

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, October 2010

Application Audit Trail Analysis

Master of Science Thesis at Computer Science and Engineering

BJÖRN SCHUBERG

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Application Audit Trail Analysis

BJÖRN SCHUBERG

© BJÖRN SCHUBERG, October 2010.

Examiner: ANDREI SABELFELD

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden October 2010

Preface

This thesis was carried out as an internship during six months at Amadeus in Sophia Antipolis,
France. The ideas presented herein are primarily based on research found in papers that were
published on-line. Amadeus on-site library was also source for information on associated topics. I
would like to thank the team leader of the group that the work was carried out in, Sylvain Jacob in
Form of Payment, for constructive criticism during the elaboration of this thesis. I would also like
to thank Luc Capanaccia in the same team for support and always being available for discussion.
A big thank you is also expressed to my examiner, Andrei Sabelfeld, for promptly answering any
questions that I’ve had.

i

Abstract

An application audit trail may be analyzed for a number of reasons; performance enhancement
of networks and computers, identification of security incidents and operational problems as well
as fraud tracking. In this thesis, focus lies on detecting intrusions into information systems. An
approach for analysis of an audit trail from an arbitrary application is presented. It’s extensible
and allows for further methods of analysis to be incorporated. For the purpose of this thesis,
two methods were implemented and used in parallel to find intrusions. A technique for labeling
signaled intrusions with an indication of their certainty is developed. This allows for focus on
alarms with a higher certainty, and will thus facilitate a faster response. The analysis system was
tested against several scenarios. All which contained intrusions were detected. Among these, all
but one was deemed as an intrusion with highest certainty. Further, the amount of false positives
when analyzing the test datasets were only fraction of a percentage.

Contents

1 Introduction 2

2 Background 3
2.1 Objective . 3
2.2 Limitations . 3

3 Method 4
3.1 A Survey on Audit Trail Analysis . 4
3.2 Design Rationale . 5

3.2.1 Multiple Angles of Analysis . 5
3.2.2 Event Flow . 6
3.2.3 Class Design . 6

3.3 Sliding Window Detector . 8
3.3.1 Model Parameters . 8
3.3.2 Detection Process . 10
3.3.3 Previously Unknown Events . 10

3.4 Multivariate Statistics Detector . 11
3.4.1 Model Representation . 11

4 Results 14
4.1 Analysis Configuration . 14
4.2 Audit Trail Format . 14
4.3 Sliding Window Detector . 15
4.4 Multivariate Statistics Detector . 18
4.5 Detectors in Parallel . 18

4.5.1 Test case 1 . 19
4.5.2 Test case 2 . 19
4.5.3 Test case 3 . 19
4.5.4 Test case 4 . 20
4.5.5 Test case 5 . 20

5 Evaluation 21
5.1 Testing and Datasets . 21

5.1.1 False Positives . 21
5.1.2 True Positives . 22

5.2 Future Work . 22

A Pre-study 23

1

Chapter 1

Introduction

As the number IT services grows and we get more and more dependent on IT infrastructure to
facilitate our day-to-day tasks such as banking, telecommunication (VOIP1), online shopping and
traveling, the security of these systems have become paramount. You don’t have to wait many
days between headlines that mention denial of service attacks, worm propagation or data breaches
and identity theft — and it is only a fraction of the incidents that are disclosed[10]. A commonly
cited case is the Heartland data breach[14], where around 100 million credit cards might have been
stolen from the credit and debit card processing service provider. Their network had been breached
and code that stole credit card information was planted in their IT landscape.

Compromised systems may have its resources exposed to different extents, depending on how
the network infrastructure around it is designed and configured. In the worst case, a compromised
host inside a corporate network may be able to access all resources within the company, including
branches that are on the other side of the globe.

Different security controls can be set up to serve as defensive shells to fend off intruders.
Examples of preventative online measures are firewalls, authentication schemes, cryptography and
antivirus software. There are also hardening, passive techniques such as secure software engineering
methods. Many vulnerabilities are introduced by programmers during development of software —
the introduction of buffer overflow vulnerabilities is such a common pitfall among developers that
a special security control, ASLR2, has evolved to mitigate its ramifications. It is now part of any
modern operating system.

The level of security in a computer system often comes down to a trade off between security
and usability. Tightening security too much will degrade the level of service and make the system
tedious to use. Even if one considers a system using a solid security architecture and software
developed in a sensible way, the complexity of most software will make it virtually impossible to
make it free from vulnerabilities. Therefor it is prudent to assume that certain attacks will find its
way through all these preventative measures that can be put in place.

Intrusion detection methods aims to catch such attacks by observing events that occur in
an information system. There are two major techniques within the field; signature detection (also
referred to as misuse detection) and anomaly detection. The first involves recognition of events that
are previously known to constitute an attack. Anomaly detection[6] on the other hand, determines
what constitutes normal behavior for a user, network, process etc and flags any deviations from
this behavior. The power of this technique is that it can catch previously unknown attacks.

This thesis presents the author’s work on an approach for analysis of audit trail data from an
arbitrary application. An extensible technique is presented, where a set of methods are used in
parallel to determine if an intrusion has occurred. The next chapter covers the background behind
this thesis together with goals and limitations. In chapter three, the problem at hand, and the
developed approach to handle it is presented. This is followed by test results and an evaluation of
the solution in chapter four and five.

1Voice Over IP
2Address Space Layout Randomization

2

Chapter 2

Background

Amadeus develops IT solutions for the global travel and tourism industry. The solutions enable
travel providers, such as airlines, hotels, car rental companies and travel agencies to easily pub-
lish information about schedules, availability, pricing and ticketing of their worldwide services.
Amadeus solutions also facilitate inventory management, reservations, itinerary planning, fare
searching, departure control and passenger check-in.

In January 2010, Amadeus was PCI DSS certified. This is a standard developed by the credit
card industry to facilitate an adoption of consistent data security measures for companies that
handle credit card information. In order to remain compliant, a certified company must pass a
reevaluation every year. This ensures that certified companies continuously maintain and review
their solution that handles credit card data.

Whenever a credit card payment is processed through Amadeus on behalf of a provider, for
instance an airline, the PAN1 is stored on a distributed application server. All access to this
application server is monitored and stored in an audit trail, as imposed by section 10 in the PCI
DSS requirements[13].

2.1 Objective

This thesis aims to find way to analyze the audit trail in question. The analysis should incorporate
a sound method for analysis. It should also use a general approach as well as being interoperable.
By keeping the analysis general, it should be possible to reconfigure, or do minor modifications to
the analysis system for analysis of a different application audit trail.

Based on the results from the analysis, alarms shall be raised if any suspicious activity may
have occurred.

2.2 Limitations

Finding a sound analysis method for audit trails from the distributed application is the main pur-
pose of this thesis. Lower-level audit trails created by the operating system will not be considered.
Analysis of raw network audit data is also out of scope. Correlation between events from the
application server and other components throughout the IT-landscape will be left behind as well,
the analysis will only cover an audit trail from one source. Further, a secure way of storing the
audit trail has already been designed and implemented, and will not be discussed. The integrity of
the audit trail is thus assumed to be intact. Also, reconstruction of events and root cause analysis
of each event in the system is not being considered.

1Primary Account Number

3

Chapter 3

Method

This chapter presents the technique developed for analysis of the the distributed application’s audit
trail. First, a pre-study will be discussed that was intended to give different angles on how an audit
trail may be analyzed. Using it as a foundation, a feasible technique for this one, and audit trails
in general has been derived.

3.1 A Survey on Audit Trail Analysis

To find a viable approach for analysis of audit trails, a pre-study was made to get a picture of
existing technology and methods in the field. The study resulted in a document that presents what
an audit trail is, areas of use and briefly cover the aspects of analysis.

An open source security event management system called OSSIM[4] was tested as part of
the study. Such a system facilitates collection of security events from network attached devices;
firewalls, routers, switches, servers etc. A consolidated view of all events that occur across the
IT landscape can then be monitored. Rules can be defined to give certain events higher priority,
which will help addressing important matters early.

It was set up in a small lab network with a few machines running Linux. One of these machines
posed as running the application that handles credit cards. Collection of security events from
different sources proved to be very simple. Methods for getting events from a wide range of devices
and services is bundled with the installation. To handle the audit trail that is of interest in this
case, a plug-in had to be created.

For the purpose of testing, this was done by using netcat read the audit trail on the application
server side and deliver the audit trail events to the host running OSSIM. A simple regular expression
was then used to transform it into the format required; parsing date and the other attributes that
each event consists of. Using this approach in an production environment is not wise, as neither
confidentiality nor integrity is protected, but it is sufficient for testing.

As it turns out, analysis capabilities were rather limited. Even though cross correlation with
events from other sources is possible, the way any event can be analyzed is basic. Essentially
it comes down to writing if-implication rules like; if event a has a certain signature and event b
has this characteristic, raise the priority of these events. OSSIM also provides a mechanism for
threshold monitoring. That is, if a special event has been recognized x times within a certain
amount of time, raise an alarm.

This is powerful if one knows what to look for. Attacks which follow a known pattern, like
port scans and repeated login failures can easily be recognized. When it comes to an audit trail
that only contains puts and gets of credit cards from different sources, these capabilities are not
sufficient.

On the other hand, if the audit trail is first analyzed by a module that is specialized on the
analysis process. The results can be handed to tool such as this one, which consolidates events
from many sources and attaches priorities. As it seems, security event monitoring software is
superb when it comes to collecting events, but analysis capabilities fall behind. See the pre-study
in appendix for more on this subject and an overview of audit trails.

4

3.2 Design Rationale

As the analysis technique should not only be able to analyze the credit card handling application’s
audit trail, but any application’s — little can be assumed about its contents. According to CEE1,
a drafted standard[3] for IT event logs, a log, audit log or audit trail is a set of log entries which
is written to file or sent over the network. A log entry is a record with information about one or
more events. An event is defined as situations or modifications within a system that occur over a
time interval. As such, it may refer to a CPU instruction, system call, user logon or retrieval of a
webpage — the grade of abstraction or granularity can be at any level.

Keeping in mind that one of the goals is to make the analysis method generic and interoperable,
the approach taken must account for this. Hence, a very interesting concept is anomaly detection[6],
which does not require availability of deep knowledge about a system that is to be analyzed. The
foundation for this approach was introduced by Dorothy Denning in 1987. It is essentially based
on monitoring normal system usage, which is considered to be free from intrusions. Profiles are
created with the normal usage as basis. No known exploits or vulnerabilities is incorporated into
the model. Intrusions are detected by recognizing usage that does not comply with the profile.
The rational behind this is that intrusions into an information system must manifest as a change
in usage and will thus make its behavior differ from what earlier has been observed.

3.2.1 Multiple Angles of Analysis

There are many different ways to determine what constitutes normal behavior. Some of these in-
clude statistical techniques, hidden markov models, k-means clustering, and neural networks[15][2].
Hence, different models will perceive normal behavior differently. What is considered normal by
the first model, doesn’t exactly conform to what is found to be normal by the next one.

As a simple example, let’s consider a corporate network, with a rather loosely defined IT policy,
where there are no restrictions on outgoing connections. That is, any host inside the network may
connect to any service on the Internet (i.e. there are no firewall rules restricting access to remote
ports). A profile of each host within the network is derived from an audit trail with time, used
services (i.e. destination IP and ports) together with the amount of data transferred. From this
information it is possible to paint a vivid picture of Internet and LAN usage on a per workstation
basis.

Let’s say that a workstation is normally used during office hours and that it is used to browse
the web, editing documents on the local fileserver, and checking e-mail from the corporate e-mail
server. All this behavior is captured in the workstation’s profile and significant deviations should
be flagged.

Now, if the workstation starts to connect to previously unknown services, lets say IRC (ports
6667–7000) — often used by operators of botnets to issue commands to zombies2 — this should
contribute to a departure from the workstation’s profile, at least for some models of normal be-
havior. Further, if the workstation is issued a command to send e-mail (by acting as a relay) to
a vast amount of different recipients, a huge amount of connections to port 25 (smtp service) will
be made. This will most certainly trigger the indication of an anomaly for any model — be it a
neural network or statistical— because this behavior differs significantly from the regular behavior
of the the workstation. Further, if this is done during a period when there is usually no activity
coming from the workstation in question, a deviation is even more obvious.

Perhaps the connection to IRC was completely benign, and just part of a new pattern of normal
behavior. If so, any intrusion detection models that treated this as an anomaly has signaled a so
called false positive — a false alarm. As for the latter deviation with remote connections to port
25, it is more probable to be malicious. Keeping this in mind, a very important aspect of the design
rationale that will be presented has been demonstrated. That is, if an event is jointly indicated as
anomalous by multiple analysis techniques, the certainty for an actual intrusion becomes elevated.

1Common Event Expression
2Computers that have been taken control of and included as part of a botnet

5

Parse

Detector 1

Detector n

+ +

w1

wn

Event is passed
to detectors

Results are
merged

Audit record
is assessed

New audit
record

Figure 3.1: Detection chain

3.2.2 Event Flow

Few assumptions can be made on the audit trail format. However, what is known, is that an audit
trail consists of several events. Each of these events has certain properties that depend on the
application. These properties will follow a consistent format. Hence, each event can divided into
its properties, or a set of n attributes A = {a1, a2, ..., an}. The only attribute that is assumed to
be present for an event from an arbitrary audit trail is the date and time when it occurred.

For each application, the attributes of interest need to be determined and extracted from each
event. The extraction is done by a parser, which translates each event into a uniform format,
regardless of underlying audit trail, holding time and remaining attributes. Of course, which
attributes that are of importance, depends on the application, and needs to be decided upon in
each specific case.

After an event has been parsed, resulting attributes are passed to several detectors in parallel.
More specifically, the parsed event is passed to a queue in each detector, holding events that are
to be processed. Each detector is using a separate anomaly detection scheme. As an event arrives,
it is removed from the queue and compared to the detector’s behavioral profile. Either the event
is deemed normal or anomalous, and the verdict is put in a result queue. The verdicts are drawn
from the result queues and are merged into a joint evaluation. The evaluation is done by looking
at how many of the detectors that deemed the event anomalous. If a large portion of the detectors
classified the event as anomalous, an alarm with high certainty is signaled. In the case where
only a few detectors evaluated the event as anomalous, an alarm will still be raised, but with low
certainty. Figure 3.1 depicts this process. The certainty of an alarm is dependent on a weight that
is associated with each detector. To control how much each detector impose the certainty of an
alarm, this weight is adjustable.

Formally, for a set of detectors D, each detector d ∈ D has a pre-defined weight wd attached to
it. For each event, a detector d produces a binary result rd = {0, 1}, that designates an event as
normal or anomalous, respectively. The joint certainty, c, of an anomalous event is calculated as

c =
1
W

∑
∀d

rdwd (3.1)

where
W =

∑
∀d

wd (3.2)

This model allows for simple tuning of how much a detector imposes the certainty of an alarm. As
c will be in the interval [0, 1], this is a good scale for the certainty of an alarm.

3.2.3 Class Design

In this section, a few classes which serve as a foundation for the detection process will be pre-
sented. Implementation has been done in Python, which facilitated fast development. Therefor,
a few Python specific types like list and dict show up in the diagrams. Equivalents to these
data structures exists in most languages (if not, can easily be derived), so the following can be
implemented, with few modifications, in any object oriented language.

6

Parser

auditSource : AuditSource

get_audit_source() : AuditSource
parse() : Event

AuditSource

<<interface>>

get_audit_record() : String
has_more_audit_records() : Boolean

FileAuditSource

filename : String
file : file

Event

attribute : dict

get_attribute(attribute : String) : object
get_attributes() : dict
set_attribute(attribute : String,value : object)

Detector

weight : Integer
analysisQueue : Queue
resultQueue : Queue

analyze()
create_profile(auditSource : AuditSource)
put_event(event : Event)
get_result() : Boolean
get_weight() : Integer
save_parameters()
load_parameters()

Evaluator

detectors : list
totalWeight : Integer

evaluate()

Figure 3.2: Foundation classes

Parser

An audit trail can be stored in different ways. It is often stored in a plain text file or transferred
over a network. An interface called AuditSource has thus been introduced for a generic representa-
tion of any audit trail. At the moment, three classes implements this interface; FileAuditSource,
GzSource and Bzip2Source for reading plain files, gzipped files and bzip2 compressed files respec-
tively (the two latter are not shown i figure 3.2). They essentially read a file representing an audit
trail, line by line, where each line represents an audit record.

The Parser class is specific to an audit trail. That is, if an audit trail from a different appli-
cation is to be analyzed, this class must be derived and its methods overridden. An instance of
AuditSource must be passed to the Parser class when it is instantiated. The parse() operation
is called repeatedly to convert an audit record from the AuditSource into an Event object. The
Event object holds each attribute of the audit record, including date and time.

Detectors

For implementation of a new detector that models normal behavior, the abstract Detector class
must be derived. The analyze() operation needs to be overridden and will run in its own thread.
Events that are to be analyzed must be consumed from the analysisQueue and their corresponding
results put in the resultQueue. The put event(event) operation is used to add events for
analysis to in the analysisQueue. save parameters() and load parameters() operations supply
functionality for saving and loading profiles to/from disk. In the detectors that were implemented,
concerned data structures were simply serialized using Python’s pickle module.

When instantiated, the detector’s associated weight, together with a list of the event attributes
that are to be analyzed, must be passed. The attributes are split into two lists. If it is known which
outcomes or values that are possible for an attribute, these can be defined during configuration
and will be stored in one of the attribute lists. For instance, if an audit trail contains records
regarding users and which networks they connect to, the static user attribute would contain an
exhaustive list of all users in the system. The other list contains attributes which values are hard to
specify, and called dynamic attributes. These are gradually discovered during the training process
when building a profile of normal behavior. Concerning the aforementioned audit trail, a dynamic
attribute could be the networks that the users connect to.

Two detectors that derives the abstract Detector class has been implemented. One is based
on statistics to determine what normally happens during a time window. The second uses a
multivariate statistics approach, where an audit trail is modeled as a process[16]. Each is described
in the subsequent sections.

7

Evaluator

The Evaluator class collects analysis results from the detectors. Using these as a basis, each event
is given a certainty according to equation 3.1. The detectors list contains all detectors in the
analysis chain. Results are obtained from the detectors by calling get result(). This operation is
called for each detector, by sequentially going through the detector list. If no result is available, the
operation is blocking until one arrives. The certainty of an analyzed event can then be calculated
by getting each detectors’ weight through the get weight() operation.

3.3 Sliding Window Detector

The basic idea behind this detector is examination of what has happened during a time window. As
time progresses, this window follows, and thus “slides” with time. Using the notion first introduced
by Denning[6], that an intrusion into a system will impose abnormalities in the characteristics of
its usage, it is assumed that events occurring during the examined time window should conform
to previously observed behavior.

To measure these characteristics, a representative, existing audit tail that serves as training
data is needed. Also, a set of attributes, A = {a1, a2, ..., an}, associated with each event in the
audit trail needs to be monitored. Which attributes that are of interest depends on the field the
application that is to be analyzed is used in. Each attribute has a finite number of possible values.
So, for each ai ∈ A, there is a set of possible values, Vi = {vi1, vi2, ..., vim}. A univariate statistical
model is built for the occurrences of attribute values over time. In that way, it is possible to see
how event characteristics, in terms of their attributes, vary over time.

More specifically, a univariate model is created for each element in the n-ary cartesian product
of the values corresponding to the attributes in A. This set of tuples is introduced as P . In general,
many of these will have no events corresponding to them, and can be omitted from the profile.

To illustrate this, let’s say that attributes of interest in an audit trail containing information on
which applications that are executed in an OS, is the user that executed the application, and the
name of the binary. This translates into A = {user, application}. Hence, V includes all users and
all applications in the system. If we have a small system with two users and three applications, this
yields: V = {Vuser, Vapp} = {{alice, bob}, {cat, cd, ls}}. The cartesian product of the elements in
A yields P = user× application = {(alice, cat), (alice, cd), (alice, ls), (bob, cat), (bob, cd), (bob, ls)}.
Thus, there will be a maximum of six univariate statistical models that describes this system.
When an event arrives as a consequence of a user executing a binary, let’s say that alice executes
cd, this will be reflected in the corresponding univariate model, (alice, cd), by storing the time that
it occurred.

3.3.1 Model Parameters

To build a profile of a system, a few parameters need to be introduced. First, the size of the
time window, w, that is to be examined needs to be established. A second is time step, ∆, which
determines in how big steps the window is pushed forward.

Now, having grouped events by their attributes and noted when they occur, a univariate sta-
tistical model is built for each tuple in P . This is done by slicing the time line in equal sizes for
each attribute tuple. The width of each slice is defined by the time step parameter, yielding s
time slices per day (and attribute tuple) in the training data. These are now combined into s time
windows. For each window i, a corresponding occurrence set is introduced. This set is created by
adding the occurrence count in time slice i−∆ through i for each day, resulting in n sums. These
sums constitute occurrence set Oi.

The window is repeatedly pushed forward an interval of the size ∆ until s slices have been
covered. This yields s occurrence sets, {O1, O2, ..., Os}, for each tuple in P . The time window
must be a multiple of the time step, otherwise a window won’t cover a number of complete time
slices.

As an example, if the time line is sliced into one hour pieces, and a time window spans four
hours, the event occurrences in the time span 21:00 – 01:00 will be put in the first window, the

8

days in training data distilled
into a foundation for a

daily profile

w7

w8

w9

Os

day 1

day 2

day 3

day n

time

00:00 23:00

X1

1

s

sS
X

S

Figure 3.3: Merge of time slices into a daily profile for an attribute tuple

event occurrences between 22:00 – 02:00 will be put in the next, and so forth up until 20:00 –
00:00, totaling in 24 windows.

The last step in building the set of univariate statistical models for the profile — one model
for each tuple in P — is deriving the mean and variance of event occurrences in each of the s time
windows. This is rather straight forward, as the occurrence sets contains the number of events for
each window. Having an audit trail with n days of training data, the occurrence sets corresponding
to each window, will be of length |Oi| = n. This is due to the fact that each window has as many
samples as there are days in training data. The sample mean X and sample variance, S2, for a
window, t, can be obtained in the following way:

Xt =
1
n

n∑
i=1

Xi (3.3)

S2
t =

n∑
i=1

(Xi −Xt)2

n− 1
(3.4)

where each Xi corresponds to occurrence sum i in occurrence set Ot.
An important assumption is made here, which is that the events in the audit trail are following

a normal distribution. According to the central limit theorem[11], this is approximately true if the
events are random and independent and if the sample space is large enough. Empirical studies
show that a bell shape starts to arise when the number of drawn samples exceed 25, regardless of
the underlying population’s characteristics.

Another assumption, which can over-generalize the profile, is that system usage varies in a
cyclic manner over 24 hours. This is probably true in many cases, but if an office workstation
is considered, it will probably run according to a certain pattern during work days, and another
during weekends where there is little or no activity. Therefor, it might be prudent to create two
different profiles, one for work days, and another for holidays.

9

3.3.2 Detection Process

The principle for profile creation has now been introduced. What remains is to establish if new
events in the audit trail conform to the previous behavior as recorded in the profile.

During the detection process, the same attributes as established during the profile creation are
looked at. When a new event arrives, its attribute values are examined and the occurrence count for
the corresponding tuple is increased — note that the profile is not altered, a new occurrence count
for each tuple in P is introduced. After the event’s contribution has been added, the newly recorded
number of occurrences during the latest time span, as defined by the window size parameter, w, is
compared to the profile as follows:

Let’s denote the new occurrence value during the latest window, t, as c, and that the this count
corresponds to tuple pi. The mean and variance recorded in the profile for tuple pi in time window
t is compared to c. Based on the normal probability rule[11], which implies that when sampling
from a normal distribution, 99.8% of all observations should lie within 3 standard deviations from
the mean, an occurrence count above this limit is considered an anomaly. Counts that fall below
3 standard deviations from the mean are definitely rare, but not considered an anomaly. Activity
below this limit is hard to infer as intrusions, as they tend to manifest as an increase in activity.
Hence, if

c > Xt + 3St

the event is considered an intrusion. This gives a theoretical 0.1% of false positives. Table 3.1
contains a summary of the normal probability rule.

Normal probability rule

P [−σ < X − µ < σ] = 68%
P [−2σ < X − µ < 2σ] = 95%
P [−3σ < X − µ < 3σ] = 99.8%

Table 3.1: X is normally distributed with mean µ and standard deviation σ

To illustrate this process, consider the small system previously mentioned with alice and bob
as users. Let’s assume that a profile has been created from an audit trail with training data and
that the assumption about normally distributed events applies. Further assume that the window
size is 4 hours and that the time step is 1 hour. This yields a profile with 24 windows, each having
an associated sample mean and sample standard deviation.

Now, Alice works hard during one morning and reads a substantial amount of files by using
cat. As it turns out, between 8:00 and 12:00 during the morning, she has executed cat 120 times.
This count corresponds to window 11 in the profile for attribute tuple {alice, cat}, which has a
sample mean, X11 = 60, and a sample standard deviation, S11 = 22. The occurrence count of 120
for {alice, cat} in the “live window” is clearly above the mean, but still below X11 + 3S11, so no
false alarm will be signaled.

3.3.3 Previously Unknown Events

In the event that training data does not contain any prior information regarding certain event
characteristics, a policy need to be introduced that handles how to take action. This often happens
when a new attribute value is brought into the picture. In the example of the audit trail for the
small system, it can be a new user or application.

There are basically three different ways to handle this. The easiest is just to disregard any
events that falls into this category. This might be a viable approach if profiles are rebuilt often, so
that new attribute values are incorporated.

Another approach is to flag it as an anomaly, which can give a high amount of false positives.
Consider the case when a new user is created and starts to use the system.

A more prudent approach is to derive a generic profile for this case. One way to do this is
to look at average system usage as a whole and obtain its sample mean an standard deviation.
However, because prior knowledge of the actual characteristics of these events does not exist it is

10

impossible to know a priori if this is even close. Although — as just mentioned — when the new
event data is incorporated into the profile, this will cease to be a problem. This approach can serve
as something in between the two extremes.

Which policy to use is hard to give any pointers on without knowing the underlying field of
usage. If new attribute values are rare — which is seldom the case — going with the second
approach will not yield many false positives and is a good choice.

On the other hand, if system usage is changing often, a better alternative is the first, unless
drowning in false positives is not a problem. Perhaps the third is policy feasible, but may still give
some false positives. All this comes down to the nature of the audit trail.

3.4 Multivariate Statistics Detector

This detector is based on a paper presented in 2001 by Nong Ye and Qiang Chen[16]. The approach
essentially treats the audit trail as a process, of which its properties are measured for each new
audit record. These measurements are evaluated to see if the process operates within parameters.
If it is out of control, the event that put it out of control is considered an anomaly. This technique,
based on a chi squared distance, was compared to a different approach, based on Hotelling’s T2

test, in a paper[17], published in IEEE Transactions on Computers in 2002. From this comparison,
the chi-squared test technique was chosen, because it shows much better performance and signaled
less false positives.

The technique is based on statistical quality control, often used during the manufacture of
products to make sure that quality is maintained. As an example, let’s consider the production
of a specific steel beam. In the specification of the beam, its dimensions and weight, among other
details are listed. During production, these are measured of each new beam, and if any, or a
combination of the measurements are differing too much from the specifications, the production
process is deemed to be out of control.

3.4.1 Model Representation

In the same way as for the previous detector, a set of attributes that are to be monitored must
first be established. This is done in the same way, and a set of attribute values, P , is obtained by
the n-ary cartesian product of the values corresponding to the attributes in A.

A set of column vectors of length |P | = p are introduced to hold observations of the process
(i.e. audit trail). These are denoted Xi = (Xi1, Xi2, ..., Xip), where i is the i:th event in the audit
trail. If the small system with alice and bob as users is considered, this vector would be of length
6 with each position corresponding to an attribute tuple. When a new audit record is examined,
let’s say that alice executes cat, the corresponding observation vector will have a 1 in the position
that corresponds to this event, and zeros the other. Thus, each vector will be sparse, and only the
index corresponding to a specific observation needs to be stored.

When the process is in control (i.e. no intrusions are in the audit trail), X follows a multivariate
normal distribution with mean vector µ. From a sample space of size n, the sample mean vector
X, can be obtained:

X =

X1

X2

...

Xp

 =
1
n

n∑
i=1

Xi (3.5)

From the set of observation vectors, a set of chi-square test statistics are calculated. There are
p attribute tuples, and Xi corresponds to the observation of the i:th tuple at a certain time.

X2 =
p∑

i=1

(Xi −Xi)2

Xi

(3.6)

where Xi is the sample mean of the ith tuple.

11

The X2 test statistic indicates the distance of a data point from the center of the data popula-
tion. According to the central limit theorem, when p is large the X2 test statistic follows a normal
distribution. By obtaining the mean and standard deviations of the X2 values, a good indication
of when the process is in control can be determined.

Before this is done, the observation vectors are transformed to emphasize recent events. Using
an exponentially weighted moving average, the vectors depend not only on the current observation,
but also the previous ones. A new observation gives a contribution of weight λ in the position
that corresponds to the observed attribute tuple. The others are given a decay of 1 − λ from
the previous observation vector’s values. Formally, event i in the audit trail gets the following
transformed observation vector, Ti:

T1 = λX1 first event
Ti = λXi + Ti−1(1− λ) further events

As an example, let’s consider the small system with alice and bob as users. Let {(alice, cat),
(alice, cd), (alice, ls), (bob, cat), (bob, cd), (bob, ls)} correspond to the first through the last positions
of an observation vector. Then suppose the following events are observed: {(alice, cd), (alice, ls),
(bob, cd), (bob, ls), (bob, cd), (alice, cd)}. This yields the following observation vectors:

X1 =

0
1
0
0
0
0

 ,X2 =

0
0
1
0
0
0

 ,X3 =

0
0
0
0
1
0

 ,X4 =

0
0
0
0
0
1

 ,X5 =

0
0
0
0
1
0

 ,X6 =

0
1
0
0
0
0

Using a smoothing factor of λ = 0.3, which is the recommended value in the paper[16] that this
detection technique is based upon, the following is obtained after application of the exponentially
moving average technique:

T1 =

0

0.3
0
0
0
0

 ,T2 =

0

0.21
0.3
0
0
0

 ,T3 =

0

0.147
0.21

0
0.3
0

 ,T4 =

0

0.1029
0.147

0
0.21
0.3

 ,T5 =

0

0.07203
0.1029

0
0.447
0.21

 ,T6 =

0

0.37203
0.07203

0
0.3129
0.147

Older observations will thus contribute less as new events arrive. An observation that was made

i events ago has decayed a factor of λ(1− λ)i.
Once all transformed vectors from the training data has been acquired, a sample mean vector

can be obtained as per equation 3.5. To see how far from the population center each of these are
located, their chi-squared distances are calculated using equation 3.6. A small X2 value indicates
a close proximity to the center. In order to decide whether new events comply with previous
behavior from the training data, a base line for what is close need to be derived. Therefor, the
sample mean, X, and variance, S, are calculated from the X2 values in the training data. From
the normal probability rule, see table 3.1, 99.9% of all samples drawn from a normal distribution
should fall below µ+ 3σ.

Using this as a control limit, when a new event is found that has a greater X2 distance than
X2 + 3S, the process will be treated as out of control. An anomaly will not be flagged yet,
however, as it is in the paper that this technique is based upon. A new parameter, tolerance, has
been introduced.

During testing, it was found that the process went out of control for one event, and then turned
in, below the control limit, right away. For other chains of events, it continued to depart from the
control limit as events were processed. This parameter was introduced to set a lower limit on how
many events in a row that must continuously put the process out of control, before an anomaly is
signaled. That is, if tolerance is set to 2, and event i puts the process out of control. Event i+ 1

12

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35

w
ei

gh
t

i

λ=0.2
λ=0.3
λ=0.4

Figure 3.4: Three different decay factors — plot of λ(1− λ)i

must have a greater X2 value than event i for an anomaly to be indicated. See the next chapter
for how false positives were eliminated by altering this parameter.

As with the previous detector, events with attributes corresponding to tuples not yet discovered
in the training data may be observed during analysis. To handle this, the event may just be
discarded and not signaled. The alternative is to define a low pseudo number for this event’s
sample mean, so that this will be reflected in calculation of its X2 distance (equation 3.6). Using
this strategy will bump up the distance significantly. To illustrate this by example, consider
the following; having λ = 0.3, and setting the attribute tuple’s sample mean to 10−5 yields a
contribution of (X−X)2

X
= (0.3−10−5)2

10−5 = 8.9× 103 to the X2 distance sum.

13

Chapter 4

Results

This chapter reveals the tests that were made to determine how well the intrusion detection system
is able to catch intruders. Each detector was first tested individually. From these tests, tunable
parameters have been altered to lower the amount of false positives without reducing detection
rates. The derived parameters are kept for testing of the entire system, where all detectors will
run in parallel.

4.1 Analysis Configuration

The audit trail analysis system is configured through a configuration file. Which event attributes
that are to be analyzed is specified here. Also, specific parameters for each detector, like where
profiles are stored, and how many standard deviations to use for signaling anomalies can be set.
Tables 4.1 and 4.2 shows a summary of configuration settings that affects the detection process.

Parameter Description

Window size Specifies the size of the time window that the frequency of events are
observed.

Time step Determines in how big steps the time window is pushed forward.
Threshold Anomalies will not be signaled unless the number of observations

within a time window is above this limit.
Standard deviations The number of standard deviations that must be exceeded for an

anomaly to be flagged. See table 3.1.

Table 4.1: Summary of configuration directives for the Sliding Window Detector

Parameter Description

Tolerance The number of subsequent events that continuously puts the process
out of control before an anomaly is flagged.

Decay Imposes the weight of each new event observation. A higher value
will give recently observed events more weight. Figure 3.4 shows the
decay of an observation for three different values.

Table 4.2: Summary of configuration directives for the Multivariate Statistics Detector

4.2 Audit Trail Format

The audit trail is stored in a gzipped or plain text file, with one audit record per line. Each audit
record contains time and date the event occurred, as well as details regarding each credit card

14

Parameter Setting

Dynamic attribute city
Static attribute messageType
Window size 180 minutes
Time step 30 minutes
Threshold 1
Standard deviations 3

Table 4.3: Initial test Parameters for the Sliding Window Detector

transaction. Many of these are related to Amadeus’ IT infrastructure, and its entire format will
not be disclosed. All are however not needed for revealing the test results. The Parser class was
adopted to extract each of the event attributes from the audit records and create corresponding
Event objects.

From each audit record, the office, from which the transaction originates can be obtained.
Each office is located in a city, which can be derived from the office attribute. Another important
attribute is the message type, which indicates if a transaction concerned a retrieval of a credit card
number, or an addition of a new one. Accounting staff usually retrieve credit card numbers, and
airlines and travel agencies often add new ones upon selling a trip. Other attributes of interest
includes the sign, or user who initiated the transaction, as well as originating application — there
are many ways to access the credit card application.

4.3 Sliding Window Detector

The detector testing profile was built using audit data from four weeks, 2010-06-07 to 2010-07-04,
totaling in 141 096 126 events. The profile has however been split on a daily basis. Instead of
having a generic profile for any day, it has been split into several sub-profiles; one for Mondays,
a second for Tuesdays and so forth. The rationale behind this is that transactions are from cities
world wide, and not all will have a working week between Monday and Friday. In order to come
closer to a sub-profile for working days, and another for holidays, it has been split in this way.
Thus, a Monday in the test data will be compared to the Monday subprofile and so forth.

The attributes chosen are messageType and city, i.e. A = {messageType, city}. With about
1650 different cities and 3 message types in the audit trail, this yields |P | = |messageType×city| ≈
5000.

As a first step to see if any false positives are signaled by the Sliding Window Detector, the
same dataset used to create the profile was analyzed. The policy for previously unknown event
attributes has been set to disregard any such events. See table 4.3 for initial test settings. The
threshold has been set to 1 to include most events in the analysis; if a city has less than one
transaction per 30 minutes over three hours, that specific time window will not be compared to
the profile.

When analyzing each of the 141 096 126 events from the dataset used to create the profile, no
events were indicated as anomalous. This suggests that when an analyzed audit trail conforms
well to the profile, there are no false positives. It is however well known that future audit trails is
going to have some variability and will deviate from the profile to different extents, even though
there are no intrusions.

To get an indication of how much this natural variability in the audit trail data will reflect as
false positives, audit trails from the three days following the profile dataset range were analyzed.
The settings were left unchanged, see table 4.3. If we assume that the audit trails from these three
days do not contain any intrusions, all alarms are false positives. Table 4.4 shows figures over the
number of alarms signaled.

When looking closer at the anomalies, it is easy to see that the first set of test data roughly
contains four to six times more anomalies than the second and third test data set. Looking at the
cause for this, it was discovered that a big deviation from the profile had been signaled, see figure
4.1.

15

Dataset Number of events Events deemed anomalous False positive ratio (%)

10-07-05 5936116 3680 0.061993
10-07-06 5962288 892 0.014961
10-07-07 5154466 647 0.012552

Total 17052870 5219 0.030605

Table 4.4: Test Results for the Sliding Window Detector using initial parameters

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

N
u
m

b
e
r

o
f
tr

a
n
sa

ct
io

n
s

Time [30mins]

City: Paris, Message type: MFKCRQ

2010-07-05
Profile mean

Profile mean + 3s

Figure 4.1: Substantial deviation from the test profile

A substantial part of the anomalies are signaled due to the mean and standard deviation being
rather small for many of the attributes. As seen in figure 4.2, the mean is close to 0 during the
whole day and even though the standard deviation vary more, it doesn’t give much room between
half-hour 5 and 15.

Signaling an anomaly when the profile limit is so close to zero is not very prudent. The lower
boundary for the number of transactions over time that need to be exceeded for an anomaly to be
signaled is therefor increased (currently set to 1, see table 4.3). In order to see how this threshold
affect false positives, the same three datasets were analyzed with the threshold parameter set to
eight different values, see 4.5. Figure 4.3 shows the impact on the number of anomalies by changing
the threshold parameter. The graph clearly shows that most false positives are reduced when the
threshold is starts to depart from one; when it is set to 5, the false positives are nearly halved
for the 10-07-07 dataset. For the 10-07-06 dataset however, the false positives continue to decline
substantially until the threshold reaches 20.

Anomalies triggered when the transaction rate is greater than 1/60s (threshold = 30) may start
to get interesting; a city with only a few transactions per day that suddenly goes above this limit
is prudent to indicate. On the other hand, if the number of transactions increase from 0.5/60s to
one per minute, it is not as interesting and will hopefully be caught within the limits of the X+ 3s
in the profile. Of course the threshold level is very specific to the audit trail that is being analyzed
and need to be tuned for each new application.

16

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r o

f t
ra

ns
ac

tio
ns

Time [30mins]

City: Heraklion, Message type: MFKPCQ

2010-07-06
Profile mean

Profile mean + 3s

Figure 4.2: Minor fluctuation being signaled as an anomaly

Dataset thr = 1 thr = 5 thr = 10 thr = 15 thr = 20 thr = 30 thr = 40

10-07-05 0.061993 0.059163 0.057950 0.057327 0.056721 0.056451 0.056451
10-07-06 0.014961 0.009426 0.006793 0.005132 0.003723 0.002717 0.001409
10-07-07 0.012552 0.006751 0.006635 0.006635 0.006247 0.005083 0.003919

Table 4.5: False positive ratios for different thresholds (%)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 5 10 15 20 25 30 35 40

F
a
ls

e
 p

o
si

tiv
e
 r

a
tio

 [
%

]

Threshold

Impact of threshold on the number of false positives

Dataset 10-07-06
Dataset 10-07-07

Figure 4.3: Threshold affecting the false positive ratio for the test profile

17

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0.0011

2 3 4 5

F
a
ls

e
 p

o
si

tiv
e
 r

a
tio

 [
%

]

Tolerance

Impact of tolerance on the number of false positives

Dataset 10-06-28

Figure 4.4: Tolerance impact on false positives

4.4 Multivariate Statistics Detector

The dataset used to build a profile for the multivariate statistics detector consists of 5652649
events, corresponding to data from one day. This is due to time constraints. Using a longer period
is possible — creating a profile from one day takes about one hour when analyzing by the message
type and city attributes. Using these attributes yields an observation vector of a dimension that
is approximately 5000.

As initial indication of the amount of false positives, the same data used to create the profile was
analyzed. The analysis was run with the tolerance parameter set to 2, resulting in 62 anomalies,
or a false positive rate of 62/5652649 = 0.001097%.

To lower the amount of false positives, the tolerance parameter was increased in steps of 1
until the ratio decrease was no longer very significant. Figure 4.4 shows the ratio of false positives
compared to the tolerance level.

4.5 Detectors in Parallel

In this section, test results from runs with both detectors in place in the analysis chain will be
presented. Each detector has first been tuned with the parameters found in the previous sections
of this chapter, see table 4.6.

Sliding Window Detector

Parameter Setting

Window size 180 min
Time step 30 min
Threshold 30
Standard deviations 3

Multivariate Statistics Detector

Parameter Setting

Tolerance 4
Decay 0.3

Table 4.6: Detector settings

The test data used has been produced by enquiring the designers of the system on how it is

18

ID Case Expected outcome Motivation

1 A previously unknown city puts
a credit card.

Deemed normal. Activity from previously
unknown cities should not
be indicated.

2 A transaction is made from a city
outside working hours.

Deemed anomalous. Transactions from offices
outside working hours is
suspicious.

3 Transactions from a city con-
sisted only of puts of credit cards,
now a substantial amount gets
occur.

Deemed anomalous. Major change in system
use should be flagged.

4 A city normally has 200 credit
card puts per day, it is now in-
creased to 1000.

Deemed anomalous. Major behavioral changes
should raise an alarm.

5 A city normally gets 2 credit
cards per day, it is now increased
to 6.

Deemed normal. A 200% system usage in-
crease should not trigger
alarms if the amount of
transactions is low.

Table 4.7: Summary of test cases

supposed to operate under normal conditions. Getting representative test results is hard without
test data that includes real intrusions, but with no such data, this is seems like a viable approach.
A few cases have been manufactured that should either the deemed intrusive or not, these can be
found in table 4.7. The same profiles that were used to tune the detectors are used to test these
cases.

That is, the Sliding Window detector will have a profile based on data from four weeks, 2010-
06-07 to 2010-07-04 and the Multivariate Statistics detector will use a profile created from data
corresponding to one day, 2010-06-28. The test data is created by taking all the events from 2010-
07-05, which is not part of any profile, and injecting events corresponding to each test case into
this data. The actual data used in the Sliding Window detector’s profile will correspond to four
days from the four training weeks. As the test data happens to be a Monday, the data used will
be the four Mondays in the profile.

4.5.1 Test case 1

The first case was created by introducing a transactions from an office in a pseudo city in the test
data. None of the introduced transactions were deemed anomalous by either detector.

4.5.2 Test case 2

Case 2 was tested by adding 489 transactions outside a city’s working hours to the test data. These
events were distributed over a period ranging from 19:45 to 20:25. After running the test case, 14
events were jointly flagged with full certainty. The Sliding Window detector deemed 186 of the
injected events as anomalous, and 95 were flagged by the Multivariate Statistics detector.

4.5.3 Test case 3

The initial construction of case 3 test data was done by adding just about enough data to
have it signaled by the Sliding Window detector. This corresponds to the addition of at least
threshold/time step ∗ window size = 1 event/min ∗ 180min = 180 events, distributed randomly
over three hours to breach the threshold. Therefor, the first data set was given 200 events, and 20
of these events were deemed anomalous by the Sliding Window detector, as expected. However,
none of them were deemed anomalous by the Multivariate Statistics detector.

19

To see if an increase of malicious events in the test data would make this case detectable,
2000 events were added randomly over three hours. This did not affect the Multivariate detection
results, 1820 of the events were however deemed anomalous by the Sliding Window detector.

A third alteration of the data to see if detection rates could be imposed, was to cluster the
events over a shorter period and thus increase the intensity of the malicious activity. The 2000
events were instead distributed randomly over five minutes. This resulted in 60 events deemed
anomalous by the Multivariate Statistics detector and 1820 events being signaled by the Sliding
Window detector. Both detectors flagged 58 of the 2000 events jointly.

4.5.4 Test case 4

This case’s test data was created by injecting another 850 events for a city with 177 events in the
2010-07-05 audit trail, totaling in just above 1000 events. These were injected to proportionally
to the system usage by city. That is, the events were only added during working hours in order to
avoid skewing when the system is used.

The Sliding Window detector deemed 33 of these as anomalous, and the Multivariate Statistics
detector found 7 anomalous. None were however jointly flagged as anomalous.

To see if the tolerance of the Multivariate Statistics detector imposes the detection rate in this
case, it was set to 2 instead of 4, and the same dataset was rerun. This increased the amount of
detected anomalies to 17, but none were jointly detected. As in the previous case it is possible to
group the added events under a shorter interval and thus increase the intensity of the event flow.

4.5.5 Test case 5

The fifth case was tested by introducing a few more transactions for a city with a low transaction
count and thus yielding 200%+ increase in system usage. None of these transactions were however
deemed anomalous by any detector.

20

Chapter 5

Evaluation

An approach for audit trail analysis from an arbitrary application has been presented. Two anomaly
detection techniques have been implemented and their results correlated to sieve out anomalies
with higher certainty of being an intrusion. Evaluating the actual results has been complicated by
the fact that no real intrusion sessions have been available during testing. The intrusion scenarios
were manufactured and audit data was injected into copies of production data to reflect these. False
positives can however be more easily determined than the actual detection capability, because no
intrusions are needed for a false positive to be signaled.

5.1 Testing and Datasets

Due to the fact that audit trail data from production have been used to derive the test profiles, it
has simply been assumed to be free of intrusions. If this is not the case, and intrusions in fact are
in the data that the profiles are based on, the same nature of intrusions could be in the data that
the detectors are tested against. Intrusions in the profile will thus be classified as part of normal
behavior and mask the same intrusive behavior during testing. Misses, or false negatives, of this
nature is a weakness that all anomaly detection schemes are troubled by.

There is also the issue of finding the right amount of training data to fit a detector’s profile to
training data. If too much training data is used, the model might become too generic and deem a
true anomaly as normal. Have too little data, on the other hand, will cause over-fitting, and have
the adverse effect (i.e. yielding a higher amount of false positives).

5.1.1 False Positives

Each of the detectors yields rather low false positive ratios. Especially when tuned further. Re-
garding the Sliding Window Detector, increasing the threshold parameter proved very effective.
The largest portion of false positives were removed just when the threshold parameter started to
increase. When it was pushed beyond 20, the effect was no longer as distinct.

As for the Multivariate Statistics Detector, the tolerance could effectively be used to yield a
decrease in false positives. Figure 4.4 clearly shows this. By altering the detectors’ parameters in
this way, a decrease in false positives of up to 80% was shown for some datasets.

Setting these parameters too excessively risks that real intrusions will be masked, and false
negatives to be introduced. From the test cases, this indication is however not very present. This
is probably due to their careful settings. It is also important to keep in mind that these parameters
are specific to the audit trail that in question. The settings derived in the previous chapter may
be too high for a different application.

Trying to reduce a false positive rate that is a fraction of a percent might seem like a little gain.
When analyzing millions of events per day, these small fractions will translate into hundreds of
false positives. Therefor, being able to decrease the false positives to around a fifth of the initial,
untuned amount, is not that insignificant.

Further, when looking at how events were jointly flagged by the detectors, no false positives
were flagged by both detectors. This gives all false positives a lower certainty according to the

21

rationale used to evaluate detection results.

5.1.2 True Positives

As was discussed in the preamble of this chapter, the audit trail data for the test cases were syn-
thesized. Probable intrusion scenarios have been derived together with designers of the distributed
application. Thus, the merit of the actual capability to catch intrusions may be hard to uphold.

Even so, the test results show that all intrusion scenarios were detected. All, but test case 4
was given the highest intrusion certainty, but was still detected by both detectors.

A problem when test audit data is injected is that the results depend on how the events are
distributed. Test results can thus be skewed. As indicated by test case 3, the Multivariate Statistics
Detector is very sensitive to the distribution of events. This is due to the fact that the intensity of
events affect the X2 values significantly. A burst of subsequent events with the same observation
vector will yield a big chi-squared value if the mean vector, X, does not reflect this as being a
common phenomenon.

An interesting observation when it comes to the Multivariate Statistics Detector is that it
is sensitive to mean shifts. This can potentially detect cooperative attacks from multiple cities.
Consider the case where multiple cities increases their intensity of transactions to different extents.
This will contribute to several departures from the mean vector. These mean shifts will result in
a big chi-squared value that could potentially breach the control limit and signal an anomaly.

The univariate analysis performed by the Sliding Window Detector can not pick up this kind
of attack. This holds as long as transactions from a city that is involved in the attack does not
individually breach the control limit.

In general, for both analysis techniques, attacks that hide in the noise will be hard to catch.
That is, if an attack is not intensive enough to breach the control limits, it will go unnoticed.
Because all audit trails are different, the variability, and thus the noise level, will vary with the
application and its environment.

5.2 Future Work

As mentioned previously, the audit trail data that is used to create the profiles of normal behavior
can not be guaranteed to be free from intrusions. An approach for sanitizing training data is
presented in a paper[5] by five researchers at Columbia University. Incorporating this scheme
before training of the detectors could potentially lower the amount of false negatives.

To have any indication of false negatives, the detection chain would have to be tested on datasets
with known intrusions. The modifications needed to do this, will be to derive the Parser class, so
that the events in the new audit trail can be partitioned into its attributes. A new AuditSource
class may need to be implemented as well, if it differs from the currently assumed file format with
one audit record per line.

Having this in place, ROC1 curves that display false positives versus true positives could be
constructed. Finding representative datasets is however not very easy. One that is commonly used
to evaluate intrusion detection systems has been produced by the Lincoln Laboratory at MIT.
Criticism[9] has however been given to the way the datasets have been derived, and questions if
they are appropriate for evaluating intrusion detection systems.

1Receiver operating characteristic

22

Appendix A

Pre-study

Introduction

The aim of this document is to give an overview of the general use audit trails and some insights as
to how they can be analyzed. Several areas of use and different levels of logging will be discussed.
In the last part, each of the requirements in section 10 of the PCI DSS standard will be mapped
to the different applications of audit trails. Finally, the mapped-out topics will be examined a bit
more closely.

Definition

Very briefly, an audit trail is a log of any events that occur in a computer system. However, without
a clear definition of the terminology, this discussion will not be very fruitful. According to CEE,
the Common Event Expression standardization[3] that defines how computer events are described,
logged and exchanged,

“Events are observable situations or modifications within an environment that occur over a
time interval.”

As such, an event can be very granular; i.e. an instruction executed by the CPU, or a bit more
coarse such as execution of an application or the opening of a file. Further, a log entry is defined
as:

“A single record involving details from one or more events. A log entry is sometimes referred
to as an event log, event record, alert, alarm, log message, log record, or audit record.”

Finally, a collection of log entries constitute a log or an audit trail :
“A log is the collection of one or more log entries typically written to a local log file, a database,

or sent across the network to a server. A log may also be referred to as a log file, an audit log, or
an audit trail.”

Many different levels of auditing is thus possible, some audit trails concern the packets trans-
mitted on a network and others log what happens locally on a workstation.

Areas of Use

Logs have been around since the dawn of computer systems and were originally designed to track
down technical problems. Nowadays, the information found in audit trails is used in many different
areas. Analyzing logs accommodates optimizing computer and network performance, identifying
security incidents, policy violations, tracking frauds and operational problems. It is also of interest
to other initiatives, such as demonstration of compliance with regulations.

When looking at the computer security aspect of audit trails, parts from many different logs have
potential bearing depending on the situation. Sources of direct interest from this perspective are
network devices, such as routers, switches and network monitoring software, as well as servers and
workstations. According to the computer security handbook[12] released by NIST, the following
classifications cover the computer security objectives regarding audit trails.

23

Accountability

An audit trail can be scrutinized to find illegitimate use of resources. A user, for instance, might
have authorization to use a resource in order to be able to do his/her job, but the audit trail can
show any misuse of such resources (e.g. for personal gain). This aspect of audit trails mainly
involves mapping events to users.

Reconstruction of Events

Audit trails can be used to reconstruct a previous event — or a chain of events, depending on
the granularity — to aid the task of finding the cause of a problem. For instance, it can help
determining if it was an application malfunction or a human mistake that caused a system crash.
It may also help forensic teams to track down the source of a security incident by indicating how
the system was breached, and when.

Intrusion Detection

An audit trail can include sufficient information to aid the detection of intruders. Intrusions can
either be detected in real-time, as the audit records are created, or after-the-fact, at a later time
from analysis of the trail (often as a batch job at regular intervals). Attention can then be given
to any raised alerts and the audit trail can used to assess the seriousness of any intrusions (or
attempted) and facilitate the review of any security controls that were subverted.

Monitoring

The audit trail may also be reviewed on-the-fly — not to find intrusions — but to find problems
with the operation of critical systems. A real-time analysis of the audit trail can show if a system
is operating as expected. Component failures, such as disk crashes and increasing use of resources
(e.g. network bandwidth) may be caught by monitoring.

Levels of Auditing

As mentioned in the introduction, an audit trail can target many different layers of a computer
system. It is of course possible to have multiple audit trails present in a system concurrently,
each creating a trail at a specific level. The NIST handbook does not cover network auditing,
and differentiates between system and user level audit. The latter two can be consolidated into
one level, and focus can be put on operating system auditing, network auditing and application
auditing.

Keystroke Monitoring

There is one exception to the event-based approach, it involves monitoring each keystroke made on
a system and the corresponding response during a user session. Examples of keystroke monitoring
include capturing characters as they are typed by users, reading users’ electronic mail, and viewing
other recorded information typed by users.

OS Level Auditing

An OS audit trail might capture any logon attempts, logoffs, devices used, applications executed
and files opened. It may also record the success of any event (e.g. if the logon was successful or
not and if access to any files were permitted or not). Events relating directly to the internals of
application execution are often not captured at this level of logging. Further, this level of auditing
may also capture statistics such as I/O load that is not directly security related.

24

Network Level Auditing

Any network connected device may record data that is relevant to this level of auditing. Devices
include, but are not limited to, firewalls, routers, switches, authentication servers and web proxies.
A firewall for instance, might log if a packet was rejected or accepted, protocols encapsulated,
source and destination addresses.

Application Level Auditing

Application level audit trails may capture anything of interest that happens at the application
level. This includes capturing the userid that runs the application, which files are opened, access
to devices and so forth. As an example, consider a database being monitored — it can be useful
to track who accessed which tables and any changes that have been made.

One could argue that network level auditing, mentioned above, is a special case of application
level auditing. However, logging events occurring on the network is a vast area, and is therefore
mentioned in its own section.

Preserving the Benefits of Audit Trails

The data in an audit trail must be reliable, its integrity and availability are key concerns. If the
data in an audit trail cannot be trusted, its purpose is completely undermined. Further, it must
be analyzed, in real-time or at regular intervals, or a combination of both. Confidentiality might
also be of concern if sensitive information is captured.

PCI DSS Concerns

In this section, each requirement of section 10 in the PCI DSS standard will be discussed. Every
requirement concern different topics mentioned above.

Req. # PCI DSS Requirement Context and Motivation

10.1 Establish a process for linking all ac-
cess to system components (especially
access done with administrative privi-
leges such as root) to each individual
user.

This requirement involves the topics
of accountability and reconstruction of
events. The ability to track each
user’s actions carefully will facilitate
the forensics after a security incident.
It can also be related to intrusion de-
tection.

10.2 Implement automated audit trails for
all system components to reconstruct
the following events:

These requirements primarily concern
what kind of events to audit. The
events relate to both the operating
system and application level auditing.
By analyzing the events created by the
system components listed, it is
possible to detect suspicious activity.
Audit trails from these components
will also aid post-incident forensics.

10.2.1 All individual user accesses to card-
holder data

10.2.2 All actions taken by any individual with
root or administrative privileges

10.2.3 Access to all audit trails
10.2.4 Invalid logical access attempts
10.2.5 Use of identification and authentication

mechanisms
10.2.6 Initialization of the audit logs
10.2.7 Creation and deletion of system-level

objects.

10.3 Record at least the following audit trail
entries for all system components for
each event:

This requirement involves what details
to log for each event, and thus relates
to all levels of auditing. Each of these
relate to the events described in the
previous requirement.

25

10.3.1 User identification
10.3.2 Type of event
10.3.3 Date and time
10.3.4 Success or failure indication
10.3.5 Origination of event
10.3.6 Identity or name of affected data, sys-

tem component, or resource

10.4 Synchronize all critical system clocks
and times.

In order for the audit trail to be reliable,
times must be consistent. It is also im-
portant to note the time zone of each
audit trail.

10.5 Secure audit trails so they cannot be
altered.

To maintain the reliability of an audit
trail, these requirements imposes
controls that should prevent an audit
trail from being tampered with.

10.5.1 Limit viewing of audit trails to those
with a job related need.

10.5.2 Protect audit trail files from unautho-
rized modifications.

10.5.3 Promptly back up audit trail files to a
centralized log server or media that is
difficult to alter.

10.5.4 Write logs for external-facing technolo-
gies onto a log server on the internal
LAN.

10.5.5 Use file-integrity monitoring and
change detection software on logs to
ensure that existing log data cannot
be changed without generating alerts
(although new data being added should
not cause an alert).

10.6 Review logs for all system components
at least daily. Log reviews must in-
clude those servers that perform se-
curity functions like intrusion detec-
tion system (IDS) and authentication,
authorization, and accounting protocol
(AAA) servers (for example, RADIUS).

This requirement is perhaps the most
important. Without any review of the
audit trails, they serve no purpose.

10.7 Retain audit trail history for at least
one year, with a minimum of three
months immediately available for anal-
ysis (for example, online, archived, or
restorable from back-up).

Since it is not uncommon for a security
breach to be uncovered a while after it
occurred, the audit trails must be kept
for a reasonable amount of time. This
requirement relates to reconstruction of
events with the intent of aiding post-
incident forensics to track down any in-
volved users and affected systems.

Table A.1: PCI DSS requirements from section 10 with motivation

Having the proper events in an audit trail combined with the right detail, as described in
requirement 10.2 and 10.3, is paramount in order to be able to obtain viable information from the
logs.

This is only true as long as the information can be relied upon. An intruder will most likely try
to cover its tracks by altering the audit records (requirement 10.5). Another way of attempting
this could be to alter the system clock as mentioned in requirement 10.4. Being able to do a sound
analysis of the audit trails generated at both the OS and application level will only be possible if

26

PCI/DSS requirements

related to different

applications

of audit trails

Accountability

10.1

10.2

10.3

10.7

Reconstruction of

Events

10.1

10.2

10.3

10.4

10.5

10.7

Intrusion Detection

10.1

10.2

10.3

10.4

10.5

10.6

Monitoring

Figure A.1: PCI DSS Requirements in relation to the areas of use for audit trails

these key issues are considered.
To obtain a complete picture, all parts of the systems must be included in the analysis. That

is, audit trails from the operating systems must be correlated with application logs and network
trails.

Figure A.1 shows a summary of how the PCI DSS requirements relate to the different applica-
tions of audit trails.

Further Discussion

Now that the areas of use for audit trails have been established, this study will further explore
those related to the PCI DSS requirements mentioned above. After key points of an area have
been discussed, a few tools aimed at addressing these will be mentioned. This should in no way be
treated as an exhaustive analysis of the different audit trail applications. The aim is to find out
what they concern and how tools may facilitate management of these issues.

Accountability and Aggregation of Events

As mentioned previously, accountability involves the process of mapping events to actions per-
formed by users. Accountability thus answers the question “who, what and when”. By advising
users that their actions are monitored can work as a control to refrain them from using resources
improperly. It is however important to note that if a user appears to be using privileges in a
questionable manner, someone might be masquerading as the user in question. This issue of non-
repudiation can be remedied to some extent by using solid access controls, such as biometrics; it
will be much harder for an intruder to coerce an employee to log on, and hand over the computer
for the assailant to do whatever he/she chooses, than for the intruder to do some garbage diving
in order to find a password.

27

Figure A.2: XDAS in relation to CEE initiative

The issue can also be addressed by use of digital signatures, as well as keeping software up
to date — to minimize exploits of vulnerable software that could allow an attacker to execute
arbitrary code. This will be discussed further in the next section. It is not easy to determine,
but by correlating multiple audit trails and making a sound analysis, it is possible to uncover a
masquerader.

Assembling Audit Trails

There is currently no standard that describes how a log entry is to be formatted. Every operating
system/syslogger and application uses its own format. This presents a problem when it comes to
gathering audit trails into a uniform format for analysis. Without a uniform format, it will be very
hard to do correlation between logs and make inferences on — for instance — what constitutes an
attack. In an environment with a vast number of applications and different operating systems this
poses a big problem for administrators trying to discern what is going on.

However, there are log management tools that remedy this issue[7]. The latest idea within the
field goes under the acronym SEM1, also known as SIM2, or SIEM3. A tool like this essentially takes
input from devices like firewalls, routers, switches and security applications like virus guards as
well as server applications in order to normalize the data into a common format. Once normalized,
the data is correlated and grouped. The tool delivers a real-time overview of the most relevant
events (determined by severity) and periodic reports of activity. Its central idea is to ease the
amount of data that has to be analyzed by personnel. This is done by building threads of related
events and informing when unusual events occur which may need more investigation.

These tools however, are rather focused on the collection of the audit data itself and on aiding
the understanding of events in an audit trail. Analysis of the audit data is left behind[1].

Understanding an event is often straight forward. Though in some cases, the meaning of an
event is hard to discern without its proper context. The event has to be correlated with other
events from different logs and perhaps even non-log sources such as an application’s configuration
to make sense. A logged event can also be hard to interpret because of its obscure description; it
might simply be an error code that only makes sense to the vendor. SEMs are generally bundled
with a vast set of vendor error codes that makes the interpretation of an event smoother.

A different effort aimed at solving the irregular landscape of audit trails and giving a uniform
accountability mechanism is XDAS4, an open standard. It was initially released in 1998 as a
distributed services auditing standard and is now being reworked to fit today’s need for a uniform
interoperable event reporting format. The goal is to provide a standardized way to represent events
and facilitate consolidation. In this way, events can be easily normalized and gathered. Many of

1Security Event Management
2Security Information Manager
3Security Information and Event Manager
4Distributed Audit Service

28

the people involved in this project are also working on the more ambitious CEE project (referred
to in the introduction). XDAS could very well fit as a piece in the wider CEE approach. There is
currently a java framework called xdas4j that is implemented using the current draft of XDAS.

Forensics and Reconstruction of Events

In order to facilitate the investigation of a security incident, reconstruction of events from audit
trails is very important. Before incidents can be analyzed from audit trails, the integrity of any
audit trails included in the analysis must be ensured (e.g. by recalculating a message digest).

As an example, let’s say that an application on a corporation’s public web server has been
compromised, and that the attacker has been able to further penetrate the corporate network from
this server. By reconstructing the chain of events that constitutes this attack from the audit trail,
investigators will be able to determine the attack vector. Using the information obtained, system
administrators can address the issues that made the attack possible (e.g. hardening the server by
creating a chroot environment around the web server and pointing out the vulnerable application
to developers).

Usually, the event reconstruction is made manually by a team of forensic investigators that
propose different scenarios that may have led to the security incident. The difficulty of acquiring
enough relevant information from the audit trail varies with the task at hand and of course with
the auditing policy — what to audit. It is vital to be able to reconstruct the chain of events that
led to an incident in order to respond with the right measures.

As mentioned in the previous section, tools such as SEMs can facilitate the analysis of intrusions
and can help discerning the chain of events. There are also tools such as BackTracker and Forensix
that analyze system calls on a single host to detect how an application or service has been exploited.
However, according to a study[8] of these reconstruction tools, they are prone to have a very rate
high false positives, so using them can be very tedious work.

Intrusion Detection

When it comes to intrusion detection, two different techniques are used to find intrusions. One of
the approaches is signature based and essentially looks for a specific pattern, and if such a pattern
is found, an alarm is raised. The other technique used is anomaly based and analyzes behavior in
order to detect any unusual activity. As an example, consider a workstation that suddenly starts
to send a huge number of emails to different recipients. From analysis of the audit records, the
IDS should detect this anomaly and raise an alarm. Booth techniques are often used in synergy to
detect a wider range of threats and lower the rate of false alarms. Further, any suspicious activity
is logged by the IDS for later review and is in turn also often forwarded to a SEM tool for further
correlation and perhaps visualization.

Modeling Intrusion Detection Techniques

In this section, a few of the modeling approaches used to design the intrusion detection techniques
described above will be mentioned.

Starting off with signature detection — rules describing patterns that identify intrusions can be
based on a single event, or a chain of specific events. These rules may be defined by using simple
if-then implications that matches unique attributes of an attack.

A more interesting approach is by use of machine learning to learn from raised alarms and
automatically create patterns that are suspicious. The problem with this technique is that training
data is needed, and it is not feasible until intrusion scenarios can be fed to the model so that it
can learn to pin point attacks.

The basic idea of anomaly detection is to create a baseline of what is considered normal by
analyzing passed behavior. Deviations from this behavior is flagged. The are many different
approaches when it comes to modeling this kind of behavior, most of which concern statistical
models.

A very simple approach is threshold monitoring. It involves defining metrics for acceptable
ranges of system attributes. If any of the monitored attributes (e.g. number of MAC addresses on

29

the network) happens to be outside the allowed range, an alarm is raised. This is indeed a very
blunt instrument and is only useful for a very limited amount of attributes across the IT landscape.

Profiling the behavior of users or resource usage across the environment is a more sound ap-
proach. The normal behavior of a user is defined by analyzing the use of applications, files, network
resources and devices such as printers. Detecting abnormal behavior comes down to finding pecu-
liar use patterns. Consider for instance a user that usually logs on during office hours and use CAD
applications. The user now suddenly logs on in the middle of the night, reads files that deviates
from the regular ones and attaches a flash drive to the computer in order to copy files. Looking at
passed history, this kind of use deviates a great deal from normal use and should raise an alarm
to advice that a masquerader might be in the system.

One of the challenges with this kind of profiling is to avoid raising alarms when a legitimate
user changes its pattern of normal behavior (e.g. starts to use a new application or maps a new
network drive).

Classes of Intrusion Detection Systems

One often differentiates between classes of intrusion detection systems; those focused on detecting
intrusions across the network and those developed to detect intrusions on the local host. They are
referred to as NIDS5 and HIDS6 respectively. One widely used system of each class is mentioned
below:

The most widely deployed NIDS is Snort, an open source project. It combines booth signature
and anomaly-based detection techniques to catch intruders on the network. Thanks to the open
source model of the project, it benefits greatly from its large user base that reviews and tests the
functionality of the engine and rule sets.

Another open source project within the field is OSSEC, an HIDS with support for a wide range
of platforms. It is designed as a client-server architecture where agents on the client machines
accumulate log data from both the OS and applications. This data is sent in real-time to the
server where audit trails from multiple clients are correlated and analyzed.

Conclusion

To maximize the benefit from audit trails, a well defined plan should be established regarding how
audit data is to be collected, organized, analyzed and stored. Making a sound decision about what
events to log, and what to capture for each event is important. Having too much information about
each event might impair performance of the OS/device/application that produces the logs as well
as making organization of the audit trails harder. Keeping only relevant information in the audit
may be tricky, but initiatives such as CEE will ease this task.

Ideally, one should make use of the drafted XDAS framework for generation of uniform audit
trails when developing new applications. Such investments will pay off when more applications
eventually adopt the XDAS standard. Should a wide adoption of the standard finally pan out, it
would deem much of the functionality provided by SEM applications unnecessary and could divert
attention from aggregation and understanding of events to focus on correlation and analysis.

As for the analysis of the audit data, tools such as SEMs will help by providing an overview
of the systems. The SEMs are however only as good as the data that they are provided with. It
is important to keep security software up to date, such as intrusion detection systems and virus
guards in order to get the best possible overview of what is happening in the IT environment.

Finally, the integrity and storage of audit trails over time must also be well defined. Write-once
storage solutions and message digests can be utilized to ensure integrity. If the audit trails must be
kept for longer periods of time, the right type of storage media and backups are also of concern.

5Network Intrusion Detection System
6Host Intrusion Detection System

30

Bibliography

[1] XDAS standard aims to empower it audit trails from across complex events. http://
interarbor.libsyn.com/index.php?post_id=521463, 2009. BriefingsDirect podcast.

[2] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, October 2004.

[3] The CEE Board. Common Event Expression, June 2008. The MITRE Corporation.

[4] Jeramiah Bowling. Alienvault: the future of security information management.
Linux Journal, issue 191, March 2010. http://www.linuxjournal.com/magazine/
alienvault-future-security-information-management.

[5] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J. Stolfo, and Angelos D.
Keromytis. Casting out demons: Sanitizing training data for anomaly sensors. In IEEE
Symposium on Security and Privacy, pages 81–94, May 2008.

[6] Dorothy E. Denning. An intrusion-detection model. In IEEE Transactions on Software
Engineering, volume 13, no. 2, pages 222–232, February 1987.

[7] Nick Hutton. Preparing for Security Event Management. 360 Information Security Ltd., 2007.
White paper.

[8] Sundararaman Jeyaraman and Mikhail J. Atallah. An empirical study of automatic event
reconstruction systems. In Digital Investigation, volume 3, pages 108–115. Elsevier, 2006.

[9] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA
intrusion detection system evaluations as performed by Lincoln Laboratory. In ACM Trans-
actions on Information and System Security, volume 3, No. 4, pages 262–294, New York, NY,
USA, November 2000. ACM.

[10] Robert McMillan. Most retailer breaches are not disclosed, Gartner says. CIO,
May 2008. http://www.cio.com/article/367763/Most_Retailer_Breaches_Are_Not_
Disclosed_Gartner_Says.

[11] J. Susan Milton and Jesse C. Arnold. Introduction to Probability and Statistics. McGraw-Hill,
fourth edition, 2003.

[12] National Institute of Standards and Technology. An introduction to Computer Security: The
NIST Handbook, 1995.

[13] PCI Security Standards Council. Navigating PCI DSS, October 2008. Version 1.2.

[14] Jaikumar Vijayan. Heartland data breach could be bigger than TJX’s. Computer-
world, January 2009. http://www.computerworld.com/s/article/9126379/Heartland_
data_breach_could_be_bigger_than_TJX_s.

[15] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting intrusions using
system calls: alternative data models. In IEEE Symposium on Security and Privacy, pages
133–145, May 1999.

31

http://interarbor.libsyn.com/index.php?post_id=521463
http://interarbor.libsyn.com/index.php?post_id=521463
http://www.linuxjournal.com/magazine/alienvault-future-security-information-management
http://www.linuxjournal.com/magazine/alienvault-future-security-information-management
http://www.cio.com/article/367763/Most_Retailer_Breaches_Are_Not_Disclosed_Gartner_Says
http://www.cio.com/article/367763/Most_Retailer_Breaches_Are_Not_Disclosed_Gartner_Says
http://www.computerworld.com/s/article/9126379/Heartland_data_breach_could_be_bigger_than_TJX_s
http://www.computerworld.com/s/article/9126379/Heartland_data_breach_could_be_bigger_than_TJX_s

[16] Nong Ye and Qiang Chen. An anomaly detection technique based on a chi-square statis-
tic for detecting intrusions into information systems. In Quality and Reliability Engineering
International, volume 17, pages 105–112, 2001.

[17] Nong Ye, Syed Masum Emran, Qiang Chen, and Sean Vilbert. Multivaraite statistical analysis
of audit trails for host-based intrusion detection. In IEEE Transactions on Computers, volume
51, No. 7, pages 810–820, 2002.

32

	Introduction
	Background
	Objective
	Limitations

	Method
	A Survey on Audit Trail Analysis
	Design Rationale
	Multiple Angles of Analysis
	Event Flow
	Class Design

	Sliding Window Detector
	Model Parameters
	Detection Process
	Previously Unknown Events

	Multivariate Statistics Detector
	Model Representation

	Results
	Analysis Configuration
	Audit Trail Format
	Sliding Window Detector
	Multivariate Statistics Detector
	Detectors in Parallel
	Test case 1
	Test case 2
	Test case 3
	Test case 4
	Test case 5

	Evaluation
	Testing and Datasets
	False Positives
	True Positives

	Future Work

	Pre-study

