
Probabilistic Population Coding in
Convolutional Neural Networks
Testing Efficient Coding hypothesis and noise effects in
Artificial Neural Networks performing visual tasks

MSc thesis in Complex Adaptive Systems

LAURA MASARACCHIA

Department of Physics
Chalmers University of Technology
Gothenburg, Sweden 2017





Master’s thesis 2017:TIFX05

Probabilistic Population Coding in
Convolutional Neural Networks

Testing Efficient Coding hypothesis and noise effects in
Artificial Neural Networks performing visual tasks

LAURA MASARACCHIA

UNDER THE SUPERVISION OF
Prof. Dr. Matthias Bethge,

Werner Reichardt Centre for Integrative Neuroscience (CIN),
University of Tübingen,
Tübingen, Germany

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2017



Probabilistic Population Coding in Convolutional Neural Networks
Testing Efficient Coding hypothesis and noise effects in Artificial Neural Networks
performing visual tasks

LAURA MASARACCHIA
laura.masaracchia@gmail.com

© LAURA MASARACCHIA, 2017.

Supervisors:
Dr. Wieland Brendel, Werner Reichardt Centre for Integrative Neuroscience
Prof. Dr. Matthias Bethge, Werner Reichardt Centre for Integrative Neuroscience,
University of Tuebingen.
Examiner:
Prof. Dr. Måns Henningson, Department of Physics, Department of Biological
Physics, Chalmers University of Technology

Master’s Thesis 2017:TIFX05
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

BethgeLab
Werner Reichardt Centre for Integrative Neuroscience
DE-720 76 Tuebingen
Telephone +49 7071 29 89018

Cover source: extremetech.com

Typeset in LATEX[1]
Printed by [Name of printing company]
Gothenburg, Sweden 2017

iv



Probabilistic Population Coding in Convolutional Neural Networks
Testing Efficient Coding hypothesis and noise effects in Artificial Neural Networks
performing visual tasks
LAURA MASARACCHIA
Department of Physics
Chalmers University of Technology

Abstract
Computers are very practical in our everyday life and sometimes also fundamental
for our work: they can store all our holidays pictures, solve quickly complex systems
of equations and simulate the outcomes of experiments that cannot be executed in
the real world. Computers, however, are not quite as good as we are when it comes
to tell a joke, recognize a person or playing computer games. In fact, the ability
to perform cognitive tasks and to process complex sensory stimuli is still a human
brain exclusive.
The surprising skills that we owe to our brain have inspired fields like Computa-
tional Neuroscience, Machine Learning and AI. Computational neuroscientists are
trying to gain a better understanding of the brain via mathematical modelling of
its functions. Machine Learning and AI specialists aim to create machines able to
perform accurately on those tasks where only humans excel.
A common denominator in these fields are Artificial Neural Networks (ANNs), com-
putational models (loosely) inspired by the biology of the brain. Especially in visual
tasks, like object classification, ANNs became very useful and popular: on one hand
because they are able to (broadly) predict and match neuronal patterns in the visual
cortex [4], [5], [13], on the other because they reach human accuracy in performance
[25]. Unfortunately, each of these two properties does not imply the other. In fact,
there can be ANNs resembling our brain firing patterns without solving the task and,
conversely, neural networks exceeding human performance but not very informative
about the brain.
In this work we want to examine the population code of a state of the art ANN
for computer vision. At first we test the robustness of the network against Poisson
noise. Successively, we test the Efficient Coding hypothesis on the inner activations
of the network by finding sparse representations and analyzing their characteristics.

Keywords: Computational Neuroscience, Machine Learning, Image Classification,
Convolutional Neural Networks, Poisson Noise, Sparse Coding.

v





Acknowledgements
The first big thanks goes to the BethgeLab, where all of this could happen. Wit-
nessing the birth of interesting and creative project ideas from genial people, being
surrounded by worldwide top quality scientists, having the privilege to be involved
in hard core machine learning lunch conversations -worthy of the nerdiest imagin-
able environment-: being part of the Matthias’ Gang, in all its features, was one of
the most exciting, motivating and formative experiences I have ever done.
A special thanks to Matthias for being The great leader behind his amazing group.
Never enough thanks to Wieland, who has been the clever eye from above, a very
patient guide and a wise consultant.

The second big thanks is for Chalmers and Gothenburg: thanks for having been the
Home I needed, shaping me as the person I am today. Thanks for teaching me that
a better world can exist and it is our responsibility to create it.
Thanks to my best friends, that, even if far away, are making efforts for being part
of my life.

Per concludere, milioni di grazie alla mia famiglia. Grazie alla saggezza silenziosa
di Federica, all’inestinguibile voglia di conoscere (e di litigare) di Rita, alle sorpren-
denti doti del povero Giuseppe.
Soprattutto: grazie a mamma e papà. Grazie per tutti e 26 gli anni che mi soppor-
tate. Grazie per sostenermi nelle mie decisioni, per tutti gli sforzi fatti in modo che
io potessi seguire i miei sogni, per le chiamate Skype degli ultimi anni, per essere lì
anche dopo i miei stupidi scatti nervosi.
Grazie per aver ascoltato tutte le interminabili descrizioni dei miei studi, nonostante
"non ci capiate nulla". Questa tesi è per voi. Spero di riuscire a spiegare un pochino
meglio "quello che faccio".

Laura Masaracchia, Tuebingen, August 2017

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 The brain as a complex system . . . . . . . . . . . . . . . . . . . . . 1
1.2 The computational approach . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Matching the Visual Cortex . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 From the retina to the Inferior Temporal Cortex . . . . . . . . 2
1.3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 2

1.4 Properties of ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.1 Life is noisy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 The importance of being efficient . . . . . . . . . . . . . . . . 5

1.5 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 7
2.1 Object Classification in CNNs . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Convolutional layers . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Max Pooling layers . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Fully Connected layers and Softmax . . . . . . . . . . . . . . . 8
2.1.4 Loss Function and Weights Update . . . . . . . . . . . . . . . 9
2.1.5 VGG-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Convolutional Sparse Coding . . . . . . . . . . . . . . . . . . . . . . . 12

3 Results 15
3.1 Noise experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Sparse representations . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Spatial localization . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Sparse homogeneity . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Methods 31
4.1 TensorFlow & ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Poisson noise injection . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Sparse VGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



Contents

5 Conclusion 35
5.1 Robustness against noise . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Evidences for efficient coding . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 37

A Appendix 1 I
A.1 Complete plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

x



List of Figures

1.1 Neural Networks matching the Visual Cortex . . . . . . . . . . . . . . 3

2.1 Visual example of data processing in a CNN . . . . . . . . . . . . . . 7
2.2 Visual example of convolution with kernel . . . . . . . . . . . . . . . 8
2.3 Visual example of max pooling . . . . . . . . . . . . . . . . . . . . . 8
2.4 Fully Connected layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Performance of VGG-19 as a function of offset injected . . . . . . . . 15
3.2 Performance of VGG-19 with and without Poisson noise and NO offset 16
3.3 Performance of VGG-19 with and without Poisson noise, offset of 0.1 17
3.4 Performance of VGG-19 with and without Poisson noise, offset of 0.25 17
3.5 Performance of VGG-19 with and without Poisson noise, offset of 0.4 18
3.6 Performance of VGG-19 with and without Poisson noise, offset of 0.5 18
3.7 Sparsity of SPARSE VGG and original VGG . . . . . . . . . . . . . . 19
3.8 Actual number of active units for Sparse VGG . . . . . . . . . . . . . 20
3.9 Comparison between VGG and SPARSE VGG activations character-

istics in conv1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Comparison between VGG and SPARSE VGG activations character-

istics in conv3-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Comparison between VGG and SPARSE VGG activations character-

istics in conv5-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Example Image 1, classified as a Jaguar . . . . . . . . . . . . . . . . . 23
3.13 Example of activations distribution and visualization for Example

Image 1, SPARSE conv1-1 . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14 Example of activations distribution and visualization for Example

Image 1, SPARSE conv3-3 . . . . . . . . . . . . . . . . . . . . . . . . 25
3.15 Example of activations distribution and visualization for Example

Image 1, SPARSE conv5-4 . . . . . . . . . . . . . . . . . . . . . . . . 26
3.16 Visual examples pooled conv1-1 . . . . . . . . . . . . . . . . . . . . . 27
3.17 Visual examples pooled conv3-3 . . . . . . . . . . . . . . . . . . . . . 27
3.18 Visual examples conv5-4 . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.19 Average sparsity of the pooled layers compared to sparsity of original

SPARSE representations. . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.20 Variance of the sparsity of the pooled layers compared to the variance

of the sparsity of original SPARSE representations. . . . . . . . . . . 29
3.21 SPARSE conv1-1 percentage of spatial units activations . . . . . . . . 30
3.22 SPARSE conv3-3 percentage of spatial units activations . . . . . . . . 30

xi



List of Figures

3.23 SPARSE conv5-4 percentage of spatial units activations . . . . . . . . 30

4.1 Visual example of Poisson noise injection for λ=10 . . . . . . . . . . 32
4.2 Visual examples of Poisson noise distribution for λ=1 (left), λ=4

(center), λ=50 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Sparse VGG training scheme . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Distribution on VGG activations with offset=0.1 and λ=3.5 . . . . . 36

A.1 Mean, standard deviation and sparsity across channels of SPARSE
activations from conv1-1 to conv2-2, sorted by increasing mean . . . . I

A.2 Mean, standard deviation and sparsity across channels of SPARSE
activations from conv3-1 to conv3-4, sorted by increasing mean . . . . II

A.3 Mean, standard deviation and sparsity across channels of SPARSE
activations from conv4-1 to conv5-4, sorted by increasing mean . . . . III

A.4 Mean, standard deviation and sparsity across channels of VGG acti-
vations from conv1-1 to conv3-4, sorted by increasing mean . . . . . . IV

A.5 Mean, standard deviation and sparsity across channels of VGG acti-
vations from conv4-1 to conv5-4, sorted by increasing mean . . . . . . V

A.6 Spatial activations percentage from SPARSE conv1-1 to SPARSE
conv2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

A.7 Spatial activations percentage from SPARSE conv3-1 to SPARSE
conv3-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

A.8 Spatial activations percentage from SPARSE conv4-1 to SPARSE
conv4-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII

A.9 Spatial activations percentage from SPARSE conv5-1 to SPARSE
conv5-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

xii



List of Tables

2.1 VGG-19 skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 VGG-19 convolutional layers specifications . . . . . . . . . . . . . . . 12

3.1 Optimal sparse representations characteristics . . . . . . . . . . . . . 21

5.1 VGG-19 robustness against noise injection . . . . . . . . . . . . . . . 35

xiii



List of Tables

xiv



1
Introduction

1.1 The brain as a complex system
In this work we focus our attention on the study of a particular complex system: the
brain. In this simplified approach to the study of the brain, we can identify some
fundamental units: the neurons. Neurons respond to their input stimuli by gen-
erating characteristic electrical pulses called action potentials: voltage spikes that
can travel down nerve fibers. Changing the frequency of their spike emissions neu-
rons encode and propagate information about the input stimulus. Neurons interact
with each other -through synapses-, giving rise to emerging properties of the whole
system, our brain functions.
Learning, remembering, taking decisions, are only some of the functions that scien-
tists have analyzed and emulated. Many other skills, like language understanding,
creative thinking and complex multi-sensory tasks, are still not reliably simulated.
In fact, the human brain is capable of solving very complicated tasks and in a such
efficient way that no other machine is even comparable with. The tempting and
exciting perspective of translating and exploiting the brain’s "superpowers" in our
computers is triggering many scientists’ ambitions all around the world. For a review
on the topic see [6].

1.2 The computational approach
The idea of creating a computational model for the brain is more than 70 years
old: we could trace its origin to Alan Turing’s work and to Warren McCulloch
and Walter Pitts, who first created a neural network based on mathematics and
algorithms called threshold logic, in 1943 [2].
Because of the very complicated brain structure, the enormous amount of connec-
tions in it and the fact that getting information on the inner part of the brain is
ethically and practically very complicated, scientists started modeling those areas
and functions that involve more superficial parts of the brain and other organs.
Hence, computational models are mostly devoted to describe tasks that involve our
senses: motor, vision and sound processing and perception (for a review on ANN in
computational neuroscience see [3]).
Even if computational models were born long time ago, however, only in the last
few years we witnessed giant steps forward to the goal of building a man-like ma-
chine, with the so called AI revolution. This could happen thanks to technological
advances, to huge datasets available and especially to shared knowledge and collab-

1



1. Introduction

orations among different scientific areas. Nevertheless, the understanding of natural
intelligence (and what entails it) is still far from perfect.

1.3 Matching the Visual Cortex
In this thesis we are going to explore the properties of Artificial Neural Networks
(ANNs) created to perform a visual task.

1.3.1 From the retina to the Inferior Temporal Cortex
When watching an image, a visual stimulus is transmitted from the retina to different
brain areas and it reaches the Inferior Temporal Cortex (IT) before we are able to
distinguish the object we see.
Each neuron in the retina processes a small portion of the whole visual field: adja-
cent neurons receive as input slightly different but overlapping subsets of the visual
stimulus, so each cell contributes to form a "map" of the visual field, also called
retinotopic map. In most parts of the Visual Cortex, cells are organized into retino-
topic maps. This means that all the different areas of the Visual Cortex furnish a
complete map of the visual field, representing the visual stimulus in terms of different
sets of characteristics. The visual information is transmitted from the ganglion cells
of the retina to the Primary Visual Cortex (V1), where, for example, neurons detect
edges [7]. After V1, the stimulus is transmitted to the Secondary Visual Cortex
(V2), where neurons encode angles [9]. Going deeper into the brain areas, neurons
become less sensitive to the spatial characteristics (like orientation and scale) and
more specific in expressing concepts. In IT, for instance, neurons may fire only in
response to a certain objects in their receptive field [10].
So, within their receptive field, neurons in different areas of the Visual Cortex fire
in response to different subsets of stimuli. This property is called neuronal tuning.
Tuning is simpler in the earlier areas and becomes more complex in the higher areas
of the Visual Cortex. This means that the deeper the brain area we are looking at,
the more abstract concepts it extracts from a visual stimulus.

1.3.2 Convolutional Neural Networks
The implementation of ANNs for computer vision tasks is inspired by the retino-
topic mapping to the Visual Cortex [5]. The way of representing the visual field in
terms of a set of characteristics can be mathematically represented by a convolution
operation. The input is convolved with a specific filter that encodes the features
to extract. For this reason neural networks that simulate the processing of a visual
input are called Convolutional Neural Networks (CNNs). Each adjacent neuron is
represented by a computational unit, and its receptive field is defined by the amount
of information (pixels of an image) that it processes. The synaptic connections in the
brain are represented by weights that connect each computational units to another.
The spiking of the units in response to the stimuli are mathematically represented
with a Rectified Linear Unit function (ReLU ).

2



1. Introduction

All the neurons representing a certain area of the Visual Cortex are packed in a
computational layer (or simply called layer). Computational layers are structured
in sequence so to represent the sequential path of the visual stimulus in the brain.
Modern high-performance neural networks sequentially stack many convolutional
layers -between 20 and 1000- and are therefore called Deep Neural Networks (DNNs).
Each convolutional layer is an homogeneous feature extractor: it slides the filter
along the input so to form a map of the visual representation in terms of a specific
feature. The different representations that a layer produces of the input are hence
called feature maps (or channels). Going from an early layer toward a deeper layer,
the input representation is modeled inducing a spatial reduction in favor of a larger
amount of features.
Figure 1.1 (adapted from source: [4]), shows the intended correspondence between
CNNs and the visual cortex:

Figure 1.1: Neural Networks matching the Visual Cortex

Once the network is created, it has to learn the values of the weights that lead to
successful performance on the task, in a process called training. Depending on the
task the network has to perform, the training strategy can be very different. For this
thesis, the task under consideration is object classification - recognizing the content
of images. The network learns through a supervised process: during training the
images come with a label indicating their content (the right class they belong to).
The response of the network is compared with the labels and its weights adjusted
such to lead to a better performance.

1.4 Properties of ANNs
In this section we want to summarize some important properties of Artificial Neural
Networks.
On some sensory decision tasks, such as object classification, CNNs reach or even
surpass human performance [25]. Moreover, a breakthrough in machine learning, in
2014, was the discovery that, within the same area of interest, a trained network is

3



1. Introduction

able to generalize and perform a new task [15], [14]. For example, Long, Shelhamer
and Darrel (in [14]) used some networks trained for object classifications and trans-
ferred their learned representations by fine-tuning the networks to the segmentation
task (defining different components of a picture). This gave the impression that, to
some extent, ANNs are able to generalize, just like our brain does, using the same
knowledge for different tasks.
Neural Networks furnish very simplistic pictures of the vast panorama the brain
actually comprehends. Nevertheless, CNNs are able to resemble brain firing patterns
and to match the representations of different areas in the Visual Cortex with their
inner layers activations [13], [12].
However, high performance and biological plausibility are often uncorrelated.
Especially the most successful networks, that became state of the art in machine
learning, are set up by concatenating many layers of complex and highly nonlinear
functions, and their inner outputs are hard to decipher in terms of meaning of the
processed input. Understanding the inner representations of ANNs is still a very
hard and unsolved problem [16], [17].
Ideally, coupling high performance and biologically inspired processing would lead
to extra insight on how our brain works and move a step forward to the realization
of a human-like machine.
Our aim here is test the effects of biologically inspired features applied to a state of
the art CNNs in object classification.

1.4.1 Life is noisy
Even though noise techniques are much used during training for a more robust
learning, during the test phase - when performance is checked - the most common
CNNs remain still generally deterministic.
This means that, given a fixed input, a trained network will always produce the
same activations. On the contrary, the representations in the brain are stochastic
[18], [19], i.e. even when watching many and many times the same picture, the
neurons in our Visual Cortex will fire with different rates every time.
To describe this form of variability, the theory of Probabilistic Population Coding
has been developed [20], [21]. It claims that for coding a specific input, our nervous
system uses large populations of imprecise neurons, rather than one or a few precise
ones. Furthermore, activation patterns are generally over-complete (there is not
only one way to encode the same stimulus). Broadly tuned neurons can code for
sensory, motor, or perceptual events. Population coding produces precise outputs
and is less vulnerable to injury than single-neuron coding.
To express it in the computational environment we need to add certain noise to the
deterministic functions of the computational units.
The spiking of a neuron embodies the mathematical concept of a renewal process:
a stochastic process describing the occurrence of an event in a certain interval of
time. The firing rates can hence be modelled by a Poisson distribution [18], [19].
Another form of variability that is not generally taken into account is neurons’ rest
activity: a computational unit with zero input will have zero output, but our neurons
have a background firing rate that is variable. In a mathematical environment this

4



1. Introduction

noise can be simulated as a constant additive component to the activations.

1.4.2 The importance of being efficient
The Artificial Neural Networks used for machine learning competitions are relying
on the power of super computers, analyzing all the data they can, and are not de-
signed explicitly for optimal coding. The efficient coding hypothesis in the brain
was proposed by Horace Barlow in 1961 [22] as a theoretical model of sensory cod-
ing. Barlow hypothesized that the visual processing system must have an efficient
strategy for transmitting as much information as possible, due to constraints on the
visual system such as the number of neurons and the metabolic energy required for
the neural activity. In this view, information must be compressed as it travels from
the retina back to the visual cortex, in order to maximize neural resources. Efficient
coding occurs by minimizing the number of spikes needed to transmit a given signal
(Sparse Coding). Sparse coding networks encode each stimulus through the strong
activation of a relatively small set of units. Given a potentially large set of different
input images, they attempt to automatically find a small number of representative
patterns which, when combined in the right proportions, reproduce the original in-
put [23]. Another sign for efficient coding is having neurons encoding meaningful
information about the data. For example, DiCarlo and Cox in 2007 [4] showed that
encoding semantic concepts corresponds to disentangled representations of the data,
which are easier to discern (compared to the representations in terms of edges and
colors) and crucial for recognition in our brain.

1.5 This work
The aim of this thesis is to introduce two biological features in the current state of
the art CNNs and analyze their effects. A pre-trained CNN for object classification
is chosen and used as a reference for all the analyses performed. Poisson noise and a
certain fraction of bias (offset voltage) are introduced in the activations of the inner
layers of the network, and their effect on the overall final performance tested.
An algorithm for optimal coding is used to find sparse representations of the layers
activations. Sparse representations should help in understanding the fundamental
components of layers activations and hence also the concepts that different layers
encode. First, basic theory on CNNs, Poisson Noise and Sparse Coding is provided.
The results are then presented and in the Methods chapter a detailed description
of the work done will follow. Extra analyses, proves and evidences are reported in
Appendix I.

5



1. Introduction

6



2
Theory

2.1 Object Classification in CNNs

Figure 2.1: Visual example of data processing in a CNN

Figure 2.1 (source: [24]) represents the input processing in a CNN performing an
object classification task.
The input is a 2D RGB image: an array of dimensions [X,Y,3], where X and Y are
the width and height pixels, and one channel is used for each of the three colors.
In a typical CNN the convolutional layers are used to give representations of the
input in terms of different sets of characteristics (the feature maps). The spatial
dimensions of these representations are reduced with some down sampling (Pooling)
technique. After a series of Convolutions and Poolings, the input is passed to Fully
Connected Layers, which collect the information and associate scores of confidence
to the classes the image can belong to.

2.1.1 Convolutional layers
Mathematically, a convolution between two discrete functions f(x1, y1) and g(x2, y2)
with a finite support (x1 ∈ [−X1, X1], y1 ∈ [−Y1, Y1], x2 ∈ [−X2, X2], y2 ∈
[−Y2, Y2]) is given by:

(f ∗ g)(i, j) =
X1∑

k=−X1

Y1∑
l=−Y1

f(k, l) g(i− k, j − l) (2.1)

A convolutional layer takes an input and convolves it with fixed kernels (the filters).
The input has dimension [b, X, Y, ci], where b = batch size, i.e. number of images
analyzed per time, X = spatial width, Y = spatial height, ci = input channels (or
input feature maps). The kernels have dimension [3, 3, ci, co]. The convolution

7



2. Theory

consists of sliding the 3x3 kernels along the spatial dimensions of the each image,
transforming the ci values of every input spatial point into co other values to form
the output, giving an output of size [b, X, Y, co]. The kernels are the key part of the
whole network. They are fixed for each layer, and their values are the parameters
learned during training.
A visual representation of the operation done by a convolutional layer can be seen
in figure 2.2 (source: [26]):

Figure 2.2: Visual example of convolution with kernel

After every convolution, a ReLU function is applied to ensure the output is non
negative:

f(x) = max(0, x) (2.2)

2.1.2 Max Pooling layers
The term pooling refers to a non-linear down sampling. A common form of pooling
is the so called "max pooling": it consists of building an output extracting the
maximum value in 2x2 patches of the input.
Example of a max pool operation is shown in figure 2.3 (source: [27]):

Figure 2.3: Visual example of max pooling

2.1.3 Fully Connected layers and Softmax

Given an N-dimensional input (column) vector X̄ = [X1, ...XN ], a C-dimensional bi-
ases (column) vector b̄ = [b1, ..., bC ] and a (CxN) weight matrix W = [W1,1, ...,W1,N ,
...,WC,N ], the fully connected layer produces a C-dimensional output that is a linear
combination of input, weights and biases:

ȳ = W X̄ + b̄ (2.3)

8



2. Theory

The output of the fully connected layer is a vector of the dimension of the number
of classes C. The value of each entry of this vector is a score that tells how much the
network is confident about the input image belonging to that corresponding class.
Example of a fully connected layer in figure 2.4 (source: [28]):

Figure 2.4: Fully Connected layer

These scores are then transformed into a probability distribution via a softmax
function: for the vector of scores ȳ = [y1, ..., yC ] for each sample, the new vector
containing the probability distribution of a sample belonging a specific class will be:
S̄(y) = [S(y1), ..., S(yC)] where:

S(yc) = eyc∑C
c=1 e

yc
(2.4)

2.1.4 Loss Function and Weights Update
As already mentioned in the Introduction (section 1.4), the inputs come with labels
associated to them, reporting the correct class, in the so called one-hot encoding:
for example label vector L̄i = [0, ..., 0, 1, 0, ..., 0] encodes the label of image i with 1
in the position of the class it belongs to and 0 otherwise.
Indicating with S̄i the vector after softmax encoding the probability distribution of
image i to belong to a specific class, the output of the network and the label have
to be compared, and the performance evaluated. A way to express the accuracy of
the network is comparing its predictions and the right class of the input via Cross
Entropy:

D(S,L) = −
∑
i

L̄i log(S̄i) (2.5)

A Loss Function F is defined such that a lower loss corresponds to a better perfor-
mance of the network. In object classification, the loss function generally includes
the average cross entropy across samples. In a set of B samples, and C available
classes it would be:

F = − 1
B

B∑
i=1

C∑
c=1

Li(c) log(Si(yc)) (2.6)

The weights of the network are iteratively optimized during training for a better
performance. The most common algorithm used for it is Gradient Descent (with all

9



2. Theory

its variants): it consists of finding the minimum of the loss function computing its
derivative with respect to the weights. Then, at every iteration t the weights are
updated according to:

w
(t+1)
ij ← w

(t)
ij − η

∂F (t)

∂w
(t)
ij

(2.7)

with η the learning rate.

2.1.5 VGG-19
The reference net we used for our experiments is the state of the art CNN in Su-
pervised Object Classification: VGG-19. VGG-19 was implemented by the Visual
Geometry Group at the University of Oxford for a study on performance of CNNs
as a function of the number of layers [25]. The 19 refers to the number of layers
with weights to be trained. Table 2.1 reports the structure of the whole network,
including trainable and not trainable layers. In the table the name "convx-y" refers
to convolutional layer, cycle x, subcycle y, "max-pool-x" to max pooling Layer x,
"FC-x" indicates a fully connected layer with the number of units that constitutes
it. It follows a description of each type of computational layer.

The specifications of the convolutional layers present in VGG-19 are shown in table
2.2.

10



2. Theory

Input: 224x224 RGB image
1 conv1-1
2 conv1-2

max-pool-1
3 conv2-1
4 conv2-2

max-pool-2
5 conv3-1
6 conv3-2
7 conv3-3
8 conv3-4

max-pool-3
9 conv4-1
10 conv4-2
11 conv4-3
12 conv4-4

max-pool-4
13 conv5-1
14 conv5-2
15 conv5-3
16 conv5-4

max-pool-5
17 FC-4096
18 FC-4096
19 FC-1000

softmax
Output: probability dist of input class

Table 2.1: VGG-19 skeleton

11



2. Theory

Layer Input Size Output Size Kernel Size
conv1-1 (b, 224, 224, 3) (b, 224, 224, 64) (3, 3, 3, 64)
conv1-2 (b, 224, 224, 64) (b, 224, 224, 64) (3, 3, 64, 64)
conv2-1 (b, 112, 112, 64) (b, 112, 112, 128) (3, 3, 64, 128)
conv2-2 (b, 112, 112, 128) (b, 112, 112, 128) (3, 3, 128, 128)
conv3-1 (b, 56, 56, 128) (b, 56, 56, 256) (3, 3, 128, 256)
conv3-2 (b, 56, 56, 256) (b, 56, 56, 256) (3, 3, 256, 256)
conv3-3 (b, 56, 56, 256) (b, 56, 56, 256) (3, 3, 256, 256)
conv3-4 (b, 56, 56, 256) (b, 56, 56, 256) (3, 3, 256, 256)
conv4-1 (b, 28, 28, 256) (b, 28, 28, 512) (3, 3, 256, 512)
conv4-2 (b, 28, 28, 512) (b, 28, 28, 512) (3, 3, 512, 512)
conv4-3 (b, 28, 28, 512) (b, 28, 28, 512) (3, 3, 512, 512)
conv4-4 (b, 28, 28, 512) (b, 28, 28, 512) (3, 3, 512, 512)
conv5-1 (b, 14, 14, 512) (b, 14, 14, 512) (3, 3, 512, 512)
conv5-2 (b, 14, 14, 512) (b, 14, 14, 512) (3, 3, 512, 512)
conv5-3 (b, 14, 14, 512) (b, 14, 14, 512) (3, 3, 512, 512)
conv5-4 (b, 14, 14, 512) (b, 14, 14, 512) (3, 3, 512, 512)

Table 2.2: VGG-19 convolutional layers specifications

2.2 Poisson Distribution

The Probability Mass Function (pmf) of a Poisson Distribution with mean µ (hence
also variance= µ) and support k ∈ N is:

P (X = k, µ) = e−µ
µk

k! (2.8)

The scale of the noise is determined by varying the variance of the distribution to
sample from (see Methods, section 4.2, for more details).

2.3 Convolutional Sparse Coding

With the term sparse representation one indicates the sparse M-dimensional (col-
umn) vector Γ̄ assuming that any N-dimensional signal X̄ (column vector) can be
described by a multiplication of a NxM matrix D, also called Dictionary, and Γ̄.
For a given signal X̄ and a fixed dictionary D, the task of recovering its spars-
est representation Γ̄ is called sparse coding, and it attempts to solve the following
problem:

minΓ̄ ||Γ̄||0 s.t. D Γ̄ = X̄ (2.9)

A convex relaxation of the problem can be formulated:

minΓ̄
1
2 ||DΓ̄ − X̄||22 + β ||Γ̄||1 (2.10)

12



2. Theory

for some positive scalar β, the sparse regularization term. And one of the simplest
approaches for solving (2.10) now is via the soft thresholding algorithm, finding as
solution: Sβ(DT X̄).

Sβ indicates the soft iterative thresholding operator:

Sβ(z) =


z + β, if z < −β
0, if − β ≤ z ≤ β

z − β, if β < z

(2.11)

Due to computational constraints, training the dictionaries is feasible only when
dealing with low dimensional data. For more demanding computations, hence, Con-
volutional Sparse Coding is generally preferred. It attempts to reproduce the whole
N-dimensional signal X̄ as a convolution of global convolutional dictionaries D̄ (like
the kernels of a convolutional layer, see section 2.1.1 for more details) and the sparse
vector Γ̄. Compared to the NxM dimensional dictionaries D, the convolutional dic-
tionaries D̄ are a smaller set of fixed weights sliding across the input to build the
output. This implies fewer computations and weights to be learned.
In their paper on Convolutional Neural Networks Analyzed via Convolutional Sparse
Coding (arXiv, October 2016) [29], Papyan, Romano et al. describe an algorithm
of layered iterative sparse coding, which we used as reference algorithm for finding
sparse representations of the activations of every VGG-19 layer (see Methods, section
4.3 for more details).

13



2. Theory

14



3
Results

For this thesis work, a pre-trained VGG-19 with average top 5 accuracy (i.e. the
net is considered to perform correctly if the right class for the proposed image is
among the 5 highest probability classes it outputs) of 88% is used as reference net.
The experiments are applied only to the convolutional layers. Hence, throughout
the Results and Methods sections, the layers under considerations will be only the
convolutional ones, unless otherwise specified. The activations of the VGG convo-
lutional layers are normalized, so that they have mean = 1.0 and variance = 1.0.

3.1 Noise experiments
At first, VGG-19 performance is tested for different amount of offset noise injected,
to simulate the effect of background firing noise in the neurons. Figure 3.1 shows
how the performance is affected as a function of offset only. A significant trend is
shown: the accuracy of VGG does not decreases considerably until the 20% of offset
is added, but with an amount of noise above this threshold the accuracy faces a
drastic drop.

Figure 3.1: Performance of VGG-19 as a function of offset
injected

Secondly, the performance of VGG-19 is tested as a function of the amount of Poisson
distributed noise, when a certain offset potential is applied to its activations. The
amount of Poisson distributed noise is controlled by varying λ, the signal-to-noise

15



3. Results

ratio, also the mean of the Poisson distribution from which noise is sampled. Noise
scale λ indicates a Poisson distributed noise with actual variance λ−1. See Methods,
section 4.2, for more details.

An offset of 0.1 means a shift on the current activation value of 10%. Comparing
the 0.1 offset case with the 0.0 offset, the drop in VGG performance (without extra
noise) is negligible.

In figures 3.2, 3.3 and 3.4, with respectively 0.0, 0.1 and 0.25 offset is inserted, a
"saturation regime" can be seen for the smallest amount of Poisson distributed noise
introduced. It can be found a value of λ for which the accuracy of VGG recovers the
baseline accuracy (with only offset inserted), that will be referred to as λ threshold.
When λ > λ threshold the accuracy drops sharply.

Figure 3.2: Performance of VGG-19 with and without
Poisson noise and NO offset

16



3. Results

Figure 3.3: Performance of VGG-19 with and without
Poisson noise, offset of 0.1

Figure 3.4: Performance of VGG-19 with and without
Poisson noise, offset of 0.25

In figures 3.5 and 3.6, reporting accuracy of VGG as a function of Poisson noise
when 0.4 and 0.5 offset is injected, the baseline accuracy is never recovered and λ
threshold cannot be found.

17



3. Results

Figure 3.5: Performance of VGG-19 with and without
Poisson noise, offset of 0.4

Figure 3.6: Performance of VGG-19 with and without
Poisson noise, offset of 0.5

18



3. Results

3.2 Sparse representations
In order to find sparse representations of the VGG activations, we trained the con-
volutional dictionaries to extract sparse features from VGG activations. According
to Barlow’s Efficient Coding hypothesis we would expect a smaller number of neu-
rons used to encode information as we go deeper into the brain areas, hence smaller
number of units active the deeper the layer.
Figure 3.7 shows the sparsity of the optimal Sparse representations found (more
details on the training procedure and optimization constraints in section Methods).
The sparsity of the original VGG activations is included as a mean of comparison.
The sparsity of a set of activations i is defined as:

Si = nbr of active units

nbr of total units

Although the sparsity of the original VGG activations changes across layers (very
dense conv1-1, instead above 90% sparsity of conv5-4), unexpectedly, the overall
sparsity of the final SPARSE representations does not vary much across layers.
It can be said that the optimal coding hypothesis is somehow valid for the standard
VGG, but the sparse representations of VGG activations have an average homoge-
neous sparsity across layers.

conv1_1 conv1_2 conv2_1 conv2_2 conv3_1 conv3_2 conv3_3 conv3_4 conv4_1 conv4_2 conv4_3 conv4_4 conv5_1 conv5_2 conv5_3 conv5_4
layers

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e 

sp
ar

sit
y

Average sparsity of each layer

Sparse VGG
VGG

Figure 3.7: Sparsity of SPARSE VGG and original VGG

19



3. Results

However, deeper layers contains fewer units, so that the sparsity measure alone does
not furnish a complete picture. Figure 3.8 shows the actual number of units active
in different layers for 100 samples tested. It can be seen that the total number of
active units actually decreases across layers, confirming Barlow’s hypothesis.

Figure 3.8: Actual number of active units for Sparse VGG

20



3. Results

Layer SV GG (%) ξ Rrel SΓK (%)
conv1-1 48.0 0.65 0.014 90.2
conv1-2 34.6 0.55 0.014 89.5
conv2-1 36.0 0.4 0.017 88.3
conv2-2 58.5 0.7 0.030 83.6
conv3-1 54.2 0.7 0.040 88.0
conv3-2 43.8 0.7 0.051 89.3
conv3-3 25.7 0.75 0.045 93.4
conv3-4 44.2 0.7 0.037 92.3
conv4-1 46.4 0.8 0.050 90.5
conv4-2 62.0 1.2 0.050 89.3
conv4-3 70.0 1.25 0.057 86.3
conv4-4 87.3 3.4 0.054 93.8
conv5-1 75.0 1.95 0.070 89.1
conv5-2 79.0 1.7 0.041 89.0
conv5-3 80.0 1.9 0.041 89.3
conv5-4 92.0 3.4 0.018 95.4

Table 3.1: Optimal sparse representations characteristics

In table 3.1 are reported the salient information on the optimal solutions found for
Sparse VGG, layer by layer.
The specifications shown in the table concern:
SiV GG (%) = percent of sparsity of the activations of layer i in the pre-trained VGG-
19.
ξi = sparse regularization term for layer i.
Ri
rel = Relative Reconstruction Error of layer i, defined as: ||Xi−X̄i||22

||Xi||22
SΓK

i
(%) = percentage of sparsity of the optimal sparse representation of layer i.

21



3. Results

The plots in figures 3.7 and 3.8 report average sparsity values across spatial points
and channels for the activations of each layer. We now explore each of the sparse
layers singularly to get some insight on the patterns of sparsity that may arise.

For each layer, we analyze sparsity, mean and standard deviation across channels,
and we give an intuition of how these activation spatially look like. All the layers
have been analyzed. For representative purposes, however, only three of them are
reported here: the first, the last and one of the middle layers. The three selected
layers are conv1-1, conv3-3 and conv5-4. The complete plots for all the layers can
be found in Appendix I.

Plots in figures 3.9, 3.10 and 3.11 compare VGG and SPARSE VGG activations on
the average mean, standard deviation and sparsity across channels. The channels
are sorted by increasing mean. These measures are taken for 1000 samples.

Figure 3.9: Comparison between VGG and SPARSE VGG activations
characteristics in conv1-1

Figure 3.10: Comparison between VGG and SPARSE VGG activations
characteristics in conv3-3

22



3. Results

Figure 3.11: Comparison between VGG and SPARSE VGG activations
characteristics in conv5-4

In figures 3.13, 3.14 and 3.15, the activations of the selected layers are visually shown
for a given picture (3.12). The figures include the activations of the real VGG (Xi),
reconstructed VGG (X̄i) and their difference, for a selected feature map, then a
statistics of the sparsity across channels in the Sparse representations (Γi) and two
examples of their activations, including distribution and visualization. The visual
representations are chosen so to give an intuition of the main characteristics of both
the VGG and the Sparse spatial activations.

Even though the correct visualization and the understanding of the layers activations
are the subject of current vast studies themselves, it can be generally said that the
first layers are extracting from the image some very basics features, like colors and
edges (in particular, the conv1-1 VGG activations light up specific colors of the
input). The deeper the layer, the more complex concepts it is supposed to encode.
The activations of conv3-3 shown might capture the concepts of facial components
(the active parts are those corresponding to eyes, ears and muzzle). The final layers
spatial activations are very hard to interpret.

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Jaguar

Figure 3.12: Example Image 1, classified as a Jaguar

23



3. Results

Figure 3.13: Example of activations distribution and visualization for Example
Image 1, SPARSE conv1-1

24



3. Results

Figure 3.14: Example of activations distribution and visualization for Example
Image 1, SPARSE conv3-3

25



3. Results

Figure 3.15: Example of activations distribution and visualization for Example
Image 1, SPARSE conv5-4

3.2.1 Spatial localization
A general trend to outline is the spatial concentration of active regions. In the
last layers the active units are more localized. It can be justified by thinking that,
since the last layers are most probably representing some abstract concepts, the

26



3. Results

activations are focused on spatial areas containing specific characteristic. To exploit
this hypothesis an extra analysis is conducted: we apply max pooling to each of the
Sparse activations until they reach the same spatial dimensions of the last layer and
test then the sparsity on the "pooled" layers. The general idea behind this analysis
is that if the active units are spread around, pooling will maintain this pattern,
resulting in a less sparse "pooled layer" when compared to the last layer.
Here are reported visual examples of some images for a selected feature map of the
"pooled conv1-1" (conv1-1 sparse activations reduced to conv5-4 spatial dimension
via max pooling), of the "pooled conv3-3" and of the real conv5-4. As it can be
seen, the "pooled layers" don’t present the same characteristics of the original sparse
representations. The spatial activations in the pooled layers are spread all over the
map (this results also in a much lower average sparsity), while the activations of
conv5-4 are visibly more localized.

Figure 3.16: Visual examples pooled conv1-1

Figure 3.17: Visual examples pooled conv3-3

27



3. Results

Figure 3.18: Visual examples conv5-4

The average sparsity across channels and space for the pooled sparse activations
is computed and plotted against the sparse activations: figure 3.19 shows that,
as expected, the pooled layers lower sparsity, increasing for deeper layers. Figure
3.20 reports the variance in sparsity across channels. Higher variance means more
diversity in average sparsity across channels, while smaller variance indicates that
the channels have homogeneous sparsity.

Figure 3.19: Average sparsity of the pooled layers compared to sparsity of
original SPARSE representations.

28



3. Results

Figure 3.20: Variance of the sparsity of the pooled layers compared to the
variance of the sparsity of original SPARSE representations.

3.2.2 Sparse homogeneity

Another trend that pops out is that sparsity is very diverse across channels in the
first layers (e.g. some channels activations are zero for all the samples tested, some
others have very low sparsity). Rather homogeneous sparse configurations appear
instead in the deeper layers, where all the channels are active (i.e. each channel is
active at least for one sample tested), with very high sparsity.

For a clearer view of differences (across the selected layers) in structural sparsity,
1000 images are analyzed, computing the percentage of active spatial units per each
channel. Figures 3.21, 3.22 and 3.23 show how many samples have certain percentage
of active spatial units across channels. The channels are sorted by increasing "less
than 1% of units active" number.

The plot in figure 3.23 shows that units fire homogeneously in conv5-4. Units fir-
ing homogeneously are units firing independently, and hence encoding statistically
independent concepts. The importance of this result lies in the awareness that
the latent factors describing the data must be statistically independent, and hence
our Sparse activations are able to encode meaningful information, confirming the
efficient coding hypothesis that we wanted to test.

29



3. Results

Figure 3.21: SPARSE conv1-1 percentage of spatial units activations

Figure 3.22: SPARSE conv3-3 percentage of spatial units activations

Figure 3.23: SPARSE conv5-4 percentage of spatial units activations

30



4
Methods

4.1 TensorFlow & ImageNet

The whole implementation work and training has been done using TensorFlow.
TensorFlow is a Python based open source software for machine learning. It contains
many packages devoted to deep learning, as well as complete networks that can be
used to perform experiments. Training and data visualization are done through
TensorBoard, TensorFlow’s built-in visualization platform. The analyses performed
using both TensorFlow and numpy in Python.
VGG-19 and the convolutional dictionaries are trained and tested on the ImageNet
dataset. ImageNet contains around 14 million images taken from the internet, of
1000 different concepts (classes). The labels of images of each concept are human-
annotated.

4.2 Poisson noise injection

The Poisson noise generation with a specific offset setting occurs as follows: for the
value of any unit activation a (for all the convolutional layers), a noise scale λ and
an offset value o,

1: Insert offset: b = o + a.
2: Determine a mean µ : b λ.
3: Draw a sample x from a Poisson distribution with mean µ.
4: Re-scale the sample: update a← x

λ

The performance of the net is tested for different values of signal-to-noise ratio λ
and offset o. Note that the actual variance of the noise injected is λ−1.
A visual example of the Poisson noise injection (assuming offset = 0.0) is reported
in figure 4.1. Examples of different Poisson noise distributions are shown in figure
4.2:

31



4. Methods

Figure 4.1: Visual example of Poisson noise injection for λ=10

Figure 4.2: Visual examples of Poisson noise distribution for λ=1 (left), λ=4
(center), λ=50 (right)

4.3 Sparse VGG
The algorithm we used to produce the Sparse representations of VGG-19 is a modi-
fied version of the one described in Papyan and Romano’s paper in [29]. It looks as
follows:
For every VGG layer i, take activations Xi

1: Γ0
i ← 0

2: for k = 1 : K do
3: Γki ← Rξi(Γk−1

i +DT
i (Xi −Di Γk−1

i ))
4: end
where:
K = number of inner iterations, in this case set to 20.
Di = convolutional dictionaries, to be learned during trained.
ξi = sparse regularization parameter.
Rξi(y) = ReLU(y− ξi). It is a non-negative soft thresholding operator with thresh-
old proportional to ξi. The use of the non-negative soft threshold is chosen to restrict

32



4. Methods

sparse activations to positive values.
ΓKi = the sparse representation of Xi achieved after training.
X̄i = R(Di ΓKi ) will be referred as the "reconstructed" VGG activations.

Every layer i is independent from the others. During training they are hence treated
independently. The sparse activations will still keep the same dimensions of the lay-
ers they are representing, and they will be referred to as SPARSE VGG activations
(or simply SPARSE activations).

4.3.1 Training
The aim of the training is to find the sparsest representations of the VGG-19 (con-
volutional) layers activations.
The Loss function defined to accomplish it is:

L =
∑

i ∈ layers

L
(rec)
i + L

(sp)
i + L

(CE)
i (4.1)

where:

L
(rec)
i = 1

2 ||Xi − X̄i||22 . It is the reconstruction error, the L2 norm on the difference
between VGG and Reconstructed VGG. It ensures that the SPARSE activations are
generated to reproduce the VGG activations.

L
(sp)
i = ξi ||ΓKi ||1. It is called sparse loss and it is constituted by an L1 penalty on

the SPARSE activations. It is the contribution that pushes for sparsity.

L
(CE)
i = CE[X̄i]. It indicates the Cross Entropy of VGG predictions when substi-

tuting activations of layer i with the corresponding reconstructed ones. It induces
the network to find solutions that increase the task performance.

The convolutional dictionaries Di are trained using Adam (a variant of Gradient
Descent) optimizer. Fine tuning occurs modifying the sparse regularization term
and checking on the accuracy constraint.
It follows a schematic description of the procedure used for training:

1. Images are sent as input to a pre-trained VGG-19. All the inner layers activations
and the predictions on the image classes are collected.
2. The predictions are compared with the actual labels of the input and the accuracy
is computed. This is referred to as A.
3. The activations Xi are used by the Convolutional Dictionaries Di to produce
the corresponding sparse representations ΓKi through the Sparse coding algorithm
defined in the previous section.
4. The reconstructed VGG X̄i is computed and fed to VGG instead of its original
activations Xi.
5. The predictions of the network are computed again. The cross entropy between
the new predictions and the labels (CE[X̄i]) are included in the Loss Function.

33



4. Methods

6. The accuracy of VGG with activations X̄i is referred to as AX̄i
. The difference

in accuracy ∆i
acc = A − AX̄i

is calculated and used for an extra constraint on the
problem.
The optimal sparse representations ΓKi are the sparsest that fulfill the requirement
∆i
acc ≤ 0.01.

A visual example a training step is shown in figure 4.3:

Figure 4.3: Sparse VGG training scheme

34



5
Conclusion

5.1 Robustness against noise

The experiments involving the introduction of offset and Poisson distributed noise
have shown to what extent VGG-19 is robust against different types of noise.

Salient points:
1: The original performance is not considerably affected when the network is sub-
jected to an offset up to 10% of the value of its activations.
2: An drastic decrease in accuracy occurs when the offset level increases.
3: There is the tendency to form a "saturation regime" in performance when apply-
ing Poisson distributed noise.
4: The variance of Poisson noise that VGG can tolerate before a drop in accuracy
depends on the corresponding level of offset applied to its activations.

The results are summarized in table 5.1. In the table, λ threshold indicates the
signal-to-noise ratio of the Poisson distributed noise at which the performance de-
viates less than 5% from the reference performance, i.e. performance of VGG with
the corresponding offset.

VGG with Poisson noise of λ= 3.5 and offset of 10% has an accuracy of 86%. Figure
5.1 shows the distribution of VGG activations with this setting. Considering that
the accuracy drop is negligible with this setting, we conclude that VGG is fairly
robust against this kind of noise.

Offset Accuracy λ threshold
0.0 0.88 3.5
0.1 0.86 3.5
0.25 0.82 20
0.4 0.6 –
0.5 0.29 –

Table 5.1: VGG-19 robustness against noise injection

35



5. Conclusion

Figure 5.1: Distribution on VGG activations with
offset=0.1 and λ=3.5

It is worth to try some comparisons with the brain. VGG performs a recognition
task, which is done by our brain in the time used by the visual stimulus to go from
the retina to the IT. Hence a Poisson mean λ describes an average number λ of spikes
during this task. A λ of 3.5 corresponds to 35 Hz. Recordings from the primate
brain show a firing rate between 1 and 10 Hz when recognizing objects. We can
conclude that there is a substantial mismatch between VGG and the brain patterns.
However, it is important to note that the number of neurons in the Visual Cortex
(above 10 billion) is much larger than the number of units in VGG-19 (around 15
million), so the comparison om the performance is not reliable.

5.2 Evidences for efficient coding
From the sparse coding experiment, the main results can be summarized as follows.
Going toward deeper layers, the corresponding sparse activations:
1. use fewer units to encode information;
2. exhibit spatial localization;
3. encode more statistically independent concepts.
While evidence 1. is straightforward for efficient coding, 2. and 3. are together clear
hints that (the deeper the layer, the more) sparse representations encode semantic
concepts. We can conclude that our sparse activations confirm Barlow’s hypothesis.

36



Bibliography

[1] Frisk, D. (2016) A Chalmers University of Technology Master’s thesis template
for LATEX. Unpublished.

[2] Warren S. McCulloch and Walter H. Pitts, A logical calculus of the ideas im-
manent in nervous activity. Bulletin of Mathematical Biophysics, 1943.

[3] Tim C. Kietzmann, Patrick McClure and Nikolaus Kriegeskorte, Deep Neural
Networks in Computational Neuroscience. bioRxiv, 2017.

[4] James J. DiCarlo, David D. Cox. Untangling invariant object recognition.
Trends in Cognitive Sciences, 2007.

[5] Serge O. Dumoulin and Brian A. Wandell, Population receptive field estimates
in human visual cortex. Neuroimage, 2008.

[6] Marcel Van Gerven, Computational foundations of natural intelligence. bioRxiv,
2017.

[7] David H. Hubel, Torsten N. Wiesel, Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. Journal of Physiology, 1962.

[8] David H. Hubel, Torsten N. Wiesel, Receptive fields and functional architecture
of monkey striate cortex. Journal of Physiology, 1968.

[9] Ryan J. Rowekamp and Tatyana O. Sharpee, Cross-orientation suppression in
visual area V2. Nature Communications, 2017.

[10] R. Quian Quiroga et al., Invariant visual representation by single neurons in
the human brain. Nature, 2005.

[11] Robert Desimone, Thomas D. Albright, Charles G. Gross and Charles Bruce,
Stimulus-selective properties of inferior temporal neurons in the macaque. The
Journal of Neuroscience, 1984.

[12] Daniel L. K. Yamins and James J. DiCarlo, Using goal-driven deep learning
models to understand sensory cortex. Nature Neuroscience, 2016.

[13] Daniel L. K. Yamins et al., Performance-optimized hierarchical models predict
neural responses in higher visual cortex. PNAS, 2014.

[14] Jonathan Long, Evan Shelhamer and Trevor Darrell, Fully convolutional net-
works for semantic segmentation.

[15] Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson, How transferable are
features in deep neural networks?. NIPS, 2014.

[16] Chiyuan Zhang et al., Understanding deep learning requires re-thinking gener-
alization. ICLR, 2017.

[17] Matthew D. Zeiler, Rob Fergus, Visualizing and understanding convolutional
networks. ECCV, 2014.

[18] http://www.scholarpedia.org/article/Neuronal noise

37



Bibliography

[19] Wei Ji Ma, Jeffrey M. Beck, Peter E. Latham and Alexandre Pouget, Bayesian
inference with probabilistic population codes. Nature Neuroscience, 2006.

[20] Arno Onken, P. P. Chamanthi R. Karunasekara, Christoph Kayser and Ste-
fano Panzeri, Understanding Neural Population Coding: Information Theoretic
Insights from the Auditory System. Advances in Neuroscience, 2014.

[21] Federico Carnevale et al., An Optimal Decision Population Code that Accounts
for Correlated Variability Unambiguously Predicts a Subject’s Choice. Neuron,
2013.

[22] Horace B. Barlow, Possible principles underlying the transformation of sensory
messages. Sensory Communication, 1961.

[23] Julien Mairal, Francis Bach and Jean Ponce, Task-driven dictionary learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

[24] https://www.clarifai.com/technology
[25] Karen Simonyan and Andrew Zisserman, Very deep convolutional networks for

large-scale image recognition. ICLR, 2015.
[26] http://intellabs.github.io/RiverTrail/tutorial/
[27] https://cambridgespark.com/content/tutorials/convolutional-neural-networks-

with-keras/index.html
[28] http://machinethink.net/blog/convolutional-neural-networks-on-the-iphone-

with-vggnet/
[29] Vardan Papyan and Yaniv Romano et al., Convolutional neural networks ana-

lyzed via convolutional sparse coding. arXiv, 2016.
[30] https://en.wikipedia.org/wiki/Poisson-distribution

38



A
Appendix 1

A.1 Complete plots

Here are reported the complete plots of the different analyses performed:

0 10 20 30 40 50 60
channels

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

m
ea

n

0 10 20 30 40 50 60
channels

0.0

0.5

1.0

1.5

2.0

m
ea

n

0 20 40 60 80 100 120
channels

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
ea

n

0 20 40 60 80 100 120
channels

0

1

2

3

4

m
ea

n

0

1

2

3

4

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv1/conv1_1 activations characteristics

0

1

2

3

4

5

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv1/conv1_2 activations characteristics

0

1

2

3

4

5

6

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv2/conv2_1 activations characteristics

0

1

2

3

4

5

6

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv2/conv2_2 activations characteristics

Figure A.1: Mean, standard deviation and sparsity across channels of SPARSE
activations from conv1-1 to conv2-2, sorted by increasing mean

I



A. Appendix 1

0 50 100 150 200 250
channels

0

1

2

3

4

5
m

ea
n

0 50 100 150 200 250
channels

0

1

2

3

4

5

6

m
ea

n

0 50 100 150 200 250
channels

0

2

4

6

8

10

m
ea

n

0 50 100 150 200 250
channels

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
ea

n

0

1

2

3

4

5

6

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv3/conv3_1 activations characteristics

0

1

2

3

4

5

6

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv3/conv3_2 activations characteristics

0

1

2

3

4

5

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv3/conv3_3 activations characteristics

0

1

2

3

4

5

6

7

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv3/conv3_4 activations characteristics

Figure A.2: Mean, standard deviation and sparsity across channels of SPARSE
activations from conv3-1 to conv3-4, sorted by increasing mean

II



A. Appendix 1

0 100 200 300 400 500
channels

0

2

4

6

8

10

m
ea

n

0 100 200 300 400 500
channels

0

2

4

6

8

10

m
ea

n

0 100 200 300 400 500
channels

0

2

4

6

8

10

m
ea

n

0 100 200 300 400 500
channels

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
ea

n

0

1

2

3

4

5

6

7

8

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv4/conv4_1 activations characteristics

0

5

10

15

20

25

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv4/conv4_2 activations characteristics

0

1

2

3

4

5

6

7

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv4/conv4_3 activations characteristics

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv4/conv4_4 activations characteristics

0 100 200 300 400 500
channels

0.0

0.5

1.0

1.5

2.0

m
ea

n

0 100 200 300 400 500
channels

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

m
ea

n

0 100 200 300 400 500
channels

0.2

0.4

0.6

0.8

1.0

m
ea

n

0 100 200 300 400 500
channels

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
ea

n

2

4

6

8

10

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv5/conv5_1 activations characteristics

0

1

2

3

4

5

6

7

8

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv5/conv5_2 activations characteristics

1

2

3

4

5

6

7

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv5/conv5_3 activations characteristics

0

2

4

6

8

10

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

SPARSE vgg_19/conv5/conv5_4 activations characteristics

Figure A.3: Mean, standard deviation and sparsity across channels of SPARSE
activations from conv4-1 to conv5-4, sorted by increasing mean

III



A. Appendix 1

0 10 20 30 40 50 60
channels

0.90

0.95

1.00

1.05

1.10

m
ea

n

0 10 20 30 40 50 60
channels

0.85

0.90

0.95

1.00

1.05

1.10

m
ea

n

0 20 40 60 80 100 120
channels

0.9

1.0

1.1

1.2

1.3

m
ea

n

0 20 40 60 80 100 120
channels

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

m
ea

n

1.2

1.4

1.6

1.8

2.0

2.2

2.4

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv1/conv1_1 activations averaged across space

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv1/conv1_2 activations averaged across space

1

2

3

4

5

6

7

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv2/conv2_1 activations averaged across space

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv2/conv2_2 activations averaged across space

0 50 100 150 200 250
channels

0.8

1.0

1.2

1.4

1.6

m
ea

n

0 50 100 150 200 250
channels

0.8

1.0

1.2

1.4

1.6

1.8

m
ea

n

0 50 100 150 200 250
channels

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

m
ea

n

0 50 100 150 200 250
channels

0.7

0.8

0.9

1.0

1.1

1.2

m
ea

n

1

2

3

4

5

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv3/conv3_1 activations averaged across space

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv3/conv3_2 activations averaged across space

0.8

1.0

1.2

1.4

1.6

1.8

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv3/conv3_3 activations averaged across space

1.0

1.2

1.4

1.6

1.8

2.0

2.2

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv3/conv3_4 activations averaged across space

Figure A.4: Mean, standard deviation and sparsity across channels of VGG
activations from conv1-1 to conv3-4, sorted by increasing mean

IV



A. Appendix 1

0 100 200 300 400 500
channels

0.6

0.8

1.0

1.2

1.4

1.6

1.8

m
ea

n

0 100 200 300 400 500
channels

2

4

6

8

m
ea

n

0 100 200 300 400 500
channels

0.7

0.8

0.9

1.0

1.1

1.2

1.3

m
ea

n

0 100 200 300 400 500
channels

1

2

3

4

5

m
ea

n

1.0

1.5

2.0

2.5

3.0

3.5

4.0

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv4/conv4_1 activations averaged across space

0

5

10

15

20

25

30

35

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv4/conv4_2 activations averaged across space

1.5

2.0

2.5

3.0

3.5

4.0

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv4/conv4_3 activations averaged across space

5

10

15

20

25

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv4/conv4_4 activations averaged across space

0 100 200 300 400 500
channels

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

m
ea

n

0 100 200 300 400 500
channels

0.6

0.8

1.0

1.2

1.4

1.6

1.8

m
ea

n

0 100 200 300 400 500
channels

0.6

0.8

1.0

1.2

1.4

1.6

m
ea

n

0 100 200 300 400 500
channels

0.50

0.75

1.00

1.25

1.50

1.75

2.00

m
ea

n

2

4

6

8

10

12

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv5/conv5_1 activations averaged across space

2

4

6

8

10
st

an
da

rd
 d

ev
ia

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv5/conv5_2 activations averaged across space

2

3

4

5

6

7

8

9

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv5/conv5_3 activations averaged across space

2

4

6

8

10

12

14

st
an

da
rd

 d
ev

ia
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

Original vgg_19/conv5/conv5_4 activations averaged across space

Figure A.5: Mean, standard deviation and sparsity across channels of VGG
activations from conv4-1 to conv5-4, sorted by increasing mean

V



A. Appendix 1

Figure A.6: Spatial activations percentage from SPARSE conv1-1 to
SPARSE conv2-2

VI



A. Appendix 1

Figure A.7: Spatial activations percentage from SPARSE conv3-1 to
SPARSE conv3-4

VII



A. Appendix 1

Figure A.8: Spatial activations percentage from SPARSE conv4-1 to
SPARSE conv4-4

VIII



A. Appendix 1

Figure A.9: Spatial activations percentage from SPARSE conv5-1 to
SPARSE conv5-4

IX


	List of Figures
	List of Tables
	Introduction
	The brain as a complex system
	The computational approach
	Matching the Visual Cortex
	From the retina to the Inferior Temporal Cortex
	Convolutional Neural Networks

	Properties of ANNs
	Life is noisy
	The importance of being efficient

	This work

	Theory
	Object Classification in CNNs
	Convolutional layers
	Max Pooling layers
	Fully Connected layers and Softmax
	Loss Function and Weights Update
	VGG-19

	Poisson Distribution
	Convolutional Sparse Coding

	Results
	Noise experiments
	Sparse representations
	Spatial localization
	Sparse homogeneity


	Methods
	TensorFlow & ImageNet
	Poisson noise injection
	Sparse VGG
	Training


	Conclusion
	Robustness against noise
	Evidences for efficient coding

	Bibliography
	Appendix 1
	Complete plots


