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Non-Supersymmetric AdS Solutions in Type IIB String Theory

Using S-folds to Test Swampland Criteria for Effective Field Theories to be Consis-
tent with Quantum Gravity

Johan Wikstrom

Department of Physics

Chalmers University of Technology

Abstract

The task of finding a satisfactory theory of quantum gravity has turned out to be
extremely challenging. In the context of string theory, which is a potential frame-
work of quantum gravity, this problem is represented by the vast number of possible
string compactifications. The swampland program is an effort to sort through these
possibilities and define what makes some theories of quantum gravity inconsistent.
The result is a number of so-called swampland conjectures. This thesis studies an
AdS vacuum in type IIB string theory that is relevant to one of these conjectures. It
is explicitly shown that this vacuum, which is an S-fold of the form AdS, x S! x S5,
satisfies the type IIB equations of motion. The S-fold originates from uplifting a
non-compact gauging of the 4-dimensional N = 8 supergravity. A more simple case
illustrating non-compact gaugings, related to the gauge group SO(8), is treated here.
Also discussed is the topology of the S-fold, which features a non-trivial SL(2, Z)
monodromy when the S! is encircled, making the background non-geometric.

The connection to the swampland program appears when a 2-parameter deformation
of the AdS vacuum is used to break supersymmetry. Locally, these deformations
only amount to a coordinate redefinition, which protects the vacuum solution from
some non-perturbative decay channels. As the non-supersymmetric S-folds are also
perturbatively stable, they have been suggested as a potential challenge to the Non-
SUSY AdS conjecture. However, more evidence of non-perturbative stability is likely
needed to make a solid case for non-supersymmetric AdS vacua in quantum gravity.

Keywords: quantum gravity, the swampland, supergravity, type IIB string theory,
S-fold, non-compact gauging
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1

Introduction

1.1 Unification and quantum gravity

Some of the most important achievements in physics can be classified as unifica-
tions. One celebrated example is the unification of electricity and magnetism, done
by Maxwell in 1865. The unified theory, called electromagnetism, was able to re-
solve inconsistencies in previous descriptions and also predicted new phenomenon,
like electromagnetic waves [1].

Today, the main theories for elementary physics are general relativity and the Stan-
dard Model. General relativity describes gravity and the Standard Model describes
electroweak- and strong interactions. Although both theories have had great experi-
mental success, each have their respective problems [2]. First of all, general relativity
is not renormalisable. This means that high energy virtual processes cause ultravio-
let (UV) divergences that permeate into physical predictions [1]. General relativity
can thus not be seen as a consistent quantum field theory. The Standard Model
on the other hand, is renormalisable and thus consistent. However, there are still
phenomena it has trouble explaining, such as neutrino masses and dark matter [3].

1.2 String theory/M-theory

String theory turns out to be a framework in which gravity appears in a very natu-
ral way, while still being compatible with quantum mechanics [1]. In string theory,
the concept of point-like particles are replaced by a fundamental string whose vi-
brational modes correspond to physical particles. The framework of string theory
can be described in 5 different ways [4]. These various formulations are related by
duality transformations. They are also related to the effective field theory (EFT) of
M-theory, a non-perturbative theory in 11 spacetime dimensions. This connection
is illustrated in figure 1.1.

The low-energy effective theory of M-theory is called 11-dimensional supergravity
[4]. From there, type IIA superstring theory can be reached via compactification
to 10 dimensions. This is done by making one of the space coordinates periodic,
replacing its topology R with a circle S*. The other string theory formulations are
also 10-dimensional. This appearance of extra dimensions may seem to contradict
what is obvious; there are only 4 spacetime dimensions. However, if the remaining
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11-dimensional supergravity

Heterotic SO(32) Type ITA

Heterotic EgxEg Type 1IB

Type I

Figure 1.1: The amoeba diagram illustrates how 11-dimensional supergravity and
the five string theories relate to M-theory [5]. While 11-dimensional supergravity is
the low-energy limit of M-theory, the superstring theories are connected to M-theory
via their low-energy supergravities [4].

extra dimensions are compact and very small, the possibility cannot be completely
rejected. At length scales similar to the size of additional compact dimensions, there
would be great effects on for example gravity. Gravitational experiments have not
yet been able to dismiss such extra dimensions if their size is below 1pm [6]. In

most contexts however, compact spaces are considered to have sizes as small as the
Planck length Ip ~ 1.6 - 107 m [4].

Other than the size, the geometry of the compact space is also of great importance.
In particular, the topology is what largely determines what physics are obtained [2].
The compactification on S* which takes 11-dimensional supergravity to type IIA
string theory is relatively straightforward since the compact space is 1-dimensional.
When the compact space instead is 6- or 7-dimensional, the number of possible
geometries becomes very large [1]. Finding the compactification that is in agreement
with our nature turns out to be a daunting task.

1.3 The swampland program

Instead of looking for the correct compactification, recent efforts have been focused
on finding more general features of background geometries. This effort, known as
the swampland program, does not only encompass models in string theory, but also
other theories of quantum gravity. There is however a notion of string universality,
claiming that all consistent theories of quantum gravity can be described in string
theory, but it is not proven [2]. Until further notice, the more general purpose of
the swampland program is to form conditions that determine if an EFT can be UV
completed to a consistent quantum gravity theory. If it can, it is said to be part of
the landscape. EFTs that cannot are said to be in the swampland. The landscape
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and the swampland are distinguished by swampland constraints. These constraints
should be a consequence of some properties of quantum gravity, but as these are not
yet understood, there are only conjectures so far [2]. In the context of string theory,
the swampland conjectures serve to classify the plausible background geometries,
and some can even be proven. Being able to differentiate between EFTs in the
landscape and swampland is of great importance in quantum gravity. It provides a
unique way to associate physics at the Planck energy, the energy scale of quantum
gravity, to physics at very low energies, even as low as the neutrino sector of the
Standard Model at < 1eV. The Standard Model possibly being incorrect is thus
something that can be connected to quantum gravity.

The swampland conjectures do not only deal with compactifications as the geometry
of the 4-dimensional spacetime is relevant as well. There are three types categorised
by the sign of the cosmological constant A [7]. If A > 0 the spacetime is de Sitter
(dS), if A =0 it is Minkowski and if A < 0 it is anti-de Sitter (AdS). Even though
A has been measured to be positive it is still of interest to study the other cases as
they may provide clues to quantum gravity in general.

A swampland conjecture that is relevant for this thesis is the Non-SUSY AdS conjec-
ture [8]. It claims that a vacuum with AdS spacetime has to be unstable unless it is
supersymmetric (SUSY). Supersymmetry refers to an exchange-symmetry between
fermions and bosons, which leaves the theory unchanged [9]. As this is a conjecture,
it could be disproven by finding an example of a stable non-supersymmetric AdS
vacuum solution in string theory. This method is however not very realistic since
there could always be unknown channels through which the vacuum decays. How-
ever, it is still possible to challenge the conjecture by finding vacua that pass the
known stability tests.

1.4 Outline of thesis

This thesis focuses on an AdS vacuum solution of type IIB string theory presented
in [10]. Its geometry is described by an S-fold where deformations are introduced
to break supersymmetry. The solution does not appear to be unstable, so it has
been proposed as a challenge to the Non-SUSY AdS conjecture. The purpose of
this thesis is to verify that the proposed vacuum satisfies the type IIB equations of
motion, and to investigate some features of the solution. Specifically, non-compact
gaugings, S-folds and stability are explored, mostly through more simple examples.
Following is the thesis outline.

Chapter 2 introduces 11-dimensional supergravity and gives a first example of com-
pactification to 4 dimensions via the Freund-Rubin ansatz. Another compactifica-
tion, this time on a 7-torus, is then considered, in particular how the 4-dimensional
theory can be gauged using non-compact groups while avoiding negative energies.

Chapter 3 gives a description of type IIB string theory and its equations of motion.
The SL(2, R) invariance of the field theory is also showcased. The vacuum solution

3
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to type IIB string theory that was suggested as a contradiction to the Non-SUSY
AdS conjecture is then presented. In particular, the S-fold geometry and the super-
symmetry breaking deformations are discussed. Finally, the equations of motion are
also verified.

Chapter 4 discusses some modes of instability for vacuum solutions in string theory,
and how these affect the type IIB S-fold given in [10]. The general conclusions of
the thesis are then given.

Appendix A gives the definitions of the Levi Civita symbol and the generalised Kro-
necker delta that are used in the thesis. Differential forms are also defined and some
general properties are given.

Appendix B derives the equations of motion from the Lagrangian of 11-dimensional
supergravity.

Appendix C calculates the Riemann tensor for AdS, via Cartan’s structure equa-
tions with zero torsion. This method is later used in appendix E and I.

Appendix D is based on [11] and derives N = 8 supergravity from 11-dimensional
supergravity by dimensional reduction. Only the bosonic sector is considered.

Appendix E focuses on the Hopf fibration of S%, which has some topological prop-
erties similar to those of the S-fold.

Appendix F derives the type field equations of type IIB string theory. This is done
by varying an action that is complemented by the self-duality condition on the 5-
form field strength.

Appendix G calculates the field strengths for the 2-form and 4-form fields of the
type IIB AdS vacuum that is of interest in this thesis.

Appendix H shows that the AdS vacuum satisfies all type IIB equations of motion,
except Einstein’s equations.

Appendix I computes the Ricci tensor and curvature scalar for the AdS vacuum.
These quantities are needed for appendix J.

Appendix J shows that Einstein’s equations in type IIB string theory are fulfilled
by the AdS vacuum.



2

11-dimensional supergravity

11-dimensional supergravity is the low-energy limit of M-theory and as the name
suggests, it is a supersymmetric theory. In particular, it has N = 1 local supersym-
metry invariance [11]. The theory obtained from dimensional reduction to D = 4
spacetime dimensions turns out to be more supersymmetric. The spinors in D = 11
are 32-dimensional, and split into 8 sets of 4-dimensional spinors, implying that the
D = 4 theory has N = 8 supersymmetry [12]. Having N > 8 supersymmetry is
not possible in 4 dimensions since it introduces fields with spin greater than 2 [9],
which do not exist in nature [12]. This constraint of spin < 2 in the 4-dimensional
theory is what determines D = 11 as the highest dimension in which supergravity
is consistent [12].

The field content and supersymmetry transformations of D = 11 supergravity are
given in section 2.1, as well as the bosonic Lagrangian and the corresponding equa-
tions of motion. Section 2.2 focuses on how the 11-dimensional theory is prone to
compactify spontaneously to 4 spacetime dimensions, which is motivated by the
Freund-Rubin ansatz. The N = 8 supergravity in D = 4 is presented in section 2.3.
Section 2.4 describes gaugings of N = 8 supergravity, in particular how non-compact
gauge groups can be used without introducing ghosts. This is of relevance since the
type IIB AdS vacuum also features a non-compact gauging.

2.1 Lagrangian and equations of motion

A virtue of doing supergravity in 11 dimensions, opposed to D = 4, is that the
field content is much simpler. There is an elfbein e,,* corresponding to the gravi-
ton, a gravitino described by the vector-spinor ¥,,; and a 3-form gauge field Ay/nvp
[12]. The capital latin indices M, N, P,... denote curved spacetime indices in 11
dimensions, while A, B, C.,... are indices of the locally flat frame. The elfbein
e, thus relates the curved spacetime metric gy to the flat Minkowski metric
nap = diag(—1, 1,..., 1) via

gun = exen"nan. (2.1)
For the determinant e = det (e MA) this implies that
g =det(gun) = det(eMAeNBnAB) = —€?, (2.2)

since det(nap) = —1. The fields make up 128 fermionic and 128 bosonic degrees of
freedom, where the bosonic are split as 44 + 84 among e,,* and Aj;np respectively

5



2. 11-dimensional supergravity

[12]. The fields are related via the N = 1 local supersymmetry transformations
given by

Seyt = iel Ay, (2.3)
1 _

Sy = Dyge — @(PMPQRS — 88, "T9™) (Fpgrs — 3¥pLor¥ g e, (2.4)

6AMNP = 3Z€F[MN\IJP}, (25)

where the parameter € is anticommuting [13]. The I'-matrices obey {I'4, '8} = 2n4B
and more indices are added via I'4,..4, = I'{4,...I'4,]. The covariant derivative is de-
fined as Dy, = Oy + in 4548 where wy 45 are the Lorentz connection coefficients
[14]. The 3-form and its field strength, Fynpo = 40 Anpq), differs by a factor 2

from some literature, for example [12] and [14], so that Ahere , = 2Athere,

The supersymmetry transformations (2.3)-(2.5) make the Lagrangian of D = 11 su-
pergravity unique up to higher order derivative terms [12]. The Lagrangian encodes
how the 3 different types of fields interact. When looking for vacuum solutions to
the theory, it is however necessary to set the vacuum expectation values (VEVs)
of the fermionic fields to zero, (®,) = 0, to obtain solutions with maximal space-
time symmetry [12, 13]. For this purpose only the bosonic Lagrangian of D = 11
supergravity is required. It is given by
_ L po L puNPQ]
T T S P TR

_ L 1 eMi

12k3, 31(4!1)2

L
(2.6)
M1
AM1M2M3FM4M5M6M7FM8M9M10M11 )

where 12, = 87G1 | GV being Newton’s constant in 11 dimensions [13, 14]. The
Levi-Civita tensor density in 11 dimensions is ¢1-11 whereas the totally antisym-
metric tensor is denoted by €M1~ see appendix A. The bosonic field equations,
given by variation of ¢g™" and A,;np respectively, are

1 1 1
Ryn — sgunR = — <FMPQRFNPQR — gMNF2> ; (2.7)
2 12 8
1
VMFMNPQ = TMENPQRL“RESFR1R2R3R4FR5R6R7R3- (28)

The full derivation of the field equations is given in appendix B.

2.2 Spontaneous compactification

As was discussed in section 1.2, the 7 extra dimensions of D = 11 supergravity have
to disappear, possibly via compactification. It is however not satisfactory to just
force the 7 space dimensions to compactify. Instead, the compactification should
appear spontaneously [12, 15]. In other words, the theory should have a vacuum
solution with the topology M4 x M7, where M, is a maximally symmetric spacetime
and My is compact. This turns out to be the case for D = 11 supergravity, which can
be shown in a relatively straightforward way. First, the 11-dimensional coordinates

6



2. 11-dimensional supergravity

are split as M = (2, y™), so that 2, u = 0,..., 3, denote 4-dimensional spacetime
coordinates and y™, m = 1,..., 7, denote 7-dimensional internal coordinates [12, 15].
To find a M4 x My-type solution the metric VEV is set as

_ 2 _ (G () 0
(gun) = gun = ( 0 §mn(y)> : (2.9)
so that the M, metric VEV §,, does not depend on the internal coordinates, and
vice versa [12]. The next step is to make the Freund-Rubin ansatz for the field
strength VEV
(FHveTy — FHVPT — _Gpehvpo (2.10)
where (F™M"®) = (Frs) = (F#rs) = (F#rs) = (0 [15]. The parameter m is
constant and associated with the radii of M, and M;. The Freund-Rubin ansatz
trivially satisfies (2.8) since the left hand side is proportional to V,¥VF@ = (),
and the right hand side either features eVP@F1fs with repeated indices or that
ﬁR1R2R3R4ﬁR5R6R7R8 = (0. The Bianchi 1dent1ty

1
VMRyn = 5V E, (2.11)

is also fulfilled which follows from acting with V™ on (2.7), since the right hand
side becomes zero. The Ricci scalar VEV is found by contracting (2.7) with g™¥

o 11 . 1 /- 11 -
— —R=—(F"- F2) 2.12
h 2 h 12 ( 8 ’ (2.12)
which implies that
o 11-4, 1 - 624!
R=——38F=__"F"=——m’=—6m’ 2.13
121 -1 122 122" e (2.13)
where the squared field strength is given by
F2 = F 00 FP7 = 62mPe,, 0?7 = —624] m?. (2.14)

It is now possible to compute the Ricci tensor in the external coordinates z*, and
the internal coordinates y™. In four spacetime dimensions

. 1, = 1/, = o . 1, -
Ry, = igle + 12 (ngFMPJSF pot — 89WF2) =
6m? 62m? | oot 624ImM? 2.15
= = 9 Guv + 12 Guv€upoe€ pot + Wguu = ( )
= (=3 — 18+ 9) MG = —12m%j,u,
using that €,,,¢€“P7¢ = —315%, see appendix A. The Ricci tensor for the compact
space is
. 1, = 1 1, - 6 624
Rmn =3 OmnR 5 (O -3 o7’nnF12> = |3 a o 20mn =
pImntt 5 (VT g9 2 12.8)™9 (2.16)

= (_3 + 9)m2§mn = 6m2§mn'
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The equations for the Ricci tensor on M, and My, which follow from the Freund-
Rubin ansatz of (2.10), turn out to give the desired topological properties for spon-
taneous compactification. First off, the equation }OBW = —12m?j,, describes AdS,
with radius L = %, which is a maximally symmetric space [13]. See also appendix
C for the metric and Ricci tensor of AdS,. Furthermore, the internal space M; de-
scribed by - 6m>%dmn has constant positive curvature and is compact [12, 16].

There are still infinitely many solutions for My, where one of the possibilities is the
7-sphere S7.

As this vacuum solution satisfies the equations of motion, it shows that D = 11
supergravity can spontaneously compactify to a product space between AdS, and a
compact space M;. The compactification to 4 spacetime dimensions happens in a
natural way because of the 4 indices in the field strength Fy/nypg, allowing for the
ansatz in (2.10) [15]. It should also be noted that the ansatz F™"1 ~ ™1 is equally
viable. The result is a vacuum solution on AdS; x My, where M, is compact. There
are however reasons to believe that compactification to 4-dimensional spacetime may
be naturally preferred [12].

2.3 N =8 supergravity

The N = 8 supergravity is obtained by dimensional reduction of 11-dimensional su-
pergravity on a 7-torus [11], which is performed in appendix D. Its massless spectrum
contains 1 graviton, 8 gravitinos, 28 vectors, 56 Majorana spinors and 70 scalars,
35 of which are pseudoscalars. Since the fermion VEVs are set to zero for vacuum
solutions, only the bosonic part of the theory is considered. The field equations of
N = 8 supergravity have a global invariance under E(,17). The Lagrangian has a
local SU(8)/Zy symmetry and a global symmetry under SL(8, R), both which are
subgroups of E7(47) [11].

2.3.1 The exceptional group E;_

E7 is a 133-dimensional simple group of rank 7 [11]. The non-compact real form
of E7 considered here is E7(;7) whose algebra has 63 compact generators, spanning
su(8), and 70 non-compact generators. The signature of the Cartan-Killing form is
thus 70 — 63 = +7, consequently E;17). The Lie algebra of E; 7 is denoted by
¢7(+7)- A general element of the complex 56-dimensional representation of e7(47) can
be written as

Attt ZIJPQ)
E : , 2.17
<EMNKL AMY (2.17)
where A, fF = A[][K(S J]L} [17]. The traceless 8 x 8 matrices A,/ are antihermi-
tian, A/ ; = —A;7, and the generators of the maximal compact subalgebra su(8).
The capital indices I, J,... = 1,..., 8 are thus fundamental SU(8) indices. The

completely antisymmetric, complex tensor Y;,xr, which is self-dual SMNPQ —

ine”KLMNP Q¥ ;skL, contains the 70 non-compact generators [17]. The general

8



2. 11-dimensional supergravity

phase 7 is chosen as +1.

The E7(;7) algebra element in (2.17) reveals two 63-dimensional maximal subal-
gebras. The first one is su(8) whose embedding in ez is obtained by setting
Yk = 0. Note however that the corresponding maximal compact subgroup of
E7(47) is SU(8)/Zy [11]. The second subgroup is found by taking the complex gen-
erators AI‘] and Y k7 as real. Denoting the real-valued generators with indices
i, Jy... = 1,..., 8, the 28 antisymmetric Aij generate 50(8). The 28 Aij along with the
35 non-compact ¥;j;; form the general element

ARy )
winkl g | (2.18)
(Z . A Pq

of the maximal subalgebra sl(8, R) [17]. The lower-case indices i, j,... are SO(8)
vector indices.

2.3.2 The ungauged N = 8 supergravity

The ungauged bosonic Lagrangian of N = 8 supergravity takes a simple form since
all interaction terms involve fermions. Schematically, it is written as

1
,C() = 56 R—|— ,CS + ,Cv, (219)

where e = det (e M"‘) is the determinant of the 4-dimensional vierbein [11, 17]. Along-

side the Einstein-Hilbert term %e R, there is a scalar kinetic term Lg and a vector ki-
netic term Ly. The 70 scalars live in the coset space E7(;.7)/(SU(8)/Z;) parametrised
by
KL
u v
PQ

in the fundamental 56 representation of E7(y7) [18]. Here I, J, K... = 1,..., 8 are
indices of the fundamental 8 of SU(8). It transforms like

YV — Ulx)VE™, (2.21)

under the action of E7(7), where U(z) € SU(8)/Zy and E € E7;7). ¥ can also be
written as an exponential of the E77y Lie algebra, ¥ = exp(Y'), where

0 —1V2p
Y =5 <—i DI R ”KL) : (2.22)

The element S € su(8) can be set to unity in the so called symmetric gauge, which
makes it possible to identify the 70 scalars with the 70 non-compact generators
YKL = —i\/ingKL of e7(47) [18]. The scalars enter the Lagrangian via the kinetic
term

1 112
Ls=—ye tr<[DH"1/-7/ ] ) (2.23)

where D, is a SU(8) covariant derivative. The SU(8) connection in D, is defined
so that it cancels the contributions of the compact generators in the Lie algebra

9



2. 11-dimensional supergravity

element ¥ 19,7 [11].

The 28 vector fields A/ transform in the 8 of SL(8, R) under Eg(;7) and are thus
written with SO(8) indices [18]. Specifically, the transformation under E;( 7 is
given by B - B

SAY = (AV,, — S AM, (2.24)

The corresponding field strengths F/ Iyy = 26[MA% couple via a positive definite matrix
N ()KL in the vector kinetic term Ly [18]. The matrix is defined as

1+
N(p)rxr = <y(g0)> ; (2.25)
1—y(p) IJKL
where 17551 = %(&K(LL — 07107k ). The dependence on the scalar fields enters via
y(p)roxr = —(u™) MY upynkr. The vector kinetic term of the Lagrangian reads
[17]
1 iy

where F ;t, is the self-dual component of F),,,. The anti-self-dual component is denoted
by F,. The full bosonic Lagrangian is then

_ 1 1 + ij,kl ppv 1 ~112
Lo = e R— e (FLN(@)™F™, +he) - e tr([pﬂ/-"// ] ) (2.27)

2.4 Gaugings of N = 8 supergravity

Gaugings of non-compact groups are often problematic as some of the vector par-
ticles in the gauged theory become unphysical, so-called ghosts [19]. These ghosts
appear with negative kinetic energy in the standard vector kinetic term of the La-
grangian, Ly ~ —KABF;}/FBW, since the Cartan-Killing metric K 45 is not positive
definite. Considering the non-compact group SL(2, R) as an example, the Cartan-
Killing metric is

2 0 0
Kap = tr(aAaB> =(0 2 0], (2.28)
00 =2

so that the corresponding term of the Lagrangian is
Ly ~ =2F, F'W —2F2 F? 4 2F) F, (2.29)

The 3 generators a', a?, a® of s[(2, R) are given by

alzh:<(1) _01>, a2:e+f:<(1) é), a3:e—f:(_01 (1)) (2.30)

Only a?® is compact as it generates SO(2) which corresponds to S*. Non-compact
generators instead generate R [4]. Replacing K4p with a positive definite metric
such as 0 45 would break the gauge invariance. In some cases however, like the N = 8

10



2. 11-dimensional supergravity

supergravity, a positive definite metric can be constructed from the scalar fields so
that gauge symmetry of a non-compact group still is possible [19].

The ungauged N = 8 supergravity has a global symmetry under SL(8, R) transfor-
mations. Candidates for gauge symmetries are thus subgroups K C SL(8, R). To
avoid introducing new particles, the dimension of K should be less than or equal to
28, the number of vector fields A¥/ in the theory [19].

2.4.1 The SO(8) gauging

As a starting point, the gauged theory of SO(8), which is the maximally compact
subgroup of SL(8, R), is considered. The SO(8) gauge theory is obtained by adding
minimal gauge couplings to the vectors and the scalars [18]. The field strength
becomes

Fuy = 200, A0 + g[ Ay, Al = 200,A0) + GAGAL" fiyun ™ N, (2.31)

(]

which amounts to replacing 0, in the ungauged field strength F, = 29;,4,), with
a SO(8) covariant derivative. Here A, = AYA,;, where the 28 antisymmetric 8 x 8
matrices A;; generate s0(8)

[Akts An) = Frtmn” Nig = 40 gpmOan, (2.32)

and i, j,... = 1,..., 8 are thus SO(8) vector indices. In a similar fashion, the SU(8)
covariant derivative D, which appears in the scalar kinetic term via D, ¥ - ¥ 1,
has to be changed to a SU(8)xSO(8) covariant derivative 2, given by

2.9 -V =DV -V =29V -D(A,) -V, (2.33)
where D(AY/) is in the so(8) subalgebra of ez(47
Aol 0
D(A,) = ( we ke 1]~ (2.34)
0 — A0

These modifications will however break supersymmetry, which is restored by adding
g-dependent terms to the supersymmetry transformations, as well as the Lagrangian
[17]. By writing these terms, along with the minimal couplings, as £,, the La-
grangian with local SO(8) gauge symmetry can be written as

L=Lo+ L, (2.35)

where £, is the ungauged Lagrangian of N = 8 supergravity. The non-compact
gaugings can be obtained in a similar way, however this method depends on some
complicated identities [18]. The non-compact gaugings can instead be found in a
more simple manner by utilising the SO(8) gauging.

11



2. 11-dimensional supergravity

2.4.2 The non-compact gaugings

The SL(8, R) invariance of the ungauged Lagrangian L, is no longer present in
the Lagrangian £ = L, + £, of the SO(8) model. Instead there is the local SO(8)

invariance £ °2% . Acting with the remainder SL(8, R)\SO(8), which is the
non-compact part of SL(8, R), results in the transformation

SL(8, R_))\SO

L=1Lo+L, D= ro+ L, (2.36)

since Lg SHE ) Lo [17]. Only the terms involving gauge coupling dependent terms
are modified. If the coupling constant g also is rescaled in a certain way, an equiv-
alent gauge theory with a new gauge group is obtained [17]. The transformation in
the non-compact part of SL(8, R) is performed via the one-parameter subgroup

0 X
B = v =y ). 2.31)

where the real, self-dual 4-form X ;i is SO(p) xSO(q) invariant and i, j,... = 1,..., 8
again denote SO(8) vector indices. The 4-form X;;;; can be constructed from the

8 X 8 matrix
_fal, O
Xap = ( 0 ﬁ1q> ; (2.38)

where a, b,... = 1,..., 8 are right-handed SO(8) spinor indices. X, is symmetric and
traceless via the condition ap + 8¢ = 0. The 4-form X, is then constructed from
the SO(8) gamma matrices I'? like [18]

1
Xiju = —g(r[irjrkrl])“bxab. (2.39)

Considered as a 28 x 28 matrix, X;;; has the eigenvalues o, 8 and v = %(a + B).

Their degeneracies are d, = dim SO(p) = ip(p — 1), dg = dim SO(q) and d., = pq,

2
so that Xj; . is traceless via

3P0 =D+ Jalg = 1B+ pagla+ B) = ap+fa)(p+a—1)=0.  (2.40)

The matrix Xj;;; can be written in terms of the projection operators Poiéj’kl, ng’kl
and P/ associated with the eigenspaces

XM = Pk 4 gkt o piakl, (2.41)

Acting on the algebra so(8), P, (Ps) projects onto the subalgebra so(p) (so(q))
and P, projects onto the generators of the remainder SO(8)\{SO(p) x SO(q)}. The
scalars and vectors transform like

V= VER), A, — e A, (2.42)

which follows from (2.21) and (2.24). Since the different projections commute,
[P, P)] = 0 for z, y = a, 3, 7, and square to themselves, P> = P,, the expo-
nential e7** becomes

N =Pyt e Py p e P = (Pa +EPs + ﬁf%) =P (243)

12



2. 11-dimensional supergravity

where & = (@A)t Similarly

1 1
e = (Pa + EP;; + \/E]%) =Pt (2.44)

The rescaling of the coupling constant is chosen as
g—g =ge™, (2.45)

in order to obtain the non-compact gaugings. In the transformation of A,, P acts
on the s0(8) generators like

A= N = PA= A, +EAg +/EA,, (2.46)
so that o 3
A, — e_tXAM = e‘atAij”’“Akl = e‘o‘tA;jA;j. (2.47)
Since the metric transforms like
.. ij,mn ,kl
N (i)t — ()™ N (pymmwe ()77 (2.48)
the vector kinetic term transforms like
N(p)?MFE F™™, +he — N(@)iﬂ':k’ngjF’Wk, +h.c., (2.49)
where
F, =¥ (2a[u[e*tXAy}] +g'le7¥A,, e’tXA,,]) : (2.50)
The new primed field strength becomes
Fl, =20,A, +gP '[PA,, PA). (2.51)

It is now essential to figure out what happens with the second term. To do this
the commutator [A’, A’] that appears in [PA,, PA,] is needed. First, consider the
structure of the s0(8) algebra which can be schematically written as

(A, Aa] ~ Aud, [Ag, Ag] ~ Agd, Ay, Ay] ~ Aud + Agd,

(2.52)
[Aa, Ag] ~ 0, (A, Ay] ~ ALG, [Ag, A] ~ ALG.

Using this and A, = Ay, Ay = A, AL = VEA,, the Lie algebra of the primed
generators becomes

(AL AQ] ~ ALS, [Afy, AB] ~ EARS, (AL, AL] ~ EAGO + Ao, (2.53)
(AL, AL~ 0, AL A~ AL (A AL~ A |

The algebra, corresponding to the subgroup K C SL(8, R), that the A’ generate is
A

17

A;cl] = flij,kzmnA;nn = 4Al[¢[k77l]j]7 (254)

s = <1Op 5(1)) ' (2.55)
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2. 11-dimensional supergravity

If £ = —1 is chosen then K = SO(p, ¢q) and if £ = 0 then K is the group contraction
CSO(p, q) [18]. Setting & = 1 returns the SO(8) model. The second term of (2.51)
becomes
gP![PA,, PA)] = gP T ALAN Ny, ALyl =
- gAﬁiAZ]mf/kl,mn”(P_I)ZLTSA;“S = (256)
- gAﬁi ZTnf,kl,mn”Aij'
The gauge coupling of the vector fields changes under a transformation parametrised
by E(t) and the field strength

F, =204 A0 + glAu, Ale, (2.57)

where the commutator [., .J¢ is the one of (2.54), is gauge invariant under the non-
compact subgroup K with parameter £. For the scalar kinetic term, acting with
E(t) yields that

DV -V = DYy =29V E(t) \D(A)E(t) Y (2.58)

where D), denotes that the coupling constant g has transformed to ¢’ = e**g in the
SU(8) connection [18]. By defining

D'(A,, t) = E(t)"'D(A))E(t), (2.59)
the SU(8)xSO(8) covariant derivative 7, instead becomes SU(8)x K covariant since

[D/(Alv t)? D,(AQ’ t)] = E<t)_1 [D(All)v D(Ag)]g E(t) =
= E(t)"'D([A}, AJe) E(t) = (2.60)
= D'([A1, Asle, ).

The SO(8) model is thus altered to become locally gauge invariant under the sub-
group K instead. This was achieved by a transformation in the non-compact part of
SL(8, R), that is SL(8, R)/SO(8), via the one-parameter subgroup E(t). The trans-
formation acts on the SO(8) generators that appear in the gauge coupling terms
of £ so that the transformed generators span the algebra of K, defined in (2.54).
Depending on how the parameter 7 is chosen, K can be non-compact. In particular,
K =SO(p, q) if n = —1.

The type IIB AdS vacuum also features a non-compact gauging of the more compli-
cated subgroup [SO(1, 1) x SO(6)] x R'? C E7(47) [20]. This gauging is also done in
N = 8 supergravity after which it is uplifted to type IIB string theory. The SO(p, q)
gaugings shown here thus provide a more simple example of how non-compact gauge
groups may be used without ghosts appearing. As a final note, there is a swamp-
land conjecture called the Completeness Hypothesis which implies that continuous
gauge groups must be compact [2]. Hence, there is a wide belief that non-compact
gaugings induce instability. This aspect of non-compact gaugings in regards to the
AdS vacuum is not mentioned in [10].

14



3

Type IIB string theory and the
AdS vacuum

Type IIB string theory is indirectly related to D = 11 supergravity via its T-duality
with type ITA string theory. Both the type ITA and IIB theories are based on closed
superstrings that exist in 10 dimensions, however type IIB is chiral while ITA is not
[4]. This chapter starts off by introducing the Lagrangian and the field equations of
type IIB string theory in section 3.1, where extra emphasis is put on the SL(2, R)
invariance of the field theory. This symmetry is relevant for the topology of the
S-fold vacuum that is proposed to contradict the Non-AdS SUSY conjecture. This
vacuum is presented in section 3.2, where its S-fold geometry and the supersymmetry
breaking deformations are discussed. Section 3.2.5 is devoted to showing that the
AdS vacuum satisfies the type IIB equations of motion.

3.1 Lagrangian and global SL(2, R) symmetry

In the massless bosonic sector, both type ITA and type IIB string theory contain a
graviton, a dilaton ¢ and a 2-form By [4]. The remaining bosonic field content of
the two theories differs however. The type IIB spectrum includes another real scalar
X, occasionally called an axion, another 2-form Cs, as well as a 4-form C. The field
strength of C is self-dual, which is a feature that cannot easily be incorporated in
an action [4]. Writing down a covariant action for type IIB string theory is therefore
difficult, although it can be done [21]. It is typically easier to use the action

fi 10 ( _i T pvp 1 1z —1)
S = 2H2/d v e (R— HL, M + 2 0r{0, MM} ) +
1

(3.1)
) ) )
o ([ de B+ [eucinn nn),

given in the Einstein-frame, that together with the imposed self-duality condition
ﬁ5 = *Fg), (32)

yields the correct bosonic equations of motion [4]. The spacetime indices p, v, p,...

are 10-dimensional and the norm is given by |F|2 = %g“”’l...g““””FM___unF,,l_,_yn. In

(3.1), the two 2-forms and their field strengths have been combined into 2-component

vectors W W
B BQ H H3
By =| = L Hy=dBy=| ] = , (3.3)
B2 02 H3 F3
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3. Type IIB string theory and the AdS vacuum

and the SL(2, R) axion-dilaton matrix that contains the scalar particles is

M =e? ('MQ _X>, (3.4)
—x 1

where A = y +ie”®. Under a global SL(2, R) transformation, the complex scalar
transforms via a Mobius transformation

aX+b A:<d

C
)\ -
Tt d b a

) € SL(2, R), (3.5)
while the axion-dilaton matrix transforms like M — (A™H)7 M(A™') [4]. The com-
bined 2-form transforms like By — AB,, showing that the type IIB theory has a

global SL(2, R) symmetry, since the Einstein-frame metric, the 4-form C; and the
self-dual field strength

~ 1 1 1 . .
Fy=dCy — 5Cy A Hy + 5By N Fy = dCy + ising) AHY. (3.6)

are SL(2, R) invariant. The global SL(2, R) symmetry of the field theory is however
broken to the discrete SL(2, Z) in the full string theory due to various effects [4].
A special case of the SL(2, Z) symmetry, namely when A — —%, results in the
transformation e? — e~® when evaluated at Y = 0. This is an example of a S-

duality transformation under which type IIB string theory is invariant.

3.1.1 Bosonic equations of motion

The equations of motion are found by variation with respect to each field and then
imposing the self-duality condition (3.2) [21]. The full derivation is found in ap-
pendix F and provides six equations

1
5 = VH(e ?0,e?) — X0, 0" = E(e‘bF#VpF“”p — 2exF,,,H"P+

(3.7)
+ [e?x® — e_‘b]HquH"”p),
1
ox : VH(e20,x) = ¢ OHyuwp H"? = Fyup ") (3.8)
1 -
0B, V(XA HMP — ey Frr) = EF“"WEFPU&, (3.9)
1 -
6Cu + YV (e?XHMWP — P FHP) = 3 FrPoSH e, (3.10)
5C -V, (Freot) = 1 pvpop...pis ff F
prpo - 3 ( ) - WE Hip2p3 T a5 6 s (3'11)
uy o, 1 1 o -1 1 T poé
(59 . ij — §ngj = g tr{ap./\/la M } — ngggMH guy‘i_
1
5 (HEME — 5(0,M0,M '+ (3.12)

1 - .
glw
+ EFNPU&U pr )7
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3. Type IIB string theory and the AdS vacuum

along with the self-duality condition (3.2). Note that the Cj field equations have
been used to write the 2-form equations of motion on the form given in (3.9) and

(3.10).

3.1.2 Compactification on AdS; x M;

A Freund-Rubin type compactification, similar to the one in section 2.2, can be
done in type IIB string theory where the resulting geometry is AdS; x M5 [13]. The
10-dimensional spacetime indices are split as 2* = (z*, y™), where g = 0,..., 4 and
m = 1,..., 5. The metric VEV g, is again taken on the block diagonal form of (2.9).
All field VEVs are set to zero, except for the self-dual field strength for which the
ansatz .

Fy = 4m (e5 + x€5) (3.13)

is made [13]. The parameter m relates to the radii of AdS; and M5, and €5 is the
volume form of M5

(65)mnpq7" = €mnpqr- (314)

It obeys * x €5 = €5 so that x5 = F5. All field equations are trivially fulfilled,
except for the type IIB Einstein’s equations (3.12) that can be used to find the Ricci
tensor of the external and internal manifolds. Since the 10-dimensional Ricci scalar
is R = 0, which is a consequence of F,, e F*/7¢ = 0 [22], (3.12) reduces to

R = ijﬁupagwﬁypafW. (3.15)
The Ricci tensors are evaluated as
Rup = mﬁﬁmgwépgﬁw = Ll_léﬂmm%upagwef"’@ = —d4m® g, (3.16)
for the external space and
. 1 = ° 1 .
Bon = i Fmpoc POt — mwm%mpmenpqm = 4> Gy, (3.17)

for the internal space. The compactification is thus on AdSs x Ms, where Ms is
compact since it has positive and constant curvature [12, 16].

3.2 The AdS vacuum

Another possible compactification of the type IIB theory is the AdS vacuum which
has been proposed as a possible contradiction to the Non-SUSY AdS conjecture of
the swampland program. This vacuum solution to the type IIB equations of motion
is an S-fold, further discussed in section 3.2.3, and is of the form AdS, x S% x S5,
where 7 is the parameter of S, [10]. The S refers to a squashed 5-sphere that is
parametrised by two 2-spheres connected via an angular interval such that S° =
T, x S§ x 53, where o € [0, 3] [23]. At the endpoints of Z,, the 2-spheres contract
to become point-like. This is similar to parametrising the regular 2-sphere S? with
the spherical coordinates § and ¢. The polar angle 6 parametrises the interval [0, 7]
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3. Type IIB string theory and the AdS vacuum

and ¢ parametrises a circle S; which corresponds to the equator at ¢ = 7. When
moving away from ¢ = 7, the 5’(}3 shrinks and eventually contracts to a single point
at # =0 and 0 = 7.

This AdS vacuum stems from an uplift of a particular non-compact gauging of the
4-dimensional N = 8 supergravity. As was described in section 2.4.1, g-dependent
terms have to be added when gauging N = 8 supergravity to preserve supersymme-
try. Among these terms is a complicated scalar potential that non-linearly depends
on the 70 scalars and the choice of gauge group [17, 24]. Finding minima of this
scalar potential is equivalent to finding vacuum solutions of gauged models in N = 8
supergravity [24]. The gauging for the AdS vacuum considered here uses the non-
compact subgroup [SO(1, 1) x SO(6)] x R' of E7(;7) [20]. 4-dimensional vacua of
this particular gauging, corresponding to extrema of the scalar potential, can then
be uplifted to 10-dimensional S-fold vacua of type IIB string theory [25].

3.2.1 The metric
The metric VEV of the AdS, x S, x S° vacua is given by the line element [10]

cos? a sin?

1
d2 :Afl *dQ d 2 d 2
510 2 Shas, T 0"+ da +2+cos2a 19— cos2a

A, (3.18)

where A is a non-singular warping factor defined by
A~ =4 — cos*(20). (3.19)

With ordinary 2-spheres 2; and €2y, this vacua is N = 4 supersymmetric and thus
perturbatively stable [26]. However, by performing a flat deformation with param-
eters x;, ¢ = 1, 2, on the azimuthal angles

QY = d6? + sin®6; dy'?, del = dp; + xidn, (3.20)

a new type of vacua is obtained that is generally non-supersymmetric, unless y; =
—x2 for which it possesses N = 2 supersymmetry [10]. Written out explicitly, the
metric is

1 ~
29m 224129
1+ z7x7sin® 61+ _ .
+23x3 sin’ 0, X sin® 6, 35Xz sin” O
1 1
N , (3.21
I =N 22 (3.21)
22y sin? 6, 22 sin? 6,
2
13X sin? Oy 13 sin’ 0,

where the a-dependent parameters z; and x5 are given by

2 2
9 cos” v 9 sin” o

= = 3.22
1T oY cos(2a)’ 2790 cos(2ar) (322)
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3. Type IIB string theory and the AdS vacuum

The indices in (3.21) are u, v =t, p, 0, p, n, a, 01, p1, O, o in order, so that gy is

the top left element and gg,,, is in the bottom right. The indices of the metric on
AdS, with radius L =1

—cosh? p
- 1
g,uu - Sil’lh2 p ; (323)

sinh? p sin®6

are understood to only take the values ¢, p, 6, ¢. The zehnbein, with the AdS,
vierbein denoted as €,%, is given by

1xa
\/ieu

1 X121 sin 01 X2L2 sin 82

1
I ﬁ €1 9 (324)

21 sin 6,

T2

) sin 02

where the flat index a takes the values 0,..., 9, with €, only being non-zero for

a = 0,.., 3. For ¢, the lower p-indices are rows and the upper a-indices are

columns. The inverse zehnbein e, where instead the flat a-indices are the rows,

reads
V261
1 —X1 —X2

* . (3.25)

1 sin 641

1
T2 sin fo

Using the notation g = g,,, e = ¢,° -1

.Y e = ¢, ', the metric and its inverse can be
calculated as

g=ee, gt=(ee") = (eH)T(e™). (3.26)

Explicitly, the inverse metric takes the form

2 g
1 —X1 —X2
1
g = A e 1 (3.27)
—X1 Xi+ 2Zsin? 0 X1X2
ZL’2_2
—X2 X1X2 X3+ s
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3. Type IIB string theory and the AdS vacuum

Going back to the standard notation, the determinant of the zehnbein, e = det (e u“),
is simply given by multiplying the diagonal elements of (3.24)
cos? o sin? av

1
€ x% :Eg sinf; sinf, = ZA_S € msin 0, sinfy =

1 1

~ A AD
1

= 1—6A_1 é sin®(2a) sin@; sin 6y,

using the definition of the warping factor in (3.19). The metric determinant g =

det(g,,) is then given by

e

(3.28)

1
g=—¢e= T G A% cos’ a sin a sin?6; sin® 6y, (3.29)
where § = —¢2 is used. While the metric is dependent on the deformation parameters

Xi, they do not appear in the determinants e and g.

3.2.2 The VEVs of the fields
The dilaton ¢ and axion xy VEVs are given by

o — \f3e2 2 — cos(2a) _ 2 — cos(20¢)’ v =0. (3.30)
7 — cos(4a) 2 + cos(2a)

The 2-forms have the VEVs

cos®

2 + cos(2a)

3

volg,, Cy = —2\/56”2 e

By = —2y/2¢7" e
? Ve — cos(2a)

volg,,  (3.31)

where volg, = sin 6; df; Ady; are the volume forms of the 2-sphere metrics. By using
two new 1-forms A; = — cos6;dy}, such that dA; = volg,, and the 3-form ws that
satisfies dws = volags, with AdS radius 1, the 4-form VEV is given by

3 2 1
Cy= Jws A (dn + 3 sin(2a)da> — §f(0z)doz A (A; Avolg, +volg, A As), (3.32)

where the function f(«) is

cos(4a) — 55
(7 — cos(4a))?

f(a) = sin*(20) (3.33)

These VEVs, along with the metric (3.21), satisfy the type IIB equations of motion,
which is discussed further in section 3.2.5.

3.2.3 S-folds

This type of vacuum topology, with or without the y;-deformations, is referred to
as an S-fold [25]. The name comes from a non-trivial S-duality monodromy when
encircling the S}. Note that a translation in 7, given by the SL(2, R) transformation

Aln) = (657 ;) , (3.34)
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3. Type IIB string theory and the AdS vacuum

affects only the 2-forms and the dilaton. Since S% is compact, the coordinate n must
have some periodicity n ~ n+ T [27]. However, going around S% highlights that the
monodromy
—1 B_T 0

Mo =47 A+1) = () 7). 33
arises when the periodicity is forced onto 7. Although the transformation g1 does
not change the topological position, it alters the 2-form and dilaton fields. The
background is thus globally non-geometric, although it is well-defined locally. This
is reminiscent of the Hopf fibration of %, where S? = S% x S locally, but globally
there is a twist of the S! fiber when encircling the equator of the S?, see appendix
E. The monodromy can be generalised to belong to SL(2, Z), the global symmetry
group of the full type IIB string theory, where it takes the form

M(n) = —ST" = (_”1 é) 5= G _01>, T= G ?) (3.36)

Here S, T € SL(2, Z) are the generators of inversions z — —% and translations

z — z+ 1, respectively [27]. The SL(2, Z) monodromy is obtained by replacing the
twist in (3.34) with
1 H(—n++vn2—4) —1
A = A k), b= (2 e T
(n? —4)Y/ tn+vn2—4) 1
and restricting the periodicity to T'(n) = ln(n —Vn? — 4) —1In(2), where n € N and
n >3 [27]. The SL(2, Z) and SL(2, R) monodromies are then related by

M(n) = h Mg h. (3.38)

3.2.4 Flat deformations

The flat deformations appear only via the azimuthal angles in (3.20), where they
can be absorbed through a change of coordinates

¥ = i + X (3.39)

In general, this coordinate redefinition is only valid locally, because ¢} picks up a
term ;7" when going around S%. Only in the special case of y; = ni%’r, where
n; € Z, can ¢, be considered a globally well-defined coordinate. Due to a subtlety
of spinors on S% however, the deformation parameters y; have the periodicity 4%,
rather than 27 [10].

The local coordinate redefinition (3.39) can still be applied to the equations of
motion, since they hold in all reference frames. In other words, the flat deformations
do not affect the equations of motion. The deformation parameters can therefore be
set as x; = 0 when evaluating the field equations and other covariant expressions.
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3.2.5 Evaluating the field equations for the AdS vacuum

The evaluation of the field equations is essentially split into two parts; Einstein’s
equations (3.12) and the other ones. As showing Einstein’s equations is more in-
volved, this step is saved for last. The equations of motion are formulated in terms
of the field strengths, which are computed in appendix G, where the deformation
parameters are set to x; = 0. Since the axion VEV is zero, the field equation (3.8)
becomes trivial and the other equations are greatly simplified. In, particular, the
By and (5 field equations become related by a SL(2, Z) transformation, described
in appendix H.4. It is thus sufficient to show only that (3.9) is satisfied, and (3.10)
will then follow.

The field equations (3.7)-(3.11) are evaluated in appendix H. The scalar equations
are considered first as they do not have any free indices. To evaluate the 2-form
and 4-form equations, the same methodology can be used. The right hand side is
only non-zero for a specific combination of free indices. The majority of the work
consists of rewriting the left hand side so that it becomes clear that it equals the
right hand side for this set of free indices. All other cases amount to showing that
the left hand side vanishes, which always happens because the derivative acts on
something constant.

This leaves only Einstein’s equations. The difference compared to the other field
equations is that the Ricci tensor is needed. The Ricci tensor is found using the
torsion-less structure equations of Cartan and the calculations are performed via
the zehnbein 1-forms e* = dz*e,”, which can be read off from (3.24). Appendix C
describes this methodology in more detail, where it was used to find the Riemann
tensor of AdS,. Another simple example using S? is found in E.1.4. The Ricci tensor
for the AdS vacuum is computed in appendix I. Besides the increased number of
dimensions, the main complication compared to AdS; and S? is the a-dependent
warping factor A, defined in (3.19), which enters all e*. As a consequence, the Ricci
tensor becomes a-dependent in a somewhat messy way. For example, the Ricci
scalar reads

R = —24A — 27" [5 — 18sin*(2a)| + 2A° [168 + 37sin*(20) — 5sin’(2a)] . (3.40)

The Ricci tensor R, is diagonal and fortunately, not all elements have to be cal-
culated independently. The AdS,; components are naturally the same, except the
sign difference for Ry, which is also seen in appendix C. From the S? calculation in
E.1.4 it is also clear that the diagonal Ricci tensor elements corresponding to the two
angles of a 2-sphere are the same. As such, Rgs = R77, where the flat coordinates
(6, 7) correspond to the 2-sphere angles (1, ;). Similarly, Rgs = Rgg for the other
2-sphere. The elements Rgs and Rgg can also be related by a shift o — a+ 7, which
exchanges the factors 22 = cos? a/(2 + cos2a) and z3 = sin® a/(2 — cos2a) that
distinguish the 2-spheres in the metric (3.18).

With the Ricci tensor ready, Einstein’s equations are then evaluated in appendix J.

The equation is trivially satisfied for all off-diagonal cases of free indices uv, except
for pv = na. The rest comes down to finding common expressions of the left- and
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right hand sides for the diagonal cases of the free indices. This is done so that the
metric factors. Consider for example the left hand side with some specified curved
index p

1 apap 1L L
RMM — §ng =€, € Raa - §Rguu = <Raa - 2R> Gups <341)

since g, and e, are diagonal when x; = 0. The flat R,, can thus be used even
though the evaluation is performed in a general frame.
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4

Stability and conclusions

This final chapter discusses the stability of the AdS vacuum presented in 3.2, and
comments on its relation to the Non-SUSY AdS conjecture. The first test is to
evaluate the perturbative stability of the vacuum. This is done by finding the
Kaluza-Klein spectrum in 4 dimensions and checking that the squared masses are
properly bound from below [10]. The perturbative stability criterion, in the context
of the Freund-Rubin compactification of D = 11 supergravity, is treated in section
4.1. Non-perturbative instability is also discussed in section 4.2, where one example
is decay via bubbles of nothing. Finally, the conclusions regarding the thesis and
the AdS vacuum are given.

4.1 The Breitenlohner-Freedman bound

Stability is guaranteed if there is an unbroken supersymmetry since the condition
H = |QJ* > 0 follows from the SUSY algebra [28, 29]. However non-supersymmetric
vacua can still be classically stable under certain conditions [13]. Consider the
AdS; x M; vacuum obtained by Freund-Rubin compactification of D = 11 super-
gravity in section 2.2. The perturbative stability of this vacuum can be studied via
the D = 4 mass spectrum [26]. The obtained spectrum contains spin 2, %, 1, % and
0 states, where the non-zero spin states are classically stable if the squared mass
matrix is positive semi-definite

M? >0, (4.1)

so that there are no tachyons. For spin 0 states in AdS spacetime however, the
criterion is the more lenient
M? > —m?, (4.2)

where m is the constant from the Freund-Rubin ansatz }%ng = —6meu,pe [26].
This is because a spin 0 field ¢ propagates in AdS spacetime according to the
wave equation —[J¢ + a¢p = 0 where « relates to the cosmological constant A via
a > 3A/4, which is required for non-negative AdS energy [26]. Classical stability is
always fulfilled for all but the 0+ tower. The criterion (4.2), along with the mass
operator for 01(?) takes the form

Ap > 3m?, (4.3)
where Ay, is the Lichnerowicz operator acting like

Aphay = —0Ohay = 2Racbah®™ + 2R, e, (4.4)
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on transverse, tracefree and symmetric tensors h,, in the compact space [26]. Gen-
eral constraints like (4.3) on Ay, are usually very hard to obtain.

A corollary of (4.3) is that compact product spaces My = M1y X M9 are unstable,
given that the Freund-Rubin constant m # 0. This is because a transverse and
traceless mode

1

il — 619((11371 0 tr(i], ) =€ dlm(M )+€ lel(M )Z 0 (4 5)

ab 0 629(2% R ab 1 (1) 2 (2) ; .
azbz

(2)

azby

(1
a1b1
respectively [26]. The eigenvalue of the mode is Aph, = 0, which violates the
stability bound (4.3). At first glance, this seems to imply that the type IIB AdS
vacuum is unstable since the compact space is of the form S% x S%. However, the
monodromy when encircling the S} indicates that S} x S° is not a simple product
space. Indeed, the Kaluza-Klein spectrum of the S-fold vacuum shows that it is
perturbatively stable for all values of x; [10]. This stability also holds in higher
dimensions [25].

always can be created, where g and ¢ are the metrics on M) and M)

4.2 Non-perturbative stability and conclusions

The classical stability covered by the Breitenlohner-Freedman bound is however only
a first test, as the vacuum may decay via non-perturbative means as well. As non-
perturbative string theory is not understood, it is not currently possible to fully
prove stability of any vacua. Still, a number of non-perturbative decay modes are
known, which can be used to argue for or against stability. A possible decay mode
for non-supersymmetric vacua is via bubbles of nothing [10]. This is the case for the
original Kaluza-Klein vacuum M* x S, where M* denotes 4-dimensional Minkowski
space. In the decay of M* x S', which is perturbatively stable, a hole spontaneously
appears in spacetime [30]. On the boundary of this hole, the radius of the compact S*
shrinks to zero. This bubble does not contain some other spacetime, it is completely
empty, and after a very short time it expands at the speed of light. An unstable
vacuum usually falls into a stable state, but the bubble decay causes the spacetime
to just vanish [30]. The deformed S-fold vacua are not prone to bubble decay since
the S% and S® of its compact space cannot collapse like the S* of M* x S' does
on the boundary of the bubble [10]. There are however more intricate bubbles of
nothing through which decay is more difficult to rule out. The non-supersymmetric
S-folds have also been checked for standard brane-jet instabilities [10].

Although some arguments against non-perturbative decay have been made, more
is needed to reach a final verdict on stability [25]. Further investigations on non-
perturbative stability will either cast the S-folds into the swampland, or strengthen
their case. A decent bit more evidence for stability is likely needed to pose a serious
case against the Non-SUSY AdS conjecture [8]. Still, there are notable features of the
S-folds, in particular how supersymmetry is broken via flat deformations. Since the
deformation parameters y; can be locally reabsorbed into the azimuthal angles ¢;,
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the vacuum behaves like it is supersymmetric on a local level. The S-folds thus enjoy
some benefits of supersymmetry, which saves it from some non-perturbative instabil-
ity modes, while remaining non-supersymmetric globally [10]. The local coordinate
redefinition also protects the S-fold solutions from higher-derivative corrections of
type IIB string theory [10]. Hopefully, further research on S-folds can shed more
light on their role in terms of the Non-SUSY AdS conjecture and quantum gravity
in general.
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A

Definitions

In this appendix the conventions of the Levi-Civita symbol and the generalised
Kronecker delta are given. The Minkowski metric is always taken as "mostly plus”
in this thesis. The basics of differential forms are also given in A.2.

A.1 The Levi-Civita symbol

The Levi-Civita symbol is a tensor density that is given by
ght#D g012d — (A1)
in D = d+ 1 dimensions. The indices can be lowered using the metric

_ Vi...UpD
EMIWMD - gullq"'g,uDVDg 9 (A2)

where
€0..q =Tl (A.3)

The + sign is true for Riemannian manifolds and the — sign is true for Lorentzian
manifolds [31]. Other =+ signs should also be interpreted like this. Contracting two
Levi-Civita symbols yields that

8(11...ap51...ﬁqga1mapfylm'yq _ :I:p! q! (551153, (A4)

where the generalised Kronecker delta is defined as
§oLer _ so1 5% where 50&1...apa51“ﬂp _ a[cn...ap} (A 5)
B1.--Bp (B 7 Bp) Bi1..-Bp ) ’

The Levi-Civita symbol can also be used to create a totally antisymmetric tensor in
D dimensions
€pvopin = € Eproips 1D — o=l g1k (A.6)

where e = /£g and g = det(g,).

A.2 Differential forms

A p-form w, is defined as

1
Wp = Edﬁ“ A .. N\ dxM W pap s (A‘7)



A. Definitions

where
dz" A ... Nda'? = dPx et tP = @Pg e 1D, (A8)

The wedge product of a p-form o, and a g-form 3, is

(p+q)

p'(]' (O'/P)[Mlmﬂp (/BQ)Np+1~-~#p+q]' (Ag)

(ap A 5q>u1---up+q =

It is associative
(apy N By) Aye = ap A (By A ), (A.10)
and (anti-)commutative if pq is even (odd)

a, A\ By = (—1)P1B, A . (A.11)

The exterior derivative d = dz*d,, which satisfies d> = 0, of a p-form w, is defined
as

(dwp)ul---upﬂ - (p + 1)8[u1 (Wp)ug...up+1]- (A.12)
The Hodge dual of wy, is
1 V...V
(*wp)ul---qup = Heul...up,pyl...yp(wp) . (A13)
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B

D =11 supergravity field equations

In this appendix, the field equations of D = 11 supergravity, which is described in
section 2.1, are derived. The Lagrangian of D = 11 supergravity is again given by
[13]
L= L€ R - LFMNP FMNPQ -+
2K2, 241 @
_ L 1 €M1-
12k32, 31(4!1)2

(B.1)

M1
AMlM2M3FM4M5M6M7FM8M9M10M11‘

There are only two bosonic fields gy n and Ap;yp, which can be used to vary the
Lagrangian.

B.1 Varying with respect to ¢"

Starting off with g™, the relevant terms are

) <€R — eFMNpQFMNPQ> = 5(6R) - L(5(6P’]\4NPQF']MNPQ). (BQ)

24! 24!

The first term becomes
§(eR) = e R+ e 0g™Y Ryn + e guno RMY. (B.3)
The variation de can be related to 5™ via the identity [7]
§det(M) = det(M) tr{ M *5M}. (B.4)
Applying this relation to the metric yields that
69 =g "V ogun = —g gundg™", (B.5)

where 6gMN = —gMPgNQGgpq has been used. The variation of the elfbein determi-
nant thus becomes

1 g
be =0y—g=—Fr=0g = ————g"Nogun =
2V=9 2V=9 (B.6)
1 1
= 56 9MN59MN = —56 9MN59MN7
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so that
1
§(eR) = de R+ e Rynog™"™N = —5¢ R gunog™N +e Ryndg"y =
(B.7)

1
=e€ (RMN - iR gMN) 59MN-

Now, the second term is

5<€FPQR5FPQRS) = (56 FPQRSFPQRS + 46 FMPQRFN PQR(SQMN =

1 (B.8)
=e€ <_29MNFPQRSFPQRS +4FyporEy PQR) sg™M™,

and thus Einstein’s equations in D = 11 supergravity are given by

1 1

1
Ryn — §R gMN = 15 <FMPQRFN POR _ 8QMNf*ﬂPQRsf‘ﬂDQRS) : (B.9)

B.2 Varying with respect to Ay/nyp

Next, variation with respect to Ay/nyp is considered. The kinetic term becomes
(5(6 FMNPQFMNPQ) = 2e 5FMNPQFMNPQ = 8e (5(8[MANPQ})FMNPQ =
= 8e 6M((5ANPQ)FMNPQ = —88M(e FMNPQ)éANPQ,

where the boundary term is discarded. The topological term, written schematically
as 0(cAF'F), becomes

5(€AFF) - 8M1MMH5AM1M2M3FM4M5M6M7FM8M9M10M11+

(B.10)

+e! 11AM1M2M35FM4M5M6M7FM8M9M10M11+

+e! 11AM1M2M3FM4M5M6M76FM8M9M10M11 -

=e! 115AM1M2M3FM4M5M6M7FM8M9M10M11+

+ 2™ 11AMlM2M35FM4M5M6M7FM8M9M10M11 =

M;i.

=& ”MH(SAM1M2M3FM4M5M6M7FM8M9M10M11+ (B'll)

— 8™ G Ay g Onay (At Moty Fbts Moo My ) =

! 116AM1M2M3FM4M5M6M7FMSM9M10M11+

=
. 2€M1...M11 5AM5M6M7FM4M1M2M3FMSMQMNMH +
— 85M1'"M115AM5M6M7AM1M2M38M4 (FMSMngMu)
_ 35M1”'M115AM1M2M3FM4M5M6M7FM8M9M10M11’

after manipulating the indices a bit and noting that O, (Fuiamennensn,) = 0 in the
final step. The second set of field equations are thus

1 1 1
gy (~80u(e P - 631(41)2 (3N PO By padaat Fataiaanonss; ) = 0,
(B.12)
which can be written as
1
VMFMNPQ — TMENPQRI"'RsFRleR;;mFR5R6R7R8, (B.13)

by using that V, FMNPQ = 19, (e FMNPQ) since FMNTQ is antisymmetric.
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AdS, spacetime

This appendix focuses on anti-de Sitter spacetime in 4 dimensions which is the most
relevant type for this thesis. In particular, the Riemann tensor of AdS, is calculated,
from which the Ricci tensor and scalar are easily computed. The Riemann tensor is
calculated via Cartan’s structure equations when the torsion is zero [32]. The same
method is used to find the Riemann tensor of the type IIB AdS vacuum AdS, x S% X Sy
and some calculations carry over. There is however an a-dependent warping factor
present for the type IIB vacuum which complicates things a little, see section 3.2.
The procedure of calculating the Riemann tensor will be done explicitly here, so
that other similar computations can be performed more speedily.

C.1 The Riemann tensor of AdS,
The metric on AdS, is given by the line element
1 1
ds®* = —cosh? p dt* + ?dp2 + 2 sinh? p (d#* + sin? 0 dep?), (C.1)

where the parameter a is related to the AdS radius via L = 1/a. The metric then
reads

—a? cosh? p
1 1
= i ©2
sinh? p sin?#6
The line element can also be used to read off the vierbein 1-forms e®
ds® = g, drtdz” = dx“dx”e#aeybnab = e%e’ny, (C.3)

that contract with the flat Minkowski metric. The greek p, v,... denote curved
indices while the latin a, b,... are flat. The vierbein 1-forms for AdS, are thus

1 1 1
e =coshpdt, e'=—dp, e*=—sinhpdf, e*=—sinhp sinfdp. (C.4)
a a a

The first step towards the Riemann tensor is Cartan’s structure equation for the
torsion 2-form 7% = %dm“ Ndz¥T,, " given by

T = de® 4+ w® A e, (C.5)

where w?, is the spin connection 1-form [7, 32]. Since there is always a torsion-free
connection, T can be set to zero in (C.5) [7]. The structure equation (C.5) then
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uniquely defines the connection 1-forms w®, via de® + w% A e’ = 0. First off, the
exterior derivative of the vierbein 1-forms are

sinhp 1

de® = d(cosh p dt) = sinh p dp A dt = acoshp(adp) A (cosh p dt) = (C6)
= —atanhp e’ A e,
1
de' = ~ddp = 0, (C.7)
a
1 1 coshp 1 1
de* = —d(sinh p df) = = cosh p dp A\ df = —d —sinh p df) =
e = (sinh p d) —coshp oA asinhp(a p)/\(asm p do) (©3)
= acothp e Aé?,
1
de® = —d(sinh p sinf d¢) =
a
1 1
= —coshp sinf dp A dp + —sinh p cos di N\ dop = (C.9)
a a
= acothp el Aed + a(?oitee2 Aed.
sinh p
The torsion-free structure equation (C.5) can be rewritten as
de® = 0wy A e’ (C.10)

Since the left hand side de® consists of terms proportional to e! A ¢/, where i, j ==
0, 1, 2, 3, the connection 1-forms are written as

Wab = Wiab€, (C.11)

so that the components w;q, can be extracted from (C.10). The case where a = 0 is
considered first. The relation (C.10) then reads

—atanhp €® A el = w0l A e’ =

=—c'A 61(Wmo — wW100) — e A 6’Q(Cdo20 — wago)+

0 3 1 2
—e Ne’(wyzg — w —e Ne“(wygy — W +
( 030 300) ( 120 210) (C.12)

—e'A 63(W130 — w310) — e? A 63(w230 — W390) =
= —60 N 612(&)[01}0 - 60 AN 622(4][02]0 - 60 A 63260[03}0+

— 61 A 622W[12]0 — 61 A 632(,4}[13]0 — 62 N 63260[23}0.

What follows is that 2wip9 = atanhp and all other wy;0 = 0. Next is the case
where a = 1 which reads

0= wippie' A e, (C.13)
implying that all wy;; = 0. For a = 2
acothp e! A e? = wise’ A e, (C.14)
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so that 2w12;2 = acoth p and all other w2 = 0. Lastly, a = 3

cot 6 ,
acothp e' A e +a——e? A e® = wyze’ A€, (C.15)

sinh p

yields that 2wp33 = acoth p, 2wpss = as‘ﬁfp and the other wy;3 = 0. Now that

the relation (C.10) is exhausted, the actual connection components wg. should be
extracted from the wygy.. This can be done via the antisymmetry properties of the
connection which implies that

Wabe = —Wach - Wabe = Wiab]c + Wicalb — WibcJa- (016)
The non-zero wyy,. are thus

Wo10 = Wo1]o — Wiojo = 2w1jo = a tanh p,

Wale = W12 — Wiizj2 = —2w[i2)2 = —acoth p,

w313 = W[31]3 — W33 = —2wp3)3 = —acoth p, (C.17)
cot 0

W323 = W[32]3 — W[23]3 = —200[23}3 = _asinhp’

and the connection 1-forms are

Wo1 = Woore” = —a tanh p e, Wiy = Wop€” = —a coth p e?,
3 3
wp = 0, w13 = w313e” = —acoth p e’ (C.18)
3 cot o
wo3z = 0, W3 = W323€ = —A—— €,
sinh p

where w,, = 0 because of the antisymmetry. The goal of finding the wy, is that the
curvature 2-form ©,, now can be evaluated as [32]

@ab = dwab + Wee VAN Web - (Clg)

Like the connection, O, is antisymmetric in ab which implies that ©,, = 0. The
curvature 2-form will later be associated with the Riemann tensor. The first term
of (C.19) is the exterior derivative of wg,. A useful relation for this calculation is
that

1
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which follows from cosh? p — sinh? p = 1. The non-zero dwg, are thus

dwo; = —a d(tanh p €°) = —a(1 — tanh? p)dp A € — atanh p de” =

= a*(1 — tanh® p + tanh? p)e® A e* = a%e” A€,
2

dwiy = — a2 alp/\e2 —acothp de* = — a2 e ANe? —a?coth?e! A e? =
sinh® p sinh® p
= —a’e' N é?,
2
th t 0
dwiz = — ¢ 5 e Aed —acothp de® = —a%e* Ne® — 2 P O .p LY 2 A €3,
sinh” p sinh p
1 1 cosh cot (C.21)
dw23=a7,7d9/\63+acot9 - dep/\e?’—a - de?® =
sin® @ sinh p sinh” p sinh p
2
a cothp cot 6
= ,2—,262 Aed+ az_piel A e+
sin“ # sinh” p sinh p
_ ycothp cotf o cot? 2 A=
sinh p sinh? p

2
a
= ——5—¢e’Ne.
sinh” p

The second term of (C.19) can be written as Wy = Wae A Wep, Where @y, = 0. The
wap are calculated to be

a}Ol = 07
(Z)OQ = Wo1 N Wig = (1260 N 62,

0:103 = Wo1 A w13 = (1260 N 63,

coth p cot
Wi = w1z A\ wse = L I 0, (C.22)
sinh p
coth p cotd
w13 = w12 A Wwag :G27.p e? A e,
sinh p
(,:)23 = W91 VAN W1z = —(l2 COth2 P 62 N 63,
so that the curvature 2-forms are
Og1 = a’e’ A el
Ope = a’e’ A €,
O3 = a?e’ A €2,
O19 = —a’e! A€,
coth p cot coth p cot
O13 = —a’e' Ne — a2,p762 Aed+ a2_p762 Aed = (C.23)
sinh p sinh p
= —a’e' A é?,
a’ 2, 3 2 2 2, 3
O3 = ——5—e" Ae’ —a“coth"p e’ Ne” =
sinh” p
= —a’e* Neé’.

The 2-form O, is related to the Riemann tensor [32]
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which allows the non-zero Rg.q to be read off as

Roio1 = (127 Roy202 = GQ, Rozo3 = a? (C 25)
Rigip = —a®, Riziz = —a®, Rogs = —a’. '
The Ricci tensor is then just given by Ryq = 7% Raped
Roo = Rio10 + Raozo + R3o30 = 3a°,
Ri1 = —Roio1 + Ra121 + Ra131 = —3(127 (C.26)
Ry = —Rogo2 + Ri212 + R332 = —3612, '
Rss = —Ro303 + Riz13 + Rosos = —3a?,
which implies that
Rab = —3@2?7ab. (CQ?)
The Ricci scalar is
R =n"Ry = —3a*n®ng = —124°. (C.28)

This also shows that AdS, is a maximally symmetric space, since the Ricci and
Riemann tensor can be written like

R R

Ry = 5”(11)7 Rapea = ) (77ac77bd - nadnbc) ’ (029)

D(D -1

where D = 4 is the number of spacetime dimensions [33].
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Derivation of N = 8 supergravity

This appendix focuses on the derivation of N = 8 supergravity via dimensional
reduction from D = 11 supergravity. The appendix follows [11] closely, and focuses
only on the bosonic sector. Note also that the choice of metric signature and the
scaling of the 3-form fields differs from [11]. The metric signature used here is
"mostly plus”, in contrast with "mostly minus” which is used in [11]. The flat
metric of the compact space used here is thus d,,, instead of —d,,. The 3-forms are
related via AhSre , = 2Athere,

D.1 Dimensional reduction of D = 11 supergravity

The bosonic Lagrangian of 11-dimensional supergravity is given by

1 1
K%lﬁ = 5‘/ R———V FMNPQFMNPQ+

M;.

9.1t

M-
11AMIMQMSFM4M5M6M7FMSM9M10M117

where V = det{e,,} and M, N, P,... denote 11-dimensional spacetime indices. The
gravitational constant 2, = 871G} only appears as an overall factor and is thus set
to 1 for the sake of convenience. The bosonic Lagrangian is invariant under general
coordinate transformations in 11 dimensions, 2™ — M — ¢M 5o that the elfbein
and 3-form transform like

SAnnp = 3Agun0pE? + 90 Avnp, (D.3)

local SO(1, 10) Lorentz transformations, 24 — xBA 54

0AyNnp =0, (D.5)
and abelian gauge transformations of the 3-form with parameter (y;y = —(yup

deyt =0, (D.6)

dAMNP = OCNp)- (D.7)

N = 8 supergravity is the 4-dimensional theory obtained from dimensional reduction
of D = 11 supergravity on a 7-torus. Specifically, the bosonic part of the N = 8
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D. Derivation of N = 8 supergravity

theory is found by compactifying the Lagrangian given in (D.1). For this purpose,
the elfbein e,,” is divided into 4 blocks

e® B Te®
eMA: ( Ha B aT‘). (Dg)

(& (&

m m

The different indices correspond to

curved flat
11-dimensional M, N, P,... A B,C,.. (D.9)
4-dimensional spacetime pu, v, p,... a, B, 7,...
7-dimensional compact i, 7, k,... a, b, c,...,

which is the same notation as the one used in section 2.2. The off-diagonal part of
the local SO(1, 10) invariance can be used to set all e,,* = 0 so that the elfbein and
its inverse read

eMA _ (eua Burera> ’ eAM _ (eau _6au(Bur6ra>eam> ' (D.10)
0 (S 0 e,

The 55 degrees of freedom of local SO(1, 10) invariance are thus reduced to 27 by

setting the 28 components of e,,* = 0. Remaining are a vierbein e,*, 7 gauge fields

Bui and an internal seibenbein e,,*, which is an element of the group GL(7) and

contains 49 scalar degrees of freedom.

The 3-form Apnp is divided into 4 types of fields: 35 pseudoscalars A;j, 21 pseu-
dovectors A;;, 7 A,y fields and A,,,. The 4-dimensional 3-form A,,, can only
appear in £ through its field strength F),,,,. In 4 dimensions, F),,,, is exact, and
can thus be taken as the independent variable instead of A,,,. However, the F),,
field does not contribute to the bosonic Lagrangian.

The dimensional reduction should now be applied to the bosonic Lagrangian in
(D.1), which can be schematically written as

L=H+H +H", (D.11)
where H is the Einstein-Hilbert term, H” is the 3-form kinetic term and H” is the
topological term. The D = 11 supergravity Lagrangian will thus be written in terms

of the 4-dimensional field content, giving the N = 8 supergravity. First up is the
Einstein-Hilbert term.

D.1.1 The Einstein-Hilbert term H

The Einstein-Hilbert term is given by
1 1 AB A c
H:§VR:§V (dw™” +w’c Aw"g)as. (D.12)
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D. Derivation of N = 8 supergravity

The torsion-free spin connection with flat indices can be expressed as
1
WABC = §(QABC — Qpca + Qcan), (D.13)

using the anholonomy coefficients Qupc = —2¢, A MOperc. The symmetry proper-
ties of wapc and Qapc are

WABC = —WACB; Qapc = —Qpac- (D.14)

To simplify the dimensional reduction, H is first rewritten in terms of the anholon-
omy coefficients in 11 dimensions. This is done as follows. By performing a partial
integration, the first term in (D.12) becomes

V (dw?P)ap =V e Mep"N (dw?P)yn = 2V eAMeBNa[MwN]AB ={PL} =
= —=20u(V)wg™? — 2V (e )wpy P+
-2V 8[M(6AM)wB]AB =
=20p(V)w, P = 2V Oy (e wp ™ — 2V Oaleg™ wy P =
=2V Op(log V)w, AP + 2V Oy (eg™)w, AP+
—2V ey g (e e’ =

(D.15)
The second term is then expanded
(WAC’ A WCB)AB — eAMeBN(wAC A WCB)MN — 2€AM€BNW[MACWN}CB — D16
_ . A CB_ . A, CB (D.16)
= W4 cWB Wp cWa
so that the Einstein-Hilbert term can be written as
1 1 C,, AB A, CB AC,, B
H = §VR: 5‘/ [Qup we™” —wp ewa™ " +wy T wpTe] =
1
= SV (247 —wpa)we™? + w,ycwp”C] = (D.17)
1
= §V wap©we? +watowp”Cl.
To express H in terms of the anholonomy coefficients, first note that
1
wap we'? = 1 [(QABC — Qpoa + Qeoap) (AT — QA5 QBCA)} =
1
=1 [ — QupcQ*PC + QQABCQBCA} = (D.18)
1
=1 [ — Qupc*PC + QQABCQCAB],
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D. Derivation of N = 8 supergravity

and secondly that

1
wa'lows™ = Z[(QAAC_ Qhca Qe (QE" — Q5% +QCBB)} =

——
The Einstein-Hilbert term becomes
1 1
H=3VR=-2V [QapcQPY — 20,5048 — 40,40 5] (D.20)

D.1.1.1 Weyl transformation

Before continuing with the the dimensional reduction, note that the elfbein deter-
minant factors like

V = det{e,, '} = det{e,"} det{e,,"} = eVA, (D.21)

in the e,,* = 0 gauge. A Weyl transformation can be used to eliminate the VA-
factor in front of the Einstein-Hilbert term. The Weyl transformation used is

G = G = A0, = e = AT (D.22)

The determinant of the vierbein then transforms like
e—é= det{A’l/‘le#a} =A""e. (D.23)

Applying the Weyl transformation on the anholonomy coefficients 2,5, = 2¢,"e5" 0.,
yields that

Qapy — Qaﬁv = 2A1/2€aueﬁya[u(A_l/4eu}67767) =
= 2A1/4ea”65”8[ueyh + QA1/4ea"eﬂ”eM‘SnMAI/‘l@MA_1/4 =

1
= {AVIA T = 0, log AV = 0, log A} = (D-24)

1
= AV (Qupy — 5777[/3804 log A).

D.1.1.2 Reducing the Einstein-Hilbert term

Writing out the coefficient Q4 g with 4-dimensional indices and internal 7-dimensional
indices yields three types of components that are non-zero

Qaﬁ'y = 260[#65”8[#61/}7’
Qa,ﬁc = erchﬁ; Ggﬁ = QQQMQBVa[#(BV}aear% <D25>
Qape = €l ey Opeme.

The dimensionally reduced Einstein-Hilbert term is thus

Q,QABC — QQABcQCAB — 4QCAAQCBB = —4R, + Qiﬁc + QQZbC _ 2Qabcgcab+
— 80,20, —4Q. "),
(D.26)
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D. Derivation of N = 8 supergravity

where

ARy = Q2,5 — 204, —4Q_ 2070, (D.27)

The Weyl transformation can now be used to eliminate the persisting v/A-factor.
The —4R, term is considered first and the relevant coefficients transform like

02, = A2, — Q% 0, log A+ 2[0, logA] ),
Qg V0 = Al/Q(Qa VQwﬁ +30°,%0, log A — [0, log A]?), (D.28)
Q0 = AV e - 39“ Ba log A + %[0, log AJ?),

which gives the Weyl transformation of R, as

—4Ry — —4Ry = 025 — 2005,V —4Q, 000 =

iy o5 3 ) (D.29)
=A (—4R4 + 407570, log A — 5[8a log A]7).
The other terms in (D.26) can be Weyl-transformed using
Qiﬁc = A(GY )2 GZ,B = 2€a“eﬁya[N(Bu}aeaT)7
e =AY QQg{bca
Qachcab = Al/QQachCQb7 (D30)
g:zvaafzvbb _ Al/ZQabeaﬂﬁ _ %A1/2Qabbay log A,
anaQ’ybb _ A1/2(Qabb)2'

The reduced and transformed Einstein-Hilbert term H = %V R is then

. 1 3
H = —ce| —4R; + 40%,°0,log A — 50alog A” — 80" Uy’ +

+ 60,0 log A — (402, + 202" — 202,.) + VA(G“4p)?].
(D.31)

By noting that _,° = 18 log A, which can be read off from 9, log V' = wyz?, —0,e,"
as

dalogV = (9, 1og €) + [0a log VA] = (wB o — e ) + 17, (D.32)

the terms with QO‘BB cancel. Other terms with Q_,” become linear in [9, log AJ?.
The terms 202, — 20,0 can also be rewritten since

aagmnaagmn — a ( 6 nab)aa( cd medn) —
= nabn (emaaaen + enbaaema)(ecmaaedn + ednaaecm> -

D.33
= 20,e,,0%,™ + 2nun“e, e One, 0%, " = ( )
= 205020 — 202, .
The Einstein-Hilbert term becomes
] 1 1 a \2 1 2 1 o mn
H = ¢ R, — ge\/z( as)” — T6¢ [0n log A7 + 3¢ OaGmn0”g™". (D.34)
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D. Derivation of N = 8 supergravity

Aside from the 4-dimensional Einstein-Hilbert term there is a term containing the
field strength of the 7 gauge fields B," and two terms containing the scalar de-
grees of freedom. The scalars appear in the action only through g,,,, recall that
A = det{gmn}, which is symmetric with 28 degrees of freedom. The difference in di-
mension from the 49 of e,,* € GL(7) is 21, which corresponds to the local invariance
group SO(7). The scalars thus live in the coset space of GL(7)/SO(7). Fixing the
SO(7) gauge would, along with the condition e,,* = 0, reduce the 55 parameters of
local SO(1, 10) invariance to 6, which corresponds to the local SO(1,3) invariance
of the 4-dimensional theory.

D.1.2 Gauge invariance and field redefinitions

Before moving on to the other terms of the Lagrangian, how the reduced 3-form
fields change under the gauge transformations should be considered. The N =
8 supergraviy Lagrangian should be formulated in terms of gauge invariant field
strengths. The D = 11 Lagrangian is invariant under the transformations given
in (D.2)-(D.6) under which the elfbein e,,*, its inverse e, and the 3-form Ay np
transform like

ent = eyt + 0N ent + ENovey + ey PARA,
e M — e M —onEMe N + Noye M+ A BegM, (D.35)
AMNP — AMNP + 38[M§QANP]Q + gQaQAMNP + 38[MCNP]'

Here, the e, = 0 gauge is preserved by the condition that 9,,§* = 0. The B,™
fields transform as gauge fields

B™ — B, + 0,8, (D.36)

under coordinate transformations x™ — 2™ — ™. When describing a 4-dimensional
theory, the fields and field strengths should be independent of such internal trans-
formations, which is why the B, ™ fields should only appear as field strengths in the
Lagrangian.

Out of the fields obtained by reducing Ay;yp to 4 dimensions, the 21 pseudo vectors
A,i; and the 7 A, fields have to be modified in order to transform nicely. They are
not invariant under the internal coordinate change x™ — x™ — £™. The new fields

{ | (D.37)

Al = Ay — 2B, P Ay + B, B,P Ay,

iz

are thus defined, which are invariant under £™ transformaions. Under (;; and (y;
gauge transformations, the primed A fields transform like

AL = 0uCy,
(5A£” = zg ] 2B, "0 (D-38)
pvi uGti — [ 1) Gip-
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D. Derivation of N = 8 supergravity

While the field strength F/ .. is gauge invariant, modifications are needed for F

nzZy ,uzzpz
since
6F;;sz = [;w gzp (D39)
The correct modification is
F;:/sz = F/;Vm + 3GPWA’p]Zp, (D.40)

since 64!, = 0,(p. With the gauge invariant field strengths F,,. and F), . the

pip 5 ] pvij pvpi
remaining terms of the Lagrangian can be considered.

D.1.3 The 3-form kinetic term H’

The second term of the Lagrangian is

H = 2 486\/_FMNPQF (D41)

Expanding the squared field strength in the flat frame yields 4 different terms
F? = Fyinpg = Flgys T 4F 50+ 6F 2500 + 4F ey (D.42)
The formulation using curved indices is found via the definitions

_ i ik
Fopea = el ey’ el ey 0, A,

FOéﬂCd - eaueﬁyeciedjﬁpvija (D43)
Fa,é”yd - eaueﬂyewpediFWpi,
where
FNVU - F[;VZ] + Gk Aijk’a Fuu,m = F/;/sz (D44)

Using these field strengths and applying the Weyl transformation g" — v Ag* of
section D.1.1.1 results in the transformation

A2F2,876 + 4A3/29u0gm'gp)\ i Fuusz T>\j+

(D.45)
+ 6A g6 g G F iy Fora + AAY 29" g g™ ¥ 0,y Ay 1.0y At
The second term of the Lagrangian becomes
~ ) 1 ~ ~
H = ~96 A3/2F25,Y5 eAFW,nFW — EeAl/zF,MjW””+
1 (D.46)
~54€ g gjmglmauAijkauAlmn-

D.1.4 The topological term H”

The third term of the Lagrangian, which is invariant under the Weyl transformation,
can be written as

i

1
2 ] 124ng.“MllFM1...M4FM5...M8AM9M10M11 = (D 47)
1 .
et z]klmno<4F“VpZa AjklAmno - 9F,u,l/ijFpaklAmna))

T 2.123
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D. Derivation of N = 8 supergravity

where the terms with fields of the type A,;; and A,,; have been integrated by parts.
The topological term H " should be expressed in terms of the field strengths F),,;;
and F},,,,. By using

Fuvpi = quupi - 3B[Mvap}ip + 3B[MPBanp]Aipq’ (D.48)
F/j,l/ij frnd },Ll/ij — 2B[upay]Aijp,
it is found that
1 ) . =
= 2.128 6#Vp061]klmno <4F,uupiacfAjklAmno - 1QBﬂpFVPiPaUAjklAmnO+
+12B,"B,"0) AipgO5 A jii Aot (D.49)

- 9FuuijﬁpoklAmno + 36 NuuiijqaaAquAmno+
—+ 36BMPBVqapAijpaaAquAmno) .

The second term can be rewritten by noting that an antisymmetric tensor with more
than seven internal indices is zero, meaning that F,,p[ipagAjklAmm] = 0. Note that
any space-time indices u,v, ... should be completely ignored in the antisymmetri-
sation bracket. Expanding this relation yields the result, where the antisymmetry
[ijklmno] is understood

3 ~ 3 -
§Buunpz’jacrAquAmno - iB“unpijAquaaAmno =
~ 3
= 3F,uz/iijqacrAquAmno + -G B anAiijquAmno+ (D50>

9w p

Bupﬁupipao Ajkl Amno -

3~
- ZFum'szgAquAmno'

The expression after the second equals sign is reached after integrating the second
term by parts, where the non-trivial Bianchi identity 0, F).i; = G%,0,A;j, is used.
In a similar way 0,A[ip|q|0s AjriAmne = 0 can be used to find

3 3
8pAipqaaAjklAmno = _iapAijpaaAquAmno + iapAiijquaaAmno- (D51)

Note that the left hand side and the first term are explicitly antisymmetric in p and
¢, which implies that the second term also is antisymmetric in p and ¢q. Applying
the relations (D.50) and (D.51) to H” simplifies it like

" v ijklmno I I n
H ghvrPoeh <4FuupiaUAjklAmno - 9F,u,1/ijFpoklAmno+

T 2128 i
+ 9F,um’j GZUAquAmno+
— 18G?, B, %0y Aijp Akig Amnot

wp

-+ 1SBMpByqapAijpaaAquAmno+

- 1SBupBuqapAiijquaaAmno) = (D'52)
- 2 .1123 gwpagijklmm <4F WpiaoAjk:lAmno - 9F ;ij paklAmno+

+ 9F,i5 Gy Aklg AmnoT

- gGﬁVquaO'(Aiijqu)Amno)-
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D. Derivation of N = 8 supergravity

The second equals sign of the above equation is reached by integrating the term
with 0, A0 by parts. This leaves a term including waB ! which is symmetric in p
and ¢. All explicit dependence on the B-fields in the Lagrangian must either cancel,

or be absorbed in a field strength. This is done by using the relation
aU(Aiijqu)Amno - 2AiijquaaAmn07 (D53)

which can be derived by expanding Ay AkigOs Amne = 0 whilst demanding sym-
metry between p and ¢

2

Aij(p|Akl|Q)8UAm”O - _gAi(Pq)AjklaCfAmnO + Aij(p|aUAkl\q)Amno -

1 (D.54)
= 580 (Aiijqu>Amno-
The term with explicit B-dependence can then be integrated by parts
G, B, 05 (AijpArig) Amno = 2Gh, B Aijp AkigOo Amno =
= GﬁuGgaAiijquAmno—i_ (D55)
- QGfLVquaU(Aiijqu)Amnov

by using (D.53). This implies that the B, is absorbed into a field strength via

3Gp B qaa(Aiijqu)Amm - GﬁqugAiijquAmno- (D56)

pr2p p
The Weyl-invariant topological term H” = H” is thus found as

Fy i vpo _ijklmno n n
H ghvroghi (4FuupiaaAjklAmno - 9Fyl/ijFp0'klAmno+

T 2.128
+ 9F 3G Aptg Amno — 3G, G Ay Arig Amno).
(D.57)

D.1.5 Duality transformation

The field strengths F#,,Z-j and ﬁ’,wm- can be set as the independent variables of the
Lagrangian instead of the corresponding 3-form fields. The Bianchi identities then
have to be incorporated via constraints with Lagrange multipliers ¢! and B Mij =
—B,”". The terms H" and H" given by

vp* toip

1 . ~
H" = E‘Pzgwman(ﬂpai —3GY AL ) =

: N o ) (D.58)
- Egﬂ g acr()p Fl/pai - é‘P ghvP GZTF/“’””
and
1 .. -
Hm/ = ZB;]‘L:MVKMG/’(FMWJ - GftVAijp) = (D 59)
1 vpo (¥ij 17 1 vpo Dij ‘
= —ggu P GPJUF;J,Vij - 16“ P BoijwapAijp’

47



D. Derivation of N = 8 supergravity

thus have to be added to the Lagrangian. Here, some of the terms have been inte-
grated by parts, and the field strength of the Lagrange multiplier Bff is defined as

foy = 20y, Bu]ij . Finding the equations of motion for the field strengths F, wij and

Fpi and inserting them back into the Lagrangian will provide the dual transfor-

mation of the Lagrangian.

D.1.5.1 The ijpi—terms of the Lagrangian

The part of the Lagrangian with all of the terms containing F, wwpi 1S

1
Kl = ——eAF,

~ . 2 iy
Frrvpi + EuupcrgzjklmnoF

24 prpi (12)3 ,ul/piao'AjklAmn0+
1 vpo ¥

+ EE# P aUQO F,ul/pi =
= L AR Lo (g LA« AN, A5)
- _ﬂe nrpt + Eg o + 6 * o415kl Lrpty

where
ikl 1 ijkl
x AU — ijklmno g

mno-

JLQ\/K5

Varying with respect to 0 F, wpis the equations of motion are found as
1 ~ ) 1 ) 1 il
—EeAF’“”” + Ee’“’p" (Gggoz + 6\/Z x AY &,Ajkl) = 0.

In other words

Frvet = Lemer (9,00 + /N % AR, Ay,
ﬁ’/u/pi = igiqeyupA(aA@q + é A x Aqut&)\Arst)-

Inserting these expressions of F' back in the Lagrangian returns
1L G100 (0 + /B 5 ARG,
Ky = NG g T VA pAjki ) X

X (8,,@‘1 + (15\/Z < Aqm&,Arst> .

(D.60)

(D.61)

(D.62)

(D.63)

(D.64)

The duality transormation has revealed that the 3-form fields 4], describe scalars.
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D. Derivation of N = 8 supergravity

D.1.5.2 The Fw,ij—terms of the Lagrangian

The part of the Lagrangian containing wwij 1S

1
K2 1 eAl/Q FMI/Z] FW/U guupaguklmnoF F aklAmno+

32-12 Hwig
1
+ op 12guupagmklmnaFMw]GpoAquAmno o é(p guupaG le+
1 vpo i
-3 ~ ke GJ F,um]

. (D.65)
= ——e\/_ ( umgFW” + 2€“Vpo * AUMFNVUFPUM> +

1
- EWPU(G” = MZ * AT AL, Gt

+3 06, - #G, ) ) Fowis

Note that the spacetime indices are either contracted by two metrics g*”¢”“, as is the

case for F, or by 3e77. Since (g"7¢"*)(grpgrs) = 010% and (5e7)(3 eT,\po) = —oh,
it is possible to omit the spacetime indices by makmg the replacements gtrg’? — 1
and e’“’p" — i, where 72 = —1. In this notation K, reads

1 [ o~
Ky = ——eJZ (FyFY +ix AT E; Fy) +

1 1 A\ =

— e (G” - fJZ AT 4,6+ (G - JGZD ;=
(D.66)
= —Ee\/Z(M_ )”’le' Fkl"’

1 . -

— e (G” 4\/Z w ATRLAL GO 4 - [ le JGZD ”
where the matrix (M~1)¥* is given by
ikl - pqigkl) !

Mij,k:l = (g DR gk AY ) , (D.67)
where g¥H = %(gikgﬂ — g'¢’%). Varying with respect to 5Fij yield the equations of
motion as

. 2 . .
(MHIRE, = _\/ZZ (G” \/Z * AUTRLAL GO+ [ ‘G — JG”}) . (D.68)

which can also be written as
. 21

Inserting the equations of motion back into the Lagrangian returns

= j; . <G” LA« A4 4 a0 + [ iGi - JG’]) x
(D.70)

x (qu - 5\/Z 5 AP A, GGl §[¢qu = gqup]) .

M <sz 4\/Z Ny Ly e [ kGl _ leD . (D.69)
Ky =
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D.1.6 The reduced Lagrangian

To summarise the results thus far, the Lagrangian reduced to 4 dimensions is
1
L= ieR—l—Es—i-Ev, (D.71)

having dropped the hat on the Weyl-transformed Lagrangian £ and the 4 on the
4-dimensional Ricci scalar Ry. The terms of £ describing the scalars are

1

Ls= ge Dugmn0"'g"™" — Ee [0, log A]? — Y gy O A 0" Aprn+
1 1 g
- iggiqgw <au80l + 6" A x AwklauAjkl) X (D.72)

X <ay§0q + é\/z * AqTStayArst> )

where A = det(gmn). There are 70 real scalar degrees of freedom in total. The
internal metric g,,, contains 28, the Lagrange multipliers ¢ contain 7 and the 3-
form remnant A;;; contains 35. Furthermore, the A;j; are pseudoscalars so that
70 = 35 scalars + 35 pseudoscalars. The 28 vector degrees of freedom are mostly
coupled via the scalars in

1 1 - 1 .
Ly = —ge\/Z( a5 — %gwm « AR Ay Ay G GY, + gsﬂ”p"ij,,G’;gAiijr
1 e . 1 - 1 . .
A M (Gw — VAR AT A, G 4 PG - soJGZD 8

1 1
X (Gm — VAR AN PG gqup]> :
(D.73)

where 7 are contained in the gauge fields wa originating from the off-diagonal part
of the elfbein e,,”. The other 21 are from the Lagrange multipliers foy, where the
17-indices are antisymmetric.

D.2 Restoring symmetry

The Lagrangian in (D.71) contains hidden symmetries. For example, since there are
28 vectors, it is tempting to extend the 7-dimensional indices i, 7, k,... = 1,...; 7
to 8-dimensional ones, ¢, j’, ¥’ = 1,..., 8. Then %n(n —1) = 28 for n = 8. The
8-dimensional indices are also useful for dealing with the scalars.

D.2.1 The 35 true scalars

Omitting the pseudoscalars A;ji, the 35 true scalars are described by the Lagrangian

le

le 1 9,A0"A
AN

UEA VT R o
O 166A N

1
L= 3¢ 0y Gmn 0! g™ — (D.74)
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D. Derivation of N = 8 supergravity

By using the 8-dimensional indices i, j’,..., it can be written in the more compact
form

1 o !
£S+ = g@ 8MSZ] 0“5,-/]-/, (D75)
where the 8 x 8 matrix S*7 and its inverse are given by
ANV PAV A 9 i
v :A 3/4 9 . //——A 1/4 J ‘ . D
S < _90] 1 ) S SOJ A + g02 ( 76)

To show that (D.74) and (D.75) are equal, g 9" g;; = 9,A/A is a useful relation. The
matrix S?7" is an elements of SL(8, R) since det S*7" = 1 follows from det(g,m,) = A.
Then LY is globally invariant under SL(8, R) and its subgroup SO(8). The 28 scalars
gmn Were part of the coset space GL(7,R)/SO(7), as was discussed in section D.1.1.2.
The global GL(7, R) symmetry is however extended to SL(8, R) when combining
the true scalars.

D.2.2 The vectors, without the pseudoscalars

The terms of Ly that do not couple to the pseudoscalars are given by
= — e\/_G” ‘“’jgz]

- ij_Mgpq (i + S#Gl, — PG, )% (D.77)
X <GNVP’1 + ;(ppGl“’q _ ;SOQGNVP> ,
where
M = ; (9inGjq — GiaGip) - (D.78)
The vector field strengths can be combined to a common form Gﬁ where i’ = (i, 8).
This is done with a rescaling

Gy = L Ghi— L (D.79)

2 nro [ 72 2 puv”
The terms in L;> can then be collected like

1 1 21 il /1
L = —e 5 (SupSyy — SeSy) Gt G7'7 (D80)

Again, global SL(8, R) invariance is discovered, which suggests that the total La-
grangian £ might also possess this symmetry.

D.2.3 Local SO(8) gauge invariance

The 28 scalars ¢,,, were concluded to live in the coset space GL(7, R)/SO(7) in
section (D.1.1.2). The reason was that the equation

gm"e, ‘et = 5%, (D.81)

m
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D. Derivation of N = 8 supergravity

does not uniquely define the seibenbeins e,,%, which are element of GL(7, R). The
flat metric is invariant under local SO(7) transformations, meaning that (D.81) only
defines the class of seibenbeins {e, A}, where A is an arbitrary SO(7) rota-
tion. The physical scalar fields of g,,, can thus equivalently be described using the
class {e,,*A b}, which is valued in the coset space GL(7, R)/SO(7). The only com-
pact generators of gl(7, R) are those that span so(7). This is essential, since the
Cartan-Killing metric becomes positive definite when there are only non-compact
generators. As the global GL(7, R) symmetry is extended to SL(8, R), the local
SO(7) symmetry group should also grow to SO(8), which is the maximal compact
subgroup of SL(8, R). This indeed happens, and is shown in [11]. By also noting
the global E7(, 7 invariance of the field equations, the bosonic N = 8 supergravity
Lagrangian can be rewritten to the form given in section 2.3.2.
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Hopf fibration of S°

This appendix is dedicated to the Hopf fibration of S*, which describes the 3-sphere
as a fiber bundle of S over S?. The Hopf fibration is of interest since it features a
twist of the S when going around the equator of the S?. This is a global property
that is similar to the monodromy of the S-fold described in section 3.2.3. First
off, the 2-sphere is treated in E.1, specifically the metric and the stereographic
projection. The transition function defined via the stereographic projection is of
particular use when the Hopf fibration is treated in E.2

E.1 The 2-sphere S?

E.1.1 The metric

The metric on R3 is given by the line element
ds® = 0;da'dr! = da® + dy® + d2*. (E.1)

The S%-metric can be found by embedding a 2-sphere in R3. This is done via the
S2-constraint in R?
Syt 2t =R (E.2)

By using polar coordinates in the zy-plane, x = rcosy and y = rsinp so that
22 4+ y?> = 1%, the third coordinate is determined via the S2-constraint as z =
+v/R? — 12, where dz = Frdr/+/R2 — r2. The R? line element can now be rewritten
in terms of r and ¢

2 2
”
dr? =

ds* = (dr* + r*dp?) + 2l =

dr? + r?dp?. (E.3)

By setting r = Rsin# where dr = R cos 6 df, the line element takes the alternative
form

ds® = R*d0? + R?sin’ 0dp?, (E.4)
which describes the geometry of S? with the radius R.

E.1.2 Stereographic projection

There is a useful mapping from the 2-sphere to the flat equatorial plane called the
stereographic projection. Consider again the 2-dimensional sphere S? with radius
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E. Hopf fibration of S3

R. The north pole N and the south pole S of the 2-sphere are defined by
A;=Az2=(-1)'R2, i=1,2, = S=A,=-R3 N=A,=R: (Eb5)

To project a point P on S? to a point in the zy-plane, a line passing through P
and either N or S is drawn. The intersection of this line with the xy-plane is then
the projected point Q. As either N or S can be chosen, there are two projections,
denoted by ®;. However, if the line is drawn through N, then N itself is mapped
to infinity on the zy-plane, rather than a single point. The same is true for S if the
south pole is chosen. The stereographic projections are thus

®,: S*\ A; — R% (E.6)
The explicit projections are found by drawing the lines L;

where P = (z, y, 2), and finding the intersections where z = 0. This is the case
when

The stereographic projection is thus given by
A
(I)i : 52 \ A’L — ]R2 = (.CL’, Y, Z) — (517 771) = m('xa y)7 < # Ai7 (E9>

where & and n; are the coordinates of the projected plane. Similarly, the inverse
projections ®; ' : R? — S%2\ A; are found by drawing new lines between the flat
plane and the poles

where Q; = (&, m:, 0). The intersection with S? happens when

N2+ N2+ A2(1 = N2 =R?, =
— X+ + R+ RN - 2XR = R,

(E.11)
IV 2R?
L@+ P+ RY
The inverse projection is found as
CI)ZI = (fz, Th) — (l’, Y, Z), (Elz)
where
2R2¢; 2R?n; 2R?
= Al — 5————=1| |- E.13
(v, 2) <§§+n§+R2’ &+ + R &+ + R (E.13)

More generally, the stereographic projection is a map onto a 2-dimensional plane
from two different patches U; on S?. Each patch contains only one pole, N € U,
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E. Hopf fibration of S3

and S € U,, so that the projections are defined as ®; : U; — R2. On the overlap
U, NUs,, both projections ®; and &, are well-defined and it is possible to define the
transition function

<I>12=‘I’10‘1)51 'R 5> R?* = (&2,m2) = (&1, M), (E.14)
where &1 [ (Ea, 1), (€, 7o), 2(Ea, 1)
_ [ S1lTAS2, M2), YlS2, 12), (G2, 12
(&aom) = <mx<52, ), y(Ea, 1), (o, m) ’ (E.15)

following (E.9) and (E.13). Evaluating (E.15) and defining the complex coordinates
21 =& — iy, 20 = & + iny allows P19 to be expressed as map from C to C where
R2
= —. E.16
~1 Py ( )
The points z; = 0 are not allowed since they map to either S or N, which are not
in the overlap U; N Us.

E.1.3 Metric from stereographic projection

Consider R? parametrised by the Cartesian coordinates (p, q) € R% The inverse
stereographic projections ®;'(p, q) = (z, y, 2;) makes it is possible to move to U;
on S%. Changing to polar coordinates on R?, so that p = pcosa and ¢ = psina,
allows the patch U; to be parametrised by

( ) 2R?pcosa 2R?*psina 2R?
T, Y, ) = : Al — ——=1 .
hd p* + R? p*+ R? p*+ R?

(E.17)

Using this projection, the metric on U; can be evaluated via ds?(U;) = da?+dy*+dz?.
Following

_ 2 P : 2 1 2p? _
dr = —2R ey sina da + 2R <p2 i 7+ R2)2> cosa dp =
2 P . , R?—p?
= —2R ppyTE sina da+ 2R mcosa dp,
B (E.18)
dy = 2R2p2 —fRQ cosa da + 2R2(p2+1§)2 sin «v dp,
2p
_op2
the metric on U; becomes
2 _ o (R? = p?)? sz AP 2 4 P 2 _
4R* 4R*
= (R*+ p* = 2R?p* + 4R%p) dp® + m;ﬂda? —  (E.19)
4R
= 7(}02 e (dp2 + deOzQ) .
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E. Hopf fibration of S3

Since A? = 1, both ®; ' lead to the same metric which, by returning to Cartesian
coordinates, can be written as

4R*
(p2 + q2 + R2)2

ds*(5?) = (dp* + dq?) (E.20)
which is the metric on S?. The R? spaces that are associated with each patch are
however different, and their metrics ds?(U;) should be written using the proper &;

and 7; coordinates. By again using the complex coordinates z; = & — in; and
29 = & + 117, the metrics on U; take form

4R4d2i dgl

2 _
O Ry

(E.21)

By the rescalings z; — 2;/2 and R — R/2 it can be seen that ds?(U;) is equivalent

to the Fubini-Study metric

2o dE (E.22)
(1+ |21%)?

On the overlap U; N Us, the transition function ®q5, which exchanges coordinates
via z; = R?/2,, does not alter the form of the metric

AR‘dz dz AR dzod5
() = R dadn | ARdndzs o (E.23)
(R*+ [z (R +[2])?

E.1.4 The scalar curvature of 52

In this section, the scalar curvature of S? is calculated. The procedure is analogous
to appendix C, where it is described in more detail. The main difference here is that
the flat metric o, on S? is taken to be off-diagonal.

The S? line element in complex coordinates is given by

4 R*dwdw

) = Gt e

(E.24)

By defining dw" = (dw, dw), the line element can be written using the S? metric g;;
ds*(S?) = gijdwidwj = %o, = 2ete?, (E.25)

where the flat metric o, is defined as

o 01
Oab = €,'€, gij = (1 0) : (E.26)

The zweibein 1-forms are thus

L V2R 2o V2R

_ , E.27
™ T wmrep™ (E27)
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E. Hopf fibration of S3

Their exterior derivatives are calculated as

V2R? w

de' = —————w dw A dw = "Ae?
e (1—i—wu_))2w w A dw \/§R2€ e’,
SR ) (E.28)
de* = - dw A dw = —Lel A€’
(1+ww)? V2R?
so that the equation de® = 0%wj,.e’ A e can be evaluated for a = 1, 2
w
a=1 : TR el Ne? =el A 622w[12]2,
D (E.29)
a=2: RN el Ne* =e' A e*2wpyr.
The non-zero wy,. are thus
w w
Wi21 = —m, Wa12 = —m7 (E-?’O)
which leaves the connection 1-form as
U w
Wi = w11261 + w212€2 = \/§R2 61 — \/§R2 62. (E?)]_)

The next step is to evaluate O15 = dwis + wig A wee. The second term vanishes,
Wiq A Weo = 0, which leaves

w 1 w

1
O = dwyy = ——dw AN el + de' — dw A e* — de® =
12 12 \/§R2 \/§R2 \/§R2 \/§R2
R2 2 2
L [l el Ne? + |w7|el A e+
2R4 2R4 (E.32)
2 2 2 ’
—7}% + [w] 61/\62+M61/\62:
2R4 2R4
1
= —ﬁel A e
The only non-vanishing Riemann tensor component is
1
Ryg1p = R (E.33)
and the Ricci tensor, calculated via Rpy = 0% Rapeq
Ry = 0" Raic1 = Ri1o1 + Ro111 =0,
1
Ry = 0" Ra1co = Ri122 + Ro112 = R’ (E.34)
Roy = 0" Rasca = Ri222 + Roz12 = 0,
becomes ]
Rab = ﬁaab- (E35)
The Ricci scalar is 5
R=0"Ry = T (E.36)
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E. Hopf fibration of S3

E.2 Hopf fibration of S°

As a starting point, consider the 1-dimensional complex space
CP' = {(21, ) € C*\ {0} | (21, 22) = A(&}, %), A € C\ {0}}. (E.37)

CP! is the space of all straight lines that intersect the origin in C2. The lines are
thus characterised only by their slope, which can be defined as either 21 /25 or z9/2;.
The two choices work equally well except for the two lines given by z; = 0 and
2y = 0. Consequently, there are two patches on CP! with different well-defined
coordinates

U, : z= é, 29 # 0,
> (E.38)
U, : w=-—, 21 # 0,
<1
and on the overlap U; N U,, the coordinates z and w are related via
1
= —. E.39
= (£.39)

The transition function between U; and Us is the same as the one in (E.16) for the
unit 2-sphere. This implies that CP! and S? are actually the same.

The metric on S® can be inbedded into C?, similarly to how S? was inbedded in R3
in appendix E.1.1. The S? constraint in C? is

53 . 2121 + 2222 = RQ. (E40)

This condition is invariant under U(1) transformations z; — €'?z;, which alludes to
a S' =U(1) structure of S®. The S! structure will be shown more explicitly later.
Now, by using the z coordinate from (E.38), the constraint can be written as

R = (14 |2°) |l (E.41)

however, this is only valid on U; where 2z # 0. The line element of S? is thus found
via the flat metric on C?

dSZ(SS, Ul) = ledgl + dZQdEQ = (§d«22 + ggdg) + dZngz =
= (14 |2]%) dzad?, + 2Z2d2ad? + 22Zd2d%, + | 20| dzdz =

(E.42)
o (ldzef® | ldzf* _
=R 5 + 5 | + (22dZ22dz + c.c.),
2] 1+ 2]
where dz; = zdzy + z2dz was used. An equivalent formulation is given by
d 2P dz|? dz|?
ds*(S%, Uy) = ’RZ2 2 e ( det - lede] ) =
z» R L+ 27 (1+[]%)2
) (E.43)
dzy  |z]? “ds| - R dzdz
=|R— + —=zdz —_—,
% R 1+ =Py
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E. Hopf fibration of S3

where the last term corresponds to the Fubini-Study metric on the unit 2-sphere

dzdz

d32(52> = (1 + |Z|2)2a

(E.44)

which makes it clear that there is a connection between S® and S?. The coordi-
nate z which parametrises the 2-sphere is however also present in the first term of

s2(S83, U;), which makes the relation non-trivial. To further investigate this term, 2o
can be written in polar coordinates z, = se¥. The S® contraint (1 + |z|*)|z|* = R
then implies that

2 1 = b~
. R N N @:_72dz+zglz. (F.45)
1+ 2| S 2 1+ 2]
Then g . J
2= (s +idy se?) = © +idy, (E.46)
29 set s
which can be used to rewrite the inside of the first square as
d ds 52
plz | l=l —R—+ Rd¢+—zdz_
Z9 R
R zdz + zdz zdz
= +iRdY + R——— = E.47
2 14z v + 2|2 (E47)
1 zdz — zdz
o)
2 1+
The metric on S? it thus
Zdz — zdz|” dzdz
ds*(S3, Uy) = R?|dyp — 3’2 S 2 (E.48)
+|z)* (1+[2])

Note that the S® constraint also can be written as R* = (1 + |w|2) |z1|” on Us. This

implies that the metrics ds*(S®, U;) and ds?(S3, Uy) will take the same form since
the calculation is completely analogous. The metric ds?(S3, U,) is therefore just

ds*(S®, Uy) = (E.49)

i wdw wdw|? 5 dwdw
17/} Y p) TN 2"
L+ |wl (1 + [w[")

Now, by expressing the 5% metric in terms of the angular coordinates (6, ¢), ds?(S3, U,)
can be rewritten as

1 2
ds(S%, 1) = R? (dw + (1 cos 9)d¢) + R (d6? +sin?0dg?) . (E50)
The second term is clearly the S? metric obtained in (E.4) with radius R. As for
the first term, it contains the coordinate v which parametrises the fiber S*. The

3-sphere thus contains both S' and S?, and can be described as the fiber bundle
of St over S%2. This implies that S® = S' x S? locally, which is not globally true
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E. Hopf fibration of S3

since there is a 1-form gauge field for a monopole on U; that also enters the metric
(E.50). The gauge field is

1 2dz — zdz

2 14 [ =0

A(U7) = ;(1 — cos0)dé — (E.51)

It is well-defined as z — 0, which is the preferred coordinate on U;, the patch that

corresponds to the upper half-sphere of S? which contains the north pole N. Note

however that on the overlap U; N Uy, the transition function z = 1/w implies that
jdw _ dw

A = 1 ) E.52

The monopole field that is well-defined on the lower half-sphere U, instead takes the

form |  wdi — Bd
1 wdw — wdw
A =—(—1-— 0)dep = — > 0. E.
2(U2) 2( CO8S ) (b 2 1+ |w|2 w—0 0 ( 53)

On U;NU,, A and As are connected via a gauge transformation A; — Ay = d¢, which
means that the field strengths still are equal everywhere on S?, F| — I, = dd¢ = 0.

The field strength F' on S? is thus not exact, meaning that it cannot be written as
F = dA since there is no field A that is defined globally on S2. This has consequences
for a topoloical number on S?, namely the first Chern number C,. It is calculated
as

1 1

C’1 :_7/ F=—-—— (/ dA1+ dAQ) =
2 Js2? 2 \Juy Us
1 1

= [ A=A = —— [ do= 1,

(E.54)

where the patches U; and U, are chosen so that their boundaries are the equator
of S?. The implication of C}; = —1 is that traversing around the equator on the S?
also corresponds to circuiting the S once. This is the global property of the Hopf
fibration that is not encoded in the local expression S® = S' x S2. A more simple
example of a similar phenomenon is the Mobius strip. Locally, the Mobius strip is a
cylinder S* x R. However, if one starts on the inside of the Mobius strip, encircling
the S once leads to the outside of the strip. A Mobius strip is thus not S x R
globally.

This kind of global feature is also present in the S-fold vacuum AdS; x S}] x S5,

which is described in section 3.2.3. In particular, there is a non-trivial S-duality
monodromy when encircling 5717‘
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Type 1IIB field equations

This appendix is dedicated to deriving the type IIB field equations that are given
in section 3.1.1. The action for type IIB string theory is

| 1 1 ]
S=53 / @ ¢ (R — S HE, ME™ + {0, MO"M'}) +

-3z (/ Az e’F5’ + /5,]04 A H;) A H( )>

where the axion-dilaton matrix and its inverse are given by

AP - - 1
M:e¢<|_|x 1X>, M1:e¢<x |§<|2>, (F.2)

and X\ = y +ie? [4]. The equations of motion are found by varying the action with
respect to the different fields and then applying the self-duality condition Fy = [
[21]. Some terms of the action can be written out more explicitly using

HZupMpr = €¢<|)“2Huuprp — 2xF, H"P + Fuuppr) (F.3)
1

ztr{au/\/l((‘)“./\/l_l} = —5(8M¢3”¢ + 62¢3MX8“X), (F.4)

€ij04/\H3i) /\Héj) = 204/\H3/\F3. (F5)

The self-dual field strength is again given by

Fuvpoe = Fuvpoe — 5CuHpoe + 5B Fpoe, (F.6)

~ 12 ~ ~
and its norm is .F5’ = ég‘“”l...9“5”5FM._H5FV1“_V5.

F.1 Varying with respect to ¢

Starting off with the dilaton ¢, there are 2 terms that contribute:

5 (ie {0, M M1} ) = —;5 (e [0,00"6 + €9, x0"\]) =

_; (2¢ 9,00"60 + 2¢ *0,x0"x00) = (F7)
= (9"(c0u) — ¢ *0,x0"X) 09,
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F. Type IIB field equations

and

1 v 1 v Vv,
o <_12€ qupMH“ p> - _Ee 5(€¢[|/\|2HNVPHM "= 2 H

¥ FpF0]) =

= —1126 (5([€¢X2 + e_ﬂ H,,,H""+

(F.8)
— 2%y F, H™? + o® Foup FWP) —
= 1126 ([e"z’ — e‘z’XQ]HWpHW'D—i—
+ 260X Py H'™ = €2 F, ') 5.
The field equation for ¢ is thus given by
0= 0"(ed o) — e €220, X"+
+ 1126 ({€_¢ — e‘bxz} H,,,H"" + 26¢XFWPH“”” — e‘bFWpF“l”’). (E-9)
The first term can alternatively be written as
" (e ) = V* (e ?0,e?), (F.10)
so that the equation of motion for ¢ reads
VH(e™?0,e?) — €20, x0"x = 112 (69 g P — 2 XFyu H' (F.11)

+ [6¢X2 — e_(b]HWpH“”p).

F.2 Varying with respect to y

The y-dependent terms of the action are the same as the ones that were considered
when varying with respect to ¢. Varying with respect to x is however slightly easier
since

b (ie tr{&u/\/la“/\/ll}) = —;6 (e 0,00" ) + ewauxa“x]) =
= —;26 ew(?#)(a”éx = (F.12)
= O (e 62¢8MX> X,

and

1 y 1 v v
) (_126 HEVpMH“ p) BTN 5(6¢{|/\|2HHVPH# 7 = Xy H" +

+ FWpprD =
1, ) (F.13)
=—15¢°¢ ) (X H,,,H"P —2xF,,,H" ”) =
1
— —66 e® (XHuw,H"? — F,,,H"") éx.
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The field equation for xy becomes
1
0" (e ®0,x) — e ¢ (XHyu H" = Fupy ') =0, (F.14)
which can be written as

1
VH (e20,x) = ¢ OHyup H"? = Fyyp H') (F.15)

F.3 Varying with respect to Cj

-2
Varying with respect to C involves the ‘F5‘ -term, which becomes

~ )2 1 ~ ~ 2 - ~
5(6 ‘F5‘ ) - 56(6 FuupoSFWPU§> - Ee FWPU&(SFWPUE =

2 ~ 1 -
= 5 F780,0C e = — 0 [e F'7E| 6Cp0c = (F.16)
1 e
= —273'85 {6 Frve 5} 5CMVP0'7
as well as the topological term

Written in terms of component the variation of the topological term becomes

2
2 504 NHz A Fy = mdmg; glwpam.”HGHltlmuaFMMsuGéCMme (F.18)
so that the field equations for C, read
1 [V pog 2 HYpop ... 6
—5 3% e Froect] + ETRETIVT Hy s Fappsus = 0, (F.19)

which simplifies to

F,

[V PO 1 VPO U] .- 46
Ve[| = b By 20

(3')2 H1p2 3

F.4 Varying with respect to B,
The 2-form B is involved in 3 terms of the action, the first being

1 1
5 <_126 HT MH”VP> TR 5 (2 [|AI® Hywp H'™® = 2X Fp P+

pvp
+ Flu,F')) =

1
= —Ee €¢ <6|)\|2HNW78M5BW) - 6XF’quaN5BVp) = (F21)

— (@l ] 3, e o)) o, -

= L (@ e AP E] — ,[e ] ) 8,
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the second is

5(—ie ]F5]2) = —4,15!5(6 Frupo F17P70) = —4_25!6 FH8 5 By =
=1 ?5!6 Frrot 5(-3C,,0,0 Bye + 0By Fooe) =
-~ .13!6 P98 (_3C, 9e6 By + 5B Fone) —
- _8~13!(3<95 [e F*77]Cl + € F*78 Fepot

+e 07 F 0 )0B,, =
1 TV p0 1 [V PO
= (—1—6@[@ Freetio,, — G Frot )0 B,

and the final is the topological term

1 1 1
5 (—2C4 N H3 VAN F3> - —§C4 N (SHg N F3 - —504 N d632 A F3 -

1 1
- 5dC4 VAN 532 VAN F3 - —5(532 A F3 VAN F5,

which becomes

! 11 y 10!
0B A FS A = g S S 0B Fvasa P =
1 1%
= —mdlox ettt B s Flu us 0 B,

in component form. The field equations for By are thus

0= ; <8p [e e¢’|/\|2H“”p} -0, {e ed)xF‘“’pD — 1168§[e F’“”p"f]Cpg—i-

— i@ ﬁ‘leﬂfF ghvp--is [

2 b0t T B3l papaps L)

fd.. g

By using the covariant derivative they instead read

1 - 1
Vi [P — Oy F17] = o Ve [F0%€] Cpo 4 5 0% Fget

+ 1 GMVﬂl-nlLSF

2. 5' . 3' NIHZNSF

a8
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The B, equations of motion can however be simplified further by using the Cy field
equations on the V¢ F*P7¢-term and then rearranging some indices

1 ~ 1 -~
Y, [ E — o] = L[] €, 4 Ly

1
AV f
toera© B
1
_ UVPO L] ... fi
= € 1 GCPUHH

8- (31)?

1
HYPoET ... 5
T Fooe

1 v,
12 - 5!€M /J‘l"'H‘SFM1M2“3

F =

pa-e 8

1H2 43 Fl"4#5l’46 +

Fiyopst

F

" paci = (F.27)

1
= - ﬂewmmus Fpons Craps Hygprpus +

PUTERNTY o

H1M2H3F#4~--H8+

T 195
L
125!

_ ﬂdwm...us meug (—56’#4#5 H#GMM8 +

+ FIM---MS + FM4---M8)'

BV 18
€ quzus

F

Ha.pis

Since et E s (DB uaps Fugurus) = 0 the right hand side can be written as

1 5 .
rhs. = T-E)‘G# S B o (Fug.ons + Flugops T
- 5CH4#5 H%MMS + 5Bu4u5 Fuemus) =
_ 1 VI8 (ZF ) — 1( 1 el ps | )F _ (F'28)
1251 papops\ A4 g s 65 pa...pis )£ pa iz
1~ vpo
=SB $F e
The final expression for the By equations of motion is
1 -
V, [N H? — ety ] = ngpaprgg. (F.29)
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F.5 Varying with respect to (5

The Cs-dependent terms are the same as for B;. Under variation with respect to
C5 they become

1 1
5 (—e HT, MH’“’P> = —15¢ 5 (2 [|AI® Hywp H"® — 2X Fp H'™ P+

12 nvp nrp
+ FMVPFMW)]) =
1
= —5¢ e? (=6xH""*9,6C,, + 6F"9,6C,,) =  (F.30)
1 14 v,
=3 (—3H [e eOH" p} +0, [e e? Fr ”D 6C,, =
1 14 14
=5 (—3,0 [e ey H* p} +0, {e e® FH ’)D 0C,,
and
1 B |2 1 n [V poE [HVPoE S T,
(5(—16 ‘ 5‘ ) = —475‘5(6 F#VPUEF ) = 1. 5‘6 F 5F‘u/l/pa-€ =
2 ~
- 4. 5!6 Frvees 5<3Buvap500£ - 5C/WHPU§) =
1 .
= — Freos(3B 0:6C,,, — 0C, H o) =
3 _13!3 (3B00:6C, o Hpot) (F.31)
= gl FHreot| By — e FHP%° Heyo o+
—e FrrotH 0 )6C,, =
1 [V PO 1 [V PO
= (1—685[6 FHee 5]Bp0 + ﬂe Frve ngoﬁ)(SCW
and finally
1 1 1
5 (—204 A Hy A Fg) = —SCu N Hy A STy = —Cy A Hy N d6Cy =
1 1 (F.32)
- —§dC4 N H3 VAN 602 - 5502 N H3 VAN F5,
where
1
50C2 NHy NFs = = B!dl% et H s Fris s OC - (F.33)
The field equations for Cy become
1 1 .
0= 5 (—ap [e e‘be"”p} +0, {e 6¢F””p]) + 1—685[6 F’“’ME]BPU—I—
1 e (F.34)
+ ﬂe FFP7SHpoe + 150 3!5WM1mugHuww:sFm---usa
or equivalently
1 . 1 -
v, {€¢X Hrve ¢ FMVP} — gv el FWPUE] B, + 3 Jnvpot H et
1 ) (F.35)
+ 2.51. 3!dwmmugHmmusFm---us
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F. Type IIB field equations

Analogously to the Bj case, the Cy equations of motion can again be used to simplify
the right hand side

1_ - 1.
rhus. = SV P By o P H et
1

NPT
1

— :U'VNI"'NSB H
€
8 . (3')2 H1p2 =" 3 g s

1 y ~
+ T-S!E# Mu.ﬂgHuwwaFM.uus*‘

PV ... 8
€ Hypy oy

F

Ha... 48

F#6M7H8+

— F.36
+ ﬁ@“ Ml"'“SHﬂlﬂ2M3FM4...ug — ( )

_ 127_5‘6“”“1"'“8}[#1#2#3(5BM4M5Fu6u7ug
1 .
_ HVHL-is T Fruops + Frug st

ﬂ M1,u2u3(
—5C,,.-H +5B,,,. F

paps L peprpg papts uemms) =

+ FM4...,ug + FM4-~~M8) =

1~ Nles
— 6 [rvpog Hpa £
which results in the C5 field equations taking the form

1 -
V, [eoxH" — e Fre] = o 177 . (F.37)

F.6 Varying with respect to g’

Finally, Einstein’s equations for type IIB string theory are derived. Varying the
action with respect to ¢g" yields that

1 _r Y 1 _1 1)~ 2 B
5 (e [R — SHE ME™ 4 {0, M" M} — || D — 0. (F.38)
The first term is
1
d(eR) =e(R,, — iRgm,)(Sg"”, (F.39)

the second term is
5 (— e HE MH™) = — L (5¢ HT, MET™
_Ee pvp - _E( € Hywp +

+3e Hy,, MH,"6g") =

wpo

V2 T (F.40)
— —126( — §gNVHp0'§MH +
+ SHZMMHV’”) 5g™,
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F. Type IIB field equations

the third term is

1 1
o(5e t1{0,MO"M™1}) = Z(5e tr{8, MO M~ }+
+e tr{0,MI,M '}g") =

1 1 B (F.41)
_ 4e< — S g {0, MO M
+ tr{@u/\/l(’?,,/\/l_l}) 5,
and the fourth term is
1 B |2 [ po§ pow § uv
6(—e ) =- 4 (0 Brpoc 778 - 5¢ B, e, E,P766g") =
1 . (F.42)
— _4.75'6 (_ig/meW%Ful Mo 5F | oot pr0§w>5g,uv
The field equations for g"” become
Ruy— SR = — (= Lgu HT MBS 4 307 MH,"°
Wy Juv = ﬁ _Eg;w po€ + wpo
( = G tr{O,MP M} + tr{9, MO, M~ 1})
+ ( S i FP 0 4 5, praf"J) _ (F.43)
1 1 -2
— < ( HT  MH 4 tr{0, M M} — \F5\ ) Gt
1 T o 1 o&w
+7 (HMMMH MM} + e, B )
which can be written as
1 1 1
R = 5 R = (tr{a MM — H7:,§MHP”5> gw,—i—
(F.44)
T o 1 oc&w
b (HE M = 0{0,MOMT} + 1B, F75)

using the self-duality condition Fy = xFj.
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G

The Bo, (U9 and ()} field strengths

This appendix focuses on calculating the field strengths of By, Cy and Cy, which are
needed when evaluating the equations of motion in appedix H and J. First off, the
VEVs of the field content are restated. In the background, the dilaton and axion

are
¢ = 3o 27 C05C) gy |27 00sa) 1)
7 — cos(4a) 2 + cos(2a)

The VEVs of the 2-form fields are given by

cos® o in3

sin® o
By = —2v2e7"——vol Cy = =2V 2e"—volg,. G.2
2 Ve 2+ Cos(2a)vo o 2 Vae 2 — cos(2a) VOl (G-2)

The deformation parameters can be set as y; = 0, see section 3.2.4, so that the
volume forms of the 2-spheres read

The 4-form VEV is

2 1
Cy= gw;; A (dn + 3 sin(2a)da) — §f(oz)da A (A1 Avolg, +volg, A As).  (G.4)

G.1 2-form field strengths Hs and Fj

To tackle the IIB equations of motion, the field strengths of the 2-forms are needed.
Starting with Hy = dB»

3

cos® a
Hj; = —2v2e T ——— | d 1
3 077< V2e 2+cos(2a)) n A volg, + s

cos® o
On | —2vV2e7"—————— | dav A volg, .
+ ( V2e 2+ cos(2a)> @A TO
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G. The By, C5 and C} field strengths

The derivative with respect to « is evaluated with some useful double angle identities

2v/2e¢7" cos® o _ 9B - 3cos? o sin 04+
2 + cos(2a) 2 + cos(2a)
cos® a (—2 sin(2a))> B

o -

(2 + cos(2a))?
I sin(2a) cos a 4cos? o
= — (& e — — P -
2 + cos(2a) 2 + cos(2a)

_, sin(2a) cosa
= —2e7" X
vae (2 + cos(2a))?

X (—3(2 + cos(2a)) + 4 cos® a) =

o 4 4 cos(2a)
= 1/2e " 2 .
V2 "sin(2a0) cos o 2+ cos(20) 2
The field strength of the 2-form is then
Hy = 20261 —5 % A ol +
= (A VO
s 2 + cos(2a) g o
4 2
+ v2e " sin(2a0) cos o + cos(2a) do A volg, .

(2 + cos(2a))?

The calculation of the other field strength F3 is analogous and yields that

sin® o

— cos(2a)
—V/2€"sin(20) sin o

_ —2\/_677

dn A volg,+

4 — cos(2a)
(2 — cos(2a))?

do A\ volg,.

Their components then read

n__cos®a
Hyppo = = 2¢/2¢~ 57 cos(2a) sin 64,
44+cos(2a) -
n _4+cos(2a)
Hup oo = /2e7"sin(2a) cosa Grcos(oa)? SR 01,
and
_ n__sin® «
F0500 2¢/2e 5= cos(23) sin 6,
4—cos(2a) -
_ n _4—cos(2a) _
Fovypy, = V2e"sin(2a) sin o B —cos(o0))? sin 6.
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G. The By, C5 and (Y field strengths

The square of Hs is calculated as

H? = H#VpHﬂVp = 3!([—_]7791@1]{7791901 + HaeleaOupl + HnaelHnael) _

- 010 'l ao 010 rol\
= 3 (Hn91801H7791s01gnng ! 1g<P1901 + Ha91501Ha91801g g ! 19501301) -

3 6
_ 3 A <862” cosb v

! in” @
rtsin? 0, (2 + cos(2a))? s

(4 + cos(2a))?

(2 4 cos(2a))*
(4+ Cos(2a))2>

(2 + cos(2a))?

4+ cos(2a))2> _

(2 + cos(2a))?

+ 2" sin*(2a) cos® a
3 4
:8'3!A—6_27’ cos*
x? (2 + cos(2a))

2 . 2
5 <cos a + sin”(«)

=8 3lA%e <cos2 a + sin?(a)

-31A3e™2n
= (28+3cos(;a))2 (C082 Q [4 + cos?(2a)) + 4(:08(204)} +

1 sin?a [16 + cos?(2a) + 8 cos(ZOé)} ) =

8. 31A3e—2n
B (2 + cos(2a))2 (4 + COSQ(QG) + 4 cos(2a)+

+ 12sin® a + 4sin® a COS(Q&)) =
19 — cos(4a)
(2 + cos(2a))?

= 24 A3

SiIl2 ‘91) =

(G.11)

The calculation for F? is similar and the results of the squared 2-form field strengths

are

19 — cos(4a) P2 — 94 A3 19 — cos(4a)

H? = 2432 .
© 2+ cos(20))? (2 — cos(2a))?

G.2 Self-dual field strength Fj

The field strength of the 4-form C} is given by

3
Fy=dC, = idwg A dn + sin(2a)dws A do + f(a)da A volg, A volg,.

The AdS, volume form is

dws = volpgs, = € dt Ndx Ndy Ndz, é:\/m,

where §,,, is the metric on AdS,. The F5 components are

Fa91<,0192‘,02 f(Ck) sin 91 sin 02-

(G.12)

(G.13)

(G.14)

(G.15)
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G. The By, C5 and C} field strengths

The relevant field strength for the equations of motion however, is the self-dual
Ful/poﬁ = Flvpoe — 5C[WHPUE} + 5B Fpog)- (G.16)

The components with AdS,-indices are the same as the ones for Fj since there is no
contribution from the 2-forms. The other Fy-components can be calculated using
(G.16), but are more easily obtained from Fi,,., and Fi,,., via the self-duality
condition. There are two other components, the first being

_ - Hivi H5Vs T, _
Fa9190192502 - 5|€049150192<;72u1---,u5g g FVl---Vs -

5! .
_ : tt xx Yy zz nn _
= ;€ 5a91g9192g02tzyz779 g g°gg Ft:;:yzn —

5!
_ tt _xx Yy zz NN I _
= —€ 5t:vyzna9130192302.g g g9°°g g thyzn -

| . : 1\ /3. G.17
= (166 A~1sin®(2a) sin 6, Sln92) (16A5§> (2e> = ( )
3 e

— §A4 SinQ(zOé) Sin 91 Sin ng = {ég = —g}
3

= —§A4 sin?(2a) sinf; sin 6y,

and the second being

F7791<,0192<,02 = 56779150192502/11--‘#59

5! 7
9 tt _xx Yy 2z o0 —
= ae Enbrp102patayzad 9 9779 9 thyza -

HIVL U5 T —
g, L =

— tt xx Yy 2z oo I _
= € Etayznabipi02029 9 9799 thyza—

(G.18)
1 1 . .92 . . 5 1 . ~
= — (166A sin”(2a/) sin 6, 81n02> 16A°= | (sin(2a)é) =
g
)
= —A*sin®(2a) sin6; sin 0, = {&* = -3}
g
= A*sin®(2a) sinf; sin6,.
The components of the self-dual F; are
Foprpr20, = —5AYsin?(2a) sinf; sin by,
jf’ngwlng,S:N Asin3(2a) sin 6 sin 6, (G.19)
thyzn =36
meza = sin(2a) é.
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H

Evaluation of the scalar, 2-form
and 4-form field equations

In this appendix all of the type IIB equations of motion, except Einstein’s equations
which are treated in appendix J, are evaluated for the AdS vacuum given in 3.2.
A brief description of the procedure is given in section 3.2.5. The deformation
parameters are set to y; = 0 as the field equations are local, see section 3.2.4.

H.1 The axion equation of motion

The background value of the axion being x = 0 drastically simplifies its equation of
motion to

Fou,H"? = 0. (H.1)

This is satisfied since there are no three common indices for which both H,,, and
F,.,, are non-vanishing.

H.2 The dilaton equation of motion

Since x = 0 the dilaton equation of motion reads

VH(e ?0,e?) = 112(6¢F2 — e H?), (H.2)

where

ob — \fae-2n 2 Cos(20) (H.3)

T — COS(40&).
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H. Evaluation of the scalar, 2-form and 4-form field equations

Starting with the right hand side of (H.2), it is simplified as

1
r.h.s. = E(6¢F2 — e PH?) =

= 2A%(19 — cos(4a)) [

20 9 o200
(2 —cos(20))2 (24 cos(2a))2] -
V2(2 — cos(2a))
7 — cos(4a)(2 — cos(2a))?

1 7 — cos(4a) ] _

= 2A%(19 — cos(4a)) [
T V/2(2 = cos(20))(2 + cos(2a))?

VGIX. 19 — cos(4a) 7 — cos(4a)
B 2 — cos(2a) _ cos 4a (24 cos(2a))?

_ V3A 519 — cos(4a) 2(2 + cos(2a))? — (7 — cos(4a)) _
2 — cos(2a) 7 — cos(4a)(2 4 cos(2a))?
_ BN 19 — cos(4a) 8 + 2cos?(2a) + 8 cos(2a) — 7 + cos(4a) _
2 — cos(2a) 7 — cos(4a)(2 + cos(2ar))?
W /5A3 19 — cos(4a) 2+ 2cos(4a) + 8 cos(2a)
2 —cos(2a) /7 — cos(4a)(2 4 cos(2a))?
@ 5 /3A3 19 — cos(4a)  2cos?(2a) + 4 cos(2a)
2 —cos(20) /7 cos(4a)(2 + cos(2a))?

(H.4)

_ 3 cos(2a 19 — COS(4O‘) 2+ COS(2a) =
= 4v/247 cos(2a) 2 —cos(2a) /7 — cos(4a)(2 + cos(2a))?
_ 5 19 — cos(4a) cos(2) =
) (o)) @ + con(2a))
_ 3 cos(2a 19— COS(4a) : -
=424 (20) 7 — cos(4a) 4= c0s(20)
— UV/BAT cos(20) 127 c0504)
7 — cos(4a)

where the identity 2 cos?(2a) = cos(4a)+1 is used at (1) and cos(4a) = 2 cos?(2a)—1
is used at (2). As for the left hand side, since e? only depends on 7 and « it becomes

Lh.s. = V(e %0,e?) = 18M(e e g"0,e?) =
1 ¢ (H.5)
== [an(e e %g"M0,e?) + Oale e_‘z’gaaaaed))} .

Since e=?9,e? = —2 and the metric is independent of 7, the first term vanishes. The

left hand side is thus
1 (e A
Lh.s. = V¥ (e 0,e?) = gaa(e A e 99,e%) = Oale A)

. e ?0ne? + A, (e790,e%).

(H.6)
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H. Evaluation of the scalar, 2-form and 4-form field equations

Breaking this calculation down, the first factor is

da(e A)  Ou(cos’a sin*a) 2Acos30z sina —cosa sin®a
e A-lcos’a sina cos? a sin? « B (H.7)
2 _ ain? 2 .
oA AT IR A 4AC_OS( a) = 4A cot(2a).
cosa sina sin(2«)

Next, the derivative of the dilaton is

e® = 2e 2 25in(20) _Llz- cos(2a) sin(4a))| =

O V2 [ T cos(da)  2(7T- cos(da) )32 (4sin(4 ))]
M 2 cos(2ar)(2 — cos(2w)) _

22 7 — cos(4a) [1 7 — cos(4a) 1

(H.8)

B e 2" sin(2a) ) _
= 2\/5(7 ~cos(da))i 2 [7 — cos(4a) — 4 cos(2ar) + 2 cos (2a)} =

B e 2 sin(2a) B
= 2\/5(7 ~ cos(da) 2 [8 — 4 cos(2a)] =

oy 2 — cos(2a)
= 8v/2e ¥ sin(2a) (7 — cos(da))?/2’

which implies that
8sin(2a)

—99 o —
€ "0ac 7 — cos(4a)

(H.9)

Finally the derivative of e=%0,e? is

Oa(e”*0ne?) = 7130555(23) G fsiii?fiw sin(a)) =
cos(2a) [ ~ 4sin’(2a) 1 _
7 — cos(4a) 7 — cos(4a)
cos(2a)
(7 — cos(4a))?
5 + cos(4a)
(7 — cos(4a))?’

=16
(H.10)

=16 [7 — cos(4a) — 4 sin2(2a)} =

= 16 cos(2a)

The left hand side becomes to
8sin(2a)
7 — cos(4a)
cos(2a)

(7 — cos(4a))?
19 — cos(4a)
(7 — cos(4ar))?’
leaving the dilaton equation of motion as

19 — cos(4a) 7 7 cos(%0, 19 — cos(4a)
(7 — cos(4a))? 12a (22) 7 — cos(4a)

Lh.s. = A |4 cot(2a) + 16 cos(2av)

5 + cos(4a) ]
(7 — cos(4a))?

= 16A [2(7 — cos(4ar)) + (5 + cos(4a))] = (H.11)

= 16A cos(2a)

L.h.s. = 16A cos(2a) =r.h.s.,

(H.12)
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H. Evaluation of the scalar, 2-form and 4-form field equations

which reduces to A

(7 — cos(4ar))3/2

L \2AS,
This is true since

22
(7 — cos(4ar))3/2’

1
A~ =4 — cos’(2a) = 5(7 —cos(4a)), = A°=

which shows that the dilaton equation of motion is fulfilled.

H.3 The (4 equations of motion

The equations of motion for Cy4 are

Vgﬁwpafz 1 HVPIRL 15 FT

(3!)2 H1M2H3F

Hap5 e

(H.13)

(H.14)

(H.15)

This equation should be satisfied for all combinations of its four free indices pvpo.
The order of the indices is not important however, since all indices are completely
antisymmetric. Because of H3 and Fj, the right hand side is only non-zero if yrpo =
tryz. This case will be dealt with first. All other cases are trivial in the sense that
they amount to 0 = 0. They are thus validated by showing that the left hand side

vanishes unless puvpo = tryz.

H.3.1 The non-trivial case pvpo = tryz

The non-vanishing right hand side is

r.h.s. =

teyzpy ... e
(3!)26 Hmuw?,

F

Hapspe

— etwyzaﬁ@m@zm H, twxyznbprabzps Hﬂ

0101 Fnospn + € 0101 Fabrpr =

_ tryznabipi1bep _
=€ ( Ha91501F7192<,02 + Hn91901F0492<P2) -

_ g sin?(2a sin® o (4 + cos(20))
e 2 )<(2 — c0s(21)) (2 + cos(20))?
B cos? a (4 — cos(2a)) sinf; sinf, =
(2 4 cos(2a))(2 — cos(204)>2> e

= ZAg sin?(20) [sin2 a (4 + cos(2a)))(2 — cos(2a) )+

— cos? a (4 — cos(2a))(2 + cos(2a))} sinf; sinfy, =

e
2
= —~A%sin?(2a) cos(2a) [10 — 0052(2(1)} sin#; sinfy =
e
1
= ——A%sin?(2a) cos(2a) [19 — cos(4a)]sin 6 sin 6.
e
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2
= ZA%sin?(20) [—2 cos(2a) — (8 — cos?(2a)) COS(QO()} sinf; sinfy =

(H.16)



H. Evaluation of the scalar, 2-form and 4-form field equations

The left hand side for uvpo = txyz becomes
lh S. = V Ft:pyzﬁ v thyzn + V Ft:ryza Vaﬁwt:ryza’

since F'¥*1 and the metric are independent of 7. Evaluating further

- 1 -
Lhs. = VoF™5 = 20, (¢ Fropag” g™ 0" 9™) =

e
= 1aa ([1é A~'sin?(2a) sinf; sin6y][é sin(2a)][A516}]> =
e 16 g
= 18 (—A4 sin3(2a)> sinf; sinfy, =
e «
1
e
= 2A3 sin?(2a)(—20,A sin(2a) — 3A cos(2a)) sin 0, sin .
e

Using the derivative of the warping factor
0a = 0o ((4 = cos®(20)) /") =
1
= —1(4 — cos?(200))~¥*(4 cos(2a) sin(20)) =
= —APsin(2a) cos(2a),

the left hand side becomes

Lh.s. = 2A3 sin?(2a) (2A° sin?(2a) cos(2a) — 3A cos(2a)) sin 0 sin 6y =

e

2

= =A%sin?(2a) cos(2a)(2sin*(2a) — 3(4 — cos®(2a))) sin§; sin by =

e

1
= _EAS sin?(2a) cos(2a)[19 — cos(4a))] sin 6, sin s,

which makes it clear that

1
Lh.s. = —~A¥%sin’*(2a) cos(2a)[19 — cos(4a))]sin #; sinfy = r.h.s..

e

H.3.2 The trivial case uvpo # txyz

—(—4A3%0,A sin®(2a) — 6A*sin?(2a) cos(2ar)) sin §; sinf, =

(H.17)

(H.18)

(H.19)

(H.20)

(H.21)

If the free indices pvpo # txyz, the left hand side should vanish. There are four
non-vanishing Fy-components. The two that appear when puvpo = tzyz are Ftwyzn
and mew, where the derivative contracted with the indices n and « respectively. If

the derivative contracts with ¢t however, the left hand side becomes

Lh.s. = V,Ft¥2 — L=, a,

(H.22)

since the metric and all Fy-components are independent of ¢. If ¢ is not among the

free indices the left hand side vanishes. The same is true for x, y and z

™

- 1 ~
Lh.s. = V, " = gax(e thyzugttgmg g gt) ~ 0. (e é_2) =0,

(H.23)
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H. Evaluation of the scalar, 2-form and 4-form field equations

since e ~ Fzy., ~ € (for p =1, a) and 9" g g** ~ Gt ~ €72 because all x, y, z-
dependence is encoded in €. The two remaining Fs-components are Fyg, 46,0, and
F0, 6165, Similar to the case with ¢, there is no dependence on 7, ¢ or ¢, implying
that if they are not among the free indices, the left hand side is zero. To show that
this is also the case for 6, and 65, the zehnbein determinant, the F5-components and

the relevant inverse metric components are considered

1

SiIl2 91 Sil’l2 92’ pe=1, <H24>

e~ Fugi0100p0, ~sinb; sinfy, ¢¥1%1 g% ~

This results a vanishing the left hand side
Lh.s. = Vy, FF119202 9y (& Fp,01000,9° 7 g7272) = 0, pw=mn,ca  (H.25)

leaving Lh.s. = V,F1#192¢2 a5 the only case left to check. The a-dependence of
the relevant quantities are given by

e ~ A7'sin?(20), F gy 010000 ~ Atsin?(2a),
1 A5 (A8 1 A 1 (H.26)
1.4 7 T :
xriwy sin*(2«) sin®(2a)

Again the a-dependence cancels out and the left hand side vanishes

ax 9191 Y11 9292 2¥2 5
GGt gL g g o A

Lh.s. = VQFQGMDIGQS” ~ aa(‘e Fa91@192@29aa991019901901992629%02302) = 07 <H27)
which finally shows that the Cy equations of motions are satisfied by the AdS vac-
uum.

H.4 The B; and (5 equations of motion

The B, and (5 equations of motion with y = 0 are given by

1
3!

1

V(e O HMP) = -3

Freotp e N (ePFHP) = —— PRt (H.28)

However, these equations are actually S-dual to eachother. This can be seen by first
writing the field equations in terms of differential forms [22]

d(€_¢*H3) :Fg/\ﬁg,, d(€¢*F3) = —Hg/\F’g). (H29)

Consider the transformation given by the SL(2, Z) element

A= (_01 é) , (H.30)

which transforms the 2-forms and their field strengths like

@5~ (i)
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H. Evaluation of the scalar, 2-form and 4-form field equations

The dilaton transforms like e? — €™ according to (3.5), and all other fields are
unchanged. The equations in (H.29) are dual under this SL(2, Z) transformation
and it is thus sufficient to only show that only

1 -~
V(e PHI) = G PP Fe, (H.32)

is satisfied. The right hand side is only non-zero when the free indices are v = ;¢ .
This case is treated first.

H.4.1 The non-trivial case uv = 0,
The right hand side is

I~ v nld 6 101016
r.h.s. = gFu pgngog =F 1917 2902F7792g02 + F 11 2@2Fa92§02 -

1 ~ 1 2
- 5691@17]92@2,&1...M5FM1...H5F7792(P2 T 5691@1a‘92§02,u1.“y,5 Frons Foatror =
_ Eta}yzna@1<ﬂ192<ﬂ2 (thyzaFnechz _ F’txyanoﬁchQ) =
1, . -
— g (EmyzaFn92<p2 - Emyana92<P2) -
16A 3
_ + (sin(2a)Frg — Sy ) — (H.33)
¢ sin?(2a) sin6; sin 926 <Sm( ) Eses 2 62@)
16v/2¢"A sin «

~ sin(2a) sinf; (2 — cos(2a))? 8
X (2 sin® o (2 — cos(2a)) — 2(4 - cos(2a))> =

- e — cos(4a
~ sinf; cosa (2 — cos(2a))? (7 + 3 cos(2a) (4a))).

Next, dealing with the left hand side of the equation

Lh.s. =V, {e_‘i)HGWU’} = (138" [6 e—¢H7791901} + (1380‘ [6 6_¢Ha61¢1i| _

1
= gan [6 e—¢Hn01<plg777I99191g§01<ﬂ1} +

1 L oo (H.34)
+ *aa [6 € Ha01go1gaag ! 1glpl¢1] =
e

1 B A3 1 B A3
=20 le e ¢Hn91w14] + gaa [e e ¢Ha91w14] ;

x3sin? 0, x$sin? 0,

where the only 1 dependence in the first term is e=?H,j,,, ~ €', making the partial
derivative 0, redundant. To continue evaluating the left hand side, the derivative

0a(A €)

e

= 4A cot(2a), (H.35)
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H. Evaluation of the scalar, 2-form and 4-form field equations

which was calculated in (H.7), will be needed. The left hand side becomes

A s 1 -5
lL.h.s. = m@ Hﬂeléol + gaa e e Ha914p1

A3
x}sin? 6,
3 2
A N )
x$sin? 0, e ptsin? 6, e

A lAQ _

+ 0 PVRS ¢HC¥91<P1‘| -

. (0%
sin? 0, x]

A3 3 4ANA3 cot(2a
*Hypyp, + 447 cot(2a)

= H,
x$sin? 0, ‘ ¢ oot
A A?

T [46—%9%] .

. (0%
sin? 0, x]

2% sin? 0,

The derivative in the last term is

2 > /7 cos(4
B, <A6_¢Ho¢91cp1> _ 0, (Ag (2 + cos(2a)) o cos(4a) 8

xf cost 2 — cos(2a)

X sin(2a) cos «

4 4 cos(2a) <in
(2 + cos(2a))? !

4 2 7 — cos(4a
=esinf; 0, [ A?  cos(2a) o) sin(2a) | =
cosdar 2 — cos(2a)

= {y/7 — cos(4da) = \/§A’2} =

_ 93 sinb, 0, ( sina (4 + cos(2)) > _

cos? v (2 — cos(2av))
" (4 4 cos(2a))
= 2v2¢sin 6, (cosa (2 — cos(2a))
2sin v sin(2«)

cos? a (2 — cos(2ar))
2sin a (4 + cos(2a))
cos? v (2 — cos(2av))

_ 2sina sin(2a) (4 + cos(2a))> _

cos? v (2 — cos(2a))?

B 2v/2¢" sin 6,
~ cos3a (2 — cos(2a))?

x | = sin’(2)(cos® a + 2sin” @) (2 — cos(2a))| +

((4 + cos(2ar)) x

— sin®(2a)(2 — cos(2a))> =

= e sin 6,

(H.36)

1 35 — 27 cos(2a) + 11 cos(4a) + cos(2a) cos(4a)

V2 cos® a (2 — cos(2a))?

(H.37)
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H. Evaluation of the scalar, 2-form and 4-form field equations

The left hand side becomes

Lhae — AP(2 4 cos(2a))* [ €27 /7 — cos(4a) y
T costa sin? 6, V2 2 — cos(2a)

22 cos®
><<f cos”a sm91>+

en 2+ cos(2a)

A?(2 + cos(2a))?) [ e*1 /7 — cos(da)
4A cot (2 V2 2 - cos(2a)
+ cot(2a) ( cost o sinZ 6, V2 2 — cos(2a) X

V2 4 + cos(2)
(9 :
X (e” sin(2a) cosa 3+ cos(20) )2 sinf; | +

A e’ 35— 27cos(2a) + 11 cos(4a) + cos(2a) cos(4a)
V/2sin 6, cos? a (2 — cos(2ar))?
A 4(2 4 cos(2a))
V2sin 6, cos a (2 — cos(2a))
A e’ 8sin(2a) cot(2a) (4 + cos(2a))

V/25sin 6, cos? a (2 — cos(2a))
A e’ 35— 27cos(2a) + 11 cos(4a) + cos(2ar) cos(4a)
V2 sin 6, cos3 o (2 — cos(2a))? N (H.38)
A el 1

- V2 sin 6 cos® a (2 — cos(2a))? (4(4 — cos”(2a))+

+ 8sin(2a) cot(2ar) (4 + cos(2a))(2 — cos(2a))+
+ [35 — 27 cos(2a) + 11 cos(4a) + cos(2a) cos(4a)]> =

A el 1 "
V25sin 6, cos® a (2 — cos(2a))?

X ( [T+ 7cos(2a) — cos(4a) — cos(2ar) cos(4ar)] +
+4[—2+ 15cos(2a) — 2 cos(4ar) — cos(2a) cos(4a

N+
+ [35 — 27 cos(2a) + 11 cos(4a) + cos(2ar) cos(4av)] ) =

A e’ 34+ 40cos(2a) + 2 cos(4da) — 4 cos(2ar) cos(4av)

 V2sinb, cos? v (2 — cos(2a))?

4+y/2A e
- 2a) — cos(4a)).
sinf; cosa (2 — cos(2a))? (7 + 3 cos(2a) — cos(4a))

The same expression is finally found for both sides of the equation

42N e
lL.Lh.s. = 200) — 4 =r.h.s. H.
s Sinf; cosa (2 — cos(2a))? (74 3cos(2a) — cos(4ar)) =r.h.s.,  (H.39)

showing that the equations of motion for the 2-forms are satisfied.
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H. Evaluation of the scalar, 2-form and 4-form field equations

H.4.2 The trivial case uv # 6,9

What remains now is to show that the left hand side vanishes when pv # 6,¢;.
First note that the only non-trivial Hs-components are H,yg,,, and H.p,,,. Both
feature 61 and ; indices and if pv # 01p1, then either 6, or ¢; must contract with
the derivative in the left hand side. However

Lh.s. =V, [e ?H"#1] =0, w=n, a, (H.40)

since neither the metric or any fields depend on ¢;. If the derivative instead contracts
with 61, the only #;-dependent components are

1

sin2 91 ’

(H.41)

e ~ sinf, H

] 1¥1
nb1p1 ™ Ha@upl ~ Slnel) gSO L~

implying that
L.Lh.s. = Vgl(e_‘bH“g““) ~ Op, (e H,p,5,97"") ~ 0g, (1) =0, w=mn, a (H42)

This shows that the 2-form field equations are satisfied.
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Ricci tensor of the type I1IB AdS
vacuum

The Ricci tensor of the AdS vacuum given in section 3.2 with the metric

cos? sin? v

1
dsty = A7 |Zdsigs, + A+ do® + —————d + ——————dQ L1
10 9 @oads, T4 2+cos2a L 2—cos2a |’ (L.1)
is calculated using the method explained in appendix C. The Ricci tensor is needed
to evaluate Einstein’s equations in appendix J. The deformation parameters are set

to x; = 0.

I.1 The Ricci tensor

The zehnbein 1-forms of the AdS vacuum can be read off from (3.24), where the
ones related to AdS, are

1 1

1
e’ = cosh p dt, el = ———dp,
NCT NI L2)
1 1 1 1 ’
e? = ———sinhp db, e3 = ———sinhp sinf dp.
2Aa P V2A a P 4
The 1-forms related to S; and the interval Z, of the squashed 5-sphere are
1 1
et = — e’ = ——=da, (1.3)

and for the two 2-spheres, the zehnbein 1-forms are

1
S = ——a1db;, " = ——xysin6; dpy,
\/Z 1avy \/Z 1 1 a1 (I 4)
1 1 '
€8 = ——x9dfs, e = ——xysin b, dps,

VA VA

where the a-dependent x; and xo are defined in (3.22).

I.1.1 The connection w,

To find the 1-form connection wgy,, the exterior derivatives de® are needed. To
calculate these, it is useful to first note that

\/A 2A/ 2A 2\/A \/A ’ ’
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L. Ricci tensor of the type IIB AdS vacuum

Only de® = 0, and the non-vanishing de® are found as

1A
deO:5\/560/\65—\/2Aatanhpeo/\el,
1A
de' = - el Ae?
2VA ’
d<32:l A e A e’ +V2Aacothp e' A e
2VA ’

5 LA 4 1,3 cott 5 3
de’ = = e’ Ne’ +V2Aacothp e Ae’ + V2Aa— e“Ne’,
2vVA sinh p

1A
4 _ 4,5
de —5\/56 A e, (1.6)

Q)
o

>

D
o

cot 6
S Nel + \/zileﬁ A\ 67,

T

e’ /\68,

I
D
)
Il
B
N T N N
|
|
— N = N = N

cot 0
e Ne + VATZZ A0,
X2

[\)
L = L= e R

QL
)
©

Il

D
R

&

|

\

The non-zero wy;), can then be found using the equation de® = n*w;j.e’ A e’
1A

=0: 2 = V2Aa tanh 2 = ———
a Wio1]o atannp, Wios]0 2 VA
] 5 1 A
a=1: w = ——
[15]1 9 \/Z7
a=2: 2w = V2Aa coth 2w = }A/
= . [12]2 — p, [25]2 - 2 /_A’
cot 6
a=3: 2wz = V2Aacothp, 2wia3)3 = V2Aa— ,
sinh p
5 1A
w = ——=
[35]3 9 \/z7
1A
=4: 92 = - L7
a W[45]4 2 \/z7 ( )
a=>5: all Wlijls = 0,
1A
=6: 2 S L 7.
a W(56]6 <$1 5 A)’
1A t 0
a="T: 2&)[57]7: VA<$1—> s 2("-}[67]7: \/ACO 1,
1 2 A T
x, 1A
CL:8 2w[58]8:VA<$2_2A>7
A VAN ——cot 6
a=9 2wisel0 = VA e , 2wWsg)9 = A% 2>
) 2 A i)
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I. Ricci tensor of the type IIB AdS vacuum

Because of the antisymmetry in the last indices, Wape = wa[pe], the 1-form connections
are

wor = woor€’ = —V2Aatanh p €°, Wiz = war2€® = —V2Aa coth p €,
cot 0
wiz = waize® = —V2Aacoth p €?, Was = Wagze” = —V2Aa— R e,
sinh p
1A, 1 A

0 ) ) .
Wos — Woos€ Wis = Wjis€ — ———F—¢€, 1 = 1, 4,
2vVA

:§ﬁe’

il 2 A
x, 1A
Wi — wk5kek = —\/Z A Gk, k= 8, 9,
) 2 A
cot 0 cot 0
We7r = W767€7 = —\/Zi1 67, Wgg = wgggeg = _\/Z72 69.
X T2

(1.8)

The wg can now be used to find the curvature 2-form via O, = dwgp + Wee N Wep-

1.1.2 The dw, term of O,

The exterior derivative of the non-zero w,, are calculated. First

dwor = —V2a d (\/Ztanhp eo) =
A/
= ﬁa tanh p €’ A €’ + 2Aa? (1 — tanh? p) e® Nel+
— V2Aatanh p de® =

V2 V2
+ 2Aad? [1 — tanh? p + tanh? p] eV Nel =
=2Ada”® " A e,
dwyy = —V2a d (\/Zcothp 62) =

A (1.9)
= ——=acothp e* A e® — 2Aa? (1 — coth? p) el N e+

V2
—V2Aa coth p de? =
= —2Aa® e' A €2,
dwis = —V2a d (\/Zcothp 63) =

A/
= ——acothp e A e’ — 2Ad? (1 — coth? p) et Aelt

V2
— V2Aacoth p de® =

9 A2 coth p cot 962 A S
sinh p

!/ A/
= la tanh p — —=atanh p] O NS+

=—2Aa’ e' A& —

Y
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L. Ricci tensor of the type IIB AdS vacuum

dws = —/2a d <\/K cot ¢ 3) _

sinh p
/
:\é_acoilee A€’ +2Aa QCOth'OhCOtee A e+
sinh p SHLp (1.10)
1 2
+ 2Aa2izt€e2 Aed—V2Aa ?Otg de® =
sinh” p sinh p
= 2Ad’*— 12 e? A e,
sinh® p
then
L1 (A LA (A 1A
d“’%—zd(ﬂe) _2(¢Z_2A3/2 dane g R
1 1(A’)2 (A’)2 A’
— (A" = - 0 5__=— 0 1 _
2( +2A -1—2A e Ne \/Eae/\e
1 [ (A A’
=5 <( A) — A”) eV Aed — ﬁatanhp e® Ael,
N2
dwys = —; <<AA) - A”) el Ae’, (I.11)
1 A/ 2 A/
dwys = 3 << A) - A”) e2Nne’ — ﬁacothp el A2,
1 /(A2 A/ A" cotd
dwss = ) <( A) —A") eSNne’ — ﬁaco‘chpe A e _%asmhp e? A e?,
N2
dW45 — _; ((AA) - A”) 64 /\65,
then
. 1A
dw56 = —d (\/Z [J}i - 2A‘| 66> =
_ 1 /xll 1 (A/>2 J‘Jll (xll)Q 1 " 5 6
/
— VA [xl — ;i] de®
x1
I.12
_1 Alﬁ o (A/)2 2A ” A” 5 A 6 ( )
N 2 I A T ¢ <
/ N2
dCL)57 = ; <A/x1 — (AA) QAwl + AN> 65 A €7+
T I
~a (B 55) e e
1 1
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I. Ricci tensor of the type IIB AdS vacuum

dwer = —d <\/Z cot, 91€7> =

T
A / 1A’ A
== (1:1 — 2A> cotly e Ne' + — (1 +cot291) S ne'+
T \ 71 11 (1.13)
A
— 2= cot by de” =
T
A
= —2@6 VAN 67,
Ty
and finally
1 / A 2 "
dwsg = — A/@— ( ) —QAQ+A” 65/\687
2 T A T2
1 / A/ 2 !
dussg = 5 (A’x? EECOMEEIN: W A”) e® A e+
2\ = A T2 (1.14)
x5 1A\ cotby
N e 8 A 9
(l’g 2 A) T c <
dw8g = 768 A 69
T

1.1.3 The w, A wy term of O

The final step to find the curvature 2-form is to calculate the second term @, =
Wae N\ Wep. First off
L(A)?

Wo1 = Wos N\ Ws1 = — e’ Nel,

4 A

1 (A7)
(I)OQ = wo1 N\ wig + wos A sy = <2Aa2 + 4(A)> 60 AN 627

1(A)?
W3 = wp1 N\ w13 + wos N Wsg = <2ACL2+( ) )60/\63,

4 A
1(A)?
Woa = Wos A\ Wsg = 4( A) e’ net,
/
Wos = Wo1 N\ wis = —=atanh p e Nel, (1.15)

V2

. A (2 1A &
Woe =wos NwWse = —F | —— 5=~ |€ Ne,

2 I 2 A
oy p— A __é, ail_lA, 0 7
07 = Wos A\ Ws7 = 5 \ 7 2 A e Ne',
1
U SR P W
08 = Wos /\ Wsg = 5 \z 2A e Ne”,
U SR P W
09 = Wos /\ Wsg = 5 \ 7 2 A e Ne”,
2
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then

Ricci tensor of the type IIB AdS vacuum
1(AN?
Wiz = wis A wsy = —4( A) e' Ne?,

1(A)? thp cotd
@13:W15AW53+W12/\L023: ( )6 /\6 +2A 2w€2A63,
4 A sinh p
- LAy, o,
w14—w15/\w54——1 A e Ne, (1.16)
@15:0,
. Az TA ; .
wlj—w15/\W5j—2<%—2A)61/\6J, j:6,77
/ /
- xy 1A | .
= A =—|—=—-= A k=38,9
Wik = Wis /A Wsk 9 <x2 2A>€ €, )
then
1(A)?
@2320025/\w53+w21/\w13=<—4(A> —2Aa2coth2p> e? A e,
1(A)?
@2420025/\w54=—4(A) e’ Net,
/
Q95 = wWar A wis = —acoth p el A e,
25 21 15 NG p
. A Ay TA 2 7 8
Wae = W wse = — | — —=——]e" Ae
26 % AwWse =5 | T oA ; (L.17)
- A A 1A 2 5 T
o7 = W Wsr=—|——=—1]e" Ae
27 25 57 5 \ 2 5 A ,
. A A, 1A 2 5 8
(U9 = W Wsg = — | —=—=——1]e"Ae
28 25 58 5 \z, 2A ,
- A A 1A 2 0 o9
(g9 = W Wsg=— | —=—=——]e"Ae
29 25 59 7 5 A ;
then
1 (A .
W34—w35/\w54——4(A) e’ el
A A cotf 2 A B
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W35 = ws1 A wis + wag A wes = —acothp el Ae® + —a

\/§ sinh p

e,

V2

. A’ ZL'Il lA’ 36
W36 = W3s \ Ws6 = —~ -3 e”Ne,

2
@37:w35/\w57:< >
2
- A" (2, 1 A’
W3g = W35 Awsg = — | —
2 \ 29
N A/ 1 A’
W39 = W35 A\ Wsg = 5 \ 7



I. Ricci tensor of the type IIB AdS vacuum

then

then

then

then

and finally

wys =0,
- A (o 1A, 4
W46:W45/\W56:? = T 9A e Ne’,
1
- A (o 1A,
B T A N P N R (1.19)
1 )
. Az, 1A , 4
W48:W45/\W58:? 7 T 9A e Ne’,
2
N Az, 1A ,
w49:w45/\w59:? PN e Ne’,
2
@56 :O,
A / 1A/
W57 = Wse A\ Wer = x—cot 01 (il — 2A> eSne,
1 1
1.20
wsg =0, (1:20)
A / 1A/
@59 — Wss /\w89 = ;Cot 92 (iQ — 2A> 68 N 69,
2 2
VA
(D67 = We5 /\(,LJ57 =-A (il - 2A) 66 AN 67,
1
N o, 1A'\ [z, 1A
Weg = Wes N\ wsg = —A (xl — 2A> (; — 2A> eS A ed, (1.21)
1 2
N o, 1A\ [(x, 1A
Wey = wes N\ Wiy = —A (; - 2A> (; — 2A> eSAe,
1 2
/ 1A/ / 1A/
g = wrs Awss = —A [ L - ) (222 ) T A,
- x] 1A Z! 1A )
Wrg = wrs N wsg = —A (; - 2A> (; — 2A> e’ A 69,
1 2
- xy 1A 2 s o
Wgg = wgs N wsg = —A oA € Ae’. (1.23)
2
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1.1.4 The curvature 2-form 6,

The curvature 2-form components read

Op1 = <2Aa2 + zll(AA/)2> e’ el

Ogs = <2Aa2 + 1<AA/)2> e’ A e,

Og3 = <2Aa2 + i<AA,)2> " A el

Oy = i(AA/)zeo Aet,

Ops = ; <(AA,)2 - A”) O Ae (1.24)
Ops = —A2, (ii — ;i) e® neb,

Oor = _AQ/ (i — ;i) O ne,

BOps = —AQI (ii — ;i) ¥ Aed,

BOgo = —A2/ (ilz — ;i) eV Ae?,

1(A)?
@12:<—2A2 (A)> 1/\ 2’
N2
@13:<—2Aa2—i(AA))el e,
1(A)?
@14:_4(A) 1/\ 4’
1 [ (A)?
@15:_2<(A) —A”> 61/\65,
A (ot LA (1.25)
O = — [TL 22 ) el pef
=9\ 2A)¢ S
A/ / 1A/
@17:2<%—2A>61/\677
€
A/ ! 1A/
918:2<1.2—2A>€1/\687
2
A/ ! 1A/
@19=2<?—2A>61/\69,
2
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A

Oy = —i (AA/)262 A et

Oy = —; <(AA/)2 — A”) e Ne’,

Og = A2/ (i - ;i) 2 neb, (1.26)
Oq7 = AQI (ii - ;i) e’ Ne,
Ogg = Azl (2 - ;i) e? N e,
Og9 = Azl (ilz - ;i) 2 Neé,

Oz = _AIL(AA/)2€3/\64’

O35 = —; <(AA/)2 — A") eSNe’,

O3 = AQ/ (ii — ;i) e3 A e,

o= (2180 )

1

O35 = A2, (i/z - ;i) e A eb,

O39 = AQ, (ilz - ;i) A ne,

Oy = —; <(AA/)2 - A”) et ne’,

Oy = AQ/ (i — ;i) et A €S,

Oy = AQ/ (2 — ;i) et Ne, (I.28)
Ous = A2, (2 - ;i,> et Aeb,

Oy = A2, (2 - ;i,> et Ae?,
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1 / A/ 2 "
@56 _ 5 (A/il - ( A) . QA% +AII> 65 /\66,
1 1
1 / A/ 2 7
@57:2<AI§1_(A) _2A'z1_i_All>e5/\e77
1 1
1 x (A’)2 xh (1-29)
@58 = 5 (A/ 2 _ A — 2A72 + A”> 65 A\ 68,
) 4]
1 / A, 2 "
@59:2<A/i2_(A) _QAi2+A//> 65/\69,
2 2
AR VA
e} _—6/\7—A ﬁ_ii 6/\7
67 x%e (& (xl 2 A € €,
v 1A zy 1A 8 _
@68__A<I'1_2A><x2_2A e Ne° =
ryxy 1 (A,)Z N 6 8
_ - A2 A [.30
<$1x24A S eae (130
B ry LAY fay LA\ g
669 —A<I1—2A> (1‘2_2A e Ne =
__(Axﬁwlg E(A,)Q_A/ (x/l_{_fz))ee’/\es)’
rire 4 A Ty T
_ vy 1A\ fay 1A . o
678 _A<x1_2A> <$2_2A e Ne” =
_ 1T +1(A,)2 N ﬁ+£/2 o7 A 68
1 4 A r1 T2 ’ (1.31)
oy LA [y 1A . '
Om=—810 "3a )& 2a8)9 0=
1 2
rire 4 A r1 o T
A xy 1A 2
@89 = ;%68 VAN e — A <x2 — 2A> e A e’. <132>

I.1.5 A first expression of R,

Since all components of the curvature 2-form can be written like ©4, = fu (a, @) €*A
e’, the non-zero Riemann tensor components can be directly read off as Rupay =
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fab (a, ). The result is

5(A) A 2l
Roo = 1" Roaoa = 6Aa° + = —— A+ 22
00 = 1 £oa0 a” + 5 A 5 e
5 (A’)2 A" ) a2l
Ri1 = 1™ Ryg1q = —6Aa* — = — A2
11 =1 la @ =57A + 5 + ) + o)
5(A 2 A / /
Ry = 1" Roaza = —6Aa” — 2( A) 5 T A’ <$1 x2> ;
T i)
5 (A’)2 A" . al
Ry3 = 0" Ragza = —6Aa° — -+ — + A/ L+ 22
33 =1 1i3q3 @ = 57N +2+ x1+x2’
5 (A 2 A / /
Rys = 1" Ryasa = —2( A) 5 + A (xl + xQ) ,
T I
A/ 2 / / " "
Rss = 1 Rausa = oL 4 Iar g v (B Ba) g (H 4 25
2 A 2 Tl T T1 X2
5 (A’)2 A" (:1:" x!
=—c +—+A 2 +22 )+
2 A 2 T )
R N
A X1 ) ’ (I 33)
5 (A’)2 A" R 7 '
Res = 1" Reaa = —= — N[22
66 = 1 1i6a6 5 A + 5 + ) + s +
Laa A R O Wt
1 2 x 2l 1T |’
5 (A’)2 A" R
Rer = 1" Rraza 5 +—+A =+ =)+
2 A 2 T T2
YV BN (N G €
T S R 1T )
5 (A’)2 AN ry T
Rgs = 0" Rasa = — +—+A[—=+=]+
2 A 2 T i)
LanT A (Lo i
o x5 my w3 a;ry))
5 (A’)2 A" R
R99:naaR9a9a:_* +—+A [ —=+=|+
2 A 2 T T2
/ " 12 !’
+4Af%+A<g_%_xg_2%)_
T2 Ty X2 T L1122
There is a common part of all R,,-components that can be identified as
5 (A’)2 A" x xl
= —— — A2 1.34
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L. Ricci tensor of the type IIB AdS vacuum

The unique parts of the Ricci tensor can then be defined as R,y = Rag — Naa? ().

The diagonal elements of R, are then

T 1 2 2P xh
D, 1 1 1 142
R66:R66—U(Q>I4Alf—|—A ﬁ—f—ﬁ—Q
T 1 T Ty T1T9
/ " 72 Wi
~ T 1 T T T
Rir=Rpp—v(a)=4A2 + A |5 -2 — = — 22122
T Ty T 9 T1T9
/ " 12 Wi
~ T 1 T T Thx
R88:R88—U(Q)Z4A/J+A 72_72_%_212
i) €Ty i) x5 T1T2
/ " 12 W]
~ T 1 T T T x
R99:R99—’U<Oé):4A/f2+A 72_72_%_212
) €y i) x5 T1T2

I.1.6 Calculating the Ricci tensor explicitly

The Ricci tensor only depends on o and must be expressed explicitly in terms of «
in order to evaluate Einstein’s equations. The current expressions of v(a) and Ri,q
are written using A, x1, x5 and up to second order derivatives of these. First off, the
derivative of the warping factor, defined by A = (4 — cos?(2a))~'/*, was calculated

in (H.19) as
A = —APsin (2a) cos (2a) .
This yields that
(A)°
A

= A%sin? (2a) cos® (2a)

and the second order derivative is

A" = -9, (A5 sin (2a) cos (2a)) =
= —5A*A’sin (2a) cos (2a) — 2A° cos? (2ar) + 2A° sin? (2a)
= 5A%sin? (2a) cos? (2a) — 2A° cos (4a) .

Next, the parameters xy and x5 are given by

COS (v sin o

\/Q—I—COS(QCY)’ oo \/2—008(2(1)'

T =
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I. Ricci tensor of the type IIB AdS vacuum

The derivative of z; is

sin « 1 COS &

Ty =— - = (—2sin (2a)) =

2+ cos(2a)  2(2+ cos (2a))%/?
sin «
= — (24 cos (2a)) 4+ 2cos? o) =
(2 + cos (2a))/? ( ( (20)) )
sin o

(2 + cos (2))**

and x4 is found in a similar way so that

oo sin «v o
' (2 + cos (20))** 2

cos a
(2 — cos (204))3/2'

The second order derivatives are given by

” CoS (v 3 sin a

x] =— + = (—2sin (2a)) =

(2 4 cos (2a))*?  2(2 4 cos (2a))*?

= - cos e (2 + cos (2a) + 6sin” a) =

(2 + cos (2a))*?
cosa (b —2cos (2a))
(2 + cos (2a))**
and
i 3
. sin «v 3 cos & (2sin (20)) =

(2 — cos (2a))*?  2(2 = cos (20))*?

(2 — cos (2a))*? (2

_sina (5 + 2cos (2a))
(2 — cos (20))*?

— cos (2a) + 6 cos® C() =

Some useful expressions involving x; and x5 are then

x) tan xh cot «

1 24 cos (20) Ty 2—cos(2a)’

which yields that

Ty T tan a cot v

x| xy 24 cos(2a) * 2 —cos (2a)
= A*(cota (2 +cos(2a)) —tana (2 — cos (2a))) =

4€0s (2a) _
sin (2av)

= 3A" (cot @ — tana) = 6A

= 6A" cot (2a),

(1.40)

(141)

(1.42)

(1.43)

(1.44)

(.45)
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and lastly

) wy  5—2cos(20) 5+ 2cos (2a)

Ty Ty (24 cos (2a))® (2 — cos (20))®
= —A%[ (5 2cos (20)) (2 — cos (20))" +
+ (54 2cos (2a))) (2 + cos (2@))2} =
= A8 [10 (4 + cos® (2a)) + 16 cos® (204)}
= —2A% [20 + 13 cos® (20)] .

(1.46)

The function v () can now explicitly be expressed as

X
= —— — AL
v (CY) 2 A * 2 + T + )

5(A) A" ( x2>

= —gAg sin® (2a) cos? (2a) + gAg sin® (2a) cos? (2a) +

— A® cos (4a) — 6A7 sin (2a) cos (2a) cot (2a)) = (1.47)
= —A®cos (4a) — 6AY cos? (2a) =
= {Rewriting in terms of sin (2a)} =

= —A° {1 — 2sin? (204)} — 6A° [1 — sin? (2a)] ;

which directly yields the first five f{aa, a=0,...,4. Next up is R55 which is calculated
as

R55:4A”—2<§A/)2—2A (ijrig) =
= 20A%sin? (2) cos? (2ar) — 8A® cos (4a) — 2A7 sin? (2a) cos? (2a)) +
+4A° [20 + 13 cos” (20)] = (1.48)
= —8A° cos (4a) + A? {80 + 52 cos? (2a) + 18sin? (2a) cos? (2@)} =
= {Rewriting in terms of sin (2a)} =

= —8A7 |1 — 2sin” (2a)| + A” [132 — 345sin” (2a) — 18sin” (20)] .
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The Rgg = Ry7 element is given by

R :4A/£,1+A i_ﬁ_ﬁ_g% =
66 o
tan o n
2 + cos (2a)
A 2+Co§(2a)+ 5—2005(2@)2_ tan® oAt =
cos? av (24 cos (2a))” (2 + cos (2a))
= 2A° + 4A% sin (2a) cos (2a)

A
+ X
cos?a (2 + cos (2))?

= 4A’sin (2a) cos (2a)

tan o +
2 + cos (2a)

X <(2 + cos (204))3 + cos® a (5 —2cos (2a)) — sin? a) =

tan o
= 2A5 + 4A%sin (2 2) — = (1.49)
+ sin (2ar) cos (2av) 31 cos (2a)+
4 2 4 4
+2A7+ cos® a + C(;S a
(2 + cos (2a))

=2A° + A? (8 sin? a cos (2a) [2 — cos (2a)] +
+2 [7 + 4 cos® a + 4 cos* a} [2 — cos (204)]2> =
= 2A° +2A° [51 —4cos’ o — 32cos* o — 16 cos® v + 16 cos® oz} =
= 2A° +2A° [40 — 20 cos (2a) — 8cos? (2a) +
+ 2 cos® (2a)) + cos? (204)} =
= 2A° + 277 [33 + 6sin? (2a) + sin* (204)} +
— 4A cos (2a) [9 + sin? (2@)} .

For the last element, Rgs = Rgg, note that the expression for it in (I1.35) is the same
as for R(,@, if 1 is replaced by x5. It is possible to get Rgs from Rgg by using a shift

in a. Denoting this shift with T', it is defined as 'a = a+ 7. Tt has the advantageous
features

['sina = cos «, [cosa = —sina, (1.50)

as well as
I'sin(2a) = —sin(2a), I cos(2a) = — cos(2a). (L.51)

For x1 and x5 this implies that

W) = 0 e

All sign differences appearing from a I' transformation cancel in the expression for
Rgg either via squares or fractions. Moreover, 'A = A and since I" also commutes
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L. Ricci tensor of the type IIB AdS vacuum

with d,, it is true that

Rss =T (Reg) = T(2A° + 2A° [33 + 6sin® (20) + sin’ (20)] +
— 4A cos (2a) [9 + sin? (204)} ) =

(1.53)
= 27 4 2A° [33 + 6sin® (20) + sin’ (20)| +
+ 4AY cos (2a) {9 + sin? (2&)} :
The sum between the two is then
R + Rss = 4A° + 4A° [33 + 6sin? (2) 4 sin® (204)} . (1.54)

1.2 The Ricci scalar

The AdS radius for the vacuum is 1 which implies that a = 1. The Ricci scalar can
then be calculated as

R =n"Ra =100 (a) — 4 6A + Rs5 + 2 (Reg + Rss) =
= —10A” (1 - 2sin* (20)) — 60A° (1 — sin® (20)) — 24A+
—8A7 (1 - 2sin® (20)) + A? [132 — 34sin® (20) — 18sin* (20)| +
+ 8A” + 8A? [33 + 6sin? (2a) + sin? (204)} =
= —24A — 27" [5 — 18sin” (20)] +
+2A° [168 + 37sin® (20) — 5sin’ (20)] .

(L55)
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J

Einstein’s equations

In this appendix it is shown that the AdS vacuum of section 3.2 fulfills Einstein’s
equations in type IIB string theory. The deformation parameters are set to x; = 0.
Using that the axion VEV is xy = 0, Einstein’s equations read

1 1 1,
RHV — iRgIJ‘V = — [43p¢ap¢ + ﬂ (6 ¢H2 + €¢F2):| g'u,l/—i_
1
+ Z (7 Hypo H, " + ¢ Fpps F,") + (J.1)

1 oéw
+ aﬂ¢8l/¢+4 4'F,upa£wF1/p£

First off, the term on the right hand side that is proportional to the metric can be
evaluated. By using

8sin (2cv)

09 ¢ =
¢ R T T s (4a)

= 4A*sin (2a) (J.2)
which was shown in (H.9), the dilaton kinetic term can be written as
i 0" P = le <6_¢8pe¢) (e“z’&,ed’) g7 =
= le (e_¢0ne¢) (e_¢8ne¢) M4 — 1 ( —20,e ) <6_¢8ae¢) gt = (13
_ iA {4 + (4A*sin (m))Q] _
= A [1 +4A%sin® (20)]
The other term is

A2
2 — cos (2a) *

1

1
~O[? 4 P F2) — 3(10 _
2 ( H F ) 2424A (19 — cos (4av)) [

1
T AT 2+ cos (20))7 (2 — cos (204))] -

= A7 (19 = cos (4a)) lQ + cols (2a) * 2 — C(}s (204)] = U4
= 4A? (19 — cos (4a)) =
= {Rewrite in terms of sin (2a)} =

= 8A? [9 + sin? (2&)] .
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J. Einstein’s equations

This yields that

1 1
10,0070+ o (e7H” + ¢?F?) = A+ 4A° |18 4 2sin” (20) + sin® (20)| =

(1.5)
= A +12A° [6 + sin” (20)] ,
and Einstein’s equations read
Ruw — 3R = — (B + 1227 [6 -+ 5in? (20)]) g
+ i (67 Hyupo H," + € Fop F,") + (J.6)

1 oéw
+ au¢au¢+ 4. 4'Fp,p0'§w FIJP ¢

The only off-diagonal case where the right hand side is not trivially zero is when
puv = na. This case is dealt with first, whereafter the diagonal cases are treated.

J.1 The case urv =na

Since the metric and Ricci tensor are diagonal, the left hand side is zero. The
term proportional to the metric in the right hand side is also zero, so the remaining
condition is

1 .
0= (e HypoHy" + ¢ Frpe F,"7) 45 an¢aa¢+ —F e E (1)

4. 4 npofw * «

] =

I

The first term is evaluated as

1 1
I = 56 ¢Hn01¢1Ha61<p1991019%@1 + §€¢Fn92<p2Fa02¢2962029ww2 _

4+cos(2a) 4 . o A?

Sl e ) 0. =

2 + cos (2a) R 01 *

4 —cos (2a) 4 . A? (1.8)

2
gp— = —
2 — cos (204)y S T sin? 0,

— 25in (2a) (fjcc(?si((z;;)) + A* (4 — cos (2@))) =

= 16A"sin (2a),

= 2¢%e M sin (20

+ 2¢%e*" sin (2a)

the second term becomes

(6_4)&76@5) (e_¢8ae¢) = —4A%*sin (2a), (J.9)

N | —

1
§an¢aa¢ =
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J. Einstein’s equations

and the third term is
1

1 - ~ ~ ~
F, Fapﬂf“’ - ZFW9190192902FC¥91¢192¢290104 +

1~ Dot
4. 4l mpotw T FoteyF Y gaa =

4

n af1p102p2tTyzn T
_ Zgaa (Fn91801929026 wprbapateyen fn o+

[ txyzanbi 10202 T _
+ thyzne F”]91<P192<P2 -

1 2 - -
= —Zan91@192@2thyzn -
31 4 . :
= _ZA—A ésin® (2a) sinf; sinfy =
e

= —12A%sin (20).

(J.10)

The three terms of the right hand side are then added
1
r.h.s. = 1 (eid}anaH pT 4+ 6¢F77,00F p")

1 ot J.11
+ an¢aa¢+ 4. 4|ana§w Fozp = ( )
= (16 — 4 — 12) A*sin (2a) = 0,

and the case where uv = na is thus satisfied.

J.1.1 The case uv =14 with i =t, =, y, 2

The first set of diagoal cases is when pv = i, where i = t, x, y, 2. The right hand
side then reads

r.h.s. = — (A + 12A° [6 + sin? (Za)D Gii + T 4‘Fwo,ng pod (J.12)

The second term is evaluated as

1 1/~ ~ - -
ofw tryz tryzo _
4. 4|Epa§w Ep 4 (mean ven + FtwyzaF v )gzz -
1 . .
_ ZEtIQZﬁO&@ﬂPleZ@Q (Emyana91¢1924p2+
- thyzaﬁn91<p192<p2>gii = (J13)
= ZfA sin® (2a) sin 6, sin 6, (4 + sin (2&)) Gii =
e
= —A5 {9 + 4Siﬂ2 (20[)} Giis
which yields that
r.h.s. = — (A + 12A° [6 + sin? (2(1)}) gii — A° (9 + 4 sin® (204)) Gii = (14
J.14
- (A + A® [9 + 4 sin? (2@)} + 12A° [6 + sin? (20()}) Gii-
Next, the left hand side is
1 1
l.h.s. = R” - §Rgzz = GiaeiaRaa — §Rgu, (J15)
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J. Einstein’s equations

where (eia)2 = Neali; for i =t, x, y, z. The left hand side becomes

Lh.s. — (naaRm . ;1%) i =
= (v(a) = 6A +12A + A" (5 — 18sin” (2a)) +
— A% (168 + 37sin” (20) — 5sin” (20)) ) gii = (J.16)
= (6A +4A° [1 — 4sin? (20)] +
— A [174 + 31sin® (2a) — 5sin® (204)] )gm

It is now possible to check if L.h.s. ~ y.h.s.. The metric factor gi; cancels and the
condition reads

2

6A +4A7 [1 — 4sin* (2a)| — A [174 + 31sin” (2a) — 5sin” (20)] =

LA~ A%[9+45in? (20)] — 1247 [6 + sin® (20)] D

which can be rewritten as
0 =7A+ A”[13 - 125in? (20)] — A® [102 + 19sin* (20) — 5sin’ (20)] =

) ( — cos? (204)) +

= A9[7 (3 + sin? (2a))2 + (13 — 12sin? (2a ) (3 + sin? (2 )) +
— (102 + 19sin* (20) — 5sin’ (20)) |

= AP[(7-9+3-13-102) + (76 +13 — 3- 12 — 19)sin® (20) +
+ (7= 12+ 5)sin* (20) | =

=A° [0 +0-sin® (2a) + 0 - sin? (204)} =

=0.

=A° [7 (4 — cos? (2(1))2 + (13 — 125sin” (2 ( «)
- (102 + 19sin? (2a) — 5sin* )
)

(J.18)

Einstein’s equations are thus satisfied for pv = tt, zx, yy, 2z.

J.2 The case uv =nn

The next case is uv = nn and the right hand side is

r.h.s. = — (A + 12A° [6 + sin® (204)}) 9+
n i (67 Hypo H, + ¢ Fpo F,P°) + (J.19)

1 oqw
+ 3,7@5(977@25—1-4 4|an0£anp£
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J. Einstein’s equations

The second term, I = 1 (e‘¢anoHnW + 6¢an0anU), becomes

0
( 7791e01 e 6¢F779 o F 1@1) G =

l\.’)\)—‘[\D\H

¢> 2 ¢ 12 AQ
<e ’79“"1 4sm 0, + i, x4 sin® 92> -

cos? o
=4 A* 2 — cos (20)] | =
< 3~ cos (20) + A*sin®a [2 — cos ( a)])

=4A* (cos a [2+ cos (2a)] + sin® a [2 — cos (2a)]) =
=4A* [2 + cos® (2@)} = 4A° {3 — sin? (2@)] G-

The two last terms are evaluated as

1 1, 2

5&,({)&@ =3 (e ¢8ne¢) =2=29"¢gp, = 2Agyy,
and

1 -
—F

1/~ Fn01010 ~ it
4. 4 WﬂaEwF P = 4 (Fn9190192902F77 e mean xyz”) Ym =

1 . .
__ © _txyznabipibzp2
- 46 F779190102802 mezCH‘

+ thyana91<p192<P2)gml =

1 e

e

= —A° [9 — 4sin? (QCY)] G-

The right hand side thus becomes
r.hs. = (= A= 1247 [6 + sin” (2a)| +4A° [3 — sin” (20)] +
+2A — A [0 — dsin® (20)] ) gy =
= (A +3A° = 12A° |6 + sin” (20)] ) gy
The left hand side is
1 L4 1 1
Lh.s. = Ry — 5 Rouy = €€, Ry — 5 Rgyy = (344 -3 R) Gy =
1
— (v(@) = 3R) g =
= (=A% [1—2sin? (20)] — 6A% [1 - sin® (20)] + 124+
+ A% [5— 185in? (20)] +
— A [168 + 37sin’ (20) — 5sin’ (20)] ) g, =
= (124 +4A° [1 — 4sin? (20)] +
— A% [174 4 31sin* (20) — 5sin’ (20)] ) gy

9
—A*sin? (2a) sin 6 sin 6, (—4 + sin? (20z)> 9 =

(1.20)

(J.21)

(J.22)

(J.23)

(J.24)
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J. Einstein’s equations

The equation is fulfilled if 1.h.s. ~ r.h.s. which reads

2

12A +4A° [1 — 4sin” (2a)| — A [174 + 31 sin® (20) — 5sin” (20)] =

, (1.25)
= A +3A° — 12A° [6 + sin? (20)] .
Combining all the terms on one side yields that
0= 11A + A% [1 - 16sin’(2a)] — A® [102 + 19sin* (20) — 5sin’ (20)] =
:A9<11[4—cos } —i—[l—lﬁsm 2a)}[ — cos? (2 )}+
— 102 — 19sin? (2a) + 5sin? (
= A’ (11[34—8111 } —|—[1—1651n 2@)] [B—i—sm (2 )}—l—
(J.26)
— 102 — 195sin? (2a) 4 5sin* (2 )) =
=A%([90-11+43—102]+[6-11+ 1 — 316 — 19] sin*(20)+
+[11 = 16 + 5] sin’ (20) ) =
= A?(0+0-sin*(2a) + 0 - sin*(2a) ) =
=0,
and Einstein’s equations are fulfilled when puv = nn.
J.3 The case urv = a«a
For the puv = aa case, the right hand side reads
r.h.s. = — (A + 12A° [6 + sin? (Qa)D Gaat
1
+ Z (e_d)HO‘PUHapU + 6¢FCVPGFa p0> +
(J.27)
I
+8¢8¢+ 1F E pose.
aYYa 4 - 4 apofw © o
The last two terms are evaluated as
1 L hn #)\2 8 2 9 .2
§8agz58a¢ =3 (e On€ ) = 8A°sin” (2a) = 8A” sin” (2c0) gaa, (J.28)
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and
- potw _ L (F Fabipi0aps | E Patzyz
4. 4|Fapcr£w Fa = Z (F0691<P192<{92F + FatibyzF ) Yoo =
L/~ af1p10200txyzn T
- Z<Fa91¢192¢26 Prfpatey "Fiayent
+ Exyzaet:cyzanm%@wFnewlewz)gaa —
11 /- ~ - -
= _Z; (Fa91<p102g02 Ft:pyzn + Ft:vyzaFn91<p102<p2) Joa =
le 9
= _ZEA sin #; sin 0, (—4 sin? (2a) + sin? (2a)> J—
e
=A° [9 — 4 sin? (2a)} Joa-
(J.29)
The second term becomes
]' — at1 1 at2p2
1= (67 Hagyo H* 9 + € Fagyp, F*%#2) Goos =
1 A? A?
= B 7 G ————RCL 7 —
2 ( ofre1 pd gin? 9, + o, x5 sin? 6’2>
_ sin® (2a) cos® o (4 + cos (2a))* A? (2 4 cos (20))° N
~ A2(2—cos (20)) (2 + cos (2))* cost a
4 — cos (20))* A% (2 — cos (20))?
+ A% (2 — cos (2a)) sin? (2a) sin® oz( cos a))4 ( _ Cfs (20)) -
(2 — cos (2a)) sin” «
4 20))? 4 — cos (2a))”
= Atsin® (20) (4 + cos (2a)) ' 2( cos (2ar)) _
cos? v (24 cos (2a))  sin®a (2 — cos (2a)) (1.30)

= A8 sin” (20) (sim2 a [2 — cos (2a)] [4 + cos (22)]?

sin a cos?
+ cos®a [2 + cos (2a)] [4 — cos (2a)]

_|_
)
= 4A8(sin2 a [32 — 6 cos? (2a) — cos® (2a)] +

+ cos® a {32 — 6cos” (2a) + cos® (204)} ) =
= 4A5(32 — 6 cos” (2a) + cos” (20) ) =
= {Rewrite in terms of sin (2a)} =

= 4A°[27 + 4sin® (20) + sin’ (20) | gaa-
In total, the right hand side is

r.hs. = (= A —12A° (6 + sin? (20)] +4A° [27 + 4sin* (20) + sin’ (20)] +
+ 8A%sin? (2a) + A® [9 — 4sin? (204)] )gaa =
= (—A + AP [9 — 4 sin? (204)} + 4A° [9 + 3sin? (2a) + sin? (204)}) Joar-
(3.31)
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The left hand side is
1 . 1 1
Lh.s. = Raa - §Rgaa = €4 €, R55 - iRgaoz = <R55 - 2R> Gaa =

= <U (o) + Ry5 — ;R) oo =

= (= A% [1 - 2sin® (20)] - 6A° [1 — sin® (20)] +
— 8A7 [1 — 2sin” (2a)| + A” [132 — 345sin? (2a) — 18sin” (20)] + (
+12A + A [5 — 18sin® (20)] +
— A {168 + 37sin” (2a) — 5sin? (204)} )gaa =

= (12A — 4A” — A° [42 + 65sin? (2a) + 13sin” (20)]) gaa:

J.32)

and the condition l.h.s. L r.h.s. thus reads

2

12A — 4A" — A” |42 4 65sin* (20) + 13sin* (2a)| =
(1.33)

?

= —A+ A° [9 - 4sin® (2a)| +4A° |9 + 3sin® (2a) + sin* (2a) | ,
which can be rewritten as

0= 13A — A” (13 — 4sin® (20)) — A? [78 + 77sin? (2a) + 17sin’ (20)] =
= A9(13 [4 — cos® (204)}2 - [13 — 4sin® (204)} [4 — cos® (204)} +
— T8 = T7sin’ (2a) — 17sin* (2a) ) =
= A%(13[3 + sin? (2a)]” — [13 — 4sin® (2a)] [3 + sin® (2a)] +
— T8 = T7sin’ (2a) — 17sin* (2a) ) = (J.34)
= A%([9-13—3-13 =78 +[6-13 — 13+ 12 — 77)sin* (20) +
+[13 4+ 4 — 17]sin" (2a) ) =
= A’ (0 +0 - sin? (2a) + 0 - sin* (2a)) =
= 0.

Einstein’s equations are fulfilled when pur = aa.

J.4 Case: uv =1u for i =0, ¢

Since Rgs = R77, the cases uv = 616, and urv = p1¢; can be evaluated simultane-
ously. The right hand side is

r.h.s. = — (A + 12A° [6 + sin? (Qa)D Giit+
1 ~bH. H.P° 1 F I3 poéw (J'35)
+ Ze ipodd; + m ipofw i
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Treating the terms one by one yields that

1 1
*€_¢HipcrHipg = §€_¢ {Hnﬁllenel% + Ha@uleaeupl} Gii =

4
R NPT 19 — cos (4a)
=531 *H?g;; = QA(Q 03 (20)) (2 4 cos (20))°
519 — cos (4a 9
— 9A 2+cos((2a)) = 2A7[2 — cos (2a)] [19 — cos (4a)] = (].36)

= 4A°[2 — cos (20)] [10 — cos® (204)} =
= 4A° {20 — 10 cos (2a) — 2 cos? (2a) + cos® (2@)} =
= 8AY [9 + sin? (204)} —4A° cos (2a) [9 + sin® (204)} :

and
I = [ pow e 01010202 7 [af1010202
mFipo{w F; = Z (Fn9190192902F + F0191§0192§02F )gii =

1 5 N

_ Zetxyzna&%@zsoz (1?’770190192902 thyza—i—

- Fa@um@gtpgﬁ:cyzn).gii = (J37>

le 9

= ZEA4 sin® (2a) sin 6, sin 6, (S.in2 (2ar) + Z)g” -

= A" [9+ 4sin® (20)] g
The right hand side becomes
rhs. = (= A —12A° 6+ sin? (20)] + 8A” [9 + sin? (20)| +
— 447 cos (2a) |9 + sin” (20)| + A 9 + 4sin® (2a)| ) gi =

(J.38)
= ( — A+ AP {9 + 4 sin? (2&)] — 4A%sin? (2a0) +
— 4A? cos (2a) [9 + sin? (204)} )gm
The left hand side is
Lh —R--—ER %R _ER - (R _lR> -
M S. = (3 2 g’LZ - 67/ ez aa 2 gZZ - aa 2 g'L'L -
~ 1
= (v () + Res — 2R) Gii =
= (= A% [1—2sin? (20)] — 6A° [1 — sin® (20)] + 247+
+2A7 [33 + 6sin? (2) + sin* (204)} +
(J.39)

— 477 cos (2a) 9 + sin” (20)] + 124 + A” [5 — 18sin” (2a)| +
— A% [168 + 37sin* (2a) — 5sin’ (20)] ) gis =
= (124 +24° [3 — 8sin® (20)] +
— A [108 + 19sin? (2a) — Tsin” (20)] +
—4A cos (2ar) [9 + sin? (204)} )g,,
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Note that the term —4A® cos (2) [9 + sin? (2«v)] appears on both sides of the equa-

tion and thus cancels when checking that 1.h.s. ~ r.hs.
12A + 2A° [3 — 8sin? (20)] — A? [108 + 19sin? (2a) — 7sin’ (20)] = 3.0
J.40
LA+ A [9 + 4 sin? (204)} — 4A%sin? (2a) .

This can be rewritten as
0= 13A — A® (3+ 20sin” (20)) — A? [108 + 15sin” (20) — 7sin’ (20)] =
= A9(13 [4 — cos? (204)}2 - [3 4 20 sin? (Qa)} [4 — cos? (2&)} +
~ 108 — 15sin* (2a) + Tsin* (2a) ) =
= A°(13[3 + sin® (2)]” — [3 +20sin? (20)] [3+ sin® (20)] +
— 108 — 15sin® (20) + Tsin' (20) ) = (J.41)
= A%([9-13 -9 —108] + [6- 13 — 3 — 3- 20 — 15] sin” (20) +
+[13 = 20 + 7]sin* (2a) ) =
= A’ (0 +0-sin® (2a) + 0 - sin? (2a)> =
=0,
which shows that Einstein’s equations are fulfilled when puv = 6,6, p1¢1.

J.5 The case uv =1 for i =0y, @

The last case where puv = it for 1+ = 65, @5 is similar to the previous one, and the
right hand side reads

r.hs. = — (A +12A° [6 + sin® (20)] ) giit
1 N o Po 1 I ) F posw (J'42)
+ Ze ipot g 4 4! ipolw

The last two terms are

1 1
ZeqﬁpipaFipo _ §6¢ [FnangU 22 | Fo wzFocem} L
1 4
——e?F?g; = 2A5—COS( a)
~ 2.3 (2 — cos (2a))
= 2A°[2 + cos ( a)] [19 — cos (2a)] = (J.43)
= 4A?[2 + cos (2a)] [10 — cos® (2 )}
= 4A° {20 + 10 cos (2a) — 2 cos? (2a) — cos® (2@)] =
=8A? [9 + sin® } + 4A cos (2ar) [9 + sin? (204)} :
and
1
posw _ A ) y
I 4|FW§WF = A” |9+ 4sin® (20)] g5, (J.44)
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so that the right hand side becomes
r.h.s. = ( — A —12A° [6 + sin? (204)] + 8A? {9 + sin? (20()} +
+ 4A° cos (2ar) [9 + sin? (204)} + A° [9 + 4 sin® (20¢)} )gu‘ =
= ( —A+A° [9 + 4 sin? (204)} — 4A?sin® (2a0) +
+ 4A? cos (2a) [9 + sin? (204)} )g”

(J.45)

The left hand side is

1 1 1
Lhes. = Ry — ~Rgy — %" Roe — ~Ras = ( Ruw — ~R ) g;; =
S o Wi = €€ 't ( 2 )g

= (U (a) + Rgg — ;R) Gii =
= (= A7 [1-2sin? (20)] — 6A° [1 - sin? (2a)] + 247+
+2A7 [33 + 6sin? (2a) + sin* (204)} +
+ 4A? cos (2a) {9 + sin? (204)} + 12A + AP [5 — 185sin? (2&)] + (
—A° {168 + 37sin? (2a) — 5sin? (204)} )gn’ =
= (12A + 2A° [3 — 8sin® (20)] +
— A [108 + 19sin? (20) — Tsin* (2a)| +
+ 4A? cos (2a) [9 + sin? (204)} )gu

J.46)

The equation is fulfilled if 1.h.s. Z y.h.s. which reads

”

12A + 2A° [3 — 8sin” (20)] — A [108 + 19sin” (20) — Tsin” (20)] =

?

(J.47)
= —A+ A7 |9+ 4sin” (20) | — 4A°sin” (2a),
and can be rewritten as
0= 13A — A® (3+20sin” (20)) — A? [108 + 15sin” (20) — 7sin" (20)] =
= A9(13 {4 — cos? (204)}2 - [3 + 20 sin” (2@)] [4 — cos? (204)} +
— 108 — 15sin? (2a) + 7sin’ (2a) ) =
= A°(13[3 + sin® (2a)]” — [3 +20sin® (20)] [3+ sin® (20)] +
—~ 108 — 15sin® (20) + Tsin* (20) ) = (7.48)
:Ag([9-13—9—108]—1—[6'13—3—3-20—15]sin2(2oz)+
+[13 = 20 + 7]sin* (2a) ) =
=A° (0 +0-sin® (2a) + 0 - sin* (2a)> =
= 0.
As this was the last case, the AdS vacuum of section 3.2 satisfies the type IIB

Einstein’s equations.
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