

2 − cos(2α)

×

×
(√

2
eη

sin(2α) cosα 4 + cos(2α)
(2 + cos(2α))2 sin θ1

)
+

+ ∆ eη√
2 sin θ1

35 − 27 cos(2a) + 11 cos(4α) + cos(2α) cos(4α)
cos3 α (2 − cos(2α))2 =

= ∆ eη√
2 sin θ1

4(2 + cos(2α))
cosα (2 − cos(2α))+

+ ∆ eη√
2 sin θ1

8 sin(2α) cot(2α) (4 + cos(2α))
cos3 α (2 − cos(2α)) +

+ ∆ eη√
2 sin θ1

35 − 27 cos(2a) + 11 cos(4α) + cos(2α) cos(4α)
cos3 α (2 − cos(2α))2 =

= ∆ eη√
2 sin θ1

1
cos3 α (2 − cos(2α))2

(
4(4 − cos2(2α))+

+ 8 sin(2α) cot(2α)(4 + cos(2α))(2 − cos(2α))+

+ [35 − 27 cos(2a) + 11 cos(4α) + cos(2α) cos(4α)]
)

=

= ∆ eη√
2 sin θ1

1
cos3 α (2 − cos(2α))2 ×

×
(

[7 + 7 cos(2α) − cos(4α) − cos(2α) cos(4α)] +

+ 4 [−2 + 15 cos(2α) − 2 cos(4α) − cos(2α) cos(4α)] +

+ [35 − 27 cos(2a) + 11 cos(4α) + cos(2α) cos(4α)]
)

=

= ∆ eη√
2 sin θ1

34 + 40 cos(2α) + 2 cos(4α) − 4 cos(2α) cos(4α)
cos3 α (2 − cos(2α))2 =

= 4
√

2∆ eη

sin θ1 cosα (2 − cos(2α))2 (7 + 3 cos(2α) − cos(4α)).

(H.38)

The same expression is finally found for both sides of the equation

l.h.s. = 4
√

2∆ eη

sin θ1 cosα (2 − cos(2α))2 (7 + 3 cos(2α) − cos(4α)) = r.h.s., (H.39)

showing that the equations of motion for the 2-forms are satisfied.
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H.4.2 The trivial case µν ̸= θ1φ1

What remains now is to show that the left hand side vanishes when µν ̸= θ1φ1.
First note that the only non-trivial H3-components are Hηθ1φ1 and Hαθ1φ1 . Both
feature θ1 and φ1 indices and if µν ̸= θ1φ1, then either θ1 or φ1 must contract with
the derivative in the left hand side. However

l.h.s. = ∇φ1 [e−ϕHµθ1φ1 ] = 0, µ = η, α, (H.40)

since neither the metric or any fields depend on φ1. If the derivative instead contracts
with θ1, the only θ1-dependent components are

e ∼ sin θ1, Hηθ1φ1 ∼ Hαθ1φ1 ∼ sin θ1, gφ1φ1 ∼ 1
sin2 θ1

, (H.41)

implying that

l.h.s. = ∇θ1(e−ϕHµθ1φ1) ∼ ∂θ1(e Hµθ1φ1g
φ1φ1) ∼ ∂θ1(1) = 0, µ = η, α. (H.42)

This shows that the 2-form field equations are satisfied.
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I
Ricci tensor of the type IIB AdS

vacuum

The Ricci tensor of the AdS vacuum given in section 3.2 with the metric

ds2
10 = ∆−1

[
1
2ds

2
AdS4 + dη2 + dα2 + cos2 α

2 + cos 2αdΩ1 + sin2 α

2 − cos 2αdΩ2

]
, (I.1)

is calculated using the method explained in appendix C. The Ricci tensor is needed
to evaluate Einstein’s equations in appendix J. The deformation parameters are set
to χi = 0.

I.1 The Ricci tensor
The zehnbein 1-forms of the AdS vacuum can be read off from (3.24), where the
ones related to AdS4 are

e0 = 1√
2∆

cosh ρ dt, e1 = 1√
2∆

1
a
dρ,

e2 = 1√
2∆

1
a

sinh ρ dθ, e3 = 1√
2∆

1
a

sinh ρ sin θ dφ.
(I.2)

The 1-forms related to S1
η and the interval Iα of the squashed 5-sphere are

e4 = 1√
∆
dη, e5 = 1√

∆
dα, (I.3)

and for the two 2-spheres, the zehnbein 1-forms are

e6 = 1√
∆
x1dθ1, e7 = 1√

∆
x1 sin θ1 dφ1,

e8 = 1√
∆
x2dθ2, e9 = 1√

∆
x2 sin θ2 dφ2,

(I.4)

where the α-dependent x1 and x2 are defined in (3.22).

I.1.1 The connection ωab

To find the 1-form connection ωab, the exterior derivatives dea are needed. To
calculate these, it is useful to first note that

d

(
1√
∆

)
= −1

2
∆′

∆3/2dα = −1
2

∆′

∆ e5 = −1
2

∆′
√

∆
e5
(

1√
∆

)
. (I.5)
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Only de5 = 0, and the non-vanishing dea are found as

de0 = 1
2

∆′
√

∆
e0 ∧ e5 −

√
2∆a tanh ρ e0 ∧ e1,

de1 = 1
2

∆′
√

∆
e1 ∧ e5,

de2 = 1
2

∆′
√

∆
e2 ∧ e5 +

√
2∆a coth ρ e1 ∧ e2,

de3 = 1
2

∆′
√

∆
e3 ∧ e5 +

√
2∆a coth ρ e1 ∧ e3 +

√
2∆a cot θ

sinh ρe
2 ∧ e3,

de4 = 1
2

∆′
√

∆
e4 ∧ e5,

de6 =
√

∆
(
x′

1
x1

− 1
2

∆′

∆

)
e5 ∧ e6,

de7 =
√

∆
(
x′

1
x1

− 1
2

∆′

∆

)
e5 ∧ e7 +

√
∆cot θ1

x1
e6 ∧ e7,

de8 =
√

∆
(
x′

2
x2

− 1
2

∆′

∆

)
e5 ∧ e8,

de9 =
√

∆
(
x′

2
x2

− 1
2

∆′

∆

)
e5 ∧ e9 +

√
∆cot θ2

x2
e8 ∧ e9.

(I.6)

The non-zero ω[ij]a can then be found using the equation dea = ηacωijce
i ∧ ej.

a = 0 : 2ω[01]0 =
√

2∆a tanh ρ, 2ω[05]0 = −1
2

∆′
√

∆
,

a = 1 : 2ω[15]1 = 1
2

∆′
√

∆
,

a = 2 : 2ω[12]2 =
√

2∆a coth ρ, 2ω[25]2 = 1
2

∆′
√

∆
,

a = 3 : 2ω[13]3 =
√

2∆a coth ρ, 2ω[23]3 =
√

2∆a cot θ
sinh ρ,

2ω[35]3 = 1
2

∆′
√

∆
,

a = 4 : 2ω[45]4 = 1
2

∆′
√

∆
,

a = 5 : all ω[ij]5 = 0,

a = 6 : 2ω[56]6 =
√

∆
(
x′

1
x1

− 1
2

∆′

∆

)
,

a = 7 : 2ω[57]7 =
√

∆
(
x′

1
x1

− 1
2

∆′

∆

)
, 2ω[67]7 =

√
∆cot θ1

x1
,

a = 8 : 2ω[58]8 =
√

∆
(
x′

2
x2

− 1
2

∆′

∆

)
,

a = 9 : 2ω[59]9 =
√

∆
(
x′

2
x2

− 1
2

∆′

∆

)
, 2ω[89]9 =

√
∆cot θ2

x2
,

(I.7)
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Because of the antisymmetry in the last indices, ωabc = ωa[bc], the 1-form connections
are

ω01 = ω001e
0 = −

√
2∆a tanh ρ e0, ω12 = ω212e

2 = −
√

2∆a coth ρ e2,

ω13 = ω313e
3 = −

√
2∆a coth ρ e3, ω23 = ω323e

3 = −
√

2∆a cot θ
sinh ρ e

3,

ω05 = ω005e
0 = 1

2
∆′

√
∆
e0, ωi5 = ωii5e

i = −1
2

∆′
√

∆
ei, i = 1,... 4,

ω5j = ωj5je
j = −

√
∆
(
x′

1
x1

− 1
2

∆′

∆

)
ej, j = 6, 7,

ω5k = ωk5ke
k = −

√
∆
(
x′

2
x2

− 1
2

∆′

∆

)
ek, k = 8, 9,

ω67 = ω767e
7 = −

√
∆cot θ1

x1
e7, ω89 = ω989e

9 = −
√

∆cot θ2

x2
e9.

(I.8)
The ωab can now be used to find the curvature 2-form via Θab = dωab + ωac ∧ ωcb.

I.1.2 The dωab term of Θab

The exterior derivative of the non-zero ωab are calculated. First

dω01 = −
√

2a d
(√

∆ tanh ρ e0
)

=

= ∆′
√

2
a tanh ρ e0 ∧ e5 + 2∆a2

(
1 − tanh2 ρ

)
e0 ∧ e1+

−
√

2∆a tanh ρ de0 =

=
[

∆′
√

2
a tanh ρ− ∆′

√
2
a tanh ρ

]
e0 ∧ e5+

+ 2∆a2
[
1 − tanh2 ρ+ tanh2 ρ

]
e0 ∧ e1 =

= 2∆a2 e0 ∧ e1,

dω12 = −
√

2a d
(√

∆ coth ρ e2
)

=

= ∆′
√

2
a coth ρ e2 ∧ e5 − 2∆a2

(
1 − coth2 ρ

)
e1 ∧ e2+

−
√

2∆a coth ρ de2 =
= −2∆a2 e1 ∧ e2,

dω13 = −
√

2a d
(√

∆ coth ρ e3
)

=

= ∆′
√

2
a coth ρ e3 ∧ e5 − 2∆a2

(
1 − coth2 ρ

)
e1 ∧ e3+

−
√

2∆a coth ρ de3 =

= −2∆a2 e1 ∧ e3 − 2∆a2 coth ρ cot θ
sinh ρ e2 ∧ e3,

(I.9)
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dω23 = −
√

2a d
(√

∆ cot θ
sinh ρe

3
)

=

= ∆′
√

2
a

cot θ
sinh ρe

3 ∧ e5 + 2∆a2 coth ρ cot θ
sinh ρ e1 ∧ e3+

+ 2∆a2 1 + cot2 θ

sinh2 ρ
e2 ∧ e3 −

√
2∆a cot θ

sinh ρde
3 =

= 2∆a2 1
sinh2 ρ

e2 ∧ e3,

(I.10)

then

dω05 = 1
2d
(

∆′
√

∆
e0
)

= 1
2

(
∆′′
√

∆
− 1

2
(∆′)2

∆3/2

)
dα ∧ e0 + 1

2
∆′

√
∆
de0 =

= 1
2

(
−∆′′ + 1

2
(∆′)2

∆ + 1
2

(∆′)2

∆

)
e0 ∧ e5 − ∆′

√
2
a e0 ∧ e1 =

= 1
2

(
(∆′)2

∆ − ∆′′
)
e0 ∧ e5 − ∆′

√
2
a tanh ρ e0 ∧ e1,

dω15 = −1
2

(
(∆′)2

∆ − ∆′′
)
e1 ∧ e5,

dω25 = −1
2

(
(∆′)2

∆ − ∆′′
)
e2 ∧ e5 − ∆′

√
2
a coth ρ e1 ∧ e2,

dω35 = −1
2

(
(∆′)2

∆ − ∆′′
)
e3 ∧ e5 − ∆′

√
2
a coth ρ e1 ∧ e3 − ∆′

√
2
a

cot θ
sinh ρe

2 ∧ e3,

dω45 = −1
2

(
(∆′)2

∆ − ∆′′
)
e4 ∧ e5,

(I.11)

then

dω56 = −d
(√

∆
[
x′

1
x1

− 1
2

∆′

∆

]
e6
)

=

= −
(

1
2∆′x

′
1
x1

+ 1
4

(∆′)2

∆ + ∆x′′
1
x1

− ∆(x′
1)

2

x2
1

− 1
2∆′′

)
e5 ∧ e6+

−
√

∆
[
x′

1
x1

− 1
2

∆′

∆

]
de6 =

= 1
2

(
∆′x

′
1
x1

− (∆′)2

∆ − 2∆x′′
1
x1

+ ∆′′
)
e5 ∧ e6,

dω57 = 1
2

(
∆′x

′
1
x1

− (∆′)2

∆ − 2∆x′′
1
x1

+ ∆′′
)
e5 ∧ e7+

− ∆
(
x′

1
x1

− 1
2

∆′

∆

)
cot θ1

x1
e6 ∧ e7,

(I.12)
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dω67 = −d
(√

∆
x1

cot θ1e
7
)

=

= ∆
x1

(
x′

1
x1

− 1
2

∆′

∆

)
cot θ1 e

5 ∧ e7 + ∆
x2

1

(
1 + cot2 θ1

)
e6 ∧ e7+

−
√

∆
x1

cot θ1 de
7 =

= ∆
x2

1
e6 ∧ e7,

(I.13)

and finally

dω58 = 1
2

(
∆′x

′
2
x2

− (∆′)2

∆ − 2∆x′′
2
x2

+ ∆′′
)
e5 ∧ e8,

dω59 = 1
2

(
∆′x

′
2
x2

− (∆′)2

∆ − 2∆x′′
2
x2

+ ∆′′
)
e5 ∧ e9+

− ∆
(
x′

2
x2

− 1
2

∆′

∆

)
cot θ2

x2
e8 ∧ e9,

dω89 = ∆
x2

2
e8 ∧ e9.

(I.14)

I.1.3 The ωac ∧ ωcb term of Θab

The final step to find the curvature 2-form is to calculate the second term ω̃ab =
ωac ∧ ωcb. First off

ω̃01 = ω05 ∧ ω51 = 1
4

(∆′)2

∆ e0 ∧ e1,

ω̃02 = ω01 ∧ ω12 + ω05 ∧ ω52 =
(

2∆a2 + 1
4

(∆′)2

∆

)
e0 ∧ e2,

ω̃03 = ω01 ∧ ω13 + ω05 ∧ ω53 =
(

2∆a2 + 1
4

(∆′)2

∆

)
e0 ∧ e3,

ω̃04 = ω05 ∧ ω54 = 1
4

(∆′)2

∆ e0 ∧ e4,

ω̃05 = ω01 ∧ ω15 = ∆′
√

2
a tanh ρ e0 ∧ e1,

ω̃06 = ω05 ∧ ω56 = −∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e0 ∧ e6,

ω̃07 = ω05 ∧ ω57 = −∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e0 ∧ e7,

ω̃08 = ω05 ∧ ω58 = −∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e0 ∧ e8,

ω̃09 = ω05 ∧ ω59 = −∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e0 ∧ e9,

(I.15)
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then

ω̃12 = ω15 ∧ ω52 = −1
4

(∆′)2

∆ e1 ∧ e2,

ω̃13 = ω15 ∧ ω53 + ω12 ∧ ω23 = −1
4

(∆′)2

∆ e1 ∧ e3 + 2∆a2 coth ρ cot θ
sinh ρ e2 ∧ e3,

ω̃14 = ω15 ∧ ω54 = −1
4

(∆′)2

∆ e1 ∧ e4,

ω̃15 = 0,

ω̃1j = ω15 ∧ ω5j = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e1 ∧ ej, j = 6, 7,

ω̃1k = ω15 ∧ ω5k = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e1 ∧ ek, k = 8, 9,

(I.16)

then

ω̃23 = ω25 ∧ ω53 + ω21 ∧ ω13 =
(

−1
4

(∆′)2

∆ − 2∆a2 coth2 ρ

)
e2 ∧ e3,

ω̃24 = ω25 ∧ ω54 = −1
4

(∆′)2

∆ e2 ∧ e4,

ω̃25 = ω21 ∧ ω15 = ∆′
√

2
a coth ρ e1 ∧ e2,

ω̃26 = ω25 ∧ ω56 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e2 ∧ e6,

ω̃27 = ω25 ∧ ω57 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e2 ∧ e7,

ω̃28 = ω25 ∧ ω58 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e2 ∧ e8,

ω̃29 = ω25 ∧ ω59 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e2 ∧ e9,

(I.17)

then

ω̃34 = ω35 ∧ ω54 = −1
4

(∆′)2

∆ e3 ∧ e4,

ω̃35 = ω31 ∧ ω15 + ω32 ∧ ω25 = ∆′
√

2
a coth ρ e1 ∧ e3 + ∆′

√
2
a

cot θ
sinh ρe

2 ∧ e3,

ω̃36 = ω35 ∧ ω56 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e3 ∧ e6,

ω̃37 = ω35 ∧ ω57 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e3 ∧ e7,

ω̃38 = ω35 ∧ ω58 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e3 ∧ e8,

ω̃39 = ω35 ∧ ω59 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e3 ∧ e9,

(I.18)
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then

ω̃45 = 0,

ω̃46 = ω45 ∧ ω56 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e4 ∧ e6,

ω̃47 = ω45 ∧ ω57 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e4 ∧ e7,

ω̃48 = ω45 ∧ ω58 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e4 ∧ e8,

ω̃49 = ω45 ∧ ω59 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e4 ∧ e9,

(I.19)

then

ω̃56 = 0,

ω̃57 = ω56 ∧ ω67 = ∆
x1

cot θ1

(
x′

1
x1

− 1
2

∆′

∆

)
e6 ∧ e7,

ω̃58 = 0,

ω̃59 = ω58 ∧ ω89 = ∆
x2

cot θ2

(
x′

2
x2

− 1
2

∆′

∆

)
e8 ∧ e9,

(I.20)

then

ω̃67 = ω65 ∧ ω57 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)2

e6 ∧ e7,

ω̃68 = ω65 ∧ ω58 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)(
x′

2
x2

− 1
2

∆′

∆

)
e6 ∧ e8,

ω̃69 = ω65 ∧ ω59 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)(
x′

2
x2

− 1
2

∆′

∆

)
e6 ∧ e9,

(I.21)

then

ω̃78 = ω75 ∧ ω58 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)(
x′

2
x2

− 1
2

∆′

∆

)
e7 ∧ e8,

ω̃79 = ω75 ∧ ω59 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)(
x′

2
x2

− 1
2

∆′

∆

)
e7 ∧ e9,

(I.22)

and finally

ω̃89 = ω85 ∧ ω59 = −∆
(
x′

2
x2

− 1
2

∆′

∆

)2

e8 ∧ e9. (I.23)
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I.1.4 The curvature 2-form Θab

The curvature 2-form components read

Θ01 =
(

2∆a2 + 1
4

(∆′)2

∆

)
e0 ∧ e1,

Θ02 =
(

2∆a2 + 1
4

(∆′)2

∆

)
e0 ∧ e2,

Θ03 =
(

2∆a2 + 1
4

(∆′)2

∆

)
e0 ∧ e3,

Θ04 = 1
4

(∆′)2

∆ e0 ∧ e4,

Θ05 = 1
2

(
(∆′)2

∆ − ∆′′
)
e0 ∧ e5,

Θ06 = −∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e0 ∧ e6,

Θ07 = −∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e0 ∧ e7,

Θ08 = −∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e0 ∧ e8,

Θ09 = −∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e0 ∧ e9,

(I.24)

Θ12 =
(

−2∆a2 − 1
4

(∆′)2

∆

)
e1 ∧ e2,

Θ13 =
(

−2∆a2 − 1
4

(∆′)2

∆

)
e1 ∧ e3,

Θ14 = −1
4

(∆′)2

∆ e1 ∧ e4,

Θ15 = −1
2

(
(∆′)2

∆ − ∆′′
)
e1 ∧ e5,

Θ16 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e1 ∧ e6,

Θ17 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e1 ∧ e7,

Θ18 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e1 ∧ e8,

Θ19 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e1 ∧ e9,

(I.25)
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Θ23 =
(

−2∆a2 − 1
4

(∆′)2

∆

)
e2 ∧ e3,

Θ24 = −1
4

(∆′)2

∆ e2 ∧ e4,

Θ25 = −1
2

(
(∆′)2

∆ − ∆′′
)
e2 ∧ e5,

Θ26 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e2 ∧ e6,

Θ27 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e2 ∧ e7,

Θ28 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e2 ∧ e8,

Θ29 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e2 ∧ e9,

(I.26)

Θ34 = −1
4

(∆′)2

∆ e3 ∧ e4,

Θ35 = −1
2

(
(∆′)2

∆ − ∆′′
)
e3 ∧ e5,

Θ36 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e3 ∧ e6,

Θ37 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e3 ∧ e7,

Θ38 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e3 ∧ e8,

Θ39 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e3 ∧ e9,

(I.27)

Θ45 = −1
2

(
(∆′)2

∆ − ∆′′
)
e4 ∧ e5,

Θ46 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e4 ∧ e6,

Θ47 = ∆′

2

(
x′

1
x1

− 1
2

∆′

∆

)
e4 ∧ e7,

Θ48 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e4 ∧ e8,

Θ49 = ∆′

2

(
x′

2
x2

− 1
2

∆′

∆

)
e4 ∧ e9,

(I.28)
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Θ56 = 1
2

(
∆′x

′
1
x1

− (∆′)2

∆ − 2∆x′′
1
x1

+ ∆′′
)
e5 ∧ e6,

Θ57 = 1
2

(
∆′x

′
1
x1

− (∆′)2

∆ − 2∆x′′
1
x1

+ ∆′′
)
e5 ∧ e7,

Θ58 = 1
2

(
∆′x

′
2
x2

− (∆′)2

∆ − 2∆x′′
2
x2

+ ∆′′
)
e5 ∧ e8,

Θ59 = 1
2

(
∆′x

′
2
x2

− (∆′)2

∆ − 2∆x′′
2
x2

+ ∆′′
)
e5 ∧ e9,

(I.29)

Θ67 = ∆
x2

1
e6 ∧ e7 − ∆

(
x′

1
x1

− 1
2

∆′

∆

)2

e6 ∧ e7,

Θ68 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)(
x′

2
x2

− 1
2

∆′

∆

)
e6 ∧ e8 =

= −
(

∆x′
1x

′
2

x1x2
+ 1

4
(∆′)2

∆ − ∆′
(
x′

1
x1

+ x′
2
x2

))
e6 ∧ e8,

Θ69 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)(
x′

2
x2

− 1
2

∆′

∆

)
e6 ∧ e9 =

= −
(

∆x′
1x

′
2

x1x2
+ 1

4
(∆′)2

∆ − ∆′
(
x′

1
x1

+ x′
2
x2

))
e6 ∧ e9,

(I.30)

Θ78 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)(
x′

2
x2

− 1
2

∆′

∆

)
e7 ∧ e8 =

= −
(

∆x′
1x

′
2

x1x2
+ 1

4
(∆′)2

∆ − ∆′
(
x′

1
x1

+ x′
2
x2

))
e7 ∧ e8,

Θ79 = −∆
(
x′

1
x1

− 1
2

∆′

∆

)(
x′

2
x2

− 1
2

∆′

∆

)
e7 ∧ e9 =

= −
(

∆x′
1x

′
2

x1x2
+ 1

4
(∆′)2

∆ − ∆′
(
x′

1
x1

+ x′
2
x2

))
e7 ∧ e9,

(I.31)

Θ89 = ∆
x2

2
e8 ∧ e9 − ∆

(
x′

2
x2

− 1
2

∆′

∆

)2

e8 ∧ e9. (I.32)

I.1.5 A first expression of Rab

Since all components of the curvature 2-form can be written like Θab = fab (a, α) ea∧
eb, the non-zero Riemann tensor components can be directly read off as Rabab =
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fab (a, α). The result is

R00 = ηaaR0a0a = 6∆a2 + 5
2

(∆′)2

∆ − ∆′′

2 − ∆′
(
x′

1
x1

+ x′
2
x2

)
,

R11 = ηaaR1a1a = −6∆a2 − 5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
,

R22 = ηaaR2a2a = −6∆a2 − 5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
,

R33 = ηaaR3a3a = −6∆a2 − 5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
,

R44 = ηaaR4a4a = −5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
,

R55 = ηaaR5a5a = −9
2

(∆′)2

∆ + 9
2∆′′ + ∆′

(
x′

1
x1

+ x′
2
x2

)
− 2∆

(
x′′

1
x1

+ x′′
2
x2

)
=

= −5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
+

+ 4∆′′ − 2(∆′)2

∆ − 2∆
(
x′′

1
x1

+ x′′
2
x2

)
,

R66 = ηaaR6a6a = −5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
+

+ 4∆′x
′
1
x1

+ ∆
(

1
x2

1
− x′′

1
x1

− x′
1

2

x2
1

− 2x
′
1x

′
2

x1x2

)
,

R77 = ηaaR7a7a = −5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
+

+ 4∆′x
′
1
x1

+ ∆
(

1
x2

1
− x′′

1
x1

− x′
1

2

x2
1

− 2x
′
1x

′
2

x1x2

)
,

R88 = ηaaR8a8a = −5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
+

+ 4∆′x
′
2
x2

+ ∆
(

1
x2

2
− x′′

2
x2

− x′
2

2

x2
2

− 2x
′
1x

′
2

x1x2

)
,

R99 = ηaaR9a9a = −5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
+

+ 4∆′x
′
2
x2

+ ∆
(

1
x2

2
− x′′

2
x2

− x′
2

2

x2
2

− 2x
′
1x

′
2

x1x2

)
.

(I.33)

There is a common part of all Rab-components that can be identified as

v (α) = −5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
. (I.34)
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The unique parts of the Ricci tensor can then be defined as R̃aa = Raa − ηaav (α).
The diagonal elements of R̃ab are then

R̃00 = R00 + v (α) = +6∆a2,

R̃11 = R11 − v (α) = −6∆a2,

R̃22 = R22 − v (α) = −6∆a2,

R̃33 = R33 − v (α) = −6∆a2

R̃44 = R44 − v (α) = 0,

R̃55 = R55 − v (α) = 4∆′′ − 2(∆′)2

∆ − 2∆
(
x′′

1
x1

+ x′′
2
x2

)
,

R̃66 = R66 − v (α) = 4∆′x
′
1
x1

+ ∆
(

1
x2

1
− x′′

1
x1

− x′
1

2

x2
1

− 2x
′
1x

′
2

x1x2

)
,

R̃77 = R77 − v (α) = 4∆′x
′
1
x1

+ ∆
(

1
x2

1
− x′′

1
x1

− x′
1

2

x2
1

− 2x
′
1x

′
2

x1x2

)
,

R̃88 = R88 − v (α) = 4∆′x
′
2
x2

+ ∆
(

1
x2

2
− x′′

2
x2

− x′
2

2

x2
2

− 2x
′
1x

′
2

x1x2

)
,

R̃99 = R99 − v (α) = 4∆′x
′
2
x2

+ ∆
(

1
x2

2
− x′′

2
x2

− x′
2

2

x2
2

− 2x
′
1x

′
2

x1x2

)
.

(I.35)

I.1.6 Calculating the Ricci tensor explicitly
The Ricci tensor only depends on α and must be expressed explicitly in terms of α
in order to evaluate Einstein’s equations. The current expressions of v(α) and R̃aa

are written using ∆, x1, x2 and up to second order derivatives of these. First off, the
derivative of the warping factor, defined by ∆ = (4 − cos2(2α))−1/4, was calculated
in (H.19) as

∆′ = −∆5 sin (2α) cos (2α) . (I.36)

This yields that
(∆′)2

∆ = ∆9 sin2 (2α) cos2 (2α) , (I.37)

and the second order derivative is

∆′′ = −∂α
(
∆5 sin (2α) cos (2α)

)
=

= −5∆4∆′ sin (2α) cos (2α) − 2∆5 cos2 (2α) + 2∆5 sin2 (2α) =
= 5∆9 sin2 (2α) cos2 (2α) − 2∆5 cos (4α) .

(I.38)

Next, the parameters x1 and x2 are given by

x1 = cosα√
2 + cos (2α)

, x2 = sinα√
2 − cos (2α)

. (I.39)
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The derivative of x1 is

x′
1 = − sinα√

2 + cos (2α)
− 1

2
cosα

(2 + cos (2α))3/2 (−2 sin (2α)) =

= sinα
(2 + cos (2α))3/2

(
− (2 + cos (2α)) + 2 cos2 α

)
=

= − sinα
(2 + cos (2α))3/2 ,

(I.40)

and x′
2 is found in a similar way so that

x′
1 = − sinα

(2 + cos (2α))3/2 , x′
2 = cosα

(2 − cos (2α))3/2 . (I.41)

The second order derivatives are given by

x′′
1 = − cosα

(2 + cos (2α))3/2 + 3
2

sinα
(2 + cos (2α))5/2 (−2 sin (2α)) =

= − cosα
(2 + cos (2α))5/2

(
2 + cos (2α) + 6 sin2 α

)
=

= −cosα (5 − 2 cos (2α))
(2 + cos (2α))5/2 ,

(I.42)

and

x′′
2 = − sinα

(2 − cos (2α))3/2 − 3
2

cosα
(2 − cos (2α))5/2 (2 sin (2α)) =

= − sinα
(2 − cos (2α))5/2

(
2 − cos (2α) + 6 cos2 α

)
=

= −sinα (5 + 2 cos (2α))
(2 − cos (2α))5/2 .

(I.43)

Some useful expressions involving x1 and x2 are then

x′
1
x1

= − tanα
2 + cos (2α) ,

x′
2
x2

= cotα
2 − cos (2α) , (I.44)

which yields that

x′
1
x1

+ x′
2
x2

= − tanα
2 + cos (2α) + cotα

2 − cos (2α) =

= ∆4 (cotα (2 + cos (2α)) − tanα (2 − cos (2α))) =

= 3∆4 (cotα− tanα) = 6∆4 cos (2α)
sin (2α) =

= 6∆4 cot (2α) ,

(I.45)
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and lastly

x′′
1
x1

+ x′′
2
x2

= − 5 − 2 cos (2α)
(2 + cos (2α))2 − 5 + 2 cos (2α)

(2 − cos (2α))2 =

= −∆8
[

(5 − 2 cos (2α)) (2 − cos (2α))2 +

+ (5 + 2 cos (2α)) (2 + cos (2α))2
]

=

= −∆8
[
10
(
4 + cos2 (2α)

)
+ 16 cos2 (2α)

]
=

= −2∆8
[
20 + 13 cos2 (2α)

]
.

(I.46)

The function v (α) can now explicitly be expressed as

v (α) = −5
2

(∆′)2

∆ + ∆′′

2 + ∆′
(
x′

1
x1

+ x′
2
x2

)
=

= −5
2∆9 sin2 (2α) cos2 (2α) + 5

2∆9 sin2 (2α) cos2 (2α) +

− ∆5 cos (4α) − 6∆9 sin (2α) cos (2α) cot (2α) =
= −∆5 cos (4α) − 6∆9 cos2 (2α) =
= {Rewriting in terms of sin (2α)} =
= −∆5

[
1 − 2 sin2 (2α)

]
− 6∆9

[
1 − sin2 (2α)

]
,

(I.47)

which directly yields the first five R̃aa, a = 0,..., 4. Next up is R̃55 which is calculated
as

R̃55 = 4∆′′ − 2(∆′)2

∆ − 2∆
(
x′′

1
x1

+ x′′
2
x2

)
=

= 20∆9 sin2 (2α) cos2 (2α) − 8∆5 cos (4α) − 2∆9 sin2 (2α) cos2 (2α) +
+ 4∆9

[
20 + 13 cos2 (2α)

]
=

= −8∆5 cos (4α) + ∆9
[
80 + 52 cos2 (2α) + 18 sin2 (2α) cos2 (2α)

]
=

= {Rewriting in terms of sin (2α)} =
= −8∆5

[
1 − 2 sin2 (2α)

]
+ ∆9

[
132 − 34 sin2 (2α) − 18 sin4 (2α)

]
.

(I.48)
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The R̃66 = R̃77 element is given by

R̃66 = 4∆′x
′
1
x1

+ ∆
(

1
x2

1
− x′′

1
x1

− x′
1

2

x12 − 2x
′
1x

′
2

x1x2

)
=

= 4∆5 sin (2α) cos (2α) tanα
2 + cos (2α)+

+ ∆
(

2 + cos (2α)
cos2 α

+ 5 − 2 cos (2α)
(2 + cos (2α))2 − tan2 α

(2 + cos (2α))2 + 2∆4
)

=

= 2∆5 + 4∆5 sin (2α) cos (2α) tanα
2 + cos (2α)+

+ ∆
cos2 α (2 + cos (2α))2 ×

×
(

(2 + cos (2α))3 + cos2 α (5 − 2 cos (2α)) − sin2 α

)
=

= 2∆5 + 4∆5 sin (2α) cos (2α) tanα
2 + cos (2α)+

+ 2∆7 + 4 cos2 α + 4 cos4 α

(2 + cos (2α))2 =

= 2∆5 + ∆9
(
8 sin2 α cos (2α) [2 − cos (2α)] +

+ 2
[
7 + 4 cos2 α + 4 cos4 α

]
[2 − cos (2α)]2

)
=

= 2∆5 + 2∆9
[
51 − 4 cos2 α− 32 cos4 α− 16 cos6 α + 16 cos8 α

]
=

= 2∆5 + 2∆9
[
40 − 20 cos (2α) − 8 cos2 (2α) +

+ 2 cos3 (2α) + cos4 (2α)
]

=

= 2∆5 + 2∆9
[
33 + 6 sin2 (2α) + sin4 (2α)

]
+

− 4∆9 cos (2α)
[
9 + sin2 (2α)

]
.

(I.49)

For the last element, R̃88 = R̃99, note that the expression for it in (I.35) is the same
as for R̃66, if x1 is replaced by x2. It is possible to get R̃88 from R̃66 by using a shift
in α. Denoting this shift with Γ, it is defined as Γα = α+ π

2 . It has the advantageous
features

Γ sinα = cosα, Γ cosα = − sinα, (I.50)

as well as
Γ sin(2α) = − sin(2α), Γ cos(2α) = − cos(2α). (I.51)

For x1 and x2 this implies that

Γ
(
x1
x2

)
=
(

−x2
x1

)
, =⇒ Γ

(
x2

1
x2

2

)
=
(
x2

2
x2

1

)
. (I.52)

All sign differences appearing from a Γ transformation cancel in the expression for
R̃66 either via squares or fractions. Moreover, Γ∆ = ∆ and since Γ also commutes
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with ∂α, it is true that

R̃88 = Γ
(
R̃66

)
= Γ

(
2∆5 + 2∆9

[
33 + 6 sin2 (2α) + sin4 (2α)

]
+

− 4∆9 cos (2α)
[
9 + sin2 (2α)

] )
=

= 2∆5 + 2∆9
[
33 + 6 sin2 (2α) + sin4 (2α)

]
+

+ 4∆9 cos (2α)
[
9 + sin2 (2α)

]
.

(I.53)

The sum between the two is then

R̃66 + R̃88 = 4∆5 + 4∆9
[
33 + 6 sin2 (2α) + sin4 (2α)

]
. (I.54)

I.2 The Ricci scalar
The AdS radius for the vacuum is 1 which implies that a = 1. The Ricci scalar can
then be calculated as

R = ηabRab = 10v (α) − 4 · 6∆ + R̃55 + 2
(
R̃66 + R̃88

)
=

= −10∆5
(
1 − 2 sin2 (2α)

)
− 60∆9

(
1 − sin2 (2α)

)
− 24∆+

− 8∆5
(
1 − 2 sin2 (2α)

)
+ ∆9

[
132 − 34 sin2 (2α) − 18 sin4 (2α)

]
+

+ 8∆5 + 8∆9
[
33 + 6 sin2 (2α) + sin4 (2α)

]
=

= −24∆ − 2∆5
[
5 − 18 sin2 (2α)

]
+

+ 2∆9
[
168 + 37 sin2 (2α) − 5 sin4 (2α)

]
.

(I.55)
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Einstein’s equations

In this appendix it is shown that the AdS vacuum of section 3.2 fulfills Einstein’s
equations in type IIB string theory. The deformation parameters are set to χi = 0.
Using that the axion VEV is χ = 0, Einstein’s equations read

Rµν − 1
2Rgµν = −

[1
4∂ρϕ∂

ρϕ+ 1
24
(
e−ϕH2 + eϕF 2

)]
gµν+

+ 1
4
(
e−ϕHµρσH

ρσ
ν + eϕFµρσF

ρσ
ν

)
+

+ 1
2∂µϕ∂νϕ+ 1

4 · 4! F̃µρσξω F̃
ρσξω

ν

(J.1)

First off, the term on the right hand side that is proportional to the metric can be
evaluated. By using

e−ϕ∂αe
ϕ = 8 sin (2α)

7 − cos (4α) = 4∆4 sin (2α) , (J.2)

which was shown in (H.9), the dilaton kinetic term can be written as

1
4∂ρϕ∂

ρϕ = 1
4
(
e−ϕ∂ρe

ϕ
) (
e−ϕ∂σe

ϕ
)
gρσ =

= 1
4
(
e−ϕ∂ηe

ϕ
) (
e−ϕ∂ηe

ϕ
)
gηη + 1

4
(
e−ϕ∂αe

ϕ
) (
e−ϕ∂αe

ϕ
)
gαα =

= 1
4∆

[
4 +

(
4∆4 sin (2α)

)2
]

=

= ∆
[
1 + 4∆8 sin2 (2α)

]
(J.3)

The other term is

1
24
(
e−ϕH2 + eϕF 2

)
= 1

2424∆3 (19 − cos (4α))
[

∆2

2 − cos (2α)+

+ 1
∆2 (2 + cos (2α))2 (2 − cos (2α))

]
=

= ∆5 (19 − cos (4α))
[

1
2 + cos (2α) + 1

2 − cos (2α)

]
=

= 4∆9 (19 − cos (4α)) =
= {Rewrite in terms of sin (2α)} =
= 8∆9

[
9 + sin2 (2α)

]
.

(J.4)
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This yields that

1
4∂ρϕ∂

ρϕ+ 1
24
(
e−ϕH2 + eϕF 2

)
= ∆ + 4∆9

[
18 + 2 sin2 (2α) + sin2 (2α)

]
=

= ∆ + 12∆9
[
6 + sin2 (2α)

]
,

(J.5)

and Einstein’s equations read

Rµν − 1
2Rgµν = −

(
∆ + 12∆9

[
6 + sin2 (2α)

])
gµν+

+ 1
4
(
e−ϕHµρσH

ρσ
ν + eϕFµρσF

ρσ
ν

)
+

+ 1
2∂µϕ∂νϕ+ 1

4 · 4! F̃µρσξω F̃
ρσξω

ν

(J.6)

The only off-diagonal case where the right hand side is not trivially zero is when
µν = ηα. This case is dealt with first, whereafter the diagonal cases are treated.

J.1 The case µν = ηα

Since the metric and Ricci tensor are diagonal, the left hand side is zero. The
term proportional to the metric in the right hand side is also zero, so the remaining
condition is

0 = 1
4
(
e−ϕHηρσH

ρσ
α + eϕFηρσF

ρσ
α

)
︸ ︷︷ ︸

I

+1
2∂ηϕ∂αϕ+ 1

4 · 4! F̃ηρσξω F̃
ρσξω

α . (J.7)

The first term is evaluated as

I = 1
2e

−ϕHηθ1φ1Hαθ1φ1g
θ1θ1gφ1φ1 + 1

2e
ϕFηθ2φ2Fαθ2φ2g

θ2θ2gφ2φ2 =

= 2e−ϕe−2η sin (2α) 4 + cos (2α)
2 + cos (2α)x

4 sin2 θ1
∆2

x4 sin2 θ1
+

+ 2eϕe2η sin (2α) 4 − cos (2α)
2 − cos (2α)y

4 sin2 θ2
∆2

y4 sin2 θ2
=

= 2 sin (2α)
(

4 + cos (2α)
4 − cos2 (2α) + ∆4 (4 − cos (2α))

)
=

= 16∆4 sin (2α) ,

(J.8)

the second term becomes

1
2∂ηϕ∂αϕ = 1

2
(
e−ϕ∂ηe

ϕ
) (
e−ϕ∂αe

ϕ
)

= −4∆4 sin (2α) , (J.9)
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and the third term is
1

4 · 4! F̃ηρσξω F̃
ρσξω

α = 1
4 F̃ηθ1φ1θ2φ2F̃

αθ1φ1θ2φ2gαα + 1
4 F̃ηtxyzF̃

αtxyzgαα =

= 1
4gαα

(
F̃ηθ1φ1θ2φ2ϵ

αθ1φ1θ2φ2txyzηF̃txyzη+

+ F̃txyzηϵ
txyzαηθ1φ1θ2φ2F̃ηθ1φ1θ2φ2

)
=

= −1
4

2
∆ e

F̃ηθ1φ1θ2φ2F̃txyzη =

= −3
4

1
∆ e

∆4ẽ sin3 (2α) sin θ1 sin θ2 =

= −12∆4 sin (2α) .

(J.10)

The three terms of the right hand side are then added

r.h.s. = 1
4
(
e−ϕHηρσH

ρσ
α + eϕFηρσF

ρσ
α

)
+

+ 1
2∂ηϕ∂αϕ+ 1

4 · 4! F̃ηρσξω F̃
ρσξω

α =

= (16 − 4 − 12) ∆4 sin (2α) = 0,

(J.11)

and the case where µν = ηα is thus satisfied.

J.1.1 The case µν = ii with i = t, x, y, z

The first set of diagoal cases is when µν = ii, where i = t, x, y, z. The right hand
side then reads

r.h.s. = −
(
∆ + 12∆9

[
6 + sin2 (2α)

])
gii + 1

4 · 4! F̃iρσξω F̃
ρσξω
i . (J.12)

The second term is evaluated as
1

4 · 4! F̃iρσξω F̃
ρσξω
i = 1

4
(
F̃txyzηF̃

txyzη + F̃txyzαF̃
txyzα

)
gii =

= 1
4ϵ

txyzηαθ1φ1θ2φ2
(
F̃txyzηF̃αθ1φ1θ2φ2+

− F̃txyzαF̃ηθ1φ1θ2φ2

)
gii =

= −1
4
ẽ

e
∆4 sin2 (2α) sin θ1 sin θ2

(9
4 + sin2 (2α)

)
gii =

= −∆5
[
9 + 4 sin2 (2α)

]
gii,

(J.13)

which yields that

r.h.s. = −
(
∆ + 12∆9

[
6 + sin2 (2α)

])
gii − ∆5

(
9 + 4 sin2 (2α)

)
gii =

= −
(
∆ + ∆5

[
9 + 4 sin2 (2α)

]
+ 12∆9

[
6 + sin2 (2α)

])
gii.

(J.14)

Next, the left hand side is

l.h.s. = Rii − 1
2Rgii = e ai e

a
i Raa − 1

2Rgii,
(J.15)
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J. Einstein’s equations

where (e ai )2 = ηaagii for i = t, x, y, z. The left hand side becomes

l.h.s. =
(
ηaaRaa − 1

2R
)
gii =

=
(
v (α) − 6∆ + 12∆ + ∆5

(
5 − 18 sin2 (2α)

)
+

− ∆9
(
168 + 37 sin2 (2α) − 5 sin4 (2α)

) )
gii =

=
(
6∆ + 4∆5

[
1 − 4 sin2 (2α)

]
+

− ∆9
[
174 + 31 sin2 (2α) − 5 sin4 (2α)

] )
gii.

(J.16)

It is now possible to check if l.h.s. ?= r.h.s.. The metric factor gii cancels and the
condition reads

6∆ + 4∆5
[
1 − 4 sin2 (2α)

]
− ∆9

[
174 + 31 sin2 (2α) − 5 sin4 (2α)

] ?=
?= −∆ − ∆5

[
9 + 4 sin2 (2α)

]
− 12∆9

[
6 + sin2 (2α)

]
,

(J.17)

which can be rewritten as

0 ?= 7∆ + ∆5
[
13 − 12 sin2 (2α)

]
− ∆9

[
102 + 19 sin2 (2α) − 5 sin4 (2α)

]
=

= ∆9
[
7
(
4 − cos2 (2α)

)2
+
(
13 − 12 sin2 (2α)

) (
4 − cos2 (2α)

)
+

−
(
102 + 19 sin2 (2α) − 5 sin4 (2α)

) ]
=

= ∆9
[
7
(
3 + sin2 (2α)

)2
+
(
13 − 12 sin2 (2α)

) (
3 + sin2 (2α)

)
+

−
(
102 + 19 sin2 (2α) − 5 sin4 (2α)

) ]
=

= ∆9
[

(7 · 9 + 3 · 13 − 102) + (7 · 6 + 13 − 3 · 12 − 19) sin2 (2α) +

+ (7 − 12 + 5) sin4 (2α)
]

=

= ∆9
[
0 + 0 · sin2 (2α) + 0 · sin4 (2α)

]
=

= 0.

(J.18)

Einstein’s equations are thus satisfied for µν = tt, xx, yy, zz.

J.2 The case µν = ηη

The next case is µν = ηη and the right hand side is

r.h.s. = −
(
∆ + 12∆9

[
6 + sin2 (2α)

])
gηη+

+ 1
4
(
e−ϕHηρσH

ρσ
η + eϕFηρσF

ρσ
η

)
+

+ 1
2∂ηϕ∂ηϕ+ 1

4 · 4! F̃ηρσξω F̃
ρσξω

η .

(J.19)
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J. Einstein’s equations

The second term, I = 1
4

(
e−ϕHηρσH

ρσ
η + eϕFηρσF

ρσ
η

)
, becomes

I = 1
2
(
e−ϕHηθ1φ1H

ηθ1φ1 + eϕFηθ2φ2F
ηθ1φ1

)
gηη =

= 1
2

(
e−ϕH2

ηθ1φ1

∆2

x4
1 sin2 θ1

+ eϕF 2
ηθ2φ2

∆2

x4
2 sin2 θ2

)
=

= 4
(

cos2 α

2 − cos (2α) + ∆4 sin2 α [2 − cos (2α)]
)

=

= 4∆4
(
cos2 α [2 + cos (2α)] + sin2 α [2 − cos (2α)]

)
=

= 4∆4
[
2 + cos2 (2α)

]
= 4∆5

[
3 − sin2 (2α)

]
gηη.

(J.20)

The two last terms are evaluated as
1
2∂ηϕ∂ηϕ = 1

2
(
e−ϕ∂ηe

ϕ
)2

= 2 = 2gηηgηη = 2∆gηη, (J.21)

and
1

4 · 4! F̃ηρσξω F̃
ρσξω

η = 1
4
(
F̃ηθ1φ1θ2φ2F̃

ηθ1φ1θ2φ2 + F̃txyzηF̃
txyzη

)
gηη =

= 1
4ϵ

txyzηαθ1φ1θ2φ2
(
F̃ηθ1φ1θ2φ2F̃txyzα+

+ F̃txyzηF̃αθ1φ1θ2φ2

)
gηη =

= 1
4
ẽ

e
∆4 sin2 (2α) sin θ1 sin θ2

(
−9

4 + sin2 (2α)
)
gηη =

= −∆5
[
9 − 4 sin2 (2α)

]
gηη.

(J.22)

The right hand side thus becomes

r.h.s. =
(

− ∆ − 12∆9
[
6 + sin2 (2α)

]
+ 4∆5

[
3 − sin2 (2α)

]
+

+ 2∆ − ∆5
[
9 − 4 sin2 (2α)

] )
gηη =

=
(
∆ + 3∆5 − 12∆9

[
6 + sin2 (2α)

])
gηη.

(J.23)

The left hand side is

l.h.s. = Rηη − 1
2Rgηη = e 4

η e
4
η R44 − 1

2Rgηη =
(
R44 − 1

2R
)
gηη =

=
(
v (α) − 1

2R
)
gηη =

=
(

− ∆5
[
1 − 2 sin2 (2α)

]
− 6∆9

[
1 − sin2 (2α)

]
+ 12∆+

+ ∆5
[
5 − 18 sin2 (2α)

]
+

− ∆9
[
168 + 37 sin2 (2α) − 5 sin4 (2α)

] )
gηη =

=
(
12∆ + 4∆5

[
1 − 4 sin2 (2a)

]
+

− ∆9
[
174 + 31 sin2 (2α) − 5 sin4 (2α)

] )
gηη

(J.24)
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The equation is fulfilled if l.h.s. ?= r.h.s. which reads

12∆ + 4∆5
[
1 − 4 sin2 (2a)

]
− ∆9

[
174 + 31 sin2 (2α) − 5 sin4 (2α)

] ?=
?= ∆ + 3∆5 − 12∆9

[
6 + sin2 (2α)

]
.

(J.25)

Combining all the terms on one side yields that

0 ?= 11∆ + ∆5
[
1 − 16 sin2(2a)

]
− ∆9

[
102 + 19 sin2 (2α) − 5 sin4 (2α)

]
=

= ∆9
(

11
[
4 − cos2 (2α)

]2
+
[
1 − 16 sin2 (2a)

] [
4 − cos2 (2α)

]
+

− 102 − 19 sin2 (2α) + 5 sin4 (2α)
)

=

= ∆9
(

11
[
3 + sin2 (2α)

]2
+
[
1 − 16 sin2 (2a)

] [
3 + sin2 (2α)

]
+

− 102 − 19 sin2 (2α) + 5 sin4 (2α)
)

=

= ∆9
(

[9 · 11 + 3 − 102] + [6 · 11 + 1 − 3 · 16 − 19] sin2(2α)+

+ [11 − 16 + 5] sin4(2α)
)

=

= ∆9
(
0 + 0 · sin2(2α) + 0 · sin4(2α)

)
=

= 0,

(J.26)

and Einstein’s equations are fulfilled when µν = ηη.

J.3 The case µν = αα

For the µν = αα case, the right hand side reads

r.h.s. = −
(
∆ + 12∆9

[
6 + sin2 (2α)

])
gαα+

+ 1
4
(
e−ϕHαρσH

ρσ
α + eϕFαρσF

ρσ
α

)
︸ ︷︷ ︸

I

+

+ 1
2∂αϕ∂αϕ+ 1

4 · 4! F̃αρσξω F̃
ρσξω

α .

(J.27)

The last two terms are evaluated as

1
2∂αϕ∂αϕ = 1

2
(
e−ϕ∂αe

ϕ
)2

= 8∆8 sin2 (2α) = 8∆9 sin2 (2α) gαα, (J.28)
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and

1
4 · 4! F̃αρσξω F̃

ρσξω
α = 1

4
(
F̃αθ1φ1θ2φ2F̃

αθ1φ1θ2φ2 + F̃αtxyzF̃
αtxyz

)
gαα =

= 1
4
(
F̃αθ1φ1θ2φ2ϵ

αθ1φ1θ2φ2txyzηF̃txyzη+

+ F̃txyzαϵ
txyzαηθ1φ1θ2φ2F̃ηθ1φ1θ2φ2

)
gαα =

= −1
4

1
e

(
F̃αθ1φ1θ2φ2F̃txyzη + F̃txyzαF̃ηθ1φ1θ2φ2

)
gαα =

= −1
4
ẽ

e
∆4 sin θ1 sin θ2

(
−9

4 sin2 (2α) + sin4 (2α)
)
gαα =

= ∆5
[
9 − 4 sin2 (2α)

]
gαα.

(J.29)

The second term becomes

I = 1
2
(
e−ϕHαθ1φ1H

αθ1φ1 + eϕFαθ2φ2F
αθ2φ2

)
gαα =

= 1
2

(
e−ϕH2

αθ1φ1

∆2

x4
1 sin2 θ1

+ eϕF 2
αθ2φ2

∆2

x4
2 sin2 θ2

)
=

= sin2 (2α) cos2 α

∆2 (2 − cos (2α))
(4 + cos (2α))2

(2 + cos (2α))4
∆2 (2 + cos (2α))2

cos4 α
+

+ ∆2 (2 − cos (2α)) sin2 (2α) sin2 α
(4 − cos (2α))2

(2 − cos (2α))4
∆2 (2 − cos (2α))2

sin4 α
=

= ∆4 sin2 (2α)
(

(4 + cos (2α))2

cos2 α (2 + cos (2α)) + (4 − cos (2α))2

sin2 α (2 − cos (2α))

)
=

= ∆8 sin2 (2α)
sin2 α cos2 α

(
sin2 α [2 − cos (2α)] [4 + cos (2α)]2 +

+ cos2 α [2 + cos (2α)] [4 − cos (2α)]2
)

=

= 4∆8
(

sin2 α
[
32 − 6 cos2 (2α) − cos3 (2α)

]
+

+ cos2 α
[
32 − 6 cos2 (2α) + cos3 (2α)

] )
=

= 4∆8
(
32 − 6 cos2 (2α) + cos4 (2α)

)
=

= {Rewrite in terms of sin (2α)} =
= 4∆9

[
27 + 4 sin2 (2α) + sin4 (2α)

]
gαα.

(J.30)

In total, the right hand side is

r.h.s. =
(

− ∆ − 12∆9
[
6 + sin2 (2α)

]
+ 4∆9

[
27 + 4 sin2 (2α) + sin4 (2α)

]
+

+ 8∆9 sin2 (2α) + ∆5
[
9 − 4 sin2 (2α)

] )
gαα =

=
(
−∆ + ∆5

[
9 − 4 sin2 (2α)

]
+ 4∆9

[
9 + 3 sin2 (2α) + sin4 (2α)

])
gαα.

(J.31)
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The left hand side is

l.h.s. = Rαα − 1
2Rgαα = e 5

α e
5
α R55 − 1

2Rgαα =
(
R55 − 1

2R
)
gαα =

=
(
v (α) + R̃55 − 1

2R
)
gαα =

=
(

− ∆5
[
1 − 2 sin2 (2α)

]
− 6∆9

[
1 − sin2 (2α)

]
+

− 8∆5
[
1 − 2 sin2 (2α)

]
+ ∆9

[
132 − 34 sin2 (2α) − 18 sin4 (2α)

]
+

+ 12∆ + ∆5
[
5 − 18 sin2 (2α)

]
+

− ∆9
[
168 + 37 sin2 (2α) − 5 sin4 (2α)

] )
gαα =

=
(
12∆ − 4∆5 − ∆9

[
42 + 65 sin2 (2α) + 13 sin4 (2α)

])
gαα,

(J.32)

and the condition l.h.s. ?= r.h.s. thus reads

12∆ − 4∆5 − ∆9
[
42 + 65 sin2 (2α) + 13 sin4 (2α)

] ?=
?= −∆ + ∆5

[
9 − 4 sin2 (2α)

]
+ 4∆9

[
9 + 3 sin2 (2α) + sin4 (2α)

]
,

(J.33)

which can be rewritten as

0 ?= 13∆ − ∆5
(
13 − 4 sin2 (2α)

)
− ∆9

[
78 + 77 sin2 (2α) + 17 sin4 (2α)

]
=

= ∆9
(
13
[
4 − cos2 (2α)

]2
−
[
13 − 4 sin2 (2α)

] [
4 − cos2 (2α)

]
+

− 78 − 77 sin2 (2α) − 17 sin4 (2α)
)

=

= ∆9
(
13
[
3 + sin2 (2α)

]2
−
[
13 − 4 sin2 (2α)

] [
3 + sin2 (2α)

]
+

− 78 − 77 sin2 (2α) − 17 sin4 (2α)
)

=

= ∆9
(

[9 · 13 − 3 · 13 − 78] + [6 · 13 − 13 + 12 − 77] sin2 (2α) +

+ [13 + 4 − 17] sin4 (2α)
)

=

= ∆9
(
0 + 0 · sin2 (2α) + 0 · sin4 (2α)

)
=

= 0.

(J.34)

Einstein’s equations are fulfilled when µν = αα.

J.4 Case: µν = ii for i = θ1, φ1

Since R66 = R77, the cases µν = θ1θ1 and µν = φ1φ1 can be evaluated simultane-
ously. The right hand side is

r.h.s. = −
(
∆ + 12∆9

[
6 + sin2 (2α)

])
gii+

+ 1
4e

−ϕHiρσH
ρσ
i + 1

4 · 4! F̃iρσξω F̃
ρσξω
i

(J.35)
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Treating the terms one by one yields that
1
4e

−ϕHiρσH
ρσ
i = 1

2e
−ϕ
[
Hηθ1φ1H

ηθ1φ1 +Hαθ1φ1H
αθ1φ1

]
gii =

= 1
2 · 3!e

−ϕH2gii = 2∆ 19 − cos (4α)
(2 − cos (2α)) (2 + cos (2α))2 =

= 2∆5 19 − cos (4α)
2 + cos (2α) = 2∆9 [2 − cos (2α)] [19 − cos (4α)] =

= 4∆9 [2 − cos (2α)]
[
10 − cos2 (2α)

]
=

= 4∆9
[
20 − 10 cos (2α) − 2 cos2 (2α) + cos3 (2α)

]
=

= 8∆9
[
9 + sin2 (2α)

]
− 4∆9 cos (2α)

[
9 + sin2 (2α)

]
,

(J.36)

and
1

4 · 4! F̃iρσξω F̃
ρσξω
i = 1

4
(
F̃ηθ1φ1θ2φ2F̃

ηθ1φ1θ2φ2 + F̃αθ1φ1θ2φ2F̃
αθ1φ1θ2φ2

)
gii =

= 1
4ϵ

txyzηαθ1φ1θ2φ2
(
F̃ηθ1φ1θ2φ2F̃txyzα+

− F̃αθ1φ1θ2φ2F̃txyzη
)
gii =

= 1
4
ẽ

e
∆4 sin2 (2α) sin θ1 sin θ2

(
sin2 (2α) + 9

4
)
gii =

= ∆5
[
9 + 4 sin2 (2α)

]
gii.

(J.37)

The right hand side becomes

r.h.s. =
(

− ∆ − 12∆9
[
6 + sin2 (2α)

]
+ 8∆9

[
9 + sin2 (2α)

]
+

− 4∆9 cos (2α)
[
9 + sin2 (2α)

]
+ ∆5

[
9 + 4 sin2 (2α)

] )
gii =

=
(

− ∆ + ∆5
[
9 + 4 sin2 (2α)

]
− 4∆9 sin2 (2α) +

− 4∆9 cos (2α)
[
9 + sin2 (2α)

] )
gii.

(J.38)

The left hand side is

l.h.s. = Rii − 1
2Rgii = e ai e

a
i Raa − 1

2Rgii =
(
Raa − 1

2R
)
gii =

=
(
v (α) + R̃66 − 1

2R
)
gii =

=
(

− ∆5
[
1 − 2 sin2 (2α)

]
− 6∆9

[
1 − sin2 (2α)

]
+ 2∆5+

+ 2∆9
[
33 + 6 sin2 (2α) + sin4 (2α)

]
+

− 4∆9 cos (2α)
[
9 + sin2 (2α)

]
+ 12∆ + ∆5

[
5 − 18 sin2 (2α)

]
+

− ∆9
[
168 + 37 sin2 (2α) − 5 sin4 (2α)

] )
gii =

=
(
12∆ + 2∆5

[
3 − 8 sin2 (2α)

]
+

− ∆9
[
108 + 19 sin2 (2α) − 7 sin4 (2α)

]
+

− 4∆9 cos (2α)
[
9 + sin2 (2α)

] )
gii.

(J.39)
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Note that the term −4∆9 cos (2α) [9 + sin2 (2α)] appears on both sides of the equa-
tion and thus cancels when checking that l.h.s. ?= r.h.s.

12∆ + 2∆5
[
3 − 8 sin2 (2α)

]
− ∆9

[
108 + 19 sin2 (2α) − 7 sin4 (2α)

] ?=
?= −∆ + ∆5

[
9 + 4 sin2 (2α)

]
− 4∆9 sin2 (2α) .

(J.40)

This can be rewritten as

0 ?= 13∆ − ∆5
(
3 + 20 sin2 (2α)

)
− ∆9

[
108 + 15 sin2 (2α) − 7 sin4 (2α)

]
=

= ∆9
(
13
[
4 − cos2 (2α)

]2
−
[
3 + 20 sin2 (2α)

] [
4 − cos2 (2α)

]
+

− 108 − 15 sin2 (2α) + 7 sin4 (2α)
)

=

= ∆9
(
13
[
3 + sin2 (2α)

]2
−
[
3 + 20 sin2 (2α)

] [
3 + sin2 (2α)

]
+

− 108 − 15 sin2 (2α) + 7 sin4 (2α)
)

=

= ∆9
(

[9 · 13 − 9 − 108] + [6 · 13 − 3 − 3 · 20 − 15] sin2 (2α) +

+ [13 − 20 + 7] sin4 (2α)
)

=

= ∆9
(
0 + 0 · sin2 (2α) + 0 · sin4 (2α)

)
=

= 0,

(J.41)

which shows that Einstein’s equations are fulfilled when µν = θ1θ1, φ1φ1.

J.5 The case µν = ii for i = θ2, φ2

The last case where µν = ii for i = θ2, φ2 is similar to the previous one, and the
right hand side reads

r.h.s. = −
(
∆ + 12∆9

[
6 + sin2 (2α)

])
gii+

+ 1
4e

ϕFiρσF
ρσ
i + 1

4 · 4! F̃iρσξω F̃
ρσξω
i .

(J.42)

The last two terms are
1
4e

ϕFiρσF
ρσ
i = 1

2e
ϕ
[
Fηθ2φ2F

ηθ2φ2 + Fαθ2φ2F
αθ2φ2

]
gii =

= 1
2 · 3!e

ϕF 2gii = 2∆5 19 − cos (4α)
(2 − cos (2α)) =

= 2∆9 [2 + cos (2α)] [19 − cos (2α)] =
= 4∆9 [2 + cos (2α)]

[
10 − cos2 (2α)

]
=

= 4∆9
[
20 + 10 cos (2α) − 2 cos2 (2α) − cos3 (2α)

]
=

= 8∆9
[
9 + sin2 (2α)

]
+ 4∆9 cos (2α)

[
9 + sin2 (2α)

]
,

(J.43)

and
1

4 · 4! F̃iρσξω F̃
ρσξω
i = ∆5

[
9 + 4 sin2 (2α)

]
gii, (J.44)
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so that the right hand side becomes

r.h.s. =
(

− ∆ − 12∆9
[
6 + sin2 (2α)

]
+ 8∆9

[
9 + sin2 (2α)

]
+

+ 4∆9 cos (2α)
[
9 + sin2 (2α)

]
+ ∆5

[
9 + 4 sin2 (2α)

] )
gii =

=
(

− ∆ + ∆5
[
9 + 4 sin2 (2α)

]
− 4∆9 sin2 (2α) +

+ 4∆9 cos (2α)
[
9 + sin2 (2α)

] )
gii.

(J.45)

The left hand side is

l.h.s. = Rii − 1
2Rgii = e ai e

a
i Raa − 1

2Rgii =
(
Raa − 1

2R
)
gii =

=
(
v (α) + R̃88 − 1

2R
)
gii =

=
(

− ∆5
[
1 − 2 sin2 (2α)

]
− 6∆9

[
1 − sin2 (2α)

]
+ 2∆5+

+ 2∆9
[
33 + 6 sin2 (2α) + sin4 (2α)

]
+

+ 4∆9 cos (2α)
[
9 + sin2 (2α)

]
+ 12∆ + ∆5

[
5 − 18 sin2 (2α)

]
+

− ∆9
[
168 + 37 sin2 (2α) − 5 sin4 (2α)

] )
gii =

=
(
12∆ + 2∆5

[
3 − 8 sin2 (2α)

]
+

− ∆9
[
108 + 19 sin2 (2α) − 7 sin4 (2α)

]
+

+ 4∆9 cos (2α)
[
9 + sin2 (2α)

] )
gii.

(J.46)

The equation is fulfilled if l.h.s. ?= r.h.s. which reads

12∆ + 2∆5
[
3 − 8 sin2 (2α)

]
− ∆9

[
108 + 19 sin2 (2α) − 7 sin4 (2α)

] ?=
?= −∆ + ∆5

[
9 + 4 sin2 (2α)

]
− 4∆9 sin2 (2α) ,

(J.47)

and can be rewritten as

0 ?= 13∆ − ∆5
(
3 + 20 sin2 (2α)

)
− ∆9

[
108 + 15 sin2 (2α) − 7 sin4 (2α)

]
=

= ∆9
(
13
[
4 − cos2 (2α)

]2
−
[
3 + 20 sin2 (2α)

] [
4 − cos2 (2α)

]
+

− 108 − 15 sin2 (2α) + 7 sin4 (2α)
)

=

= ∆9
(
13
[
3 + sin2 (2α)

]2
−
[
3 + 20 sin2 (2α)

] [
3 + sin2 (2α)

]
+

− 108 − 15 sin2 (2α) + 7 sin4 (2α)
)

=

= ∆9
(

[9 · 13 − 9 − 108] + [6 · 13 − 3 − 3 · 20 − 15] sin2 (2α) +

+ [13 − 20 + 7] sin4 (2α)
)

=

= ∆9
(
0 + 0 · sin2 (2α) + 0 · sin4 (2α)

)
=

= 0.

(J.48)

As this was the last case, the AdS vacuum of section 3.2 satisfies the type IIB
Einstein’s equations.
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