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Valuation of a Non-Performing Loan Portfolio
Cash flow forecasting using machine learning algorithms and Markov chains
MAX PETER BEJMER
LINUS WISKMAN
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
This master’s thesis focuses on valuation of a non performing loans portfolio, pro-
vided by partner company Dignisia. Two models are developed; a combined classification-
regression model and a Markov chain model. Valuation performances are decent but
explanatory power, i.e. R2 values, are lower or on par with similar research.

The two models are tested in two scenarios with the aim of investigating improve-
ment in model performance with knowledge of prior payment history. No clear
relation is found between demographic and errand-specific attributes and debt col-
lection rate. The Markov chain model shows similar performance as the more con-
ventional method static pool, in portfolio valuation. However, advantages of the
Markov model are the adaptation to new data and the possibility of model exten-
sions which are further discussed. Data quality and quantity are presumed to be
the major limiting factors, which is in line with conclusions in the literature.

Keywords: Collection rate, forecasting, prediction, debt collection, non-performing
loans, NPL, classification, regression, Markov chain.
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1
Introduction

This chapter introduces the reader to the thesis project background and the aim of
successfully modelling debt repayments, in Section 1.1 and 1.2 respectively. More
specifically, the background introduces important concepts relevant for the thesis
context such as a motivation of the increasing importance of credit management,
a description of the credit market dynamics and a brief presentation of Dignisia
AB. Further, project scope is specified in Section 1.3 and a discussion on ethical
considerations and GDPR compliance is presented in Section 1.4.

1.1 Background
This section defines the context of the master’s thesis. We introduce the field of
credit portfolio management and the role and aim of Dignisia AB in the credit
market. We also motivate the growing importance of credit portfolio management
and portfolio cash flow forecasting.

1.1.1 Macroeconomic context and importance of credit port-
folio management

After the financial crisis in 2008, credit institutions have been increasingly regulated
[1–3]. Regulatory frameworks brought stricter capital and liquidity requirements
which in turn put pressure on banks’ profit margins [4]. As a consequence, the ability
to optimize credit portfolios has become increasingly important among banks [5].
A signal of credit management emerging as a key function in Sweden is the develop-
ment of the Swedish household debt over the recent years, which has been increasing
as a result of a long period of low interest rates [6, 7]. As of August 2019, the total
Swedish household debt was 4138 billion SEK which corresponds to 85 percent of
GDP [8]. Mortgages account for 82 percent of the debt and the remaining 18 percent
are loans for consumption. However, as seen in Figure 1.1 loans for consumption,
i.e. credits given without collateral, are growing faster than mortgages [7, 9].
Additionally, loans for consumption account for roughly half of households’ monthly
debt payments [8]. Swedish financial authorities agree that the increased household
indebtedness constitute a significant risk for the financial stability [7,10] and should
hence be considered by credit institutions.
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Figure 1.1: Annual growth rates of Swedish household mortgages and loans for
consumption. Loans with collateral other than houses are excluded. Source:

Statistics Sweden [9].

1.1.2 Credit market dynamics
The credit market is a complex ecosystem consisting of a variety of players making
transactions and granting credits among each other. Players include governments,
banks, financial institutions, companies and private investors. On top of these, there
are numerous regulatory authorities on national and international level governing
the market dynamics. In order to avoid unnecessary complexity we will narrow the
scope to credits granted by banks or retailers to a consumer. Typical credits are
invoices, mortgages, loans for consumption and credit card products. In essence,
banks and retailers gamble on a consumer’s ability of repaying a credit. If a con-
sumer fails to repay the debt, the credit is said to default. Defaulted credit products
are commonly called non-performing loans, henceforth denoted NPLs.

Figure 1.2 is an indicative description of a generic payment flow, and depicts differ-
ent stages in a credit chain ending up in an NPL portfolio. A company, typically
retailer or e-commerce player, sells a product or service and offers different payment
options. The payment could either be done directly, e.g. via debit card, or via
invoice. To be able to grant payment by invoice, the company tests the customer’s
creditworthiness and makes a credit decision. If the credit is approved, an invoice
is sent and is most often paid on time during the payment period. In case of a
missing payment, the consumer receives a number of reminders accompanied with
fees. If the invoice remains unpaid, the errand is eventually sent to a debt collection
agency (DCA) and is considered a non-performing loan. A collection of NPLs are
commonly grouped together in an non-performing loan portfolio – or NPL portfolio
for short.

NPL portfolios can be traded, which is an important source of financing and risk
management for banks and retailers. The Council of the European Union encourage
the development of such a secondary market [11] with European financial stability

2
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Figure 1.2: Illustrates the credit life-cycle of the areas relevant to our analysis.
Analysis conducted on the NPL portfolio leads to better portfolio valuation, better

case handling, and improved credit decisions. Note: The shares given by the
percentages are estimated based on general opinions.

as main motivation. Thus, valuation of NPL portfolios is an increasingly important
task given the expected increase in portfolio transactions. Two important questions
traders ponder concerning NPL portfolios are:

• How much of the total outstanding debt can the buyer expect to collect?
• How will the cash flow from the portfolio vary over time?

The better the owner of an NPL portfolio can answer these two key questions, the
better the opportunity for an accurate valuation of the portfolio.

These questions are the foundation of our thesis project. Our aim and scope are
further specified in the following sections, after a short presentation of the partner
company Dignisia AB.

1.1.3 The role of Dignisia AB

Dignisia AB is a company founded in 2017 by seasoned debt collection and credit
management specialists wanting to address an identified need on the client-side for
specialized Business Intelligence solutions for credit management. Or, as they call
it, Credit Intelligence. The idea is to help companies get a better understanding of
their debtors and receivables due with the aim of giving companies better control
of the entire credit life-cycle. This is done by analysing customer data to be able to
give valuable insights about both the present and the future [12].
As discussed in the previous section, NPL portfolio valuation is a key concern for
banks and retailers and is hence important for Dignisia’s clients. The relevance of
the master’s thesis project is motivated on this basis.

3
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1.2 Aim
One of the most important aspects of an NPL portfolio is the expected future cash
flow. The expectation determines the valuation and gives portfolio managers better
control. Therefore, having a well-performing cash flow forecasting model is impor-
tant to stay competitive and to estimate fair pricing ahead of a portfolio transaction.
It is also interesting, from a debt collection operations perspective, to understand if
there are attributes explaining and driving loan repayment. This will be the aim of
the master’s thesis: to build a well-performing model forecasting cash flow from a
given NPL portfolio and understanding the drivers of loan repayment.

1.3 Thesis Project Scope
While the aim is to understand drivers and build the best possible model, some
restrictions have to be made.

In order to avoid seasonality effects and to utilize a sufficient proportion of the
available data, the forecasting is considered no further than on a 12 month horizon.
Defaulted credits can see collection up to 20 years after being registered at a debt
collection agency. Thus, lifetime collection from a NPL portfolio is a complex quan-
tity and the 12 month restriction is necessary. The data availability further limits
model development to some extent which is detailed in Section 3.1.

In terms of model selection, we have identified candidate models using insights from
our non-exhaustive review of previous research, Section 2.1. Although there are
other reasonable approaches, e.g. time series modelling, they are considered out of
scope in this thesis.

Our problem solving approach involves two modelling scenarios and two classes
of models applied to each scenario. The first scenario is referred to as blind and
resembles a situation where an analyst wants to predict NPL portfolio cash flow
based solely on debt account attributes. That is, no previous cash flow information
is available which is the case for an external analyst prior to a portfolio transaction.
The second scenario is called informed and represents a situation where a portfolio
has been monitored for a period of time. The informed scenario could also be seen as
a way of having information about prior payment behaviour. This idea is discussed
in more detail later. In practice, the blind dataset is complemented with variables
explaining initial cash flow.

1.4 Ethical Considerations
Ethics is something to always have in mind in every research project. It can take
many different shapes and forms. Some ethical aspects are controlled by law, for ex-
ample processing of personal data, while some are grounded in the personal agenda
of the individual conducting the research. This section covers a review of the busi-
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ness landscape in which Dignisia acts and further, a more specific explanation of the
setting in which the research for this thesis is performed.

As stated earlier, Dignisia AB acts in the credit business area with the aim of helping
companies get a better understanding and control over their debtors and receivables
due. Most of the time debts get resolved without complications according to terms
agreed upon by all parts involved. However, problems arise when things do not get
resolved or when parties do not have mutual agreements. Problems and non-pleasant
situations can easily arise and one of these situations is when a debtor is not able or
not willing to pay. There exist numerous reasons for this and the origination could
be either from the debtor or lendor or somewhere else. Being in debt is not pleasant
in several aspects, especially if the debt is overdue. These overdue debts are a big
part of what Dignisia works with and is also what this thesis deals with.

With all this said, working at Dignisia, with the assumption that the company itself
follows all laws and regulations, one should also make sure that in what way Dignisia
contributes to the credit market is something in alignment with ones own personal
values.

The aim of this thesis is to create a forecasting model to value and estimate cash flow
from an NPL portfolio and also to understand what drives repayment of NPLs. The
analysis is performed on a data set containing information about errands of debts
which have been sent to debt collection agencies. The data describes a particularly
vulnerable segment of people of the society from a financial and economical point
of view. The result is a model to valuate and forecast cash flow from a collection
of NPLs. Part of the aim is to understand the drivers behind repayment of loans.
When the results are presented and analyzed it is of importance to be aware of
what is done and what affects it might have. A result that estimates repayment
ability based on attributes could become discriminating if the attribute is of a cer-
tain character, for example gender or race. One could discuss the ethical concern
about including results like these in the report. One question to ask is how much
impact, direct or indirect, the results can have. In our thesis, there is not much
direct impact of our results. For example, we do not build and implement a credit
model based on our findings. We analyse data and present what it says, nothing
less, nothing more.

Another aspect to think about when dealing with personal data is what kind of
regulations and laws apply. In this case, where the work will be published, GDPR
apply and must be followed. The data must be anonymised.

5



1. Introduction
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2
Theory

This chapter is a deep-dive into relevant models and theoretical frameworks relevant
for the thesis project. A review of previous results on debt modelling is presented in
Section 2.1. Further, the static pool method, which is used for benchmarking pur-
poses, is breifly described in Section 2.2. Sections 2.3-2.6 are used for in depth pre-
sentation of regression models, decision trees, artificial neural networks and Markov
chains respectively.

2.1 Previous Research
There have been plenty of attempts to model and predict collection rates for debt
collection agencies. Overall, the prediction performance has been poor with typical
R2-values ranging from 10 to 25 percent. Several researchers highlight bad data
quality and availability as main obstacles for better modelling, which in turn is due
to low degree of transparency in debt collection operations and lack of reporting
requirements. However, in cases with highly detailed data R2-values of close to 70
percent are reachable. A non-exhaustive review of previous research on collection
modelling and prediction is presented in the remainder of this section.

As previously mentioned, data availability is a major limiting factor for debt col-
lection forecasting performance. The relation between availability and performance
has been studied. Kribel and Yam [13,14] address forecasting of insurance collecta-
bles from a German DCA on two granularity levels: at first using data available
to a third-party DCA, and secondly complementing with insurance agency in-house
collection data. They find that in-house data, particularly through credit bureau
scores and previous repaid accounts, dramatically improves prediction performance.
The adjusted R2 is tripled on inclusion of in-house data; increasing from 10-15 per-
cent to 43 percent. A similar comparison was conducted by Thomas et al. [15] for
a UK-based credit institute. The authors propose a two-stage model for each infor-
mation set, i.e. in-house or third party collection data. It is deemed necessary to
separate the analysis since accounts sold to third parties have passed through in-
house collection systems unsuccessfully, and are thus harder to collect. The idea of
using a multiple-stage model is seen elsewhere in the literature. Belotti and Ye [16]
observe a strong trimodal distribution of collection rates when analyzing a port-
folio of NPLs originating from a European bank. No collection and full collection
are frequent occurring events, while accounts paid in part are smoothly distributed
between collection rate zero and one. The authors use classification methods to
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distinguish accounts paid in full, and a Beta Mixture Regression model to produce
a collection rate in the interval [0, 1) for remaining accounts. Their two-stage Beta
Regression model is one of the most successful approaches encountered with an ad-
justed R2-value of 15-20 percent and rising to 69 percent on inclusion of detailed
in-house data. In-house data included information about payment frequency, num-
ber of DCA interactions and multiple credit scores which is not seen elsewhere in
the literature. Albeit the unique dataset, their results further stress the importance
of data quality and availability.
Papke and Woolridge [17] discuss the problem of modelling a bounded fractional de-
pendent variable. The authors propose functional forms extending a generalized lin-
ear modelling framework, which is used and further developed by several researchers
in their attempts to model collection rates [13, 14, 18]. Belotti et al. [19] introduce
non-linear and machine learning approaches in a comparative study from 2019. Out
of the 19 models applied, random forest emerges as the top-performing option. A
different approach to a slight variation of the debt collection prediction problem is
to use survival analysis techniques. Cox’s proportional hazard models [20] was used
to predict recovery times of delinquent credit cards by Ha and Krishnan [21] and
Boutachaktchiev [22] used a Markov chain model to predict cure rates of NPLs.

Although prediction performances of aforementioned models are not very promising,
the techniques suggested offer a wide range of modelling possibilities and are all
more advanced than the most popular framework – vintage analysis. While vintage
analysis is not a model in itself, it offers a way of structuring data based on a constant
factor and a risk factor. The most common selection is to use the registration month
as constant factor and days past due as an indicator of risk [23]. In this way, different
averaging techniques can be used to predict future cash flow.

2.2 Static Pool

One of the most widely used methods today for valuating and estimating cash flow
from an NPL portfolio is called static pool and is a special case of vintage analysis.
Accounts with common characteristics, such as time of registration, is grouped to-
gether in a pool or sub-portfolio.

To valuate and estimate cash flow from an NPL-portfolio using the static pool
method, a common way of conducting the analysis is according to the following [12].
The NPL portfolio to be valuated is analysed with the objective of finding what
type of accounts it consists of. The next step is to find an old NPL portfolio, with
known outcome, with similar attributes as the one to be analysed. The idea is that
the two portfolios will share enough common attributes that they can be expected
to behave the same way. For example, if 5% of the total debt was collected during
the first month for the old portfolio, then it is expected that around 5% will be
collected from the new portfolio. The time frame for which the comparison is made
could either be one month as in the example or one year or ten years or anything
else that is suitable.

8
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2.3 Regression Models
Linear regression is a widely used modelling technique and can be formulated in a
statistical, probabilistic or machine learning framework. The concept, however, is
the same and its straight-forward implementation and simplicity of interpretation
makes the method a good choice in many disciplines. Medicine, physiotherapy, so-
cial sciences and economics are examples where regression is the major modelling
technique. While the idea in linear regression modelling is simple, there are mul-
tiple extensions of higher complexity — two of which are treated in more detail in
Section 2.3.2, namely generalised linear models (GLMs) and the special case logistic
regression. Section 2.3.1 deals with the basic concepts of linear regression. The the-
ory is considered common knowledge and hence not referenced thoroughly, although
notation and structure are inspired by Rogers and Girolami [24] and Bishop [25].

2.3.1 Linear regression
Some notation is introduced in order to treat the concept of linear regression. Let
x(k) be an observation of a D-dimensional vector of variables, x, and let t(k) be
a corresponding target observation. In linear regression, the goal is to fit the best
model to a sequence of outcomes, or targets, t = {t(i)}ni=1 using a linear combination
of an observed sequence of data, {x(i)}ni=1. Call the coefficients, or weights w, and
let f be a linear mapping from R

D to R representing the model for the target
observation t(k). The linear model can be written as

f(x(k); w) = f(x(k)
1 , x

(k)
2 , ..., x

(k)
D ;w0, w1, . . . , wD) = wTx(k) ,

where
w =

[
w0, w1, . . . , wD

]T
,

x(k) =
[
x

(k)
1 , x

(k)
2 , . . . , x

(k)
D

]T
,

x(k) =
[
1, x(k)

]T
=
[
1, x(k)

1 , x
(k)
2 , . . . , x

(k)
D

]T
.

The problem of interest is to find a set of weights which makes the model f fit the
data in the best possible way. To accomplish this a loss function L is introduced.
The loss function is scalar and measures the distance between two functions in some
sense. The quadratic loss is given by

L(u, v) = (u− v)2 ,

which is by far the most commonly used. Here, u and v are arbitrary vectors defined
on the same space. Having defined such a loss function, the problem of finding the
best weights can be formulated as the minimization problem

arg min
w∈RD+1

1
N

n∑
i=1
L(f(x(i); w), t(i)) = arg min

w∈RD+1

1
N

n∑
i=1

(f(x(i); w)− t(i))2 .
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In order to solve the problem, it is convenient to introduce a so called design matrix

X =


xT (1)

xT (2)

...
xT (n)

 =


1 xT (1)

1 xT (2)

... ...
1 xT (n)

 =


1 x

(1)
1 x

(1)
2 . . . x

(1)
D

1 x
(2)
1 x

(2)
2 . . . x

(2)
D

... ... ... . . . ...
1 x

(n)
1 x

(n)
2 . . . x

(n)
D

 .

The minimization problem becomes

arg min
w∈RD+1

1
N

(t−Xw)T (t−Xw) . (2.2)

Assuming X is invertible, the optimal weight vector ŵ is given by expanding the
multiplication above and setting the partial derivative to zero. The resulting weight
given by linear regression is expressed as

ŵ = (XTX)−1XT t .

2.3.2 Generalized linear regression
There are numerous ways of extending the framework offered by linear regression. A
set of models created from such an extension is the generalized linear model (GLM).
In general, the design matrix is modified to allow arbitrary functions of each input
variable according to

X =


h(xT (1))
h(xT (2))

...
h(xT (n))

 =


h0 h1(x(1)

1 ) h2(x(1)
2 ) . . . hD(x(1)

D )
h0 h1(x(2)

1 ) h2(x(2)
2 ) . . . hD(x(2)

D )
... ... ... . . . ...
h0 h1(x(n)

1 ) h2(x(n)
2 ) . . . hD(x(n)

D )

 .

An important special case of a GLM is logistic regression, commonly used to model
binary response variables. In a probabilistic framework, logistic regression can be
formulated by mapping the output of linear model to the unit interval according to

f(x,w) = 1
1 + exp(−xTw) .

Clearly the model f is restricted to values between zero and one, and can hence be
considered to be a predicted probability of a binary target variable t:

P (t = 1|x,w) = 1
1 + exp(−xTw) .

Such a probability can easily be used in binary classification. The most natural
option is to assign class 1 to all instances where the probability is greater than one
half, and class 0 otherwise. There is, however, no restrictions on choosing the cut-off
probability differently.
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2.4 Classification and Regression Trees
Classification and regression trees are methods for constructing prediction models
from data. The models are obtained by partitioning the data and fitting a simple
prediction model within each partition. Different regions are created where the data
can be organized in. Starting from the top of the tree, the data is split into groups
based on their attributes. The splits are constructed with the intention to obtain
the greatest possible separation of the data [26].

For a classification tree, obtaining a measure for the maximum separation is done
by calculating the Gini Impurity, IG, for each node. IG, for a node n is a measure of
how often, a randomly chosen data point, would be incorrectly labeled. It is given
by

IG(n) = 1−
J∑
i=1

p2
i

∣∣∣∣∣
node=n

, (2.3)

where J is the number of classes, and pi is the probability of randomly choosing class
i. A split in a node will always decrease the total Gini Impurity. Another concept
that is used instead of Gini Impurity is the Information Gain Entropy which works
in a similar fashion [26].

For a regression tree the split is based on the maximal reduction in the standard
deviation of the target value. For a node the sample standard deviation, S, of the
set of target values, T , is calculated according to

S(T ) =

√√√√∑xi∈T (xi − x)2

|T | − 1 . (2.4)

This is then compared to the total standard deviation after a split given by

S(T,X) = P (left node)Sleft(T ) + P (right node)Sright(T ) , (2.5)

where X indicates on what attribute and value to make the split. The reduction in
the standard deviation

SDR(T,X) = S(T )− S(T,X) , (2.6)

is what decides on what attribute to perform the split.

Following is a brief and conceptual description of how to generate a decision tree.
For a more through explanation the reader is encouraged to read ”Classification and
Regression Trees” by W. Loh [26].

1. Start at the root node
2. For each attribute, partition the data at the node for the different values for

the full range of values of the attribute. Compute the separation, the Gini
Impurity for a classification tree, see (2.3), or the reduction in the standard
deviation for a regression tree according to (2.4)-(2.6). The attribute that
results in the greatest separation will make up the splitting criteria.
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3. Continue splitting the tree recursively according to step 2. If no type of split-
ting will result in a separation, the node will only contain instances from one
class and become a leaf node. Another way to stop the process is if a stopping
criteria is met, for example reaching a predefined maximum dept or maximum
number of splits.

The tree is constructed with the help of training data. It is possible to construct
a tree classifying all training data points correctly. However, this would not give
optimal results when testing the tree on a test set, the model is over-fitted and does
not generalize well on new data. The generalisation ability of the tree is in general
related with the dept of the tree. The deeper the tree, the worse the generalisation.
Usually, one defines maximum number of splits or maximum depth of the tree.
These are also parameters that can be optimized.

2.4.1 Random forest
A random forest is an ensemble of decision trees. The trees are constructed as
described above. However, instead of using the whole set of data the trees are
grown based on a random subset of the data. The subset is constructed by randomly
sampling data, with replacement, from the entire set. This is called bootstrapping.
When constructing the splits in a random forest, the construction is based only on
a random subset of the features. Typically this amounts to the square root of the
total number of features.
Predictions are made by averaging the predictions among the different trees. Ran-
dom trees are robust against over-fitting [27].

2.5 Artificial Neural Networks as Classification
and Regression Models

Artificial neural networks, ANN, have grown popular over the last decade in the ap-
plication of solving complex problems. The strengths of ANNs lies in the information
processing. Among these abilities are the notion of finding complex and non-linear
relations, having characteristic of high parallelism, be robust against faulty and noisy
data, and be able to generalize well. This can allow for a better fit, fast processing
at the same time as having a high hardware failure-tolerance, and be applicable to
unlearned data [28].

An ANN has an architecture inspired by the biological neural network in the human
brain. It consists of connected nodes called neurons. Each neuron can receive a
signal, process it, and signal other neurons connected to it. The architecture of the
network consists of an input layer, usually the size of the feature space, a number
of hidden layers, and an output layer. The input layer usually has some kind of
activation function which processes the incoming signal. The neurons in the hidden
layer have individual biases and a separate set of weights. The neurons in the output
layer also have some kind of activation function, usually the same for all neurons in
the layer [29].
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In supervised learning the ANN is trained with training data. The weights and
biases are updated according to the difference in the network output and the target
output. The aim is to minimize the overall network error. The most widely used
networks are the ones where back propagation can be used. Back propagation is a
way of updating the weights and biases based on training data. In each iteration
the data is propagated forward to produce a solution. In the next step the error
between the solution and the target is propagated backward through the network
to update weights and biases [28].

ANN is a versatile algorithm and can be used for both classification and regression
tasks.

2.6 Discrete Time Markov Chains

Andrei A. Markov (1856-1922) developed the concept of Markov chains. He studied
sequences of random variables with a particular dependence property now known
as the Markov property. His research launched a new branch of probability theory
– stochastic processes – with applications in financial modelling, signal processing
and cell biology to mention a few [30]. The remainder of this section treats basic
concepts of discrete time Markov chains. For a more thorough theoretical review
the reader is referred to the work of G. Grimmett and D. Stirzaker [31]. The theory
presented below is inspired by the same book, if nothing else is noted.

Let X = {Xn, n = 0, 1, 2, . . . } be a sequence of random variables taking values on
some discrete countable state space1 S. The process X is said to be a Markov chain
if it fulfills the Markov property.

Definition 1 (Markov property) Assume that s, x0, x1, . . . , xn−1 ∈ S are known
states, and let X be a sequence of random variables. The sequence X fulfills the
Markov property if

P(Xn = s|X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = s|Xn−1 = xn−1) (2.7)

The property can be understood as a lack of memory of the process. The distri-
bution of variable Xn conditional on the previous state Xn−1 is independent of the
history {X0, X1, . . . , Xn−2}, i.e. the only information governing the future values of
the process is the previous value. With this property, it is possible to prove useful
results for Markov chains. An important concept relevant to the thesis project is a
transition probability matrix.

Definition 2 (Transition probability matrix) Let i and j be two states in S.
The probability of a Markov chain, X, moving from i to j at time step n + 1 is

1Implicitly assumed that there exists an underlying probability space (Ω,F ,P) and that Xn is
F-measurable and maps Ω into S for each n = 0, 1, 2, . . . .
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denoted
pij = P(Xn+1 = j|Xn = i)

Collecting all possible transitions we get a |S|× |S|-matrix of probabilities, P, called
transition probability matrix

P =
(
pij
)|S|
i,j=0

=


p00 p01 . . . p0|S|
p10 p11 . . . p1|S|
... ... . . . ...

p|S|0 p|S|1 . . . p|S||S|


Here, | · | denotes the norm.

Definition 3 (Homogeneity) A Markov chain is called homogeneous, or time ho-
mogeneous if

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i)

for all i, j and n.
Markov chains encountered in this thesis project are time homogeneous.

Definition 4 (Recurrent Markov state) State i is called recurrent, or per-
sistent, if

P (Xn = i for some n ≥ 1|X0 = i) = 1

which is to say that the probability of eventual return to i, having started from i, is
1. If this probability is strictly less than 1, the state i is called transient.

Definition 5 (Absorbing Markov state) A state is called absorbing if the prob-
ability of leaving the state is zero. An absorbing state is a special case of a reccurent
state.

Definition 6 (Absorbing Markov chain) A Markov chain is an absorbing chain
if

1. There is at least one absorbing state and
2. It is possible to go from any state to at least one absorbing state in a finite

number of steps.

The transition matrix P for an absorbing Markov chain, with the transition states
coming first, can be written on the canonical form [32]

P =
[
Q R
0 Ir

]

where the dimensions of the matrices Q, R, 0, Ir are [t× t], [t× r], [r× t], [r× r]
respectively where t is number of transient states and r is number of absorbing(also
called recurrent) states.
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The probability of transitioning from i to j in exactly k steps is the i, j:th entry of
Qk. Summing these up for a certain number of steps K, results in the matrix NK

in which the i, j:th entry is the expected number of visits of state j given starting
in state i:

NK =
K∑
k=0

Qk . (2.8)

Inspired by theorem 11.6 in [32]. The probability that an absorbing chain will be
absorbed in the absorbing state j, given start in state i, in K steps, is given by the
i, j:th entry of the matrix BK :

BKi,j
=
∑
n

∑
l

qilrlj =
∑
l

∑
n

qilrlj =
∑
l

nilrlj = (NKR)ij , (2.9)

where R is the [t × r]-matrix containing transition probabilities to the absorbing
states.
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3
Methods

This chapter deals with the problem solving strategy based upon the questions and
statements written in the aim of the thesis, see Section 1.2.

First, the data set is presented, with information about origin, context, attributes,
limitations and how it has been used.

Two different models are built and tested: the classification-regression model and
the Markov chain model. In the end the models aim to do the same thing, namely
to value and forecast an NPL portfolio. The two models use different approaches,
the models are based upon different assumptions and ideas which results in differ-
ent conclusions. The classification-regression models are based on the assumption
that there exist a relation between attributes of an account and collection rate. It
uses a bottom-up approach where it analyses each account by itself and sums the
parts to build a portfolio valuation. The Markov chain model, on the other hand,
uses a top-down approach and uses the assumption of patterns in repayment. The
simulation of the Markov chain is done on the portfolio as a whole.

Further, to investigate the increase of predictive capacity under information gain the
two models are tested in two different scenarios; blind and informed. In the blind
scenario, the analysis and prediction is only based on the account attributes. In the
informed scenario the analysis and prediction is done with additional information
about payment history. The way this is done differs between the two models. In the
sections which describe the models, the application of the two scenarios, blind and
informed, is discussed in more detail.

Matlab has been used for all programming tasks.

3.1 Data

This section describes data origin, business context, data attributes and high-level
statistics of the dataset. Limitations and data pre-processing decisions are also
discussed.
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3.1.1 Data origin
The available data originates from a transaction of an NPL portfolio consisting of five
types of defaulted banking credit services – invoices, account credits, loans, credit
cards and mortgages from several European banks. The portfolios were presented
with cash flow from active accounts in the portfolio for three years, accompanied
with several attributes for each account, and investors were invited to value the
portfolio and place bids. Eventually the portfolios were partially sold at undisclosed
terms.

The data set at disposal for this Master’s thesis project is an anonymized (no per-
sonal data and no possibility to relate any item to any actual person or debt) and
time-translated version of the very same data set presented to investors before the
auctions.

3.1.2 Dataset construction and pre-processing
The NPL portfolio data is structured on account level. Each row represents an ac-
count, or errand, registered at a DCA with information about the outstanding debt
and the debtor. Rows are equivalently referred to as accounts or errands in this
report.

Numerous data constrictions have to be made in order to obtain a useful dataset.
This section presents and motivates each decision on data limitations. In total, 88
% percent of the available data is considered of no use for the purpose of the thesis
project. Figure 3.1 summarizes limitations and indicates relative data loss in each
step. The steps are motivated below.

Relative size
1 Full dataset

0.41 Cashflow available from first month
0.30 No data gaps

0.17 12 first months cash flow available
0.12 Data originating from same DCA

Figure 3.1: Restrictions imposed on the dataset and corresponding size reduction.

The most important limitations is the one imposed to deal with the availability of
cash flow from the first month. It is not trivial to understand why this is necessary,
which is why it is explained in detail below. The other limitations are straightfor-
ward: accounts with data gaps are removed. Reporting structure differs between
DCA’s, and hence accounts from the largest and best documenting DCA are kept.
Since the valuation is done on a 12 month horizon, accounts younger than 12 months
are removed.
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Figure 3.2a is an illustration of the cash flow from the available NPL portfolio. Reg-
istration month, which is the date given by month and year at which the account
was registered at the DCA, is shown on the vertical axis, indexed from the oldest
account in the data set. The horizontal axis values are number of months since the
registration month. High "heat", i.e. dark pixels, represent a relatively high cash
flow and low heat, i.e. white pixels, means no cash flow. The cash flow matrix
has an upper triangular shape, since no cash flow can exist before an account is
registered. There is also a clearly visible lower triangular structure, producing a
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Figure 3.2: Heatmap of portfolio cash flow. y-axis represents DCA registration
month for an account, while x-axis value describes months since registration.

Hence, no "heat" i.e. cash flow, can exist below the diagonal.

ribbon of cash flow across the diagonal in Figure 3.2. The meaning of this is that
data was only recorded in a fixed time period, which is the height of the ribbon.
No information about earlier activity of the accounts is available. This is a major
limitation, since the data is implicitly conditioned on existence of cash flow. Closed
accounts or accounts with zero cash flow in the period is not featured in the data
set. Therefore, a large proportion of the data is chosen not to be used because the
intention is to investigate cash flow the first months after account registration.

Further limitations shown in Figure 3.1 are

3.1.3 Description of data attributes
After the pre-processing is done, as described in Section 3.1.2, the set contains three
different types of debts, namely, invoices, loans, and credit card debts. The types of
debt are believed to, in general, behave differently. By looking at Figure 3.3, which
shows the distribution of collection rates, which is the share of the debt that has
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been repaid, one can see big differences. Most of the invoices have no repayment.
About half of the loans have no repayment. Credit card debts are repaid to a greater
extent compared to the other two debt types. In the classification-regression model
all errands that are invoices are removed. Such a skewed distribution could easily
give the notion of the model being better than what it actually is. Also, low collec-
tion in combination with low debt size, results in a low contribution of invoices to
the whole portfolio which makes it less interesting to model. In the Markov model
the debt types are modelled separately and invoices are included in the analysis.
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Figure 3.3: Distribution of collection rate, which is the share of the debt that has
been repaid, after 12 months for different debt types. The leftmost bin in every

figure contains only CR=0.

Further attributes of the data are described in Tables 3.1 and 3.2. The variables
used in the blind scenario are listed in Table 3.1. In the informed scenario, in ad-
dition to the variables used in the blind scenario, the variables listed in Table 3.2
are used. These are all variables describing payment behaviour during the first six
months.

Descriptive statistics for all the variables are summarized in Table 3.3. More infor-
mation about variable distributions are found in appendix A.1.
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Table 3.1: Variable names and their explanations for attributes.

Variable name Description
debtType Categorical variable describing the type of debt (loan or credit

card)
regDateQuarter Quarter of the year in wich the debt was registered at the DCA

age Age of the debtor
debt Size of the debt registered by the DCA
income Yearly income of the debtor at the time of granting of the

credit. Data from the Swedish tax agency
sumADebt Sum of the total debt owed to the government by the debtor

registered at the Swedish Enforcement Authority (Krono-
fogdsmyndigheten) at the time the case was presented in port-
folio to investors

sumEDebt Sum of the total debt owed to a private company or other
person by the debtor registered at the Swedish Enforcement
Authority(Kronofogdsmyndigheten) at the time the case was
presented in portfolio to investors

numEDebt Number of debts to a private company or other person by
the debtor registered at the Swedish Enforcement Author-
ity(Kronofogdsmyndigheten) at the time the case was pre-
sented in portfolio to investors

Table 3.2: Variable names and their explanations only used in the informed
scenario.

Variable name Description
collectionRate_1 Total amount collected for the first month since regis-

tration at DCA
collectionRate_1to3 Total amount collected for the first three months since

registration at DCA
collectionRate_1to6 Total amount collected for the first six months since reg-

istration at DCA
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Table 3.3: Descriptive statistics of the variables in the data set and the
constructed variables used in the informed scenario. Categorical variables are
presented with frequency and relative frequency(%) for each category. Numeric
variables are presented according to; min, mean(std), max. For more detailed

statistics, see appendix A.1.

Variable Type Statistics
debtType categorical loan: 425 (41%), credit card: 614 (59%)
regDateQuarter categorical 1st: 153 (15%), 2nd: 319 (31%), 3rd: 347 (33%),

4th: 220 (21%)
age numeric 22, 45.3(12.4), 84 (years)
debt numeric 2.71, 57.9(64.7), 550 (SEK, thousands)
income numeric 0, 210(139), 988 (SEK, thousands)
sumADebt numeric 0, 25.2(106), 1690 (SEK, thousands)
sumEDebt numeric 0, 171(259), 4510 (SEK, thousands)
numEDebt numeric 0, 5.53(6.39), 42
collectionRate_1 numeric 0, 0.0031(0.0216), 0.5288
collectionRate_3 numeric 0, 0.0136(0.0478), 0.8329
collectionRate_6 numeric 0, 0.0387(0.0977), 1
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3.1.4 Splitting data into training- and test set
The data set is divided in training and test sets which is standard procedure in
model evaluation. The split is done differently for the two different models, com-
bined classification-regression model and Markov chain model. The reason behind
this is mainly that the models partly aim to do different things.

The primary objective for the combined model is to investigate the existence of a
relation between attributes of a debtor and collection rate. And if there exists a
relation, find the driving factors. The portfolio valuation is secondary. The model
is trained on the train set and applied to the test set. During the evaluation of the
model, this is done several times. Qualitative measures are taken each time and
averaged over the rounds. This is done to avoid an unlucky or lucky split of data
potentially deciding the result. The division of training and test set is done solemnly
at random at a 75/25 ratio for train and test.

The Markov model is constructed based on the training set in order to value the
test set. The split is done at a 75/25 ratio. However, now the split is done based
on registration date where the training set consist of the 75% of accounts that are
earliest in time. The test set is then the 25% latest in time. This means that in
Figure 3.2, the top 75% is the training set and the bottom 25% is the test set.

3.2 Classification and Regression Model
Our model is inspired by logic developed by Kriebel & Yam and Belotti et al. who
use different regression models to forecast collection rate [14, 19]. L.C. Thomas et
al. and Belotti & Ye proposes models which are combination of classification and
regression models [15,16]. The combined classification-regression model is used when
the distribution of collection rate is bi- or trimodal. Models like these are based on
assumptions that one can group together accounts with similar collection rate based
on their characteristics. It seems logical that accounts that are fully repaid have
more in common with each other than with accounts with low repayment. If the
distributions are bi- or trimodal there will exist clearer segments, which make for
using a classifier more appropriate.

3.2.1 Dependent variable – Collection Rate (CR)
Collection rate is a measure of repayment of loans. To put it simply it is the pro-
portion of the debt that has been repaid. Usually one wants to sum repayments
done in a fixed time span, the first 12 months in our study. There are discussions in
the literature whether the collection rate should include delayed payments fees and
interest or not. Beck et al. and Belotti & Ye do adjust the collection rate for costs
associated with damages caused by the delay [16,18]. Kriebel and Yam, means that
the collected money first serve as repayment of the initial debt and secondly covers
costs associated with the delay [13].
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Our data set contains no information about fees or interest caused by the delay.
Hence, when taking the ratio between total amount collected and initial debt, one
obtains values on an unbounded interval, see Figure 3.4a. Values above one imply a
collection more than the initial debt, obviously the payments then also include fees
and interest associated with the delay. The extra fees and interest make up 0−40%
of the total debt, which is reasonable. We define collection rate as

CR = min
{

1, amount collected first 12 months
initial principal

}
.

To model collection rate, with for instance a regression model, it is generally more
convenient to have it on a bounded interval. We have decided to truncate the
collection rate within the interval [0, 1] as shown in the definition, which is a standard
approach [16]. The assumption that accounts with collected amount more than or
equal to the initial debt are fully paid is presumably often satisfied. Especially if
one treats the debt and other fees separately, like Kriebel and Yam, where the initial
collection service the debt. The truncated collection rate is seen in Figure 3.4b.
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(a) Non-truncated CR.
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(b) Truncated CR.

Figure 3.4: The distribution of the CR when the CR is truncated and when it is
not.

3.2.2 Model architecture
We use a combined classification-regression model similar to the one used by Bellotti
and Ye [16].

In the classification step accounts are classified in two classes: CR=0 and CR > 0.
After the classifier has been applied, some accounts will be given a definite value
of the collection rate CR=0 and some will be further estimated using a regression
model. In the regression step the CR will be estimated in the interval 0 ≤ CR ≤ 1.
In the end, each errand will have an estimation of the expected value of the CR after
12 months. By multiplying each accounts initial debt with its estimated CR one
obtains the estimated amount to be repaid. Summing up all the accounts estimated
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Classification
CR > 0 ?

• LR
• RF
• ANN

Run Model
WRF-Chem

Regression
0 < CR ≤ 1
• GLM
• RF
• ANN

CR=0

0 < CR ≤ 1

yes

no

Figure 3.5: Illustration of the combined classification regression model to
estimate the collection rate for each account based on its attributes.

amount to be repaid will give an indication of the amount of money that one could
expect to retrieve from the portfolio as a whole. This translates to the value of the
portfolio. The model is illustrated in Figure 3.5.

3.2.2.1 Classification models

Three different classification models are evaluated. These are:
• Logistic regression, LR
• Random forest classification model, RF
• Artificial neural network classification model, ANN

See appendix A.2 for more details. LR is a good base line classifier. It is generally
faster and gives more interpretable results. This is the reason we choose to include
it. RF and ANN regression models have performed well in similar setups [16]. Hence
we were interested in using them also as classification models. The random forest is
trained using an ensemble of 30 decision trees. The artificial neural network consists
of one input layer, one hidden layer with 10 neurons, and one output layer. The
network is trained by propagating training data forward and the error backward, as
described in Section 2.5.

3.2.2.2 Regression models

Three different regression models are used:
• Generalized linear model, GLM
• Random forest regression model, RF
• Artificial neural network regression model, ANN

See appendix A.2 for more details. As GLM is used extensively in the literature
[14, 18] we choose to include it. As noted earlier RF and ANN regression models
have performed well in similar studies [16]. RF and ANN regression models are
trained in the same way as their classification model counterparts. The regression

25



3. Methods

models are evaluated by testing the different algorithms on an isolated regression
scenario. This is done by training and testing the models on accounts where the CR
is known to be greater than zero. Consequently, all the accounts with CR=0 are
filtered out for this evaluation.

3.2.2.3 Combined model

The combined model consists of a combination of one classification and one re-
gression model of the ones listed in Sections 3.2.2.1 and 3.2.2.2. The models are
trained on a training set and then applied to a test set. The classification models
are trained on all the data in the training set. The regression models are trained
only on accounts with CR > 0 from the training set.

3.2.2.4 Performance assessment of models

The models are evaluated and compared with each other by qualitative measures
of the performances. It is important to choose the measures relevant to the work.
As the classification and regression models can be treated as separate models the
assessment of them is also done separately and with different metrics.

For evaluation of the classification models the confusion matrix is studied. The con-
fusion matrix illustrates the distribution between true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN). This is useful when looking for
a better understanding of the model classifications which is valuable information
when adjusting the model to avoid certain miss-classifications more than others, i.e.
avoid FPs or FNs. With the information given by the confusion matrix it is easy
to calculate the accuracy, which is a common evaluation metric for a classification
model. The accuracy is given by

Accuracy = TP + TN
TP + TN + FP + FN .

To put it simply it is a measure of how many data points are correctly classified.

Another evaluation method, specific to our problem, is to plot the real distributions
of the model classified accounts. This gives a feeling for what type of accounts are
classified correctly and not correctly.

The regression models and the combined classification-regression models are also
evaluated by comparing the distributions of the estimations and the target values.
In addition, some other measures will be taken. In similar studies the mean absolute
error (MAE), mean squared error (MSE), and the coefficient of determination (R2)
have been used [16,19]. We choose to use the MAE and R2 as performance metrics.

MAE is calculated according to

MAE =
∑n
i=1 |yi − xi|

n
,
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where n is the total number of data points, xi is the predicted value and yi is the
target value.

R2 is a measure of the proportion of variance, of the dependent variable, predicted
by the independent variables. It is given by

R2 = 1− SSreg
SStot

,

where SSreg is the squared error for the estimates and SStot is the squared difference
between the mean and the data according to

SSreg =
∑
i

(fi − ȳ)2 ,

SStot =
∑
i

(yi − ȳ)2 ,

where ȳ is the mean of the data, and fi the estimations.

Another interesting evaluation metric, specific for our case, is the estimated value
for the whole portfolio. To increase comparability we choose to study the relative
portfolio value, RPV, and define it as the ratio between the estimated portfolio value
and the real portfolio value according to

RPV = estimated portfolio value
actual portfolio value . (3.1)

Here, the actual portfolio value is defined as the sum of all cash flow in the portfolio.

It could also be valuable to estimate the variable importance of a model. The
variable importance is a measure of the relative impact the different variables or
predictors have on the estimation of the CR. This is something that is done for the
classification and regression step. For more details see appendix A.3.

3.2.3 Applying the model to the blind and informed scenar-
ios

To investigate the concept of predictive capacity in relation to information avail-
ability, the model is applied to the two different scenarios; blind and informed.
More specifically, for the classification-regression model it is about what variables
are available to the model in the train and test phase. Similar to the blind scenario,
CR is to be estimated also in the informed scenario. In the blind scenario CR for
the period of month 1-12 is estimated. However, in the informed scenario, collection
rate for the time period of month 7-12 is estimated. Using this setup, it is possible to
use information given by payments during month 1-6, in the estimation of payments
to be done during month 7-12. Information about payments done during month
1-6 is given as three different variables: CR for month 1, cumulative CR for month
1-3, and cumulative CR for month 1-6. These variables are used in addition to the
regular attributes. See also Table 3.2.
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3.3 Markov Chain Model
To complement the combined classification and regression model, a Markov chain
inspired model is implemented. However, there is a slight difference in the scope and
anticipated output from the two approaches. While the combined model uses errand-
level attributes to predict an errand-specific collection rate, the Markov model is
more of a tool to analyze payment behaviour on a portfolio level as well as a tool to
produce accurate portfolio valuations. The approach is to use the predictive power
of human behaviour. By focusing on the observed structures of debt repayment,
rather than total volumes or shares of debt, prediction could be more accurate. The
combined model is, as discussed in Section 3.2.2, developed through a comparative
study of candidate algorithms. The Markov model, in contrast, makes no compari-
son claims and should be thought of as a model framework with potential for further
development.

The Markov model is tested in the blind and informed scenarios, and bench-marked
against a static pool implementation.

3.3.1 Markov model motivation and design
The conceptual motivation for using a Markov approach comes from industry exper-
tise. Debt collection experts at Dignisia acknowledge that debtors tend to continue
repaying their debts once they have entered a repayment plan. It is reasonable
to assume that payments do not occur at random, but rather follow some sort of
structure. Inspection of cash flow data also supports existence of a payment struc-
ture. The structure can be captured by defining a set of payment states adopted by
each debtor, and letting transitions between states adhere to conditions of a Markov
chain, see Definitions 1-3 in Section 2.6.

The most important aspect of designing the model is state and time unit definitions.
Since the available cash flow data are recorded on a monthly basis it is natural to
select the time unit for a step in the chain to be one month. Months are standard
units of time in financial applications and has been used in previous Markov mod-
elling attempts [22]. The state definitions, however, are non-trivial. The easiest
state definition is to look at each month separately and label it with one of three
states: a paying, non-paying or fully paid state. Suggested states are presented in
Table 3.4 and the corresponding chain is illustrated in Figure 3.6. Note that the
suggested Markov chain is time homogeneous.

Table 3.4: Summary of Markov model states

State name Symbol Description
State 0 s0 No payment
State 1 s1 Payment
State 2 s2 Debt fully paid
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s0 s1 s2p00

p01

p12

p11

p10

p22 = 1

Figure 3.6: Time homogeneous Markov model with possible transitions and
corresponding probabilities illustrated

An illustrative example of a 6 month cash flow matrix in SEK transformed into a
state matrix is shown in (3.2).

0 0 0 0 0 0
0 0 3500 0 0 0
0 0 1000 1000 1000 1000
0 0 1000 0 2000 1000

500 500 517 0 0 0

→

s0 s0 s0 s0 s0 s0
s0 s0 s1 s0 s0 s0
s0 s0 s1 s1 s1 s1
s0 s0 s1 s0 s1 s1
s1 s1 s1 s2 s2 s2

 (3.2)

Notice how the final row ends in state 2, i.e. full repayment. Full repayment is not
distinguishable solely from the cash flow matrix but needs complementary informa-
tion about original debt. Another observation to make is the similarities between
row three and four in the cash flow matrix. It is reasonable to assume that the in-
tention in row four was to follow a structured payment plan of 1000 SEK per month,
but that one payment was missed. Therefore, the amount is doubled the following
month. This is observed frequently in the real dataset as well.

When the state matrix has been constructed based on the data, it is easy to esti-
mate the transition probabilities pij, i, j = 0, 1, 2. One simply counts number of
occurrences of a specific transition si → sj and divides with the total number of oc-
currences of the originating state si. By doing this for each transition the transition
probability matrix P is obtained, for definition see Definition 2 in Section 2.6.

The model contains three states, see Table 3.4. The transition matrix is of the form

P =

p00 p01 p02
p10 p11 p12
p20 p21 p22

 .

As a consequence of the problem design some of the pij have a restriction on them.
Because it is not possible to go from the no payment state s0 to the fully paid state
s2, it follows that p02 = 0. The fully paid state is an absorbing state, hence

p2j =
0, if j = 0, 1

1, if j = 2
,

P then becomes

P =

p00 p01 0
p10 p11 p12
0 0 1

 . (3.3)
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The rest of the transition probabilities have to be calculated based on the state
matrix.

3.3.2 Markov model as an analysis tool
As the transition matrix P defines the Markov chain, conclusions can be drawn by
analysing the matrix. Given P and starting in state si, the expected number of
visits to a specific state sj for a specific time K is given by (2.8) in Section 2.6.
Multiplying this with the initial state vector p0, which is of dimensions [t × t] and
indicates starting distribution between the two transient states, gives the expected
number of visits for the different states during the given time period K according
to

vK = p0NK . (3.4)

Especially interesting is to know the expected number of visits to the paying state.

Another interesting quantity is fraction of accounts expected to be absorbed AK ,
i.e. fully paid, within the K first months. An expression for this is

AK = p0BKR . (3.5)

Here, BK is a [t× r]-matrix where the i, j:th entry is the probability that the chain
will be absorbed in the absorbing state sj for a time K, given starting in state si,
see (2.9) in Section 2.6.

3.3.3 Markov model as a forecasting model
Aside from functioning as an analysis tool, another application for the Markov chain
model is portfolio valuation. The valuation is obtained through forecasting cash flow
the coming 12 months.

The forecast of the NPL portfolio is conducted through the creation of a Markov
chain, which is defined by the empirical transition matrix in the training set. Each
account is represented by one Markov chain, and is propagated 11 steps forward to
produce a 12 month state matrix. The state matrix is then converted into a cash
flow matrix by generating a random payment for each time a Markov chain has been
in the payment state s1. The payment is drawn from the empirical distribution of
payments in the training set. This is to avoid modelling payments separately.
Number of errands, or accounts, in the portfolio to be modelled decides the number
of chains to be simulated. The initial state distribution, p0, is chosen to be the
empirical distribution in the training set.

The distribution from which payments are drawn is a previously known distribution
of payments from NPLs-portfolios of similar debt type. One thing to note is that no
consideration is taken to the potential difference in debt size of the errands between
the portfolio on which the forecast is intended and the portfolio from which the
payment distribution is based upon. This is a simplification that has been made.
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However, it has not been made without consideration. It is based on the assumption
that payments and size of debt are not strongly correlated. For an investigation of
this, see Appendix A.4.

Summing the payments from each chain results in a total sum for the whole port-
folio. This is the estimated portfolio value. To reduce the effect of stochasticity
and obtain as fair a valuation as possible, several portfolios are simulated and the
average and standard deviation is calculated.

As well as an end value of the portfolio, the simulations also give an indication of
the progress of the portfolio over time. This can be plotted and compared against
the real cash flow curve. In the same way as for the classification-regression model,
the portfolio valuation can be expressed as a fraction of the actual value, see (3.1)
for definition of relative portfolio valuation, called RPV.

For comparison and benchmark in portfolio valuation, the static pool method is used.
In our setting the static pool method valuates the test set based on information given
in the training set.

3.3.4 Interpretation of blind and informed scenarios
In the blind scenario an NPLs-portfolio is valuated based on no prior knowledge of
the errands. The data set is split up in two, one training set and one test set, see
Section 3.1.4. The transition matrix is constructed based on the information given
in the training set. A number of chains, equivalent to number of accounts in the
test set is simulated. The payments are drawn from the empirical distribution of
payments from the training set. 500 portfolios are simulated and an average is taken.

In the informed case, the first six months cash flow is known in the test set. This
is to simulate a scenario where a portfolio analyst wants to update a blind portfolio
valuation for instance. The aim is to forecast cash flow the coming half year, i.e.
cash flow month 7 to 12. Three changes are made compared to the blind simulations;
changing transition matrix, starting distribution and number of steps taken in the
chain. Starting distribution p0 is set to the empirical state distribution in month
6 and the the number of propagation steps is changed from 11 to 6. The changes
to the transition matrix are a bit more complicated. By merging the training set
transition matrix Ptrain with the empirical transition matrix in the informed period
P1-6, the informed transition matrix

Pinformed = wbiasP1-6 + (1− wbias)Ptrain

is obtained. The parameter wbias ∈ [0, 1] governs the how much weight is put on
the new information, i.e. cash flow from month 1 through 6. The parameter is
important when the two merged matrices differ. The value

wbias = 0.75
is used for all debt types in the simulations. A range of values where tested, but the
variance in the results was negligible.
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4
Results

In this chapter, results are presented from the classification-regression model and
the Markov chain model. The results are presented independently of each other in
different sections. Respective section further describes the way in which results are
presented.

4.1 Combined Classification-Regression Model
The combined model is made up of a classification step and a regression step. The
two steps can be isolated and analysed separately. This is also what has been done
in this study. The results from a classification setting is presented, where models
are compared against each other. Afterwards, results from a regression setting is
presented where models are compared to each other. Finally, different combined
models are tested and evaluated.
Qualitative measures, see Section 3.2.2.4, are taken and presented in tables. To get
a more fair evaluation, the measures are taken 30 times and an average are presented
together with the sample standard deviation, σ̂.

4.1.1 Blind scenario
The results of the separate evaluation of the classification and regression models are
presented in Sections 4.1.1.1 and 4.1.1.2. The evaluation of the combined model,
consisting of different combinations of classification and regression models, are pre-
sented in Section 4.1.1.3.

4.1.1.1 Classification models

Table 4.1 shows that three models are similar in their performances with accuracies
in the interval 68-69%. LR and ANN classifies around 16% of the accounts as CR=0
while RF classifies 22% of the accounts as CR=0.

By analysing the confusion matrix, a more nuanced picture of the performance is
obtained, Figure 4.1. The matrices, where the numbers corresponds to percentages,
show similar characteristics. The majority of the errands with CR > 0 are classified
correctly, which is because most errands are classified as CR > 0. On the other
hand this results in a lot of FP, which in other words means that many accounts
with actual class CR=0 are classified as CR > 0.Further, by looking at the actual
distributions for the different classes of the classified accounts valuable information
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is obtained, see Figure 4.2. The different classification models show similar results.
The distributions for the classes, CR = 0 and CR > 0, seem to be different. The
models have been able to do some kind of distinction.

Table 4.1: Comparison of different classification models for the blind scenario
through qualitative measures. The true distribution of accounts between CR=0

and CR > 0 are ≈ 31%/69%(depends on the split in train and test set).

Class. model Accuracy ( ± σ̂) Prop. classified CR=0/CR > 0
LR 68.6%± 2.8% units 15.8% / 84.2%
RF 68.7%± 2.1% units 22.1% / 77.9%
ANN 68.4%± 2.1% units 17.3% / 82.7%

Predicted
CR=0 CR > 0

A
ct
ua

l CR=0 7.8 22.7
CR > 0 7.9 61.6

(a) Logistic regression.

Predicted
CR=0 CR > 0

CR=0 10.7 19.9
CR > 0 11.3 58.1

(b) Random forest.

Predicted
CR=0 CR > 0

CR=0 9.3 21.3
CR > 0 8.6 60.8

(c) Artificial neural network.

Figure 4.1: Confusion matrices for the respective classification model on a test
set in the blind scenario. Numbers are given in percentages.
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(a) Logistic regression.
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(b) Random forest
classification model.
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(c) Artificial neural network
classification model.

Figure 4.2: The trained classification models applied on a test set in the blind
scenario. The actual distribution of the two different classes, CR = 0 and CR > 0,
classified by the different models are shown. The leftmost bin only contains CR=0.

Optimal is to have blue only at zero and red only at bins greater than zero.

4.1.1.2 Regression models

In Table 4.2 the results for the regression step is presented for the different models.
Note that for the isolated regression step, only accounts with CR > 0 are used.
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Judging from the MAE, RF performs best, GLM is the second best and the ANN
performs worst. Similar observations are made when judging from the R2. RF is
the better one with a value of 0.14. GLM has an R2 of 0.09 while ANN’s R2 is zero,
which means that the explanatory strength of the model is zero. For all models the
the variance of the R2 is high. Surprisingly, there does not seem to be any correla-
tion between R2 and portfolio valuation.

The relative portfolio valuation is presented in the third column in Table 4.2. One
could expect that the better performing model, with the lowest MAE and highest
R2 would have a portfolio valuation closest to the actual one but that is not the case
as can be seen. By looking at the distribution of the estimations, further insights of
how the different regression models behave are obtained, see Figure 4.3. All three
distributions share a common characteristics in the sense that they tend to have
most of their mass close to the mean of the actual CR.
Table 4.2: Comparison of the different regression models in the blind scenario

through qualitative measures. The results are averages and standard deviations of
30 measurements.

Regression model MAE ± σ̂ R2 ± σ̂ RPV ± σ̂
GLM 0.168± 0.012 0.089± 0.038 1.07± 0.13
RF 0.156± 0.010 0.143± 0.05 1.12± 0.12
ANN 0.176± 0.015 −0.002± 0.08 1.12± 0.21
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(a) Generalized linear model.
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(b) Random forest regression
model.
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(c) Artificial neural network
regression model.

Figure 4.3: The trained regression models applied on a test set for the blind
scenario. The distribution of the model estimations together with the distribution

of the actual estimations are visualized in the same plot. Only accounts with
CR > 0 are used when evaluating the regression models separately.

4.1.1.3 Combined model

For the combined model, one classification model and one regression model is cho-
sen. Because RF regression model perform notably better than the other regression
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models it is chosen to be the regression model for all the combined models. For
the classification step, the three different classification models perform equally well
more or less. All three is then tested for different combined models. Results are
presented in Table 4.3.

Judging from the MAE the models are similar. RF-RF performs slightly better than
ANN-RF which performs slightly better than LR-RF. For all the combined models
the R2 is around zero with a high variance.

The degree of explanation can also be investigated by looking at a correlation plot
between the estimated value of the CR and the actual value of the CR, Figures 4.4a,
4.5a, and 4.6a. The data points deviate from the diagonal line in general. In other
words there is no clear relation between estimated CR and actual CR. Additionally
the deviations does not appear in a structured manner, which indicates no relation
rather than systematic model error.

The distribution of the estimated CRs for the accounts are compared with the actual
distribution of CRs in Figures 4.4b, 4.5b, and 4.6b. The models do not estimate
CR to be above about 0.6 for any accounts even though there exist a number of
accounts with actual CR above that. Estimates are concentrated around the mean.

Finally, an analysis is conducted on the notion of predictor importance, see Figure
4.7. This is done for the RF classification model and the RF regression model for
the isolated classification and regression step. As the R2 is as low as it is, the results
should not be taken too seriously upon. However, the indications are that debtType,
numEDebt, and debt are more important than the other predictors.

Table 4.3: Comparison of the different combined models in the blind scenario,
through qualitative measures. The qualitative measures are an average over 30

measurements. The standard deviation is also included.

Combined Model MAE ± σ̂ R2 ± σ̂ RPV ± σ̂
LR + RF 0.172± 0.007 −0.005± 0.063 1.22± 0.16
RF + RF 0.163± 0.007 0.010± 0.077 1.21± 0.18
ANN + RF 0.168± 0.009 −0.029± 0.080 1.25± 0.23
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(b) Comparison of distributions.

Figure 4.4: Combined model consisting of LR classifier and RF regression model
applied on a test set in the blind scenario.
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Figure 4.5: Combined model consisting of RF classifier and RF regression model
applied on a test set in the blind scenario.
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Figure 4.6: Combined model consisting of ANN classifier and RF regression
model applied on a test set in the blind scenario.
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(a) Classification step. All errands.
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Figure 4.7: Estimations of the predictive capacities for the different variables for
the RF model in the blind scenario. The error is a measure of the out of bag

permuted predictor delta error which has been normalized. The predictive capacity
is calculated for the isolated classification step and the isolated regression step.
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4.1.2 Informed scenario
In this subsection, the results of applying a classification-regression model in an in-
formed scenario are presented. The variable to be estimated is CR for month 7-12.
The model performances in the informed scenario will be compared with the model
performances in the blind scenario in Section 4.1.1.

Results from classification-regression models applied to an informed scenario are
displayed in Table 4.4.

Table 4.4: Comparison of the different combined models in the informed scenario
through qualitative measures. Qualitative measures are averages over 30

measurements. The standard deviation is also presented.

Model Accuracy
class. step

R2 regress.
step ± σ

MAE full
model ± σ

R2 full
model ± σ

RPV ± σ

LR+GLM 0.728 0.142 ±
0.041

0.089 ±
0.006

0.051 ±
0.067

0.910 ±
0.157

RF+RF 0.773 0.125 ±
0.064

0.087 ±
0.005

0.048 ±
0.077

1.088 ±
0.150

In the classification step the accuracies for the two different models are 72.8% and
77.3% where RF is the one with the highest value. This is about 9% units more than
the blind scenario, see Section 4.1.1. 63.2% and 36.8% of the accounts are classified
as CR=0 and CR > 0 respectively, for both LR and RF in the informed scenario,
see Figure 4.8.

Predicted
CR=0 CR > 0

A
ct
ua

l CR=0 50.0 14.0
CR > 0 13.2 22.9

(a) Logistic regression.

Predicted
CR=0 CR > 0

A
ct
ua

l CR=0 52.0 11.5
CR > 0 11.2 25.4

(b) Random forest.

Figure 4.8: Confusion matrices for the respective classification models on a test
set for the informed scenario. Numbers are given in percentages.

The real distributions of the model classified accounts are seen in Figure 4.9. Both
the models share similar results. The majority of the accounts classified as CR=0
is in reality 0 or close to 0 with the exception of a number of accounts with actual
CR of 1 or close to 1.

Analyzing the regression step separately, GLM performs better than RF by both
having a higher value and a lower variance. The R2 is 2-6% units higher in the
informed scenario compared to the blind scenario. However, for all the models in
both scenarios the variance of the R2 is high.
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(b) Random forest classification model.

Figure 4.9: The trained classification models applied on a test set in the
informed scenario where knowledge about prior payments is available. The actual
distribution of the two different classes, CR = 0 and CR > 0, classified by the

different models are shown. The leftmost bin only contains CR=0. Optimal is to
have blue only at zero and red only at bins greater than zero.

Similarly as in Section 4.1.1.2, analysis is conducted separately on the regression
step, which means that training and testing is only performed on data with CR > 0.
The distribution of the estimated values are compared with the distribution of the
actual values for the two different models in Figure 4.10. Comparing the models
with each other in the informed scenario, GLM has a higher concentration closer to
the mean than RF. Comparing the different scenarios blind and informed, in other
words comparing the Figures 4.3 and 4.10 with each other, big similarities are seen
for the respective models. The way GLM estimates the CR in a blind scenario is
very similar to the way it estimates the CR in an informed scenario. The same is
true for RF.
For the full model, judging from the MAE RF+RF is the slightly better model with
a lower error and a lower variance. The MAE is significantly lower in the informed
scenario than in the blind scenario. Judging from the R2 LR+GLM perform slightly
better. As expected, both of the models perform better in the informed scenario.
Still, the R2 is low and the variance is high. Even though the explanatory strengths
of the models are better in the informed scenario, the portfolio valuation does not
differ much.

The performance of the combined models are further investigated by comparing
estimations of CR with actual values of CR, see Figures 4.11 and 4.12.
Estimations of CR are compared with actual values of CR on an account-wise level,
see Figures 4.11a and 4.12a. There exists some visible correlation between estima-
tions and actual values. The exceptions are the accounts with actual CR close to
1, as noted earlier. The distributions of the estimated values of CR are compared
to the actual distribution of the values of CR, see Figures 4.11b and 4.12b. They
both have an equal amount of accounts classified as 0, which is almost the exact
same as the actual distributions. A note to be made is that the distribution does
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(b) Random forest regression model.

Figure 4.10: The GLM and RF regression models applied on a test set for the
informed scenario to evaluate the regression step. The distribution of the model
estimations together with the distribution of the actual estimations are visualized

in the same plot.

not say anything about the estimations of CR on an account level, two identical dis-
tributions could have completely different estimations of CRs on an account level.
The distributions is rather a visualization of how the model estimates CR as a whole.

Looking at the predictor importance estimation, see Figure 4.13, not surprisingly
collectionRate_6 is topping for both the classification and regression step. In the
regression step the importance relative to the other variables, especially sumEDebt
and debt, is not that significant however. age and regDateQuarter are still bad
predictors which is consistent with findings in the blind scenario. collectionRate_1
is interestingly not at all a decisive variable.
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(b) Comparison of distributions.

Figure 4.11: Combined classification-regression model consisting of an LR
classification model and an GLM regression model applied on a test set for the

informed scenario.
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Figure 4.12: Combined classification-regression model consisting of an RF
classification model and an RF regression model applied on a test set for the

informed scenario.
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(a) Classification step. All errands.
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(b) Regression step. Only errands with

CR > 0

Figure 4.13: Estimations of the predictive capacities for the different variables for
the RF model in the informed scenario. The error is a measure of the out of bag

permuted predictor delta error which has been normalized. The predictive capacity
is calculated for the isolated classification step and the isolated regression step.

4.2 Markov Chain Model

The Markov section of the results are made up of four subsections. In the first
subsection, a summary of the most important results is presented. The following
subsections are considered as deep-dives. The summary is followed by results from
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using the Markov model as an analysis tool as described in method Section 3.3.2.
In the forecasting subsections the model is used as a forecasting tool applied to a
blind and an informed scenario respectively.

4.2.1 Summary of results
There are differences in debtors’ payment patterns across debt types. An invoice
debtor who did not produce any cash flow the previous month has 98.5% proba-
bility of not paying the coming month either. The corresponding figure for loans
and credit card debtors are 89.2% and 81.2% respectively. Conversely, non-paying
invoice debtors have a probability of converting to payment of 1.5%. For loans
and credit card debtors the conversion probability is 10.8% and 18.8%. The overall
probability of an account being fully repaid after 12 months is roughly 1%, and the
expected number of months with payment ranges from 0.5 for invoices to 3 and 4
for loans and credit cards.

Regarding forecasting, it is clear that the informed scenario is more successful. This
is no revolutionary result, but still speaks for the importance of information avail-
ability. The forecasting results are summarized in Table 4.5 and are visualized in
Figure 4.14. All results are produced with a chronological training proportion of
75% of available accounts and a recency bias of 75%. In the informed scenario, the
first six months of cash flow is given for the test set. See Section 3.3.1 for details.

Table 4.5: Portfolio valuation for the Markov model and the static pool method
in the scenarios blind and informed. Portfolio valuation numbers are given in

million SEK.

Debt type Actual Markov model Static pool
Port. est. RPV (±σ) Port. est. RPV

Bl
in
d Invoice 0.135 0.0426 0.315± 0.082 0.038 0.279

Loans 0.971 0.646 0.665± 0.101 0.666 0.686
Credit card 0.726 0.924 1.273± 0.079 0.935 1.288

In
fo
rm

ed Invoice 0.135 0.061 0.451± 0.060 0.061 0.450
Loans 0.971 0.625 0.644± 0.057 0.688 0.708

Credit card 0.726 0.757 1.043± 0.056 0.893 1.230

Judging from the RPV, credit card debtors behave in the most predictable way
for the given NPL portfolio. It is also for credit cards that the improvement in
the informed scenario is the greatest. However, as seen in Figure 4.14, the actual
portfolio cash flow increases dramatically in month 8 and 12 for invoices and credit
cards. Since that behaviour is not observed in the training data, it is impossible to
capture with the modelling framework at hand. Another interesting observation to
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Figure 4.14: Markov model cash flow forecast in blind and informed scenarios,
compared to portfolio progress and static pool forecast.

make is that the Markov model is on par or better than the static pool method in
every scenario.
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4.2.2 Model insights
Recall from Section 2.6 the notation

pij = P(Xn+1 = j|Xn = i), i, j ∈ {0, 1, 2}

indicating the probability of transitioning from state i to j. Also recall from Table 3.4
in Section 3.3.1 the definition of the three states, s0, s1, and s2, and the construction
of the transition matrix

P =

p00 p01 0
p10 p11 p12
0 0 1

 .
The transition probabilities pi,j are calculated by counting the states and transitions
between them for the cash flow matrix. Initially, this is done for the whole data set,
as the intention is to confirm the validity of the model, analyse the behaviour and
draw conclusions from all the accounts.

The transition matrices for the different debt types becomes:

Pinvoice =

0.985 0.015 0
0.307 0.685 0.008

0 0 1

 (4.1a)

Ploans =

0.892 0.108 0
0.246 0.747 0.007

0 0 1

 (4.1b)

Pcc =

0.812 0.188 0
0.268 0.729 0.002

0 0 1

 . (4.1c)

There are several interesting conclusions to draw from the construction and struc-
ture of the transition matrices.

First, the probabilities confirms the initial assumption of the payments being or-
dered. The assumption is that a debtor is more likely to remain in the same
state. Expressed in a more mathematical way, pii > pji, ∀i, j where i 6= j. Had
payments been randomly distributed, the following would have been valid, pii =
pji, ∀i, j where i 6= j, with exceptions of small perturbations because of stochas-
ticity. Observing (4.1) we can tell this is not the case. Note: Because p13 = 0
and p23 ≥ 0 by design, the condition for complete random distribution of payments
cannot be fully met in general. However, because p23 << 1 this does not have to
be accounted for when investigating the question of randomness of payments. The
bottom line is that the assumption that payments are ordered, more specifically that
it is more likely to remain in a state than to change state, are supported by the data.

As noted before the the transition matrices given in (4.1) are all absorbing Markov
chains, see Definitions 5 and 6 in Section 2.6.
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The expected number of visits to the transient states s0 and s1, given the initial
distribution p0 is given by the entries in vector v12, for formula see (3.4) in Section
3.3.1.

vinvoice
12 = pinvoice

0 Ninvoice
12 =

[
0.997 0.0034

] [11.574 0.415
8.366 3.408

]
=
[
11.56 0.422

]
vloan

12 = ploan
0 Nloan

12 =
[
0.969 0.031

] [9.173 2.746
6.277 5.473

]
=
[
9.09 2.83

]
vcc

12 = pcc
0 Ncc

12 =
[
0.873 0.127

] [7.945 4.015
5.734 6.180

]
=
[
7.66 4.29

]
The expected proportion of accounts to be fully paid during the first 12 months,
A12, is given by

Ainvoice
12 = pinvoice

0 Binvoice
12 =

[
0.9966 0.0034

] [0.0032
0.0265

]
= 0.33 %

Aloan
12 = ploan

0 Bloan
12 =

[
0.969 0.031

] [0.0183
0.0365

]
= 1.89 %

Acc
12 = pcc

0 Bcc
12 =

[
0.873 0.127

] [0.0088
0.0135

]
= 0.94 %.

For formula see (3.5) in Section 3.3.1.

The above metrics, v12 and A12, are compared to the metrics from the actual data
set. They are easily found by just counting the average number of occurrences of
each state to find v12 or the proportion of fully paid accounts to find A12. The
estimated metrics based on the transition matrices in the Markov model and the
actual metrics found from the empirical data set are displayed in Table 4.6.

Table 4.6: Metrics from the system expressed as a Markov chain transition
matrix compared to the metrics of the actual empirical data set.

Debt type v12: # visits to s0 or s1 A12
Analysis of trans.
matrix

loan s0: 9.085, s1: 2.830 1.89
credit card s0: 7.664, s1: 4.290 0.94

Actual metrics
from data

loan s0: 9.186, s1: 2.793 1.65
credit card s0: 7.782, s1: 4.209 0.81
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Table 4.7: Empirical transition probabilities for three debt types. Numbers
annotated with a dagger (†) are not results, but consequences of the state design.

See method Section 3.3.1 for details.

Transition Invoice Loan Credit card
p00 0.9849 0.8924 0.8120
p01 0.0151 0.1076 0.1880
p02 0† 0† 0†

p10 0.3074 0.2459 0.2684
p11 0.6848 0.7474 0.7294
p12 0.0078 0.0067 0.0022
p20 0† 0† 0†
p21 0† 0† 0†
p22 1† 1† 1†

4.2.3 Forecasting - Blind scenario
The interpretation of forecasting in the blind scenario for the Markov model is
straightforward: compute a transition matrix based on the training set and extrap-
olate to the test set. This is not very different from the static pool method, and
hence the results are similar. Empirical transition probabilities for the training set
for the different debt types is found in appendix A.5. Note how transitions from
state s0 to itself or s1 differ substantially, while the transitions from s1 to itself or s0
are similar for the different debt types. This indicates that once a debtor enters a
repayment plan, they are equally likely to stay in state s1 across debt types. On the
other hand, credit card debtors are almost 20 times more likely than invoice debtors
to enter a structured payment plan. For loans, the likelihood is roughly half of the
figure for credit cards. This is in line with what is to be expected considering the
differences in collection rate distributions, see Figure 3.3.

Figures 4.15, 4.16, and 4.17 show simulation results and prediction performance for
each debt type in the NPL portfolio. Predictions are fairly stable, as indicated by
the low sample standard deviation. The simulations do a good job capturing the
overall behaviour in the training set, which is seen by the similarities with the static
pool estimate. However, the test set behaves somewhat differently and the blind
predictions are not accurate in this case. The RPV and corresponding uncertainties
are shown in Table 4.5.
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(b) Cash flow simulations.

Figure 4.15: Simulation of 500 portfolios of invoices in the blind scenario.
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(b) Cash flow simulations.

Figure 4.16: Simulation of 500 portfolios of loans in the blind scenario.
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(b) Cash flow simulations.

Figure 4.17: Simulation of 500 portfolios of credit cards in the blind scenario.
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4.2.4 Forecasting - Informed scenario
From a portfolio point of view, the Markov model applied to the informed scenario
performs better for invoice and credit card debts. For invoices the forecast is still
very off compared to the actual value. This is simply due to the training set behav-
ing differently from the test set, and that the rapid cash flow increase during month
number nine is unseen in training. The improvement in the informed scenario is
small but noticeable. For credit card debts, the already good valuation is improved
upon. For loans, the informed scenario produces a slightly worse valuation than the
blind case, see Table 4.5.

Compared to the static pool method, the informed Markov model performs better
for invoice and credit card debts. For loans the static pool performs better, see
Table 4.5.
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(b) Cash flow simulations.

Figure 4.18: Simulation of 500 portfolios of invoices in the informed scenario.
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(b) Cash flow simulations.

Figure 4.19: Simulation of 500 portfolios of loans in the informed scenario.
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(b) Cash flow simulations.

Figure 4.20: Simulation of 500 portfolios of credit cards in the blind scenario.
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5
Discussion

The discussion is initiated by an analysis of the results of the classification and
regression model followed up by an analysis of the results of the Markov chain
model. In the literature there is a general consensus that modelling CR is difficult.
One of the reasons for this is challenges connected with data availability which affect
quantity and quality. Therefore this subject is discussed further. Finally, a section
is added that deals with possible extension of the Markov model.

5.1 Model Performance Assessment
In this section the performance of the classification-regression model is discussed,
based on the results in Section 4.1, and the performance of the Markov model is
discussed, based on the results in Section 4.2.

5.1.1 Classification-regression model
The combined classification-regression model captures some interesting features, but
does not perform well-enough to be useful in practice. Generally, and as expected,
the model performs better when applied to the informed scenario. The scenarios are
initially discussed separately. For the blind scenario, the classification step and re-
gression step are treated separately, before a concluding discussion on the combined
model viability ends the section.

The respective classification models LR and RF seem to perform equally well based
on the results in Table 4.1 and Figure 4.2. The accuracies are low as the models only
succeed to predict the right class in about 69% of the cases. However, one needs
to investigate the classified elements in order to do a full evaluation of the model
performance. More information of the classified data points can be obtained from
Figure 4.2, which shows the respective distribution of the different classes classified
by the model. A fair random classifier would produce two almost identical distribu-
tions and achieve a classification accuracy of 50%. Figure 4.2 display a discrepancy,
for all models, in actual collection rate distribution of accounts classified as CR = 0
and CR > 0. The CR = 0 class distribution has more mass at collection rate zero
than the class CR > 0. Additionally, the class mean is indeed lower for class CR = 0,
even though almost 40% of accounts with actual collection rate greater than zero
are classified as CR = 0.
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When it comes to the regression step, RF performs best based on the qualitative
measures in Table 4.2. The GLM is not too far behind with a slightly higher MAE
and an R2 about half as big. The ANN regression model has an R2 close to zero
with comparatively high estimation error. There are several remarks to make about
these results. Firstly, observations based on Figure 4.3 show that all the models
tend to estimate the CR close to the actual mean. Secondly, even though there are
some differences in R2 between models, the differences are not as apparent in MAE.
CR is estimated on a bounded interval [0,1], which means that the MAE is bounded
too. Hence, bad model performance is not reflected well in the MAE. Thirdly, it is
notable that GLM produces the most accurate portfolio valuation, with a 7% over-
estimation, while RF and ANN both produce an overestimation of 12% despite R2

differences. Even though the R2 is low the portfolio valuation is still decent. This is
probably due to the law of large numbers which comes into play when account col-
lections are summed in portfolio valuation. Over- and underestimations on account
level due to wrong classification or bad regression results cancel out in summation,
producing a prediction close to the actual portfolio value. This effect is stronger if
the predicted collection rates are concentrated around the true mean, which is the
case for the regression models as seen in Figures 4.3.

The three different combined models have MAE of about 0.160-0.171 and an R2

close to zero with high variance, as presented in Table 4.3. The high variance in R2

implies that the split of training and test set have a big effect. The distributions
of estimated CRs compared to the distribution of real CRs can be seen in Figures
4.4b, 4.5b, and 4.6b. There is little difference between the different combined mod-
els. The performances are equally bad.

One thing to notice about the R2 is significantly higher for the regression step than
for the combined model, especially for the RF model. One reason for this could be
difference in the scenario, the combined model models all the errands but for the
isolated regression step only errands where CR > 0 are included.

When the classification-regression model is applied to an informed scenario, the
performance is clearly better. Observing the classification and regression steps by
themselves, the improvement is obvious in both cases.

For the classification step the improvement in accuracy is 9% units. Additionally,
in contrast to the blind scenario where the majority of the accounts are classified as
CR > 0, in the informed scenario the majority of the errands are classified as CR=0.

In the regression step the performance is 2-6 % units better in the informed scenario.
Similarly between the two scenarios, the models estimate the CR close to the mean.

For the combined model, the R2 is 5% units higher when applied to the informed
scenario with a considerable lower MAE. An important thing to notice is that, be-
cause of only looking at half a year instead of a full year, the actual collection rates
in the informed scenario are lower by nature. If the collections in general are lower,
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they tend to be more grouped together. Estimating CR in this area results auto-
matically in lower errors.

Looking at the predictor importance estimates, it is more interesting to focus on the
predictor importance estimates of the informed model where there actually exist
some degree of explanation, see Figure 4.13. The variable collectionRate_6 is the
one with the most impact. Interestingly between the classification step and regres-
sion step, the importance relative to the other variables are different. A considerable
difference between the two steps is that in the classification step, all the errands are
considered while in the regression step, only errands with CR > 0 is considered.
Earlier payment behaviour tells more about whether there will be any collection at
all rather than the extent of the collection. Whether there exist collection the first
month or not seem to have low impact in both the classification and regression step.
It could be that in the few cases, more precisely 8.8%, where there exist a payment
the first month, it can tell quite a bit, but if it does not exist a payment the first
month it does not convey any information.

To summarize, the type of scenario(blind or informed) have a far bigger impact on
the predictive power than the actual models used(LR, RF, ANN, or GLM etc.).
With more relevant information, a better estimate of CR can be made.

5.1.2 Markov chain model
Judging from the results in Section 4.2.2 the idea of representing the NPL portfolio
as a collection of Markov chains is a fair approximation. The Markov representation
seems to give a slightly more optimistic view on the portfolio where the expected
number of visits to state s1 and the expected proportion to be fully paid A12 are
slightly overestimated compared to the actual case, see Table 4.6.

One of the main purposes for the Markov chain model is portfolio valuation. The
model captures the big features of the portfolio and gives a good indication of av-
erage behaviour. The result of the forecast is similar to the one of the static pool
method, which estimates average behaviour for each month. One important thing
to note is that the division of train and test set can give rise to differences in the
respective portfolios that are very difficult to predict. An example is the forecast of
loans in the blind scenario, see Figure 4.16. The forecast seem to do well up until
month 11, but because of some unusually large payments in the actual case, the
forecast falls short of the actual value. These notions are difficult to predict, also
the Markov chain model is not designed to capture these. In this setup, the results
are very dependent on the split of train and test set. This became most apparent
in the modelling of invoices. The overall collection is very low because only a few
errands repay their debts. The total collection then becomes very dependent on
these payments. A few big payments in the last months have a huge impact on the
total collection which makes the forecasts to be quite off, see Figure 4.18.

The forecasting results produced by the Markov chain model are not groundbreak-
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ing. In fact, they are similar to the results produced by the conventionally used
method, static pool. However, there are other aspects that are in favour of the
Markov chain model, the easy adaptation to new data, and the possibility of model
extensions. Having a portfolio under investigation, it is easy to update the forecast
of it, as new information about payments are available. It is easy to perform new
simulations with current states on the start vector. The informed scenario is an
example of this. Further adaptions concern the payment distribution from which
the payments are drawn. The potential extensions of the model are discussed in a
later section.

Another strength of the Markov chain model is, as we see it, the idea that the
focus is on number of paying accounts, and not on total amount collected. This is
contrary to the static pool method which only focus on the total amount collected
on a portfolio level. Let us investigate an example. Suppose there is a situation were
there are a few accounts where the collection is very high but where the rest of the
accounts have a very low or no collection. By only looking at total amount collected,
it is easy to trick oneself to believe that the performance is pretty good on a portfolio
level. But, as the well performing accounts are paid off in full and as the rest of
the accounts are performing bad, the portfolio will quickly stop generating cash.
As the Markov chain model takes into consideration number of paying accounts the
model can expect a lower collection when the well performing accounts are paid off.
Had the situation been the contrary, with many accounts doing small payments in a
structured manner, the Markov model could detect this notion and expect a steady
collection for the upcoming time.

5.2 Data Availability and Quality
It is interesting to compare our results with results obtained in other studies with
similar settings. This comparison applies to the results produced by the classification-
regression model.

Belotti et al. receives an R2 of about 14% when modelling CR with the RF regres-
sion model [19]. Kriebel & Yam obtains an R2 of 9-14%, for different data sets, in
similar settings [13]. Thomas et al. obtains an R2 of 15% for their model applied
in a similar setting [15]. One of the most probable explanations of our low model
performances are aspects concerning the quality and quantity of data. As noted in
Section 2.1, data availability is a big factor in model performance.

For Belotti et al. the available data consisted of socio-demographic and loan file data
as well as information from the bank recovery history. In their model, the four most
important attributes where the original principal amount, total principal of all debts
of the person, credit limit and debt interest. Original principal amount alone was as
important as the other three combined [19]. Something to note is that the original
principal amount differs from the debt attribute in our data set. Original principal
is the original amount of the debt given by the bank, while debt is the size of the
remaining debt when the errand reaches the DCA. In the study done by Kriebel
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and Yam, two of the variables with highest importance are the age of the account
and the existence of phone contact details to the debtor. Further, Kriebel and Yam,
introduces credit bureau score as a variable. This results in a significant increase in
R2 [13]. The data set at our disposal does not contain any of these attributes. Had
we had access to more of the stated important variables, our belief is that the model
performance for the classification-regression model had been improved. However,
we cannot exclude that there are approaches different from ours that would do a
better job in capturing features in the available data set.

Data- and information gathering, organisation and processing is an issue in the
whole credit industry [12] and there are no industry-wide reporting standards. Ad-
ditionally, in general, the information sharing between credit businesses and DCAs
is limited. For example, DCAs can have poor insight in the banks or business’s own
in-house collection. On the other hand, banks or businesses have limited knowledge
concerning the working processes of the DCAs. When performing data analysis, this
becomes an issue. This idea is backed up by an example from the data set available
to us. See Section 3.1 for a detailed explanation of the data set. The data set con-
tains old errands as well as newly registered ones. However, the errands that were
registered before the ”window of observation” are conditioned on existence of cash
flow. This means that older errands that have been closed or older errands with no
cash flow during the observation time are not included in the portfolio. This implicit
a heavy bias on the old errands in the portfolio. This resulted in the decision of not
including old errands in the analysis.

As these data- and information issues exist, it is interesting to model CR based on
what data is available. Belotti et al. sees an increase in predictive capacity, about
5% units rise in R2, by including variables referring to a borrowers past repayments
and/or the bank recovery process, i.e. in-house collection [19]. Thomas et al. ob-
tains an R2 of 15% when applying a model to a 3rd party data set and an R2 of
23% when applying a model to in-house data, the increase is 8% units [15]. Our
attempt to model information gain is through the informed scenario. The introduc-
tion of information about payments in an earlier time gave rise to an increase in R2

with 5%. The introduction of this type of additional information could somewhat be
compared to information gain through acquisition of information about the in-house
process.

Being in the position of a DCA, if no information is obtained about the in-house
process, the initial information is often sparse [14]. Kriebel and Yam then investi-
gates what type of information could be gathered by a DCA and how this effects
predictive performance. They see increases in R2 of 9-31% units, for different data
sets, by including DCA gathered information. This is a significant increase which
supports their statement about the importance of the DCA information gathering
process.
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5.2.1 Limitations imposed by time-framing in CR modelling
One of the simplifications we have undertaken is to only model the CR for the first
12 months. Had we not been limited by the data and instead looking to model the
CR for a longer time span, for example 24 or 36 months or up to as much as 10 years,
there may have been a clearer relation between the attributes and CR. Bellotti et
al. models the CR by using a data set where the whole lifetime of an account, from
the granting of debt until closure, is available [16,19]. Kriebel and Yam models the
CR over a four year period [14]. Thomas et al. models recovery rate, or CR as we
call it, for 24 and 36 months [15]. All three studies show better model performances.

In the data, there are interesting patterns relevant to the discussion about the time
frames limiting effect on modelling CR. Many of the accounts that in the end repays
most of their debts, do not start their structured repayments until several months
after getting registered at the DCA. For illustration, see appendix A.6. The reason
for this could be the limitation of the DCA, it takes time to agree on payment
plans and some errands are not contacted until several months after the errand has
been registered. This idea further strengthens the limitation a 12 month time frame
imposes.

5.3 Markov Model Extensions
There are plenty of interesting extension options to the basic Markov model pre-
sented in the report. Detailing state definitions, incorporating account attributes,
parameterization of payment distributions and trying Bayesian updating techniques
are all viable options. Suggested model extensions are, however, not possible to
test in the context of the thesis project, due to data limitations. Although they
are not tested, the ideas are considered valuable for the development of Dignisia’s
system and are hence discussed further in the coming subsections. Additionally,
the extensions to the Markov modelling framework constructively contribute to the
discussion on modeling NPLs in the literature by offering a tool for flexible portfolio
valuation and, in the long run, better understanding loan repayment drivers.

5.3.1 Redefining debtor states
The debtor states in the report are chosen in a simplistic manner as presented in
Section 3.3.1. Debtors are either in a paying or non-paying state. It is easy to
construct more complex state definitions, which might prove more useful in specific
modelling applications. For instance, it might be interesting to distinguish struc-
tured payments from single payments. The hypothesis to test would be that there is
a difference in expected collection from accounts where there are several consecutive
payments and accounts with only one payment. If there is a difference, it would be
interesting to analyze payment behaviours even further. A suggestion of such an
analysis is presented in Appendix A.7. Note that the more advanced state definition
is only one of many possible extensions. The best state definition is probably data
and context dependent.
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Another note to make on state definitions is geographical differences and local debt
collection systems. If the dataset reaches over several geographies, it might be a
good idea to consider separate state definitions for different locations.

5.3.2 Introduce data dependencies in the transition matrix
The results obtained in the report are produced based on empirical transition matri-
ces for each debt type, but there are no further data dependencies. This constitutes
a major opportunity of improvement. A natural problem formulation is to extend
the concept of the transition matrix to be a function of the account data1

P = P(x) =


p00(x) p01(x) . . . p0n(x)
p10(x) p11(x) . . . p1n(x)

... ... . . . ...
pn0(x) pn1(x) . . . pnn(x)

 .

The meaning of the above is that the constant transition probabilities presented
in Definition 2 are extended to be functions of debtor attributes. A natural first
attempt would be to model each transition probability as a linear model of the data

pij = pij(x) = w
(ij)
0 + w

(ij)
1 x1 + · · ·+ w(ij)

n xn = w(ij)x

while reassuring pij ∈ [0, 1] in a convenient way. For instance using a logistic regres-
sion approach would guarantee parameters taking values on the unit interval.

There are arguments to be made that this regression would fail in the application
in this thesis project. The regression modelling of collection rates did not succeed,
which indicates that it is hard to find separation in the data. However, it is not
clear that attributes with no or low correlation with collection rates does not have
an impact on transition probabilities. The likelihood of staying or leaving a state
might be a less difficult problem.

5.3.3 Parameterization of payment distributions
When using the Markov model as a forecasting method, there is an inherent sub-
problem regarding modelling of amount repayed for each debtor in state s1. One
train of thought is to try parameterization, instead of using the empirical payment
distribution in the training set. There are several reasons to try parameterization.
Firstly, it is interesting to compare parameters between different portfolios to grasp
whether or not there are differences in payment structure. Fitting a distribution
and comparing parameters is an easy method of comparison and could be useful
for analysts. Secondly, parameters are easy to update as more information becomes
available. For instance, a portfolio analyst who receives new cash flow data every
month can update model parameters with a specific weight on. If necessary, the ex-
pectation maximization algorithm [33] can be used to update parameter estimates,

1Notation is borrowed from Chapter 2.
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and a Bayesian modelling framework might prove successful. A global prior pay-
ment distribution can be obtained by studying payments across different portfolios.
From what the authors have gathered, the Gamma and Weibull distributions are
promising candidates. The probability densities have two parameters respectively
and are given by

fGamma(z;α, β) = βα

Γ(α)z
α−1e−βz

fWeibull(z;λ, k) =
 k
λ

(
z
λ

)k−1
e−(z/λ)k

, z ≥ 0
0, z < 0

.

5.3.4 Suggested usage of the Markov model
Even if the predictive performance of the Markov model has not proved to be much
stronger than the static pool method, it still offers plenty of improvements for port-
folio analysts.

Firstly, the Markov model introduces a number of useful metrics. The transition
probabilities can be considered as debt collection performance metrics and could be
interesting to monitor over time and across different portfolios. For instance, the
probability of starting a payment, p10, can be considered a measure of the DCA’s
ability to convert non-paying debtors. The payment retention p11, i.e. probability of
continued payment, indicates a DCA’s ability to follow through on agreed payment
plans with debtors. As a credit institution, these metrics can be used to compare
how different DCA’s perform on similar portfolios. In the long run, credit institu-
tions could see higher collection by efficient hiring of the best DCA for the specific
portfolio at hand.

Secondly, the Markov model can work as a strategic decision-making tool. By con-
structing artificial transition matrices or payment distributions, managers can un-
derstand how operational changes could affect the portfolio valuation. For instance,
a manager might wonder how the portfolio valuation would change if the DCA in-
creased their conversion of non-paying debtors, i.e. p01, by 10%. This increase in
portfolio value could then be compared to a situation where the average payment
amount is 10% higher than in the original portfolio. Simulation and analysis of the
two artificial portfolios could help management find the best strategy, and hence
optimize investments with respect to expected increase in portfolio value.
Finally, the Markov model could be used in operational excellence purposes at
DCA’s. Trying new collection strategies at a small number of debtors and using
the Markov framework to produce portfolio valuations could be an efficient way of
evaluating and comparing debt collection processes.
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Conclusion

This master’s thesis aims to investigate the possibility of building a well-performing
model to forecast cash flow from a given portfolio of non-performing loans. The
dataset at hand consists of defaulted credits, with socio-demographic as well as
debt-specific attributes and information about monthly payments for each account.
Two different methods are used: a combined classification-regression model which
aims to find a relation between the attributes and collection rate and a Markov
chain model which aims to estimate total cash flow on a portfolio level based on
payment behavioural characteristics. The two models are also tested in two differ-
ent scenarios, blind and informed, which aims to investigate improvement in model
performances with knowledge of prior payment history.

With an R2 of close to zero, the classification-regression model does not succeed in
finding a relation between attributes and collection rate in the blind scenario. This
could be compared to results in other studies in similar settings where R2 values
of 10-15 % are obtained [13, 15, 16, 19]. Even though the degree of explanation is
low, the portfolio valuation is not completely off. This probably has to do with the
law of large numbers where under- and over-estimations cancel out on average. The
area of NPL forecasting is heavily influenced by the way information and data is
managed in the credit industry. It seems that it does not exist standardized ways of
dealing with information which have the effect that different institutions sit on dif-
ferent data. This influence the predictive ability of models estimating CR. Including
information of the in-house process have shown to improve predictions with 5-8%
units [15, 19]. With the intention of investigating information gain through knowl-
edge of in-house collection, a scenario was set up where collection rate for month
7-12 is estimated based on the initially available attributes as well as payment be-
haviour for month 1-6. Applying the model to this scenario results in an increase of
5% units for the R2 value.

The Markov chain model is based on the assumption that payments do not occur
at random, but rather follow some sort of structure. The conclusion is that it is
a reasonable way of describing the system. The model is used both as a tool to
analyze payment behaviour on a portfolio level and as a tool to produce portfolio
valuations. The forecasting performance is equal to the more conventionally used
static pool method. It captures the general behaviour of the portfolio but fails to
model the more stochastic elements. The advantage of the Markov chain model is
the adaptation to new data and the possibility of some interesting model extensions
that are further discussed.
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6. Conclusion

The conclusion to be drawn is that we did not succeed in building a well-performing
forecast model to estimate repayment in an NPL portfolio for the given data set.
The perception is that the biggest reason for this lies in the quantity and quality of
data rather than in model design. There is a general consensus in the literature that
information availability is a deciding factor when modelling CR of NPLs [13,14,19].

With that said, a new approach to model structured payments has been developed
in the form of the Markov chain model. There is potential in further extending it
and continue using it as a forecasting model as well as a strategic decision-making
support tool.
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A
Appendix

A.1 Histograms of Variables in the Dataset
To complement to the information of the dataset given in Section 3.1, more specifi-
cally to give more information about the value distributions of the variables in Table
3.1.
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Figure A.1: Distribution of variables in the data set. For more information, see
Tables 3.1 and 3.3 in Section 3.1.
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Figure A.2: Distribution of variables in the data set. For more information, see
Tables 3.1 and 3.3 in Section 3.1.
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sumEDebt for the accounts where the sum
of E-debts are greater than zero. 27%
does not have an E-debt, i.e. it is zero.
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Figure A.3: Distribution of variables in the data set. For more information, see
Tables 3.1 and 3.3 in Section 3.1.
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Figure A.4: Distribution of the informed variables in the data set. For more
information, see Tables 3.2 and 3.3 in Section 3.1.
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A.2 Implementation of Classification- and Regres-
sion Models (reference packages)

A.2.1 Classification models
The classification models have been implemented according to the following:

• Logistic regression: Function generated using the machine learning application
in Matlab.

• Random forest: TreeBagger-function.
• Artificial neural network: Function generated using the machine learning ap-

plication in Matlab.

A.2.2 Regression models
The regression models have been implemented according to the following:

• Generalized linear model: fitglm.
• Random forest: TreeBagger.
• Artificial neural network: feedforwardnet and train.

A.3 Estimation of Predictor Importance
For the RF classification and regression model the variable importance is estimated
through the out of bag permuted predicted delta error. An explanation to this
follows: During the training phase of the model, the model is trained on a set of
data and validated on another set of the data. To estimate a variables effect on
the dependent variable, i.e. its importance, the total error of a model created with
the specific variable removed is compared with the total error of a model created
with the complete set of variables. The difference in error gives an indication of the
impact that specific variable has. This is done for all the variables in the data set.
To more easily compare the variables the measures could be normalized and sorted
in descending order and represented in a bar chart, which is what we choose to do.

A.4 Distributions for Drawing Payments in the
Markov Model

The distribution from which payments are drawn is a previously known distribution
of payments from NPL portfolios of similar debt type. One thing to note is that no
consideration is taken to the potential difference in debt size of the errands between
the portfolio on which the forecast is intended and the portfolio from which the
payment distribution is based upon. This is a simplification that has been made.
This section aims to motivate this simplification.

The assumption is that average payment size does not scale with debt size. To
investigate this matter, payment size and average payment size per errand are looked

IV



A. Appendix

closer upon with respect to debt size. Payment size is the size of a monthly payment
for a specific account. Average payment size per errand is the average taken over
all monthly payments, conditional that the payment is greater than 0, for a specific
account. Payment size and average payment size are plotted against the account
specific debt size, see Figure A.5. All available debt types, invoice, loans, and credit
card debts, are plotted in the same plot and no distinction is made. To more easily
analyse the relation, the graphs are zoomed in by setting appropriate axis limits,
see Figure A.6. There is no clear relation between payment size and debt size. A
bigger debt does not mean that a debtor is able to repay in a bigger extent. One has
to remember that we are talking about the ability to pay of people in economically
pressured situations. It is reasonable to believe that these people does not have
more than a couple of thousand available for repayment each month.
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(a) Payment size plotted against debt
size.
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(b) Average payment size for an errand
plotted against debt size.

Figure A.5: Scatter plot of debt size and payment size. One outlier at
(x, y) = [243 · 103, 240 · 103] is omitted in both figures due to readability reasons.
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(a) Payment size plotted against debt
size. A zoomed in view of Figure A.5a.
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(b) Average payment size for an errand
plotted against debt size. A zoomed in

view of Figure A.5b.

Figure A.6: Zoomed in view of Figure A.5.

A.5 Markov Chain Model Applied to a Blind Sce-
nario

The transition matrices for each debt type is constructed based on the training set.
For the different debt types the matrices are:

Pinvoice
train =

0.989 0.011 0
0.250 0.743 0.007

0 0 1.000



Ploans
train =

0.894 0.106 0
0.251 0.743 0.006

0 0 1.000



Pcc
train =

0.789 0.211 0
0.274 0.726 0.001

0 0 1.000

 .

A.6 Collections on a Portfolio Level Over Time
A simple analysis conducted on total collection per month for a portfolio, shows a
steady increase in collection per month, see Figure A.7. The reason for this is either
an increase in payment amount on an account level, or that more accounts enter in
structured payment. By looking at the total number of payments per month for a
portfolio, see Figure A.8, the matter is decided upon, the reason is more accounts
doing payments.
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Figure A.7: Total amount collected per month on an portfolio level for the
different debt types, invoices, loans, and credit card debts.
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Figure A.8: Number of payments per month on a portfolio level for the different
debt types, invoices, loans, and credit card debts.

A.7 Markov Model Potential Extension

The following is a possible extension on the Markov chain model. It divides the
paying state in two where the distinction is done based on the characteristic of the
payment. It uses the following definition of states:

• State 0. This state indicates that there is no cash flow from a given account
at a particular month.

• State 1. A debtor is in a structured payment. This is defined as having at
least two payments in a three month period.

• State 2. Single payment, i.e., all payments that does not fulfill conditions of
being State 1.

• State 3. Debt fully paid.
To highlight the difference between the advanced and simple state definitions, the
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same sample cash flow matrix from Section 3.3.1 is reused.
0 0 0 0 0 0
0 0 3500 0 0 0
0 0 1000 1000 1000 1000
0 0 1000 0 2000 1000

500 500 517 0 0 0

→


0 0 0 0 0 0
0 0 2 0 0 0
0 0 1 1 1 1
0 0 1 1 1 1
1 1 1 3 3 3

 (A.1)

The fourth month in row four is still considered a structured payment state, since
the month of no payment is encapsulated by two paying months. The payment in
row two is considered a single payment.

S0
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S2

S3p00

p01

p02

p13

p11

p10

p23

p20

p33 = 1

Figure A.9: Markov model with possible transitions and corresponding
probabilities illustrated
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