
Creating a reference dataset for
neural network validation and evaluation

Determining key characteristics in vehicle images appropriate
for binary classifier validation and evaluation

Master’s thesis in Computer science and engineering

Tobias Foughman Lind
Ke Jia

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Creating a reference dataset for
neural network validation and evaluation

Determining key characteristics in vehicle images appropriate for
binary classifier validation and evaluation

Tobias Foughman Lind
Ke Jia

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Creating a reference dataset for neural network validation and evaluation
Determining key characteristics in vehicle images appropriate for binary classifier
validation and evaluation
Tobias Foughman Lind
Ke Jia

© Tobias Foughman Lind & Ke Jia, 2020.

Supervisor: Miroslaw Staron, Department of Computer Science and Engineering
Advisor: Mikael Engbom, Spark Vision
Examiner: Regina Hebig, Department of Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iii

Creating a reference dataset for neural network validation and evaluation
Determining key characteristics in vehicle images appropriate for binary classifier
validation and evaluation

Tobias Foughman Lind
Ke Jia
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In the automotive industry, customizing a car has recently been made possible
thanks to online services, where various car parts can be personalized independently.
This process is done by a back-end service which composes images of individual parts
into a fully configured vehicle. However, there are instances where an image is not
perfectly rendered, which may result in a defective image being shown directly to
the client. Using neural networks to perform defect detection is a way of mitigating
this problem. Previous research regarding defect detection using neural networks,
evaluating neural networks, and constructing a test harness for machine learning
have been widely studied. However, there exist a lack of research that bridge these
research topics. The purpose of this study is to investigate the procedures needed to
construct a test harness for defect detection, by characterizing, designing and evalu-
ating a reference dataset. Using the design science research methodology, we created
and validated datasets containing images with different defects. These were then
combined into a reference dataset, and included in a test harness. The procedures
required for the creation of this reference dataset can be used for the recreation of a
similar dataset for other domains. Then, the test harness was evaluated using three
binary classifiers with known performance. Test Case Prioritization was the testing
methodology used in the test harness, to establish the correctness of the networks.
The testing results verified that the test harness is able to distinguish between ad-
equate and unsuitable neural network-based binary classifiers. However, as only
a limited amount of defects were included in the test harness, the generalizability
could be threatened. Furthermore, due to the confidentiality of the data used in the
thesis, replication of the study by other researchers may be difficult.

Keywords: Software Engineering, Computer science, Machine Learning, Image Clas-
sification, Thesis.

iv

Acknowledgements
We would like to thank Spark Vision, specifically Mikael Engbom and Charlie Höög
and Erik Nilsson who’s helped us with various inquiries regarding all things sur-
rounding this project. We would like to thank Regina Hebig for being our examiner,
and providing valuable feedback. Finally, we would also like to thank our supervisor,
Miroslaw Staron, for helping us all throughout the project.

vi

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Background . 2
1.2 Purpose . 3
1.3 Research Questions . 3
1.4 Delimitations . 4

2 Related Work 5
2.1 Evaluation of Neural Networks . 5
2.2 Defect detection using Neural Networks 6
2.3 Constructing a test harness for ML 7

3 Theoretical Background 8
3.1 Neural Network . 8

3.1.1 Convolutional Neural Networks 8
3.2 Metrics . 9

3.2.1 Confusion Matrix . 9
3.2.2 Recall & Precision . 10
3.2.3 Specificity . 10
3.2.4 F1 score . 11
3.2.5 Matthews Correlation Coefficient 11

3.3 Testing of ML algorithms . 11
3.4 Terminologies used in the study . 12

4 Methodology 14
4.1 Design Science Research Methodology 14

4.1.1 The Design Cycle . 14
4.1.2 The Engineering Cycle . 15
4.1.3 Research Problems . 15

4.2 The Engineering Cycle . 16
4.2.1 First Iteration of the Design Cycle 16

4.2.1.1 Problem investigation 16
4.2.1.2 Treatment design . 17
4.2.1.3 Treatment validation 18

viii

Contents

4.2.2 Second Iteration of Design Cycle 19
4.2.2.1 Problem investigation 19
4.2.2.2 Treatment design . 20
4.2.2.3 Treatment validation 20

4.2.3 Third Iteration of Design Cycle 20
4.2.3.1 Problem investigation 20
4.2.3.2 Treatment design . 20
4.2.3.3 Treatment validation 20

4.2.4 Fourth Iteration of Design Cycle 21
4.2.4.1 Problem investigation 21
4.2.4.2 Treatment design . 21
4.2.4.3 Treatment validation 21

4.2.5 Treatment implementation . 21
4.2.6 Implementation evaluation . 22

5 Results 24
5.1 Resulting predictions from Design Cycles 24

5.1.1 First iteration . 24
5.1.2 Second iteration . 26
5.1.3 Third iteration . 26
5.1.4 Fourth iteration . 27

5.2 Engineering cycle and final results . 28
5.2.1 Generalized procedure for creating reference datasets 28
5.2.2 Constructed Test Harness . 28
5.2.3 Results of treatment implementation 30

6 Discussion 32
6.1 Validity of algorithm application . 32

6.1.1 The constructed NN used in the validation steps 32
6.1.2 Does the algorithm detect the defect 32

6.2 Test harness . 34
6.2.1 Generalizability . 34

6.3 Reflection on related work . 34
6.4 Evaluation of the classifiers . 35
6.5 Threats . 35

6.5.1 Construct Validity . 35
6.5.2 Internal Validity . 36
6.5.3 External Validity . 36
6.5.4 Conclusion Validity . 37

7 Conclusion 38
7.1 Answers to research question . 38
7.2 Future work . 39

Bibliography 40

A Appendix 1 I

ix

List of Figures

3.1 Convolutional Network . 9

4.1 A figure showing the the general design of the design- and engineering
cycles. 15

4.2 An example of images used in the treatment 18

5.1 A histogram showing the distribution of values in the complete images
in each dataset. 25

5.2 A histogram showing the distribution of values in the the defective
images in each dataset. 25

5.3 A flowchart visualizing the internal steps of the test harness. 29

A.1 A box-plot showing the confidence score distribution of complete pre-
diction in each class. I

A.2 A box-plot showing the confidence score distribution of defective pre-
diction in each class. II

A.3 The model used for validation of the individual defective datasets . . III
A.4 Classifier 1, used in the evaluation process. IV
A.5 Classifier 2, used in the evaluation process. V
A.6 Classifier 3, used in the evaluation process. VI

x

List of Tables

3.1 Confusion Matrix . 10
3.2 A table contextualizing industry terms for the context of this thesis . 13

5.1 Metrics from validation of no-wheel dataset. 26
5.2 Predictive values from validation of no-wheel dataset. 26
5.3 Metrics from validation of no-grill dataset. 26
5.4 Predictive values from validation of no-grill dataset. 26
5.5 Metrics from validation of no-side-mirrors dataset. 27
5.6 Predictive values from validation of no-side-mirrors dataset. 27
5.7 Metrics from validation of no-bumper dataset. 27
5.8 Predictive values from validation of no-bumper dataset. 27
5.9 The characteristics extracted from outliers in each defective dataset. . 30
5.10 The results of the evaluation of NNs using the test harness 31

xi

1
Introduction

A trend in the automotive industry during the last decades has been the increasing
use of mass customization, or mass personalization for consumers when ordering
cars online [15]. In this thesis we investigate an implementation of one such service,
provided by the associated company Spark Vision. When presenting consumers
with a customizable car in their online store platform, a back-end service is used to
compose images of individual parts into a fully configured vehicle. This is a highly
optimized step, being done in fractions of a second, but include the possibility of an
image being defective for a variety of reasons. If an individual part is incorrectly
fetched from a server or simply is incorrectly rendered in the final image, there is
currently no active step in the backend process to verify that a customer is not pre-
sented with this kind of defective image. Unfortunately the possible permutations
for a customizable vehicle, even with a low number of changeable parts, is of an
enormous size.

Problems like these, where the sheer amount of data is an insurmountable problem,
lend themselves well to being solved by using machine learning (ML) algorithms,
such as neural networks (NNs). They require only a subset of the of the full popula-
tion of data and are able to make predictions about out-of-sample data [16]. There
are, however, a vast amount of ways to construct a NN [23, 18], and an even larger
number of ways to tweak these algorithms [37, 7]. Though the problem does not
necessarily lie in the actual selection of an algorithm, yet in how to confidently de-
termine that an algorithm is suitable for the data at hand, which can be different for
each problem. This, in combination with the issue of the enormous population size
of the car images, presents an opportunity for creating a smaller reference dataset,
representative of defective images. Representative in this case is referring to the
aspects of a defective image which proves difficult to classify for NNs, and defective
refers to an image of a car that is missing a specific part. The research conducted in
this thesis is therefore focusing on designing and constructing a test harness, which
allows for the comparison of NNs, using the reference dataset explained previously.

The process of creating this smaller reference dataset is done through an investiga-
tive study of samples of images created for the purpose of this thesis. By applying
a NN to these images, and inspecting the results of that application, it should be
possible to find patterns in the configurations of the cars that represent the cases
that are difficult for the algorithm to classify. The patterns in this case are specific
subsets of the configurations, which contain specific parts of the car, and is referred
to as characteristics throughout this thesis. The procedures required for the creation

1

1. Introduction

of this reference dataset can be used for the recreation of a similar dataset for other
domains.

The initial chapters of this thesis present various background knowledge, both prac-
tical and theoretical, to aid in the comprehension of the rest of the text. The
purpose of the thesis is also described, with specific research questions to be an-
swered. Following that is the methodology chapter, describing the procedures that
were conducted in search for answers to our research questions. The result chapter
is next, outlining the outcome of methodology chapter. After that is a discussion
about said results, arguing for the meaning and impact it may have. Finally, is the
conclusion of the thesis, describing what the answers to the research questions and
outlining potential future work for the research field.

1.1 Background
The automotive industry has been known for having a robust network of car dealers
which act as a middle-man between the manufacturers and consumers. This is an
aspect which has seen a change in recent years with the introduction of the ability
for each consumer themselves to customize their potential car before purchase [15].

ML in general is a concept known to scientists from as early as 1959 [34]. The
core idea is to design a system which can emulate, to varying degrees, the human
mind’s ability to learn. It is a very wide area of research, containing numerous im-
plementation skews, such as artifical neural networks, linear regression algorithms
or decision trees [32]. The popularity of NNs for image-recognition has fluctuated
substantially throughout its history. The complexity of these systems required a
considerable amount of manual work to be done, in the form of extracting features
from images. This meant that during the early years more work was required for
analysing the data than actually applying the algorithm to it, forcing the usage of
the approach to be limited to smaller problems. Because of this they were widely
considered unfeasible for general usage until the 1990’s, when methods to automate
this task (known as feature extraction) were developed, allowing for the NNs to be
applied to more complex problems [21, 20]. At this point however, the computa-
tional power of computers was still not high enough for the general usage of NNs
for more complex problems [33]. Overtime, the performance of computer hardware
has enhanced dramatically. Therefore, NNs have also been developed in a blowout
style. Modern NNs can be implemented in various scenarios, for instance, visual
object recognition [19]. The area of image classification has also been able to break
its conventional bottleneck of not extracting enough features from the images [10].

The process of classification implementation is achieved through a probability per-
spective. The outputs of the algorithm are recognized as the probabilities that a
case belongs to its corresponding class [11]. Classifiers can be divided into binary
classifiers and categorical classifiers. In a binary classifier, cases only belong to two
classes, the goal of the classifier is to correctly predict the labels of the cases and
cluster them into the correct class. Whereas in a categorical classifier, cases belong

2

1. Introduction

to various classes. The classifier should predict the correct label and classifies them
into their corresponding classes [5].

Software testing has been determined to be a suitable method for revealing problems
and assist the trustworthiness of ML systems. Whereas Machine Learning Testing
(MLT) refers to adopting any activity designed to reveal any differences between
expected and existing behaviours of the ML system. MLT can be categorized into
three parts, Testing Workflow, Testing Components, and Testing Properties. Testing
Workflow is about how to conduct MLT with different testing activities. Testing
Components is referred as find defects in every component including the data, the
learning programs and the framework. Last but not least, Testing Properties is
about finding conditions MLT needs to guarantee for a trained model [48].

1.2 Purpose
The purpose of this study is to investigate the procedures needed to construct a test
harness for defect detection, by characterizing, designing and evaluating a reference
dataset. This is done by using standardized metrics for assessing the validity of
the dataset and evaluating NN-based algorithms when they are applied to the data-
set of composed car images. The test harness consists of various features that are
difficult to detect by the algorithms, for instance, a black grill missing on a black
car body. Furthermore, the selected algorithms are studied and assessed from the
accuracy aspect. To determine if the selected algorithm is qualified for detecting
certain images, they are provided with large number of comparable images as inputs.
The result of this study strives to be beneficial for both researchers and practitioners.

1.3 Research Questions
The research questions are as follows:

RQ1: What characteristics in defective car images can be used in a test harness to
assess the quality of a NN?
An image consists of many aspects (colors, resolution, contrast, set of components,
etc) that all affect how a NN performs. However, certain combinations of these
aspects, known in this thesis as characteristics, may affect a NNs performance more
than others when classifying defective car images. Thus, these characteristics are
more interesting in the context of assessing the quality of a NN, as they mark
the most difficult classification cases. An example of such a characteristic is the
combination of a color and a specific component (e.g white car with mudflaps), in
correlation with a defective wheel.

RQ2: How can images with the characteristics identified in RQ1 be combined into
a valid test harness for NNs?
There are existing patterns in the data which allow for the possibility of a reduc-
tion of test cases. By investigating images with the characteristics mentioned in

3

1. Introduction

the previous question, it may be possible to select representative images of these
characteristics instead of simply using them all. Certain combinations of compo-
nents, such as a black window on a black car, may prove difficult to classify, and
thus should be included in an evaluating test harness. Specifically, we will detail
the procedures required to design and create a test harness for defect detection in
composed car images. This will allow for similar datasets and test harnesses to be
created for images from other domains.

RQ3: Can we identify adequate NN-based binary classifiers using our test harness?
What are the relevant metrics when comparing such NNs applied to the aforemen-
tioned dataset?
By analyzing the test images to create a reference dataset, we investigate the extent
to which NNs can be evaluated. This is done through the use of NNs with known
performance, which allows for a conclusion to be drawn about the correctness of the
test harness.

1.4 Delimitations
This project is a Master’s Thesis, done in cooperation with a company and Chalmers
University of Technology, and is thus time-restricted. Due to this fact various delim-
itations had to be made before, and throughout, the project. Those are presented
and explained in this section.

To focus on the investigation of the characteristics mentioned in this thesis, we de-
cide to only use one car model as a reference for the creation of the test harness.
This allows for a more thorough analysis of the characteristics. Additionally, due to
the limited time-frame of this project, we are required to reduce the scope to only
investigate the defective images. To further reduce the the scope, we have to select
specific car parts to remove in the process of image creation. These are the wheels.
side-mirrors, front grill and bumper.

The general domain of this project, being image classification, lends itself to a wide
variety of solutions. we decide that this project uses ML as the validation technique
for the dataset, and more specifically only focus on convolutional neural networks
(CNNs). The reason behind this is that those types of NN have been widely recog-
nized as valid, and generally preferable, for image classification. This means that
solutions using on other NNs or simply other training techniques than supervised
learning, such as Recurrent Neural Network or AutoEncoders, were not explored [9].

The proposed test harness, as well as the development of the most appropriate
NN-based algorithm is a shared work with the research collaborator.

4

2
Related Work

In this chapter, studies that are related to our research are analyzed and discussed
below.

2.1 Evaluation of Neural Networks
A comprehensive performance evaluation of various NN-based algorithms was con-
ducted in 2017. The study was carried out by providing both RGB-D images and
videos to various algorithms. According to the author, using CNNs always out-
perform other selected methods (DBNs, SDAE and LSTM) [36]. As the evaluated
images are of the RGB-D format, they are dimensionally similar to the RGB-A im-
ages used in this thesis. Using this report, with the similarities of the data, gives us
further confidence in the use of CNNs as the type of network for this data.

Kwon et al. conducted an empirical study into the performance of CNNs of three
different depths. These networks are applied to three different public datasets and
is evaluated based on their F-measure. One of these datasets are unbalanced in re-
gards to the data and their classes. In this case the metric of Matthew’s Correlation
Coefficient (MCC) is used [18]. The F-measure is something which is discussed in
this thesis in relation to this unbalanced data, but to use this metric to evaluate
NNs is closely related to RQ1 in this thesis.

A comprehensive study of deep CNN was conducted by Liu et al. in 2017. In their
study, they stated that conventional deep CNNs do not always succeed in images
that have high resolutions. Moreover, they also proposed an improved version of
the conventional CNN with modified hyperparameters. However, according to the
author, the efficiency aspect of the proposed solution remains unsolved [23]. This
is related in the sense that it shows that we still require work in finding the best
configurations of NNs. In extension, this should mean that it is important to be able
to distinguish between "good" and "bad" networks for a particular problem, which
this thesis is intended to investigate.

Detecting transparent objects has become a hot research topic. Khaing and Masayuki
have conducted a study recognizing transparent objects in images by applying the
Single Shot Multibox Detector (SSD) method, which is more computational effi-
cient in many cases. The result of their study was promising however the author
also stated that the model could not detect non-transparent objects with the same

5

2. Related Work

shape. The solution they proposed for the problem was to provide the algorithm
with non-transparent objects during training [14]. This SSD method could poten-
tially be adopted in this thesis to detect various characteristics more efficiently.

2.2 Defect detection using Neural Networks
CNNs have seen extensive application for the purpose of quality assurance/defect
detection. One example of this comes from researchers in Switzerland who investi-
gated the ability to reduce the workload of building inspectors, as well as tenants,
of large building complexes. They proposed a form of image classification algorithm
which would analyse images of buildings “. . . [with the purpose of] automated de-
tection and localisation of key building defects”. This evaluation study compared
CNN models, following a design called VGG-16, of various depths when applied to
this dataset of diverse images. This resulted in a model with an average test accu-
racy of 87.5%, prompting the authors to characterise it as “. . . [a network with] high
reliability and robustness in classifying and localising defects” [29]. This study has
helped us to acquire more knowledge of suitable CNNs for detecting defects.

Park et al. had successfully applied a CNN-based algorithm on various surfaces to
detect the existence of defects in the target region of an image. While conventional
ML algorithms require various types of networks with different hyper-parameters to
be adopted on different surfaces, an uncomplicated CNN-based network is enough
to achieve the same goal. Although each of their training dataset only contains
2000 images, they applied data augmentation to ensure quality of the result. In
the end, they have concluded that the model is applicable for inexperienced users
to detect faults in the images and has a strong advantage of applying parameters
without tuning [28]. Applying data augmentation techniques to artificially increase
the size of the datasets is common and be something which could be applicable in
this thesis. By applying data augmentation to our test data, we may be able to
make more generalizable claims about the NNs.

A study on detection of defects on steel surfaces was conducted by Lin et al. The
system was developed with two parts, a Single Shot MultiBox Detector (SSD) model
to learn possible defects and a deep residual network (ResNet) to classify the types
of defects. According to the author, the proposed method is applicable to real-world
scenarios. However, they study only applied Precision, Recall, and F-Measures to
evaluate the results which means in certain scenarios the method might not be ap-
plicable [22]. The metrics adopted in this study are studied and discussed in this
thesis However, none of them are used since all of them could potentially produce
misleading results, which is an important insight learned for this thesis.

6

2. Related Work

2.3 Constructing a test harness for ML
Kavzoglu stated, in his 2009 research paper, that “The quality and size of the train-
ing samples are crucially important for a successful classification”. This statement
was made as a result of having done manual data augmentation and refinement
through various techniques and algorithms. The need for such research emerged
because of the limited amount of ground data available in the Landsat 7 ETM+
1 for land-cover/land-use analysis [13]. This enforces the idea that much can be
gained from manual inspection of input data. Even though this process of inspec-
tion is more based in statistics and the quantifiable properties of the images, it is
still related to NN performance and pattern recognition in the data, such as the
work being done in this thesis.

Test Case Prioritization (TCP) is an important way of reducing time and computa-
tional cost during the process of testing. Test cases are executed in a specific order
based on the specific requirements defined for the TCP. Thakur and Sharma has
conducted a study of applying automated test case prioritization as compared to
manual test case prioritization in regression testing with ten projects (2019). Their
results shows that the fault detection rate is increased and execution time is reduced
[41]. Their study has given us the inspiration of adopting TCP in our research to
test the NNs more efficiently.

Raicharoen and Lursinsap conducted research into the use of a divide-and-conquer
technique to reduce the size of a dataset used for training ML algorithms (2005).
The aim was “. . . [to reduce] the computational time and the memory space as well
as the sensitivity of the order and the noise of the training data.”. The proposed
prototype contains an isolated subset of the data used for training. This subset is
selected based on the relevance to nearest neighbor predictions and is the only data
that will be used for training. The experiments conducted resulted in, as predicted,
a reduction in training cost and a decrease in both order dependence and sensitivity
to noisy data [31]. This thesis hopes to prove that a similar technique of selecting a
subset of data is possible when constructing a test harness. By identifying relevant
test cases there can be a reduction in the size of the test harness required when
evaluating NNs.

1https://eos.com/landsat-7/

7

3
Theoretical Background

In this chapter, the background knowledge of NN alongside various evaluation met-
rics are presented. After a comprehensive evaluation, some of the NN and metrics
mentioned are adopted into the final test harness.

3.1 Neural Network
ML has seen an increase in research activity in recent years [12] with a greater focus
lying on Deep Learning and NNs [19]. Various contests and large scale competitions
[45, 17] could be a contributing factor in this, as well as the general development of
more computationally capable hardware [33]. In this section we give an overview of
recent research in the area of image recognition and classification using NN.

3.1.1 Convolutional Neural Networks
CNNs started being utilized for visual tasks as early as the late 1980s. However,
due to computing components being limited in their ability to process big data at
the time, it was really brought into the spotlight in 2012 [33].

The structure of a CNN is generally built up of different types of layers. These lay-
ers are combined in different ways depending on the problem at hand. A common
way of assembling these layers can be as a series of stages. The initial stages are
typically composed of convolutional layers and pooling layers. A convolutional layer
is composed of many units, or neurons, which are combined with weights and or-
ganized into feature maps. These neurons extract information from local patches of
pixels in the feature maps of previous layers, also known as a “discrete convolution”
[19], which is illustrated in Figure 3.1. This also allows the network to reduce its
required computing power [8].

Pooling layers, where the most common type is calledmax pooling, are used to reduce
“. . . computations, memory usage and the number of parameters”, according to
Géron (2019). The different types of pooling layers all follow a similar methodology
where a i× j grid is slid across the feature maps to extract a subset of the values in
that grid. The distance the grid is moved between extractions is determined by the
variable stride. In the case of max pooling, the maximum value of the i × j grid is
extracted at each location, which is used as pixel for the output of that layer [19].
The final type of layer is the fully connected layer, also known as a dense layer [8].

8

3. Theoretical Background

While the previous layers have created abstracted features of the data, the purpose
of fully connected layers is to combine these abstract features into concrete features,
used in reasoning about classification [33]. This is typical in many NN and is an
effort to reduce the many neurons generated by previous convolutional layers. The
problem with these types of layers is that they are computationally intensive. Each
neuron in the input (or previous) layer is connected with each neuron in the fully
connected layer. Because of this there are typically a limited number of these layers
in a network.

Figure 3.1: Convolutional Network

3.2 Metrics
There are various commonly used evaluation metrics for assessing computational
experiments in the field of ML, for instance, Recall, Precision, F1 score, and MCC
[30]. Each of the mentioned metrics are presented in detail in the following text.
However, before understanding any of the metrics mentioned above, one needs to
comprehend what the confusion matrix is.

3.2.1 Confusion Matrix
With a classifier and an instance, there are four outcomes in the confusion matrix.
If the instance is positive and is predicted to be positive, it is counted as a True
Positive (TP), if that instance is predicted to be negative, then it is counted as a
False Positive (FP). On the counter, if the instance is predicted to be negative but
in fact is positive, it is counted as False Positive (FN). Last but not least, if the
instance is negative and is predicted to be negative, it is counted as True Negative
(TN) [46]. Table Table 3.1 demonstrates the the complete Confusion Matrix.

9

3. Theoretical Background

Actual Values
Positive(1) Negative(0)

Predicted Values Positive(1) TP FP
Negative(0) FN TN

Table 3.1: Confusion Matrix

3.2.2 Recall & Precision
Recall and Precision are commonly used in ML related experiments. Recall, also
known as Sensitivity, is the ratio between True Positives and the sum of True Posi-
tive (TP) and False Negative (FN). Recall can be important for cases that focus on
identifying all TPs. However, in the case of ML, it is generally desirable to achieve
a high Precision, sometimes even disregarding the Recall value entirely. Precision or
Confidence on the other hand, is the proportion of Predicted Positives that are True
Positives. It is a method of measuring Predicted Positives [30]. Both equations of
Recall and Precision are presented below (Equation 3.1 & Equation 3.2).

Recall = Sensitivity = TP

TP + FN
(3.1)

Precision = Confidence = TP

TP + FP
(3.2)

Nevertheless, which measurement should be adopted in the experiments depends on
the circumstance. If the experiment is more inclined to get fewer FP values, the Pre-
cision measurement should be adopted. Conversely, if the focus of the experiment
is to obtain fewer FN values, Recall can be a better option to adopt. In conclusion,
one has to decide which measurement method should be applied in different situ-
ations. Despite both mentioned methods providing benefits in various cases, it is
not difficult to see that True Negatives (TNs) are completely neglected from both
of them. Therefore, there is not only the fear of bias being introduced to the results
but also, in certain cases, TNs can play a key role in the final result. For instance,
identifying a defective aircraft safety part , where misidentification could lead to
life-critical situations.

3.2.3 Specificity
Much like Recall, Specificity is the True Negative Rate. It is the ratio of TN cases
to the cases that are predicted to be Negative. Equation 3.3 defines how Specificity
is calculated [24].

Specificity = TN

TN + FP
(3.3)

10

3. Theoretical Background

3.2.4 F1 score
In order to get a more intuitive view to compare two classifiers, Precision and Re-
call are often combined into a single metric in the field of ML, the F1 score [8].
Equation 3.4 shows the full definition of the F-measures.

Fβ = (β2 + 1)PR
β2P +R

(3.4)

Here, β is a control variable to balance P and R. When β equals to 1, the result of
this equation becomes the harmonic mean of Precision and Recall, also known as
the F1 score [35]. The incentive of adopting harmonic mean instead of the regular
mean in this measurement is much more weight was given to the low values to avoid
a skewed result, which means the classifier can only get a high F1 score when both
Precision and Recall are high [8]. Naturally, under the premise of adopting Precision
and Recall, F1 score also ignores the TN value. Therefore, this measurement cannot
be applied in certain circumstances.

3.2.5 Matthews Correlation Coefficient
MCC was initially introduced to evaluate the performance of protein secondary
structure prediction by B.W.Matthews in 1975 [26]. Over time, MCC is widely used
in the field of ML to measure the quality of classifications. Due to the possible usage
of all four outcomes from the Confusion Matrix, namely, TP, FP, TN, and FN, the
result of this measurement can be more convincing comparing with the methods
stated above. Equation 3.5 illustrates the working process of MCC [4].

MCC = TP · TN − FP · FN√
(TP + FP)(FP + FN)(TN + FP)(TN + FN)

(3.5)

It is not difficult to see from the above formula that if any of TP + FP, FP + FN,
TN + FP, TN + FN equals to zero, the MCC cannot be defined. Moreover, the
result range of MCC ranges between [-1, 1], whereas 1 indicates complete agreement,
-1 signifies complete disagreement and 0 is when the prediction result is not related
to the ground truth. Therefore, if the evaluation of a binary classifier results in -1,
the predicted result of 0 is, in fact, 1, likewise, if the predicted result is 1, the true
value is 0 [3].

3.3 Testing of ML algorithms
As ML algorithms are dynamic constructs, their testing process differs from conven-
tional software testing [48]. According to Zhang et al., testing a ML system requires
two defined terms; ML bug and ML testing. Here, an ML bug is defined as “. . . any
imperfection in a machine learning item that causes a discordance between the ex-
isting and the required conditions” and ML testing as “. . . [activities] designed to
reveal machine learning bugs”. This provides the ability to explain three different
aspects of a ML system; the required condition, machine learning items and testing

11

3. Theoretical Background

activities. Different ML algorithms may require different types of required condition,
for instance, correctness, robustness, and privacy. Machine learning items simply
refer to the three separate components that generally make up a machine learning
testing system, namely the data, the framework and the learning program. While
testing activities may contain test input generation, test oracle identification, test
adequacy evaluation and bug triage. [48].

The required condition refers to concepts which validate expected behaviours of the
system-under-test (SUT), the most researched of which are robustness and correct-
ness. Correctness is a functional measurement of a machine learning system’s ability
to, in the context of image classification, correctly classify out-of-sample data. There
are a number of generally known metrics for correctness, some of which have been
presented in the previous section. Another form of correctness is the use of valida-
tion when training a ML algorithm. One approach to validation is cross-validation,
where the training data is split into a training sub-set and a validation sub-set.
Robustness concerns the ability of a machine learning system to resist the effects of
noise in the data. A robust system can perform adequately even with a high amount
of noise and should therefore also be highly generalizable [48].

3.4 Terminologies used in the study
In Table 3.2 we present the terminologies used in this study.

12

3. Theoretical Background

Term General Definition Contextual Meaning
Artifact An object which can be

studied
A dataset for ML algo-
rithms

Treatment An artifact in a specific
context

A test harness of difficult
cases of composed car im-
ages

Stakeholders Internal or external par-
ties who have an interest
in the research

Internal: Academia, Ex-
ternal: Corporation

Metric A way of quantifying the
performance and accu-
racy of an algorithm

MCC & Precision &
Specificity

Test harness (Testing
framework)

A full test suite including
data pre-processing and
testing

Downscaling/Normalizing
input pipeline, cross-
validating dataset and
test/evaluation using
metrics (MCC, Speci-
ficity)

Characteristic An aspect of an object A combination of repre-
sentative aspects defin-
ing a difficult classifica-
tion case

Table 3.2: A table contextualizing industry terms for the context of this thesis

13

4
Methodology

This project is conducted according to the Design Science Research Methodology
(DSRM) [42].

4.1 Design Science Research Methodology
DSRM describes a research process involving two fronts. Wieringa explains that
when using design science, “you have to understand its major components, namely,
its object of study and its two major activities” (2014). These two major activi-
ties are the processes of designing and investigating the aforementioned object, also
known as an artifact, in its context with the purpose of arriving at a change in the
same context. The context in this case includes “. . . the social context of stakehold-
ers and goals of the project”, explaining that this type of research is conducted in
close proximity with a company or other stakeholder [42].

All the exercises in this methodology are done in a cycle, known as the Engineering
Cycle (EC). This provides a structure to conduct research in a methodical way, us-
ing stakeholder goals, while allowing for the continuation of the research after each
cycle. The design process of DSRM is a cyclical series of three distinct exercises
called the Design Cycle (DC). The exercises of this cycle are visualized in Figure 4.1.

DSRM is a suitable methodology for this research as the process of identifying valid
characteristics for the final test suite is intuitively iterative.

4.1.1 The Design Cycle
Each exercise of the DC has a specific purpose in order to provide value to the
research. The first exercise is problem investigation where the current state of the
problem is studied, and no requirements have yet to be specified. This is followed
by an exercise focusing on designing a treatment, also known as artifact in context,
called treatment design. The final step in this cycle is called treatment validation
which attempts to state if the designed treatment is an appropriate solution, with
respect to the initial problem. The consequence of this validation exercise is the
possibility that treatments are designed which may not be relevant to the problem
and is discarded [42].

14

4. Methodology

Figure 4.1: A figure showing the the general design of the design- and engineering
cycles.

4.1.2 The Engineering Cycle
As stated before, the purpose of the EC is to evaluate the extent to which treatments
contribute to stakeholder goals. By fully implementing the treatment(s) it is possible
to effectively, accurately and comparatively evaluate their success.

4.1.3 Research Problems
In an effort to specify the purpose of a DSRM project, we define two types of research
problems. They are in turn also meant to further clarify the difference between design
and investigation and can be explained as design problems and knowledge questions.
The design problems emerge from a need for change in the real world, or the context
of the problem. This requires an analysis of any stakeholder goals and may result
in several solutions. Knowledge questions instead focus on the current state of the
real world, attempting to state the question in such a way that a single answer is
possible. The effort of the methodology is to encourage the continuation of the cycle
to further more research, and to spring more questions that might need answering.
These questions are similar to the more well-known research questions, though they
are divided into two distinct types [42].

The research questions of this thesis can be directly translated to knowledge ques-
tions, as they directly ask for an understanding of an issue, not a direct solution.
There are several design problems in this thesis as well. When using images, their
size determines the efficiency of the training process. What size of these images
allow for a reasonable amount of training time? Moreover, in order to validate vari-
ous defective datasets, the structure of the NN evolves into another design problem
that needs to be considered. For instance, how many layers should the NN have

15

4. Methodology

and how to tune its hyperparameters to solve this particular problem. What test-
ing methodology to use to measure the performance of the NNs is another problem
which needs to be solved. Testing methodologies described in section 3.3 are the
common solutions to this type of problem. Which one of these solutions are best
suited for the problem of evaluating NNs using a reference test harness?

4.2 The Engineering Cycle
The focus of this EC is to investigate the validity of characteristics of images when
testing NNs. Suggestions of smaller datasets is created in each iteration of the DC.
These suggestions are then combined and evaluated during the final stages of the
EC, treatment implementation and implementation evaluation.

4.2.1 First Iteration of the Design Cycle
The first iteration of the DC is conducted in the following sequence; initially an
investigative review of available metrics and methods for assessing the validity of a
dataset is conducted, followed by the designing and creation of a NN that is applied
to the defective dataset, resulting in a validation step for assessing the relevance of
the treatment.

In this case, each dataset is validated for its relevance in the final treatment. This
final treatment is a combination of each validated dataset.
The DC is generally a process of investigation into RQ1. By designing an initial
dataset based around a missing car part, we are be able to validate if this dataset
can be incorporated into a reference test harness based on approaches presented in
this section.

4.2.1.1 Problem investigation

For the task of designing a test harness to validate and evaluate NNs applied to
a dataset of composed images, it is important to understand the domain, or con-
text, which the proposed treatment is introduced to. The images in this context
depict computer-rendered cars of a real-world quality. By introducing the ability
to customize the cars, a solution is required for the issue of verifying the enormous
number of permutations these cars are capable of. To present an example, for sim-
plicity’s sake, we only allow two variations for each part and 81 parts, which results
in 281 ≈ 2.4 ∗ 1024 permutations. With this number increasing exponentially with
each added component-type as well as component-variation, the number of permu-
tations make it physically infeasible to pre-render all images and verify them all
manually. In reality, the number of permutations is greater than the example given,
as the bare minimum variations is two and several of the options have more than two
variations. These permutations include specific combinations of characteristics that
have the potential of contributing to the accuracy of classifier-algorithms applied
to them. There are multiple ways of organizing and designing a test harness when
investigating the effect these characteristics have on the ability to identify defective

16

4. Methodology

images. Examples of way to do this are to only test defective images with single
defects, or with multiple defects. This step in the cycle naturally initiates the in-
vestigation of RQ1.

To be able to perform the tests mentioned in the previous paragraph, software com-
ponents such as the data, validation method and a framework to apply the validation
on the data is required. The first DC investigates, designs and constructs an initial
version of these components. The data consists of images with a single defect, the
validation method is a shallow NN and the framework is a collection of scripts to
resize the images to allow for the training the of NN. This lays the ground for further
research into designing a full test harness for NNs.

The focus of this design cycle can be summarized as below:
• Construct an initial test case to validate the scenario of one missing car-part

on a NN.
• What metrics allow us to confidently measure the quality of our dataset?

4.2.1.2 Treatment design

Using the information uncovered during the previous problem investigation, specifi-
cally what design problems and knowledge questions to work with, an initial batch
of images are created using the standard 1080p resolution, and 4 color channels
(RGBA), resulting in a shape of (1920x1080x4). Due to the nature of the tool used
to generate the data, where all possible valid permutations of parts for a particular
car model are created, we produced one set of 229 071 complete images and one
set of 21 866 defective images, where specifically the wheels are missing. Figure 4.2
demonstrates an example of the defective set where the wheels are missing. These
images are composed in a layered structure, depending on the configuration of that
particular car. Assembling a car image, using a unique string for that particular
configuration, begins with a completely transparent background. To build the car,
an image of each part of the car is fetched from a server and layered according to
the configuration. If there is an issue when fetching an image, that image is sim-
ply ignored in the final composed image. The imbalance of this dataset is due to
limitations in the creation-tools provided to us. The tool is unable to handle the
huge number of permutations that are required for these car models and thus would
require the limitation of certain visible parts of the car to a subset of its possibilities.

To be able to assess the validity of a NN we used the metric of MCC which takes
all values of the confusion matrix into account [26]. As the current form of valida-
tion for defective images is manual inspection, a focus on minimizing the number of
misclassified negative prediction (being a defective image classified as complete) is
paramount and thus we would benefit from explicitly investigating the Specificity.
The predictive values of each individual image are also used to distinguish between
the confident cases in the results.

17

4. Methodology

Figure 4.2: An example of images used in the treatment

4.2.1.3 Treatment validation

A shallow NN is created to be used as the validation method for this step of the it-
eration. It consists of two sets of a specific sequence of layers and operations, which
are; Conv2D, BatchNormalization, Activation, MaxPooling and Dropout. This is
followed by a fully connected layer, known as Dense layers, resulting in an output
layer using the sigmoid activation function. This activation function produces a
single predictive value for each image, ranging from zero to one. All of the layers
and operations are available in the Keras API 1 and the full model can be viewed in
Figure A.3. This API, in combination with the backend called Tensorflow, allows
for simple NNs configurations to be created easily and is used in this thesis. When
applying this algorithm to the dataset it uses a pipeline which resizes the images
to to 480x270x4, which is 1/16 of their original size. The intention is based on an
aggregated consideration to maximize the GPU memory usage and reduce the time
span during the training of the algorithm as the memory of the GPU has a limit of
8 GB [38]. Although it is possible for the GPU to take only one full sized image in
one batch during training, it would require an enormous amount of time during this
process. This NN algorithm works as a binary classifier which separates two classes
based on the confidence of their predictions (confidence score).

10 000 images are sampled from the created set of complete images, being entirely
intact cars. 10 000 images are also sampled from the created set of defective images,
being wheel-missing. The sample size of 10 000 is due to the inconsistencies in the
number of images created between the complete and defective datasets. As there is
such a great difference between the number of complete and defective images cre-
ated, a lower sample size is selected than the available images to reduce the risk of
using a sample size that is greater than the number of images created in the follow-
ing iterations of the DC. 20% of the images in these two classes are separated into
a validation-set, used to evaluate the algorithm during each epoch. An additional
4000 images are sampled and used to during the prediction phase. The MCC score
and Specificity are determined from these results, although these metrics may still
lead to an unconvincing conclusion and the confidence of each prediction is also
analyzed. This is due to both metrics resulting in 1 which is the perfect value for
both. For further investigation, the confidence scores are saved and analyzed. The

1https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras

18

4. Methodology

variation in these values range from roughly 0,000 03 to 0,003 for the defective class
and from 0,988 to 0,999 for the complete class.

By examining the confidence scores of the 4000 test images, the images with the
weakest confidence score are extracted as these images should contribute to the test
suite we are creating. By weakest confidence score, we mean the score furthest from
zero for images of the defective class and the score furthest from one for images of
the complete class. The threshold used during this included using the interquartile
range (IQR). This approach uses the difference between the first (Q1) and third (Q3)
quartiles of the data to detect outliers according to Equation 4.1 and Equation 4.2.
The value of c is manually determined, but a common value is 1.5. These quartiles
represent the maximum value of the first 25% and 75% of dataset entries, and the
difference between these is the IQR. The outliers are the values in the dataset below
Tmin and above Tmax [44].

Tmin = Q1 − c× IQR

Tmax = Q3 + c× IQR
(4.1)

IQR = Q3 −Q1 (4.2)

Defective images in our test harness correspond to the predictive value of 0, mean-
ing that weak defective prediction are values higher than Tmax. Complete images
correspond to the predictive value of 1, and thus those weak predictive values would
be lower than Tmin.
From this first iteration of the DC it is clear that applying a NN to the dataset
presented in this section is a suitable approach to validate the existence of difficult
test cases. It also exposes the flaw that the dataset is not as complex as expected.
MCC and Specificity produce a perfect result, requiring the use of the confidence
score to identify difficult test cases.

4.2.2 Second Iteration of Design Cycle
In the second design cycle, we continue with the investigation of the complexity of
car parts. This is done by creating a new dataset in the same vain as previously,
with the difference being the defective images are missing the front grill, instead the
wheels.

4.2.2.1 Problem investigation

To further investigate the issue of validating the dataset, the focus of the design cycle
continues from the previous iteration. It is deemed necessary to create an additional
dataset where other parts are missing. However, the investigation of what are the
suitable metrics is not pursued as it has been examined from the first iteration.

19

4. Methodology

4.2.2.2 Treatment design

By following the same procedure in the first iteration, another batch of 229 455
defective images are created, with the difference being that they are now missing
the front grill.

The binary classifier is applied on this dataset also assessed by the metrics of MCC
and Specificity as in the previous iteration.

4.2.2.3 Treatment validation

The same NN based binary classifier created in the first iteration is applied in this
step to validate the dataset for extracting characteristics.

This time 10 000 defective images are sampled from this new dataset for use during
training, and another 2 000 are sampled for testing. This iteration uses that same
complete images samples during the previous iteration. The confidence scores ac-
quired from the testing phase are saved into another CSV file and further analyzed
to extract outliers according to our technique mentioned during the first iteration.

4.2.3 Third Iteration of Design Cycle
In the third design cycle, the investigation of the complexity of car parts continues.
This is done by creating another dataset in the same vain as previously, with the
difference being the removal of the side-mirrors from the defective images.

4.2.3.1 Problem investigation

The focus of this design cycle remains the same as the first two iterations. The only
difference being another defective image dataset is created with other parts missing
to further investigate the issue of validating the dataset.

4.2.3.2 Treatment design

By applying the tool to remove duplicate images, another 229 362 defective images
with the same parameters are created. The only difference in this batch is that the
missing part is the side-mirrors.

MCC and Specificity continue to be adopted in this iteration for validating the NN
based binary classifier as the previous iterations.

4.2.3.3 Treatment validation

During this step, the binary classifier created from the first iteration is again applied
in order to extracting characteristics from the side-mirrors-missing dataset.

Another 10000 images are sampled from the newly created dataset to be used in the
training phase for the algorithm alongside with 2000 additional sampled to be used

20

4. Methodology

during the testing phase. The confidence values are captured and further analyzed
using our aforementioned technique.

4.2.4 Fourth Iteration of Design Cycle
In the fourth design cycle, we continue with the investigation of the complexity of
car parts. This is done by creating another defective dataset with bumpers removed
from the car images.

4.2.4.1 Problem investigation

Once again, the focus of this design cycle remains the same as the previous iterations.
The only difference being another defective image dataset is created with other parts
missing to further investigate the issue of validating the dataset.

4.2.4.2 Treatment design

By taking the same procedures in the previous iterations, another batch of 114 687
defective images is created, with the difference being that they are now missing the
front grill. Due to the nature of the tool to remove duplicate images, the number of
images in this batch is significantly smaller than other defective datasets. However,
it is still sufficient to be sampled for the later process.

The earlier constructed binary classifier is applied on this dataset again, and assessed
by the MCC and Specificity metrics.

4.2.4.3 Treatment validation

The same procedure is followed in this step. The binary classifier created in the first
iteration is applied to validate the dataset for extracting characteristics.

Another 10 000 images are sampled from the newly created dataset to be used
during training, and additional 2 000 are sampled for testing. Once again, the
acquired confidence scores from the testing phase is saved and further analyzed by
adopting our technique mentioned in the first design cycle.

4.2.5 Treatment implementation
The purpose of the previous DCs were to design and create datasets focused on a
missing car part. These were validated using a NN and images with a low confidence
score were extracted. During this step, the images that are extracted from the DCs
are further analyzed to reduce the redundancy among them. This is done by manu-
ally observing patterns in the defective images. An example of such a pattern could
be the combination of a missing front grill and a white car body. This is what
is known as characteristics in this thesis and are patterns which the images can be
categorized according to. There are many parts in a car, such as types of wheels or
types of headlights, that can be removed entirely. The colors of the cars are different

21

4. Methodology

as they represent an attribute of a car part, and thus cannot be removed. Therefore,
we treat it differently in this thesis and count each color as part of a pattern, with-
out the possibility of removing the color. After repeating the procedure of pattern
extraction for three iterations, the final test harness is constructed by combining the
cases that have similar patterns with each color that exist in the outliers.

The procedures conducted in the previous steps are what is required for the creation
of a reference dataset. To allow for the use of the test harness in other domains, a
reference dataset similar to the one presented in this thesis is required. The pro-
cedures necessary for the creation of such a dataset are documented, and can be
followed to create a reference dataset for other domains.

The test cases in the test harness is structured in two layers. The first layer is to
separate the different defects with the other layer separating the characteristics for
that defect. These characteristics are presented in subsection 5.2.3. Each charac-
teristic is represented by a sequence of pairs of test cases. These pares include a
defective image of the characteristic and its corresponding complete image. These
defective images are ranked according to the confidence score they received during
validation.

When applying a model to this test harness, the test cases are supplied according to
the characteristics, starting with the single test case with the strongest confidence
score. If the model classifies both the images in that test case correctly, it continues
to classify the next test case. If it fails, however, it moves on to the next charac-
teristic. The metric for evaluation in this test harness is how many test cases are
correctly classified. This metric allows the classifiers to be compared to each other
and a final ranking of the classifiers can then be presented.

4.2.6 Implementation evaluation
To evaluate the test harness designed and created in the previous steps, it is used
to test multiple NN-based binary classifiers. The relative performance of these clas-
sifiers is be known, giving an indication of the final result.

The evaluation is conducted by adopting three different NN-based binary classifiers
that are designed and created by us. The structures of these classifiers are based on
the CNN created for validation in this thesis. Classifier 1 is the most sophisticated
model among these three algorithms which contains one dense layer, three max-
pooling layers as well as five convolutional layers, which doubles the hidden layers
of the base CNN. This allows the classifier to better learn the increased complexity
of incorporating four defects in the same dataset. The data used when training this
classifier is sampled from the same complete, no-wheel, no-side-mirror, no-grill and
no-bumper datasets created in the initial iteration of the DC. It consists of 10 000
images of each defect, 40 000, and 40 000 complete images, resulting in a balanced
training dataset of 80 000 images.

22

4. Methodology

On the contrary, Classifier 2 is the model with the simplest structure. It consists of
only one dense layer, one maxpooling layer, also one convolutional layer. This makes
it less likely to pick up the full complexity of the images, producing a less-than-ideal
correctness metric, as the purpose of this classifier is to achieve the lowest score of
the classifiers we evaluate. It is trained on data derived from a different car model
than the other data used throughout the thesis. The images are created using the
same procedures, with the difference being that equivalent parts of the car had to
be removed. It consists of 10 000 images of each defect, 40 000, as well as 40 000
complete images, resulting in 80 000 images in the dataset.

Last but not least, Classifier 3 is the model in between Classifier 1 & 2, it has one
dense layer, two maxpooling layers, and two convolutional layers. It is very similar
to the classifier used for validation, with slightly changed parameters to achieve a
different result. This classifier uses the same dataset as Classifier 1.

As explained in the previous section, these classifiers are individually applied to the
test harness. Since the testing process starts with the easiest cases, the number
of iterations acquired for each model corresponds to the evaluation result of the
test harness. Hence if the model run through more iterations than others, it can
be concluded as a more suitable solution for the problem. As explained in sec-
tion section 3.3, there are several required conditions that can be used when testing.
This thesis focuses on the correctness aspect of testing, disregarding robustness as
there should not be any noise present in the data. The metric used to measure
the correctness of the NNs tested is the number of correct predictions in the test
harness.

23

5
Results

In this chapter, the results for both the design and engineering cycles will be pre-
sented. In total, 324 defective and 524 complete images were found difficult to
classify throughout the design cycle iterations. After reviewing them to find simi-
larities and patterns, the defective outliers were grouped based on their colors and
included in the proposed test harness. This harness was then used to evaluate the
performance of three binary classifiers.

5.1 Resulting predictions from Design Cycles
In the sections below we will present the results acquired from each iteration of the
DC. These iterations produced sets of images deemed difficult to classify. The con-
fidence score for the complete images are included only for the purpose of providing
an overview of the data. These complete images will not necessarily be included in
the final test harness, as the complete images will only be selected based on their
characteristics, not their confidence score.

The box-plots presented in Figure A.1 and Figure A.2 display the general distri-
bution of the confidence scores for the data. It also clearly shows outliers in the
datasets using the same principle as explained in section 4.2.1.3.

5.1.1 First iteration
During this iteration we investigated images which specifically had their wheels miss-
ing. The results of the different metrics for correctness for this phase can be seen in
Table 5.1. With an MCC score of 1.0 and Specificity of 1.0, we saw that both the
NN and dataset produced valid results, although with a small predictive variation.

An excerpt of 10 images with the weakest confidence score in their predictions can
be seen in Table 5.2, showing that there is a high confidence in both the defective
and complete classes.

Using the equation presented in section 4.2.1.3 to find outliers, we could identify 66
of the defective images and 211 of the complete images as outliers in this dataset.

24

5. Results

Figure 5.1: A histogram showing the distribution of values in the complete images
in each dataset.

Figure 5.2: A histogram showing the distribution of values in the the defective
images in each dataset.

25

5. Results

Metric Value
MCC 1.0
Specificity 1.0

Table 5.1: Metrics from
validation of no-wheel
dataset.

Class Weakest
confidence score

Defective 0,013
Defective 0,013
Defective 0,013
Defective 0,014
Defective 0,014
Complete 0,994
Complete 0,994
Complete 0,994
Complete 0,994
Complete 0,994

Table 5.2: Predictive values from valida-
tion of no-wheel dataset.

5.1.2 Second iteration
The results gathered from the second iteration through the DC can be seen in
Table 5.4 and Table 5.3.

Metric Value
MCC 1.0
Specificity 1.0

Table 5.3: Metrics
from validation of no-
grill dataset.

Class Weakest
confidence score

Defective 0,015
Defective 0,015
Defective 0,015
Defective 0,015
Defective 0,019
Complete 0,996
Complete 0,996
Complete 0,996
Complete 0,996
Complete 0,996

Table 5.4: Predictive values from valida-
tion of no-grill dataset.

By following the same procedure as in earlier iterations, 212 outliers were found in
the no-grill defective dataset along with 180 in the complete dataset.

5.1.3 Third iteration
The results gathered from the third iteration through the DC can be seen in Table 5.6
and Table 5.5
By repeating the same procedure as in earlier iterations, 46 outliers were found in
the no-side-mirrors defective dataset along with 50 in the complete dataset.

26

5. Results

Metric Value
MCC 1.0
Specificity 1.0

Table 5.5: Metrics
from validation of no-
side-mirrors dataset.

Class Weakest
confidence score

Defective 0,004
Defective 0,004
Defective 0,004
Defective 0,004
Defective 0,004
Complete 0,981
Complete 0,982
Complete 0,982
Complete 0,983
Complete 0,983

Table 5.6: Predictive values from valida-
tion of no-side-mirrors dataset.

5.1.4 Fourth iteration
The results gathered from the fourth iteration through the DC can be seen in Ta-
ble 5.8 and Table 5.7.

Metric Value
MCC 1.0
Specificity 1.0

Table 5.7: Metrics from
validation of no-bumper
dataset.

Class Weakest
confidence score

Defective 0,003
Defective 0,003
Defective 0,003
Defective 0,003
Defective 0,003
Complete 0,999
Complete 0,999
Complete 0,999
Complete 0,999
Complete 0,999

Table 5.8: Predictive values from valida-
tion of no-bumper dataset.

By repeating the same procedure as in earlier iterations, no outliers were found in
the no-bumper defective dataset along with 83 in the complete dataset. This result
means that the no-bumper dataset is irrelevant for the purpose of a reference dataset
in a test harness.

27

5. Results

5.2 Engineering cycle and final results
After having conducted four iterations of the DC, we moved into finalizing our test
harness. This is done in two phases, initially by combining multiple datasets into a
test harness, followed by evaluating NNs using the test harness.

5.2.1 Generalized procedure for creating reference datasets
The procedures conducted to construct the reference dataset, which includes the
outliers, are found to be beneficial for researchers and corporations in other sub-
jects. These procedures are collected and presented in the list below to create a
clear methodology to recreate defective datasets for other domains.

1. Generate and sample both complete and defective images. The dataset should
be balanced, meaning the number of sampled complete images should equal
all sampled defective images.

2. Split the generated images into a training dataset and testing dataset.
3. Design and implement a binary classifier for validation purposes. This can be

done by importing and potentially tuning the network created for validation
in this thesis, or implementing an entirely new network.

4. Repeat the following procedures for all defects:
(a) Train the network on a combination of the complete dataset and one

defective dataset from the training images.
(b) Evaluate the network using the testing dataset and specify the metrics

MCC and Specificity. The predictive values of this evaluation should be
stored for further analysis. In our case the data was saved to a file of
the ’csv’ format. It is also important to categorize or distinguish between
defective image and complete images in these results.

(c) Specify the definition of outliers to use. The same method used in this
thesis can be adopted here. Extract outliers from the testing images using
this definition.

(d) Manually inspect the images to find characteristics.
5. Combine the outlier images, retaining information regarding the characteris-

tics, into a reference dataset. The hierarchical structure used in this thesis for
this purpose may be used.

5.2.2 Constructed Test Harness
A test harness is constructed that includes the extracted characteristics. The struc-
ture of the created test harness is presented in Figure 5.3.

This harness expects a pre-trained Keras-based binary classifier, saved in one of the
two available formats (.pd and .h5), as an initial input. Defective images for the test
cases, which are the outliers extracted in subsection 4.2.5, are stored in a hierarchical
structure, first based on their specific defect, then their colors. Complete images
are stored alongside their corresponding defective images. Each defective image is

28

5. Results

paired with a complete image containing the same characteristics, creating a single
test case. These test cases are supplied in a prioritized manner, according to the
confidence score of the defective image. Each test case is pre-processed, normalizing
the pixel values and resizing the images to 480x270x4. The defective image is then
supplied to the classifier for prediction, followed by the complete image. If both
of these images are correctly predicted, and there are more images with the same
characteristics, another test case is supplied. This process continues until no more
test case can be supplied or the classifier fails to predict the test case correctly.
Finally, the results are combined and documented in a separate file.

Figure 5.3: A flowchart visualizing the internal steps of the test harness.

29

5. Results

5.2.3 Results of treatment implementation
After investigating the images labeled as outliers according to the definition de-
scribed previously, we found the representative patterns of characteristics presented
in Table 5.9. Each row includes a defect in the first column, the colors identified in
the outliers in the second, and the other parts that all outliers have in common in the
third. For the no-wheel dataset a total of four colors were identified, with every car
having mudflaps and low suspension. The no-side-mirror dataset contains six colors
along with a black window outline and low suspension. The no-grill dataset has four
colors, but with no other common parts. Furthermore, the no-bumper dataset is not
included in this table as there are no outliers in the dataset. Based on our definition
of characteristics, being patterns exhibited by all images in the outliers, no further
reduction in the number of images can be performed.

The result acquired from the evaluation of the algorithms on the test harness is
presented in Table 5.10. The According to the table, Classifier 1 has the highest
number of execution iterations. Last but not least, Classifier could not complete any
iteration. Finally, Classifier 3 ranked in between these classifiers in this evaluation,
it has run through 116 iterations.

Missing part Car color Other parts

Wheels Candy White & Moon
White Metallic &
Brilliant Silver Metallic
& Olive

Mudflaps & Low
suspension

Side mirror Race Blue Metallic &
Corrida Red & Velvet
Red & Maple Brown
Metallic & Crystal Black
Metallic & Black Magic
Pärleffekt Metallic

Black window outline &
Low suspension

Grill Candy White & Moon
White Metallic &
Brilliant Silver Metallic
& Olive

None

Table 5.9: The characteristics extracted from outliers in each defective dataset.

30

5. Results

Classifier Name Successfully executed
iterations

Classifier 1 324
Classifier 2 0
Classifier 3 116

Table 5.10: The results of the evaluation of NNs using the test harness

31

6
Discussion

By following the methodology presented in this report, and after achieving the
aforementioned results, we now provide a discussion regarding these phases of this
project.

6.1 Validity of algorithm application
In this section we discuss why the NN-based binary classifier was adopted in the
validation procedures as well as its validity.

6.1.1 The constructed NN used in the validation steps
Many studies have either adopted or even suggested using Tensorflow 1 and CNN to
construct a binary classifier for solving image classification problems [8, 47, 27, 6].
This initiates our investigation of designing and constructing a CNN-based binary
classifier with the no-wheel dataset as its training data. However, as explained in
chapter 2, no studies in the related work could be found that attempts to solve
this specific problem of using CNNs to classify defective car images. Thus, we
started with constructing a typical CNN based on the reference structure presented
in the Keras guide for image classification 2. This was then followed by a phase
of hyperparameter adjustment, which is commonplace when adopting NN [2, 8], to
increase the correctness of the network for the problem of this thesis. We increased
the use of Dropout [39] and introduced BatchNormalization [37], to further improve
regularization in the network. Other hyperparameters were changed until a high
correctness was achieved from the network. As a result of its high correctness, it
was decided to be used for the validation process of this thesis and the full structure
can be seen in Figure A.3.

6.1.2 Does the algorithm detect the defect
When pursuing answers for RQ1, we investigate ways of validating datasets using
NNs. By applying a NN to a dataset, we are able to get an accurate measurement
of how well that specific NN is able to classify that specific dataset. To be able to
validate this dataset for other NNs, using the information gathered in section 4.2.1.2
regarding the process of image composition, there is a possibility that the classifier

1https://www.tensorflow.org/versions/r2.1/api_docs/python/
2https://keras.io/examples/vision/mnist_convnet/

32

6. Discussion

is putting focus on other aspects of the image than the missing part.

By investigating the differences between the complete images and defective images,
there are three scenarios of visible differences. One possibility is that there are no
other layers underneath the missing part, resulting in the transparent background
being visible in that area instead. Another possibility is that there are other parts in
the underlying layers. These parts could include the real components which would
be on the real car in this area. Finally, they could contain a placeholder color (in
the case of these images, that color is black) instead of the components which would
exist in that area in a real car. An example can be seen in Figure 4.2, where there
is a black area where the right wheel would be. This provides evidence that the
classifier used for validation is not classifying some other aspect of the image than
the defective part, as there is no one aspect that is changed for all images.

In an effort to find evidence of the suitability of our binary classifier for validating
the test harness, we analyze the relationship between the proportion of pixels in
the image taken up by the missing part. The purpose of this approach is to in-
vestigate if the classifier only detects the average difference of noise in the images,
only a specific aspect of the image, or the specific missing part. All the different
defective images include varying permutations of the scenarios mentioned in the
previous paragraph. For example, the no-grill images only introduce a black color
when removed but no-wheel images introduce both black color and the transparent
color. The theory is that if the difference in the number of pixels of two differ-
ent types defective images, no-side-mirror and no-wheel as an example, correspond
to the difference in confidence score of those same defective images, this should
mean the classifier focus on the differences in the full set of pixels for each missing
part. On the other hand, if the classifier is only detecting the difference of one
aspect of the images, such as the transparency or the existence of the black color,
the proportions of pixels-to-confidence-score should not correspond in the same way.

This is carried out by manually cropping out the target car parts, e.g. the side
mirrors from a complete car image. The resulting image include transparent pixels,
from having a transparent background as stated before. However, to only count
pixels relevant to our results, these transparent pixels are ignored in this step. Due
to the uncertainties of the manual cropping, the number of pixels obtained is not
precise. Hence, by studying the obtained results, we can conclude that the pixel-
proportions roughly coincides with the confidence score-proportions, as three out of
four datasets produced positive results. An example being, the ratio of the pixel-
proportions between the no-side-mirror dataset and the no-wheel dataset is roughly
23%, meanwhile the ratio in the confidence score of the same datasets are roughly
25%.

33

6. Discussion

6.2 Test harness
In this thesis we investigate defective car images to design and create a test har-
ness. This test harness only includes a representative set of test images, allowing
for a simpler evaluation process for the NNs. The intention is that if more effort
is put into selecting the test images, fewer images would be required in the final
test harness. These images are selected from outliers discovered in the validation
process. This definition of ’outliers’ is defined as the general definition of outliers in
a ’whiskers-plot’, which has been described before in this thesis. The requirement
is that a reasonable amount of images can be gathered through this method. Also,
that a dataset with a deviating amount of outliers easily can be discovered. By the
fact that the ’no-bumper’ dataset produced no outliers, it is discarded and gives
more confidence that the methodology used is valid for selecting difficult test cases.

Another aspect of the test harness which is a point of discussion is the fact that only
isolated defects (no-wheel, no-grill and etc) are investigated. The magnitude of the
difference between analyzing isolated defects or combinations of them is exponential.
It should also, as conducted in this thesis, be more useful to initially focus on isolated
defects, as those results is likely to be usable when investigating combined defects.
Even though the methodology for researching the combined defects is unknown at
this time, it would most likely require a large amount of test cases. There are ways to
reduce these, by utilizing methods such as factorial designs for the experiments, but
the single defects would still need to be analyzed [1]. Therefore, initially producing
results for a smaller, more isolated set of defects is more likely to be helpful in future
research.

6.2.1 Generalizability
One of the major issues with the problem we investigate in this thesis is the extent
to which the results are generalizable. This is the reason for using a, in our mind,
shallow network for validation. By only using two convolutional layers, along with
regularization techniques such as batch normalization and dropout, we made an
effort to increase the generalizability as much as possible. Additionally, Masters
and Luschi suggested that the batch-size used during training can severely impact
the stability and generalizability of a model (2018). He also mentions that a batch-
size of less than 32 is ideal. As such, we are confident that using a batch-size of
8-16 images, which is the limit for the hardware we used when training, would most
likely increase the generalizability as well.

6.3 Reflection on related work
In the related work section of this thesis we presented several studies in three main
categories. All of these have varying degrees of commonalities with our thesis, from
evaluating NNs, detecting defects or constructing a test harness for ML. The issue
we found in the field is that there exists a lack of research that bridge these research
topics. Also, research into creation of a representative test dataset is not abundant

34

6. Discussion

as no such paper was found for this thesis, although the paper by Raicharoen and
Lursinsap is closely related, focusing on reducing the size of the training dataset.
Possibly due to this, there is room for research regarding using the aforementioned
reference test dataset to evaluate various NNs. On the contrary, studies regarding
the evaluation of NNs are common. Furthermore, many studies were found regarding
defect detection using NNs. Among them, we have discovered that a specific type
of NN, namely CNN, is commonly used in the field of detecting defects on various
surfaces. This was corroborated by the fact that one of the tested classifiers in this
thesis produced a perfect result when evaluated using the created test harness.

6.4 Evaluation of the classifiers
Three binary classifiers were designed and created in this thesis, as explained in
subsection 4.2.6. The aforementioned test harness was then used to evaluate these
classifiers.

In order to verify that the test harness is a valid method for assessing various binary
classifiers, we only selected three of them as a proof of concept. Also, these clas-
sifiers use known structures, meaning their performance, in relation to each other,
should be known. However, due to the time limit, we do not evaluate more than
three classifiers to further verify our test harness.

Based on the acquired results from Table 5.10, we see that Classifier 1 successfully is
able to pass all 324 iterations. Conversely, Classifier 2 does not pass any iterations.
Additionally, Classifier 3 pass 116 iterations. These results are to be expected. The
classifiers using data derived from the same car model that the test harness is based
on performs better than a classifier that is trained on a different dataset, based on
another car model. The difference in performance for Classifier 1 and Classifier 2
can be contributed to the structure of the classifiers. Classifier 1 uses a NN-structure
of greater depth, allowing for more features to be learned. This is confirmation that
the experiments verify our initial hypothesis presented in RQ3.

6.5 Threats
The thesis was carried out by constructing and experimenting with various datasets
on three binary classifiers. The potential validity threats are discussed in detail
below.

6.5.1 Construct Validity
Construct validity primarily concerns earlier phases of a project, and is related to the
design of the research being conducted. Staron points out it is about “. . . how we
create the measurement instruments that measure the effects in our study.” (2020).

35

6. Discussion

In order to better focus our research on the defective parts, we decided to use only
one car model, from a single angle. This makes it difficult for us to generalize
our research, as it . Moreover, during the procedure of selecting outliers from the
datasets, after observing the confidence score, we used a method including IQR to
select the outliers as mentioned in subsubsection 4.2.1.3. Although the mentioned
IQR method is a standardized way of selecting outliers, we cannot be certain that it
is the most suitable way in our context. This produces a risk to the construct validity.

When constructing the test harness, no software tests are applied to the software in
question, whether that be the framework, the data or the classifiers used. There is
therefore a possibility of the existence of bugs, potentially affecting the results.

6.5.2 Internal Validity
Threats to internal validity are things that can affect the independent variable with
respect to causality, without the researcher’s knowledge [43].

During the validation process, when selecting outlier images, it was discovered that
one dataset (no-bumper) did not contain any outliers. This dataset was discarded for
this reason, without further investigation, as it had been made clear beforehand that
only outliers would be included in the test harness. It is possible that by performing
further analysis on these images would result in the discovery of characteristics. We
chose to put our trust in our method of exposing outliers, but it is possible this was
not an ideal method to use. However, with the other datasets containing at least 46
outliers, we believe those are distinctly different from the no-bumper dataset.

6.5.3 External Validity
According to Wohlin et al., external validity are conditions that would potentially
hinder the researchers to generalize their experiments results to industrial practice
(2012).

The tool which was used to generate images proved to be very effective. However,
there were various limitations of it that interfered with the complexity of the image
creation process. As an example, due to a flaw in the tool, the number of images
created for each defective part was different. This resulted in an increase in the time
required to create our datasets. Also, in the later period, we had to face the issue of
insufficient disk space due to the large number of images being created. Hence, we
were required to remove more parts to complete the creation of the datasets with
the risk being that desired parts may also be removed.

Given the confidentiality of the data provided in this research, the practical val-
idation may be difficult to replicate for other researchers. Therefore, the binary
classifier created may need to be adjusted by its own hyperparameters to fit various
datasets. Due to the fact that manual cropping was adopted to validate our binary
classifier that was mentioned in section 6.1, the acquired results may not be highly

36

6. Discussion

precise. This may increase the threat of generalizing the results.

Moreover, the expected performances of the networks evaluated in this thesis were
determined based on their structures. This only informs the general performance,
but this may differ depending on the data in relation to the network.

6.5.4 Conclusion Validity
Conclusion validity relates to the process of analyzing data, finding patterns in the
data and making inference at the end of the research. It is also our ability to draw
correct conclusions from our observation [40].

Only one CNN-based binary classifier was adopted in the treatment validation pro-
cess. This makes it difficult to make statements regarding the validity of the test
harness for other types of NNs. As a result, it makes us lack confidence in the
procedures applied during this study.

Furthermore, a problem occurred during the creation of the no-wheel dataset. De-
spite trying multiple times to re-execute the creation, the result remained the same.
This directly leads to the no-wheel dataset having a significant amount of images
fewer in comparison with the other datasets. Hence, this random event may cause
inaccurate sampling to further impact our final result.

37

7
Conclusion

This thesis was conducted with the purpose of designing and creating a valid refer-
ence test harness for evaluating NNs in the context of defect detection in car images.
The study is closely linked to three research questions and their answers are provided
below.

7.1 Answers to research question
RQ1:

What characteristics in defective car images can be used in a test harness to assess
the quality of a NN?

According to Table 5.9, the characteristics we have identified for the no-wheel out-
liers are four colors with mudflaps and low suspension. Six colors, along with black
window outline and low suspension, are identified for the no-side-mirror outliers.
Last but not least, there is nothing more than the four colors that can be identified
in the no-grill outliers.

RQ2:

How can images with the characteristics identified in RQ1 be combined into a valid
test harness for NNs?

The procedures required to identify characteristics in datasets are collected and
presented in the list in subsection 5.2.1. This is a clear methodology to recreate
defective datasets for other domains, and is a prerequisite to the creation of the
full test harness. These procedures are found to be beneficial for researchers and
corporations in other subjects.

Based on the table we can see that the performance of Classifier 1 overtakes the
other two in this evaluation. Classifier 2, which has the shallowest structure and
less relevant training data, does not pass a single iteration. Meanwhile, the perfor-
mance of Classifier 3 is greater than Classifier 2, yet worse than Classifier 1. Hence,
these results confirm our theory that our test harness is a valid approach to evaluate
various binary classifiers.

38

7. Conclusion

RQ3:

Can we identify adequate NNs using our test harness? What are the relevant metrics
when comparing NNs applied to the aforementioned dataset?

As explained in the answering of RQ2, we have adopted three binary classifiers in
the process of evaluation as a proof of concept. With the prior knowledge of the
tested classifiers’ performances, the test harness can be verified if it is a qualified tool
for identifying adequate NNs. From the obtained results, we can see that the results
of the experiments have verified our initial hypothesis in this RQ. We are able to
identify adequate NNs using our test harness. Given that the structure and training
data of Classifier 1 is more suitable than the other two classifiers, in addition to it
being the most appropriate classifier according to the results, makes it the classifier
we would recommend for a similar defect detection problem.

7.2 Future work
This thesis is only an initial step in the investigation of creating a reduced test har-
ness for NNs and there are many ways to continue the research conducted in this
thesis.

As we have mentioned throughout the report, this thesis was conducted with a focus
on individual defective car parts, from a single car model. To further investigate
the root cause of the difficulties in detecting defects, combinations of defective car
parts would need to be taken into consideration. Furthermore, to increase the gen-
eralizability of the results, analyzing additional car models may be pursued.

We also categorized the outliers during validation according to combinations of char-
acteristics. It may be beneficial to do further research into which specific single
characteristics is the actual contributor to the difficulty during classification.

39

Bibliography

[1] Jiju Antoy. Design of Experiments for Engineers and Scientists. Elsevier, 2014,
pp. 1–672. isbn: 9780080994178. doi: 10.1016/C2012- 0- 03558- 2. url:
https://linkinghub.elsevier.com/retrieve/pii/C20120035582.

[2] Nurshazlyn Mohd Aszemi and P.D.D Dominic. “Hyperparameter Optimiza-
tion in Convolutional Neural Network using Genetic Algorithms”. In: Inter-
national Journal of Advanced Computer Science and Applications 10.6 (2019),
pp. 269–278. issn: 21565570. doi: 10.14569/IJACSA.2019.0100638. url:
http://thesai.org/Publications/ViewPaper?Volume=10&Issue=6&Code=
IJACSA&SerialNo=38.

[3] Pierre Baldi et al. Assessing the accuracy of prediction algorithms for classi-
fication: An overview. 2000. doi: 10.1093/bioinformatics/16.5.412. url:
https://academic.oup.com/bioinformatics/article/16/5/412/192336.

[4] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. “Optimal classifier
for imbalanced data using Matthews Correlation Coefficient metric”. In: PLoS
ONE 12.6 (Mar. 2017), pp. 1–17. issn: 19326203. doi: 10.1371/journal.
pone.0177678. url: https://doi.org/10.1371/journal.pone.0177678.

[5] Yuan-chin Ivan Chang. “Multiple-class classification: Ordinal and categori-
cal labels”. In: Communications in Statistics - Simulation and Computation
46.10 (Nov. 2017), pp. 7561–7581. issn: 0361-0918. doi: 10.1080/03610918.
2016.1242732. url: https://www.tandfonline.com/doi/full/10.1080/
03610918.2016.1242732.

[6] Neha Chaudhuri and Indranil Bose. “Application of Image Data Analytics
for Immediate Disaster Response”. In: Proceedings of the 21st International
Conference on Distributed Computing and Networking. New York, NY, USA:
ACM, Jan. 2020, pp. 1–5. isbn: 9781450377515. doi: 10.1145/3369740.
3372729. url: https://dl.acm.org/doi/10.1145/3369740.3372729.

[7] Marc Claesen and Bart De Moor. “Hyperparameter Search in Machine Learn-
ing”. In: (Feb. 2015). url: http://arxiv.org/abs/1502.02127.

[8] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow, 2nd Edition. second. O’Reilly Media, Inc., 2019. isbn: 9788578110796.
url: https : / / www . oreilly . com / library / view / hands - on - machine -
learning/9781492032632/.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Adaptive
computation and machine learning. MIT Press, 2016. isbn: 9780262035613.
url: http://search.ebscohost.com/login.aspx?direct=true&AuthType=
sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=

40

https://doi.org/10.1016/C2012-0-03558-2
https://linkinghub.elsevier.com/retrieve/pii/C20120035582
https://doi.org/10.14569/IJACSA.2019.0100638
http://thesai.org/Publications/ViewPaper?Volume=10&Issue=6&Code=IJACSA&SerialNo=38
http://thesai.org/Publications/ViewPaper?Volume=10&Issue=6&Code=IJACSA&SerialNo=38
https://doi.org/10.1093/bioinformatics/16.5.412
https://academic.oup.com/bioinformatics/article/16/5/412/192336
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1080/03610918.2016.1242732
https://doi.org/10.1080/03610918.2016.1242732
https://www.tandfonline.com/doi/full/10.1080/03610918.2016.1242732
https://www.tandfonline.com/doi/full/10.1080/03610918.2016.1242732
https://doi.org/10.1145/3369740.3372729
https://doi.org/10.1145/3369740.3372729
https://dl.acm.org/doi/10.1145/3369740.3372729
http://arxiv.org/abs/1502.02127
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds

Bibliography

eds- live&scope=site&custid=s3911979&authtype=sso&group=main&
profile=eds.

[10] Tianmei Guo et al. “Simple convolutional neural network on image classifi-
cation”. In: 2017 IEEE 2nd International Conference on Big Data Analysis,
ICBDA 2017. Institute of Electrical and Electronics Engineers Inc., Oct. 2017,
pp. 721–724. isbn: 9781509036189. doi: 10.1109/ICBDA.2017.8078730.

[11] Mazharul Islam et al. “Improving Neural Network Classifier using Gradient-
based Floating Centroid Method”. In: (July 2019). url: http://arxiv.org/
abs/1907.08996.

[12] M. I. Jordan and T. M. Mitchell. “Machine learning: Trends, perspectives,
and prospects”. In: Science 349.6245 (2015), pp. 255–260. issn: 10959203.
doi: 10.1126/science.aaa8415. url: https://science.sciencemag.org/
content/349/6245/255.

[13] Taskin Kavzoglu. “Increasing the accuracy of neural network classification us-
ing refined training data”. In: Environmental Modelling & Software 24.7 (July
2009), pp. 850–858. issn: 13648152. doi: 10.1016/j.envsoft.2008.11.012.
url: http://dx.doi.org/10.1016/j.envsoft.2008.11.012%20https:
//linkinghub.elsevier.com/retrieve/pii/S1364815208002156.

[14] May Phyo Khaing and Mukunoki Masayuki. “Transparent Object Detection
Using Convolutional Neural Network”. In: Advances in Intelligent Systems and
Computing. Vol. 744. Springer Verlag, 2019, pp. 86–93. isbn: 978-981-13-0869-
7. doi: 10.1007/978-981-13-0869-7{_}10. url: http://link.springer.
com/10.1007/978-981-13-0869-7_10.

[15] Arshia Khan and Hans-Dietrich Haasis. “Producer–buyer interaction under
mass customization: analysis through automotive industry”. In: Logistics Re-
search 9.1 (Aug. 2016), p. 17. issn: 1865-035X. doi: 10.1007/s12159-016-
0144-9. url: http://link.springer.com/10.1007/s12159-016-0144-9.

[16] Asharul Islam Khan and Salim Al-Habsi. “Machine Learning in Computer Vi-
sion”. In: Procedia Computer Science 167 (2020), pp. 1444–1451. issn: 18770509.
doi: 10.1016/j.procs.2020.03.355. url: https://linkinghub.elsevier.
com/retrieve/pii/S1877050920308218.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet clas-
sification with deep convolutional neural networks”. In: Communications of
the ACM. Ed. by F Pereira et al. Vol. 60. 6. Curran Associates, Inc., 2017,
pp. 84–90. doi: 10.1145/3065386. url: http://papers.nips.cc/paper/
4824 - imagenet - classification - with - deep - convolutional - neural -
networks.pdf.

[18] Donghwoon Kwon et al. “An Empirical Study on Network Anomaly Detec-
tion Using Convolutional Neural Networks”. In: 2018 IEEE 38th Interna-
tional Conference on Distributed Computing Systems (ICDCS). Vol. 2018-
July. IEEE, July 2018, pp. 1595–1598. isbn: 978-1-5386-6871-9. doi: 10 .
1109/ICDCS.2018.00178. url: https://ieeexplore.ieee.org/document/
8416441/.

[19] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521.7553 (2015), pp. 436–444. issn: 14764687. doi: 10.1038/nature14539.
url: https://doi.org/10.1038/nature14539.

41

http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07470a&AN=clc.7a977b09caff4a9b803659e97e338eb3&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
https://doi.org/10.1109/ICBDA.2017.8078730
http://arxiv.org/abs/1907.08996
http://arxiv.org/abs/1907.08996
https://doi.org/10.1126/science.aaa8415
https://science.sciencemag.org/content/349/6245/255
https://science.sciencemag.org/content/349/6245/255
https://doi.org/10.1016/j.envsoft.2008.11.012
http://dx.doi.org/10.1016/j.envsoft.2008.11.012%20https://linkinghub.elsevier.com/retrieve/pii/S1364815208002156
http://dx.doi.org/10.1016/j.envsoft.2008.11.012%20https://linkinghub.elsevier.com/retrieve/pii/S1364815208002156
https://doi.org/10.1007/978-981-13-0869-7{_}10
http://link.springer.com/10.1007/978-981-13-0869-7_10
http://link.springer.com/10.1007/978-981-13-0869-7_10
https://doi.org/10.1007/s12159-016-0144-9
https://doi.org/10.1007/s12159-016-0144-9
http://link.springer.com/10.1007/s12159-016-0144-9
https://doi.org/10.1016/j.procs.2020.03.355
https://linkinghub.elsevier.com/retrieve/pii/S1877050920308218
https://linkinghub.elsevier.com/retrieve/pii/S1877050920308218
https://doi.org/10.1145/3065386
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/ICDCS.2018.00178
https://doi.org/10.1109/ICDCS.2018.00178
https://ieeexplore.ieee.org/document/8416441/
https://ieeexplore.ieee.org/document/8416441/
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539

Bibliography

[20] Yann LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE (1998). issn: 00189219. doi: 10.1109/5.726791.

[21] Daniel D. Lee and H. Sebastian Seung. “Learning the parts of objects by non-
negative matrix factorization”. In: Nature 401.6755 (Mar. 1999), pp. 788–791.
issn: 00280836. doi: 10.1038/44565. url: https://www.nature.com/
articles/44565.

[22] Chih-Yang Lin et al. “Cascading Convolutional Neural Network for Steel Sur-
face Defect Detection”. In: Advances in Intelligent Systems and Computing.
Vol. 965. Springer Verlag, 2020, pp. 202–212. isbn: 9783030204532. doi: 10.
1007/978-3-030-20454-9{_}20. url: http://link.springer.com/10.
1007/978-3-030-20454-9_20.

[23] Qing Liu et al. “A review of image recognition with deep convolutional neural
network”. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 10361 LNCS. Springer Verlag, 2017, pp. 69–80. isbn: 9783319633084.
doi: 10.1007/978-3-319-63309-1{_}7. url: https://link.springer.
com/content/pdf/10.1007%2F978-3-319-63309-1.pdf%20https://link.
springer.com/content/pdf/10.1007%2F978-3-319-63309-1_7.pdf.

[24] Stephen Marsland.Machine learning: An algorithmic perspective. Second. Chap-
man and Hall/CRC, Oct. 2014, pp. 1–452. isbn: 9781466583337. doi: 10.
1201/b17476. url: https://www.taylorfrancis.com/books/9781466583337.

[25] Dominic Masters and Carlo Luschi. “Revisiting Small Batch Training for Deep
Neural Networks”. In: (Apr. 2018). url: http://arxiv.org/abs/1804.
07612.

[26] B. W. Matthews. “Comparison of the predicted and observed secondary struc-
ture of T4 phage lysozyme”. In: BBA - Protein Structure 405.2 (Oct. 1975),
pp. 442–451. issn: 00052795. doi: 10.1016/0005-2795(75)90109-9. url:
http://www.sciencedirect.com/science/article/pii/0005279575901099%
20https://linkinghub.elsevier.com/retrieve/pii/0005279575901099.

[27] Nhung Thi Hong Nguyen et al. “Pavement crack detection using convolutional
neural network”. In: ACM International Conference Proceeding Series. New
York, New York, USA: ACM Press, 2018, pp. 251–256. isbn: 9781450365390.
doi: 10.1145/3287921.3287949. url: http://dl.acm.org/citation.cfm?
doid=3287921.3287949.

[28] Je Kang Park et al. “Machine learning-based imaging system for surface defect
inspection”. In: International Journal of Precision Engineering and Manufac-
turing - Green Technology 3.3 (July 2016), pp. 303–310. issn: 21980810. doi:
10.1007/s40684-016-0039-x. url: http://link.springer.com/10.1007/
s40684-016-0039-x.

[29] Husein Perez, Joseph H. M. Tah, and Amir Mosavi. “Deep Learning for De-
tecting Building Defects Using Convolutional Neural Networks”. In: Sensors
19.16 (Aug. 2019), p. 3556. issn: 1424-8220. doi: 10.3390/s19163556. url:
https://www.mdpi.com/1424-8220/19/16/3556.

[30] David M W Powers. Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness & Correlation. 2007. url: http://david.wardpowers.
info/BM/Evaluation_SIETR.pdf.

42

https://doi.org/10.1109/5.726791
https://doi.org/10.1038/44565
https://www.nature.com/articles/44565
https://www.nature.com/articles/44565
https://doi.org/10.1007/978-3-030-20454-9{_}20
https://doi.org/10.1007/978-3-030-20454-9{_}20
http://link.springer.com/10.1007/978-3-030-20454-9_20
http://link.springer.com/10.1007/978-3-030-20454-9_20
https://doi.org/10.1007/978-3-319-63309-1{_}7
https://link.springer.com/content/pdf/10.1007%2F978-3-319-63309-1.pdf%20https://link.springer.com/content/pdf/10.1007%2F978-3-319-63309-1_7.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-63309-1.pdf%20https://link.springer.com/content/pdf/10.1007%2F978-3-319-63309-1_7.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-63309-1.pdf%20https://link.springer.com/content/pdf/10.1007%2F978-3-319-63309-1_7.pdf
https://doi.org/10.1201/b17476
https://doi.org/10.1201/b17476
https://www.taylorfrancis.com/books/9781466583337
http://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1804.07612
https://doi.org/10.1016/0005-2795(75)90109-9
http://www.sciencedirect.com/science/article/pii/0005279575901099%20https://linkinghub.elsevier.com/retrieve/pii/0005279575901099
http://www.sciencedirect.com/science/article/pii/0005279575901099%20https://linkinghub.elsevier.com/retrieve/pii/0005279575901099
https://doi.org/10.1145/3287921.3287949
http://dl.acm.org/citation.cfm?doid=3287921.3287949
http://dl.acm.org/citation.cfm?doid=3287921.3287949
https://doi.org/10.1007/s40684-016-0039-x
http://link.springer.com/10.1007/s40684-016-0039-x
http://link.springer.com/10.1007/s40684-016-0039-x
https://doi.org/10.3390/s19163556
https://www.mdpi.com/1424-8220/19/16/3556
http://david.wardpowers.info/BM/Evaluation_SIETR.pdf
http://david.wardpowers.info/BM/Evaluation_SIETR.pdf

Bibliography

[31] Thanapant Raicharoen and Chidchanok Lursinsap. “A divide-and-conquer ap-
proach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm”.
In: Pattern Recognition Letters 26.10 (2005), pp. 1554–1567. issn: 0167-8655.
doi: https://doi.org/10.1016/j.patrec.2005.01.003. url: http:
//www.sciencedirect.com/science/article/pii/S0167865505000115.

[32] Karthik Ramasubramanian and Abhishek Singh. Machine Learning Using R.
Berkeley, CA: Apress, 2019. isbn: 978-1-4842-4214-8. doi: 10.1007/978-1-
4842-4215-5. url: http://link.springer.com/10.1007/978-1-4842-
4215-5.

[33] Waseem Rawat and Zenghui Wang. “Deep Convolutional Neural Networks for
Image Classification: A Comprehensive Review”. In: Neural Computation 29.9
(Sept. 2017), pp. 2352–2449. issn: 0899-7667. doi: 10.1162/neco{_}a{_
}00990. url: http://www.mitpressjournals.org/doi/abs/10.1162/
neco_a_00990.

[34] A L Samuel. “Some Studies in Machine Learning Using the Game of Checkers”.
In: IBM Journal of Research and Development 3.3 (July 1959), pp. 210–229.
issn: 0018-8646. doi: 10.1147/rd.33.0210. url: http://ieeexplore.ieee.
org/document/5392560/.

[35] Yutaka Sasaki. The truth of the F-measure. January 2007. Mar. 2007, pp. 1–6.
url: https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.
sasaki/F-measure-YS-26Oct07.pdf.

[36] Ling Shao et al. “Performance evaluation of deep feature learning for RGB-
D image/video classification”. In: Information Sciences 385-386 (Apr. 2017),
pp. 266–283. issn: 00200255. doi: 10 . 1016 / j . ins . 2017 . 01 . 013. url:
https://linkinghub.elsevier.com/retrieve/pii/S0020025517300191.

[37] Leslie N. Smith. “A disciplined approach to neural network hyper-parameters:
Part 1 – learning rate, batch size, momentum, and weight decay”. In: (Mar.
2018). url: http://arxiv.org/abs/1803.09820.

[38] Nimit Sharad Sohoni et al. “Low-Memory Neural Network Training: A Tech-
nical Report”. In: (Apr. 2019). url: http://arxiv.org/abs/1904.10631.

[39] Nitish Srivastava et al. “Dropout: A simple way to prevent neural networks
from overfitting”. In: Journal of Machine Learning Research 15.1 (Jan. 2014),
pp. 1929–1958. issn: 15337928.

[40] Miroslaw Staron. Action Research in Software Engineering. Cham: Springer
International Publishing, 2020. isbn: 978-3-030-32609-8. doi: 10.1007/978-
3-030-32610-4. url: http://link.springer.com/10.1007/978-3-030-
32610-4.

[41] Akshit Thakur and Gitika Sharma. “Neural Network Based Test Case Pri-
oritization in Software Engineering”. In: Communications in Computer and
Information Science. Vol. 956. Springer Verlag, July 2019, pp. 334–345. isbn:
9789811331428. doi: 10.1007/978- 981- 13- 3143- 5{_}28. url: http:
//link.springer.com/10.1007/978-981-13-3143-5_28.

[42] Roel J. Wieringa. Design science methodology: For information systems and
software engineering. Mar. 2014, pp. 1–332. isbn: 9783662438398. doi: 10.
1007/978-3-662-43839-8. url: https://link.springer.com/book/10.
1007/978-3-662-43839-8.

43

https://doi.org/https://doi.org/10.1016/j.patrec.2005.01.003
http://www.sciencedirect.com/science/article/pii/S0167865505000115
http://www.sciencedirect.com/science/article/pii/S0167865505000115
https://doi.org/10.1007/978-1-4842-4215-5
https://doi.org/10.1007/978-1-4842-4215-5
http://link.springer.com/10.1007/978-1-4842-4215-5
http://link.springer.com/10.1007/978-1-4842-4215-5
https://doi.org/10.1162/neco{_}a{_}00990
https://doi.org/10.1162/neco{_}a{_}00990
http://www.mitpressjournals.org/doi/abs/10.1162/neco_a_00990
http://www.mitpressjournals.org/doi/abs/10.1162/neco_a_00990
https://doi.org/10.1147/rd.33.0210
http://ieeexplore.ieee.org/document/5392560/
http://ieeexplore.ieee.org/document/5392560/
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
https://doi.org/10.1016/j.ins.2017.01.013
https://linkinghub.elsevier.com/retrieve/pii/S0020025517300191
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1904.10631
https://doi.org/10.1007/978-3-030-32610-4
https://doi.org/10.1007/978-3-030-32610-4
http://link.springer.com/10.1007/978-3-030-32610-4
http://link.springer.com/10.1007/978-3-030-32610-4
https://doi.org/10.1007/978-981-13-3143-5{_}28
http://link.springer.com/10.1007/978-981-13-3143-5_28
http://link.springer.com/10.1007/978-981-13-3143-5_28
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://link.springer.com/book/10.1007/978-3-662-43839-8
https://link.springer.com/book/10.1007/978-3-662-43839-8

Bibliography

[43] Claes Wohlin et al. Experimentation in Software Engineering. Vol. 9783642290.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–236. isbn: 978-3-
642-29043-5. doi: 10 . 1007 / 978 - 3 - 642 - 29044 - 2. url: http : / / link .
springer.com/10.1007/978-3-642-29044-2.

[44] Jiawei Yang, Susanto Rahardja, and Pasi Fränti. “Outlier detection: How to
threshold outlier scores?” In: ACM International Conference Proceeding Se-
ries. New York, New York, USA: ACM Press, 2019, pp. 1–6. isbn: 9781450376334.
doi: 10.1145/3371425.3371427. url: http://dl.acm.org/citation.cfm?
doid=3371425.3371427.

[45] Xulei Yang et al. “Deep learning for practical image recognition: Case study
on kaggle competitions”. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’18. New York,
NY, USA: Association for Computing Machinery, 2018, pp. 923–931. isbn:
9781450355520. doi: 10.1145/3219819.3219907. url: https://doi.org/
10.1145/3219819.3219907.

[46] Jingxiu Yao and Martin Shepperd. “Assessing Software Defection Prediction
Performance: Why Using the Matthews Correlation Coefficient Matters”. In:
(Mar. 2020). doi: 10.1145/3383219.3383232. url: https://arxiv.org/
abs/2003.01182v1.

[47] Lorena Zapata et al. “Detection of Cutaneous Tumors in Dogs Using Deep
Learning Techniques”. In: Advances in Intelligent Systems and Computing.
Ed. by Tareq Ahram. Vol. 965. Cham: Springer International Publishing, 2020,
pp. 83–91. isbn: 9783030204532. doi: 10.1007/978-3-030-20454-9{_}8.
url: http://link.springer.com/10.1007/978-3-030-20454-9_8.

[48] Jie M. Zhang et al. “Machine Learning Testing: Survey, Landscapes and Hori-
zons”. In: IEEE Transactions on Software Engineering (June 2019), pp. 1–1.
issn: 0098-5589. doi: 10.1109/tse.2019.2962027. url: http://arxiv.
org/abs/1906.10742.

44

https://doi.org/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2
https://doi.org/10.1145/3371425.3371427
http://dl.acm.org/citation.cfm?doid=3371425.3371427
http://dl.acm.org/citation.cfm?doid=3371425.3371427
https://doi.org/10.1145/3219819.3219907
https://doi.org/10.1145/3219819.3219907
https://doi.org/10.1145/3219819.3219907
https://doi.org/10.1145/3383219.3383232
https://arxiv.org/abs/2003.01182v1
https://arxiv.org/abs/2003.01182v1
https://doi.org/10.1007/978-3-030-20454-9{_}8
http://link.springer.com/10.1007/978-3-030-20454-9_8
https://doi.org/10.1109/tse.2019.2962027
http://arxiv.org/abs/1906.10742
http://arxiv.org/abs/1906.10742

A
Appendix 1

Figure A.1: A box-plot showing the confidence score distribution of complete
prediction in each class.

I

A. Appendix 1

Figure A.2: A box-plot showing the confidence score distribution of defective
prediction in each class.

II

A. Appendix 1

Figure A.3: The model used for validation of the individual defective datasets

III

A. Appendix 1

Figure A.4: Classifier 1, used in the evaluation process.
IV

A. Appendix 1

Figure A.5: Classifier 2, used in the evaluation process.

V

A. Appendix 1

Figure A.6: Classifier 3, used in the evaluation process.

VI

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Research Questions
	Delimitations

	Related Work
	Evaluation of Neural Networks
	Defect detection using Neural Networks
	Constructing a test harness for ML

	Theoretical Background
	Neural Network
	Convolutional Neural Networks

	Metrics
	Confusion Matrix
	Recall & Precision
	Specificity
	F1 score
	Matthews Correlation Coefficient

	Testing of ML algorithms
	Terminologies used in the study

	Methodology
	Design Science Research Methodology
	The Design Cycle
	The Engineering Cycle
	Research Problems

	The Engineering Cycle
	First Iteration of the Design Cycle
	Problem investigation
	Treatment design
	Treatment validation

	Second Iteration of Design Cycle
	Problem investigation
	Treatment design
	Treatment validation

	Third Iteration of Design Cycle
	Problem investigation
	Treatment design
	Treatment validation

	Fourth Iteration of Design Cycle
	Problem investigation
	Treatment design
	Treatment validation

	Treatment implementation
	Implementation evaluation

	Results
	Resulting predictions from Design Cycles
	First iteration
	Second iteration
	Third iteration
	Fourth iteration

	Engineering cycle and final results
	Generalized procedure for creating reference datasets
	Constructed Test Harness
	Results of treatment implementation

	Discussion
	Validity of algorithm application
	The constructed NN used in the validation steps
	Does the algorithm detect the defect

	Test harness
	Generalizability

	Reflection on related work
	Evaluation of the classifiers
	Threats
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion
	Answers to research question
	Future work

	Bibliography
	Appendix 1

