
Machine Learning Assisted
Quantum Error Correction Using
Scalable Neural Network Decoders
Decoding Surface Code Syndromes with Graph and
Convolutional Neural Networks

Master’s thesis in Physics

PONTUS HAVSTRÖM
OLIVIA HEUTS

DEPARTMENT OF PHYSICS

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se




Master’s thesis 2023

Machine Learning Assisted
Quantum Error Correction

Using Scalable Neural Network Decoders

Decoding Surface Code Syndromes
with Graph and Convolutional Neural Networks

PONTUS HAVSTRÖM
OLIVIA HEUTS

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2023



Machine Learning Assisted Quantum Error Correction Using Scalable Neural Net-
work Decoders
Decoding Surface Code Syndromes with Graph and Convolutional Neural Networks
PONTUS HAVSTRÖM
OLIVIA HEUTS

© PONTUS HAVSTRÖM AND OLIVIA HEUTS, 2023.

Supervisor and Examiner: Mats Granath

Master’s Thesis 2023
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of a syndrome on the rotated surface code with code distance
d = 9, and a graph representation of the syndrome.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2023

iv



Machine Learning Assisted Quantum Error Correction Using Scalable Neural Net-
work Decoders
Decoding Surface Code Syndromes with Graph and Convolutional Neural Networks
Pontus Havström & Olivia Heuts
Department of Physics
Chalmers University of Technology

Abstract
A necessary condition for fault-tolerant quantum computers is the implementation
of quantum error correction, as the sensitive nature of quantum technology causes
unavoidable errors on qubits. Topological stabilizer codes, such as the surface code
and its variations, are promising candidates for near term implementations of quan-
tum error correcting codes. In surface codes, multiple physical qubits are encoded
to represent a single logical qubit with a higher tolerance for errors than the indi-
vidual physical qubits. Errors on data qubits cannot be measured directly, and have
to be corrected based on incomplete observations of the system from ancilla qubit
measurement syndromes. Classical algorithms called decoders are used to determine
correction operators based on the syndromes, which is a non-trivial and computa-
tionally expensive task. In practice, the error decoding must be fast, and as such it
is of interest to develop decoders that rapidly determine correction operations while
still remaining sufficiently accurate.

Decoders based on neural networks have been shown to yield high decoding accuracy
for small distance surface codes, while also having fast decoding time once trained.
Many such decoders are however not necessarily scalable and have been designed
for a specific code size. In this thesis, we develop two types of neural network
based decoders using the deep learning architectures Graph Neural Networks (GNN)
and Convolutional Neural Networks (CNN), both of which in principle allow for
decoding arbitrarily large codes. We apply the decoders to the rotated surface code
under depolarizing noise with perfect syndrome measurements, and evaluate their
performance based on their accuracy, computational speed and scalability to large
code distances. We show that the the decoders perform on par with the commonly
used Minimum Weight Perfect Matching (MWPM) decoder at small codes and low
physical error rates, with the CNN decoder outperforming the MWPM decoder for
code distance d = 7. We also find that using a sparse graph representation of
syndromes yields a favorable computational complexity for the GNN decoder on
large-distance codes.

Keywords: quantum computing, quantum error correction, topological stabilizer
codes, surface codes, neural network decoders, convolutional neural networks, graph
neural networks.

v





Acknowledgements

We would like to extend our deepest gratitude towards our supervisor Mats Granath
who introduced us to this project and supported us all the way to our goal, gladly
engaging in discussion and answering questions arising on the way.

We also thank Karl Hammar for offering assistance in running his existing decoder
which we utilized in this project.

Furthermore, computations were facilitated by resources provided by the Swedish
National Infrastructure for Computing (SNIC) at Chalmers Centre for Computa-
tional Science and Engineering (C3SE).

Finally, we are eternally grateful for our families and friends who have shown interest
in our work and offered invaluable support and encouragement along the way.

Pontus Havström & Olivia Heuts, Gothenburg, November 2022

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Thesis Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Quantum Computing 5
2.1 Quantum Bits and Pauli Operators . . . . . . . . . . . . . . . . . . . 5
2.2 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Logical Operators and Code Distance . . . . . . . . . . . . . . 8
2.2.3 Ancilla Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Surface Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Machine Learning with Artificial Neural Networks 13
3.1 Artificial Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Backpropagation and Gradient Descent . . . . . . . . . . . . . . . . . 14
3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 15
3.4 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Graph Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 GNNs for Prediction Tasks . . . . . . . . . . . . . . . . . . . . 19

4 Methods 21
4.1 Decoding the Surface Code with Neural Networks . . . . . . . . . . . 21

4.1.1 Specific Representation of Equivalence Classes . . . . . . . . . 22
4.1.2 Generating Training Data . . . . . . . . . . . . . . . . . . . . 22

4.1.2.1 Reference Decoders . . . . . . . . . . . . . . . . . . . 22
4.2 Convolutional Neural Network Decoder . . . . . . . . . . . . . . . . . 24

4.2.1 Matrix Representation of Syndromes . . . . . . . . . . . . . . 24
4.2.2 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Graph Neural Network Decoder . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Graph Representation of Syndromes . . . . . . . . . . . . . . 27
4.3.2 GNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Comparison of Alternative Graph Representations . . . . . . . 30

ix



Contents

5 Results and Discussion 33
5.1 Convolutional Neural Network Decoder . . . . . . . . . . . . . . . . . 34

5.1.1 Performance and Accuracy . . . . . . . . . . . . . . . . . . . . 34
5.1.2 Performance on Larger Code Distance . . . . . . . . . . . . . 36

5.2 Graph Neural Network Decoder . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Decoding Performance . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Decoding Time Complexity of the Trained Model . . . . . . . 41

6 Conclusions and Outlook 45
6.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Training at Larger Code Distances and Higher Error Rates . . . . . . 45
6.3 Matrix Representations of Syndromes . . . . . . . . . . . . . . . . . . 46
6.4 Noise Models and Imperfect Syndrome Measurements . . . . . . . . . 46
6.5 Neural Network Based Decoders Hereafter . . . . . . . . . . . . . . . 47

Bibliography 49

x



List of Figures

2.1 Rotated surface codes without errors and with errors. Blue dots in
orange fields indicate an X-ancilla signaling about a neighboring Z-
error, red dots in white fields indicate a Z-ancilla reacting to a neigh-
boring X-error. A blue or red dot between squares mean a Z-error
respectively X-error on that qubit, a purple dot represents a Y-error. 11

3.1 Drawn model of an artificial neuron . . . . . . . . . . . . . . . . . . . 14
3.2 A 2D convolutional operation with a square filter. A filter of size f is

applied to an area centered on xi resulting in a matrix element in the
feature map. The arrows in the input array represent the movement
of the center of the filter. . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Syndrome from a code of distance d=7 and error probability p=0.11
represented as a so called syndrome matrix. . . . . . . . . . . . . . . 25

4.2 Fully convolutional part of the CNN. Not to scale. . . . . . . . . . . 26
4.3 Figure representing the number of layers and connectivity of the fully

connected part of the CNN as well as the number of output nodes.
The number of nodes pictured in the other layers is not accurate but
was scaled down to enhance visibility. . . . . . . . . . . . . . . . . . . 26

4.4 Mapping of a syndrome to graphs with different connectivity for the
d = 7 surface code. In (b), as a complete graph where all nodes are
connected by edges, and in (c) as a sparse graph, where each node is
connected to its m = 5 nearest neighbours. (a) shows the syndrome
on the rotated surface code, where X- and Z-ancillas are represented
by orange and white faces, respectively. X- and Z-defects are shown
as blue and red circles. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Comparison of the average validation accuracy over 30 epochs of
training the same model on the same data (d = 7, p = 11%), us-
ing different graph representations of the syndromes. The results
show that using all four proposed node features described in Equa-
tion 4.1 improves the performance. Additionally, squaring the inverse
distance between nodes used as edge weights further improves the
performance. Finally, the performance is similar when reducing the
connectivity of the graphs by drawing edges to the m = 5 nearest
neighbours of each node. . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



List of Figures

5.1 Performance of a model trained on code distance d = 7, error rate p =
0.11 and 500 000 unique syndromes generated from EWD showcasing
how the model outperforms the MWPM algorithm on code distance
d = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Performance of a model trained on code distance d = 7, error rate p =
0.11 and 500 000 unique syndromes generated from EWD showcasing
how the model classifies codes of one size smaller respectively larger
than what was trained on. . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Figure depicting the performance of two models trained on data with
a physical error rate p = 0.05 respectively p = 0.11. The vertical lines
marks the physical error rate on the x-axis that respective model was
trained on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Performance of a model trained on code distance d = 15, error rates
between 0.01 and 0.07 and around 100 000 unique syndromes gener-
ated from MWPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 Training progress of the GNN decoder with a dataset consisting of 500
000 unique syndromes sampled from the depolarizing noise model at
a physical error rate of p = 11%. The learning rate was manually low-
ered, after 100 and 150 training epochs, at which points momentary
gain in accuracy can be seen. . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Logical failure rate as a function of physical error rate p for code
distance d = 7, using the GNN decoder trained on d = 7 data bench-
marked against the MWPM decoder. The GNN decoder performs
worse than the MWPM decoder, especially at higher error rates. . . . 39

5.7 Logical failure rate as a function of physical error rate p for code
distance d = 5, using the GNN decoder trained on d = 7 data bench-
marked against the MWPM decoder. The GNN decoder performs
almost identically to the MWPM decoder, albeit slightly worse, even
though it has not been trained on data generated at d = 5. . . . . . . 40

5.8 Logical failure rate as a function of physical error rate p for code
distances d = {5, 7, 9}, using the GNN decoder trained on d = 7.
The performance at d = 9 indicates that the model generalizes well
to larger code distances for low error rates. . . . . . . . . . . . . . . . 41

5.9 Experimentally determined average decoding times of the GNN de-
coder, as well as the time to construct graph inputs from syndromes,
with increasing code distance at a physical error rate of p = 0.01.
Shown is both the decoding time when using complete graphs, as
well as sparse graphs with m = 5 nearest edges per node. For com-
parison, the average decoding time of the local matching variant of
PyMatching [24], a computationally efficient implementation of the
MWPM decoder, is also shown. . . . . . . . . . . . . . . . . . . . . . 42

xii



List of Tables

5.1 Empirically determined exponents α of the decoding times and graph
construction seen in Figure 5.9 under the assumption that they be-
have as power functions T (d) = Cdα with respect to code distance d
at large distances (d > 100), where C is some constant. Computed
with linear regression of the logarithms of the measured runtimes and
code distances at d ∈ {105, 155, 205, 305}. The uncertainty represents
one standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiii



List of Tables

xiv



1
Introduction

Quantum computers have the potential of solving computational problems which are
intractable when using a classical computer. This is achieved by devising algorithms
that utilize the principles of superposition, entanglement and interference in two-
level quantum mechanical systems: quantum bits (qubits). Examples of problems
where quantum computers offer such an advantage are the famous Shor’s algorithm
for integer factorization [1], searching an unstructured list [2], and perhaps most
notably the task of simulating other quantum systems [3], which quickly becomes
difficult for a classical computer. While great strides of progress are being made
towards building functional quantum computers, some major obstacles still remain
— one of these being the challenge of handling noise [4]. For it to be possible
to perform operations and measurements with qubits in practice, as well as due
to limitations when manufacturing and preserving physical qubits, some unwanted
interaction with the environment of the system is inevitable, introducing errors to
the quantum information.

However, performing quantum computations in the presence of noise can be done by
implementing so called quantum error correcting codes. In general, this is done by
encoding one logical qubit using many physical qubits in ways that protect against
errors while still being able to perform operations and measurements on the log-
ical qubit [5]. A promising type of error correction code for attempting to build
fault-tolerant quantum computers in the near future are variations of surface codes,
where qubits are encoded on a two-dimensional lattice. This type of code has the
benefit of tolerating a relatively high error probability, while also being practical for
experimental implementation due to its two-dimensional physical configuration [6].

When using a surface code, errors are indirectly observed as a syndrome, correspond-
ing to several possible errors that are affecting the system. For a given syndrome, a
sequence of decoding operations should then be determined which correct the under-
lying error [7]. One can use decoders based on directly determining the most likely
error for a measured syndrome, but this approach comes at the cost of computational
complexity. In practical implementation of quantum computers, the error decoding
must be fast, and as such it is of interest to develop decoders that rapidly determine
correction operations while still remaining sufficiently accurate. Additionally, larger
codes can protect against a larger number of errors (for sufficiently low error proba-
bilities) [8], meaning that it is important that the error decoder scales well with the
size of the code.

1



1. Introduction

Utilizing machine learning can potentially pave the way for fast and accurate error
decoders, by training models to determine a correction operation for a given syn-
drome. Additionally, the syndromes in surface codes can be interpreted as graphs,
inviting the idea of using the class of Graph Neural Networks (GNNs) which has re-
cently been of great interest across multiple fields, showing promise in several other
applications of geometric deep learning [9]. Another class of machine learning mod-
els that may be well-suited for decoding are Convolutional Neural Networks (CNNs),
which have proven effective visual classification properties, and can be adapted to
allow for inputs of arbitrary size. As such, GNNs and CNNs can possibly provide
fast error decoding in surface codes of increasing size – an important step towards
realising scalable quantum computing in practice.

1.1 Thesis Aim and Objectives
The objective of this thesis project is to develop error correction decoders for syn-
dromes in topological error correcting codes, with the aim of providing insight in
ways to achieve fast and accurate error correction as a step towards practical fault-
tolerant quantum computing. While previous studies have shown promising results
for decoders based on a wide variety of artificial neural networks [10–16], what mod-
els are best suited for quantum error decoding still remains an open question. A
key challenge has also been to produce decoders that generalize well to larger code
distances [17]. For this reason, we will restrict our study to decoders based on two
specific classes of artificial neural networks that have the potential to be invariant
to the size of the code: Convolutional Neural Networks (CNNs) and Graph Neural
Networks (GNNs).

Thus, a secondary aim is to assess the potential of using these models as decoders
by evaluating their performance on the basis of their computational efficiency, their
accuracy, and their scalability in relation to the size of the error correcting code
to which the decoder is applied. A positive conclusion in regards to any of these
performance metrics would be of interest for future studies of machine learning
assisted quantum error decoders. Additionally, as the two classes of networks will be
evaluated in tandem, this study offers the possibility to make comparisons between
different neural network decoders under similar simulation conditions.

In conclusion, the objective of this thesis is concretized in the following research
question:

RQ. Can artificial neural networks perform error decoding for simple noise models
on the rotated surface code that is accurate, fast and that generalizes to large
code distances by utilising the geometric structure of syndromes?

This question will be explored based on the two aforementioned classes of neural
networks, CNNs and GNNs, where the geometric structure of syndromes is utilized
but represented in different ways. This is summarized in the following subquestions:

1. How well can the decoding be performed by representing syndromes as grids
and assign their equivalence classes using a Fully Convolutional Network?

2



1. Introduction

2. How well can the decoding be performed by representing syndromes as graphs
and assign their equivalence classes using a Graph Neural Network?

3



1. Introduction

4



2
Quantum Computing

The computers of today are under constant development to become smaller and
faster, but this process is approaching its physical limits as computer parts are
getting closer to the size of an atom. This entails certain problems, for instance,
the transistors which makes up the gates of a computer that processes data will
eventually reach a size where electrons are at risk of tunnelling right through them.
In a quantum computer on the other hand, these quantum properties are instead
used to its advantage.
The foremost advantage of quantum computing however is ultimately the potential
computational speed for certain problems. Quantum computers have the possibility
of solving otherwise intractable computing problems. This is achieved by devis-
ing algorithms that utilize quantum mechanical phenomena such as superposition,
entanglement and interference in two-level quantum mechanical systems known as
quantum bits or “qubits”.
In this chapter we will deeper explain relevant concepts regarding quantum com-
puting such as qubits, operators, error correction and other useful knowledge to
comprehend the project.

2.1 Quantum Bits and Pauli Operators
A qubit is the quantum computing equivalence of a bit in a classical computer. Bit is
a portmanteau of the words “binary” and “digit” and represents information binary
in a classical computer as either 0 or 1, thus a classical bit will always be in one of
two states. Qubits however, work in fundamentally different ways.
The two quantum states corresponding to 0 and 1 in a classical bit are:

|0⟩ =
[

1
0

]
, |1⟩ =

[
0
1

]
. (2.1)

However, the quantum mechanical phenomena of superposition makes it possible
for a quantum system to be in a combination of these two states at the same time.
This superposition of states is a linear combination of the so called “basis states”
written:

|ψ⟩ = α |0⟩ + β |1⟩ =
[
α
β

]
(2.2)

5



2. Quantum Computing

under the condition that:

||α||2 + ||β||2 = 1 (2.3)

where α and β are complex numbers and each term the probability for the state to
collapse into either |0⟩ or |1⟩ respectively when measured.

To modify the qubits different operations are performed on them. The most central
operators for a single qubit are the identity matrix together with the three Pauli
matrices:

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(2.4)

Any unitary, or probability conserving, transformation can be expressed in terms of
these operators.

The identity matrix operates by returning the input unchanged. When applied on
the basis states follows: I |0⟩ = |0⟩ or I |1⟩ = |1⟩. This can be verified with vector
operations:

I(α |0⟩ + β |1⟩) =
[

1 0
0 1

] [
α
β

]
=
[
α
β

]
= α |0⟩ + β |1⟩ (2.5)

The X operation is referred to as a bit-flip since it flips the qubit state |0⟩ to |1⟩ and
vice versa. This can be seen with the following equation

X(α |0⟩ + β |1⟩) =
[

0 1
1 0

] [
α
β

]
=
[
β
α

]
= β |0⟩ + α |1⟩ (2.6)

What happens is that the probabilities for the two states switch with each other.
On the basis states this yields: X |0⟩ = |1⟩ or X |1⟩ = |0⟩.

The Z operator performs a so called phase-flip as follows:

Z(α |0⟩ + β |1⟩) =
[

1 0
0 −1

] [
α
β

]
=
[
α
−β

]
= α |0⟩ − β |1⟩ (2.7)

This negative term might seem insignificant since ||−β||2 = ||β||2 and thus the input
state and the output state will collapse into the same state. But as long as the qubit
isn’t measured, this negative sign can still affect the computations involving multiple
qubits and is thus important to keep track of. Z |0⟩ = |0⟩, Z |1⟩ = − |1⟩.

These operators are all self-inverse, meaning that X2 = Y 2 = Z2 = I. Thus adding
the same operator twice to a state will return it to it’s original state.

Furthermore it is possible for multiple qubits to be entangled with each other. The
qubits are thus not independent of each other like in a classical computer, but rather
part of a common large state, a linear combination of all possible states of multiple
qubits. Two entangled qubits no longer have independent probabilities of states,

6



2. Quantum Computing

but instead a probability distribution of all possible combinations of states between
the two of them.

This means that the number of possible states for the system increase exponentially
with the number of entangled qubits since the number doubles for every added
qubit. The number of possible states in the probability distribution becomes 2n

for two-level systems where n is the number of qubits. Entanglement means that
two systems that are too far apart to influence each other can still exert correlated
behaviour though their behaviours are individually random. Changing the state
of an entangled qubit will immediately change the state of the paired qubit, thus
entanglement can be used for transferring information with qubits regardless of the
physical proximity of the qubits.

It is then quantum interference between the qubits that makes this superposition of
states actually useful in the computer. The state of a qubit is described by a quantum
wave function and is thus subject to constructive and destructive interference. The
last step of a computation is to measure the results, collapsing the superposition
state into definitive information in one of the possible basis states. In a quantum
computing algorithm, prior to measurement, interference can then be used to weaken
the amplitude of the state in some basis states and increase it in others by applying
certain gates, which allows for biasing of the measurement towards desired states.
Together with the possible entanglement of an exponential number of basis states,
this allows for devising algorithms that utilize these properties of a quantum system
to solve certain problems efficiently in ways that a classical computer cannot.

2.2 Error Correction
Every computer is subject to the risk of errors during a computation and quantum
computers are certainly not an exception. One of the biggest obstacles within quan-
tum computing development today is their extreme sensitivity to noise. Quantum
systems are very vulnerable since quantum mechanical properties kick in first at
quite extraordinary circumstances such as temperatures close to absolute zero or
extreme pressures only encountered in outer space. This makes the conditions for
quantum technology rather unstable and quantum computers are thus extra prone
to errors from surrounding noise. The probability p of an error occurring during
an operation in a classical computer is approximated to p ≈ 10−18 while the best
quantum computers today can reach an error rate approximated to p ≈ 10−2 [5].
This number likely changes rapidly with research and does not apply to all quan-
tum computers. Quantum error correction is thus essential to achieve fault-tolerant
quantum computation.

A further obstacle with quantum computing however is that it is not possible to
examine whether a qubit has been compromised mid computation. Quantum me-
chanics states that when a quantum system is observed its states “collapse” into a
basis state of the measurement and the computation is ruined. Additionally, due
to the no-cloning theorem it is not possible to duplicate a qubit state and instead
examine a clone not part of the computation to try and circumvent the original

7



2. Quantum Computing

problem. This theorem states that there exists no such operation U that changes a
known state ϕ into a copy of an unknown state ψ[5]:

U |φ⟩|ψ⟩ = |ψ⟩|ψ⟩ (2.8)

Thus there is a need for other means of checking on the qubits.

A quantum error is when a qubit unintentionally is subject to an operation (equation
2.4). Thus the possible errors to which a qubit can be subjected to corresponds to
the operators that can be applied to them. While a classical computer is only at
risk for a bit-flip error, also known as an X-error as in equation (2.6), a quantum
computer additionally faces the risk of a phase-flip error or Z-error as in equation
(2.7). An X-error and a Z-error occurring on the same qubit results in a Y-error. In
addition to this the error can also cause a change in α and β resulting in an infinite
amount of possible errors. However there is a theorem claiming that being able to
correct the X- and Z-errors means that the rest of the errors can be corrected as
well.[5]

2.2.1 Encoding
A fundamental way of managing errors is to use encoding, meaning that multiple
physical qubits represent one so called “logical qubit”. The simplest case of encoding
qubits is the repetition code where more than two qubits are repeated and their
majority value reads as the value of the logical qubit. Consider for instance the
encoded logical qubit:

|0⟩L = |0⟩ ⊗ |0⟩ ⊗ |0⟩ = |000⟩ (2.9)

where |0⟩L is the logical qubit and |000⟩ represents the three encoded physical qubits.
If a bit-flip were to happen to one of the physical qubits the value of the logical qubit
would remain the same according to:

X3 |0⟩L = |001⟩ (2.10)

since a majority of the physical qubits remain error free, it will still be interpreted
as a logical 0-qubit in the computation. If, on the other hand, a majority of the
physical qubits were to flip as following:

X2,3 |0⟩L = |011⟩ (2.11)

then there would be a logical error since this would now be interpreted as a 1-qubit
in the computation. To solve an error an operator that can be applied to the entire
logical qubit is needed, a logical operator.

2.2.2 Logical Operators and Code Distance
In order to perform operations on logical qubits a logical operator that can operate
on all of the encoded qubits is needed. Such an operator is the tensor product of
the individual operators acting on the qubits, but are oftentimes written with the

8



2. Quantum Computing

tensor product symbol suppressed. For the three-qubit repetition code, the logical
X operator X ⊗ X ⊗ X is written as XXX or X1,2,3, and acts as a bit-flip on the
logical qubit, transforming the computational basis state |000⟩ into |111⟩ and vice
versa.
For quantum error correcting codes, the logical operator is closely related to the
code distance, denoted d, which is the number of qubits that are acted upon by a
non-identity logical operator of minimal weight. In other words, the distance of a
quantum code is the smallest number of errors on the physical qubits which cause
an undetectable logical operation on the logical qubit. The number of detectable
errors are then d− 1, and the number of correctable errors are ⌊d

2⌋.
In the three-qubit repetition code, the minimum weight of the logical X operator
is three, meaning that the maximum number of X errors that can be corrected
is ⌊3

2⌋ = 1. Two X errors would be incorrectly resolved and cause a logical X
operation when corrected, and three X errors would correspond to the logical X
operation itself.
To determine the distance of a quantum error correcting code, however, one must
consider the minimal weight of all logical operators. For the three-qubit repetition
code, applying Z to a single qubit results in a phase-flip of the logical qubit, and
as such one possible logical Z operation of minimal weight is ZII. Thus, the three-
qubit repetition code cannot detect any Z errors, and its code distance with respect
to any possible error is d = 1. This illustrates how the distance d can be used as a
measure of the robustness of a code, in the sense that it determines the maximum
number of simultaneous errors that can be corrected, assuming a sufficiently low
probability of errors occurring on the physical qubits.

2.2.3 Ancilla Qubits
In order to reset a faulty qubit one first needs to be able to identify whether an
error has occurred. As mentioned in the beginning of this section, an obstacle with
quantum computing is that it is not possible to measure whether an individual qubit
has been compromised mid computation. According to quantum mechanics when
a quantum system is observed its superposition states collapses, observing a qubit
during a computation would thereby ruin the computation. A way around this issue
is to implement additional qubits not part of the computation. These helper qubits
or “ancilla qubits” are prepared in state |0⟩ and connect to two or more data qubits
to perform parity checks by applying an operator to two of these qubits at a time,
this operator will then either commute or anticommute with the error. An ancilla
qubit with an X-operator, an X-ancilla qubit, would therefore be able to detect a
Z-error on a data qubit since these operators anticommute while a Z-ancilla qubit
will detect X-errors. The ancilla qubit will thus signal when an error has occurred,
and this is called a syndrome measurement. This kind of measurement provides
information about potential errors without disclosing any stored information from
the data qubits and the quantum superposition remains intact.
For example, the simplest possible repetition code as the one in section 2.2.1 is able
to detect bit-flip errors on an encoded state:

9



2. Quantum Computing

|ψ⟩ = α|0⟩ + β|1⟩ → |ψ3⟩ = α|000⟩ + β|111⟩ (2.12)
An error occurring on the first qubit would yield the state:

|ψ3,err⟩ = α|100⟩ + β|011⟩ (2.13)

This error can then be detected by first performing a parity check on qubit 1 and 2
by applying the operator Z1,2 and then repeating this for qubits 2 and 3 with Z2,3.
These operations would not affect the original state since:

Z1,2 |ψ3⟩ = α|000⟩ + β|111⟩ = Z2,3 |ψ3⟩ , (2.14)

However, the operator Z1,2 will change the phase of the defected state accordingly:

Z1,2 |ψ3,err⟩ = −α|100⟩ − β|011⟩ = − |ψ3,err⟩ (2.15)

Assuming that the probability of more than one qubit flipping is negligible this yields
the information that either qubit 1 or qubit 2 has flipped. Performing the second
parity check, Z2,3 will then determine exactly which qubit through the method of
exclusion.

A code of this size can however only detect bit-flip errors. In order to also detect
errors unique for quantum computing, such as the phase-flip, there are more com-
plicated types of codes with elaborate systems of data and ancilla qubits. In this
work we consider the surface code, which is a more elaborate error correcting code
that is considered to be promising for near term fault-tolerant quantum computers.

2.3 Surface Codes
Surface codes are quantum error correction schemes with data qubits and ancilla
qubits on a square lattice. There are several different kinds of surface codes with
slightly different configurations such as the toric code whose defining property is its
periodic boundary conditions meaning that the qubit grid in theory would be shaped
like a torus where the qubits at the top of the square are connected to the ones at the
bottom, and the same applies to the qubits at the left and the right edge. A version
of this is the planar code which is built the same but without the periodic boundary
conditions, in theory making it a two dimensional square. It was realized that
rotating the planar surface code 45° would decrease the amount of physical qubits
needed per logical qubit and thus the rotated surface code was created. An example
of a rotated surface code grid can be seen in Figure 2.1 where every white circle is a
data qubit and the ancilla qubits reside in each of the squares as well as the arches
on the edges, performing parity checks on the four respectively two neighboring
data qubits in the corners. The orange fields contain X-ancilla qubits and the white
fields contain Z-ancilla qubits. The outcome of the ancilla measurements is called
the error syndrome and the goal is then to find the corresponding errors in order
to be able to correct them. Deducing the errors occurring on the data qubits in a
system like this typically requires a complex decoder.

10



2. Quantum Computing

The shortest chain of errors that can cause an undetectable error is called the code
distance (d). In the case of rotated surface code it is the same as the number of
qubits on an edge of the code which is seven in the examples seen in Figure 2.1. The
code distance is thereby often used to refer to the size of a surface code.

Figure 2.1: Rotated surface codes without errors and with errors. Blue
dots in orange fields indicate an X-ancilla signaling about a neighbor-
ing Z-error, red dots in white fields indicate a Z-ancilla reacting to a
neighboring X-error. A blue or red dot between squares mean a Z-error
respectively X-error on that qubit, a purple dot represents a Y-error.

11



2. Quantum Computing

12



3
Machine Learning with Artificial

Neural Networks

An artificial neural network is a kind of supervised machine learning algorithm made
to recognize patterns by building a network of artificial neurons. These artificial
neurons are called nodes and are connected to each other in different ways depending
on the kind of network. This chapter aims to further explain the staples of machine
learning as well as the two networks, graph neural network and convolutional neural
network, used in this project.

3.1 Artificial Neurons
Between every connection in an artificial neural network a weight and a bias is
applied on the passing data. Thus the input to an artificial neuron consists of the
output from multiple or all neurons in a previous layer, times the weight for that
particular connection with a bias of the neuron in question added as following:

zj =
n∑

i=1
wixi + bj (3.1)

Where zj represents the input to neuron j, xi is the output from node i with wi

as the weight between node j and i, bj is the bias of the neuron in question and n
the number of neurons connected to the current neuron. This is a linear equation
and constitutes the first part of a neuron and performs a kind of linear regression.
Next this function acts as input to another, predetermined function. A so called
“activation function”. A common activation function is the Rectified Linear Unit
activation function or “ReLU” defined:

f(zj) = max(0, zj) (3.2)

Where f(zj), also denoted as yj then becomes the output of the neuron and the
process is repeated for the next layer of neurons. The linear function and the
activation function are what make up an artificial neuron and multiple neurons
together compose a layer in the network. Since the activation function is “reshaped”
by the parameter values it will turn out differently for each neuron depending on
the weights and biases of said neuron. The objective of the training of the network
is then to optimize the parameters of the network by finding the parameter values

13



3. Machine Learning with Artificial Neural Networks

that in the end best fit the activation functions in the final layer of neurons to the
data.

Figure 3.1: Drawn model of an artificial neuron

3.2 Backpropagation and Gradient Descent
The training of the network is implemented with the help of backpropagation which
is a way of estimating the weights and biases in the network. The term backpropa-
gation derives from the fact that the estimation starts with the last parameter in the
network, bn for a network with n number of neurons, and works its way to the be-
ginning. The first step in this procedure is thus to evaluate how well the prediction
in the final step fits the data and this is done by calculating the loss function.

A loss function is a way of measuring how well a neural network models a data set by
looking at the difference between the current output and the desired output. There
are several different loss functions for different objectives. Below, the cross entropy
(CE) loss function can be seen:

CE = −
N∑

i=1
yi · log (ŷi) (3.3)

N is the number of samples tested against, yi is the correct value from the data set
while ŷi the predicted value from the network for the same input. This loss function
is specifically used to optimize classification models. The output of a classification
model will be an array of the probabilities for each class and these will be compared
with the true labels. The measurement from the loss function is then used as a
feedback signal in the backpropagation where the aim of the training is to minimize
the loss by adjusting the weights and biases. This is done with an optimization
algorithm called “gradient descent” which estimates the parameters for when the
loss function is as small as possible.

To find the minima of the loss function differentiation is necessary. Since the loss
function depends on every weight and bias in the network it is essentially a multi-
variable function of all w and b. For the general case it can be written as following:
L(y, ŷ) where y = f(wx + b). L can thus be differentiated with respect to these
variables with the help of the chain rule and partial derivatives.

14



3. Machine Learning with Artificial Neural Networks

For the case of optimizing the last parameter in the network, bn, the derivative is
taken with respect to said parameter and the chain rule yields:

dL

dbn

= dL

dy
· dy
dbn

(3.4)

When this gradient is equal to zero the loss function is at a (possibly local) minima
and the model at its most accurate (in some vicinity of the minima). To find this
minima in an efficient way gradient descent is used. Gradient descent works by
iteratively calculating a next guess based on the gradient of the current point. Once
the gradient of the starting point is calculated a scaled step is taken in the opposite
direction of said gradient. This process is repeated until the loss gradient converges
towards zero. The algorithm can be expressed as:

am+1 = am − γ∇L(bn = am) (3.5)

Where am is the starting point and am+1 the new guess. γ is the learning rate, a
hyper-parameter chosen when training the network.

The corresponding parameter value to the minima of the loss function will yield the
highest accuracy for the model and the backpropagation algorithm can move on to
the next parameter. This process is repeated multiple times for every parameter
in the network and for every training round until the overall training accuracy
converges.

3.3 Convolutional Neural Networks
A commonly occurring artificial neural network is the convolutional neural network,
CNN. This is a deep learning algorithm oftentimes used for classifying data in a
grid pattern such as image classification and analysis due to their ability to detect
patterns and spatial features in a grid. The defining characteristic of a CNN is the
existence of convolutional layers which maintain the relation between neighboring
matrix elements and can make use of information such as correlated pixels or error
chains.

The first layer in a CNN is the input layer which is an array of the data with
dimensions nh × nw × nc where nh is the height of the array, nw is the width and nc

is the number of channels in the input array (or depth). A convolutional layer would
then start with applying what is called a filter to the input layer. A filter is in turn
a smaller array, usually of size 3x3, of arbitrary weights that will be determined by
backpropagation as the network is training.

A two dimensional convolutional operation with a filter of odd dimensions is defined
as follows:

zij =
f,f∑

k=l=1
wklxk′l′ (3.6)

with:
k′ = k + i− f + 1

2 , l′ = l + j − f + 1
2 (3.7)

15



3. Machine Learning with Artificial Neural Networks

zi a matrix element of the output matrix z, also known as a feature map. w is an
array of weights constituting the filter and x the input matrix. The convolutional
operation is in other words the dot product between the filter w and a fragment of
x centered around the matrix element xi with height and width f . This process is
pictured in figure 3.2. After the convolutional operation a bias is added in a similar
manner as with single artificial neurons and the last step is an activation function
such as the ReLU function described in section 3.1 equation 3.2
The matrix element zi represents the filters correlation to that particular area of the
data matrix. The filter then moves to the right and in that way “walks” across the
array with a certain stride size, s, and the procedure is repeated all over the array.
This way the feature map is formed and will act as input to the next layer in the
network. The feature map will be on the form:

(nh − f + 1)
s

× (nw − f + 1)
s

× fn (3.8)

where f is the size of the filter, fn the number of filters applied and s is the stride
size.

Figure 3.2: A 2D convolutional operation with a square filter. A filter of
size f is applied to an area centered on xi resulting in a matrix element in
the feature map. The arrows in the input array represent the movement
of the center of the filter.

Other common layers in a convolutional network are pooling layers. These work
similarly to a convolution layer with a filter size f and stride s but the operation
applied is fixed and can not be learned. The max-pooling layer for instance will
return the maximum value of its f 2 inputs. Pooling layers can be used to downsample
the data while keeping important information, usually by setting s = f .
A pooling layer will return a matrix on the form:

(nh − f + 1)
s

× (nw − f + 1)
s

× nc (3.9)

where nc is the number of channels of the input data to the layer.

16



3. Machine Learning with Artificial Neural Networks

By choosing the filter size to be the same as that of the input array of the layer
global max pooling is achieved. A global max pooling layer only looks at the single
highest value for each layer in the array and will thus always produce an array of
dimensions 1 × 1 × nc. This array can then make up the input data to a fully
connected neural network with regular connected layers.

3.4 Graph Neural Networks
Graph neural networks (GNNs) are a class of neural networks models that have
shown great promise for various prediction tasks in graph representation learning,
such as node classification, link prediction and graph classification. The essence of
a GNN is that the input data is represented as graphs, a collection of nodes and
edges connecting the nodes, can be converted to a set of arbitrarily high-dimensional
node feature vectors containing information about the structure and node informa-
tion of the graph. While the field of GNNs is relatively new, it is rapidly growing
and a large number of models have been proposed in the past decade. The main
components of understanding the theory of GNNs are graph representations, as well
as the computational functions for propagation, aggregation, and pooling of node
information. In this chapter, we will describe these constituents piece by piece, to
finally arrive at an understanding of GNNs as a whole. We will start by presenting
the fundamental definition of a graph.
A graph G is a structure defined by a set of nodes (or vertices) V and edges E,
denoted G = (V,E). Most generally, the edges of a graph represent connections
between separate units of information, represented by the nodes. An example of
a graph is a social network of friends, where the nodes may represent individual
persons with edges connecting friends in the network. We denote a node by its
index as vi ∈ V , and an edge as the pair of node indices connected by the edge:
(i, j). The number of nodes and edges in a graph are represented as |V | and |E|,
respectively. Edges may either be directed, in which case they are defined by an
ordered pair of nodes (i → j) where the connection is seen to only exist from vi

to vj, or undirected, defined by an unordered pair of nodes where there is a single
connection describing both directions. A graph is called complete if there exists an
edge between every pair of nodes in the graph.
A graph in itself describes only the connectivity of a set of nodes. Further infor-
mation can be included in the graph in the form of node features, here defined as
a D-dimensional vector xi for each node vi. The node features assign numerical
information to each node in the graph, and are used as the input features in a GNN.
To represent all node features in a graph, we define the |V | × D dimensional node
feature matrix as X, where each row is a node feature xi. Additionally, edges can
be assigned features, acting as weights ei,j on the connection between node vi and
vj.
In the context of GNNs, a node is said to have a neighbourhood, which is the set of
nodes connected to it by edges. Here, we define the neighbourhood of a node vi as

Ni = {vj | (i, j) ∈ E}

17



3. Machine Learning with Artificial Neural Networks

for an undirected graph, using the same notation as Bronstein et al. [18]. Similarly,
the node feature neighbourhood is defined as

XNi
= {xj | vj ∈ Ni}

which is the set of node feature vectors of the nodes in the neighbourhood Ni. Note
that XNi

is technically a multiset, meaning that elements of XNi
may occur more

than once, as different nodes may have identical node feature vectors. Here, however,
we consider each node feature xi to be unique, described by its node index i [18].

3.4.1 Graph Layers
A GNN layer is a general term for a function that performs a transformation on
the graph. In a GNN, layers are used as functional modules that can be combined
sequentially to obtain embedded representations of the features of a graph. Here,
we consider two principal types of GNN layers: node-level layers and global pool-
ing layers. Node-level layers act as transformations of the node features, without
transforming the connectivity or structure of the graph in any way. In general, a
node-level layer F(xi) can be described by a neighbourhood aggregation function,
as

F(xi) = x′
i = aggregation({xi,XNi

}) (3.10)

where XNi
is the node feature neighbourhood of node vi and x′

i is its transformed
node feature vector. The aggregation function determines how the node features of
neighbouring nodes are combined to form the transformed node feature vector x′

i,
and is applied to each node in the graph, producing a transformed graph. Note that
the node-level layer F(xi) may change the dimensionality of the transformed node
feature vectors x′

i, but does not affect the number of nodes or their connectivity
through edges. Such a node-level layer is often called a graph convolution, and
can be seen as a generalization of the convolution operator seen in CNNs to graph
structured data. The key property of a graph convolution is that it does not make
any assumption on the number of nodes from which information is aggregated, unlike
the convolutional operations in a CNN which assume a grid structure with an equal
number of connections at each “node”.

A simple GNN layer is the graph convolution presented in [19], defined as

GraphConv(xi) = x′
i = f

xiW1 +
∑

j∈Ni

ej,ixjW2

 (3.11)

where W1 and W2 are weight matrices of dimension D×D′, where D is the number
of features for the input node, and D′ are the number of features in the transformed
node feature vector, and f is an activation function introducing nonlinearity to the
layer, such as ReLU defined in Eq. 3.2. This operation aggregates information from
the node neighbourhood of each node as a weighted sum, determined by the edge
features. The entries in W1 and W2 are the learnable parameters of this layer when
used in a GNN.

18



3. Machine Learning with Artificial Neural Networks

In a global pooling layer, the feature information of all nodes in a graph is combined
to a single graph-level feature vector. An example of a global pooling layer is mean
pooling, defined as

GlobalMeanPool(G = (V,E)) = 1
|V |

∑
vi∈V

xi (3.12)

where the node features are averaged over all nodes in the graph.

3.4.2 GNNs for Prediction Tasks
By applying graph convolutions and pooling layers, one may obtain a transformed
embedding of the initial information in a graph, which can be used for various
classification tasks. For example, the dimensionality of the node features can be
transformed using a series of graph convolution layers to match a node-level predic-
tion task. For graph classification, a single feature vector for an entire graph can
be obtained by subsequently performing a global pooling of the node features. As
such, the complex structure of a graph is transformed to a single vector space em-
bedding. This vectorized representation of the graph can then be used as an input
to a classifier, such as a fully connected neural network, to learn a mapping from an
input graph to a predicted class.

19



3. Machine Learning with Artificial Neural Networks

20



4
Methods

In this section, we first describe how we map the decoding problem for the rotated
surface code to a classification problem solvable by a neural network. We then
describe how labelled training data for supervised learning was generated. Finally,
we present how syndromes were represented as input data for the respective models,
as well as the architectures of the neural network decoders.

4.1 Decoding the Surface Code with Neural Net-
works

The decoding task consists of, for an observed syndrome S caused by the underlying
data qubit error E, finding any error configuration C that returns the state to the
codespace without causing a logical error in the process. Applying any operations
that would produce the same syndrome S when measured by the ancilla qubits
ensures that the state is returned to the codespace. However, choosing an arbitrary
operation may result in the product of the error and the correction E · C causing
an unwanted logical operation – which would be considered a failed decoding of the
syndrome. An optimal decoder would always choose a correction that has the lowest
probability of causing such a logical error. Since multiple errors E can cause the
same syndrome S, but no direct observation of the error can be made, it is not a
trivial task to find the optimal solution.

Training a neural network to learn the mapping from syndrome to correction offers
a possible way to solve the decoding task in an efficient way. To do this, we consider
the decoding of the surface code as a classification problem, an area where neu-
ral networks have proven to be successful in general. All the possible error chains
(sets of operations on the data qubits) on the surface code can be divided into four
equivalence classes. When decoding a syndrome, choosing any correction operation
belonging to the same equivalence class as the underlying error which caused the
syndrome ensures that the decoding is successful. A selection of a correction oper-
ator belonging to a different equivalence class than the underlying error will lead
to an undetected logical operation, and is considered a failed decoding. As such,
our general approach of applying neural networks as decoders is to represent the
syndromes as input data and, through a feed-forward pass through the network,
return a prediction of the most probable equivalence class.

21



4. Methods

4.1.1 Specific Representation of Equivalence Classes
To uniquely determine the equivalence class to which an error chain belongs, it is
necessary to choose a single representation of the four logical operators. Following
the convention used in [20], we choose to represent the logical Pauli X operator, XL,
to be the length-d chain of errors on the western edge of the surface code lattice, and
the logical Pauli Z operator, ZL to be the length-d chain of errors on the northern
edge of the lattice. The equivalence class of any error chain can then be uniquely
determined from whether or not they commute with these specific representations
of the logical operators. More concretely, this leads to an error chain belonging to
equivalence class X if it has an odd number of X errors on the northern edge, and
conversely it belongs to class Z if it has an odd number of Z errors on the west edge.
If none of these conditions are met, the error chain belongs to class I (corresponding
to no logical operator). If both of the conditions are met simultaneously (odd parity
of X on the northern edge and odd parity of Z on the western edge), the error
chain belongs to class Y , which in the context of the surface code corresponds to
the product XL · ZL.

4.1.2 Generating Training Data
In this study, we solely consider errors caused by the depolarizing noise model, where
each physical qubit undergoes a Pauli X, Z or Y error with equal probability p/3,
with p being the physical error rate – the probability of an error occurring on each
individual qubit. Training and test data was generated by simulating depolarizing
noise at different physical error rates to the rotated surface code, and determining
the syndromes consistent with the resulting error chains.

Training the networks to find the most probable equivalence class of a given syn-
drome was done with supervised learning, where the training data consists of (syn-
drome, equivalence class) pairs. To learn the input-output relation, it is then nec-
essary to determine a method for labelling the syndromes used for training with a
target equivalence class. In previous studies of neural network based decoders, a
common approach has been to use the equivalence class of the error chain which
caused the syndrome during sampling of data as the target. However, since each
syndrome is not caused by a unique error chain, this approach relies on repeatedly
sampling the same syndrome caused by different errors to obtain an estimate of the
probability distribution of the equivalence classes of that syndrome. As the num-
ber of possible syndromes scales exponentially with the code distance (2d2−1), this
method of labelling training data quickly becomes problematic. For code distances
beyond the smallest codes, it becomes unfeasible to sample more than a single er-
ror chain for each syndrome in a reasonably large dataset, which results in a poor
estimate of the equivalence class probability distribution.

4.1.2.1 Reference Decoders

To circumvent this issue, labelled data was instead generated by using existing
decoders to predict the most probable equivalence class of the syndromes used to
train the networks. Two such reference decoders were employed. The first being

22



4. Methods

the Effective Weight Decoder (EWD), which uses Metropolis-based Monte Carlo
sampling to determine the frequency of the most probable error chains in each
equivalence class for a given syndrome [20]. EWD is near-optimal, at the cost of
having a relatively slow decoding time, both in absolute terms and with respect
to the time complexity scaling with code distance d. At low error rates, the time
complexity of the EWD decoder was approximated to O(d5) for code distances up
to d = 15, with an indication of even having superpolynomial decoding time.
Due to the poor time complexity of the EWD decoder, a faster but less accurate
decoding algorithm based on Minimum-Weight Perfect Matching (MWPM) was used
when generating training data for large code distances (above d = 9). The MWPM
decoder is also the standard algorithm used to benchmark decoders on the surface
code in the literature, and will be used in this study to benchmark the neural network
decoders. It should be noted that using reference decoders to generate training data
for supervised learning means that the performance of the neural network decoders
is strictly bounded by that of the reference decoder. In the ideal case, if a neural
network decoder would achieve a perfect accuracy with respect to the reference
decoder, it would exactly mimic the performance of the reference decoder. With
this said, if the neural networks can achieve a high accuracy when trained with the
near-optimal EWD targets, it could possibly outperform less accurate decoders such
as MWPM with a faster runtime than the EWD decoder once trained.
Several smaller datasets were initially generated for various code distances d and
error rates p when exploring models in an early stage of the project. Finally, the
primary dataset used for training the final models was a set of 5 · 105 unique syn-
dromes with equivalence class targets determined by EWD, randomly generated
from depolarizing noise with an error rate of p = 11% on the d = 7 surface code.
The choice of error rate for sampling the training data was in part guided by pre-
vious studies of neural network decoders [12, 13], as well as our own early results,
which indicated that using training data generated at a relatively high error rate
gave a higher performance at that error rate while also retaining accuracy for lower
error rates, compared to training at lower error rates.
As described by Varsamopoulos et al. [12], training a neural network decoder with
data sampled at a fixed error rate will optimize the performance of the decoder at
that error rate, and may lead to poor generalization to unseen data sampled at other
(especially larger) error rates. In a realistic experimental scenario, there will be some
underlying error model to which the performance of the decoder can be specifically
tailored to by adjusting the training error rate. In this work however, we only
evaluate the general performance of a theoretical decoder under the depolarizing
error model, tested at various physical error rates after training. For this reason, we
choose a fixed training error rate that is large enough to give a diverse set of training
syndromes while remaining sufficiently low such that the shortest error chains are
more probable to cause those syndromes. This is to retain similar performance when
testing the decoder at error rates lower than the one used for training data sampling,
as the minimum weight error chains will be most probable to cause a syndrome at
low error rates.
For the d = 7 dataset, the specific choice of generating training data with the

23



4. Methods

physical error rate p = 11% was also done to follow the practice used in previous
work by Overwater et al. [13], where the pseudo-threshold of the MWPM decoder
was chosen as error rate for the training data sampling. For the rotated surface code
with code distance d = 7, the pseudo-threshold of MWPM (the physical error rate
where the decoder performs as well as a single unencoded qubit) is approximately
0.114. This choice was found to give a satisfactory trade-off between producing
diverse data without sacrificing performance when evaluating the performance of
the decoders on test data generated at various lower error rates.

The size of our d = 7 training set is significantly smaller than what has been used
for supervised learning in similar studies of neural network decoders [12, 14], but
due to the high accuracy of EWD, each syndrome in the dataset is ensured to have
a near-optimal estimate of its most probable equivalence class. Additionally, due to
the exponential scaling of the number of possible syndromes with respect to code
distance, generating this many syndromes at d = 7 with an error rate of p = 11% is
far from having sampled the entire syndrome space.

More specifically, the total number of possible unique syndromes for the d = 7
rotated surface code is 272−1 ≈ 2.8 · 1014, meaning that the training data for d = 7
contains less than 2 ·10−9 of the possible syndromes (although some syndromes may
be more common than others for a specific physical error rate). For this reason, it is
expected that the training data has a low degree of overlap with syndromes sampled
during testing, and that a high decoding accuracy during testing indicates that the
model is able to generalize and not just naively repeat learned patterns from the
training data.

4.2 Convolutional Neural Network Decoder
The rotated surface code is structured on a grid and thus yield a quite intuitive
matrix representation of the syndromes. A convolutional neural network is well
suited for processing and classifying matrix based data and in this section we go
through how the syndromes are represented in a matrix as well as the architecture
of the convolutional neural network that was built.

4.2.1 Matrix Representation of Syndromes
The syndromes generated from the data generating algorithms are already on matrix
form and paired with the most likely equivalence class by default. This makes
preparing the data rather convenient since it is already on the right form and only
minor cleaning of the data set is necessary. This “translation” from syndrome on the
surface code to error matrix can be seen in 4.1 where each “1” is an error-signaling
ancilla qubit and the 0’s are neutral ancilla qubits. In some places there are zeroes
where no qubit exists. These are simply fillings to achieve a square matrix.

The syndrome matrix will be of size (d+1)×(d+1) where d is the code distance. This
representation of the data does not immediately take into consideration whether the
error is measured by an ancilla qubit measuring X or one measuring Z, but instead

24



4. Methods

we rely on the network to recognize this from the positions of the signaling ancilla
qubits.

Figure 4.1: Syndrome from a code of distance d=7 and error probability
p=0.11 represented as a so called syndrome matrix.

4.2.2 CNN Architecture
A convolutional neural network was built based on fully convolutional neural net-
works which can take input data of any shape and is thus not restricted to just
one matrix size. For this network the python library Tensorflow was used which is
well suited for building and training models. Several convolutional layers and their
settings were chosen iteratively by trial and error. For the convolutional layers the
filter size was chosen to be “3” and the stride size to “1”. The activation function
ReLU was chosen which is a standard activation function.

Since every convolutional layer decreases the matrix size, the matrices would soon
reach a size too small for the next layer to handle depending on the size of the
input matrices. To prevent this, padding was added between every layer to make it
possible for the network to handle a larger variety of code distances. This was done
by setting padding to “same” in the convolutional layers, which pads the output
matrix with a layer of zeroes around all edges. This way the shape of the matrices
could remain throughout the convolutional layers. The network also contains two
max pooling layers with a pool size of 2 represented in orange in figure 4.2.

The last layer of the convolutional part is a global max pooling layer which picks
the highest value from each layer of filters and thereby turn any input size into 1x1
vector with the same depth as the amount of filters in the layer before. Since this
amount of filters is determined in the network architecture the output of this layer
will always have the same dimensions regardless of the shape of the input to the
network. The convolutional part of the neural network can be seen in Figure 4.2.
With a fixed output shape from the convolutional part the data can then pass on
to a fully connected network with dense layers that require a predetermined input
dimension. This part consists of several dense layers with a max width of 128 nodes
which narrows down to four output nodes that represent the four equivalence classes.

25



4. Methods

Figure 4.2: Fully convolutional part of the CNN. Not to scale.

Figure 4.3: Figure representing the number of layers and connectivity
of the fully connected part of the CNN as well as the number of output
nodes. The number of nodes pictured in the other layers is not accurate
but was scaled down to enhance visibility.

4.3 Graph Neural Network Decoder
While the ancilla qubit lattice on which the syndromes are measured are naturally
grid structured, a graph representation of the syndromes may be considered by only
including information from the activated stabilizer generators that anti-commute
with the error (corresponding to the non-zero values in the qubit matrix shown in
Figure 4.1. These −1 eigenvalue outcomes of individual ancilla qubit measurements
are referred to as defects, with a syndrome being the collection of all defects on the
surface code after the stabilizer measurements. As the decoding problem consists
of mapping an input syndrome to a single predicted equivalence class, a GNN was
designed to perform graph classification on graph representations of syndromes.
Here we describe how syndromes were represented as graph structured data, as well
as the architecture of the implemented GNN decoder.

26



4. Methods

4.3.1 Graph Representation of Syndromes
The syndromes generated for training and testing are initially represented as ma-
trices, and do not have a natural graph representation. As such, the choice of how
syndromes are to be mapped to graphs is an important part of applying a GNN
to the decoding problem. Graphs were constructed by representing each individual
defect in the syndrome as a node. This is essentially the only information available
to the decoder – no information is known about the states of the data qubits.

There are however two types of defects; those measured by X-ancilla qubits and
those measured by Z-ancilla qubits. The X-ancillas are shown as defects in the
syndrome if they measure an odd parity of Z errors on the four adjacent data
qubits, whereas the Z-ancillas measure defects if there are an odd parity of X errors
on adjacent data qubits. Note that Y errors (which occur with the same probability
as X and Z in the depolarizing noise model) can be considered as overlapping X and
Z errors. In the visualization of the surface code, X- and Z-ancillas are represented
by orange and white faces on the grid, respectively. The ancilla type of each defect
was chosen as the first node feature, as they are directly related to the underlying
data qubit error which caused the syndrome. For example, an error consisting purely
of Pauli X operators will only be detected Z-ancillas. To distinguish between the
two defect types in the node feature representation, they were one-hot encoded in
the first two elements of the node feature vector.

Furthermore, another important property of the defects is their position relative to
the code boundaries (and to other defects). In essence, the equivalence class of a
string of errors is closely related to its endpoints, where the defects will be measured.
In our specific representation of the equivalence classes, strings of X-errors that end
on the north boundary of the code will belong to equivalence class X, as they cause
odd parity of X-errors on the northern boundary of the code. Strings of X-errors
that are contained within the boundaries of the code or run to the south boundary
will not contribute to odd parity on the northern boundary. Similarly holds for how
strings of Z-errors are positioned relative to the west and east boundaries.

To attempt to capture this unobservable information about the positions of the
underlying errors, two node features were defined as the distance of the defect to
the north boundary, and the distance of the defect to the west boundary. These
distances were scaled by the code size d, so that the positional node feature captures
the relative position of the defects. This was done in an attempt to keep the graph
representation as general as possible, with the aim of allowing the model to generalize
to arbitrary code distances.

The defect type and position relative to the boundary together form the node feature
vectors, defined as

xi = (X,Z,Dnorth, Dwest) (4.1)

where X = 1 if the defect corresponds to a X-ancilla and 0 otherwise, Z = 1 if
the defects corresponds to a Z-ancilla. Dnorth = k

d
is the normalized distance to the

north boundary, with k being the row index in the syndrome matrix and d being
the code distance. Similarly Dwest = l

d
where l is the column index in the syndrome

27



4. Methods

matrix. The integer values k and l range from 0 to d, and as such, Dwest and Dnorth

are normalized to lie within the interval [0, 1] for all defects and code distances.

This constitutes the definition of node features, but to complete the graph represen-
tation we also require a definition of edges connecting the nodes in the graph. Two
different ways of determining which edges to be included in the graph were tested.
Firstly, all graphs were defined to be complete, meaning that there is an edge con-
necting every pair of nodes. Upon training the GNN model with syndromes from
larger code distances, it was found that such a dense graph representation was
severely prohibitive to the runtime of the GNN decoder. As such, an alternative
graph representation was also implemented, where each node is connected to its m
nearest neighbours. Using a value of m = 5 resulted in only slightly lower perfor-
mance at small code distances, while drastically improving the runtime of the GNN
decoder for larger code distances, as the number of nodes scale with d2.

Finally, the edges were assigned a single-valued feature ei,j which weights the con-
tribution of individual neighbouring nodes in the graph convolution described by
Equation 3.11. All edge weights were defined based on the shortest distance of a
possible error chain connecting two defects. This distance can be calculated as the
maximum of the difference between the row and column indices of two defects in
the syndrome matrix. As it is desired that short distances correspond to larger edge
weights, the inverse distance was used. From early tests, it was also found that using
a squared inverse distances was favorable, to further diminish the contribution of
edges between nodes far apart. The edge weights between nodes i and j with row
and column indices (ki, li) and (kj, lj) were defined as

ei,j =
(

1
max(|ki − kj|, |li − lj|)

)2

(4.2)

To illustrate the graph representation, the mapping of a syndrome on the d = 7
surface code is shown together with its corresponding complete graph in Figure
4.4b. The same syndrome mapped to a graph where each defect is only connected
by edges to its m = 5 closest neighbours is shown in Figure 4.4c. Note that in
cases where the edges would become directed by having connections between pairs
of nodes in only one direction, such edges were made to be undirected by adding
an edge in the opposite direction. This means that there are cases where the node
degree may become slightly larger than m for certain nodes. This was done to avoid
constructing graphs where information can only propagate in one direction between
clusters of nodes within the graph.

28



4. Methods

(a) Syndrome. (b) Complete graph. (c) Sparse graph with
m = 5.

Figure 4.4: Mapping of a syndrome to graphs with different connec-
tivity for the d = 7 surface code. In (b), as a complete graph where
all nodes are connected by edges, and in (c) as a sparse graph, where
each node is connected to its m = 5 nearest neighbours. (a) shows the
syndrome on the rotated surface code, where X- and Z-ancillas are rep-
resented by orange and white faces, respectively. X- and Z-defects are
shown as blue and red circles.

To exemplify the node features, the top most node in Figures 4.4b and 4.4b has
node feature vector

x = (1, 0, 1
7 ,

5
7)

In the case when an empty syndrome is encountered, meaning that no defects were
measured by the ancilla qubits, it is not possible to construct a graph, as there are
no nodes. In this case, the GNN decoder was set to always output class I, as such
syndromes are most commonly caused by no error having occurred for sufficiently
low physical error rates, in which I is the correct equivalence class.

4.3.2 GNN Architecture
To implement the graph neural networks and graph representations, we used the
popular library PyTorch Geometric [21], where many GNN layers are available in
an object oriented environment, as well as efficient batching of graph representation
data.
The final GNN architecture used for decoding syndromes on the surface code con-
sisted of three sequential GraphConv layers (Equation 3.11) with ReLU activation
functions and an increasing number of output neurons in each layer. Each graph
convolution propagates information between the nodes, increasing the dimensions
in the transformed node feature vectors while retaining the same structure of the
graph. The graph convolutions are followed by a GlobalMeanPool layer to obtain a
single vector representation of the entire graph by averaging the transformed node
feature vectors. This final graph embedding was then fed through three dense layers,
with ReLU activation functions in the hidden layers, acting as a classifier.
Two classification schemes were tested. Firstly, the training targets were one-hot en-
coded as 4-dimensional vectors corresponding to the four equivalence classes. In this

29



4. Methods

representation, a softmax activation function was applied to the output layer of the
GNN, so that the network returns a probability distribution of the four equivalence
classes for a given syndrome graph. The prediction of the network was defined as
the class with highest probability. When training the network with this multiclass
classification scheme, cross entropy was used as loss function.

Secondly, as has been suggested in previous studies of classification based neural
network decoders [12], the equivalence classes were instead represented by a two-bit
binary number. This can be done since the condition for equivalence class X and
Z do not depend on each other, and since class Y corresponds to the combination
of class X and Z, while class I corresponds to when neither the condition for class
X nor Z holds true. In the second classification scheme, only two output neurons
are needed – each performing binary classification. For this scheme, an elementwise
sigmoid function was applied to the output layer of the GNN, meaning that the
network returns two probabilities – representing the conditions for class X and class
Z, respectively. Consequently, the network prediction was in this case determined by
rounding each output probability to zero or one, and mapping the resulting two-bit
binary number to the corresponding equivalence class as follows:

00 → I 10 → X

11 → Y 01 → Z

Again, note that this mapping is done due to the fact that class Y corresponds to
both conditions being true, and class I corresponds to neither condition being true.
For this classification scheme, the loss function used when training was the sum of
two individual binary cross entropy functions, one for each output neuron. Using the
binary classification scheme was found to give a slight performance improvement,
and was used in the final GNN model.

It should be noted that the number of weights in the first layer of the GNN in
general depends only on the number of node features, and not the number of nodes.
The global pooling then effectively reduces the number of nodes to one. As such,
in principle, arbitrarily large graphs can be processed with the exact same network
architecture. Simple neural network decoders based on fully-connected input layers
are tailored to a specific code distance d (as this determines the number ancilla
qubits), and can not be used for decoding larger (or smaller) surface codes than the
ones used during training.

Attempts were made to improve the performance of the GNN by using more ex-
pressive graph convolution layers that have been shown to perform well in other
applications of graph classification, but none of the alternative GNN layers tested
(SIGN [22], GIN [9]) gave any indication of improving performance, and were thus
not studied further.

4.3.3 Comparison of Alternative Graph Representations
The final graph representation was determined from early iterative testing of de-
coding performance of the GNN when using different graph representations. A

30



4. Methods

comparison of the same model trained on alternative graph representations is pre-
sented here, to give a motivation for the choices made when determining which node
features to include and how to represent edges. The same model, using the final
GNN architecture presented in the previous section, was trained on a smaller dataset
with 50 000 unique syndromes sampled at code distance d = 7 with an error rate
of p = 11%. 80% of the data was used for training, while 20% was used for vali-
dation. Figure 4.5 shows the validation accuracy averaged over each epoch during
training for five different graph representations: three using different node features,
one where the inverse distance edge weights are squared, and one where edges are
only drawn to the m = 5 nearest neighbours of each node.

0 5 10 15 20 25 30
Training epoch

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n 

of
 c

or
re

ct
 p

re
di

ct
io

ns

2 node features: x = (X, Z)
2 node features: x = (Dnorth, Dwest)
4 node features: x = (X, Z, Dnorth, Dwest)
4 node features, squared edge weights
4 node features, squared edge weights, m = 5

Figure 4.5: Comparison of the average validation accuracy over 30
epochs of training the same model on the same data (d = 7, p = 11%),
using different graph representations of the syndromes. The results show
that using all four proposed node features described in Equation 4.1
improves the performance. Additionally, squaring the inverse distance
between nodes used as edge weights further improves the performance.
Finally, the performance is similar when reducing the connectivity of the
graphs by drawing edges to the m = 5 nearest neighbours of each node.

Firstly, the performance when using different node features is compared. Using
only the defect type node features results in the validation accuracy converging at
45% for this dataset. Similarly, using only the node features describing the relative
distance to the west and north boundaries of the code gives a higher, but still poor,
validation accuracy of 55%. When using all four node features, according to the
definition presented in Equation 4.1, the model is able to better learn the input-
output relation, and reaches a validation accuracy of 70% for this example dataset.
Beyond this, the performance can be seen to increase further when also raising the

31



4. Methods

edge weights (the inverse distance between defects) to the power of 2, according to
the definition used in 4.2. With this graph representation, the validation accuracy
reaches around 79% in the same number of epochs on the same data. Additionally,
when using the same node and edge features, but limiting the connectivity of the
graph by only including the m = 5 shortest edges for each node, it can be seen that
the performance on the validation data is not affected significantly for this code
distance and error rate.

32



5
Results and Discussion

In this section we present and discuss the findings of our study. Results pertaining
to the CNN and the GNN will be treated separately here, and the conclusions of
these results will be compared in the next chapter.

The decoding performance of the trained models was evaluated by repeatedly gener-
ating random errors (allowing for duplicates) on the surface code under depolarizing
noise at various physical error rates p, determining the syndrome consistent with
each error, and using the syndrome as input in the trained decoder. The output
equivalence class predicted by the decoder is compared to the true equivalence class
of the underlying error, where each incorrect prediction is counted as a logical error.
Repeating this procedure and calculating the fraction of incorrect predictions gives
an approximation of the logical error rate of the decoder, defined as

Logical error rate = Number of incorrect predictions
Number of decoded syndromes (5.1)

At the point where the logical error rate of the decoder is equal to the physical error
rate, called the pseudo-threshold, a single unencoded qubit would perform better
than the surface code with the decoder. The logical error rate is expected to increase
as the physical error rate increases, but a higher pseudo-threshold is preferable, as it
leads to higher tolerable physical error rates, as well as better performance at lower
error rates.

33



5. Results and Discussion

5.1 Convolutional Neural Network Decoder

In this section we present the results for the CNN decoder. We will go through
the training process and then look at how the decoder perform against the existing
decoders. Lastly we will look at some other aspects such as performance on larger
code sizes.

5.1.1 Performance and Accuracy

General accuracy and performance of the network was mainly measured on a model
trained on data with code distance d = 7 and error rate p = 0.11 (see Section 4.1.2.1
for a motivation of the choice of physical error rate for training). This code distance
yields a syndrome matrix of size 8 × 8 which is the smallest matrix this network
architecture can handle. Smaller surface codes than that is barely useful to train on
since the number of possible syndromes is so small that a neural network decoder is
not necessary.

In order to create a model to outperform MWPM we trained on the more accurate
data set generated with EWD. The accuracy against the EWD labels reached during
training for this model reached an asymptote at 0.95 after around 20 epochs of
training, and since EWD itself has an accuracy of 0.934 at p = 0.11 the overall
accuracy against the true labels can be estimated to 0.95 · 0.934 = 0.887 which is
higher than the accuracy of 0.886 for MWPM during the same conditions. This is
confirmed in Figure 5.1 where the performance of the model exceeds the estimation
from the algorithm for every p shown in the figure. Thus this model was successfully
able to outperform the MWPM algorithm under these conditions.

Furthermore it was examined how well the CNN decoder predicts other code dis-
tances than what it was trained for. This is shown in Figure 5.2 and it can be seen
that neither code size outperforms MWPM in this scenario and that the two code
sizes actually deviates quite identically for low error rates. For lower error rates
we can then assume that it is as difficult for the model to predict code sizes one
size smaller as one size larger than what was originally trained for. However as p
increases we can see that the predictions on larger code sizes seem to be the more
challenging ones.

34



5. Results and Discussion

Figure 5.1: Performance of a model trained on code distance d = 7,
error rate p = 0.11 and 500 000 unique syndromes generated from EWD
showcasing how the model outperforms the MWPM algorithm on code
distance d = 7.

Figure 5.2: Performance of a model trained on code distance d = 7,
error rate p = 0.11 and 500 000 unique syndromes generated from EWD
showcasing how the model classifies codes of one size smaller respectively
larger than what was trained on.

35



5. Results and Discussion

Furthermore it was noticed that training at a higher physical error rate p was ben-
eficial, as it improved the decoding performance at all error rates. Our findings
show that for the d = 7 code, training on data generated at a physical error rate
of p = 11% improved the decoding performance with respect to training at a lower
error rate of p = 5%. This is shown in Figure 5.3, where two instances of the CNN
decoder was trained separately with data generated at p = 5% and p = 11% for the
d = 7 surface code. Even at p = 5%, marked with an orange vertical line in the
figure, the model trained at data sampled from the higher error rate of p = 11%
performs better, as it has a lower logical error rate.

Figure 5.3: Figure depicting the performance of two models trained
on data with a physical error rate p = 0.05 respectively p = 0.11. The
vertical lines marks the physical error rate on the x-axis that respective
model was trained on.

5.1.2 Performance on Larger Code Distance
We also examined how scalable the CNN was to larger code sizes. The largest code
size trained on was d = 15 and mixed error rates between 0.01 and 0.07. In this case
we used data generated from MWPM since the aim of this inquiry was mainly to
look into scalability and not to outperform MWPM. EWD takes a lot of time and
computer power for code sizes this large and it felt justified to use MWPM.

Under the conditions this network was trained the results are not very promising.
As seen in figure 5.4 the accuracy quickly deviates even within the error rates it was
trained for and MWPM is far superior. However, the conditions were not ideal due
to difficulties generating training data. It would be preferable to train on higher
error rates and larger data sets as well as being able to train on data generated

36



5. Results and Discussion

with EWD to evaluate this better. During training the test accuracy converged at
around 0.82 compared to 0.98 for a model trained on MWPM data for d = 7 and
p = 0.5. Thus the scalability under these circumstances were not ideal.

Figure 5.4: Performance of a model trained on code distance d = 15,
error rates between 0.01 and 0.07 and around 100 000 unique syndromes
generated from MWPM.

37



5. Results and Discussion

5.2 Graph Neural Network Decoder
Here we present the main results for the GNN decoder. First, the performance
of the best GNN model is shown and benchmarked against the MWPM decoder.
Followed by this is an analysis of the time complexity of the trained GNN decoder
with respect to the code distance.

The final best performing GNN architecture using complete graphs was trained on
the dataset consisting of 500 000 unique syndromes sampled from depolarizing noise
on the d = 7 surface code with an error rate of 11%, with target equivalence classes
predicted by EWD. The training progress for this model and dataset is shown in
Figure 5.5, where a training/validation split of 80%/20% was used, with Adam [23]
as optimization algorithm using an initial learning rate of 0.01. The learning rate
was manually decreased, which gave slight improvements to the validation accuracy.
After 150 epochs, training was concluded to have converged. The model reached a
final validation accuracy of around 89% compared with the EWD target labels.

Figure 5.5: Training progress of the GNN decoder with a dataset con-
sisting of 500 000 unique syndromes sampled from the depolarizing noise
model at a physical error rate of p = 11%. The learning rate was manu-
ally lowered, after 100 and 150 training epochs, at which points momen-
tary gain in accuracy can be seen.

38



5. Results and Discussion

5.2.1 Decoding Performance
The logical error rate as defined in of the trained GNN decoder was evaluated from
decoding 100 000 syndromes at each physical error rates p, with values of p ranging
from 1% to 15%, and benchmarked against the MWPM decoder applied to the
same syndromes. Figure 5.6 shows the GNN decoding performance at code distance
d = 7, the same code distance that the model was trained on. It is seen that the
GNN network performs worse than the MWPM decoder at all physical error rates p,
having a higher logical error rate, but has a similar performance at low error rates.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Physical error rate p

0.00

0.05

0.10

0.15

0.20

0.25

Lo
gi

ca
l e

rro
r r

at
e

Unencoded qubit
GNN
MWPM

Figure 5.6: Logical failure rate as a function of physical error rate p
for code distance d = 7, using the GNN decoder trained on d = 7 data
benchmarked against the MWPM decoder. The GNN decoder performs
worse than the MWPM decoder, especially at higher error rates.

Next, the same model, trained at code distance d = 7, was used to decode syndromes
on a smaller code at d = 5. In this case, the GNN decoder performs close to
identically to the MWPM decoder. This confirms that the GNN decoder is able to
generalize to smaller code distances than ones seen during training. This shows some
indication of the GNN being able to learn a generalized representation of syndromes,
and decoding them with an accuracy comparable to MWPM. However, smaller code
sizes have a smaller syndrome state space, and are generally easier to decode. As
such, it would be of more interest to see if the GNN is able to generalize to larger
code distances.

39



5. Results and Discussion

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Physical error rate p

0.00

0.05

0.10

0.15

0.20

Lo
gi

ca
l e

rro
r r

at
e

Unencoded qubit
GNN
MWPM

Figure 5.7: Logical failure rate as a function of physical error rate p
for code distance d = 5, using the GNN decoder trained on d = 7 data
benchmarked against the MWPM decoder. The GNN decoder performs
almost identically to the MWPM decoder, albeit slightly worse, even
though it has not been trained on data generated at d = 5.

In Figure 5.8, the decoding performance of the GNN model trained at d = 7 is
shown for code distances d = {5, 7, 9}, to show the GNN results from Figure 5.6 and
Figure 5.7 together with the performance at a larger code size than was used during
training. Comparing the results at d = 5 and d = 7 shows that below error rates
of approximately p = 11%, the logical failure rate on d = 7 is lower than for d = 5,
beyond which the opposite is true. This could be interpreted as the threshold where
investing in a larger code distance (which requires more physical qubits to encode a
single logical qubit) becomes favorable. However, this trend does not continue for
d = 9. At low error rates below such a threshold, decoders are expected to perform
better as the code distance increases. As such, it is clear that the GNN does not
generalize as well to larger code distances as it does to smaller.

40



5. Results and Discussion

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Physical error rate p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Lo

gi
ca

l e
rro

r r
at

e
Unencoded qubit
GNN d = 5
GNN d = 7
GNN d = 9

Figure 5.8: Logical failure rate as a function of physical error rate p for
code distances d = {5, 7, 9}, using the GNN decoder trained on d = 7.
The performance at d = 9 indicates that the model generalizes well to
larger code distances for low error rates.

5.2.2 Decoding Time Complexity of the Trained Model
Next, we investigate how the runtime of the GNN decoder scales as the code distance
increases. While accuracy is one important measure of decoders, a fast runtime
is crucial as well due to the strict delay requirements when correcting errors in
possible future real quantum computing systems. While optimizing neural network
takes substantial time, neural network based decoders have the potential to achieve
fast decoding times once trained. Here, we only consider the runtime, and not the
decoding accuracy, as the number of samples used in the runtime analysis were too
few to accurately estimate a logical error rate. The GNN decoding time depends on
the number of nodes in the graph representation. Even for a constant code distance,
the number of nodes will vary depending on the syndrome that was sampled, which
complicates the runtime analysis and requires averaging over multiple syndromes at
the same code distance. Additionally the number of nodes also depend on the error
rate, however here runtime for a constant error rate of p = 0.01 was considered to
determine the runtime scaling solely with respect to code distance.
Average decoding times were estimated by measuring the time spent to evaluate
predictions of equivalence classes by the decoders for multiple randomly generated

41



5. Results and Discussion

syndromes at increasing code distances with a constant error rate of p = 0.01. This
was done both for the GNN decoder using complete graphs, where every pair of
nodes in the graphs are connected with an edge, as well as for the GNN decoder
when using the sparse graph representations where each node is only connected to
it’s m = 5 nearest neighbours. The decoding time scaling of the GNN, as well as
the time to construct input graphs from syndromes, is shown in Figure 5.9, and
is compared with the operation time of the local matching variant of PyMatching
[24], a fast implementation of the benchmark MWPM decoder, all run on the same
machine using a CPU for all computations.

15 50 100 200 300
Code distance d

10 5

10 4

10 3

10 2

10 1

100

101

Ru
nt

im
e 

[s
]

GNN Complete graphs
GNN Sparse graphs (m = 5)
MWPM Local matching
Syndrome graph construction

Figure 5.9: Experimentally determined average decoding times of the
GNN decoder, as well as the time to construct graph inputs from syn-
dromes, with increasing code distance at a physical error rate of p = 0.01.
Shown is both the decoding time when using complete graphs, as well
as sparse graphs with m = 5 nearest edges per node. For comparison,
the average decoding time of the local matching variant of PyMatching
[24], a computationally efficient implementation of the MWPM decoder,
is also shown.

Firstly, it should be noted that the GNN has a significant overhead time at the
smallest code distances. This is likely to depend on how the GNN was implemented
in the code, which was not done in a way to necessarily minimize absolute runtime,
in contrast to the PyMatching implementation of MWPM which is more heavily
optimized for runtime.

What is more interesting is how the decoders scale with with the code distance.

42



5. Results and Discussion

At low code distances, the runtime with sparse and complete graphs are virtually
identical, which is expected as the average number of nodes in each graph is small,
and that the limit of m = 5 nearest edges will result in sparse graphs that have
similar connectivity to the complete graphs.

For increasing code distances, it is clear that the decoding when using complete
graphs scales poorly, with roughly two orders of magnitude longer operation time
compared to the sparse graph implementation. The GNN decoder using complete
graphs scales worse than the MWPM algorithm. Using a sparse graph representation
shows how the decoding time of the GNN could be improved upon. However, the
sparse graph representation is not necessarily favorable in terms of accuracy at
these large code distances where accuracy estimations have not been made. Further
studies focusing on decoding larger codes would be needed to draw conclusions about
how the edge density of the graphs affect the decoding accuracy at very large code
distances.

In general, the time complexity of the GNN implemented here is limited by the
GraphConv layers, which iterate over all edges connected to each node. In a complete
graph with n nodes, each node has (n − 1) edges, whereas in the sparse graph
representation with only m = 5 nearest neighbour edges, there are (on average)
only m edges per node. Limiting the number of edges to a constant value m could
then improve the expected worst case runtime of the GraphConv layers from O(n ·
(n − 1)) = O(n2)) to O(n · m). As the number of nodes n in the worst case scales
with the code distances squared, the time complexity of the GNN is then expected
to be O(d4) with complete graphs, and O(d2 ·m) with sparse graphs.

Furthermore, at large code distances, it is then expected that the decoding time
of the GNN decoder (a single pass through the neural network) and the graph
construction depend on the code distance d as power functions T (d) = Cdα. This
is confirmed by the results seen in Figure 5.9, where the decoding times appear as
linear in the log-log graph at large code distances.

To numerically evaluate the runtime scaling exponents α, linear regression was ap-
plied to the logarithms of the empirically determined runtimes and code distances
presented in Figure 5.9. This can be seen as calculating the slope of the decoding
time as a function of code distance in the log-log graph. For this analysis, only
the runtimes at code distances d > 100 were used to give an accurate estimate of
the runtime scaling at large code distances, as the runtime at small distance codes
showed greater variance due to the limited number of errors occurring at a physical
error rate of p = 0.01. The numerical estimation of the exponents α of the empirical
runtime scaling seen in Figure 5.9 are shown in Table 5.1.

For complete graphs, the empirically estimated runtime scaling at large code dis-
tances was found to be O(d4.25). Using sparse graphs reduces the empirical time
complexity of the GNN decoder to O(d1.91). This is due to the number of edges
being limited to the fixed value m, which is significantly lower than the average
number of nodes in the graphs at large code distances. By limiting the connectivity
of the graphs, a significant improvement in time complexity is thus made, possibly
without the sacrifice of predictive accuracy based on the indicative results seen ear-

43



5. Results and Discussion

lier in Figure 4.5 where sparse and complete graphs perform similarly at a d = 7
code with a high error rate of p = 11% (resulting in graphs with a larger number of
nodes on average than the cutoff of m = 5).

Decoding method α
GNN complete graphs 4.25 ± 0.03

GNN sparse graphs 1.91 ± 0.12
MWPM 2.13 ± 0.07

Graph construction 3.99 ± 0.01

Table 5.1: Empirically determined exponents α of the decoding times
and graph construction seen in Figure 5.9 under the assumption that they
behave as power functions T (d) = Cdα with respect to code distance d
at large distances (d > 100), where C is some constant. Computed with
linear regression of the logarithms of the measured runtimes and code
distances at d ∈ {105, 155, 205, 305}. The uncertainty represents one
standard error.

It should be noted, however, that this comparison only considers the execution time
of the actual neural network. Prior to this, a graph must be constructed from the
syndrome to be given as input to the GNN. The time complexity of the graph con-
struction is limited by the computation of edge weights, both when using complete
graphs (where all edges are included) and for the sparse graphs (where the m near-
est nodes must be determined for each node). In this work, the graph construction
was done using a naive algorithm that considers every pair of nodes in the graph
and calculates the corresponding edge weight from the distance between the de-
fects according to Equation 4.2. This naive graph construction has a similar time
complexity to the GNN operating on complete graphs, with an estimated runtime
exponent of α = 3.99 as seen in Table 5.1.
As the graph construction is a necessary step of the GNN decoder that should
be included in the time complexity analysis, the total execution time of the GNN
decoder with sparse graphs in our implementation – from syndrome matrix to pre-
diction – is dominated by the graph construction, with an empirical time complexity
of O(d3.99). If using sparse graphs, it would then be necessary to implement a more
efficient graph construction algorithm that does not consider all possible edges in
the graph when calculating edge weights. One such possible algorithm is Dijkstra’s
algorithm, which can be used to find the m nearest nodes for each source node in
the graph [25]. This approach would rely on traversing a weighted graph connecting
all possible defects, however constructing such a matching graph would only have
to be one once for a given code distance, prior to running the graph conversion
and decoding of syndrome measurements, and would not affect the actual decoding
time. Implementing a faster algorithm for constructing the input graphs, in combi-
nation with the sparse graph representation, could then possibly result in a GNN
that has favorable scaling, even with respect to the fast local matching variant of
the MWPM-based decoder PyMatching, which was found to have an empirical time
complexity of O(d2.13).

44



6
Conclusions and Outlook

In this chapter we go deeper into similarities and differences between the two net-
works and discuss prospects.

6.1 General Conclusions
Two neural network based decoders were developed and implemented to decode
errors in the rotated surface code. By training a CNN model on data generated by
a slow but accurate algorithm, EWD, it was able to outperform a faster but slightly
less accurate, established reference decoder, MWPM. The GNN model was able to
reach a performance level similar to that of MWPM for small surface codes, but was
not able to outperform MWPM. However, the GNN model shows signs of being able
to learn a generalized representation of syndromes, managing to retain performance
at smaller code distances than ones seen during training which was proved to be a
harder task for the CNN model. The generalizability to larger code distances was
however limited for both of the models.

Using sparse graph representations for the GNN model was shown to yield a sig-
nificantly faster run time than when using complete graphs, potentially allowing
for a GNN decoder whose decoding time scales better with code distance than the
MWPM decoder. However, the total decoding time of the GNN decoder using sparse
graphs is limited by the time required to construct graphs from syndromes. To cap-
italize on the decreased computational complexity of using sparse graphs, a faster
algorithm for determining which edges should be included in the graphs is required.
For future studies, a possible alternative to achieve this is applying Dijkstra’s al-
gorithm for finding the shortest path between nodes in a weighted graph with a
preconstructed matching graph, similar to the method used in the local matching
version of PyMatching [24].

6.2 Training at Larger Code Distances and Higher
Error Rates

While the models studied here are able to decode arbitrarily large codes in princi-
ple, the results show that it is likely necessary to train the models at larger code
distances in order to achieve better performance on larger codes. Training against

45



6. Conclusions and Outlook

the near-optimal EWD decoder proved to be effective at d=7, with the CNN out-
performing the MWPM decoder at this code distance. An interesting continuation
of the study is to see if the same approach can be brought to larger code distances,
or if the increasing syndrome state space and slow decoding time of EWD makes
this approach less feasible for larger systems.

Alternatively, one could apply a different data sampling method when training the
decoders presented in this work at larger code distances; such as training against the
true equivalence classes of the underlying errors (without a reference decoder) with
either a much larger set of randomly generated syndromes, or with an unlimited set
of continuously generated syndromes where each batch of training data is freshly
generated, as done in previous studies of neural network decoders [12, 13].

Furthermore we saw in Figure 5.3 that training a CNN on a higher error rate also
was beneficial when classifying lower error rates, yet it is reasonable to believe that
training on a too high error rate would eventually result in a lower accuracy for low
error rates. An interesting study would thus be to examine and trying to find an
optimal error rate to train on that yield the highest accuracy for lower error rates.

6.3 Matrix Representations of Syndromes
As mentioned previously, a limitation for the project was to only use the default
matrix representation of the syndromes in the CNN, meaning that no distinction is
made between X errors and Z errors. In an extension of the project it could be worth
looking at finding a matrix representation where a distinction is made between the
two kinds of defects. They could be represented by different numbers for instance.
Another option considered was to represent the data as a three dimensional array
with two layers. The first layer would contain 1’s where an X-defect is measured and
the second layer contains 1’s where a Z-defect is measured, similar to how colours
are represented in three different channels in a regular rgb-picture.

The matrices also contain zeros where no qubit actually resides in order to form
square matrices. It could be worth considering other means of filling out these spaces
since there is a difference between a zero that could potentially be a syndrome and
a zero where a syndrome could never occur. It might be useful for the network to
be able to differ between these two instances, using for instance negative numbers
for the fillings instead of zeros is something to be considered in the future.

6.4 Noise Models and Imperfect Syndrome Mea-
surements

This study only considered the depolarizing noise model. There are several other
noise models which may be more realistic representations of errors in real quantum
systems, such as biased noise or spatially inhomogeneous noise. A possible area for
future work could be to evaluate the proposed decoders on such alternative noise
models. Additionally, this work only dealt with data qubit errors. In experimental

46



6. Conclusions and Outlook

implementations of error correcting codes, it is possible that the decoding also must
consider errors on the ancilla qubits measuring the syndromes. The decoder must
then consider multiple consecutive layers of repeated syndrome measurements. This
is a problem that could possibly be suitable for a GNN decoder, as graphs can be
constructed to include the information from the different layers. In a CNN decoder
this problem could be tackled with three dimensional input data where different
layers in an array represent different layers of qubits.

6.5 Neural Network Based Decoders Hereafter
Machine learning assisted quantum computing is a growing field gaining more and
more attention. Our project enforces the statement that it is an area worth investing
in. We show that a machine learning model can outperform common decoding
algorithms and expand on ways to improve and further develop such models.

47



6. Conclusions and Outlook

48



Bibliography

[1] Peter W. Shor. “Algorithms for quantum computation: discrete logarithms
and factoring”. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[2] Lov K Grover. “A fast quantum mechanical algorithm for database search”.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing. 1996, pp. 212–219.

[3] Richard P Feynman. “Simulating physics with computers”. In: Feynman and
computation. CRC Press, 2018, pp. 133–153.

[4] Steven M Girvin. “Introduction to quantum error correction and fault toler-
ance”. In: arXiv preprint arXiv:2111.08894 (2021).

[5] Michael A Nielsen and Isaac L Chuang. “Quantum computation and quantum
information”. In: Phys. Today 54.2 (2001).

[6] Austin G Fowler et al. “Surface codes: Towards practical large-scale quantum
computation”. In: Physical Review A 86.3 (2012), p. 032324.

[7] Eric Dennis et al. “Topological quantum memory”. In: Journal of Mathemat-
ical Physics 43.9 (2002), pp. 4452–4505.

[8] Sebastian Krinner et al. “Realizing Repeated Quantum Error Correction in a
Distance-Three Surface Code”. In: arXiv preprint arXiv:2112.03708 (2021).

[9] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In:
IEEE transactions on neural networks and learning systems 32.1 (2020), pp. 4–
24.

[10] Philip Andreasson et al. “Quantum error correction for the toric code using
deep reinforcement learning”. In: Quantum 3 (2019), p. 183.

[11] David Fitzek et al. “Deep Q-learning decoder for depolarizing noise on the
toric code”. In: Physical Review Research 2.2 (2020), p. 023230.

[12] Savvas Varsamopoulos, Koen Bertels, and Carmen Garcia Almudever. “Com-
paring neural network based decoders for the surface code”. In: IEEE Trans-
actions on Computers 69.2 (2019), pp. 300–311.

[13] Ramon WJ Overwater, Masoud Babaie, and Fabio Sebastiano. “Neural-Network
Decoders for Quantum Error Correction Using Surface Codes: A Space Explo-
ration of the Hardware Cost-Performance Tradeoffs”. In: IEEE Transactions
on Quantum Engineering 3 (2022), pp. 1–19.

[14] Spiro Gicev, Lloyd CL Hollenberg, and Muhammad Usman. “A scalable and
fast artificial neural network syndrome decoder for surface codes”. In: arXiv
preprint arXiv:2110.05854 (2021).

49

https://doi.org/10.1109/SFCS.1994.365700


Bibliography

[15] Paul Baireuther et al. “Machine-learning-assisted correction of correlated qubit
errors in a topological code”. In: Quantum 2 (2018), p. 48.

[16] Xiaotong Ni. “Neural network decoders for large-distance 2d toric codes”. In:
Quantum 4 (2020), p. 310.

[17] Christopher Chamberland and Pooya Ronagh. “Deep neural decoders for near
term fault-tolerant experiments”. In: Quantum Science and Technology 3.4
(2018), p. 044002.

[18] Michael M Bronstein et al. “Geometric deep learning: going beyond euclidean
data”. In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

[19] Christopher Morris et al. “Weisfeiler and leman go neural: Higher-order graph
neural networks”. In: Proceedings of the AAAI conference on artificial intelli-
gence. Vol. 33. 01. 2019, pp. 4602–4609.

[20] Karl Hammar et al. “Error-rate-agnostic decoding of topological stabilizer
codes”. In: arXiv preprint arXiv:2112.01977 (2021).

[21] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning with
PyTorch Geometric”. In: ICLR Workshop on Representation Learning on Graphs
and Manifolds. 2019.

[22] Fabrizio Frasca et al. “Sign: Scalable inception graph neural networks”. In:
arXiv preprint arXiv:2004.11198 (2020).

[23] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[24] Oscar Higgott. “PyMatching: A Python package for decoding quantum codes
with minimum-weight perfect matching”. In: ACM Transactions on Quantum
Computing 3.3 (2022), pp. 1–16.

[25] Edsger W Dijkstra et al. “A note on two problems in connexion with graphs”.
In: Numerische mathematik 1.1 (1959), pp. 269–271.

50



DEPARTMENT OF PHYSICS
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Thesis Aim and Objectives

	Quantum Computing
	Quantum Bits and Pauli Operators
	Error Correction
	Encoding
	Logical Operators and Code Distance
	Ancilla Qubits

	Surface Codes

	Machine Learning with Artificial Neural Networks
	Artificial Neurons
	Backpropagation and Gradient Descent
	Convolutional Neural Networks
	Graph Neural Networks
	Graph Layers
	GNNs for Prediction Tasks


	Methods
	Decoding the Surface Code with Neural Networks
	Specific Representation of Equivalence Classes
	Generating Training Data
	Reference Decoders


	Convolutional Neural Network Decoder
	Matrix Representation of Syndromes
	CNN Architecture

	Graph Neural Network Decoder
	Graph Representation of Syndromes
	GNN Architecture
	Comparison of Alternative Graph Representations


	Results and Discussion
	Convolutional Neural Network Decoder
	Performance and Accuracy
	Performance on Larger Code Distance

	Graph Neural Network Decoder
	Decoding Performance
	Decoding Time Complexity of the Trained Model


	Conclusions and Outlook
	General Conclusions
	Training at Larger Code Distances and Higher Error Rates
	Matrix Representations of Syndromes
	Noise Models and Imperfect Syndrome Measurements
	Neural Network Based Decoders Hereafter

	Bibliography

