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Abstract
Context In order to address the growing need for connectivity in today’s cars, the
in-vehicle network has increased in complexity, now consisting of over 100 electrical
control units. Balancing the level of security with high performance is non-trivial,
and current networks have shown to sacrifice security measures for performance,
therefore leaving the networks sensitive to both manipulation and information re-
trieval.

Objective The first objective of this thesis was to assess the security of in-vehicle
networks and identify potential security threats that may be exercised with com-
modity hardware and without expert knowledge in vehicular networking. Secondly,
propose solutions to identified security vulnerabilities that act as a defence against
the exercised attacks.

Method The project was executed with the Design Science Research methodol-
ogy, where an artefact is developed and evaluated through iterations. The artefact
consists of commodity hardware and open software as well as our approach to sim-
ulate an attack of an uninitiated tamperer. The applying artefact was evaluated by
testing it on vehicle test beds. The evaluation was also the basis for the assessment
and in extension the proposed solutions.

Results The in-vehicle network was susceptible to multiple attacks such as Man-
in-the-middle and Replay attacks. For instance, multiple components in the network
were successfully manipulated through replay attacks on the network. The replay at-
tacks were conducted in combination with a minimization algorithm which enabled
reverse engineering of specific functions with high precision. This made it possible
to not only take full control but to block user input. Moreover, Man-in-the-middle
attacks on the Ethernet traffic yielded raw data indicating a lack of encryption and
also enabled us to map the network topology. To resolve the aforementioned issues,
this thesis proposes solutions at varying security levels that would have prevented
our attacks; such as CAN bus message counters, MACsec for low-level protection
against sniffing and TLS encryption for the confidentiality of raw data.

Conclusions The project has shown that it is indeed possible to extract and
manipulate data even with the limitations enforced in this project. In addition, it
showed that the tested in-vehicle networks lack resilience against unauthorized access
and manipulation. The proposed solutions protect against exercised attacks but are
subject to future research in terms of implementation and overhead measurements.

Keywords: Vehicle, Network Security, CAN, Ethernet
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Sammandrag
Kontext För att bemöta det växande behovet av uppkoppling i dagens bilar har
fordonets interna nätverk ökat i komplexitet som nu består av över 100 uppkopplade
styrenheter. Att balansera säkerhetsnivån med hög prestanda är inte enkelt, och nu-
varande nätverk har påvisats offra säkerhet för prestanda. Detta lämnar nätverken
sårbara för både manipulation och informationshämtning.

Mål Första målet i detta kandidatarbetet var att göra en bedömning av säkerheten
hos fordons interna nätverk samt identifiera potentiella sårbarheter i nätverken.
Bedömningen utfördes med kostnadseffektiv och allmäntillgänglig hårdvara samt
utan specialistkunskap inom bilnätverk. Det andra målet var att föreslå säkerhet-
slösningar för funna sårbarheter.

Metod Projektet har utförts enligt Design Science Research metodiken, där en
artefakt iterativt utvecklats och evalueras. Artefakten bestod av kostnadseffektiv
och allmäntillgänglig hårdvara samt öppen mjukvara för att simulera en lekman-
namässig attack. Evalueringen av artefakten baserades på resultatet från avlyssning
och attacker på en testrigg. Detta utgjorde grunden till bedömningen av nätverkens
motståndskraft gentemot sådana attacker samt förslag på lösningar.

Resultat Fordonsnätverket var mottagligt för flera attacker somMan-in-the-middle
och Replay-attacker. Till exempel manipulerades flera komponenter i nätverket med
framgång genom Replay-attacker på nätverket. Replay-attackerna genomfördes i
kombination med en minimeringsalgoritm som möjliggjorde reverse-engineering av
specifika funktioner med hög precision. Detta gjorde det möjligt att ta full kon-
troll och blockera användarinmatning. Dessutom gav Man-in-the-middle-attacker
på Ethernet-trafiken rådata som indikerar brist på kryptering och möjliggjorde
kartläggning av nätverkstopologin. Som lösning för de ovannämnda problemen
föreslås skyddsmekanismer på olika säkerhetsnivåer som skulle förhindrat utförda
attacker; CAN-räknare, MACsec för lågnivåskydd mot sniffing och TLS-kryptering
för datasekretess.

Slutsatser Projektet har visat att extraktion och manipulation av data är möjligt
trots de begränsningar som tillämpas. Dessutom påvisades det att de testade for-
donsnätverken saknar motståndskraft mot obehörig åtkomst och manipulation. De
föreslagna lösningarna skyddar mot utövade attacker men är föremål för framtida
forskning vad gäller implementering och mätningar av overhead.

Nyckelord: Fordon, Nätverksäkerhet, CAN, Ethernet
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1
Introduction

The automation of the modern car has enabled new opportunities and features, and
in many ways made cars more convenient and safer for the driver and passengers.
This has led to an expansion in the cars’ software and their internal communication
system, at a cost of increasing complexity [1]. The increasing number of functions
expected in a modern vehicle inevitably leads to an increasing number of sensors
and devices, each with their own responsibility. In order to address the growing
need for connectivity between components, the modern car has evolved into a net-
work of over 100 independent computers called Electronic Control Units (ECUs).
Each ECU controls one or more aspects of the electrical system. Together with
the sensors and actuators, the ECUs communicate over the in-vehicle network to
handle the majority of the functions, including brakes, lights, and engine controls.
Two common in-vehicle network types are Ethernet and the Controller Area Net-
work (CAN). Both of these networks have their strengths and weaknesses. CAN
is the traditional network in vehicles and is cost-efficient, reliable, but is limited in
terms of bandwidth and therefore security measures. Ethernet is a high bandwidth,
general purpose protocol that will be predominantly used in vehicular networking in
the future to support features such as autonomous driving [2]. With the adaptation
of software-based technologies the vehicle also inherits many of the vulnerabilities
common in the software industry such as Man-in-the-middle attacks. Such attacks
could result in fatal consequences when directed towards critical functions. In order
to minimize the threat of common attacks, the in-vehicle network has to be resilient
against intrusion. In this report, a network is considered resilient against intrusion
if it: (1) does not leak information upon breach, (2) is secured against unauthorized
manipulation.

Prior assessments of resilience have proven the network to be fragile and possi-
ble to be manipulated [3]. In extension, showcasing that control of critical functions
is practically possible. Studies on software-based security solutions have been con-
ducted but have unveiled the dilemma of secure methods having too much overhead
for real-time critical functionality [4, 5]. While a solution through added security
hardware is feasible in terms of performance, it is expensive and unreasonable to
retrofit.

Studies have been conducted analysing CAN security implementations [6, 3, 7].
For instance, Buttigieg et al. studied attacks on an individual component physically
extracted from the vehicle [6]. However, the experiment was conducted in a syn-
thetic environment where the connection to the CAN bus was simulated. In a live
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1. Introduction

setting, direct access to individual components is limited. A comprehensive study
had access to laboratory equipment and established the extent of the vulnerabilities
[3]. Although, the exploitation of discovered vulnerabilities required total access to
internal computers and stationary hardware, which is arguably unrealistic unless
the car is already compromised. Moreover, CAN security measures in the form of
encryption and authentication with medium to high security measures have been
investigated. However, an investigation by Nowdehi et al. [4] concluded that it
had too much of an overhead for a real-time system. Low security measures and
synchronization-based security have been explored and utilized by manufacturers
such as BMW [6]. However, the solution only applies to the debugging/service
OBD-II port, leaving the internal CAN busses still vulnerable.

Due to its simplicity and versatility, Ethernet is nearly ubiquitous in modern com-
puter networks [8]. Its widespread use and vulnerable design have resulted in a
significant amount of research documenting and mitigating its vulnerabilities [8, 9].
However, Ethernet’s use in automotive networks is not as well studied. Studies have
been conducted on adapting existing mitigation solutions to meet the requirements
of automotive Ethernet networks [10, 5, 11]. Nonetheless, there is a lack of inves-
tigatory research into vulnerabilities of automotive Ethernet networks as opposed
to CAN [3, pp. 447–462]. A research project commissioned by the BMW Group
[12] found vulnerabilities related to an Ethernet switch in a production car, yet the
vulnerabilities were implementation specific and the report did not publicly give any
recommendations for mitigating these issues.

While assessments of live vehicles have been carried out, they do not use the type of
commodity hardware used by a hacker. And, while commodity hardware has been
used for assessment in related work, it has exclusively been carried out on specific
components extracted from a vehicle, thus not in a live setting. This paper studies
vulnerabilities found with commodity hardware in a live setting and aims to discuss
and propose software solutions to resolve discovered vulnerabilities. The research
questions are as follows:
1. How resilient are in-vehicle networks against unauthorized access and manipula-
tion, conducted with cost-efficient hardware and without expert knowledge?,
2. What software solutions could have prevented methods exercised in question 1?

To address these questions, automotive CAN and Ethernet have been analysed.
The authors argue that substantial vulnerabilities exist with the aforementioned
limitations, which enable data extraction and manipulation. For CAN, a counter
based solution is proposed. While the solution is low security it has a low over-
head and pose a first barrier of defence against replay attacks. In Ethernet, a list
of recommendations is proposed, such as leveraging existing encryption models for
application level encryption, randomized Media Access Control (MAC) addresses,
and the use of existing authentication models for the Local Area Network (LAN).

The contribution of this thesis is an assessment of in-vehicle network resilience
conducted without expert knowledge in vehicular networks and with commodity

2



1. Introduction

hardware. The thesis also proposes security measures that would have prevented
the attacks exercised in the assessment.

The structure of this thesis is as follows: Related work is presented in chapter
2. Chapter 3 includes the theoretical background for context. The methodology
and research design are presented in chapter 4. Results and proposed solutions are
presented in chapter 5, and the discussion of the results in relation to related work is
presented in chapter 6. Ethics is discussed in chapter 7, and the thesis is concluded
in chapter 8.

3
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2
Related Work

In 2010, Koscher et al. [3] conducted a comprehensive experimental security analy-
sis on two modern automobiles. Similarly to our study, their purpose was to assess
the level of resilience a conventional automobile has against digital attacks. Their
attack methodology consisted of packet sniffing in combination with targeted prob-
ing, fuzzing and reverse engineering. As a result, they managed to manipulate
every ECU that was tested, and therefore achieving complete control over compo-
nents such as door locks and brakes. Koscher et al.’s strategies included advanced
hardware and techniques that require expert knowledge about the components and
electrical system in the vehicle. Our study on the other hand examines whether
similar vulnerabilities are present in a production car from 10 years later restricted
to more commodity hardware and limited access to the test bed.

Another experimental security analysis, but in a simulated vehicle environment,
was conducted by Buttigieg et al. [6]. Their objective was to analyse the resilience
of the CAN protocol specifically. By conducting a Man-in-the-middle attack with
the use of commodity hardware, they managed to control the instrument cluster
extracted from a BMW E90. Our study presents an alternative and less physically
intrusive method for taking control over specific components by exploiting security
issues in the CAN protocol. Furthermore, we present experimental results from an
industrial automotive test bed that together with the results from Buttigieg et al.
strengthen the need for security measures in the CAN protocol.

Lin and Sangiovanni-Vincentelli [4] proposed a software-only security mechanism
for the CAN protocol to help prevent masquerade and replay attacks, which are
also attack methods exercised in our study. Lin and Sangiovanni-Vincentelli fo-
cused on a security mechanism that keeps the bus utilization as low as possible to
fit the CAN bus’s limited bandwidth. Their solution consisted of three elements:
ID tables, pair-wise secret keys between nodes, and message counters. The solu-
tion mechanism proposed by Lin and Sangiovanni-Vincentelli was used as a base for
finding appropriate security solutions based on our experimental findings.

The security mechanism proposed by Lin and Sangiovanni-Vincentelli, along with
nine other solutions, was evaluated by Nowdehi et al. [4] in 2017 in order to in-
vestigate the lack of adoption of suggested CAN security measures in the industry.
Nowdehi et al. found that none of the examined solutions fulfilled all of the crite-
ria set by industry experts, which highlighted the difficulty of developing security
mechanisms appropriate for the industry. The measurements in cost-effectiveness,
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2. Related Work

security level, and acceptable overhead provide a foundation for this thesis to reason
about the viability of possible solutions.

Kiravuo et al. [8] conducted a survey of vulnerabilities present in LAN Ether-
net networks. The survey states that Ethernet’s prevalence in computer networks
is partly due to its ease of configuration and simplicity. However, these attributes
also make Ethernet networks vulnerable. Kiravuo et al. lists known vulnerabilities
of Ethernet networks and presents possible mitigations of these vulnerabilities. This
thesis verifies the existence of the vulnerabilities that were listed by Kiravuo et al.
(Unauthorized Join, Topology and Vulnerability Discovery) in automotive Ethernet
networks.

Corbett et al. [13] discuss the impact of the vulnerabilities documented by Kiravuo
et al. [8] on automotive Ethernet networks. Since the safety of the vehicle depends
on accurate and timely readings from its sensors, the authors decided to focus on
protecting the integrity of the network. Their paper compares the attributes of
the Ethernet with other automotive network standards and presents a list of secu-
rity challenges and opportunities that differentiate Ethernet from the alternatives.
Corbett et al. conclude with a list of recommendations to protect the automotive
Ethernet network from misuse, such as fingerprinting ECUs based on physical layer
attributes. This thesis provides alternative mitigation measures than presented by
Corbett et al. based on our experimental evidence.

Lastly, Lang [5] studied existing security standards to find suitable ones to adapt to
automotive Ethernet systems in order to mitigate the vulnerabilities documented by
Kiravuo et al. [8]. Similar to Corbett et al. [13], Lang focused on protecting the in-
tegrity of Ethernet packets against modification. Using a simulated automotive net-
work, Lang was able to find two standards (DSA and HMAC) that could protect the
network’s integrity while maintaining a low level of latency. The recommendations
provided by Lang can be implemented in combination with the recommendations
provided in our thesis.

6



3
Theoretical Background

In this section we describe terms and concepts that are necessary to understand the
contents of this thesis.

3.1 The OSI Model
The communication layer of a vehicle or any network implement network protocols,
which define the communication between hardware and software components [14].
These protocols can be organized into different layers, where each layer provides dif-
ferent services and is often dependent on the previous layer [14]. The International
Organization for Standardization (ISO) developed the Open Systems Interconnec-
tion (OSI) model, which consists of seven layers as shown in Figure 3.1.

1. The physical layer consists of the network’s physical transmission technologies,
which control how signals are transmitted over the medium.

2. The data link layer establishes and terminates connections between other de-
vices in the network. It divides binary sequences into frames and transmits
them from source to destination.

3. The network layer decides the most suitable path through the network, and
routes packages accordingly.

4. The transport layer divides and reassembles flows of data into packets that
are transmitted through the lower layers.

5. The session layer creates and maintains communication channels between de-
vices.

6. The presentation layer prepares data retrieved from the application layer for
transmission. It defines how data is decoded, encrypted and compressed in
the transmission between two devices.

7. The application layer consists of the protocols used by services and applica-
tions. Examples of such protocols are Hypertext Transfer Protocol (HTTP),
File Transfer Protocol (FTP), and Domain Name System (DNS).

In order for the data to be sent to a receiver it uses a header, which contains
the necessary information related to its protocol for routing the data between the
different layers. Figure 3.1 shows the OSI model as well as the data and its header.
While sending, the data is encapsulated at each layer and a new header is added.
While receiving, each layer de-encapsulates the data and removes a header in order
to move it to the next layer.

7



3. Theoretical Background

Figure 3.1: A visual representation of sending data from the sender to the receiver
using the OSI model.

3.2 The In-vehicle Network

The in-vehicle network consists of interconnected ECUs. The software for the dif-
ferent vehicle functionalities is distributed over the ECUs [15]. Examples of network
technologies that currently exist to connect the ECUs is CAN, the Local Intercon-
nect Network (LIN), the Media Oriented Systems Transport (MOST), FlexRay, and
the Ethernet [16]. Figure 3.2 illustrates an example model of the in-vehicle archi-
tecture with the different ECUs and the kinds of networks that are often used to
connect them.

Figure 3.2 is a general model of what the in-vehicle network can look like, but
the in-vehicle network’s design can vary between different car models since they do
not all follow the same standard.

8
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Figure 3.2: A model of the in-vehicle communication. From [17]. CC-BY.

3.3 The Controller Area Network (CAN)
CAN is a serial communications protocol used in automotives, aircrafts and indus-
trial equipments. It is a standard that is designed to allow modules in a vehicle to
communicate with each other without a host computer [18].

3.3.1 Physical Structure

Figure 3.3: Point-to-point and Bus architecture

The CAN protocol utilizes a bus topology that allows for several modules to con-
nect to a single bus opposed to point-to-point network topologies, see Figure 3.3 [18].
Components may request or send data or subscribe to certain messages while ig-
noring the rest. This greatly reduces the amount of wiring needed for all connected
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components compared to other network topologies [18]. However, point-to-point
CAN connections are also common.

Figure 3.4: Visualization of the CAN bus topology which displays how each node
is connected to both CAN-High and CAN-Low.

The components on the CAN bus in the vehicular domain are ECUs. The com-
munication between ECUs on the bus is carried out through two CAN bus wires
running the length of the entire network. The two wires are called CAN high and
CAN low as seen in Figure 3.4. The connection of an ECU or Node n to the CAN
bus is established by connecting it directly onto the CAN high and CAN.

Figure 3.5: CAN high and CAN low voltage levels in data transmission.

Figure 3.5 depicts data transmission on the CAN bus. When the bus is in idle mode,
both wires carry a voltage of 2.5V in a state called recessive which denotes a value
of 1. For a value 0, or dominant state, the voltage of the CAN high line goes up to
3.75V , and the CAN low drops to 1.25V . The voltage difference between CAN high
and CAN low is what represents the transmitted value. A power surge to the two
wires preserves the difference between the two, making the bus resilient to inductive
spikes and electrical fields and therefore appropriate for automotive usages [18].
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3.3.2 Bus Performance

The CAN bus is used mainly for controlling various executive components in the
vehicle, such as the engine control unit and the headlights. Larger transmissions
such as those transmitted by a modern infotainment system are thus unsuitable for
CAN [19]. Broadcasts onto the network are done in bit chunks called frames that
have priorities as shown . The component broadcasting the highest priority frames
gets immediate and uninterrupted access to the bus [18]. In the meantime, the other
components can only receive data. A lower priority frame will have to be resent if
blocked by a higher priority one. This makes the CAN bus a reliable option for
sending urgent and high priority frames .

The CAN bus offers a bit rate of up to 1 Mbit/s at half duplex, with the most
common bit rates being 125 and 500 kbit/s [18]. Since larger frames take a longer
time to send, the introduction of large frames inevitably leads to higher latency.
As explained earlier, the CAN bus queues the frames based on the priority of the
identifier. Assuming a high priority frame is repeatedly sent onto the bus, then a
lower priority frame will be blocked indefinitely. Real-time performance systems
demand guarantees that the message will be delivered and on how much time the
transmission will take until fulfilled. The CAN bus is not guaranteed to fulfil these
terms, therefore it is unsuitable for real-time systems without clever use [20]. How-
ever, in a well-designed CAN implementation a study showed that at 30% busload,
all frames may be transmitted and received within a realistic real-time application
deadline [21]. Utilizing the priority inherent in CAN, a busload of up to 80% is
possible while still receiving frames on time.

An analysis of the response time of the CAN bus showed that the shortest time
for queuing and broadcasting a frame onto the bus is 5 ms for the messages with the
highest priority identifiers. A frame with lower priority identification average 50-
100 ms in response time. The CAN bus’ efficiency, robustness, and cost-effectiveness
make it a valid option to use in the industry, despite its real-time performance [22].

Authorization through software introduces more overhead for a given payload [4].
Several of the most promising authentication methods depend on a back and forth
handshaking which inevitably increase the bus load. In order to uphold a realistic
real-time application deadline, the amount of data sent on the bus would have to
be cut down in proportion to the authentication overhead [21]. A benchmark from
2017 measures this authentication overhead on ten of the most promising solutions
and shows that even weak authentications experience problems with scaling [4].
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3.3.3 Frames

Figure 3.6: Visualization of standard- and extended CAN frame structure.

CAN frames are part of the OSI data link layer. Each frame is made up of sub-
sections as can be seen in Figure 3.6 [18]. The standard CAN frame starts of with
a SOF (Start of Frame) indicating the start of a new frame. Next is the identi-
fier which subscribers may listen to. An identifier (ID) with a lower value has a
higher priority and is therefore going to block other frames with a higher ID. The
RTR indicates whether the frame is a request or message. The IDE, r0 and DLC
fields together are called the control field. The IDE (Identifier Extended) indicates
whether the frame is of standard or extended format, and it is first indicated after
this bit has been read. DLC (Data Length Code) indicates the length of the payload.

The zero to eight bytes payload carry the frame data. The CRC (Cyclic redun-
dancy checksum) is a 16 bit error detection checksum that is used to handshake
whether the frame structure is intact. The ACK (Acknowledge bit) is transmitted
by the client if the message has been correctly interpreted. The EOF (End of Frame)
is used to detect bit stuffing. Lastly the IFS (Interframe Space) is a calculated delay
such that the receiver may process the frame before the next message is sent.

One can see from Figure 3.6 that the extended CAN format differs from the stan-
dard CAN frame. For instance, the identifier is split into two fields. The SRR
(Substitute Remote Request) is a placeholder to make sure that IDE is interpreted
before the frame might differ. From the IDE which is now set to extended format
and in further interpretation of the frame, the receiver knows that the frame is in
extended CAN format. Apart from the extended identifier, SRR and a single bit r1,
the extended CAN format is largely the same as standard CAN. Worth emphasiz-
ing is that the payload of the extended CAN is no larger than the standard CAN
frame. The extended CAN format enables 229 possible identifiers as opposed to the
211 possible in the standard CAN frame but introduces more of an overhead by the
two control fields as depicted in Figure 3.6.
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3.3.4 Utility Software
There is software, both licensed and free, designed for working with CAN busses
on a high level such as CANutils1. CANutils is a Linux specific set of utilities that
enable high-level tools for the CAN bus such as transmitting, replaying, sniffing
and dumping logs. Upon connecting to the CAN bus using CANutils, the bit rate
must be specified to match the bit rate of the connected bus. Not matching the bit
rate would not yield any results as CANutils would not be able to interpret frames
correctly, discarding malformed frames where the CRC is violated.

3.4 Ethernet
The Ethernet is another type of communication protocol that connects the various
devices in the in-vehicle network. The advantage of Ethernet is its high bandwidth,
which is why it is often used in the infotainment system and the Advanced Driv-
ing Assistance System (ADAS) [23]. The infotainment system provides the driver
with information and entertainment such as navigation often through an interactive
panel. ADAS uses cameras and sometimes sensors to gauge its environment and
therefore increases the safety and comfort while driving or parking, for example
through the detection of pedestrians in the street [24].

In automotive Ethernet, the 100Base-T1, and 1000Base-T1 Ethernet standards
are used to support bandwidth speeds of 10, 100, and 1000 megabits per second re-
spectively [25]. These standards consist of a single pair of twisted cables to transfer
data between two components in the network. The single twisted pair of cables used
in the T1 standards saves about 80 % in cost and about 30 % in weight compared
to the TX standards.

3.4.1 Network Architecture
There are different possible network architectures for Ethernet-based networks, such
as CSMA/CD Ethernet [26]. CSMA/CD stands for carrier sense multiple access with
collision detection and is a media access control scheme responsible for mitigating
collisions in the network [27]. In the automotive context it is also referred to as a
bus system, where the connection is half-duplex, since sending and receiving signals
cannot happen simultaneously [26]. However, Ethernet is usually used in a switched
model in order to avoid the issues that come with bus-based communication [27].
The switched model uses switches, which are forwarding devices, to control the
communication between the hosts in the network [26]. The switches forward the
frames to the corresponding ECUs based on their physical addresses [27]. The links
in the switched network form point-to-point connections to each other, meaning
there are only two units connected by the switch, as opposed to a bus system where
signals are broadcasted. The links are also full-duplex, which means that signals
can be sent and received simultaneously, and therefore there are no collisions.

1userspace utilities for Linux CAN subsystem (aka SocketCAN). www.github.com/linux-
can/can-utils
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3.4.2 Ethernet Frames
The data in the Ethernet network is sent in Ethernet frames, whose structure is
shown below in Figure 3.7.

Figure 3.7: The Structure of a Ethernet frame.

The preamble and SFD are used to synchronize the data that is received from a host
[8]. However, they are only relevant to the CSMA/CD system and not the switched
network [26].

The destination and source MAC addresses are used to identify the sender and
receiver, and the information is used by either the end nodes to conclude whether
the packet is meant for them or the switches to forward the incoming packets [26].

The field for the MAC addresses is followed by the optional 802.1Q Header with
the Tag Control Information (TCI), which contains information of the frame’s pri-
ority [26]. In the next field, there is the information on the length or Ethertype of
the payload [8]. Then comes the payload, which is the message that the frame is
transporting and can have a minimum size of 42 or 46 bytes, depending on whether
the 802.1Q Header is present [26]. Lastly, there is the checksum of the frame, also
referred to as the CRC or FCS, which checks the integrity of the frame [8].

3.4.3 Protocols Related to Ethernet
Ethernet is the underlying network technology that corresponds to layer 1 and 2
in the OSI model. Therefore, it must be used in combination with a model that
handles the functionality higher up in the OSI model, such as the TCP/IP protocol
suite [24]. The TCP/IP model provides the functionality for layer 3 to 7 as well as
the linking of the second and third layer in the OSI model [24].

One of the protocols that link layer 2 and 3 is the Address Resolution Protocol
(ARP) protocol [24]. The protocol is responsible for finding the right MAC address
for an IP address, which it does by broadcasting an ARP request [28].

The main protocol in the third layer is the IP (Internet Protocol), which is es-
sential to the whole TCP/IP model since higher layer messages are dependent on
this protocol, such as transport layer protocols [24]. The IP is responsible for ad-
dressing, i.e. finding the hosts in the network, and routing the messages to their
destination host [24].

The protocols in layer 4 handle the transportation of information and are there-
fore very dependent on the IP for the data transmission [24]. The most important
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protocols in this layer are the User Datagram Protocol (UDP) and the Transmission
Control Protocol (TCP) [24]. The TCP is able to manage the traffic flow to avoid
congestion and also provides relatively reliable connections, since messages that were
transmitted unsuccessfully are detected and resent [24]. UDP on the other hand is
one of the communication protocols that focuses on the transmission speed and is
used to mitigate bandwidth issues, since it does not receive acknowledgements in
the transmissions [29]. However, this also makes UDP not as reliable as other com-
munication protocols since there is no response if messages could be sent [29].

The TCP/IP does not follow the OSI model exactly and layers 5, 6 and 7 in the OSI
model amount to one top layer in the TCP/IP model, referred to as the Application
layer. Some of the most known protocols in that layer are the DNS, which is respon-
sible for matching the names of IP devices to their IP addresses, and the Network
File System (NFS), which enables the transmission of files over the network [24].

In the automotive Ethernet, a middleware solution is needed in order to connect
and enable data exchange between the different software components in a vehicle,
such as SOME/IP [26]. SOME/IP is short for Scalable service-oriented Middle-
ware over IP and is built upon TCP and UDP. As the name implies, SOME/IP
is a service-oriented architecture where complex systems are organized into multi-
ple loosely coupled "services" that communicate with each other using messages. A
service-oriented architecture is particularly suitable for automotive use due to the
distributed and specialized nature of ECUs.

3.5 On-Board Diagnostics

On-Board Diagnostics (OBD) is a diagnostics system built in a vehicle that is used
for diagnosing the vehicle. Diagnostics include engine malfunctions, vehicle status,
and rate of airflow.

The standard OBD-II specifies the OBD-II connector. The OBD-II connector ex-
poses the CAN bus as part of the standard. As seen in Figure 3.8, CAN high and
CAN low have pins on the connector for connecting it to the CAN bus.

the OBD-II port can be used to connect CAN loggers that can send requests over
the bus. The targeted ECUs will receive the requests and send data back to the
logger [30].
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Figure 3.8: The structure of the OBD-II connector with standardized pinout.

The OBD-II port is also visible in Figure 3.2 as a physical access point to the in-
vehicle network. It is considered a rather vulnerable point in a car since it is easily
accessible which is a necessity for workshops and authorities in order to run and
monitor vehicle diagnostics. Therefore, the port can easily provide the attacker
with sensitive information [31].

3.6 The CIA Triad
Confidentiality, Integrity and Availability are all three key aspects of computer and
information security, and together they form the CIA triad [32]. The CIA triad is
used as an information security model to guide organizations’ policies for securing
data. Analysing the cybersecurity of a system in terms of these three aspects can
help identify problems and by that improve the current security level.

Confidentiality refers to restricted information to only be available to authorized
parties. Integrity, in terms of information security, means that data should be
protected against improper modification and destruction. The Availability aspect
implies that information and data should be available to authorized parties for ac-
cess and modification when needed. A breach in any of the three aspects of the CIA
triad compromises the security of the system.

3.7 Security Limitations of CAN and Ethernet
When the automotive industry began implementing CAN as an in-vehicle network,
there was not much anticipation for the level of connectivity vehicles have today [33].
The initial intention was to connect only a small number of nodes and since the CAN
bus then was not very accessible, security was not given the highest priority [33].
Subsequently, its design has led to different security issues, most of which originate
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from insufficient authentication and encryption [33]. One of these problems is the
CAN protocol’s broadcasting, where an attacker can listen to and reverse-engineer
the CAN packets that are being broadcast and as a consequence also inject new
packets to interfere with the network and in the end the vehicle [3]. There is also
no authentication scheme to protect the bus nor is there usually any encryption to
protect the data, which facilitates an attack on the bus [33]. Another limitation of
CAN is therefore its susceptibility to denial of service attacks, for example by packet
flooding [3].

Since CAN has a limited bandwidth, there are potential issues in how the net-
work can be improved to solve certain security limitations. Ethernet on the other
hand does not have this bandwidth limitation and can therefore more easily adapt to
currently needed security measures. However, there are also multiple vulnerabilities
in this in-vehicle network. For instance, a security problem in the Ethernet network
is its accessibility. The communication system for Ethernet is made up of ECUs
but also switches to which anyone can connect as long as there is a free port [8].
Moreover, a denial of service attack can also be performed on the Ethernet network
by for example a resource exhaustion attack where frames are sent that “require
additional processing and handling” [8]. Furthermore, there are also architectural
issues since the security regarding the Ethernet network spans over multiple layers
that trust each other, which can also be exploited by an attacker [8].

3.8 Security Threats to the In-vehicle Network

The in-vehicle network is complex and connected to many external services, which
in turn can also increase the risk for different security threats, both through physical
interfaces or remote attacks [34].

3.8.1 Denial of Service Attacks

One possible attack to the network is a denial of service (DoS) attack, which targets
the vehicle’s communication layer by disrupting the communication and rendering
it unavailable [35]. For instance in the CAN bus, attackers can set the identifier
segment of their messages to a low number and consequently their messages will be
prioritized and block the other ones [31].

As mentioned above, DoS attacks in the Ethernet can be implemented through
resource exhaustion attacks, where frames are constantly sent to exhaust the compo-
nents in the network [31]. For example, Figure 3.9 illustrates a DoS attack targeting
a network switch. The attacker repeatedly sends frames for the switch to log and
will as a result overload it [8]. Consequently, the data traffic over this switch will
either slow down or stop and block the communication to other components such as
ECUs [8].
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Figure 3.9: A Denial of service attack targeting a switch.

3.8.2 Man-in-the-middle Attacks
Another type of threat to the in-vehicle communication is the Man-in-the-middle
attack. It involves an attacker intercepting the data traffic in the in-vehicle network
and therefore being able to read the communication between different ECUs without
the hosts knowing about it [36]. As a consequence, the attacker can collect sensitive
information and also manipulate the data while it is being sent from one host to
another [37].

The attack requires access to the network, which can be gained remotely or phys-
ically by for instance connecting to a network switch or exposed wires [38]. The
attacker can then intercept the communication by exploiting the network protocols’
weaknesses, for example through spoofing [38]. Figure 3.10 illustrates a Man-in-the-
middle attack targeting a network switch.

Figure 3.10: An example of a Man-in-the-middle attack. The attacker intercepts
the communication from Host A to Host B and have the chance of altering the
message before it reaches Host.

3.8.3 Injection Attacks
Any attack where the attacker sends fake messages through one of the entry points
in the network, such as the OBD-II port or the infotainment system, is considered
an injection attack [31]. In order to be able to send these fake frames when the
structure of the network and therefore the messages are relatively unknown, the
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attacker can perform for example a Man-in-the-Middle attack or an eavesdropping
attack, where they gain access to the data traffic and can then identify patterns to
replicate later [31]. Examples of injection attacks are spoofing and replay attacks.

3.8.4 Replay Attacks
Another typical threat to the in-vehicle network is a replay attack, where the attacker
captures signals sent over the network and then resends them without modification
[7], as shown in Figure 3.11.

Figure 3.11: Illustration of a replay attack. Where host A’s communication with
Host B is captured by an attacker. The attacker may then replay the communication
to Host B

As mentioned in the security limitations for CAN, the network has no authentication
scheme which therefore enables a replay attack since the legitimacy of the source
cannot be determined by the ECUs [39]. Even over the Ethernet where messages
are often encrypted, replay attacks can still be implemented because the attacker
does not have to be able to read the content of the message since the message is
only reproduced from captured signals [8].

3.9 Security Solutions for CAN and Ethernet
The limited bandwidth of the CAN bus makes it difficult to implement security
solutions such as encryption and authentication. The CAN bus has strict resource
constraints and real-time requirements for critical functions that need to be ful-
filled to ensure adequate performance, i.e. an acceptable overhead [4]. Two possible
solutions for protecting the integrity of CAN frames while still passing these require-
ments are checksums and counters.
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A checksum2 represents a calculated sum of a message and is used to verify in-
tegrity of the transmitted data. The CAN frame payload is used to calculate the
checksum by the sender. The checksum is then stored within the payload, called an
in-message checksum. The receiver can by performing the same calculation as done
by the sender, verify that the in-message checksum matches the receivers calculation
in order to verify integrity. As a result, the receiver may detect and discard anoma-
lies. Since the checksum is stored within the payload, a larger amount of frames may
have to be sent to transmit the same amount of data, which in turn increases latency.

A counter on the CAN bus is used to invalidate previous frames. Both the sender
and receiver have to share a synchronized counter. As with the checksum, the sender
reserves part of the payload for the counter. The receiver checks whether the counter
in the payload matches the receiver’s internal counter and ignores the message upon
mismatch. If a replay attack were to be conducted, the logged messages would be
invalid upon injection due to a counter mismatch. As such, counters are an effective
security measure against replay attacks.

VatiCAN is an authentication method that uses both a counter and checksum to
secure the CAN bus. While it is an effective protection against common attacks, it
quadruples the processing time for messages [4]. However, VatiCAN may still be
considered to have an acceptable overhead for protecting a small number of critical
messages.

Ethernet and the IP technologies built on it have by default no guarantees for
confidentiality or authenticity. While this makes Ethernet adaptable and easy to
configure, it also makes it vulnerable to malicious attacks. To grant these guarantees,
security protocols have been developed to protect the different layers of the network.

In order to protect the network layer, the Internet Protocol Security (IPsec) was
created to secure the IP protocols with encryption and a message authentication
code contained in the frame [26]. Moreover, the Media Access Control Security
(MACsec) was developed to prevent possible attacks on the MAC unit in the data
link layer, such as ARP spoofing [26]. MACsec is implemented through point-to-
point encryption at every hop, instead of end-to-end between two hosts as IPsec
does, therefore providing authentication and encryption in LANs. This protects
the connection between the devices from Man-in-the-middle attacks but does not
protect from attacks targeting higher layers of the network stack. To protect the
application layer a standard such as the Transport Layer Security (TLS) can be
implemented. TLS is a cryptographic standard, frequently used by web-browsers to
communicate sensitive information through untrusted networks.

2https://en.wikipedia.org/wiki/Checksum
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This section describes the methods used to answers our research questions. First,
we describe the experiments conducted on the automotive test bed1 followed by
the methods used to analyse the results from the experiments. This section is split
into CAN and Ethernet sections due to each protocol requiring different tools and
techniques.

4.1 Research Design
The aim of this thesis was to assess the security of the in-vehicle network in a car
with limited resources and without expert knowledge on the electrical system. Since
we did not have any prior knowledge about the automotive software architecture
and in-vehicle communication, it made it difficult to plan a singular experiment
that would give us the information needed to answer our research questions. Sub-
sequently, we chose to follow the Design Science research approach since it allowed
us to progressively build knowledge about the system.

The approach is a flexible research method with the objective of gaining a better
understanding of a problem through multiple iterations and finding possible solu-
tions through the process of developing an artefact [40]. This makes it very suitable
for a project with an explorative nature such as this one.

The test bed used during the project was only available at two separate occasions.
This limited access to the test bed resulted in the project being formed as two iter-
ations, where each visit contributed to the evaluation of our artefact as well as new
information for developing our approach to attacking the in-vehicle security in the
next iteration.

4.1.1 Problem Formulation
An important part of our research method was to define the relevant problem envi-
ronment for developing a purposeful artefact that can lead to a better understanding
of the issue and its solutions [40]. We initiated our research with a literature review
to better understand the field of automotive networking. While our literature review
consisted primarily of research papers, more applied and informal sources were used
to better prepare our experiments.

1A semi functional automotive designed for rapid prototyping and developing
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Moreover, we were able to gain more insight into the problem area by talking to
experts working at our industry partner. This resulted in this project focusing on
CAN and Ethernet for the assessment of the in-vehicle network security and in-
fluenced our approach for manipulating the networks. The discussions with these
experts only related to our problem formulation in order to maintain a non-expert
level of knowledge and not defeat the purpose of our thesis.

Lastly, the functionality of the test harness for manipulating the CAN bus was
tested prior to our visit to the industry partner’s office by utilizing the OBD-II port
of a real car (2008 Ford Fiesta) to capture signals. This also gave us a better idea
of how our artefact needs to be designed in order to ensure that it was operational.

4.1.2 Artefact
As mentioned above, the artefact in this project is made up of both the test har-
nesses, which consist of hardware and software and are described further in 4.3.2
and 4.4.2, as well as our general approach to making the assessment of the in-vehicle
security. Our method to making the assessment of the in-vehicle network security
consists of capturing signals and developed into injections by evaluating our results
from the previous iteration.

4.1.3 Evaluation of the Artefact
The artefact was evaluated after each iteration in order to improve it and in the end
be able to address our research questions and make an assessment of the security in
the in-vehicle networks as well as to propose solutions to the found vulnerabilities.
The method used for the evaluation was testing, specifically functional (black box)
testing on specific components in the in-vehicle network security detailed as use cases
in 4.3.1 and 4.4.1. The use cases were chosen based on the expected complexity of
extracting information, and more importantly their relevance to the vehicle’s security
by evaluating the consequent security issues from retrieving the information and
manipulating the component.

4.2 Test Bed
The test bed provided by our partner in the automotive industry consisted of an
entire vehicular electronic system with all electronic components included, as seen
in Figure 4.1. In other words, a stripped-down version of a real car without the
mechanical parts such as chassis, engine, and wheels. This allowed for human inter-
action with the system which could be used for testing. The electronic system in the
test rig was fully functional and it was possible to put it in active mode, which would
mimic a started car. However, it was still a model that was produced in 2020 and
therefore did not have all the security mechanisms that newer generations may have.

There were multiple reasons for the experiment to be conducted on a test bed
instead of an actual production car. For one, testing on an actual car would be a
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costly process in terms of both resources and time. Moreover, whether the experi-
ments are conducted on the test bed or a real car does not affect the outcome, since
both networks are the same and the physical accessibility is not considered in the
assessment of the security. Lastly, trying to manipulate the network on a live vehicle
may be dangerous as it is difficult to predict the vehicle’s behaviour through various
manipulations.

Figure 4.1: The test unit with the in-vehicle network used in this study

4.3 CAN
The approach for collecting and analyzing data related to CAN is described in 4.3.3
and 4.3.4. This information gathering relied on a ”Test Harness” (4.3.2) to record
the frames being transmitted in the in-vehicle network, which was performed on the
use cases explained in ”Use cases” (4.3.1). The injection based on the initial analysis
of the collected data is detailed in 4.3.4.

4.3.1 Use Cases
Headlights
Controlling the headlights shows that the network is not resilient against unautho-
rized access and manipulation. The possible states of the headlights are small, for
example, off, low-beam and high-beam. This eased the search process for identi-
fying corresponding CAN frames since the payload should only contain a small set
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of discrete values. Furthermore, headlights are an exterior component with easily
accessible wiring making it a vulnerable entry point to the CAN bus. Control of the
headlights is a proof of concept in the assessment of the CAN bus as a whole. This
does not imply that the same vulnerabilities may be exploited for functions such
as gas and brake. However, control of the headlights shows that the network does
not provide a layer of security itself. Unauthorized manipulation was conducted by
replay attacks as well as further reverse engineering.

Door Locks
Door locks are components that are expected to be secure due to the potential con-
sequences of a vulnerability. While manipulation of headlights is a proof of concept,
control of the door locks would imply low resilience even in security-critical compo-
nents. The outcome of this together with the aforementioned use case will provide
enough insight for the thesis to reason about the level of resilience of the CAN bus.
Replay attacks were performed in order to assess the level of resilience.

4.3.2 Test Harness
The hardware harness was developed by studying similar research papers and their
respective capture device. We also used official documents on the network standards
and personal blogs describing similar experiments with CAN to decide what hard-
ware and software to use for our experiments as well as how to develop it.

In order to interpret the binary data as readable CAN frames, this thesis uti-
lized a Raspberry PI 4B running the Linux-based general-purpose operating system
Raspian Pi OS. Sniffing the CAN bus was facilitated with the use of the Raspberry
PI exposed IO pins to which interface cards are connected. The interface card was
a Raspberry PiCAN2 which acts as a CAN transceiver. This card required no par-
ticular modification, which made it a suitable choice. The test harness can be seen
in Figure 4.2.

Figure 4.2: Raspberry PI 4B to the left. PiCAN2 to the right and
MCP2515/TJA1050 at the top (not used).

24



4. Method

Since manufacturers have experimented with encryption of the OBD-II port [6], we
prepared a set of raw wires for connecting the device to the internal CAN, bypassing
the OBD-II.

A goal for the thesis was to conduct the assessment with commodity and cost-
effective hardware. The hardware harness was assembled with only commodity
parts and the total cost amounts to $170. The harness supports injection and real-
time sniffing and is cost-effective for the task in relation to industrial alternatives.

For the software in the test harness, the project utilized the CAN-Utils, which
is a free and open source set of userspace tools and utilities for the Linux CAN
subsystem socketcan2. The tools CANdump, CANplay and CANsniffer were used
for capturing and analyzing CAN frames. CANdump is a tool for dumping data in
real-time from a CAN interface. It also supports ASCII sign interpretation of the
payload. CANplay transmits a frame or set of frames from a log file to the network.
CANsniffer only displays CAN frames that have been changed within a given delta
time frame, highlighting the changed bytes. Thus, CANsniffer simplifies real-time
analysis by filtering noise3.

4.3.3 Data Collection and Injection
A multimeter was used to identify CAN bus wires among the kilometres of wires
present in the test bed. While oscilloscopes are well suited for this task, a multimeter
is portable and emphasizes the uninitiated approach.
When a physical connection was established, the right bit rate was found by exhaus-
tively testing the most common bit rates 125- and 500 kbit/s.

For collecting data, the CANutils application CANdump was utilized which cap-
tures all traffic on the bus. The captured traffic is then saved to a log file which
can be reinjected onto the network with the application CANplay. Manually in-
teracting with the use case specific component, while capturing the data traffic to
a log file, may capture an executive frame or set of frames. In order to verify
that executive frames were captured, a replay attack with the log file and CANplay
was conducted. If the vehicle during the replay attack exhibited behaviour corre-
sponding to the manual interaction then executive frames had indeed been captured.

For each use case component, a 3-4 second interaction was captured. In addition, a
2-minute log file was recorded without any manual interaction.

4.3.4 Analysis
The goal of the analysis was to identify which CAN frames corresponded to a func-
tionality in the use case components, see section 4.3.1. In extension, this frame could
be injected to perform an unauthorized manipulation of the system. Successfully

2SocketCAN. www.kernel.org/doc/Documentation/networking/can.txt
3data when the car is idle
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conducting all Data Collection and Injection steps of a use case function implies
that the function was susceptible to replay attacks (see section 4.3.3).

As described in the previous section, the analysis started with two collections of
data A and B. A where the executive frames have been verified as present and B
where they are not present, i.e. the large noise log (2-minute recording with no man-
ual interaction). Since B did not contain the executive frames, all frames present in
B were removed from A. The operation resulted in A being reduced in size while still
containing the executive frames. During the test harness development, this method
halved the number of frames when tested on a 2008 Ford Fiesta.

With hundreds or even thousands of frames sent each second a large amount of
noise was still present in A. In order to further minimize the number of frames, an
algorithm reminiscent of the Delta Debugging Algorithm (DDMin)4 was used, as
seen in Figure 4.3. The goal of using this algorithm was to find a minimal inter-
val of frames that, when injected, still preserved the functionality. Each step as
indicated by an arrow to a new subset was tested with a replay attack in order to
check whether executive frames were still present. Red boxes represent that the
executive frames were lost, green represents that the executive frames were present.
In each step the interval is cut in half. If neither of the halves contains the execu-
tive behaviour, the splits were increased in size. When no further minimization was
possible, a minimal interval of frames were found. However, redundant frames were
still present within the interval.

Figure 4.3: Delta debugging minimization (DDMin) algorithm for finding function
a in a log file interval.

4www.wikipedia.org/wiki/Delta_debugging
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To remove redundant frames, the CANsniffer application was used. CANsniffer
displayed frames present on the CAN bus where the data recently changed, as seen in
Figure 4.4. Since the remaining unique frames from Delta Debugging Minimization
were few, each frame was analyzed in CANsniffer while manually interacting with the
use case function. Executive frames were found by studying the frames in CANsniffer
which only upon interaction matched a frame in A. After this step, exact executive
frames needed for manipulating the function were found. The complete flow of all
steps are visualised in Figure 4.5.

Figure 4.4: CANsniffer live analysis. Red text indicates a change of value while
white indicates that it is static

Figure 4.5: Reduction flow of captured CAN frames. Arrows represent the steps
of CAN analysis.

With a set of only executive frames, each frame was injected individually into the
CAN bus to determine each frame’s responsibility. To further analyse a given frame,
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bitflips in the payload were performed and the frame reinjected. Single bitflipped
frames reinjected with preserved function implied absence of an in-message check-
sum. In conjunction with the limited payload size of CAN frames, an absence of
in-message checksum enabled exhaustive search for responsible bits within the pay-
load.

The complete analysis was conducted by hand with the use of text editors sup-
porting regular expressions and CANutils.

The OBD-II port exposed the internal CAN network as a part of the OBD-II stan-
dard but presented the internal CAN busses in a substantially different form and
thus its data was not analysed.

4.4 Ethernet
Due to the nature of the IP protocol [41], data sent by devices is encoded by multiple
layers of network headers. Our approach consisted of using our ”Test Harness”
(4.4.2) to monitor and log traffic, and then perform our ”Use cases” (4.4.1), where
we manipulate specific components in a predefined and well documented series of
steps. All data gathered with our test harness is then put through our analysis
process (4.4.4).

4.4.1 Use Cases
Control of the Infotainment System
The infotainment system in a vehicle is able to store different kinds of personal infor-
mation through for example logs from connected mobile devices such as the contact
list. Moreover, different vehicle functions are controlled via the infotainment system,
such as the air-conditioning unit, settings of sensors and also the interface through
which the user accesses the ADAS. An attack on the infotainment system would
therefore be a serious threat regarding both safety and privacy.

The specific features handled by the infotainment system that we focused on were
the air-conditioning unit, cameras used in the ADAS and the media player. The
attack we conducted to take control of the infotainment system was a Man-in-the-
middle attack. This enabled data collection without interfering with the connection
in this point-to-point network.

4.4.2 Test Harness
The hardware used to capture signals was a capture module and an OBD-II to
RJ455 Ethernet port adapter. The capture module was a CM Ethernet Combo from
Technica Engineering, as seen in Figure 4.6, which is a device used for recording

5RJ45 is a type of cable connector used for Ethernet networks. The laptop used for storing the
data in this project uses RJ45.
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Ethernet traffic through wiretapping6 between two devices. Since Ethernet networks
are point-to-point connections, any interference would cause the communication to
break. Moreover, it was crucial that the module was compatible with the 100-BASE-
T1 Ethernet standard present in our test unit. This capture module was chosen since
we find it to be a cost-efficient solution that is available to anyone. With the price at
$1 200 at the time of writing, we conclude it to be a small investment considering the
opportunity to manipulate vehicles worth more than tens of thousands of dollars.

Figure 4.6: Technica CM Ethernet Combo

The capture module was connected to the network by removing a cable from one of
the ports on the ECU responsible for the infotainment system and connecting it to
the capture module instead, and then using another cable to connect the module to
the ECU’s transmitting port. The data traffic was then recorded using the network
protocol analyser tool Wireshark 7.

In order to discover any Ethernet interface exposed via the OBD-II port, a con-
nector was needed to verify this. A custom OBD-II adapter was constructed by
soldering an Ethernet cable to a male OBD-II connector, as seen in Figure 4.7.

6An act of using a listening device to listen to traffic over a connection
7www.wireshark.org
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Figure 4.7: Soldered OBD-II and RJ45 connectors with breakout pins constructed.

4.4.3 Data Collection
The data from the test unit’s Ethernet was collected through the capture module
as well as the OBD-II port.

After the hardware was connected to the test bed’s network, the network flow was
recorded both without any user input as well as while testing the specific functions
in the infotainment system Most recordings were done in time intervals of approx-
imately 10 seconds, except for the ones regarding the media player which required
more time in order to capture useful data. The steps for recording the data traffic
for the three features are detailed below.

Air-conditioning unit
• Switching the air-conditioning between min/max at the interval of 1 second.
• Changing the air-conditioning temperature at the interval of 1 second.

Cameras used in the ADAS
• Turn on one of the vehicle cameras.
• Switching between the different Vehicle cameras at the interval of 1 second.

Media player
• Pair a phone over the infotainment system, and play music.
• Activating different functions over a longer period of time.

For the OBD-II port, data was gathered with the open source network scanning tool
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nmap8 to try gather information about the systems running on the network.

After the data collection, all the data was stored locally on the laptop in use. Due
to the potential sensitivity of the data, the data was encrypted before sharing with
the thesis group for analysis.

4.4.4 Analysis
The main goals of the analysis of the Ethernet communication were to chart the net-
work topology, document frequently used communication patterns between devices,
and discover any trivially accessible payload data. Charting the network topology is
a crucial step in understanding an unfamiliar network. This was done by creating a
graph with network devices as vertices and inter-device communication as directed
edges, where the direction of the edges was dictated by the flow of data, disregarding
the two-way handshakes used by certain protocols (ex TCP). The capture module
records network traffic in the form of PCAPNG 9 files and Wireshark was used to
view and analyse them.

The identification of devices in the network was accomplished by filtering out unique
IP addresses and MAC addresses from the Ethernet traffic dump. MAC addresses
are allocated by IEEE 10, which we were able to cross-reference to identify the man-
ufacturers of certain components. By connecting a manufacturer to an otherwise
opaque device gave us insight into what possible use the device has and could even
help decode the data received.

Identifying trivially accessible data was conducted by selecting possible packets
based on packet size, and then analysing the packets by converting the binary data
to ASCII lettering. Using this approach we were able to discover any payload sent
on the network in plain text.

4.4.5 Injection Vulnerability
While the previous stages answer the ”unauthorized access” part of research question
(1), this stage investigates unauthorized manipulation of the network.
We decided to test the Ethernet network’s vulnerability to injection attacks on a
component identified in the analysis (4.4.4) to prove that unauthorized manipulation
of the network is possible. These tests were conducted through the network injection
tool available in the capture module.
Two tests for manipulating the network were drafted:

1. Sending an ICMP echo package (”ping”) to one of the discovered devices. If
the device sends a response then we have proven that manipulation of the
network is possible.

8https://nmap.org/
9File format used for logging network communication (https://pcapng.github.io/pcapng/draft-

tuexen-opsawg-pcapng.html)
10https://standards.ieee.org/faqs/regauth.html11

31



4. Method

2. Send a SOME/IP request to a discovered SOME/IP service. If the service
acknowledges the subscription, then we have successfully manipulated not only
the network but a service in the network.

Test (1) was conducted with the GNU ping 11 tool and test (2) was conducted with
a package injector written in Haskell.

11Ping is a network diagnostic tool and is part of the iputils package.
www.github.com/iputils/iputils
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In this section, we document the results from the data capturing and data analysis.
According to the ISO/OSI model (see Figure 3.1 in section 3.1), data from different
layers was collected from the in-vehicle networks. For CAN the data was captured
from the data link layer, while for Ethernet data was obtained from both the trans-
port layer in the form of UDP/TCP packets and the application layer in the form
of JSON objects. An overview of the attacks and their outcome is shown in Table
5.1.

Attacks on the in-vehicle networks
Attack Ethernet CAN

Infotainment Headlights Door locks
Sniffing X X X
Injection X X -
Replay - X X

Table 5.1: The results of the conducted attacks for the use cases for both CAN
and Ethernet. The green checkmark indicates that the attack was successful, the
red X indicates that the attack was unsuccessful, and the hyphen indicates that the
attack was not performed.

5.1 CAN
The results related to CAN are organised in the following way: First, we present the
results from establishing a connection to the CAN bus. Secondly, results associated
with the specific use cases are presented. Lastly, we provide recommendations on
how to increase security based on the outcome of our experiments.

5.1.1 Establishing Connection
CAN bus wiring was identified by tracking cables from a headlight which only had
two wires operating on the CAN standardised 2.5V . With the cables identified
and with the use of inexpensive cable tap products, the connection was established
without interfering or breaking the original one. A successful connection was made
evident by attempting to sniff data with CANdump in which no data would be
shown if there was a connection fault. This was due to CANdump being set up to
not display frames not validated by the CAN frame checksum. A connection fault
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could be either the wires being set up wrong or a mismatch in bit rate between the
CAN bus and capture device. The correct bit rate was found by testing the most
common bit rates 125kbit/s and 500kbit/s, see section 3.3.3. A connection to the
internal CAN bus was established within the first hour of experimenting with the
test bed without previous knowledge of the vehicle model. Therefore, CAN cables
should be better protected from physical intrusion.

5.1.2 Use Case Headlights
Connected to the same CAN bus as the headlights, the hazard lights were turned
on while capturing frames with CANdump. The log file was used in a replay attack
while the hazard lights were turned off. This resulted in the test bed flashing the
front hazard lights which implied a replay attack vulnerability. Since only the front
hazard lights flashed, it led us to believe that a second CAN bus was present. This
hypothesis was confirmed by conducting the same replay attack while connected to a
CAN bus adjacent to the rear lights, which flashed the rear hazard lights but did not
affect the front hazard lights. This is positive in terms of security since a malicious
connection to a single CAN bus only compromises a subset of the vehicle’s communi-
cation and functionality. However, a total mapping of which functionality is present
on the different busses would be needed to assess the extent of this security measure.

The replay attack vulnerability in the headlights showed that it was possible to
manipulate CAN connected components through the network. This means that the
in-vehicle network was compromised. While an arguably simple manipulation of the
hazard lights was possible, the complex sequences needed for stealing the car are
expected to be substantially harder or even impossible.

With the log file used in the successful replay attack of the front hazard lights,
further analysis as described in section 4.3.4 ensued. The analysis was successful,
resulting in a complete reverse engineering of the front direction indicators as seen
in Figure 5.1.

Figure 5.1: Finding nibble responsible for direction indicators. A25 is the ID and
the hexadecimal characters following represents the payload.

The top frame in Figure 5.1 represents the original CAN frame responsible for flash-
ing the hazard lights. By iterative bitflips on the payload of the original frame and
reinjection, a single hexadecimal character responsible for controlling the direction
indicators was found. The result is visualised in the remaining rows of the figure.
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As described in section 4.3.4, this bitwise reverse engineering is made possible when
the integrity of the frames is not protected with in-message checksums. The result
is that it allows an uninitiated to reach a low-level understanding of the system.
In our case, among the thousands CAN frames captured, we could determine that
the fourth hexadecimal character in the frame with ID A25 was responsible for the
direction indicators. The same complete procedure was successfully executed for
flashing the high beams independently. To ensure that the success of our method
was not model specific, flashing of headlights was performed on a second vehicle
model with the same outcome.

With the obtained knowledge about the frame responsible for the direction indi-
cators, more precise control of the headlights was achieved. The frame denoted
"Off" in Figure 5.1 was then injected repeatedly with the result that user interaction
with front direction indicators was blocked. Blocking of user input was attempted
with the original large log file with the result that functions corresponding to the
other frames were affected and a bus overload ensued. A high precision payload
such as the "Off" frame enables an efficient DoS attack with no risk of bus overload.

The presence of a second bus led us to investigate whether a replay attack affecting
both rear and front hazard lights was possible from the OBD-II port. The OBD-II
port operated on the same bit rate as the internal busses. However, upon sniffing
it was made evident that the OBD-II functioned differently as it was utilizing the
extended CAN format made evident by the longer ID as seen in Figure 5.2.

Figure 5.2: Extended CAN frames captured from OBD-II (left) compared to stan-
dard CAN frames captured from internal CAN bus (right). Notice the longer ID
section of each frame.

Presuming that the two detected CAN busses both operated at above half capacity,
it would be impossible for the sum of the two networks traffics to fit the CAN
bus interface exposed by the OBD-II port without a doubled bit rate. In fact, the
internal CAN busses would have to operate on less than half of their capacity since
the extended-CAN format itself increases the overhead. Since access to all ECUs is
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a prerequisite for diagnostics, it leads us to believe that either the OBD-II is filtered
to fit the bandwidth limit or operates differently. Attempting a replay attack as
conducted on the internal CAN bus yielded no results. This implies that none of
the executive frames for hazard lights were captured. This could mean that the
OBD-II port operates on a request-basis, and all frames captured were response-
or status messages, not executive frames. If no executive frames are sent while
logging, then replay attacks are impossible to conduct. The reduced number of
frames present on a request based interface could enable the use of security in the
form of authentication and counters since the bus load is low when idle.

5.1.3 Use Case Door Locks
Connected to the same CAN bus as the driver side door panel, the door locks
were toggled while frames were captured with CANdump. However, replay attacks
showed no results on the door lock mechanism. Neither activation nor deactivation
was possible. With no successful replay log, further data analysis was not possible.
This implied that the network provided varying levels of resilience depending on the
component, where critical functions were better protected. The strategy employed
for high precision reverse engineering on headlight functions was accounted for. In
order for replay attacks to have no effect, old messages have to be invalidated. A
prolific protection against replay attacks on the CAN bus is a counter mechanism
(see section 3.9), but other authentication methods may very well be present. Since
no executive frames could be found, the existence of checksums is unknown.

5.1.4 Overall Recommendations
Security enhancements for the CAN communications bus are complex due to the
limitations present such as bandwidth and timing. To reiterate, in order to provide
a layer of security against replay attacks as conducted in this thesis, old messages
have to be invalidated. This theoretically blocks replay attacks since recordings will
not contain any valid executive frames.

Counters on the CAN bus are used in the industry today. Practically, counters
are of finite size, frames once valid and then invalidated are bound to be valid again
in the future. The time until a frame is valid again depends on the size of the counter
as well as the update frequency.

Due to the previously mentioned limitations of the CAN bus, we propose a low-
frequency global counter with no checksum attached. This will render replay attacks
non-deterministic which complicate reverse engineering. The frequency and size of
the counter may be adapted to suit computational limitations of the ECUs. Ideally,
only a single ECU transmits the counter onto the bus at set intervals. Each execu-
tive frame would reserve space in the payload for the counter value at the time of
transmission. The receiver compares the payload counter with the global counter,
only accepting an acceptable delta between the global counter and the executive
frame.
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In summary, the proposed solution is a first barrier of defence and would not provide
theoretical security.

5.2 Ethernet
In this section, we document the results from our analysis (4.4.4). First, we discuss
the nature of the data traffic we were able to record with the capture module.
Secondly, we list key results from our analysis that were used to identify specific
components and sub-systems in the network. Thirdly, we present the extents we
were able to determine the network topology. Our results below relate to the use
case ”Control of the infotainment system”. Finally, we propose recommendations
for solutions that could have prevented the methods used for our findings.

5.2.1 Nature of Captured Traffic
By performing a Man-in-the-middle attack, we were able to log the traffic sent and
received from the infotainment ECU, as well as log its connections to other compo-
nents.

Analysing the recorded network traffic in Wireshark, we could determine the use
of multiple protocols, including TCP, UDP, DNS requests, and SOME/IP. We could
also infer that the ECU is connected to some sort of network switch.
We were also able to determine that the majority of the recorded network commu-
nications followed patterns that were repeated at fixed intervals.

5.2.2 Identifying Components
It was possible to read the IP headers from all captured packages. Additionally, it
was possible to read the headers in TCP and UDP packages. The source, destination
IP addresses, and ports in these headers were used to analyse the flow of informa-
tion between devices and the topology of the network. From the captured Ethernet
frames we were also able to read the source and destination MAC addresses. These
were cross-referenced as specified in (4.4.4). While not all addresses were registered
with IEEE, the devices whose addresses were registered could be connected to known
manufacturers.

By scanning the test bed’s OBD-II port with the network scanner Nmap, we were
able to extract information about which version of Android is running on an Android
device on the network.

5.2.3 Charting the Network Topology
After understanding the nature of the captured data, we were able to draw a map
of the identified devices in the network and reconstruct how these different parties
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communicate with each other. By listing the IP addresses from the recorded pack-
ets, a graph of the network topology could be constructed. The packet flow from
the data recordings indicated two different sub-systems, both providing different
functionality to the network since the intercepted packets showed no direct commu-
nication between these two sub-systems. The two sub-systems will be referred to as
network 1 and network 2 1.

Figure 5.3: A graph showing the mapped components from network 1 with arrows
showing flow of data.

Network 1 shown in Figure 5.3 is closely linked to the vehicle telemetry. This was
concluded as some intercepted packets contained clear-text telemetry information.
This includes information like GPS coordinates and elevation (see Figure 5.4 and
5.5). We were able to validate this information based on the coordinates of the test
bed.

1The description of network 1, and network 2 are generalised to abstractions of the real networks.
This is due to security reasons and to prevent presenting confidential information
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Figure 5.4: Abstraction of a JSON-object in clear-text, sent from component A
to component B. Real key names are modified or replaced with "key", all values are
replaced by value or a sequence of x’s.

39



5. Results

Figure 5.5: Abstraction of a JSON-object sent from component B to component
A. Real key names are modified or replaced with "key", all values are replaced by
value or a sequence of x’s.

We concluded that network 2 shown in Figure 5.6 is closely linked to the user in-
terface for the infotainment system. This is based on the internet services that
component Y and Z request access from, such as requests to a satellite imagery and
mapping service, and requests to internet services hosted by our industrial partner2.
Examples of internet services used by some components are:

• Location API from a location API provider
• Multiple internet services provided by our industrial partner
• Other APIs from a subcontractor

Since the system appears to be operating a navigation service due to the location
API, as well as other services provided by a subcontractor providing user interface
services, we are confident that this is linked to the user interface of the infotainment

2The suppliers of component B in Figure 5.3, and the components X, Y, Z in Figure 5.6 was
identified by name, but is obfuscated in this report due to security reasons.
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system.

Figure 5.6: Showing the mapped components from network 2 with package flow,
including requests to the world wide web.

Finally, we were able to discover which component was produced by which in-vehicle
systems manufacturer. We analysed which manufacturers were hosting the internet
services requested by the components on the Ethernet network, and also searched
online after which standardized MAC addresses are registered for which manufac-
turers. We could therefore conclude which manufacturers and which vehicle systems
our industry partner uses. In Figure 5.7 we believe component B, X and Y to be
delivered by the same manufacturer and work together to handle a specific function-
ality in the system.

Component Z is believed to be a main component for the user interface for the
infotainment system in the vehicle. The scan of the OBD-II port showed there is
an android device connected to the network. Component Z makes DNS requests
to services from an infotainment service manufacturer, therefore there is reason to
believe that this component is the Android device, and handles the user inputs for
the infotainment system.
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Figure 5.7: Showing components believed to be provided by one sub-contractor,
colored in orange, Android device colored in red. External resources such as web
API’s are shown as blue clouds

All of these findings present issues for the manufacturer since there is sensitive
information in the different components of the car’s communication layer and their
network design. There are also privacy concerns for the owner and user of the vehicle
due to the telemetry information found in cleartext.
Being able to construct a topology of the network gives an attacker a better under-
standing of the network. This can make vulnerabilities in the network more obvious
to an attacker and give suggestions for how and where malicious packets can be sent.

5.2.4 Injection

The result of the injection was ambiguous. The program constructed to send a
SOME/IP request to a targeted IP-address did not give any concrete results. We
were initially not sure if the SOME/IP request had been sent successfully, but based
on the monitored traffic from the capture module, we were able to intercept TLS
protocols we had not captured in earlier recordings where no attempt of any in-
jections was made. While we cannot be sure of a direct correlation between our
results that included the TLS protocol and the injection, the occasions that this
protocol was discovered might suggest that there is. According to Zelle et al. [42],
the TLS protocol is an efficient tool for encrypting the communication and ensuring
authenticity as well as confidentiality and integrity. The authors’ description of its
implementation would explain why our injection did not work, since the injected
packet would have had to use the same cryptographic algorithm as in the network.
However, the authors also mention how TLS ensures confidentiality in the network
since the information is encrypted, which we have stated above as not being the
case since we were able to read GPS data from certain packets. This raises doubts
about how this protocol is implemented and what data it protects.
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5.2.5 Recommendations
Here we present our recommendations to mitigate the vulnerabilities we have dis-
covered.

MACsec
Our findings from the Ethernet network were possible due to the link layer being
vulnerable to passive listening attacks. To mitigate this vulnerability a standard
such as IEEE 802.1AE or the link layer network security standard MACsec can be
implemented. The reason for this choice is that MACsec protects the confidentiality
of low level network protocols such as ARP, which was instrumental in discovering
the network topology. Major integrated circuit manufacturers such as Broadcom
and Marvell have released 1000BASE-T1 Routers with support for this technology
(8957X-PB1 and 88Q222XM respectively) which could make the cost of implement-
ing this recommendation more reasonable.

Obfuscated MAC addresses
Coupling a manufacturer to the MAC address on an otherwise unknown ECU could
immensely accelerate the reverse engineering process. To hinder this, we recommend
randomizing the MAC address so that this coupling cannot be made. This method
is already in use in consumer devices such as smartphones, where for example IOS
devices automatically generate a random MAC address every 24 hours to prevent fin-
gerprinting, where attackers gather information about the network through scanning
it or analysing its response after injecting packets [43]. Continuously regenerating
MAC addresses would be unnecessary in this case and would only increase the com-
plexity of the network. Instead generating new MAC addresses during the assembly
process would be sufficient.

TLS
Finally, we propose Ethernet networks to utilise application level encryption for non
critical services such as telemetry and infotainment systems. While MACsec pro-
tects the links between devices, if a malicious agent gains control of the switch or any
of the devices inbetween, then the guarantee of confidentiality is lost. Implementing
end-to-end encryption between services with lax latency requirements guarantees
a stronger protection against reverse engineering and the loss of confidentiality of
sensitive information. TLS could be a suitable candidate for such end-to-end encryp-
tion. TLS has been well tested as the standard behind HTTPS, and the 1.3 release
included many latency improvements [44]. However, further research is needed to
find if TLS is actually suitable for automotive networks.

5.3 Validation
The results from our topology discovery (5.2.3) as well as our results from our
CAN analysis (4.3.4) was sent to our industry partner for validation to confirm the
accuracy of our methods. Our deduction that component Z was a central component
in the infotainment system was correct, as well as the existence of a telemetry device
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handling positioning data. Our industry partner also validated that checksums
and counters are partly implemented within CAN, and that the headlights are not
protected with these mechanisms. Our hypothesis that the OBD-II port operated in
a different way compared to the internal CAN was also confirmed, it worked mostly
on a request-basis in contrast to the internal CAN.
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Discussion

We have analysed the security of the Controller Area network and the Ethernet
network in a modern automotive vehicle. The experiments have been conducted with
commodity hardware, and without expert knowledge of the underlying electrical
system, and the outcome has been evaluated to answer our research questions.

6.1 Research Question 1
How resilient are in-vehicle networks against unauthorized access and manipulation,
conducted with cost-efficient hardware and without expert knowledge?

Regarding unauthorized access and manipulation, our experiments showed that the
tested in-vehicle networks were not resilient to these vulnerabilities. We demon-
strated that both the CAN and Ethernet networks are accessible with cost-efficient
tools and no expert knowledge. Using a reduction algorithm (4.3.4), we were able
to identify the desired CAN frames and initiate a replay attack within hours of first
gaining access to the test bed. The Ethernet network was also compromised by
inserting a capture module between two connections, allowing us to read sensitive
information in plain text.

To validate the danger of unauthorized access to an automotive network, we an-
alyzed the Ethernet network’s vulnerability to Topology and Vulnerability Discovery
as documented by Kiravuo et al. [8]. Using the methods suggested in the paper
(such as analysing ARP requests) we were able to extend the aforementioned study
into the automotive domain, and document the network’s topology and identify de-
vices. With this, we can confirm that Topology and Vulnerability Discovery is not
limited to computer networks but automotive networks as well.

By taking control of the headlights, we have shown an alternative approach to com-
promising components connected to the CAN bus compared to Buttigieg et al. [6].
They exploited the lack of authentication in the CAN Protocol by performing a Man-
in-the-middle attack. We performed replay attacks as an alternative method and
achieved similar results. This shows that the security issues presented by Buttigieg
et al. are not limited to Man-in-the-middle attacks, and further strengthen their
claim that with enough knowledge, time and resources, an attacker can perform
such attacks. Furthermore, physically connecting to the CAN bus as a proxy leads
to more control of the network since the proxy can alter sent signals, which is im-
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possible for a node with a regular bus connection. But on the other hand, it is more
complicated to establish such a connection, especially in a vehicle environment.

6.2 Research Question 2
What software solutions could have prevented methods exercised in question 1?

We have presented suggestions for software solutions that would have prevented our
findings from research question 1, for both CAN (5.1.4) and Ethernet (5.2.5). For
CAN we suggest the use of a reference counter to protect the integrity of CAN
frames, while for Ethernet we suggest using multiple standards to protect the mul-
tiple layers of the OSI network stack.

Concerning the vulnerability mitigation in automotive Ethernet, we focused more
on protecting confidentiality rather than integrity. This was in contrast to the work
of Corbett et al. [13] who argued that the integrity of the network is more important
than the confidentiality due to the direct life threatening dangers of losing control
of a vehicle at high speeds. However, this does not make protecting confidentiality
unnecessary. Protecting the confidentiality of packet content increases the cost of
reverse engineering services running in the network, thus adding an additional hur-
dle for reliably affecting the integrity of the network.

In [4] the authors evaluate the most promising CAN authentication methods but
based on the industrial criteria they reject all of them. In their conclusion, they say
that the CAN bus is unsuited for secure communication and other technologies with
higher bandwidth should be considered. The lack of adoption in industry of security
mechanism in CAN, and the result from their evaluation indicate that a solution
that guarantees complete security is not possible. But we argue that low security is
better than no security. Lin’s [7] security mechanism included counters to prevent
replay attacks and these types of counters would have prevented our attack strategy.

6.3 Unexpected Findings
In the beginning of the project, we expected to spend a significant amount of time
on reverse engineering and analysing the data to achieve the knowledge needed to
inject data. Our goal with our first visit to the industrial partner was to collect
data, but within four hours, we had already achieved control of the headlights. The
ease of performing a replay attack was surprising. Koscher et al. [3] drew the same
conclusion when experimenting on a car from 2009, and we can confirm that this
is still the case for a car produced in 2020. We expected the tested CAN commu-
nication bus to implement some type of security mechanism against replay attacks.
We found nothing preventing us from controlling the headlights after establishing
a connection to the bus. This might be a consequence of how the vehicle’s system
prioritizes components in terms of security. Securing every component leads to a
larger overhead than only securing a subset. Excluding the headlights may in that
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way make it possible to have stronger security on more safety critical components.

Another unexpected finding was data appearing in plain text when analysing the
Ethernet communication. A reason for this could be that the computing device that
handled the data did not have enough computational power to decrypt it. Another
reason could be that the network designers found the encryption of this data to be
an inefficient use of resources, in spite of it being possible to map the network based
on this plain text information.

6.4 Limitations
The total number of vehicles tested in this paper was only two. As such we cannot
state for a fact that their vulnerabilities are shared by other vehicles outside of those
we have tested. Additionally, the transition from analysis to the implementation of
new research findings within automotive networking take time. As such our test bed,
which represents the electrical system in a production model, does not represent the
latest developments in the field. Therefore, the vulnerabilities and recommendations
may have already been accounted for in future models.

Moreover, the experiments conducted in this thesis were performed on a test bed
designed for easy access. Consequently, physical obstacles such as the vehicle body
and the placement of components in a real car provide an additional layer of security
that we have not accounted for.

We were also not able to verify the automotive Ethernet’s vulnerability to unautho-
rized manipulation. This was because we required specialized software to interact
with the identified services that was not available and too complex to be developed
in time for testing.

Finally, we have not tested whether our solutions’ resource cost and operational
overhead are suitable for automotive networks. Automotive networks require more
strict limits in latency than most computer networks. Therefore, additional analysis
and possibly modification of existing solutions are needed before being considered
for implementation in new vehicles.

6.5 Future Work
We hope the results from our findings can be used for further research into automo-
tive network security. For instance, further research is needed in analysing higher
level automotive protocols such as SOME/IP for vulnerabilities. Additionally, in
order to protect automotive networks from the attacks demonstrated in this paper,
research into adapting existing standards to automotive networks (such as the work
of Martin Lang [5]) is needed.

Another suggestion for future work is research into the computational overhead
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for our suggested solutions. In this project, we intentionally explored the network’s
security from a black box perspective, making it impossible to calculate the cost in
terms of operational resources for real-time systems.

The CAN protocol analysed in this thesis was an in-vehicle network implemen-
tation. But the CAN protocol is also utilised in other domains such as elevators,
robotics and railways. Future research should be conducted into whether the meth-
ods examined and vulnerabilities found in this thesis apply to other domains as well.

Finally, the examined attacking methods relied on a wired connection to a sta-
tionary computer next to the test bed. Since the found vulnerabilities could pose
a threat to the driver and passengers in a moving vehicle, remote access to the
in-vehicle networks should be explored and assessed.
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Ethical Aspects

Performing a security analysis on a vehicle platform that is currently in produc-
tion poses a substantial ethical dilemma. Any vulnerabilities found in the design of
the in-vehicle network and our methods for data extraction, analysis and possible
tampering had to be exhaustively discussed in terms of presentation such that the
project’s outcome does not end up being a guide for tampering with the in-vehicle
network. The goal is to propose software related solutions to the identified problems
in order to increase the security of a vehicle, but publishing a thesis that contains
instructions on how to hack a car could lead to the opposite by making the infor-
mation publicly available to people with malicious intent. Furthermore, tampering
is not limited to malicious acts only, since layman tampering could result in severe
or even fatal consequences.

This responsibility is not only towards the public but also our industry partner
who has made this project possible. Any findings during the project were reported
to them and possibly sensitive information was also redacted upon their request.
Respecting this has been important since the employees of the car manufacturer are
the domain experts, and they have a better understanding of the consequences if
sensitive information is published.

The vehicles on which we performed our experiments on were supplied by our in-
dustry partner and inevitably led to the project being rather manufacturer specific.
Nonetheless, this report sheds light on the broader more structural security issues,
some of which are flaws in the network standards and could thus potentially affect
the industry as a whole.
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8
Conclusion

The functionality in a modern vehicle relies heavily on the in-vehicle network and
electronic devices. A network failure or vulnerability could result in a substantial
economic loss or even lethal consequences. With an increasing amount of sensitive
and critical data sent over the in-vehicle network, network security in the domain is
an ever increasing topic.

In this thesis we have shown that expert vehicular network domain knowledge is
not needed to perform an attack on a modern vehicle. Limited to commodity hard-
ware, it was not only possible to sniff the in-vehicle networks CAN and Ethernet,
but also inject data. CAN was susceptible to replay attacks which were exercised for
reverse engineering instructions and blocking user input. In the Ethernet network,
the Man-in-the-middle attack resulted in unencrypted information as well as enough
information to draw the topology of the network. Thus, our assessment is that the
in-vehicle networks experimented on could not be regarded as resilient or secure.
However, as mentioned before, the test bed used in our experiments was a model
in production and therefore might not have all the security measures that newer
models do.

We have also proposed software security enhancements to the identified vulnera-
bilities in the form of low security counters for the CAN bus, TLS encryption for
high level encryption of Ethernet traffic and MACsec for low level obfuscation of
vendor IDs which would complicate reverse engineering.

This thesis concludes that the in-vehicle networks are insecure, in terms of the vul-
nerabilities we discovered. More research has to be concluded to assess whether the
same insecurities are exploitable from remote access. Additionally, future work has
to assess how the overhead of our proposed solutions compares to existing security
technologies used in the industry.
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