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Semantic Segmentation in Marine Environment
Using 2D spherical projection and convolutional neural networks
Emma Dahlin
Hanna Jonsson
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
The marine environment is constantly changing and therefore it can be difficult
to control a vessel under these conditions. In this thesis, a method is proposed
to interpret the surroundings to aid easy and safe travels on water. This is done
through semantic segmentation by transforming 3D point clouds to 2D images, using
a projection-based method. The transformation enables training with convolutional
neural networks to achieve a fast and high performance network.

The above method is successfully implemented in the marine environment and the
results show that fewer classes are preferable to reach a high accuracy of the model.
The features from the environment was unbalanced, which was compensated for by
implementing a loss function that weighted the underrepresented classes higher. The
model increased in performance for the minority classes. Furthermore, the real-time
semantic segmentation was slower compared to the sensors update-time but there
are possibilities to reduce the prediction time in future work. Precipitation was hard
to detect due to low amounts of annotated data but the other surroundings could
be detected in harsh weather conditions either way. The results show promising
outcome for future implementation.

Keywords: Machine learning, Semantic segmentation, CNN, Marine environment,
LiDAR, U-Net
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Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Indices

i Indices for class in loss function

Parameters

C Number of classes
γ Hyperparameter for Focal loss
T L1

L2 Transformation matrix between LiDAR 2 & 1
T L1

L3 Transformation matrix between LiDAR 3 & 1
T L1

L4 Transformation matrix between LiDAR 4 & 1
T L1

L5 Transformation matrix between LiDAR 5 & 1
T Base

L1 Transformation matrix between LiDAR 1 & boat base
FoVup Field of View up
FoVdown Field of View down
FoV Entire Field of View
H Height of image
W Width of image

Variables

TP True positive in confusion matrix
TN True negative in confusion matrix
FP False positive in confusion matrix
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FN False negative in confusion matrix
yi Ground truth in loss function
pi Prediction in loss function
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1
Introduction

In this section the background and purpose of the master thesis work is described.
The background presents the current problem and the importance of finding a solu-
tion to it. The purpose mentions why this master thesis is done and which outcome
the work strives for.

1.1 Background
During year 2020 there were 311 incidents and accidents reported in professional
shipping on Swedish waters. In addition to this, 29 persons passed away in private
boating [1]. This is only statistics from Swedish waters and the number of accidents
that has been reported. These numbers should be as close to zero as possible and
a step to reduce this is to implement an accurate surrounding view system. For a
human it can be hard to detect and interpret the surroundings of a vessel, depending
on the size of the vessel, which is an issue that can be avoided with such a system.
Furthermore, it can be a step in developing autonomous help systems. When an
autonomous system is implemented, it needs to be capable of making accurate and
precise decisions as well as interpreting its surroundings correctly. Today semantic
segmentation is applied in vehicles on land to identify the surroundings and classify
obstacles, like pedestrians, other cars etc. This allows development of applications
such as parking assistance and warning systems where identification of the surround-
ing is a crucial asset.

Systems, like the ones mentioned above, can be implemented to be able to more
safely navigate the vessel, especially in confined spaces. Furthermore, the weather
can complicate navigation with rain, snow, wind, darkness etc. Therefore, it is of
great importance to know the vessels surroundings to avoid collisions and other
dangerous situations. Similar to ground vehicles, other types of vessels can now
be equipped with a multitude of sensors, such as LiDARs and cameras. However,
the data from the sensors still needs to be interpreted to locate obstacles or to im-
plement autonomous applications that can assist the captain. For ground vehicles,
where the use of sensors is more widespread and the technique more mature, seman-
tic segmentation is widely used to classify the surroundings. One drawback with
this technique is the heavy computational demand required. A master thesis work
was carried out to investigate the use of lightweight CNNs (Convolutional neural
networks) for fast and accurate segmentation [2]. However, the circumstances in
marine environments differ from those on ground in substantial ways [3]. Today
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1. Introduction

there are limited amount of data sets from marine environments that are labeled
and ready to train on a CNN. The complex environments, lack of features and the
limited amount of data are something that needs to be handled to achieve better
systems for identifying the surroundings on sea.

1.1.1 Complex Marine Environment

The previously mentioned complex marine environment makes it difficult to per-
form semantic segmentation due to several factors. Harsh weather conditions often
create low-quality data to use for training, which is a problem since learning models
need a lot of high-quality data to perform well. Weather is an issue in non-marine
environments as well, however there has not been as much data collected in marine
environments compared to traffic environments. This causes the existing data sets
to often have data or label starvation. Furthermore, water spray from waves and
other movements in the water constitutes a class that has a lot of different shapes,
making it harder to use for training. In comparison to semantic segmentation on
land the marine environment generally provides fewer features. Roads and traffic
most often have a lot of other vehicles, road signs, buildings and vegetation close by.
However, when driving a boat there is usually only water in proximity, most often
it is only in harbors or other confined spaces that there are noticeable features.

1.2 Purpose

The purpose of this master thesis is to implement and adapt fast semantic segmen-
tation on solely sparse LiDAR data in marine environments. To enable a larger area
of use the thesis will focus on using data with a lower resolution while still achieving
a fast and sufficient precision in real-time scenarios. The sensors used to collect data
are five LiDARs placed on a boat.

1.2.1 Objectives

The master thesis aims to answer the following questions.
• How could limited access to good training data and harsh weather conditions

in marine environments be handled and compensated for?
• Are data from LiDAR sensors with low resolution enough to provide high

performance for segmentation in marine environments?
• How can the training and the network be designed to reach an accurate and

precise segmentation with low resolution data in marine environment?
• How can the training and the network be designed to achieve a fast seg-

mentation that can be used in real-time with low resolution data in marine
environment?

2



1. Introduction

1.3 Limitations
The scope of this project is to investigate low resolution LiDAR data for semantic
segmentation, hence high-resolution data will not be used. The data will be prepro-
cessed from a 3D point cloud to a 2D spherical view, like a panorama image and
therefore projections in birds eye view will not be used. Since there is real data
available no simulated data will be gathered and used. This is due to lack of find-
ings of simulation tools for marine environment. Moreover, according to a previous
master thesis work [2] a network trained on only real world data performs better
than one trained on simulated data. The thesis evaluated a network that had been
pretrained on artificial data and tested with real-world data which showed that sim-
ulated data can not replace training with real-world data. Furthermore, this project
will be using only LiDAR sensors since one of the objectives is to investigate if only
LiDAR data is enough to do semantic segmentation on. This type of sensor can also
provide quality point clouds even in challenging weather compared to cameras.

3
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2
Theory

The techniques used in the thesis work are presented in this chapter, such as LiDAR,
semantic segmentation, preprocessing and training of a network.

2.1 LiDAR
Light Detection and Ranging (LiDAR) is a core technique when designing Advanced
Driver Assistance Systems (ADAS) and developing Autonomous Driving (AD) vehi-
cles. The principle of a LiDAR is built on light being reflected on different objects.
The signals sent are several infrared beams or laser light that the sensor is emitting,
which enables detection of the surroundings. Here, a method called Time-of-Flight
(TOF) is used to calculate the distance to a detected object by using the time it
takes for a light particle to travel back and forth [4]. TOF is a proven and reliable
technique used for fast detection of objects [5]. As an example, a high-resolution
LiDAR can generate 1 300 000 points per second [6]. All the points recorded by the
sensor can be illustrated as a point cloud in 3D vision which contains the parameters
of position (x, y, z) and the intensity of the light returned.

Today, different LiDARs can cover a horizontal field of view (FoV) of up to 360◦

and a vertical FoV of up to 90◦ [7]. An illustration of the FoV can be seen in Figure
2.1.

LiDAR Vertical FoV

FoVdown

FoVup

Horizontal FoV

Figure 2.1: A LiDAR sensor where its Field of View (FoV) is showed.
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2. Theory

There are mainly two types of LiDARs. One kind has internal rotating parts and
gives a horizontal perception of 360◦, here called mechanical LiDAR. The other one
is a static (solid-state) type that does not have any rotating parts and hence can
normally only deliver a perception of the horizontal plane of a maximum of 120◦.
Mechanical ones are more popular when used in designs of AD vehicles since they
can scan the whole horizontal area of the vehicle’s surroundings. A downside with
a LiDAR with moving parts is an increased possibility of mechanical faults, which
could make it less reliable and not as robust as the static one. Mechanical sensors
are also more expensive and have an inferior resolution [6].

Camera sensors could be a complement for LiDARs since they provide pictures
of colour and textures which can be used to perceive the surroundings, for example
traffic signs and lights in ADAS. However, it is more difficult to measure the distance
to objects in images compared to point clouds since there is no depth information
[4]. Furthermore, it is difficult to gather high-resolution images that are possible to
be used for training in the marine environment due to the complexity of the sur-
roundings [3]. LiDARs are more suitable under hard conditions such as darkness,
fog, rain and splashes from the surrounding water. Even if the beams from a LiDAR
are affected by rain and water drops the sensor still manages to positively detect
the other surroundings.

2.2 Semantic Segmentation
In this work, semantic segmentation is used to classify each pixel in an image. In
this process, each pixel gets assigned to a class, which means that the pixel gets
a label that is connected to a class. The classes are often visualised in different
colours. If there are several instances of the same class semantic segmentation does
not differentiate between the instances. For example, if there are several boats to
classify in an image all the pixels of the boats will get the same label [8].

For LiDAR data each 3D point in a point cloud will be classified. There are mainly
two different methods for this, the projection-based method and the point-based
method [9], [10] that are explained more in Sections 2.3.1 and 2.3.2.

2.3 Preprocessing of data
In machine learning, the input data is of big importance to get a good performance
of a model. There are several different ways to preprocess the data depending on
the data format and what kind of input is needed for the network. The data is
often divided into three different sets; training, validation and test. They all need
to contain a mixture of data and the training data need to be shuffled on its own
to decrease the risk of overfitting. Overfitting is when the network learns specific
patterns for some data but performs poorly on new data [11]. If the training data is
not shuffled the network will learn on frames that are almost identical to each other
at the beginning of training. Therefore, as the training progresses and new data
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2. Theory

are introduced the network will not generalise well. To avoid this phenomenon a
validation loss can be examined, when its value deviates from the training loss and
increases rapidly in value the model has been overfitted [11].

As previously mentioned, segmentation of 3D clouds can be done in mainly two
different ways. These are the projection-based method and the point-based method.
The projection-based method requires a preprocessing of the point cloud while the
point-based method directly uses the 3D point cloud.

2.3.1 Projection-Based
The Projection-based method for a 3D point cloud involves a transformation of the
3D points into a 2D projection. The purpose of the method is that it enables the
usage of the widely tried techniques of CNNs, which require images as input [10].
The most common branches of the method are either projection by a spherical view
or a bird’s eye view (BEV).

The spherical view projection technique uses the knowledge of the depth to project
the point cloud to a panorama 2D image. The projection is done by working with
the azimuth and zenith angles. With this technique, semantic segmentation can be
performed with a low computational cost [10]. Depending on how the point cloud
looks the 2D projection images can have a strange spatial distribution compared to
normal images. The data can be very sparse in some locations and extremely con-
centrated in others [12]. Furthermore, objects that are hidden behind other objects
from the point cloud centre will not be seen as distinctly on the projections.

BEV projects the 3D data to a 2D grid from above to the horizontal plane. For this
it is a necessity that all the objects that are meant to be detected are located on
the same plane [13]. Hence, this technique does not use depth information since it
is not needed for the provided purpose of this method [10].

2.3.2 Point-Based
The point-based method uses point clouds as data input to the network, which
means that no preprocessing of the data is performed [10]. Therefore, the data
contains all the information from the beginning. The method is good for smaller
point clouds since they have less data to handle. However, for larger clouds it will
bring a lot of computations and will result in longer processing time, hence higher
computational cost. The point-based method is suitable for indoor scenes since the
3D point clouds are usually in much smaller sizes and ranges in these areas [12].

2.3.3 Supervised learning
The training in machine learning can either be supervised or unsupervised. With
supervised learning, the input data has labels that are also known as the ground
truth. During training, the output prediction from the network is compared to the
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2. Theory

ground truth. The comparison is done through a loss function and the weights
in the network are updated to minimise it. Supervised learning is often used for
segmentation and to be able to perform it the data need to have ground truth
values. If it does not exist it needs to be created during preprocessing.

2.4 Training
In this section the network structure of a U-Net, multi-class accuracy and two dif-
ferent loss functions are explained. The loss functions are Cross-Entropy (CE) loss
and Focal loss.

2.4.1 U-Net
For classification tasks, CNNs are often used to get one label per image [14]. How-
ever, in semantic segmentation each pixel or point need to have a label which makes
for a slightly different network structure than for normal image classification.

The U-Net is a CNN that is used for semantic segmentation on images and was
first developed for biomedical image segmentation [14]. The network consists of
convolution layers, max pooling layers and ReLu activation layers. An overview of
U-Net can be seen in Figure 2.2.

Convolution
layers

Input 
image

UNET

Convolution
layers

Convolution
layers

Convolution
layers

Convolution
layers

Convolution
layers

Convolution
layers

Output 
image

Up-Convolution layer

Up-Convolution layer

Up-Convolution layer
Max Pooling layer

Max Pooling layer

Max Pooling layer

DE
CO
DE
RENCODER

Copy & crop

Copy & crop

Copy & crop

Figure 2.2: Overview of U-Net with blocks of CNNs and the steps in between on
the encoder and decoder side.

The name comes from its U-shape where an encoder forms the left side of the U,
and a decoder forms the right side. The encoder has several blocks that each consist
of convolutions with Rectified Linear Unit (ReLU) activation layers, followed by
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a max pooling layer to downsample. The decoder upsamples with similar blocks
but instead of max pooling layers there are convolution layers that upsamples the
image, called up-convolution. To not lose information in the encoder the feature
map from every block is copied and cropped with the corresponding feature map in
the decoder [14].

2.4.2 Accuracy
For a machine learning problem accuracy is a common validation method to evaluate
the model performance. Accuracy is a measurement of how good the model is at
making the correct predictions. It is defined as,

Accuracy = Number of correct predictions
Total amount of predicted samples

(2.1)

For binary classification problems, the accuracy can be written as,

Accuracy = TP + TN

TP + TN + FP + FN
(2.2)

where TP - true positive, TN - true negative, FP - false positive and FN - false
negative. In Figure 2.3 an illustration can be seen of the binary classification prob-
lem. The matrix is called a confusion matrix, which is widely used for calculation
of accuracy [15].

Figure 2.3: Confusion Matrix for binary classification problem.

When described as a binary problem where there are positives and negatives the TP
are the ones that have been labelled as positive and have a ground truth value that
is positive as well. TN are the ones that are labelled as negative and have negative
ground truth. FP and FN have the same principle, but the label and the ground
truth does not match [15].

The Confusion Matrix can easily be expanded and used for multi-class problems, as
shown in Figure 2.4. Instead of using a positive and a negative case, as in the binary
matrix, each row and column represents a class. Therefore, the TP, TN, FP and FN
labels cannot be applied in the same way. Instead, the diagonal represents all the
correct classified labels, and the rest are incorrect classifications. To calculate the
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accuracy of a multi-class problem the diagonal is summarised and divided by the
sum of the matrix. In the example from figure 2.4 with four classes the accuracy
would be calculated as: acc = 4+8+12+9

55 .

Figure 2.4: Example over Confusion Matrix for multiple classes.

2.4.3 Cross entropy loss for multi-class classification
The Cross Entropy loss function (CE) is often used in multi-class classification and
the aim is to minimise the loss. The loss is calculated using Equation (2.3) on each
pixel where the sum is adding the loss of the different classes to each other [16].

CE = −
C∑
i

yilog(pi) (2.3)

yi is the ground truth and has one probability matrix for each class. In each one of
these matrices every pixel has either a value of 1, if it is the true class, or 0. pi is
the prediction that will be compared to the ground truth. It has the same size as
the ground truth but instead the probabilities depend on how certain the prediction
is on what class it is. In other words, each pixel has values on every matrix that
ranges from 0 to 1.

2.4.4 Focal loss
Focal loss is based on the Cross Entropy loss but is adapted to manage class imbal-
ance specifically [17]. A modulating factor is added to the CE-loss to weigh down
the classes that are easier to predict and make the classes that are harder to predict
more important. The Focal loss term added is (1 − pi)γ and the function with the
modulating factor can be seen in Equation (2.4). γ ≥ 0 is a parameter that can be
changed in value depending on how important the features that are less represented
should get. Research has been made and a study has shown that a value of γ = 2
gives the most promising results with an imbalanced data set [17].

FL = −
C∑
i

(1 − pi)γyilog(pi) (2.4)
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In this chapter the method carried out is presented. This includes different data pro-
cessing, collection of additional data, building network structures, network training
and evaluation. An overview of the working process and design of the method can
be seen in Figure 3.1, where a block schedule is presented with the different steps.

Data set of
3D point cloud

One frame

Training and 
validation set

CNN network

Segmented 2D image

Projection back to 3D 
point cloud

Annotated frame

Spherical projection

Figure 3.1: Blockschedule representing an overview of the executed method. The
data set consists of frames which are annotated in the next step. The 3D clouds are
then projected into 2D images. The 2D images compose the training, validation and
test set which are used in the CNN network. From the trained network a segmented
2D image is produced that is projected back to a 3D cloud.
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3.1 Data preprocessing
Previous and newly acquired data were used. The collected data were from a boat
equipped with five LiDAR sensors and gave a 360◦ view of the boat’s surroundings.
The placement of the LiDARs and the GNSS sensor can be seen in Figure 3.2.

Figure 3.2: The blue dots represent the five LiDARs placements on the boat. The
GNSS receiver is also marked.

To view the data from the same coordinate system, transformations were needed
between the LiDARs. The data were collected as time series similar to videos, which
creates several frames for each recording. The update rates of the LiDARs were set
to 10 Hz, meaning 10 frames per second. Recordings were cut to a maximum of 400
frames to easier handle the data and make sure that longer recordings would not
take over the training. Each frame was annotated and then projected onto a 2D
image before the data set could be sent to the training algorithm.

3.1.1 Transformations between coordinate systems
The data were collected with five different LiDARs, referred to as L1, L2, L3, L4
and L5. Hence, it consisted of five different point clouds, one for each sensor. For
further processing of the data, the point clouds needed to be transformed to the same
coordinate system since the recordings were made for each LiDAR’s reference point.
To transform the point clouds the transformation matrices between the LiDARs
needed to be produced. These were computed with quaternions and translation
vectors. Prior to this work the quaternions and vectors were calculated through
calibration. A scan from each LiDAR was needed at the same time in an environment
with a lot of features. These clouds needed to overlap over mutual features in order
for a program to approximate the sensors’ positions and directions. When this was
made the point clouds were placed in relation to a CAD model of the own boat which
then could be calibrated properly. The calibration is done through an algorithm,
Iterative closest point, which fine-tunes the point clouds until they match each
other and the clouds from L1-L5 have the same measurement values [18]. When
the fine-tuning was done the translation vectors and quaternions for each sensor
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could be used to produce the transformation matrices between each LiDAR. The
transformation matrix can be expressed as

Tm =
[
R0

1 O0
1

0T
3 1

]

where R is a 3x3 rotation matrix and O the translation vector [19]. The transfor-
mations are visualised in Figure 3.3 as yellow arrows while the computed matrices
can be found in Appendix A.

Figure 3.3: Overview of the boat’s LiDAR positions and the tranformations be-
tween them. These can be seen with yellow arrows between L1 and the other Li-
DARs, while the green arrow represents the transformation between L1 and the
base.

After applying each transformation to its corresponding point cloud, the clouds were
merged together. Afterwards, one last transformation was performed on the point
cloud to the base of the boat. It was done to easier visualise each frame and to
make the labelling smoother in the annotation tool. The transformation from L1
to the base is shown as a green arrow in Figure 3.3 and the matrix can be seen in
Appendix A as T Base

L1 .
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The transformation with T Base
L1 should make it possible for the following method, in

this chapter, to be used regardless of what kind of LiDARs are used. A requirement
is that the point cloud covers an angle of 360◦ around the vessel and that the LiDARs
have roughly the same installation as those that the model was trained for. The
transformation matrices to L1 need to be adapted to make sure that the coordinate
system matches the system of the training data.

3.1.2 Annotation
The collected data were not annotated from the beginning. Therefore, different
annotation tools were investigated to label the point clouds in the data set. The
SemanticKITTI data set consists of point clouds that have been collected by a car,
and a point cloud labeller has been created for that data set [20].

This tool made it possible to label multiple frames at the same time. The program
stacked the frames on each other and thus created a map of point clouds. How-
ever, only 50 frames at a time could be labelled. More frames became difficult to
handle, partly due to the changes in the marine environment (the water’s constant
movements) and the addition of more points that overlapped which made it hard to
distinguish between different objects. Furthermore, the LiDARs recorded parts of
the own boat, which covers other objects in frames where the boat was in motion
during annotation. There was also an issue with the transformation matrices be-
tween each frame since it is not certain that all of the LiDARs and the GNSS sensor
record a frame at the exact same time, leading to timing errors.

Labels were created for the marine data set where the annotations were made with 14
classes. However, all the classes were most likely not necessary for marine conditions.
To evaluate the performance of the number of classes, three constellations of classes
were made. These three sets can be seen in Table 3.1.

Set Number of classes
Large 14

Medium 8
Small 3

Table 3.1: The size of the three sets used.

The class colours for the Large set, which the annotations were made with, can be
seen in Figure 3.4.
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0.8

1
Own Boat Boat Other Objects Water Rain Person Road Reflection Boat Dock Building Bouy Cliffs Terrain Pole

Figure 3.4: Class colours for Large set.
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For the Medium set the classes on land were merged to form the class ’Ashore’, and
’Pole’ was added to ’Boat dock’. The reduced set can be seen in Figure 3.5. There
is also the Small set where there are only three classes; ’Own Boat’, ’Water’ and
’Other’, which is visualised in Figure 3.6.
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Figure 3.5: Class colours for Medium set.
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Figure 3.6: Class colours for Small set.

3.1.3 2D projection

The point clouds are built with Cartesian Coordinates (x, y, z) which makes it pos-
sible to view all the data points in 3D. These clouds take a lot of memory space and
can be very time-consuming when the purpose is to train a network to recognize
different objects. The frames in the data set were of sizes around 70 000 to 150 000
points, which could make it difficult to use a point-based method since it could make
it hard to reach efficient processing, especially in real-time applications [12]. Hence,
a projection-based method was used to reduce the time-consuming part, increase
efficiency and enable the use of CNN.

The 3D point clouds were transformed into 2D spherical projections that created
2D panorama images that enabled higher computational efficiency during training.
An example of such an image can be seen in Figure 3.7. The projection calculations
will be described further down in this section.

15



3. Method

Figure 3.7: Left half of a 2D spherical projection image of labelled 3D point cloud.
The original size can be found in Appendix B in Figure B.1.

The size of the 2D images needed to be optimised, which means that as many points
as possible needed to fit in the images while minimising the number of empty pixels
(unlabelled with depth 0). This optimisation was partly done by choosing the FoV,
which is usually a set value for a LiDAR. However, since the point clouds were
merged from several LiDARs with different positions and directions their FoV did
not describe the point clouds’ FoV. Therefore, the optimal value for the FoV was
decided by testing different values. FoVup was set to 90◦ since smaller values caused
points to disappear and larger values were not necessary due to a horizontal FoV
of 360◦. In Figure 3.8 one image can be seen where FoVup = 90◦ and one with
FoVup = 30◦. The green arrows highlight that the roof of the boat (blue colour) has
been cut out with the smaller FoV, which means that data points have disappeared.

(a) FoVup = 90◦, the green arrow points at the roof of the boat.

(b) FoVup = 30◦, the green arrow points at the area where the roof of the boat has
disappeared.

Figure 3.8: Left half of two 2D images with different values of FoVup. FoVdown is
on both images set to −40◦. The original size can be found in Appendix B in Figure
B.2.

FoVdown was more challenging to decide in the term of minimising the number of
empty pixels (black space) while not removing any points. After testing different
values it was decided that FoVdown = −40◦ was the most optimal. Some of the
testings can be seen in Figure 3.9, where three different angle values of FoVdown are
shown.

16



3. Method

(a) FoVdown = −10◦.

(b) FoVdown = −40◦.

(c) FoVdown = −90◦.

Figure 3.9: Left half of three 2D images with different values of FoVdown. FoVup is
on both images set to 90◦. The original size can be found in Appendix B in Figure
B.3.

In Figure 3.9a an angle of −10◦ is shown which clearly shows that many of the lower
data points were missed. While in Figure 3.9c, where the angle value was set to
−90◦, more black space can be seen in the lower part of the image than in Figure
3.9b where the angle value is −40◦. More angles were tried closer to −40◦ to esti-
mate the value as thoroughly as possible. Some of the points were quite small and
were difficult to view in the upper and lower parts of the panorama images when
the points were more spread out and not located close to one another.

To achieve the 2D images a spherical transformation was needed to be made on the
3D point clouds. This means that the Cartesian coordinates were transformed to
spherical coordinates (R, ϕ, θ) which were used to create an image. To project the
3D points to a 2D image the depth (R) was calculated first.

R =
√

x2 + y2 + z2 (3.1)

Furthermore, this was used together with the 3D point coordinates to receive the
values for the angles,

ϕ = − arctan2
(

y

x

)
(3.2)

θ = arcsin
(

z

R

)
(3.3)

These angles made it possible to calculate the projection (Xproj, Yproj). An illustra-
tion of the spherical projection can be seen in Figure 3.10.
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Figure 3.10: Coordinate system over one point in the point cloud and its projection
to a 2D image with size H x W.

The projections were calculated by [21],

Xproj =
(

1
2

(
ϕ

π
+ 1

))
· W, ϕ ∈ [−π, π] (3.4)

Yproj =
(

1 −
(

θ + |FoVdown|
FoV

))
· H, θ ∈ [FoVdown, FoVup] (3.5)

where ϕ and θ can be seen in Equations (3.2) and (3.3). FoV = |FoVdown|+ |FoVup|
which all were translated to radians. The width and height of the image were set
to W = 2048 and H = 128. This image size was chosen because a bigger size would
take up a lot of memory and a smaller size made images with too low resolution.
Furthermore, the smaller size also meant that the number of max pooling layers
needed to be reduced.

In Figure 3.11 an example of one projected point can be seen where the calculation
steps are explained in further detail. The 3D points were translated to angles where
the LiDAR position was in the centre of the 2D plane. Hence, the origin was
translated to the upper corner of the image plane since it is preferred for computer
vision tasks to have it in one of the corners [21]. After the 3D point has been
translated the projected image needs to be adjusted to the LiDAR system. This
was done through normalisation and scaling to keep as many points as possible in
the projection when one dimension is ignored. The normalisation and scaling were
made with the help of the vertical FoV and the image size.
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Figure 3.11: The calculation steps of projection for one point in the 2D image
from the 3D point cloud.

3.1.4 Images used in training
With the 2D projection a depth image and an intensity image were created for each
frame. In the same way as RGB images have three channels the depth and intensity
images were merged to create 2D images with two channels. These were then used
as input to the network. They can be viewed separately in a half format in Figure
3.12. A third 2D image was also created and used as ground truth in the training
loop, which can be seen in Figure 3.9b.

(a) Left half of a depth image, where the blue is closer to the sensor and yellow
further away.

(b) Left half of an intensity image, where the yellow parts have higher intensity
values and darker blue parts lower intensity values.

Figure 3.12: Left half of depth and intensity 2D images that are used as input to
the network architecture.
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3.1.5 Imbalanced data set
After labelling the data and projecting the clouds onto 2D images it became clear
that the data set suffers from highly imbalanced classes. In Figure 3.13 the ’Un-
labelled’ class can clearly be seen with a major difference compared to the other
classes. The ’Unlabelled’ class represents the black pixels in the 2D projections,
which are areas where there are no points to project. Since the areas where there
are no points to project are unimportant for the segmentation of the 3D cloud this
class was ignored during the training.
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Figure 3.13: Class density for 16 classes.

By ignoring the ’Unlabelled’ class the other classes can be seen more clearly, as
shown in Figure 3.14. As can be seen in the graph there are still some classes that
have a large advantage compared to other classes. The LiDARs detect most of the
own boat and water near the boat which makes the densities for these classes larger.
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Figure 3.14: Class density when ignoring class ’Unlabelled’.

It was decided to try and reduce the number of classes to get a better distribution
between them, as mentioned briefly in Section 3.1.2. Figure 3.15 visualises the class
densities after merging some of them together. The classes ’Road’, ’Other objects’,
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’Person’, ’Building’, ’Cliffs’ and ’Terrain’ were merged to ’Ashore’. The class ’Pole’
was added to ’Boat dock’ since the poles in question were placed on the docks.

Unlab
elled

Own bo
at Boat Ashor

e
Water Rain

Refle
ction

Boat d
ock Buoy

0

2

4

6

8

Nu
m

be
r o

f p
oi

nt
s

1e7 Class density

Figure 3.15: Class density with eight classes.

To merge classes even further only 3 classes were kept, as seen in Figure 3.16. Here
the classes are ’Own boat’, ’Water’ and ’Other’. The class ’Rain’ was added to water
and every other class, except ’Own boat’ and ’Water’, were merged to ’Other’. This
was done to see how well the model can predict the difference between where the
boat can and cannot travel.
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Figure 3.16: Class density with three classes.

3.2 Data Collection
During labelling and analysing the data that was previously collected it became clear
that the data sets were quite similar to each other. Most of the recordings were in
two distinct parts of the same harbour, something that would make the model rec-
ognize those features well but have a harder time with features in other harbours.
The recordings that were not in that harbour were of high-speed movement on open
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water without any other land masses.

To ensure that the data set would achieve more diversity, new data was collected.
New recordings were made in another harbour that had docks and land of other
structures as well as vessels of varied sizes, such as large fishing boats. Furthermore,
recordings were also made when moving and being near different objects, for example
buoys, moving vessels and cliffs.

3.3 U-Net
It was decided to use the U-Net architecture because it is a CNN that can be used
for multi-class segmentation and has proven to be reliable. Since the training data
have two channels, a depth channel and an intensity channel, the network’s input
size was the size of the image × 2. The encoder’s channels, used as the number
of channels for the convolution layers, were 2, 64, 128, 256 and 512, where each
downsampling doubled the number of channels. The channels for the decoder were
similar but reversed and the last block ended with as many channels as there were
classes, to get one probability map for each class. An overview of the used network
can be seen in Figure 3.17.
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Figure 3.17: The implemented U-Net structure where the encoder can be seen on
the left side and decoder on the right side.

To get one feature map with class predictions a softmax function was added along
the channel dimension to get values between 0 and 1 on the probabilities. An argmax
function was applied along the same dimension to receive the index of the highest
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probability for each pixel. The index corresponded to a label that was connected to
a class, thereby giving each pixel a predicted class.

3.4 Training and evaluation of network
The training and evaluation were done on a computer with 32 GB RAM and an
Nvidia Quadro RTX 4000 GPU [22]. During training, the optimizer used was the
Adam optimizer. It was used because it is an adaptive optimizer that automati-
cally tunes the learning rate value during training [23]. Furthermore, the data set
consisted of almost 10 000 frames with around 70 000 to 150 000 points per frame.
During each epoch, there were several validations performed with a validation data
set (20% of data set), which was in order to gather more results from the validation
set. The test data set was two recordings that made up approximately 10% of the
data, which were used for evaluation of the model.

3.4.1 Learning rate
A few different values were tested for the learning rate to get a good result on the
model. At first, a learning rate of 0.001 was tried and the loss can be seen in Figure
3.18a. The loss was decreasing fast in the beginning and thereafter converged around
0.05, hence the learning rate was a bit too high. This caused the optimizer to not
find the minimum point due to too drastic updates. With a lower learning rate,
of 0.0001, the loss managed to decrease in a better way while not fluctuating as
much, which can be seen in Figure 3.18b. It was decided to not use an even lower
learning rate since that could cause the loss to not decrease as fast, thereby making
the training longer.
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(a) Loss with learning rate 0.001.
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(b) Loss with learning rate 0.0001.

Figure 3.18: Graph over loss with two different learning rates over the training
time.

3.4.2 Accuracy
To analyse the model performance, accuracy was calculated for all classes. This was
done by using the Confusion Matrix. The accuracy for all classes was calculated
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as shown in the example related to Figure 2.4. The accuracies for each class were
calculated with,

accclass1 = Correct classified labels for class1
The sum of the ground truth classification for class1

(3.6)

Using the scenario shown in Figure 2.4, it would mean that the accuracy for class1
would be accclass1 = 4

4+2+1 = 0.57. This calculation has been done for each of the
classes during the validation step.

3.4.3 Loss function
In the 2D projection images there was a clear problem with class imbalance as well
as for the 3D point clouds. The unlabelled areas in the images were a lot larger than
the labelled areas. The LiDARs managed to detect more points closer to themselves,
which created more points in the classes ’Own boat’ and ’Water’. To create training
that compensated for this the loss function was of considerable importance. At first
CE loss was used as it works well for image segmentation. The class ’Unlabelled’
was ignored in the loss function, as mentioned in Section 3.1.5. Even by ignoring the
background class, the data set was still rather imbalanced and other loss functions
needed to be tried.

Focal loss, as introduced in Section 2.4.4, is particularly good at handling class
imbalances. It is based on CE and the background class ’Unlabelled’ was ignored
in the same way as with CE loss. The modulating term (1 − pi)γ was multiplied
with the CE and the value γ was set to 2 to handle the class imbalance in the best
conceivable way [17].

3.4.4 2D projection to 3D cloud
After training and evaluation were finished the 2D images needed to be transformed
back to the 3D space again to visualise the data in a 3D LiDAR point cloud. The
transformation was performed by backwards computation with spherical coordi-
nates. The angles could therefore be calculated by using Equation (3.4) and (3.5).
Since the depth was known, the 3D coordinates could be calculated by,

x = R cos (θ) cos (−ϕ) (3.7)
y = R cos (θ) sin (−ϕ) (3.8)

z = R sin (θ) (3.9)

where R is the depth, ϕ ∈ [−π, π] and θ ∈ [FoVdown, FoVup].
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Results

In this section the results are presented with validation accuracy graphs from train-
ing and accuracies on test data. The section is divided into the three different class
sets, execution time and the models’ predictions in heavy rain. All models were
trained for three epochs, with a learning rate of 0.0001.

4.1 Large set

The validation accuracy and loss from the last validation, for the large set of classes,
can be seen in Table 4.1. The accuracy reached the same value for both of the loss
functions. However, the loss is slightly lower for Focal loss.

Loss function Accuracy Loss
CE 95.2% 0.010

Focal 95.2% 0.004

Table 4.1: The last validation accuracy and loss, for each of the loss functions.
With the large set of classes.

Figure 4.1 visualises graphs with the validation accuracy from training on the large
set of classes. The graphs are divided depending on the class and which loss function
was used during training.
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(a) Classes 1-8 trained with CE loss.
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(b) Classes 1-8 trained with Focal loss.
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(c) Classes 9-14 trained with CE loss.
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(d) Classes 9-14 trained with Focal loss.

Figure 4.1: The validation accuracy for each class, using the large set of classes.
Figures (a) and (c) are with CE loss, while figures (b) and (d) are with Focal loss.

For both of the loss functions the classes ’Own boat’ and ’Water’ reached a validation
accuracy higher than 95%, as can be seen in Figures 4.1a and 4.1b. Other classes that
had a decent accuracy were the classes ’Boat’, ’Boat dock’, ’Building’ and ’Pole’,
ranging between 55% and 80%. There was not a big difference in the validation
accuracy depending on the loss function for either of those classes. However, for
classes that have a smaller density the validation accuracy increased with Focal loss
compared to CE loss. The class ’Buoy’ is such a class, as can be seen in Figures
4.1c and 4.1d. The validation accuracy with CE loss reached a value of around 15%
while the model with Focal loss finished at around 40%.

4.1.1 Segmentation on test data

To visualise the performance, in more than validation accuracy and loss, test data
were used for predictions. The 3D point clouds for ground truth and predictions of
one test frame are visualised in Figure 4.2. Both of the models managed to predict
the majority of the points with the right class. However, there are some points that
were falsely predicted where the objects that are behind or in front of other objects
get mixed up.
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(a) Ground truth.

(b) Segmentation from the model trained
with CE loss.

(c) Segmentation from the model trained
with Focal loss.

Figure 4.2: Ground truth and segmented 3D point clouds for the large set of
classes.

Furthermore, to calculate average test accuracy for the classes two recordings from
different locations were used as test data. The segmented 3D point cloud from
Figure 4.2 is from a recording that is referred to as ’Still’, as the boat stays in the
same position. The second recording was made while the boat was moving towards
a different harbour, referred to as ’Moving’. The mean accuracy from all frames per
recording can be seen in Table 4.2. If a class is not present it means that neither of
the recordings have any objects of that class and a ’-’ means that the class is absent
from one of the recordings. Clearly, classes with higher class density get higher
accuracy, such as ’Water’ and ’Own boat’. The two models mostly have similar
accuracy for the different classes. It is only for a few classes, for example ’Pole’ and
’Boat dock’, that the model with CE loss performs better.
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Class Still Moving
CE loss Focal loss CE loss Focal loss

All 88.3% 86.0% 96.4% 95.5%
Own boat 97.2% 97.2% 99.0% 98.8%

Boat 82.9% 77.2% 75.7% 73.0%
Water 99.0% 99.6% 99.5% 99.6%

Reflection 4.5% 3.7% - -
Boat dock 61.4% 41.5% 88.7% 78.0%
Building 89.1% 90.6% - -

Buoy 2.2% 1.9% 19.6% 19.5%
Terrain 56.6% 62.4% - -

Pole 40.2% 29.4% - -

Table 4.2: Mean test accuracy for CE and Focal loss with the large set of classes,
over two recordings.

4.2 Medium set
The medium set contains, as mentioned, eight classes. The last values of the valida-
tion accuracy and loss can be seen in Table 4.3. Both the accuracy and loss reached
similar values as for the case with the large set of classes.

Loss function Accuracy Loss
CE 95.6% 0.009

Focal 95.3% 0.003

Table 4.3: The last validation accuracy and loss, for each of the loss functions.
With the medium set of classes.

Similarly to the case with the large set of classes, the validation accuracy for the
medium set did not differ much when comparing the two loss functions. The accu-
racy per class can be seen in Figure 4.3.
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(a) The medium set of classes trained
with CE loss.
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(b) The medium set of classes trained
with Focal loss.

Figure 4.3: The validation accuracy for each class, using the medium set of classes.
Figures (a) is with CE loss and Figure (b) is with Focal loss.
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As can be seen in the graphs in Figure 4.3 the classes ’Own boat’ and ’Water’
had a high validation accuracy, over 95%. The new class ’Ashore’ finished with an
accuracy of around 60% for both of the loss functions. The class that had the largest
change in regard to the loss function was ’Buoy’, similarly to the previous case the
model with Focal loss had a higher accuracy compared to CE loss.

4.2.1 Segmentation on test data
In Figure 4.4 the ground truth and segmented clouds for one frame can be seen.
Since, with the medium set, the amount of classes on land has been reduced it is
easier for the model to predict the points on land. Instead of having several classes
with features on land it is only the yellow ’Ashore’ class.

(a) Ground truth.

(b) Segmentation from the model trained
with CE loss.

(c) Segmentation from the model trained
with Focal loss.

Figure 4.4: Ground truth and segmented 3D point clouds for the medium set of
classes with green arrows marked at class ’Buoy’.
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Comparing Figures 4.4b and 4.4c it is clear that the loss functions did not make
much difference. However, behind the boat a buoy can be seen in the ground truth
and the model with Focal loss has tried to predict that class nearby, marked by a
green arrow. The model with CE loss predicts everything behind the boat as either
’Water’ or ’Boat dock’.

As for the large set, the mean accuracies for the two recordings were calculated for
the medium set, shown in Table 4.4. The recordings clearly had fewer classes that
were not present at all compared to the large set of classes, since most of them were
merged with other classes.

Class Still Moving
CE loss Focal loss CE loss Focal loss

All 89.1% 87.8% 96.2% 96.0%
Own boat 96.9% 97.2% 99.0% 99.2%

Boat 78.8% 75.7% 74.0% 74.4%
Ashore 86.7% 90.0% - -
Water 98.6% 98.4% 99.6% 99.7%

Reflection 0.4% 1.2% - -
Boat dock 77.3% 62.1% 89.1% 84.3%

Buoy 2.5% 2.7% 12.4% 28.4%

Table 4.4: Mean test accuracy for CE and Focal loss with medium set of classes,
over two recordings.

The ’Ashore’ class was present in the Still recording and reaches a high accuracy
at 86.7% for CE loss and 90% for Focal loss. However, the class was not present
in the second recording. A noticeable difference when comparing the loss functions
is the class ’Buoy’ in the Moving recording. It had a higher accuracy with Focal
loss, but overall the class had a low accuracy compared to other classes. It should
also be noted that the recording Moving has a higher accuracy for all of the classes
compared to the Still recording.

4.3 Small set
The small set of classes only had the classes ’Own boat’, ’Water’ and ’Other’. It
is clear when looking at the values in Table 4.5 that the last validation accuracy is
very high.

Loss function Accuracy Loss
CE 98.8% 0.002

Focal 98.7% 0.001

Table 4.5: The last validation accuracy and loss, for each of the loss functions.
With the small set of classes.
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In Figure 4.5 the validation accuracies for the three classes can be seen. Clearly, all
of the classes reached very high accuracies at around 95% or higher. The different
loss functions did not make a significant difference in this case.
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(a) The medium set of classes trained with CE loss.

0 1000 2000 3000 4000 5000
Batches

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Validation Accuracy Classes

Own boat
Other
Water

(b) The medium set of classes trained with Focal loss.

Figure 4.5: The validation accuracy for each class, using the small set of classes.
Figures (a) is with CE loss and Figure (b) is with Focal loss.

4.3.1 Segmentation on test data

The segmented clouds in Figure 4.6 show how well the model managed to predict
when using the small set of classes. There are some points that are falsely predicted,
mostly behind the boat where the model mixed the classes ’Water’ and ’Other’.
However, there are a few points up to the left of the boat where the model predicted
’Other’ as ’Own boat’. This is marked with green arrows in the images.
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(a) Ground truth.

(b) Segmentation from the model trained
with CE loss.

(c) Segmentation from the model trained
with Focal loss.

Figure 4.6: Ground truth and segmented 3D point clouds for the small set of
classes. The green arrows indicate the points where the model classifies ’Other’ as
’Own Boat’.

As for the other cases, the mean test accuracies were calculated for the case with
the small set of classes, shown in Table 4.6. It is clear that all of the classes have
high accuracy, both for Focal and CE loss. The class ’Other’ has a slightly lower
accuracy than the others, except for CE loss in the Still recording.
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Class Still Moving
CE loss Focal loss CE loss Focal loss

All 98.2% 96.9% 99.1% 99.0%
Own boat 97.0% 97.1% 98.8% 99.0%

Other 99.0% 96.6% 98.2% 97.5%
Water 98.0% 98.1% 99.6% 99.4%

Table 4.6: Mean test accuracy for CE and Focal loss with the small set, over two
recordings.

4.4 Segmentation time

The mean segmentation time was computed by measuring the time it takes to project
a point cloud to 2D, make a prediction on the projection and then transform the
prediction back to a 3D point cloud. The segmentation was done using Python
and a recording with 400 frames. The mean time for each case with Focal loss is
shown in Table 4.7. Furthermore, to investigate the time the model takes to make
a prediction compared to the 2D projections, the mean prediction time was also
computed, which can be seen in Table 4.7. When comparing the columns in the
table, the prediction time constitutes the majority of the mean segmentation time.

Case Mean segmentation time [s] Mean prediction time [s]
Large 0.281 0.260

Medium 0.292 0.272
Small 0.278 0.258

Table 4.7: Mean segmentation time and mean prediction time in seconds.

4.5 Segmentation in heavy rain

The model was trained on a couple of recordings with rain, where the rain was mostly
seen as scattered dots around the LiDARs’ positions. In Figure 4.7 the ground truth
and prediction of a frame with rain can be seen where the rain is inside the lines of
green colour. The rain is barely visible as dots around the roof of the boat. In the
ground truth image they have a dark blue colour, whereas in the segmented image
they have the same colour as the own boat.
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(a) Ground truth point cloud.

(b) Segmented point cloud.

Figure 4.7: Ground truth and segmented 3D point cloud of a frame with rain. The
rain can be noticed inside the lines with green colour.
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Clearly, the LiDARs manage to detect features through the rain. In the figures, the
dock can be seen as red, a pole as yellow and another boat as light blue. In Figure
4.7b the model clearly manages to predict these objects, with a few errors to the
left in the 3D cloud.
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Discussion

The following chapter is divided into a comparison between the different cases and
loss functions, a discussion of the input data and an evaluation of real-time segmen-
tation.

5.1 Comparison loss function and class sets
In the following section, the loss and accuracy values as well as the predicted point
clouds in the result section is discussed.

5.1.1 Large set
For the large set of classes, it is clear from Table 4.1 that there was no difference
in the last validation accuracy. The models reached a high accuracy at 95.2%. The
model with Focal loss reached a slightly lower loss than CE, but both of the models
reached a low loss. However, since the data set was imbalanced it was of higher
interest to analyse the accuracy per class, which was shown in Figure 4.1. The
model was very good at predicting the classes ’Water’ and ’Own boat’, which is
reasonable since those classes have the highest density. The predictions were also
high for the classes ’Boat’, ’Boat dock’, ’Building’ and ’Pole’, which have accura-
cies that range between 60% and 80%. The Focal loss performs very similarly for
those classes, but for the classes that had a lower density a difference can be noticed.

When comparing the class accuracy graphs for CE and Focal loss in Figure 4.1, it
could be seen that the accuracy for ’Buoy’ was around 40% with Focal loss. How-
ever, it was at 15% with CE loss. Clearly, the Focal loss made the model predict
the low-density classes more accurately, which was the purpose behind the imple-
mentation of the Focal loss function. The same behaviour can be seen with the class
’Reflection’ that also had a higher validation accuracy with Focal loss.

In Figure 4.2, three images of the same frame could be seen, predictions with each
of the two models and the ground truth. When comparing the predictions to the
ground truth, the models occasionally had challenges when objects were behind
other objects. From Figure 4.2b and 4.2c this can be seen at the boat dock be-
hind the water and the own boat. The labels got mixed up and the boat dock was
predicted as ’Boat dock’, ’Own boat’ and ’Water’. Since the clouds were projected
to 2D images, objects that were behind other objects were projected at the same
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place in the image. If a point was placed on the exact same pixel as another, the
point that was closest to the centre of the boat was chosen. However, as seen in the
2D projections, objects are often a bit ’see-through’ and other objects will be seen
in-between gaps, which was where the LiDARs did not detect any points. In the
prediction this causes the model to mix the classes when objects are behind other
objects. A technique to avoid this might be to have a loss function that punishes
the model for this behaviour or weigh the depth parameter higher in training.

When comparing the loss functions in the segmented predictions there is not a big
difference. However, it can be noted that Focal loss predicted more different classes
behind the own boat that resembled the ground truth.

The test accuracies, shown in Table 4.2, have a slightly different result compared to
the validation accuracies for the different classes. Classes with higher densities have
high accuracy, as in the validation accuracy. However, for some classes that were
harder to predict, e.g. ’Pole’ for the ’Still’ case, the CE loss had a higher accuracy
than Focal loss. Overall it can be noted that it is mostly the class density, both for
the training data and the test data, that makes a big difference in the accuracy. For
example, the class ’Buoy’ appears more in ’Moving’ than it does in ’Still’, and it
can be noted that the accuracy was around 19.5% for ’Moving’ and around 2% for
’Still’.

5.1.2 Medium set
As with the large case of classes, the last validation accuracies for both of the models
were around the same value, as shown in Table 4.3. The accuracies were high and
the loss values low, which indicates a high performance on the model. In Figure 4.3
the accuracy graphs for the classes showed that both models perform similarly as
with the large set for certain classes. ’Own boat’, ’Water’, ’Boat’ and ’Boat dock’
have around the same accuracies as they did in the previous case. The ’Ashore’
class performed with an accuracy of around 60% for both loss functions, making it
easier to predict than some of the low-density classes, such as ’Road’. However, it
has roughly the same accuracy as the class ’Building’ which is one of the classes
that were a part of ’Ashore’.

The Focal loss still performed better with the classes that were harder to predict,
which could be seen for the class ’Buoy’ that has a validation accuracy of around
25% for CE loss and 36% for Focal loss. However, other than ’Reflection’, which
was slightly better with Focal loss, there was not much difference in terms of the
class accuracies.

For the medium set, there was still a slight problem of objects being behind other
objects. It can be seen in Figure 4.4, which shows the ground truth and the pre-
dicted point cloud of each model. The models did not manage to predict correctly
behind the boat, which was a problem with the large set. The classes present behind
the boat were predicted but not in the correct places at all times. Something that
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could depend on the number of classes and how close they are to each other, making
the 2D projections also have objects remarkably close to or on each other.

The test accuracies were very high for the medium set, as shown in Table 4.4. It
was only for the classes ’Buoy’ and ’Reflection’ that the percentage was under 60%.
Focal loss was better at predicting ’Buoy’ than CE loss when the class had more
features, as it did in the ’Moving’ recording. Otherwise, the different loss functions
do not make much of a difference, the accuracies were usually similar.

5.1.3 Small set
For the small set, the models reached a better validation accuracy and loss, as shown
in Table 4.5, compared to the two other sets of classes. This could be because the
model was particularly good at predicting ’Water’ and ’Own boat’. Making the
third class, ’Other’, easy to predict as well. However, there was not much difference
between the loss functions other than that the model with Focal loss had a slightly
lower loss.

In the graphs with accuracy per class, Figure 4.5, the ’Water’ and the ’Own boat’
still have high accuracy between 95% and 100%. ’Other’ has remarkably high ac-
curacy as well, that converged around 94% for both CE and Focal loss, which made
the difference between the loss functions unnoticeable. Since the class imbalance
was smaller than in the previous cases, the changes made to CE loss to create Focal
loss made less difference in the training.

In the segmented point clouds, Figure 4.6, the potential usage of segmentation with
three classes can be seen. For example, if the classes ’Water’ and ’Own boat’ were
filtered out the rest of the point cloud could be used to determine areas that the
vessel should avoid. However, for functions such as docking help it might be bene-
ficial if the class ’Boat dock’ would be segmented.

The test accuracies in Table 4.6 clearly show how well the model performs, with all
of the accuracies being over 96%. ’Other’ often has slightly lower accuracy, which
could be because of the small class imbalance that still exists or how many different
shapes the class consist of compared to the other two classes. The change in loss
function did not make much difference on the test data set either, CE loss performed
slightly better than Focal.
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5.2 Input data
A segmentation model with high performance was possible to reach with a system
solely based on input data from LiDARs. However, it is not perfect since colours
and detailed shapes were hard to capture. For instance, it is impossible to see the
difference between red and green buoys, which are used as navigation marks. Cam-
eras could, in bright weather conditions, capture the difference in images. The same
applies to detailed shapes that would either need a LiDAR with higher resolution
or a camera to be captured.

Other aspects to take into consideration when analysing the input data are the di-
versity and imbalance in the data set as well as the resolution of the recordings.
Furthermore, it is possible that errors might have occurred during annotation. Con-
sidering how difficult some shapes were to classify it is likely that points were wrongly
classified in the ground truth. However, even if this happened the results still showed
that the input data were good enough to use for segmentation. When using CNN
it often handles these kinds of deviations which could also be an indication that the
input data hold the requirements needed for the task.

5.2.1 Diversity of data
The data used were collected from two different harbours and on open water, which
might have caused the data to not be as diverse as would have been preferred. The
model was tested on data recordings that it had not been previously trained on at
all. However, it had still been trained on other recordings at the same locations, only
from different angles and positions. Therefore, it is unclear how the model would be
able to handle predictions in completely new locations or if the model would need
to have training data from more harbours to better predict different shapes of the
classes.

Furthermore, there is an issue with an imbalance in the data set. To avoid the issue
some of the classes were merged into different constellations, as previously men-
tioned. This worked very well but if certain classes are needed in the prediction it
is not the most desirable approach. Instead, more data on these particular classes
would need to be collected or fabricated to train better on them. However, by col-
lecting more data other large classes, like ’Own boat’ and ’Water’, would also be
collected, which would not solve the imbalance issue. A solution could be to specify
exactly what the segmentation should be used for and then create classes for that
specific case. It should help in keeping the number of classes as low as possible while
still having the important classes present. Another approach might be to remove
the points that belong to the own boat prior to training and segmentation. Thus,
’Water’ would be the class with the largest density and the imbalance would be less
noticeable. The removal of these points could be performed with a distance filter
since the points often are at a certain distance from the LiDARs.
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The marine environment and weather issues are one of the bigger problems with
segmentation and one of the reasons why cameras are not used. The LiDARs manage
to record the surroundings very well, even through heavy rain. However, rain was
one of the classes that the model had difficulties predicting. It could be because
of the few points detected and the low amount of frames with rain in the data set.
There are a couple of recordings with rain that the model was trained on but without
success. As could be seen in Figure 4.7, the rain was labelled as ’Own boat’ in the
segmentation. The reason for this could be the proximity to the points that belong
to the ’Own boat’ and the significant difference in the number of points between
’Own boat’ and ’Rain’. If a larger percentage of the data set would be of recordings
with rain the model might perform better with the ’Rain’ class. Additionally, it
might be beneficial to add points that imitate rain and by that have more of the
’Rain’ class without adding to the other classes. However, even if the models did
not manage to predict rain they managed to correctly predict other features in the
frames with rain.

5.2.2 Resolution
In the set-up for this thesis, five LiDARs were used to capture the surroundings
around the boat. These mechanical LiDARs have a low resolution which made the
price lower and therefore enabled the possibility to have several of them. From the
results, it is possible to say that the low-resolution LiDARs provide sufficient resolu-
tion to produce accurate results that can be used in real-life scenarios. This is partly
because the total point cloud is the sum of all points from each of the five LiDARs.
If only one of these sensors would have been present the result would not perform
as accurate since the measure points would decrease considerably. However, five
low-resolution LiDARs gave a better view of the surroundings near the boat than
what one high-resolution LiDAR would have if it would be placed on the roof.

When segmenting only three classes the model gave high accuracy and performed on
a high level with the LiDARs used. The accuracy for each class for both CE loss and
Focal loss reaches above 94%, as could be seen in Figure 4.5. For more classes used
with the model, the resolution was high enough to provide high performance. Why
the accuracy is lower for some classes probably depends more on the fact that these
classes contained fewer points than the classes with higher accuracy. LiDARs with
higher resolution could provide more data points on the objects that were located
further away, but are probably not worth the higher price and computational power
requirements (due to higher memory demand).

5.3 Real-time segmentation
The purpose of the segmentation is to perform it in real-time scenarios on a vessel
and therefore it is of considerable importance how fast the segmentation is. Table
4.7 in Section 4.4 shows the averages of the segmentation and prediction times de-
pending on the number of classes. The segmentation times are around 0.3 seconds
and do not differ much depending on the cases. The different amount of classes
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only make a difference towards the end of the model where the number of channels
corresponds to the number of classes, which is why it does not affect the prediction
time noticeably. As mentioned in Section 4.4 the largest part of the segmentation
time is the prediction time. Therefore, it is mainly the model that would need to be
sped up to achieve a faster segmentation time. Furthermore, since the evaluation
was run on a computer with a GPU and a large RAM memory the segmentation
would most likely be even slower on a smaller computer, which would be the case
for real-time segmentation. There are a few different methods to make the segmen-
tation faster, it could be to migrate the model to C++ since it is known for being
faster than Python. There are also a few changes that can be made to the network
structure to make the predictions faster.

The LiDARs record a frame with an update rate of 10 Hz, as mentioned in Section
3.1. In other words, every 0.1 seconds there is a new frame to be segmented and
even with the fast computer, the segmentation was not fast enough. This means
that the segmentation would be delayed, or frames need to be skipped, which in
turn means that information would be lost. Furthermore, the times presented do
not include the plotting of the segmented 3D cloud, which will also take time if that
is a wanted feature.
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The purpose of this project was to investigate the possibilities to implement and
adapt fast semantic segmentation on solely sparse LiDAR data in marine environ-
ments. This was done through an approach where 3D clouds were projected to a
2D image that a CNN model was trained on. To evaluate and get a satisfactory
performance, two different loss functions and different constellations of the number
of classes were tried.

Semantic segmentation can be done in a marine environment, only us-
ing data from sparse LiDAR sensors. Even if there were some errors in the
predictions, it could be seen in the loss and accuracy, especially for certain classes,
that the segmentation was highly accurate. The number of classes affects the seg-
mentation in terms of accuracy and the best result was achieved with only 3 classes.
However, if specific classes are wanted for a certain use the accuracy was sufficient
for classes such as ’Boat dock’ and ’Boat’. For classes that were harder to predict
the model with Focal loss worked better when segmenting 14 or 8 classes, but it
made no difference for only 3 classes.

Even through heavy rain the LiDAR point clouds can be segmented.
However, the model failed at predicting the detected rain drops as ’Rain’ and instead
set them as ’Own boat’. Something that was not surprising since the rain is mostly
detected remarkably close to the sensors and therefore close to the own boat. As for
other features in frames with rain, the LiDARs manage to detect the surrounding
features and the model to predict them with sufficient accuracy.

6.1 Future work
At the moment segmentation is too slow as it is significantly slower than the update
rate of the LiDARs. Since it is done in Python a solution could be to migrate to
C++ and otherwise the network would need to be changed to make faster predictions.

To make the segmentation more generic a good start would be to collect more data.
The data would need to be from other locations than where the current data was
collected since more diversity of the features is wanted. Furthermore, it would be
interesting to focus the training more on weather conditions and how they affect the
segmentation. Something that could be done by recording and labelling more of the
conditions, as well as creating fake data that imitates them.
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A
Appendix

The translation matrix for each translation between each LiDAR and to the base
can be seen below. Where T L1

L2 are the transformation matrix from L2 to L1.

T L1
L2 =


−0.5041 −0.0227 0.8633 −0.6712
0.8349 0.2427 0.4940 2.2907

−0.2207 0.9698 −0.1034 −10.9597
0 0 0 1



T L1
L3 =


−0.5712 0.0612 0.8185 −0.6143
−0.7851 0.2503 −0.5666 −1.4116
−0.2395 −0.9662 −0.0950 −10.7367

0 0 0 1



T L1
L4 =


0.2300 −0.0689 −0.9707 −1.9929

−0.9729 0.0067 −0.2310 −0.9582
0.0224 0.9976 −0.0655 −3.9522

0 0 0 1



T L1
L5 =


0.1802 0.0313 −0.9831 −1.9920
0.9836 −0.0062 0.1801 1.8895

−0.0005 −0.9995 −0.0319 −4.0052
0 0 0 1



T Base
L1 =


0.0008 −0.0002 −1.0000 −7.1700

−0.0010 −1.0000 0.0002 0.4800
−1.0000 0.0010 −0.0008 0.3960

0 0 0 1
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