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Abstract

Toroidal compactification of M-theory and its low energy limit, eleven-dimensional
supergravity, possess hidden symmetries giving fields additional degrees of freedom. By
extending the space-time to accomodate these extra degrees of freedom and constructing a
generalised geometry on this space, the U-duality symmetry can be made manifest. The local
diffeomorphism invariance is replaced by the larger exceptional groups which also happens
to include gauge transformations. In this thesis, a tensor calculus for the exceptional
generalised geometry is constructed. The geometrical concepts of diffeomorphisms,
torsion, curvature, reducibility, tensors and tensor fields are given a generalised, covariant
construction in the toroidally compactified, enhanced space-directions.
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Chapter 1

Introduction

In the beginning of the 1990’s, Hull, Townsend and Witten showed that the five known
anomaly-free, perturbative superstring theories were connected and related to each other by
dualities [1–3]. They could be thought of as different languages describing the same physics.
At the low energy limit of the string theories are their respective supergravity field theories,
which are also related in the same way by the dualities.

The superstring theories are only anomaly-free in 10 space-time dimensions, but it was
known that a dimensional reduction of the 11-dimensional supergravity [4] theory on a
circle gives the type IIA supergravity. Eleven is also the highest number of dimensions in
which there exists a supergravity theory with Minkowskian metric containing no particles
with spin higher than 2 [5–7]. The supergravity theory found in eleven dimensions also
happens to be unique. These evidences led to the thoughts that the eleven-dimensional
supergravity theory was in fact the low energy limit of a larger theory which was named
M-theory. In this view, the genus expansion of each of the string theories corresponds to a
different perturbative series in a particular limit of the string coupling constant, gs → 0, in
the parameter space of M-theory.

Defining M-theory by the expansions of the superstring on each patch, using the dualities to
move between patches, makes it possible to uncover some of the features of M-theory. The
string theories are, however, only defined as asymptotic series in the low coupling limit, so
all of the parameter space is not reachable by this approach.

The low energy limit of M-theory was proven to be the eleven-dimensional supergravity,
since it is unique. By studying the low energy limits, dimensional reductions thereof and
the duality symmetries, a lot of the structure of M-theory can be understood. The circle
dimensional reduction of M-theory down to type IIA superstring theory and the branching
rules of the field contents, showed that M-theory is not a string theory, the fundamental
objects are higher-dimensional branes.

The dualities between different string theories relates different languages for the same physics
while the symmetries of the theories can be used as a guide into M-theory. For example, a T-
duality (the inversion of a radius on a d-dimensional torus) maps to each other the type IIA
and IIB string theories, while a T-symmetry is an even number of such T-dualities (taking
us back to the original theory). The type II theories and their M-theory extensions therefore
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has to be invariant under this T-symmetry of an even number of T-duality transformations.

The T-duality symmetry group of the type II string theories on a torus T d is O(d, d,Z), and
the continuous version of this, O(d, d,R) [8], is the symmetry of the low energy effective
actions. T-duality is known to be the perturbative part of a larger duality, U-duality, which
is a unification of the T- and S-dualities [9–13].

Cremmer and Julia, [14], discovered that the action of eleven-dimensional or type IIA
supergravity compactified on torii, T d, and the equation of motions for uncompactified
type IIB supergravity exhibits continuous, global, non-compact symmetries described by
the exceptional groups, Ed(d)(R) and Sl(2,R) [15–18]. These symmetries are out of reach
for T-duality since they transform the scalar fields and the weak coupling regime. A discrete
version of the exceptional groups, Ed(d)(Z) [19], are identified as the U-duality group.

The duality symmetries can be made manifest by enlargening the dimension of the
compactified space, accounting for the extra degrees of freedom introduced by the
symmetries. This concept was first examined for T-duality and later for U-duality. The
T-duality generalised space-time is doubled and is because of that called doubled geometry
[20–35]. The U-duality groups are those of the exceptional groups and the generalised
geometry of this space is called exceptional geometry [36–52].

The enlargening of space has however a drawback. Different directions in the enlarged space
means different things. A translation in this space can turn a momentum into a winding
number, or mix a field with gravity itself. To be able to study the structure and dynamics
in this space we have to generalise the definitions of coordinate transformations by defining
a generalised diffeomorphism [52].

In ordinary geometry, the diffeomorphism group is generated by infinitesimal diffeomorphism
transformations by the Lie derivative. The active diffeomorphisms defines how tensors
transforms on the manifold. Superstring theory compactified on torii mixes string
momentum with its winding number, so ordinary geometry is not sufficient in describing
their transformations. This can be solved by doubling the geometry, splitting the fields in
a right- and lefthanded part and adding a dual torus to the manifold. To go down to the
physical dimensions a slice of the enlarged space is chosen by a section condition. This is the
concept used in the theory giving a manifest invariant construction of T-duality in doubled
geometry.

Compactifying M-theory on torii, on the other hand, mixes the fields with gravity itself
making the theory non-geometrical. Using the same scheme as in doubled geometry, the
definition of a diffeomorphism transformation can be generalised to compensate for this
extra complexity. Compactification on an 8-torus giving rise to the E8 symmetry group on
the torus involves the dual gravity which breaks the concept of geometry even further.

The purpose of this thesis is to construct the generalised geometry needed for studying
the non-geometrical structures of compactified eleven-dimensional supergravity and the
manifestation of the U-duality symmetry. We will focus on the compactification dimensions
4 ≤ n ≤ 8. The diffeomorphism groups for n = 3 is not simply connected making the
calculations a bit messy. For n = 8 the algebra fails to close under the generalised Lie
bracket, more about this in chapter 7. Higher dimensional compactifications give rise to
affine, extended exceptional groups and requires a different approach than the one presented.

The mathematical language of this thesis involves both Lie algebra, representation theory,
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group theory and differential geometry. In chapter 2 a short introduction to Lie algebra
and representation theory is given. Since the purpose of this thesis is to reconstruct
(a generalised) geometry, a brief recap on the construction of ordinary geometry and
diffeomorphisms is given in chapter 3.

Since T-duality is a part of U-duality, the part visible in perturbation theory, all results
from the construction of the U-duality exceptional geometry is also valid for the case of
doubled geometry. The geometrical construction of double geometry can however serve as
a more pedagogical way of introducing the concept of generalised geometries. This O(d,d)
doubled geometry for compactified type II string theories with T-duality is therefore shortly
introduced chapter 4.

U-duality and toroidal compactification of M-theory is described in chapter 5 where
the hidden symmetries and enlarged spacetime is motivated, setting the scene for the
construction of the generalised geometry. Chapter 6 is devoted to the construction of
the U-duality exceptional generalised geometry. We construct generalised diffeomorphisms,
tensors, connections, curvature and tensor fields. The section condition, taking us back to
n-dimensions, is also derived and discussed. This is the main work of the thesis and is based
on Paper 1, published in Journal of High Energy Physics 07(2013)028, which can found
in the appendix.

The thesis ends with chapter 7 in a discussion with conclusions, reflections and what the
future in this area can hold.
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Chapter 2

Lie algebra and representations

Modern theoretical physics is about understanding and exploring symmetries of physical
systems. Group theory and Lie algebra is the mathematical language for describing these
symmetries. For a physicist, representations of Lie groups is one of the most important
tools.

In this chapter, an introduction is given to the mathematical tools needed for an
understanding of the work done in the thesis. It is to be viewed only as a short introduction
to the areas, there are no proofs given. The concepts of groups, algebras, Lie algebras
and their representations are introduced with their formal definitions and some of their
important properties. For a more in-depth understanding the reader is encuraged to study
’Symmetries, Lie algebras and Representations’ written by Jürgen Fuchs and Christoph
Schweigert [53]. This chapter closely follows that book, from which the relevant concepts
used in the thesis has been extracted.

2.1 Groups and Algebras

A group, G, is a set of elements together with a map (a product) ◦ : G×G→ G with the
following properties. The product has to be associative,

x ◦ (y ◦ z) = x ◦ y ◦ z = (x ◦ y) ◦ z, for all x,y,z ∈ G.

There has to be an identity element, e ∈ G, satisfying

e ◦ x = x = x ◦ e, for all x ∈ G.

And, to any element, x, there has to exist an inverse element x−1 in G such that

x ◦ x−1 = e = x−1 ◦ x.

The group is called abelian if the product is commutative, x ◦ y = y ◦ x, for all x,y ∈ G.
Simple groups cannot be divided into smaller groups and can be completely classified.

5



6 2.1. Groups and Algebras

A Lie group has a continuous set of elements, parameterized by a set of continuous
parameters. The dimension of the group is the number of parameters, d = dim(G). The
group can be either finite- or infinite-dimensional. The finite groups can be divided into
sets of groups with similar properties by the Cartan classification. In this classification
scheme there are the classical groups: An, Bn, Cn, Dn with n ∈ Z+ and the exceptional
cases: G2, F4, E6, E7, E8. The indices denotes the rank of the groups and is the dimension
of its Cartan subgroup, more about this in section 2.3. Examples of the infinite-dimensional
groups are the Virasoro, Kac-Moody and Borcherds groups which will not be discussed in
this thesis.

An algebra A is a vector space over a field, F , together with a binary, bilinear operation
◦ : A × A → A. Because of the bilinearity constraint, the operation has to fulfill the
following requirements

(x+ y) ◦ z = x ◦ z + y ◦ z
x ◦ (y + z) = x ◦ y + x ◦ z
(ξx) ◦ (ηy) = (ξη)x ◦ y

for all x, y, z ∈ A and all elements ξ, η of the underlying field F . This definition is extremely
general and in order to be of any interest, the operation is required to have more properties.
A special case of an algebra which is of big importance for physicists is a Lie algebra.

A linearisation of a Lie group, G, gives its Lie algebra. A Lie algebra, g, is an algebra
where the bilinear operator is called the Lie bracket, denoted [·, ·], which possesses the two
additional properties:

[x, y] = −[y, x] (Antisymmetry)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)

for all x, y ∈ g. A Lie algebra, g, can always be directly constructed from an associative
algebra, A, by defining the Lie bracket as the commutator with respect to the original
operator

[x, y] := x ◦ y − y ◦ x. (2.1)

The dimension of a Lie algebra is the dimension of g considered as a vector space, d = dim g.
For a finite dimensional Lie algebra, g, any basis, B of g is spanned by a set of generators,
T a, written as

B = {T a | a = 1, 2, . . . , d}. (2.2)

The Lie bracket is uniquely determined if it is known on a basis, B, because of the bilinearity.
The Lie bracket, and therefore the Lie algebra, can then be defined abstractly through the
expansion

[T a, T b] =

d∑

c=1

fabcT
c

where the expansion coefficients are called the structure constants of the Lie algebra and
depend on the basis. The anti-symmetry property of the Lie algebra can be expressed in
terms of the structure constants as fabc = −f bac and the Jacobi identity as

∑d
c=1(fabcf

cg
e+

fgacf
cb
e + f bgcf

ca
e) = 0.
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The relation between Lie algebras and (symmetry) Lie groups is at this point perhaps a
bit unclear. An example of the relation is that of the rotation group of three-dimensional
space, the Lie group SO(3), where infinitesimal rotations are described by the Lie algebra
su(2). Lie groups describes symmetries, while Lie algebras describes the structure of local
one-parameter groups of symmetries.

A finite-dimensional Lie group has the algebraic structure of a group and is at the same
time a differentiable manifold. The fact that it is a manifold makes it possible to relate
them to linear spaces and to the Lie algebras. The mathematical language used on
differentiable manifolds, differential geometry, involves invariant vector fields and describes
their coordinate transformations on the manifold. A vector field can be thought of as
differential operators acting on functions on the manifold. By defining a Lie bracket (called
Lie derivative in this context) on the (Lie group) manifold between two vector fields in
a way that makes the bracket fulfill the Lie bracket properties (bilinearity, closedness,
antisymmetric, Jacobi identity), the vector space of all vector fields on the manifold becomes
a Lie algebra.

Lie algebras gives an algebraic language to the analysis on Lie group manifolds and a lot of
the information on the Lie group is carried in its Lie algebra. In fact, the only information
about a Lie group not contained in its Lie algebra are topological properties. More about
Lie algebra in the context of differential geometry on Lie groups in chapter 3.

A homomorphism from a Lie algebra, g, to a Lie algebra, h, is a linear map that carries
the Lie brackets to Lie brackets and thereby preserves the algebraic structures

φ : g→ h

[x, y] 7→ φ([x, y]) = [φ(x), φ(y)], for all x, y ∈ g.

If a homomorphism is injective and surjective it is called an isomorphism from g to h, and
the algebras are isomorphic to each other, g ≈ h. The concept of isomorphism is important
in classifying the Lie algebras.

A subalgebra, h of g is a subspace, h ⊆ g which itself is a Lie algebra (closed under the
Lie bracket). Any Lie algebra has, at least, the two trivial subalgebras of the one-element
subset, {0}, and the algebra itself. All other subalgebras of g are called proper subalgebras.

If a set of Lie algebras, gi, each is an ideal subalgebra of a Lie algebra g, the algebra g can
be written as a direct sum of the subalgebras

n⊕

i=1

gi ≡ g1 ⊕ · · · ⊕ gn.

The Lie algebras of most importance to a physicist are the abelian Lie algebras, the simple
Lie algebras and their direct sums. An abelian Lie algebra is an algebra with [x, y] = 0 for
all x, y ∈ g. A simple Lie algebra is a non-abelian algebra which contains no proper ideals.
If each element in g can be written as a commutator of two elements of g, the algebra is a
semisimple Lie algebra and can be written as a direct sum of simple Lie algebras.

Any one-dimensional Lie algebra, g, is abelian because of the antisymmetry property of
the Lie bracket of the single generator, T , [T, T ] = 0. As a result of this there is, up to
isomorphisms, only one unique one-dimensional Lie algebra, called u(1). Any n-dimensional
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abelian Lie algebra is isomorphic to the direct sum of n one-dimensional Lie algebras

g =

n⊕

i=1

u(1).

2.2 Representations

A Lie algebra acts on a space, to a physicist it can be a space of physical states. Acting on
a space, V , means that to any element x ∈ g there is associated a map R(x) : V → V such
that the commutator of R(x) and R(y) reproduces the Lie bracket of x and y in g as

R(x) ◦R(y)−R(y) ◦R(x) = R([x, y])

where the ’◦’ is the composition of maps. V is now called a representation space (or a
g-module) of g and R is a representation of g. V can be an infinite-dimensional space
even if the Lie algebra acting on it by some representation is finite-dimensional. In quantum
mechanics, the Hilbert space is the space of physical states and R(x) are linear mappings
in this space.

The general linear Lie algebra gl(V ) is the vector space of all linear mappings V → V over
F . For finite-dimensional spaces, V , with dim(V ) = n any element of gl(V ) can, after fixing
a basis, be described by an n× n-matrix and the composition of maps is simply the matrix
multiplication. The set of all such matrices is denoted by gl(n) and is an n2-dimensional
Lie algebra.

Any Lie algebra has at least one representation, the one that maps all elements of g on the
zero vector, this is the singlet representation of g. Another possibility is to represent g on
itself, this representation is called the adjoint representation and its dimension is equal to
the dimension of the algebra. The adjoint representation is given by the structure constants
of the algebra

[T a, T b] = fabc T
c,

the entries of the adjoint representation seen as matrices is therefore

(Rad(T
a))bc = fabc .

Now, given a non-trivial representation of a Lie algebra, g, more representations can be
constructed from it. Given a matrix representation, R, of a vector space, V , a new set
of matrices can be defined by the transpose of the matrices, R+(x) := −(R(x))t for all
elements, x, in g. The new representation, R+, is called the conjugate representation of
R. Because of the transpose, the conjugate representation acts on the vector space dual to
V , denoted V ∗ which is the space of linear forms.

Given two representation spaces, V and W of g, the direct sum of the vector spaces is also
a representation space of g

RV ⊕RW : ((RV ⊕RW )(x))(v ⊕ w) := RV (x)v +RW (x)w.

The tensor product, V ⊗W , is also a representation of g

RV ⊗RW : ((RV ⊗RW )(x))(v ⊗ w) := (RV (x)v)⊗ w + v ⊗ (RW (x)w).
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More about the tensor product in section 2.7. A Lie algebra will typically have a lot of
different representations, it is however possible to identify fundamental building blocks to
which other representations can be decomposed. These building blocks can not be further
decomposed and are therefore called irreducible representations, or irreps for short. An
irreducible representation cannot be brought to a block-diagonal form by a change of basis.

Modules can be built out of irreducible ones using the direct sum, these modules are called
fully reducible modules of a Lie algebra. This works the same for representations. A
representation is said to be fully reducible if there is a basis of the underlying vector space
in which all representation matrices are simultaneously of a block-diagonal form

R(x) =




R1(x) 0 · · · 0
0 R2(x) · · · 0
...

...
. . .

...
0 0 · · · Rn(x)




2.3 The Cartan-Weyl and Dynkin bases

The structure constants of a Lie algebra depend on the chosen basis, and to be able to write
them down explicitly, a choice of basis has to be made. Doing this in a systematic way will
provide a tool to classify the finite-dimensional semisimple Lie algebras. For the semisimple
finite-dimensional Lie algebras, there is a completely canonical basis, the Cartan-Weyl
basis. In this section, g, is assumed to be semisimple and finite-dimensional and the
underlying field, F , is algebraically closed if not otherwise stated.

A Lie algebra has a fixed number of generators, amongst these a certain number of them
can be diagonalized simultaneously, this number is called the rank of the algebra. The
diagonalizable generators are denoted Hi and has a zero Lie bracket among them,

[Hi, Hj ] = 0, for i, j = 1, 2 . . . r. (2.3)

These generators spans a Lie algebra called the Cartan subalgebra, g◦, of the algebra,
g◦ = spanC{Hi|i = 1 . . . r}. The Cartan subalgebra of a Lie algebra is the maximal abelian
subalgebra consisting of only semisimple elements. A Lie algebra can have many different
Cartan subalgebras but all are related by automorphisms. The dimension of the Cartan
subalgebras, the rank r, is always the same for a given Lie algebra and is a property of it.
For a physical system with g as its symmetry algebra, the rank denotes the maximal number
of quantum numbers used to label the states in the system.

The generators of the Lie algebra that are not used to span the chosen Cartan subalgebra
can be written as linear combinations of each other to form the generators Eα with

[Hi, Eα] = αiEα. (2.4)

The set of generators {Hi, Eα} spans the Lie algebra and is a basis thereof, called the
Cartan-Weyl basis for the Lie algebra g. The r-dimensional vector αi (one for each
generator Eα) of eigenvalues of Eα is called a root vector of g relative to the basis of g◦.
The root vectors lives in an r-dimensional root space spanned by the simple roots and
the set of the root vectors is called the root system. The simple roots, denoted α(i), are
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roots that cannot be written as linear combinations of the other roots and the number of
them is exactly r. The generators Eα are also called the step operators to the roots α.

Calculations can sometimes be simplified by introducing another element for any root, α,
as α∨ = 2α

(α, α) ∈ g?◦ (in the dual algebra of the Cartan subalgebra). The vector α∨ is now

called the coroot or dual root of α. The dual space of the root space is called the weight
space of g. The dual roots can be chosen as a basis of the root space

B = {α(i)∨ | i = 1, . . . , r}. (2.5)

The basis of the weight space (dual to B) now consists of the weights, Λ(i), that fulfills

Λ(i)(α
(j)∨) = δji and are called the fundamental weights. The basis of the weight space,

B? = {Λ(i) | i = 1 , . . . r} is called the Dynkin basis and the components of a weight in the
Dynkin basis are called Dynkin labels.

2.4 The Cartan matrix

The whole structure of a finite, semisimple Lie algebra is encoded in the simple roots,
spanning the root space. So, in order to classify and understand all possible semisimple Lie
algebras up to isomorphisms, all we have to do is classify the possible Cartan subalgebras
and their root systems.

The commutators among the generators spanning the Cartan subalgebra, Hi, and the step
operators, Eα, can be encoded in the Serre relations expressed in the Chevalley basis.
The Chevalley basis is a special case of the Cartan-Weyl basis and is constructed by the
following identifications. Let hi be the Cartan generators associated to the simple roots, ei

is identified with the step operators associated with the simple roots and f i are identified
with the step operators associated with the minus simple roots:

hi = Hα(i)

ei = Eα
(i)

f i = E−α
(i)

.

The ei and f i should be normalised by K(Eα, E−α) = 2
(α, α) , where K is the Killing form

which is a special form providing a metric on the root space and gives an isomorphism
between g◦ and g?◦. The Killing form is defined as K(x, y) = tr(adx ◦ady). These generators
now obeys the commutation relations

[hi, hj ] = 0

[hi, ej ] = Ajiej

[hi, f j ] = −Ajif j

[ei, f j ] = δijhi

and their multi-commutators satisfies the Serre relations

(adei)
1−Ajiej = 0 (2.6)

(adfi)
1−Ajif j = 0. (2.7)
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Where the multi-commutators are written in short-hand as (adx)n = adx ◦ adx ◦ · · · ◦ adx,
so that (adx)2(y) = [x, [x, y]]. These relations together with the commutation relations for
the generators are known as the Chevalley-Serre relations and characterizes g uniquely.

The only non-universal numbers in the presentation of the Lie algebra are given by the
integer valued matrix Aij in the Chevalley-Serre relations, called the Cartan matrix. The
entire structure of the algebra can now be expressed by this matrix which is built up of the
simple roots as

Aij = 2
(α(i), α(j))

(α(j), α(j))
, (2.8)

where (· , ·) is the Euclidean inner product. Or, more simply, expressed in terms of the

simple coroots as Aij = (α(i), α(j)∨). The Cartan matrix is independent on the choice of the
basis for the simple roots up to the numbering of its rows and columns. The classification of
simple Lie algebras now amounts to the classification of their Cartan matrices. By analyzing
the definition of the Cartan matrix, the following properties about Cartan matrices can be
made:

• The diagonal elements of the Cartan matrix is always 2, since Aii = 2,∀i = 1 . . . r.

• If Aij = 0 then Aji = 0 because of the symmetry of the scalar product in root space.

• Aij is always a positive integer.

• The difference of two simple roots is never a root.

• The matrix is always non-degenerate, detA 6= 0. Or, in fact, detA > 0.

The Cartan matrix of a simple Lie algebra also has to be irreducible; there should be no
renumbering of the simple roots that puts the Cartan matrix in a block diagonal form. If this
is the case, the Lie algebra is semisimple. All possible matrices fulfilling these properties (and
that cannot be transformed into each other by a relabelling of rows or columns) corresponds
to different (non-isomorphic) Lie algebras.

2.5 Dynkin diagrams

The categorisation of all simple Lie algebras is now reduced to finding all possible solutions
to the requirements of the Cartan matrices, which is a purely combinatorial problem. The
possible solutions can be described in a convenient way in the so called Dynkin diagrams,
where each Cartan matrix is associated with a specific diagram consisting of vertices and
connecting lines. Each node, or vertex, in the diagram represents a simple root, and two
nodes, represented by α(i) and α(j), are connected by max{|Aij |, |Aji|} lines. The number
of lines connecting two vertices denotes the angle between the corresponding simple roots.
A single, double or triple line denotes an angle of 2π

3 , 3π
4 and 5π

6 respectively. Vertices that
are not connected denotes two orthogonal simple roots. If Aij 6= 0 and |Aij | > |Aji| an
arrow is added to the line connecting the ith and jth node.

As shortly discussed earlier, the Cartan classification of simple, finite-dimensional Lie
algebras consists of the four infinite series (the classical Lie algebras) denoted by Ar (r ≥ 1),
Br (r ≥ 3), Cr (r ≥ 2) and Dr (r ≥ 4) together with the five exceptional cases G2, F4, E6,
E7 and E8. Where the subscripts denotes the rank of the groups. The classical algebras
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are isomorphic to the matrix algebras as Ar ≈ sl(r + 1), Br ≈ so(2r + 1), Cr ≈ sp(r) and
Dr ≈ so(2r).

All classified, simple, finite-dimensional Lie groups are listed, together with their dynkin
diagrams and Cartan martices, in table 2.1 and 2.2.
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Table 2.1: The classical Lie algebras with their respective Cartan matrices and Dynkin
diagrams.

name Dynkin diagram Cartan matrix

Ar




2 −1 0 · · · 0 0 0 0
−1 2 −1 · · · 0 0 0 0
0 −1 2 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · 2 −1 0 0
0 0 0 · · · −1 2 −1 0
0 0 0 · · · 0 −1 2 −1
0 0 0 · · · 0 0 −1 2




Br




2 −1 0 · · · 0 0 0 0
−1 2 −1 · · · 0 0 0 0
0 −1 2 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · 2 −1 0 0
0 0 0 · · · −1 2 −1 0
0 0 0 · · · 0 −1 2 −2
0 0 0 · · · 0 0 −1 2




Cr




2 −1 0 · · · 0 0 0 0
−1 2 −1 · · · 0 0 0 0
0 −1 2 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · 2 −1 0 0
0 0 0 · · · −1 2 −1 0
0 0 0 · · · 0 −1 2 −1
0 0 0 · · · 0 0 −2 2




Dr




2 −1 0 · · · 0 0 0 0
−1 2 −1 · · · 0 0 0 0
0 −1 2 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · 2 −1 0 0
0 0 0 · · · −1 2 −1 −1
0 0 0 · · · 0 −1 2 0
0 0 0 · · · 0 −1 0 2



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Table 2.2: The exceptional Lie algebras with their respective Cartan matrices and Dynkin
diagrams.

name Dynkin diagram Cartan matrix

G2

(
2 −3
−1 2

)

F4




2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2




E6




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2




E7




2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 −1
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 −1 0 0 0 2




E8




2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2



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2.6 Highest weight representations

As stated earlier, the representations of a Lie algebra are of most importance to physics. Any
finite-dimensional representation of a simple Lie algebra is a heighest weight representation.
Because of this, highest weight representations are found to be an interesting subclass of
representations.

Each generator, Hi, of the Cartan subalgebra, g◦, of a semi-simple Lie algebra, g, spans the
Cartan subalgebra of a specific subalgebra, slα(2), of g. This subalgebra is spanned by the
generators Hi and Ei± of g for a fixed i, corresponding to the simple root α = α(i). Because
of this, it is possible to reduce the analysis of the heighest weight state for finite-dimensional
representations of semi-simple Lie algebras, to the representation theory of sl(2) ≈ A1.

A1 consists of the generators H and E±, where H spans the Cartan subalgebra and the
generators satisfies [H,E±] = ±E± and [E+, E−] = H. The representation space, V , for
a representation, R, has a basis for which the generator R(H) acts diagonally, this implies
that each module V decomposes into weight spaces, R(λ) as

V =
⊕

λ

V(λ), V(λ) = {v ∈ V |R(H)v = λ · v}, (2.9)

where the eigenvalues, λ, are the weights of V . Now, given a weight vector, v ∈ V(λ),
then R(E±)v ∈ Vλ±2 and there is a weight Λ such that V(Λ) 6= 0 but V(Λ+2) = 0 for
finite-dimensional representations. Such weights, Λ, are maximal weights and any weight
vector, v ∈ V(Λ) are maximal weight vectors. If V is irreducible, Λ is a highest weight, vΛ

is a highest weight vector and V is a highest weight module denoted VΛ.

A highest weight vector, vΛ, is annihilated by the step-up operator, E+vΛ = 0. All other
weight vectors can be constructed from the highest weight vector using the step-down
operator,

E−vΛ = vΛ−2

...

(E−)nvΛ = vΛ−2n

...

(E−)NvΛ = vΛ−2N

E−vΛ−2N = 0

where the chain stops at a fixed N for finite-dimensional modules.

Continuing the analysis for simple Lie algebras, we can apply the representation theory
of A1 to each of the subalgebras, slα(2), for all i = 1 . . . r. In the same way as for A1,
there is a decomposition of any g-module, V =

⊕
λ V(λ), into weight spaces such that

R(Hi)vλ = λi ·vλ. The eigenvalues are always integers and are grouped into the weights of
V as an r-dimensional vector λ = (λi). All the weights of a module V makes up its weight
system. Λ is only a weight of a finite-dimensional module if it lies on the weight lattice,
LW, meaning that it can be written as an integral linear combination of the fundamental
weights, Λ =

∑r
i=1 λ

iΛ(i).
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Module Dynkin labels Notation

3 [10]

3̄ [01]

8 [11]

Table 2.3: Some sl(3)-modules and their Dynkin labels attached to the Dynkin diagram.

For any finite-dimensional module of g maximal weights Λ can be found such that
R(Eα)vΛ = 0 for all positive roots α and all vΛ ∈ V(Λ). If there is only one such weight, it
is the highest weight of the module. The Dynkin labels of a highest weight, Λi, are always
positive integers.

The nodes of the Dynkin diagrams can not only denote the fundamental weights, Λ(i) or the

simple roots, α(i), they can also be used to visualise highest weight modules of a Lie algebra
by attaching the Dynkin labels of the weight to the nodes of the diagram. An example of
this is presented in table 2.3 for sl(3).

2.7 Tensor products

Given two modules V and W of a Lie algebra g, we can also represent g on the tensor
product vector space V ⊗W as seen earlier,

RV ⊗RW : ((RV ⊗RW )(x))(v ⊗ w) := (RV (x)v)⊗ w + v ⊗ (RW (x)w). (2.10)

A basis for the tensor product vector space, V ⊗W , can be constructed from two bases
BV = {vi} of V and BW = {wj} of W as

B = {vi ⊗ wj | vi ∈ BV , wj ∈ BW }. (2.11)

As seen from this construction of a basis for the tensor product, we can conclude that V ⊗W
and W ⊗ V are different vector spaces, and because of this, the modules are also different.
The two modules are however isomorphic, and the tensor product is therefore said to be
commutative (and associative) up to isomorphism.

If W = V , the vector space V ⊗ V splits into the two invariant subspaces

Vs = {v ⊗ v′ + v′ ⊗ v | v, v′ ∈ V }, (2.12)

Va = {v ⊗ v′ − v′ ⊗ v | v, v′ ∈ V } (2.13)

where Vs is a symmetric and Va antisymmetric element. The linearity property of the
tensor product implies that these two subspaces are again g-modules, giving the direct sum
decompositions

V ⊗ V = Vs ⊕ Va, (2.14)

R⊗R = Rs ⊕Ra. (2.15)
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When forming the tensor product of two modules of a finite-dimensional, simple Lie algebra,
the weights of the modules adds up. This implies that the weight system of V ⊗V ′ consists
of weights of the form λ + λ′. The tensor product VΛ ⊗ VΛ′ for highest weight modules
V = Vλ and V ′ = VΛ′ is again finite-dimensional, this implies that it is fully redicible into
irreducible modules and can be decomposed as

VΛ ⊗ VΛ′ ≈ ⊕iLΛi
ΛΛ′VΛi (2.16)

where VΛi are its irreducible submodules and LΛi
ΛΛ′ are non-negative integers called the tensor

product coefficients which are related to the Clebsch-Gordan coefficients.

The decomposition of tensor products are tedious to do by hand and can (and will in the
rest of the thesis) be calculated by computer algorithms.

2.8 Intertwiners

A physiscist is often interested in the singlet contributions from tensor products. The
Lagrangian in a field theory, for example, has to be a singlet with respect to its manifest
symmetry Lie algebra g, the fundamental, non-singlet fields of the theory has to be organized
in multiplets that transforms correctly. This can be dealt with by using intertwiners
(invariant tensors) between tensor product representations and singlets.

To start the analysis of intertwiners, we first fix a basis, B = {v(i)} of the module V . Tensors
are now described by its coordinates in this basis. The most simple tensor is the vector vi

with i = 1, . . . , dim V in an irreducible g-module V . In the chosen basis, v is written as
v =

∑
i v
iv(i). We can also form the conjugate module V + and describe the conjugate

vector, ṽ, in the dual basis, B? = {ṽ(i)}, defined so that ṽ(i)v(j) = δij . Upper indices are
called covariant and lower ones are called contravariant.

Representation matrices acts on the components of the vector and its dual companion as

vi 7→ (v′)i =
∑

j

(R(x))ijv
j , (2.17)

ṽi 7→ (ṽ′)i =
∑

j

(R+(x))i
j
ṽj . (2.18)

In this context, an invariant tensor, t, for the tensor product W = V ⊗m⊗ (V +)⊗n (a tensor
with m covariant and n contravariant indices) is an intertwiner between the singlet of g and
the g-module W . It describes a way of forming a singlet out of irreducible modules. An
example of an invariant tensor is the Killing form for the adjoint module. Another example
is the Kronecker symbol which is an invariant tensor for the tensor product V ⊗V + for any
finite-dimensinal module V .

For self-conjugate irreducible modules, where V ≈ V +, there has to exist an invariant tensor,
e (an intertwiner between the singlet and V ⊗ V ). Because of this, there has to be a linear
relation between the components of a vector v and the dual vector, ṽ, given by the invariant
tensor, e = eij , as ṽi =

∑
j eijv

j and an analogous tensor with upper indices vi =
∑
j e
ij ṽj

such that
∑
j eije

jk = δi
k. If e is symmetric, the representation corresponding to V is

called orthogonal and if it’s antisymmetric, the representation is said to be symplectic.
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Table 2.4: Primitive invariants for the simple Lie algebras.
g invariants
Br, Dr δij

Cr f ij

G2 δij , f ijk

F4 δij , dijk

E6 dijk

E7 f ij , dijkl

E8 δij , f ijk, tijkl...

Indices can be raised and lowered by contractions with e for self-conjugate modules, which
is an often useful fact. This can however also be done for non-conjugate modules using the
anti-symmetric Levi-Civita tensors, the drawback here is that the number of indices are
changed.

Invariant tensors can be constructed from multiplication, summation and contractions of
other invariant tensors. And as a fact, all invariant tensors can be constructed from a small
number of algebraically independent invariant tensors, the so called primitive invariants.
The primitive invariants for the simple Lie algebras are listed in table 2.8. The Kronecker
symbol, δij , and the upper and lower index Levi-Civita tensors, εi1i2...id and εi1i2...id are
invariant tensors for all simple Lie algebras and are not listed in the table. All the invariants
in the table are either symmetric or anti-symmetric, anti-symmetric are denoted by f ... and
the symmetric ones are denoted by d...

A tensor product can always be split up to a summation of linearly independent invariant
tensors. An example of this is the tensor product of a module V with its conjugate module
for the Lie algebra sl(n)

ṽi ⊗ vj = δjiS +
∑

a

(R(T a))jiA
a. (2.19)

Here, both δji and (R(T a))ji are invariant tensors and it follows that S must transform as a
singlet, while Aa transforms in the adjoint representation. This implies that the irreducible
modules in the tensor product V ⊗ V + for sl(n) are the adjoint and singlet modules. This
decomposition can also be understood on the level of matrices where it corresponds to the
splitting of the matrix into a trace and a traceless part.

A projection operator is an invariant tensor corresponding to intermediate states in
multiple tensor products. This can be illustrated in a Feynman diagram with two incoming
states (Λ1 and Λ2) and two outgoing states (Λ3 and Λ4) with one intermediate state (Λ)
between the vertices. The situation is described mathematically by the tensor product

(VΛ1
⊗ VΛ2

)⊗ (VΛ3
⊗ VΛ4

) =
∑

Λ,Λ′

LΛ1Λ2

ΛLΛ3Λ4

Λ′VΛ ⊗ VΛ′ . (2.20)

Each allowed state, Λ, in the tensor product corresponds to an intermediate state and for
each irreducible module of these intermediate states there is associated an invariant tensor
of the tensor product VΛ1

⊗VΛ2
⊗VΛ3

⊗VΛ4
. The projection tensors are not always primitive

invariants, but always linear combinations of such.
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The invariant tensors can also be used to project between different representations of
an algebra. For example, by using the symmetric primitive invariant dijk in E6, two
contravariant vectors, vi and uj in 2̄7 can be projected to a covariant vector, wk in 27
as wk = viujd

ijk.

As in the case of tensor products, the splitting of tensor products in irreducible modules or
invariant tensors, or for the extraction of singlet contributions and so on is easily done with
computer algorithms and is therefore the preferable and chosen way of doing it.

2.9 Subalgebras and branching

Symmetry breaking is a common phenomena in physics. When a system with a certain
symmetry is perturbed in such a way that some part of the symmetry vanishes, the symmetry
is said to be broken. If the full symmetry is described by the Lie algebra g and the symmetry
left after breaking by a subalgebra h of g, we are interested in how to decompose the modules
of g to the subalgebra h ⊂ g.

Another application of subalgebras, other than that of symmetry breaking, is for the analysis
of physics where the symmetry is decribed by one of the exceptional Lie algebras. All classical
Lie algebras are isomorphic to matrix algebras, this is not the case for the exceptional
algebras and that makes them harder to do calculations in. Because of this, it can be useful
(and sometimes the only way) to break the large exceptional symmetry down to one of its
classical subalgebras and carry out the analysis in this more simple domain.

This section is more focused on the use of branching rules of modules into subalgebras,
and not so much on the theory of how to find and construct various subalgebras of a given
Lie algebra. Computer programs can be used to both find subalgebras and calculate the
branching rules down to a known subalgebra of a given Lie algebra.

The classification of subalgebras gives rules about which symmetries that can survive a
breaking form a larger symmetry algebra. A subalgebra, h of a Lie algebra, g is said to be
embedded in g, h ↪→ g. Some subalgebras can be found by studying the Dynkin diagram
of a Lie algebra, an example is that of the E-series chain used in some grand unification
theories

A4 = E4 ≈ sl(5) ↪→ D5 = E5 ≈ so(10) ↪→ E6. (2.21)

This chain of embeddings can be understood by simply covering nodes of the Dynkin diagram
of E6. By covering the rightmost node of E6, the remaining nodes and lines are those of
D5, and analogous for A4 ↪→ D5.

The branching rules controls how states in the larger algebra gets organized into modules
of the subalgebra after the symmetry is broken,

VΛ(g)→
⊕

j

Vλj (h). (2.22)

In this decomposition, an irreducible highest weight module, VΛ, of g breaks to a direct sum
of irreducible modules of the subalgebra h. After the decomposition, the total number of
dimensions of the modules in the subalgebra has to be the same as that of the unbroken
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g-module

dim(VΛ(g)) =
∑

j

dim(Vλj (h)). (2.23)

The embedding of the standard model gauge symmetry in that of a larger Lie group used
in the most simple case of a grand unification model, sl(3) ⊕ sl(2) ⊕ u(1) ↪→ sl(5), can be
used as an example of branchings. Here, the five- and ten-dimensional modules of sl(5) is
branched to the Standard model modules as

5→ (3; 1;
1

3
)⊕ (1; 2; −1

2
) (2.24)

10→ (3̄; 1;
2

3
)⊕ (3; 2; −1

6
)⊕ (1; 1; −1). (2.25)

As told before, calculating tensor products, finding subalgebras and branching rules can
be made by hand using theory and some developed rules and techniques, this is however a
tedious way of doing it and there are plenty of specialised computer programs developed for
handling Lie algebras and their representation theory.



Chapter 3

Diffeomorphisms and geometry

Since the work of the thesis generalises the construction of ordinary gravity and its
geometrical framework we give a short review of ordinary geometry and Einstein gravity.
Geometry is the language of gravity, it considers how physics is changed when doing
coordinate transformations. Coordinates do not exist in nature, it is merely a construction
used in describing it. Because of this, a fundamental physical theory can not be coordinate
dependant, it should be the same in all coordinate systems. This is called general covariance
or diffeomorphism covariance and is the starting point for general relativity, formulating
gravity in a coordinate independent way.

A diffeomorphism is an isomorphism on manifolds, and there are two different types
of diffeomorphisms; active and passive diffeomorphisms. A passive diffeomorphism is a
coordinate transformation, any theory can be made invariant under passive diffeomorphisms.
Active diffeomorphisms, however, are the gauge symmetry of general relativity. The
quantum mechanical theories QED and QCD are not invariant under active diffeomorphisms
[54].

The recipe for constructing general relativity, a tensor formalism for gravity describing how
tensor fields transform is as follows:

• Define a Lie derivative that gives the algebra of vector fields.

• Introduce an affine connection, Γ, a spin connection, Ω, and a covariant derivative,
D = ∂ + Γ + Ω such that DµV

ν is a tensor.

• Define the torsion part of the affine connection and demand it to vanish.

• Introduce a covariant vielbein, eµ
a which is a group element of GL(n).

• Form a metric, gµν = eµ
aeν

bηab.

• Define curvature. The Riemann tensor, the Ricci tensor and the Ricci scalar.

• Form a stress tensor.

• Write down the Einstein equations for general relativity.

21
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Some of these steps (the ones relevant for the rest of the thesis) are here shortly presented
for ordinary geometry and will be generalised when constructing a U-duality invariant
description of M-theory in chapter 6. We will try to discuss geometry in terms of group
theory and Lie algebras, presenting the language used in chapter 6. The diffeomorphism
group (gauge group) for general relativity in n dimensions is the general linear group GL(n).
There is also a local symmetry group, SO(n), in geometry, that of local rotations (local
Lorentz transformations).

3.1 The Lie derivative

The Lie derivative is an infinitesimal representation of the diffeomorphism group on tensor
fields. It is a coordinate invariant construction that measures the change of a vector field,
v = vµ∂µ when transported in the direction of flow of another vector field, u = uµ∂µ,

Lu(v) = [u,v] (3.1)

The Lie derivatives on a manifold, M , builds a Lie algebra representation of vector fields
with the Lie bracket defined by the commutator of two Lie derivatives

L[u,v] = [Lu, Lv]. (3.2)

Diffeomorphisms are encoded in the Lie derivative, the variation of a tensor field Φ...... is
given by δuΦ...... = LuΦ...... where um is a gauge parameter vector. The Lie derivative of a
vector, vm, in the direction of a diffeomorphism parameter um is given by

Luv
m = [u,v]m = un∂nv

m − ∂numvn. (3.3)

The first term on the right hand side can be seen as a transport term and the second as a
gl(n) transformation term. The matrix element ∂nu

m ∈ gl(n) is valued in the fundamental
representation of the Lie algebra.

3.2 Covariant derivative

We want the derivative of a tensor to transform as a tensor under GL(n), this is not true
for the ordinary derivative, ∂µ, and we have to define a covariant derivative,

DµV
ν = ∂µV

ν + ΓνµρV
ρ. (3.4)

With a similar expression for a covariant vector index,

DµVν = ∂µVν − ΓρνµVρ. (3.5)

Γ is a non-tensorial object called the affine connection. An affine connection connects
nearby tangent spaces on smooth manifolds. There are infinitely many affine connections
on any manifold and it can be defined in a way that it makes the covariant derivative behave
the way we want. By defining the affine connection in the following way, we ensure that the
covariant derivative of a tensor again is a tensor,

Γλµν ≡
1

2
gλκ(∂µgκν + ∂νgκµ − ∂κgµν). (3.6)



Chapter 3. Diffeomorphisms and geometry 23

The tensor representations of GL(n) behave like tensors under the subgroup of local
rotations, the Lorentz group. There are however no representations of GL(n) that behave
like the spinors found in the Lorentz group. To be able to incorporate spinors in general
relativity, we have to look at the problem in local, flat coordinates. This is done by employing
a vielbein field, eµ

a that describes a flat tangent space at every point of the manifold. The
vielbein is a local inertial coordinate system. The coice of a vielbein breaks the symmetry
from GL(n) → SO(n) (from g → h in a more generalised way, where h is a subalgebra of
g). We have now introduced a new, flat index that transforms under the local subgroup. In
the same way as the affine connection, we have to insure that the derivative of a flat index
transforms the way we want it to, the equivalent to the affine connection for flat indices are
given by the spin connection. The spin connection is the gauge field generated by local
Lorentz transformations and is defined as

ωabµ ≡ eaν∂µeνb + eaνe
σbΓνσµ (3.7)

The spin connection transforms the flat indices while the affine connection transforms the
curved ones.

3.3 Torsion and curvature

The affine connection is in itself not a tensor and its invariants are the torsion and curvature
tensors. The affine connection generates a parallel transportation and the torsion part of
the affine connection characterises how a tangent space is twisted when parallel transported
along a geodesic. The curvature part is a measure, in the same way, of how the tangent
space roll along a curve.

The Riemann curvature tensor is the only tensor that can be constructed from the metric
tensor and its first and second derivatives, and is linear in the second order derivative. Its
definition, in terms of the affine connection, is

Rλµνκ ≡ ∂κΓλµν − ∂νΓλµκ + ΓηµνΓλκη − ΓηµκΓλνη. (3.8)

Another tensor that can be formed from the curvature tensor is the Ricci tensor, which is
a contracted Riemann tensor

Rµκ ≡ Rλµλκ. (3.9)

Contracting the Ricci tensor with the metric forms yet another invariant, the Ricci scalar,

R = gµκRµκ. (3.10)

The torsion part of the affine connection is defined as the antisymmetric part of it,

Tλµν ≡ 2Γλ[µν]. (3.11)

In general relativity, the torsion is set to zero. There are however versions of gravity that
keeps the torsion part, but no evidence of this is seen in nature. If the affine connection was
not torsion-free, the time derivative of the distance between two geodesic curves, separated
by an infinitesimal parallel transport and parametrised in proper time, would not be zero.

When torsion is set to zero, the Riemann tensor measures the noncommutative part of the
covariant derivative,

[Dµ, Dν ]Vρ = Rµνρ
κVκ. (3.12)
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3.4 Vielbein and metric

The metric is not invariant under GL(n), the presence of a metric locally breaks GL(n) to
SO(n). Both the vielbein and the metric is however covariantly constant,

Dλgµν = ∂λgµν − Γρλµgρν − Γρλνgρµ = 0, (3.13)

Dµeν
a = ∂µeν

a − Γµν
ρeρ

a + Ωµb
aeν

b = 0. (3.14)

Through the vielbein, there is a relation between the GL(n)-metric and the flat Minkowski
metric, ηab,

gµν = eµ
aeν

bηab. (3.15)

This equation makes it possible to use orthonormal bases locally in curved spacetime.
The vielbein can be used to ’flatten’ curved indices, and to go between flat and curved
representations. A flat index is seen as a scalar from the GL(n) point of view, it is
transformed only by a Lorentz transformation and left untouched by the global symmetry
group.

The infinitesimal change of the metric generated by a diffeomorphism vector field, V µ(x),
is given by its Lie derivative along, V µ,

δgµν = LV gµν = 2D(µVν). (3.16)

If LV gµν = 0, then V µ is a Killing vector field, given by the Killing equation D(µVν) = 0.
A maximally symmetric vector space has the largest number of Killing vectors. In a flat
n-dimensional space, Rn, there are n(n+ 1)/2 Killing vectors.

3.5 The Einstein-Hilbert action

The Einstein field equations are obtained by the principle of least action from the Einstein-
Hilbert action defined by

S =

∫
R
√−gdnx+ SM , (3.17)

where R is the Ricci scalar, g = det(gµν), SM is the action from matter fields and the
cosmological constant is omitted, other constants are set to 1. Varying with respect to the
metric and setting it to zero minimises the action, the variation is given by

0 = δS =

∫
dnx
√−g(Rµν −

1

2
gµνR)∂gµν +

1

2

∫
dnx
√−gTµν∂gµν + b.t. (3.18)

Where Tµν = − 2√−g
∂SM
∂gµν

is defined as the stress-energy-tensor and b.t denotes boundary

terms coming from the total derivative term in the variation of the Ricci scalar. The
variations for the various curvature tensors used in the above calculation are as follows,

δRµν = Dρ(δΓ
ρ
νµ)−Dν(δΓρρµ), (3.19)

δR = Rµνg
µν +Dσ(gµνδΓσνµ − gµσδΓρρµ), (3.20)

where the last term of the variation of the Ricci scalar is a divergence and generates a
boundary term when integrated.
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The solution to the variation of the Einstein-Hilbert action (3.18), using the expressions for
the variation of curvature, is the Einstein field equation

Rµν −
1

2
gµνR = 8πGNTµν , (3.21)

describing the dynamics of the metric. GN is the Newton gravitational constant.
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Chapter 4

T-duality and doubled geometry

In this chapter, we give a short overview of the concept of formulating a string theory
with manifest T-duality symmetry and diffeomorphism invariance in the non-geometrical
background generated by the T-duality. The concept of a generalised geometry is more easily
motivated for T-duality than that for the U-duality group since the ’hidden dimensions’ are
not as hidden and the group structure of the duality group is less complex.

Toroidally compactified string theories exhibits a special symmetry, T-duality, which
relates different geometries for the compactified dimensions. The fields of a string theory
compactified on a d-dimensional torus, T d, will transform under the diffeomorphism group on
the torus, GL(d,Z) = SL(d,Z)×Z2. The string theory on this torus is also symmetric under
the T-dualities transforming under O(d, d; Z). The T-duality exchanges string momentum
and winding number of compactified string theories and creates a non-geometrical string
background. These theories can be formulated geometrically by writing down the theory
in an enlarged space where the diffeomorphisms and the gauge symmetries as well as the
T-duality symmetries are made manifest. The geometrical description of a theory where the
T-duality group, O(d, d), is made manifest, is called doubled geometry.

In 10-dimensional string theory compactified on a torus, T d, the momentum, pi, and the
winding number, wi, of the string in the internal directions can be combined in the momenta
piL = pi + wi and piR = pi − wi. The conjugated coordinates, Xi

L and Xi
R, are given as

coordinates on the compactification torus, Xi, and on a dual torus, X̃i, by Xi
L = Xi + X̃i

and Xi
R = Xi − X̃i. So, for each coordinate, Xi with i = 1 . . . d, taking values on a circle

with radius Ri, there is a coordinate X̃i on a circle with the T-dual radius 1/Ri. The number
of coordinates are effectively doubled, XM = {X̃i, Xi}, M = 1 . . . 2d and parametrises a
doubled space combining winding number and momenta.

The original theory can be formulated as a string theory on the doubled target space,
T 2d, with coordinates Xi and X̃i. By doing this, winding numbers are represented in a
geometrical way on the dual torus and all transformations are diffeomorphisms on the double
torus. The winding numbers and momentum charges of the string in the compactified,
original theory are combined and transforms together in a 2d-vector representation of the
O(d, d) symmetry in the doubled theory.

The massless fields of bosonic string theory are the metric gij , the two-form bij and the
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scalar dilaton φ. These fields are combined and encoded by purely geometrical objects in the
doubled theory and transforms as tensors under O(d, d). In the doubled theory, there is an
O(d, d)-invariant generalised metric, GMN , ds2

L = 2dXiX̃i on the double torus that unifies
gij and bij . An O(d, d) singlet denotes the scalar dilaton φ through e−2d =

√−ge−2φ. When
the two-form and the metric are combined in a generalised metric, transforming together
under the duality group, the b and g fields are mixed with each other and a geometrical
string state can translate to a non-geometrical configuration and momentum modes are
mixed with winding numbers of the string.

The original string theory has been formulated in a doubled space in which the T-duality
symmetry has been manifest and all of the original fields now transform as tensors under
this symmetry group. In this framework of doubled space, it is possible to write down an
O(d, d) and gauge invariant spacetime action for doubled field theory without reference to
the original fields. The doubled space now holds all possible T-duality configurations of the
original theory and the physical space is a d-dimensional brane, a slice, of this larger theory.
The T-duality is the choice of which subspace, T d ⊂ T 2d, that is the physical space and
is solved by a section condition. The concept of transformations, diffeomorphisms, in this
doubled space has, however, to be generalised, since directions in the space no longer mean
the same thing.

4.1 Generalised diffeomorphisms

The generalised diffeomorphisms in the doubled space are described by a generalised Lie
derivative. The difference against the ordinary Lie derivative is that the projection on the
adjoint representation of GL(n) should now be replaced by that of O(d, d). The generalised
Lie derivative used in doubled geometry is called a Dorfman bracket and is given by

LUVM = UN∂NV
M − (δMQ δ

P
N − ηMP ηNQ)∂PU

QV N = LUV
M + ηMNηPQ∂NU

PV Q, (4.1)

where η is the O(d, d)-invariant metric and (δMQ δ
P
N − ηMP ηNQ) is the projection on the

adjoint representation of O(d, d). From this generalised Lie derivative and a generalised
version of the Lie bracket, the algebra of diffeomorphisms in the doubled spacetime can
be derived. A full understanding of infinitesimal transformations in this doubled space is
developed and the geometry in terms of curvature are given in a covariant description. The
dynamics of fields in the doubled space are then encoded in a generalised version of the
Einstein equations.

4.2 Section condition

The level matching constraint in closed string theory makes it necessary to introduce the
following condition

ηMN∂M∂N = 0, (4.2)

where the derivatives are acting on arbitrary gauge parameters and fields. This is called the
weak constraint. In the concept of doubled geometry, a stronger version of this condition is
needed since the product of two functions of (4.2) doesn’t always satisfy the weak condition.
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This stronger constraint, called the strong section condition is also derived from the
closure of the algebra of diffeomorphisms and is written as

ηMN∂M ⊗ ∂N = 0, (4.3)

where ’⊗’ denotes that the derivatives are acting on different objects. The section condition
is solved by simply picking out any pair of covectors in a d-dimensional subspace and can
be interpreted as the choice of T-duality. It picks out d dimensions of the doubled space,
the choice of physical space.
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Chapter 5

M-theory and U-duality

Despite the fact that the superstring theories have to be formulated in 10 spacetime
dimensions, type IIA superstring theory was argued to generate an extra compact dimension

of radius Rs ∼ g2/3
s at the strong coupling limit [55,56]. In this limit, there should therefore

exist some eleven-dimensional quantum theory that, at low energies, reduces to an eleven-
dimensional theory of supergravity. This is M-theory. Little is known about M-theory and a
consistent quantum gravity theory in eleven dimensions is still missing, it is however known
that a dimensional reduction on a circle of eleven-dimensional supergravity yields type IIA
supergravity. Because of this, M-theory has to reduce to eleven-dimensional supergravity
at small energies. Starting from this known eleven-dimensional supergravity theory, adding
quantum concepts and studying the symmetries that we know M-theory should exhibit, it
is possible to learn a lot about the mysterious theory.

The field content of the bosonic part of 11-dimensional supergravity includes the metric,
gMN , and a 3-form, CMNP (denoted by C3). The action of the theory can be written as

S11 =
1

l9p

∫
d11x
√−g

(
R− l6p

48
(dC)2

)
+

√
2

27 · 32

∫
C ∧ dC ∧ dC (5.1)

consisting of the Einstein-Hilbert term involving the Ricci scalar, a kinetic term for the
3-form gauge potential, C3, and the topological Wess-Zumino term which is required by
supersymmetry.

Toroidally compactified string- or M-theory and their low energy supergravity field theories
are all subject to T-duality, this duality is however only a small part of larger symmetry
group, U-duality. This larger symmetry is a unification of the T- and S-dualities, hence its
name. T-duality is the part of U-duality visible in perturbation theory, while the U-duality
group relates different but equivalent M-theory backgrounds.

5.1 U-duality

The symmetries of M-theory compactified on a torus, Tn, can more easily be discussed in
terms of its low energy effective action. Toroidal compactifications preserves the N = 1,
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D n Gd = En(n) Hn

10 1 R
+ 1

9 2 Sl(2,R)×R+ U(1)
8 3 Sl(3,R)× SL(2,R) SO(3)× U(1)
7 4 Sl(5,R) SO(5)
6 5 SO(5, 5,R) SO(5)× SO(5)
5 6 E6(6)(R) USp(8)
4 7 E7(7)(R) SU(8)
3 8 E8(8)(R) SO(16)

Table 5.1: Cremmer-Julia symmetry groups and their maximal compact subgroups.

11-dimensional supersymmetry algebra of the action and the generators, Qα decomposes
to another superalgebra in 11− n dimensions in representations of SO(1, 10− n)× SO(n).
The first factor in this group is the Lorentz group in the uncompactified dimensions and the
second factor is called an R-symmetry which is part of the local supersymmetry.

5.1.1 Continuous symmetries

The low energy effective action of M-theory also has a continuous, global symmetry group,
Gn, containing

SO(n− 1,n− 1,R) ./ Sl(n,R). (5.2)

The bowtie denotes the group generated by the two non-commuting subgroups. The first
factor is from T-duality and the second includes S-duality and is the modular group of Tn.
The groups, Gn, generated in this way corresponds to the non-compact, normal real form
of the exceptional groups, Gn = En(n)(R), found by Cremmer and Julia [14]. For n < 6,
the Dynkin diagrams of the exceptional groups can be extrapolated to find the groups in
the lower dimensional compactifications. A list of the exceptional groups describing this
global symmetry, together with their maximal compact subgroup, is found in table 5.1. The
occurance of these groups can be motivated by a counting of the number of scalar fields in
the theory, and a matching of this number with the dimension of the coset space Gn/Hd,
this is done in section 5.2.

5.1.2 Charge quantisation

The continuous symmetry groups, Gn, can not be a part of the quantum theory, since the
gauge potentials transforms non-trivially under the group. States that are charged under the
transforming potentials picks up quantised charges that breaks the symmetry to a quantised
subgroup En(n)(Z) ⊂ En(n)(R). The U-duality group of toroidally compactified M-theory
then proves to be generated by the T-duality SO(n − 1, n − 1,Z) of the type IIA string
theory and by the modular group of the torus, Tn; Sl(n,Z) as

En(n)(Z) = SO(n− 1, n− 1,Z) ./ Sl(n,Z). (5.3)

The U-duality groups for M-theory are the discrete subgroups of the ones listed in table 5.1,
with R→ Z.
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5.2 Hidden symmetries and enlarged spacetime

The hidden symmetries of compactified 11D SUGRA was first discovered by Julia
and Cremmer when they studied the enhanced R-symmetry, SO(8), of 11 dimensional
supergravity compactified on T 7. The occurance of the exceptional groups can, as already
statad, be motivated by a counting of the degrees of freedom of the compactified theory and
then by matching the number of scalar fields to that of the dimension of a moduli space
Gn/Hn. Hn is the R-symmetry of the superalgebra, and in order to obtain a positive metric
on the moduli space, it has to be the maximal compact subgroup of Gn. The dimension of
the space together with this fact is enough to determine Gn.

The field content of the compactified theories has to be the same as that of the
uncompactified theory. On compactification, the fields split in the compactified and
uncompactified directions. After compactification on an n-torus, leaving D = 11 − n
dimensions extended, the field content of the uncompactified theory (gMN , CMNP ) splits
into the following parts when M → (µ,m),

gMN , CMNP
M→(µ,m)−−−−−−−→





gµν gravity
gµm 1-form
gmn scalars
Cµνλ 3-form
Cµνm 2-form
Cµmn 1-form
Cmnp scalars

(5.4)

where M = 1 . . . 11, µ = 1 . . . D and m = 1 . . . n and the time direction is left uncompactified
in the greek indices. The description of the fields are given from the uncompactified
directions point of view, so gµν is a metric for the uncompactified space and so on. Scalar
fields thus comes from the internal directions of the metric, gmn, and the three-form, Cmnp.
The number of scalars found in the symmetric metric, gmn where m,n = 1 . . . n is n(n+1)/2.
The number of scalars found in the antisymmetric three-form, Cmnp, is a combinatorial
problem on about chosing three indices out of n possibilities, the total number is therefore(
n
3

)
. These are the only possibilities of finding scalars for n ≤ 5.

In higher dimensional compactifications, we also have to take into account the dual forms.
In 11D, the three-form, C3 is dual to a six-form E6 and upon compactification the vector
(one-form) from the metric, gµm is dual to a nine-form with one index in the compactified
directions, K1;8, by going through their field strengths. Because of this, 3-forms in n = 6
are dual to scalars, 2-forms are dual to 1-forms and 1-forms are dual to 2-forms for example.

The total counting of scalars for all dimensions of compactification are presented in table
5.2. Now, the dimension of the coset-spaces, Gn/Hn, should be the same of the total
numbers of scalars. Knowing the dimensions of Hn, since they are the known R-symmetry
groups, and using that dim(Gn)−dim(Hn) should equal the number of scalars we see that it
coincides with the dimensions of the exceptional Lie groups, En(n). For n = 7, for example,
dim(E7(7))− dim(SU(8)) = 133− 63 = 70, matching the number of scalars.

The same type of counting can be done to find the dimensions of the vector and 2-form
representations presented in table 5.3 and 5.4. Again, the number of vectors and 2-forms
are seen to fit beautifully in representations of the exceptional Lie groups.
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D n g C3 E6 K1;8 total scalar manifold
10 1 1 1 R

+

9 2 3 3 Sl(2,R)/U(1)×R+

8 3 6 1 7 Sl(3,R)/SO(3)× Sl(2,R)/U(1)
7 4 10 4 14 Sl(5,R)/SO(5)
6 5 15 10 25 SO(5, 5,R)/SO(5)× SO(5)
5 6 21 20 1 42 E6(6)/USp(8)
4 7 28 35 7 70 E7(7)/SU(8)
3 8 36 56 28 8 128 E8(8)/SO(16)

Table 5.2: The number of scalar fields and the corresponding scalar manifolds for
compactified M-theory.

D n g C3 E6 K1;8 total vector representation
10 1 1 1 1
9 2 2 1 3 3 of Sl(2)
8 3 3 3 6 (3,2) of Sl(3)× Sl(2)
7 4 4 6 10 10 of Sl(5)
6 5 5 10 1 16 16 of SO(5, 5)
5 6 6 15 6 27 27 of E6(6)

4 7 7 21 21 7 56 56 of E7(7)

3 8 8 28 56 36 128 248 of E8(8)

Table 5.3: The number of vectors and charge representations for compactified M-theory.

D n g C3 E6 K1;8 total 2-form representation
10 1 1 1 1
9 2 2 2 2 of Sl(2)
8 3 3 3 (3,1) of Sl(3)× Sl(2)
7 4 4 1 5 5 of Sl(5)
6 5 5 5 10 10 of SO(5, 5)
5 6 6 15 6 27 27 of E6(6)

4 7 7 35 28 70 133 of E7(7)

Table 5.4: Counting of 2-forms.
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5.3 Representations in En(n)(Z)

From the above counting of degrees of freedom, the representations of vectors, tensors and
forms in G can be found. R1 denotes the vector representation (an upper index) and
are the parameters of generalised diffeomorphisms. Generalised momentum transforms
in the R̄1-module (a lower index). The Dynkin labels for R1 are taken to be (10 . . . 0),
placing the representations at distinct nodes in the Dynkin diagrams as of table 2.2.

Representations R
(n)
k of En(n) coincide with representations of form fields where Rk are

possible representations for k-form fields in the uncompactified 11 − n dimensions. The
sequences, Rk, does not (as usual) stop at a finite k, it instead generates an infinite sequence
of form fields responsible for the reducibility of transformations. A part of the sequences
are listed in table 5.5.

The representation R2 happens to be a part of the symmetric tensor product of two R1’s,

⊗2
s R1 = R2 ⊕ . . . , (5.5)

which will be of use when discussing the section condition of exceptional geometry in the
next chapter in which bilinears in generalised momenta projected on R̄2 vanish. An example
of this, for n = 6,

27⊗s 27 = V (MV N) = CMNPV
(MV N) ⊕ · · · = R2 ⊕ . . . (5.6)

where the symmetric, invariant tensor CMNP found in E6 have been used to project out the
R2 part of the product.

The GL(n,R) diffeomorphism group structure as well as the gauge transformations of the
3-form C3 should both be embedded in En(n). In the structure of representations in the
exceptional groups, the fields transforms together in the same representation of En(n), mixing
the space symmetries with those from the gauge, making it necessary to develop a generalised
version of geometry.

n R1 R2 R3 R4

3 (3,2) (3,1) (1,2) (3,1)
4 10 5 5 10
5 16 10 16 45
6 27 27 78 351′

7 56 133 912 8645⊕ 133
8 248 3875⊕ 1 147250⊕ 3875⊕ 248 6696000⊕ 779247⊕ 147250

⊕2 · 30380⊕ 3875⊕ 2 · 248

Table 5.5: Representations, R
(n)
k .
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Chapter 6

Exceptional geometry

This chapter is the main topic and result of this thesis. Here, a tensor formalism for the
exceptional geometry is constructed. The GL(n) symmetry of ordinary geometry is here
exchanged with the group G = En(n)×R+ and the local group of rotations by the maximal
compact subgroup H in G. A generalised, exceptional theory of gravity with manifest G-
symmetry is constructed and a tensor formalism is constructed. First, a generalised Lie
derivative and a Lie bracket is constructed from the required properties of such an object.
We want it to form an algebra generating the diffeomorphisms on the enhanced space,
this requirement determines the structure completely and the complete, generalised Lie
derivative is given explicit exressions for various dimensions of compactification. The Jacobi
identity is also checked and analysed. The section condition, making the connection to the
physical space, is derived and examined. After the diffeomorphisms are under control, we
turn our focus to forming invariant objects. A covariant derivative is introduced, defining
an affine and a spin connection. Then follows the definition and analysis of curvature before
we end up with a discussion on tensor fields.

The first six sections of this chapter closely follows “The gauge structure of generalised
diffeomorphisms” [52] written by D. S. Berman, M. Cederwall, A. Kleinschmidt and D. C.
Thompson and the rest of the sections of this chapter is based on Paper I found in the
appendix.

6.1 Generalised diffeomorphisms

The generalised diffeomorphisms on the enhanced, exceptional space are gauge transforma-
tions that unifies tensor gauge transformations and diffeomorphisms. The U-duality mixes
gravitational and tensorial degrees of freedom, and so does their gauge transformations.
Diffeomorphisms in ordinary geometry are encoded in the Lie derivative. In the case of
U-duality and its symmetry group, En(n), the gl(n)-transformation part of the ordinary Lie
derivative is assumed to be that of the Lie algebra en(n) plus a real scaling, R. Tensors
should transform as tensors under En(n) ×R, and a generalised diffeomorphism has to be
constructed on the form
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δUV
M = LUVM = UN∂NV

M − αP(adj)
M
N
P
Q∂PU

QV N + β∂NU
NVM . (6.1)

Here LU defines the generalised, exceptional, Lie derivative. This can be rewritten in a more
general form as,

LUVM = LUV
M + YMN

PQ∂NU
PV Q = UN∂NV

M + ZMN
PQ∂NU

pV Q (6.2)

where Y is an En(n)-invariant tensor, it takes two R1-indices and picks out an R2 (projects
two R1-indices on an R2). The rewriting with Z will be a useful notation later. By equating
the first expression of (6.2) with (6.1), an expression for Y is found to be

YMN
PQ = δMP δ

N
Q − αP(adj)

M
Q,
N
P + βδMQ δ

N
P . (6.3)

α and β are constants and the upper indices takes values in the coordinate representation,
R1 of En(n). In the expression for Y , we can understand and motivate the structure of the
generalised Lie derivative. The first part can be seen as an undoing of the gl(n) part of
the ordinary Lie derivative, the second part is the equivalence of this in the context of the
exceptional Lie derivative: a projection on the adjoint representation of Ed(d) together with
a real scaling in the last part.

The generalised Lie derivative acting on tensors with an arbitrary number of upper (R1)
and lower (R̄1) indices is written as

LUWM1...Mp
N1...Nq = UP∂PW

M1...Mp
N1...Nq

+

p∑

i=1

ZMiQ
RP∂QU

RWM1...Mi−1MPMi+1...Mp
N1...Nq

−
q∑

i=1

ZPQRNi∂QU
RWM1...Mp

N1...Ni−1NPNi+1...Nq .

(6.4)

The problem of constructing the generalised diffeomorphisms is now to find exclicit
expressions for Y .

6.2 A generalised Lie bracket

As stated in chapter 3, the Lie derivative builds a Lie algebra representation of vector fields
through the Lie bracket. The Lie derivative in ordinary geometry is already antisymmetric in
U and V by its definition, so the algebra is generated by LUV = [U, V ]. This is unfortunately
not true by definition in the case of our exceptional Lie derivative. The exceptional groups
are not matrix Lie algebras, so there is no matrix commutation that can be used as a Lie
bracket. In order for the Lie derivative to form an algebra, we have to make sure that the
symmetric part of LU vanishes. This is done in section 6.5 because we will need some more
restrictions on Y in order to show this.

The generalised Lie bracket, denoted by JU, V K, should be completely antisymmetric in U
and V . So, we define it by adding an anti-symmetrisation of the U and V vectors in the Y
part of the Lie derivative to the ordinary Lie bracket, resulting in the following construction

JU, V K = [U, V ]M +
1

2
YMN

PQ(∂NU
PV Q − ∂NV PUQ). (6.5)
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The defining tensor of the Lie derivative, Y , is completely defined by the construction of
the generalised Lie bracket and that it should form an algebra,

[LU ,LV ] = LJU, V K. (6.6)

6.3 The section condition

The first equation obtained by commuting two of the generalised diffeomorphisms, eq (6.8),
(as done in the next section) is YMN

PQ∂M . . . ∂N · · · = 0, where the dots indicates that the
derivatives are acting on different objects. A solution to this equation is called a section
condition. It is called a weak section condition for the solution PMN

(R2)PQ∂M∂NΦ = 0, where
the derivatives are acting on the same field Φ. The strong section condition is the solution
where the derivatives are acting on different fields Φ and Φ′, PMN

(R2)PQ∂MΦ∂NΦ′ = 0. P(R2)

denotes a projection on the R2 representation (e.g we choose the part of the equation that is
in R2, R2 defines the section condition). The strong section condition is the one important
in our case and we write it in a shorthand notation as

(∂ ⊗ ∂)|R̄2
= 0. (6.7)

Any solution to the section condition picks out an n-dimensional subspace that is conserved
by GL(n), reducing the dimension of spacetime down to n. It provides a natural embedding
of the n compact dimensions in D dimensional physical space and picks out a subsurface
with the correct number of physical dimensions. U-duality is the choice of this subspace
and can be seen of as a brane in the compactified, enhanced space directions. The section
condition is a quadratic condition on momenta, a cõne in the momentum space and its
solutions lies in the biggest possible linear subspace of the cône where (p× p′)|R̄2

= 0. The
coordinate representation of En has to branch to the correct field content when the global
symmetry is broken by the section condition.

These are the section conditions, explicitly expressed in the various dimensions with Φ and
Φ′ denoting some fields,

n = 3 : εαβ∂aαΦ∂bβΦ′ = 0, α = 1,2, a = 1,2,3,

n = 4 : εabcde∂abΦ∂cdΦ
′ = 0, a = 1 . . . 5,

n = 5 : ∂αγ
aαβ∂β = 0, a = 1 . . . 10, α = 1 . . . 16,

n = 6 : εαβ∂
α
a ∂

β
b + εabcdef∂

cd∂ef = 0 and ∂ab∂βb = 0, a = 1 . . . 6, α = 1,2.

Solutions to the section condition can be studied in a linearised version with the use of pure
spinors. This is, however, out of scope for this thesis.

n = 4 as an example
In n = 4, the U-duality group is G4 = SL(5)×R and the vector representation is R1 = 10.
So, vectors lies in R1, xM ∈ R1, and derivatives in R̄1, ∂M ∈ R̄1. R2 is defined to be
a part of the symmetric product of two R1 (the section condition singles out this part
in the symmetric product of two derivatives). Doing this product explicitly gives us that
⊗2
sR1 = 5̄ ⊕ 10, it consists of one large and one small representation. R2 is chosen to be

R2 = 5 and this choice defines the section condition.

In the section condition, a quadratic momentum is projected on the R̄2 representation,
∂2|R̄2

= 0. To make this projection, we write the R̄1-index of the derivative with two
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indices in R̄2 instead, ∂M = ∂(mn) with M = 1 . . . 10 and m,n = 1 . . . 5. Momenta are
now written as ∂mnf∂pqg = 0 and all momenta p, p′ . . . span a linear momentum space,
p[mnp

′
pq] = 0. Now, the section condition says that a part of this space of momenta is zero,

the projection on R̄2. This effectively singles out a subspace of dynamics. The most general
solution (modulo choice of 5) is pm5 6= 0, so that pmn = 0 if m,n 6= 5. This choice of
one direction of five singles out 4 dimensions and is an embedding of n = 4 in the larger
D = 10 space of momenta. The choice of subspace (choice of U-duality) fixes and breaks
the U-duality and picks out the physical dimensions.

6.4 Closing the algebra

In order for the generalised Lie bracket to form an algebra, equation (6.6) has to hold. By
letting both sides of the equation act on a vector, W , and solving for Y by moving indices
around and matching terms with the same type of derivatives, we obtain the following set
of equations for Y to fulfill.

YMN
PQ∂M ⊗ ∂N = 0, (6.8)

(YMN
TQY

TP
RS − YMN

RSδ
P
Q)∂(N ⊗ ∂P ) = 0, (6.9)

(YMN
TQY

TP
[SR] + 2YMN

[R|T |Y
TP

S]Q

− YMN
[RS]δ

P
Q − 2YMN

[S|Q|δ
P
R])∂(N ⊗ ∂P ) = 0,

(6.10)

(YMN
TQY

TP
(SR) + 2YMN

(R|T |Y
TP

S)Q

− YMN
(RS)δ

P
Q − 2YMN

(S|Q|δ
P
R))∂[N ⊗ ∂P ] = 0.

(6.11)

Here, ’⊗’ denotes that the derivatives acts on different objects. The first equation (6.8) comes
from the terms containing a derivative on W and resembles the section condition, discussed
in the previous section. The second equation (6.9) are from terms multiplying ∂2UV and
U∂2V and can be rewritten in terms of Z as (ZMN

TQZ
TP

RS + ZMP
RQδ

N
S )∂(N ⊗ ∂P ) = 0.

The third (6.10) and fourth (6.11) equations are from the mixed derivative terms with
∂U∂V , one equation for each symmetrisation. At this stage, no symmetry properties has
been assumed for Y , it is still a general expression without connection to a specific symmetry
group. The equations can also be used in the case of doubled geometry for the T-duality
group.

The conditions for Y may seem overdetermined and it may not be possible to find a Y
solving these equations for any algebra. As soon will be shown, it is however possible to
solve these equations, finding an expression for Y and closing the algebra for the exceptional
cases where 3 ≤ n ≤ 7. Now, finding explicit expressions for Y , satisfying these equations,
depends on the dimension of the compactification space and its U-duality group.

The section condition (6.7) (the solution to the first equation) projects the derivatives on
the R2 representation. So, the easiest expression for Y satisfying the first equation (6.8) is
that it is proportional to the projector on R2 itself

YMN
PQ = kPMN

(R2)PQ. (6.12)
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For n ≤ 6, this proves to be correct and Y is then symmetric in pairs of indices. For n = 7, Y
contain another term that also vanishes when contracted with the derivatives in the section
condition.

Starting with n ≤ 6 and entering equation (6.12) into equations (6.9), (6.10), (6.11) we see
that they simplify when there is an extra symmetry property among the indices. Terms
in equation (6.10) and (6.11) are combined in symmetrisations in three indices and the
resulting expression also happens to solve equation (6.9). It turns out that for n ≤ 5 using
an expression satisfying (6.8), the other three equations are solved simultaneously if

Y (MN
TQY

P )T
RS − Y (MN

RS∂
P )
Q = 0. (6.13)

For n = 6, 7 this expression needs some extra terms because in those dimensions, there are
some more possible projections present. Using the expression for Y in (6.12), we see that
the index structure of equation (6.13) is R̄1 ⊗ R̄2(⊗3

sR1). As described in section 2.8, the
number of singlets in the tensor product gives the number of possible invariant tensors, or
the number of irreducible modules in T = (R̄1 ⊗ R̄2) ∩ (⊗3

sR1).

For n ≤ 5, there is only one invariant tensor in the product and the terms in (6.13) therefore
has to be proportional to each other. The constant in (6.12) can then be found by taking
a trace of the equation. When done, k is found to be k = 2(n − 1) and the full explicit
expressions for Y when n ≤ 5 are found and are presented in the end of this chapter.

When n = 6, 7, there are two invariant tensors in the equation, so the terms no longer has to
be proportional and we have to add some extra terms. We know, from the table in section
2.8, that there is a symmetric, invariant tensor, cMNP in E6. Normalising this tensor so
that cMNP cMNP = 27 (27 is the dimension of the vector representation), the projection on
R2 can be written as PMN

(2̄7) PQ = cMNP cPQR. Adding this possibility to the equation with

the correct normalisations and symmetrisations gives us

10P
(MN

(2̄7) TQP
P )T

(2̄7)RS
− P (MN

(2̄7) RSδ
P )
Q −

1

3
cMNP cQRS = 0. (6.14)

By cycling some indices around and using the section condition, the equation is seen to be
solved by the same expression as for n ≤ 5,

YMN
PQ = 2(n− 1)PMN

(2̄7) PQ. (6.15)

For n = 7, the U-duality group is E7 and by looking at the table of invariant tensors we see
that there is an antisymmetric invariant tensor, εMN , present. There is also a symmetric
invariant tensor, cMNPQ. The presence of the antisymmetric invariant tensor means that
the projection on R2 in equation (6.12) no longer is symmetric in indices. The full projector
on R2 = 133 has to be written as

PMN
(133)PQ = cMN

PQ +
1

12
δ

(M
P δ

N)
Q . (6.16)

Now, writing down the expression that simultaneously solves the four equations, the
equivalent to equation (6.13), gives us the following equation,

12P
(MN
(133)TQP

P )T
(133)RS − 4cMNPTP(133)TQRS − P (MN

(133)RSδ
P )
Q = 0. (6.17)
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The expression for Y is found to be that of Y in the lower dimensions but with an
antisymmetric term added,

YMN
PQ = 2(n− 1)PMN

(R2)PQ +
1

2
εMNεPQ. (6.18)

The full expressions for Y are summarised in the following list,

n = 3 : Y iα,jβkγ,lδ = 4δijklδ
αβ
γδ ,

n = 4 : Y mn,pqrs,tu = 6δmnpqrstu ,

n = 5 : Y αβγδ =
1

2
γαβa γaγδ,

n = 6 : YMN
PQ = 10cMNRcPQR,

n = 7 : YMN
PQ = 12cMNcPQ + δ

(M
P δ

N)
Q +

1

2
εMNεPQ. (6.19)

Where the index notation are as follows: for n = 3; the U-duality group, SL(3) × SL(2),
is not semisimple and R1 = (3,2) so we have one set of indices in each group α = 1, 2
and i = 1, 2, 3. For n = 4; R1 = 10 and R2 = 5̄ and m = 1, . . . , 5. In n = 5; the vector
representation is a spinorial representation, 16, and R2 = 10, denoted by a = 1, . . . , 10 and
α = 1, . . . ,16. For n = 6; R1 = 27 and M = 1, . . . ,27. Similarily for n = 7 where R1 = 56
and M = 1, . . . ,56.

By a comparison, the constants αn and βn in the expression in (6.3) are found to be βn = 1
9−n

while αn takes the values 3, 4, 6, 12 for n = 4, 5, 6, 7.

Since T-duality is a part of U-duality, everything in this chapter holds also for doubled
geometry. By comparing the exceptional Lie derivative with the one for doubled geometry
4.1 we see that an expression for Y in the case of doubled geometry is

YMN
PQ = ηMNηPQ. (6.20)

6.5 The symmetric part of LU

We define the symmetric part of the generalised Lie derivative as ((U, V )) = 1
2 (LUV +LV U)

and want it to generate a zero transformation when acting on a vector WN ,

L((U, V ))W
M = · · · = −(YM [N

PQY
|P |R]

[ST ] + YM [N
[ST ]δ

R]
Q )∂NU

S∂RV
TWQ. (6.21)

In the . . . -part of the equation, the definition of ((U, V )) has been entered into the definition
of the generalised Lie derivative and simplified. Then, equation (6.9) was used on the terms
symmetric in indices sitting on derivatives, collecting terms and again simplified. In the
excplicit expressions for Y in various dimensions (6.19) we see that Y is symmetric in pairs
of indices for n ≤ 6. Because of this, the expression vanishes trivially. For n = 7, however,
Y is not symmetric. By entering the explicit expression for Y in (6.21) (the c- and δ-part of
Y vanishes because they are symmetric in indices), the expression for n = 7 can be written
as

L((U, V ))W
M = −1

4
εNRεPQ∂[NU

P∂R]V
QWM = 0, (6.22)
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generating a zero transformation on WN by the section condition (6.8). The symmetric part
of the generalised Lie derivative is thus not zero in itself, it does however generate a zero
transformation when acting on an object, which is sufficient.

6.6 The Jacobi identity

The symmetric part of the generalised diffeomorphism does thus not vanish trivially, but
its action gives a zero transformation. This is also happens to be true for the generalised
Jacobi identity, which has to hold for a Lie bracket. We want the Jacobiator, JU, V,W K =
JJU, V K,W K+{cyclic}, to generate a zero transformation, which can be seen as a generalised
version of the Jacobi identity. By writing down one of the terms of the Jacobiator,

JJU, V K,W K =
1

2
(LJU, V KW − LW JU, V K)

=
1

2
(LULVW − LV LUW )− 1

4
(LWLUV − LWLV U).

we see that the Jacobiator can be written in two ways. Because of the cyclicity of U , V and
W in the expression, the Jacobiator can be written either as the first or second term of the
first line,

JU, V,W K =

{
1
4LJU, V KW + cyclic
1
2LW JU, V K + cyclic

(6.23)

By splitting the Jacobiator into two parts and expressing them in different ways according
to the above possibilities, it can be written as

JU, V,W K =
2

3
JU, V,W K +

1

3
JU, V,W K =

1

6
(LJU, V KW + LW JU, V K) + cyclic. (6.24)

The last term is our definition of the symmetric part of the Lie derivative

1

6
(LJU, V KW + LW JU, V K) + cyclic =

1

3
((JU, V K,W )) + cyclic, (6.25)

which has been shown to generate a zero transformation, for n ≤ 7. Our generalised Lie
derivative now fulfills every requirement of being a Lie derivative and building an algebra.
The generalised diffeomorphisms are taken care of and we now turn our attention to tensors
and covariant derivatives.

6.7 Tensors and connections

Tensors should be tensors under En(n)×R and in order to define the correct transformation
of tensors, we need a covariant derivative, D = ∂ + Γ. This is done in much the same way
as in ordinary geometry, by the introduction of an affine connection ΓMN

P transforming
upper and lower indices as,

DMVN = ∂MVN + ΓMN
PVP , (6.26)

DMV
N = ∂MV

N − ΓMP
NV P . (6.27)
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The matrices ΓM in (ΓM )N
P are valued in the Lie algebra en(n)⊕R. The affine connection

has to make sure that the covariant derivative of an arbitrary tensor again is a tensor. This
requirement leads to the specific transformation rule of the affine connection,

δξΓMN
P = LξΓMN

P + ZPQRN∂M∂Qξ
R

= LξΓMN
P − ∂M∂Nξp + Y PQRN∂M∂Qξ

R.
(6.28)

This can be rewritten by defining ∆ξ = δξ − Lξ as a measure of the non-homogeneously
transforming parts of objects, tensors should have ∆ξV

...
... = 0. Equation (6.28) can then be

written as

∆ξΓMN
P = ZPQRN∂M∂Qξ

R. (6.29)

In the above definitions, theR-weight was not taken in to account. An En(n) invariant tensor
also has to carry an R-weight in order to be a tensor under the generalised diffeomorphisms.
This charge is additive and behaves like a U(1). Normalising so that a vector, R1, has
weight 1 and an R1-index carries -1, the E6 invariant tensor cMNP has to have weight 3
for example. This extra complexity makes it harder to lower and raising indices. It may
also be convenient to use the duality Rk ↔ R9−n−k to write representations with one lower
instead of 8 − n upper indices, this duality is indeed true but has the wrong weight and
have to be compensated by adding an extra weight. This makes us consider generalised
tensor densities by always specifying the R-weight for an En(n)-module. This is the same
as in ordinary geometry, where there is also both tensor and tensor densities. A one-form is
the same as a d− 1-form in the SL perspective, but not from a GL perspective because it
scales differently. For the rest of the thesis, the term tensor is used for both, but one has to
remember that objects always carries this extra weight. A covariant derivative takes tensors
of weight w to ones with weight w− 1, the definitions in (6.26) are extended to include the
transformation of weights as

DMWN = ∂MWN + ΓMN
PWP −

w + 1

|R1|
ΓMP

PWN , (6.30)

DMW
N = ∂MW

N − ΓMP
NWP − w − 1

|R1|
ΓMP

PWN . (6.31)

As written in chapter 3, torsion in ordinary geometry has a physical meaning, it is set to
zero of physical reasons. In this context, we have the choice of defining the torsion part of
the affine connection in a way that make our theory meaningful. We define torsion to be the
irreducible modules in the affine connection that transforms homogeneously with the Lie
derivative (the non-zero part of Z). Of the irreducible components of the affine connection,
not all of them can appear in the inhomogeneous terms of equation (6.28). It is only the
part occuring in (⊗2

sR1 	 R2) ⊗ R1 that can include these terms. Now, by studying the
overlap [R1⊗g]∩ [(⊗2

sR1	R2)⊗R1] we can find those modules appearing in both the affine
connection and that are able to pick up the inhomogeneous terms. Doing this explicitly for
each n, we conclude that the overlap consist of a small module, R1, and a larger module.
The rest of the affine connection, the part defined as torsion, also consists of a small module,
R1, and a larger module which coincides with R10−n. The torsion and non-torsion part of
the affine connection, found in this way, is summarised in table 6.1.

Setting torsion to zero further determines our affine connection, but we need an expression
for this constraint. We are looking for an object that transforms as a tensor and that only
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n Torsion Non-torsion
3 2(3,2)⊕ (6,2) (3,2)⊕ (3,4)⊕ (15,2)
4 10⊕ 15⊕ 40 10⊕ 175
5 16⊕ 144 16⊕ 560
6 27⊕ 351′ 27⊕ 1728
7 56⊕ 912 56⊕ 6480

Table 6.1: Parts of the affine connection that is torsion resp. non-torsion.

contains the torsion parts of the affine connection. An expression for torsion is found to be

TMN
P = 2Γ[MN ]

P + Y PRSNΓRM
S . (6.32)

It is more natural to write this as

TMN
P = ΓMN

P + ZPQRNΓQM
R, (6.33)

to make the adjoint property of the pair N
P manifest. Setting torsion to zero, a torsion-free

connection thus satisfies

ΓMN
P + ZPQRNΓQM

R = 2Γ[MN ]
P + Y PQRNΓQM

R = 0. (6.34)

By contracting this equation with δNP and using that ZMP
PN = |R1|

9−nδ
M
N another expression

for torsion-freeness is found to be

ΓMN
N +

|R1|
9− nΓNM

N = 0. (6.35)

Or, by instead contracting with δMP ,

YMN
QRΓQR

N = −2Γ[NM ]
N = −(1 +

|R1|
9− n )ΓNM

N . (6.36)

So if torsion is set to zero, the expression in (6.32) vanishes and the transformations kan be
written covariantly as

LUVM = UNDNV
M − αPM(adj)N,PQDPU

QV N + βDNU
NVM . (6.37)

Replacing the derivatives in our generalised Lie derivative with covariant derivatives, the
generalised Lie derivative of a vector turns out not to contain any non-torsion part of the
connection. This fact can also be used as an equivalent definition of torsion, as done in [46].

6.8 Vielbeins

We now turn our attention to the equivalent of the local group of rotations in ordinary
geometry. For generalised exceptional geometry, the role of this group is played by the local
subgroup H, which is the maximal compact subgroup Hn = K(En(n)), listed in table 5.1.
Flat R1 indices under H is denoted by A,B, . . . and the metric for the local, flat subgroup
H is δAB .
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In the same way as in ordinary geometry, a vielbein field, EM
A, can be used to define a

metric GMN = EM
AEN

BδAB . The vielbein is a group element of En(n)×R+ and it has to
be covariantly constant, meaning that a covariant derivative of a vielbein has to vanish. A
spin connection, transforming flat indices, is introduced in the covariant derivative which is
defined as

DMEN
A = ∂MEN

A + ΓMN
PEP

A − ENBΩMB
A ≡ 0. (6.38)

The covariantly constant property of the vielbein is called compability and equation (6.38) is
called the compability equation. (ΓM )N

P and (EN )A (as matrices) are 1-forms in en(n)⊕R
while Ω is a 1-form in the maximally compact subgroup, h, of g. The choice of vielbein
breaks g → h, for example in n = 6 where E6 → USp(8), the adjoint module of E6 breaks
as

78︸︷︷︸
adj

→ 42︸︷︷︸
g/h (MN)

+ 36︸︷︷︸
adj in USp(8)

. (6.39)

We now have two constraints on the connections; the vanishing of torsion and the compability
equation. In ordinary geometry, both the affine and spin connection is completely
determined by these conditions. In the case of exceptional geometry, this is not true, there
will be parts of the connections that are undetermined making the covariant derivative not
well-defined. To be able to use the connections when forming other objects and taking
covariant derivatives, we have to make sure that we are using parts of the connections that
are explicitly determined by the constraints. So, the question now is to find the undetermined
parts and later make sure that those parts don’t show up in calculations.

This analysis can be done by first eliminating the affine connection from the compability
equation by using the vanishing of torsion and forming a specific combination of the
compability equation containing Γ only through T . The resulting equation is

(D
(Ω)
M EE−1)N

P + ZPQRN (D
(Ω)
Q EE−1)M

R = 0, (6.40)

where D(Ω) denotes a covariant derivative containing only the spin connection. We can also
do the opposite, eliminating the spin connection by projecting the compability equation on
the part in g/h. After lowering one index, the antisymmetric part is in h while the symmetric
part is in the coset g/h. The compability equation for the affine connection is thus,

(E−1D
(Γ)
M E)(AB) = 0. (6.41)

This can also be written in terms of the generalised metric as

DMGNP = ∂MGNP + 2ΓM(NP ) = 0. (6.42)

To be able to compare the parts of (6.40) with those of the spin connection, we have to
decompose the equation into modules of H, since this is where Ω lives. By doing this, it
is found that the content of equation (6.40) is smaller than that of the spin connection
which has the structure of R1 ⊗ h. The missing module (the undetermined part) is called
Σ. The same module is also found by doing a similar comparison for the affine connection
and its compability equation. This undetermined part, Σ, is listed explicitly for the various
dimensions in table 6.2. A well-defined covariant derivative of a module, U , now amounts
to check if the undetermined part, Σ, don’t show up in the tensor product, R1 ⊗ U .
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n H Σ
4 SO(5) 35 = (04)
5 (Spin(5)× Spin(5))/Z2 (4,20)⊕ (20,4) = (01)(03)⊕ (03)(01)
6 USp(8)/Z2 594 = (2100)
7 SU(8)/Z2 1280⊕ 1280 = (1100001)⊕ (1000011)

Table 6.2: The undetermined part of a torsion-free, compatible connection.

There are special cases of well-defined covariant derivatives where the connection is
completely absent and DM = ∂M . As mentioned above, the R-weight also has to be
considered and an important property to analyse is to what the weight of a vector, WM ,
has to be in order for the divergence DMW

M to be connection free. From the definition
of the covariant derivative including the transformation of the weight in equation (6.30) it
follows that

DMW
M = ∂MW

M − ΓMN
MWN +

w − 1

9− n ΓNM
NWM . (6.43)

The two Γ-terms cancels for w = 10− n for a vector of weight 1. This can be expressed as

|G|−
9−n
2|R1|DMV

M = ∂M (|G|−
9−n
2|R1|VM ) (6.44)

and will be of great importance when considering partial integration, measures and actions.

6.9 Curvature

Apart from torsion, the other tensorial part of an affine connection is the curvature. In
this section, we seek to define and analyse curvature in a consistent way. Curvature is,
schematically, expressed as R ∼ ∂Γ+Γ2. Since we want it to be a tensor, the transformation
has to be (δ − L)R = ∆R = ∆(∂Γ + Γ2) = 0. Now, starting from the Z-expression for the
transformation of the affine connection in (6.29),

∆ξΓMN
P = ZPQRN∂M∂Qξ

R, (6.45)

and taking a derivative, the following transformation of the derivative of the affine connection
is found

∆ξ∂MΓNP
Q = ZQRSP∂M∂N∂Rξ

S

+ ∆ξΓMR
QΓNP

R −∆ξΓMN
RΓRP

Q −∆ξΓMP
RΓNR

Q.
(6.46)

This expression can be rewritten to schematically resemble ∆(∂Γ+Γ2) = Z∂3, the tensorial
property of R now tells us to make the Z-term vanish. This can be done by an anti-
symmetrisation of the equation in [MN ], cancelling the symmetric derivatives in the Z-term.
Equation (6.46) is then reduced to

∆ξ(∂[MΓN ]P
Q + Γ[M |P |

RΓN ]R
Q) = −∆ξΓ[MN ]

RΓRP
Q =

1

2
Y RSTN∆ξΓSM

TΓRP
Q, (6.47)

where the right hand side has been rewritten using the expression for torsion. By
contracting the right hand side with δNQ and symmetrising in (MP ), it can be written
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as ∆ξ(
1
4Y

RS
TQΓSM

TΓRP
Q). The whole expression in (6.47) can now be written as a total

zero transformation, ∆(. . . ) = 0, where the dots are given by

RMN = ∂(MΓ|P |N)
P − ∂PΓ(MN)

P

+ Γ(MN)
QΓPQ

P − ΓP (M
QΓN)Q

P − 1

2
Y PQRSΓPM

SΓQN
R,

(6.48)

which consequencely transforms as a tensor. Using vanishing torsion, the last term can be
rewritten and the curvature can be written as

RMN = ∂(MΓ|P |N)
P − ∂PΓ(MN)

P

+ Γ(MN)
QΓPQ

P − 1

2
ΓPM

QΓQN
P − 1

2
ΓP (M

QΓN)Q
P .

(6.49)

Torsion defines the connection and the connection in turn defines the curvature. The
curvature can also, to some extent, be defined in terms of vielbeins. The equation of motion
for the geometry can be provided by the projection on g/h of a curvature defined by vielbeins,
this would be a an equivalent to a Ricci tensor. In order to sort these things out, we have
to calculate to what extent curvature can be defined by vielbeins without containing the
undetermined parts of the spin connection.

So, we have an expression for the Ricci-tensor, but it is to large to be expressed in terms of
a metric, it has an extra Y -term. If we can show that the relevant part of the Ricci tensor
(the projection on the coset) is well defined by connections determined by the equation of
covariant vielbein, we have consistent equations of motion for the vielbein. Varying the
curvature yields that

δRMN = D(MδΓ|P |N)
P −DpδΓ(MN)

P . (6.50)

Projecting this expression on g/h, examining the tensor product g/h ⊗ R1 and comparing
with table 6.2 it is concluded that the undetermined parts of the connection does not show up
in the tensor product. R{MN} is thus well defined and can be used as a Ricci tensor, where
curly brackets around indices denotes a projection on g/h. The Ricci scalar, R = GMNRMN ,
obtained by contracting the Ricci tensor with the generalised metric is a part of R{MN} and
is also well defined.

As seen in chapter 3, the curvature scalar shows up in the Lagrangian for geometry, and its
variation gives the Einstein tensor. This does, however, involve partial integration which is
not as straight forward in exceptional geometry as in ordinary geometry. The variation of
the Ricci scalar is given by

δR = δ(GMNRMN ) = δGMNRMN +DM (δΓN
MN − δΓNNM ). (6.51)

The expression has to be multiplied with a scalar density from the measure to be able to
discard the D∂Γ-terms as boundary terms. From equation (6.44) it is concluded that this

density has to carry weight 9−n. So, the Lagrangian density has to be L = |G|−
9−n
2|R1|

R
and

the generalised Einstein equations, or the equation of motion for the metric, GMN , takes
the form

R{MN} +
9− n
2|R1|

GMNR = 0. (6.52)

This expression is the left hand side of the generalised Einstein equations with matter fields
present which is the scope of the next section.
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6.10 Generalised forms

In this section, a discussion regarding tensor fields will be carried out, the full analysis as
done in the attached paper will not be done and the reader is therefore encouraged to read
the more in-dept description there.

We want a way of describing field equations and gauge symmetries for the dynamics of
fields in representations Rk on our locally realised generalised manifold and therefore need a
description of some kind of generalised forms. For dimensionally reduces theories formulated
in the uncompactified directions, the k-form gauge fields are known to come in the Rk-
modules of the U-duality group. The theory of exceptional geometry is instead formulated
on the internal directions of the compactification torus. The sequence of representations, Rk,
comes from an infinite sequence of ghosts and are related to the generalised diffeomorphisms
and their reducibilities as described in [52]. The nilpotenticity property of the derivative,
∂, taking an Rk-module to an Rk−1-module hints that the sequence of these modules are
responsible for gauge transformations of tensor fields. This is analogous to the exterior
derivative on ordinary forms that is nilpotent and maps a k-form to a (k + 1)-form. As
described in section 6.7, the infinite sequence of representations are symmetric under Rk ↔
R9−n−k in just the same way as forms on an ordinary manifold. There are more evidence to
further establish the analogy between ordinary forms and the sequence of modules {Rk}8−nk=1

in exceptional geometry that will be presented below.

To make a covariant description, the derivatives ought to be replaced by covariant versions,
D : Rk → Rk−1, and to make the connection with the ordinary exterior derivative, we have
to examine the covariant derivative acting on our generalised forms. Ideally, the connections
should be absent from the derivative and ’D ∼ ∂’, in the same way as for the exterior
derivative. In the special case of R2 → R1 for n ≤ 6, the covariant derivative can be
expressed as

DNW
MN = ∂NW

MN − ΓNP
MWPN − ΓNP

NWMP

= ∂NW
MN − 1

2(n− 1)

(
Y NPRSΓNP

M + YMP
RSΓNP

N
)
WRS

= ∂NW
MN .

For the proof of the general case of Rk → Rk−1 see the attached paper, the derivative
happens to be connection-free for 2 ≤ k ≤ 8−n. For the cases R1 → R0 and R9−n → R8−n,
the derivative is however not connection-free. There is a connection-free window amongst
the modules and their behaviour is as if they live on an (9−n)-dimensional manifold in which
the exterior derivative is acting in the wrong way! We are thus only allowed to describe gauge
connections and field strengths within this connection-free window. Within this window,
we can have a gauge field A ∈ Rk+1 with its field strength F = DA = ∂A ∈ Rk, a gauge
symmetry parameter, Λ ∈ Rk+2, used in δΛA = ∂Λ and a Bianchi identity ∂F = ∂2A = 0
in Rk−1, making it valid for 1 ≤ k ≤ 7− n.

To be able to formulate the equation of motions for gauge fields, we need something
resembling the duality operator on forms. The analogy to the Hodge duality operator
on forms, which in our case is taking an F ∈ Rk to ∗F ∈ R9−n−k, can be defined naturally
given a metric in two ways. The first of these is to simply lower the k indices with the metric
and adjusting the R-weight, resulting in

∗ FM1...Mk
= |G|−

9−n
2|R1|GM1N1...GMkNkF

N1...Nk . (6.53)
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Another way is by using an invariant tensor, ΣA1...A9−n , converting its indices with an inverse
vielbein to ’curled’ ones (Ar →Mr) and write

∗ FMk+1...M9−n = ΣM1...M9−nGM1N1...GMkNkF
N1...Nk . (6.54)

Using one of these definitions of the ’generalised Hodge dual’ makes it possible to write the
equation of motion for the gauge field A as

∂ ∗ F = 0. (6.55)

The field content of maximally supersymmetric generalised supergravity makes it necessary
to place a gauge potential in R1 which would have a field strength in R0 which is outside
the connection-free derivative window. Some arguments on how and why this would still
work is given in the attached paper but needs further attention. With a covariant and
well-defined description of generalised forms, describing matter fields and their equations
of motion on the generalised locally realised manifold, a tensor calculus for exceptional
geometry is complete.



Chapter 7

Conclusions and future work

In this thesis, the background and need for developing a generalised geometry based on the
exceptional groups was presented. Following the steps of constructing ordinary geometry,
the relevant objects and concepts has been generalised in the context of exceptional
geometry. Transformation of tensors, definitions of a covariant derivative, vielbeins, affine
and spin connection, metric, torsion, curvature, tensor fields and a generalisation of the
Einstein equation was presented in a completely covariant way yielding a tensor calculus for
exceptional generalised geometry.

The tensor calculus for generalised geometry in a local description is by this complete, but
there is still a lot of work to be done in the area. Below is a list of (some) problems to be
adressed.

• Global symmetries. The work done in the paper in the appendix of the thesis studies
infinitesimal, local transformations. The concept of large, global diffeomorphisms
and generalised mainfolds is still unsolved. Hohm and Zwiebach discussed this area
in [57] in which they exponentiate the Lie algebra in double field theory to a large
diffeomorphism. The topology is important for global questions and questions on how
to patch together a manifold from many open areas has to be adressed.

• Exceptional supergeometry. A full geometric description of superspace involving
fermions is still missing. Work towards this has been done by Coimbra et. al.
in [46] where they examine minimal exceptional supergravity. M. Cederwall has
published a paper [50], in which non-gravitational supermultiplets were constructed.
Such multiplets has to be included in an extended supergravity theory.

• The section condition. The theory described by the exceptional geometry in the
enhanced spacetime of the compaction-torus will at some point be included in the
theory of the uncompactified directions. The section condition breaks the enhanced
symmetry down to the physical degrees of freedom, but how do we interpret this?
What is the section condition? Is the section condition a brane? Does it have
dynamics? The section condition is a covariant constraint, but not its solutions.

• Integrability. In order to write down an action for the exceptional geometry, the
question of integrability and a measure has to be adressed. What should the action
be integrating over and how does this involve the section condition?
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• E8 geometry. In the thesis, the case of n = 8 is excluded, the algebra in this case fails to
close. This is because dual gravity becomes present at this degree of compactification.
Is an understanding of dual gravity needed to construct a geometrical description for
n = 8, E8(8)-symmetry?

• Affine extensions. The exceptional Lie groups only exists up to n = 8, by
compactifying further to n = 9, 10, 11, the relevant symmetry groups may be described
by the affine extensions of the exceptional Lie groups. The affine Lie group E11 has
been discussed to be the symmetry group of uncompactified M-theory.

• Other compactifications. What about compactifications other than toroidal? Is it
possible to find orbifolds large enough to not kill the dynamics? An example that
don’t work is SL(n) where R1 = � and ⊗2

sR1 = ��, there is only one representation
in this product and there is no possibility of finding interesting solutions to the section
condition. There are only two possibilities here, it either kills all dynamics or the
dynamics stays in the original gravity. It doesn’t single out a lower dimensional version.
We want to find a physical situation where the U-duality is broken down to something
smaller. In the symmetric product of two R1, ⊗2

sR1 = R2⊕ ’something large’, we want
to have an R2 that is small enough so that ∂2|R2

= 0 has interesting solutions (picks
out a subspace that is large enough).

M-theory still is a mysterious theory but there are a lot of different angles to attack and the
search for the final theory of everything continues...



Bibliography

[1] P.K Townsend, “The eleven-dimensional supermembrane revisited”, Phys. Lett. B 350,
184-187, (1995), [arXiv:9501068 [hep-th]].

[2] Edward Witten, “String Theory Dynamics In Various Dimensions”, Nucl. Phys. B 443,
85-126, (1995), [arXiv:9503124 [hep-th]].

[3] C. M. Hull and P.K Townsend, “Unity of superstring theories”, Nucl. Phys. B 438, 109
(1995), [arXiv:hep-th/9410167].

[4] E. Cremmer, B. Julia and J. Scherk, “Supergravity theory in eleven dimensions”, Phys.
Lett. B 76, 409-412, (1978).

[5] L. Brink and P. S. Howe “Eleven dimensional supergravity on the mass-shell in
superspace”, Phys. Lett. B. 91, 384 (1980).

[6] E. Cremmer and S. Ferrara “Formulation of eleven-dimensional supergravity in
superspace”, Phys. Lett. B 91, 61 (1980).

[7] B. de Wit, H. Nicolai, “D = 11 Supergravity with local SU(8) Invariance”, Nucl. Phys.
B 274, 363 (1986).

[8] D. S. Berman, C. D. A. Blair, E. Malek and M. J. Perry, “The OD,D geometry of string
theory”, (2013), [arXiv:1303.6727].

[9] E. Cremmer, H. Lü, C.N. Pope and K. Stelle, “Spectrum-generating symmetries for BPS
solitons”, Nucl. Phys. B 520, 132 (1998), [arXiv:hep-th/9797207].
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1. Introduction

The dualities of string theory or M-theory treat momenta and brane charges on an equal

footing. By generalising space-time to include directions conjugate to brane charges, such

symmetries can be made manifest, but obviously the concept of geometry has to be modified.

There has been considerable progress in the understanding of such models recently, both in

the context of U-duality [-], which is the main focus of the present paper, and T-duality.

We refer to both types of theories as “generalised geometry”; doubled geometry [-] in the

case of T-duality, and exceptional geometry [-] in the case of U-duality.

Turning to the state of the subject of exceptional geometry, it has been shown that it is

possible to formulate the dynamics of a generalised metric, parametrising a coset G/H with

G = En(n) × R+ and H its maximal compact subgroup, in a manner which respects local

symmetries, generalising and including diffeomorphisms [-,,]. There are also results

on an underlying geometry and tensor formalism [,], but the covariant tensor calculus

has so far been limited to n = 4 [].

The purpose of the present paper is twofold. We give a universal (i.e., valid for all n ≤ 7)

version of exceptional geometry, and a tensor formalism that agrees with the one given for

n = 4 [] and makes manifest the symmetry of ref. []. We also initiate an investigation

of what may be thought of as differential geometry on a generalised manifold. A sequence

of G modules, in many respect analogous to forms on ordinary manifolds, are given, and we

describe how they may accommodate tensor (non-gravitational) gauge fields.

The paper is organised as follows. After some background on exceptional geometry in

Section , we turn to the covariant construction of the generalised geometry in terms of

vielbeins, connections and curvature in Sections -. Section  deals with the dynamics of

tensor fields coupled to generalised geometry. We summarise and point out some interesting

questions in the concluding Section. Some conventions are given in an Appendix.

2. Preliminaries on exceptional geometry

As mentioned in the Introduction, we are concerned with a generalisation of geometry, where

the traditional rôle ofGL(n) in ordinary geometry is subsumed by the groupG = En(n)×R+,

and that of the locally realised rotation group by the maximal compact subgroup H ⊂ G.

Generalised momenta transform in a module R1 of G. A central identity in generalised

geometry is the section condition. It states that bilinears in momenta projected on a certain

module of G, R2, vanish. Although this condition is G-covariant, its solutions effectively

single out n directions on which fields may depend.
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It is well known how to form a generalised Lie derivative, governing the generalised dif-

feomorphisms, which effectively include tensor gauge transformation in addition to ordinary

diffeomorphisms. The generalised diffeomorphisms, acting on a vector, take the form

LUV
M = LUV

M + Y MN
PQ∂NUPV Q (.)

(LU being the ordinary Lie derivative), which can be rewritten as

LUV
M = UN∂NV M − αP(adj)

M
N,

P
Q∂PU

QV N + β∂NUNVM

= UN∂NV M + ZMN
PQ∂NUPV Q ,

(.)

where P(adj) projects on the adjoint of En(n) (we constrain the analysis to n ≥ 4, where this

group is simple). For n ≤ 6, the tensor Y is proportional to the projection on R2,

Y MN
PQ = 2(n− 1)PMN

(R2)PQ , (.)

and for n = 7 it contains an additional antisymmetric term 1
2ε

MNεPQ. The constants αn

take the values 3, 4, 6, 12 for n = 4, 5, 6, 7, respectively, while βn = 1
9−n .

The closure of the algebra of generalised diffeomorphisms relies on certain identities

involving the invariant tensor Y . The simplest of these is the section condition itself,

Y MN
PQ∂M ⊗ ∂N = 0 , (.)

where the ⊗ sign signifies that the two derivatives may act on any pair of fields. Another

important identity is the nonlinear relation

(
Y MN

TQY
TP

RS − Y MN
RSδ

P
Q

)
∂(N ⊗ ∂P ) = 0 , (.)

which can also be written

(
ZMN

TQZ
TP

RS + ZMP
RQδ

N
S

)
∂(N ⊗ ∂P ) = 0 . (.)

Notice, that while eq. (.) manifests the R2 and R2 projections of the index pairs MN and

RS , the form (.) manifests the g projections in the pairs M
Q and P

R.
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The parameters of generalised diffeomorphisms come in R1, and it was demonstrated in

ref. [] that the infinite sequences {Rk} are responsible for the reducibility of the transfor-

mations. As we will see in Section , part of the sequence has many properties in common

with forms in ordinary geometry, which is how we will be able to use them for constructing

tensor fields. Before that is possible, we need to develop a tensor formalism.

n R1 R2 R3 R4 R5

3 (3,2) (3,1) (1,2) (3,1) (3,2)

4 10 5 5 10 24

5 16 10 16 45

6 27 27 78

7 56 133

Table 1: A partial list of modules R
(n)
k .

3. Tensors and connections

The property (.) of the generalised Lie derivative on vectors ensures that it can be defined

on a tensor carrying an arbitrary number of indices in R1 and R1, with the transformation

LUW
M1...Mp

N1...Nq = UP∂PW
M1...Mp

N1...Nq

+

p∑

i=1

ZMiQ
RP∂QU

RWM1...Mi−1PMi+1...Mp
N1...Nq

−
q∑

i=1

ZPQ
RNi∂QU

RWM1...Mp
N1...Ni−1PNi+1...Nq ,

(.)

so that tensor products and contractions respect the tensorial property.

Note that composition of tensors implies that the R-weight is not freely assigned. Not

any invariant En(n) tensor is a tensor under generalised diffeomorphisms. For example, E6

has an invariant tensor cMNP . In order to be a tensor under generalised diffeomorphisms

it would need to carry total R weight 3, if the weight of a vector is normalised to one.

Otherwise it becomes a tensor density. On the other hand, cMNP cQRS is a tensor.

We will introduce an affine connection, ΓMN
P . As matrices (ΓM )N

P , ΓM are valued in

the Lie algebra g = en(n) ⊕ R. Note that this excludes any specific symmetry properties for
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the lower indices. Defining a covariant derivative D = ∂ + Γ, the transformation rule of the

connection should ensure that DMW {N}{P} is a tensor if W {N}{P} is a tensor. We use the

convention
DMVN = ∂MVN + ΓMN

PVP ,

DMV N = ∂MV N − ΓMP
NV P ,

(.)

with the obvious generalisation to arbitrary number of indices.

The covariant derivatives of eq. (.) are valid for tensors, i.e., for objects where each

R1 index is accompanied with a certain R-weight w, which we may normalise to 1, and

accordingly −1 for each R1 index. This is not always an ideal way of describing modules.

One may for example want to use invariant tensors of En(n) which do not have weight

zero. One example is the duality Rk ↔ R9−n−k. It may sometimes be more convenient to

represent, say, R8−n = R1 with one lower index instead of 8− n upper ones. This amounts

to considering “tensor densities”, by specifying En(n) module and R-weight w. There is no

acute need of distinguishing tensors and “tensor densities”, and we will use the term “tensor”

for both. The covariant derivatives (taking a tensor of weight w to one of weight w − 1) on

vectors and covectors, with natural generalisation to arbitrary index structures, are

DMWN = ∂MWN + ΓMN
PWP − w+1

|R1| ΓMP
PWN ,

DMV N = ∂MV N − ΓMP
NV P − w−1

|R1| ΓMP
PV N .

(.)

Demanding that the covariant derivative takes tensors to tensors immediately leads to

the transformation rule for the connection,

δξΓMN
P = LξΓMN

P + ZPQ
RN∂M∂Qξ

R

= LξΓMN
P − ∂M∂NξP + Y PQ

RN∂M∂Qξ
R .

(.)

As mentioned, the generic En(n) module for the affine connection is R1 ⊗ g. Not all of

the irreducible components of Γ can appear in the inhomogeneous terms of eq. (.). Only

the part occurring in (∨2R1 ⊖R2)⊗ R1 will pick up inhomogeneous transformation terms.

We define:

Torsion is defined as the irreducible modules in the affine connection transforming ho-

mogeneously, i.e., with the generalised Lie derivative.

Defined in this covariant way, torsion can consistently be set to zero.

It is quite straightforward to verify that the overlap [R1 ⊗ g] ∩ [(∨2R1 ⊖ R2) ⊗ R1]

generically consists of a small module, which is R1, and a big module, which is the largest

module in the product of R1 and the adjoint. The torsion module, which is the rest of Γ,
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consists of a small module R1 and a bigger one (reducible for low n), which turns out to

coincide with R10−n
1.

n torsion non-torsion

3 2(3,2)⊕ (6,2) (3,2)⊕ (3,4)⊕ (15,2)

4 10⊕ 15⊕ 40 10⊕ 175

5 16⊕ 144 16⊕ 560

6 27⊕ 351′ 27⊕ 1728

7 56⊕ 912 56⊕ 6480

Table 2: Torsion and non-torsion part of the affine connection.

We need explicit expressions for the torsion, or expressions that a torsion-free connection

satisfies. It turns out that

TMN
P = ΓMN

P + ZPQ
RNΓQM

R (.)

transforms as a tensor. This is verified by direct insertion into the transformation rule (.)

and use of the identity (.). A torsion-free connection obeys

ΓMN
P + ZPQ

RNΓQM
R = 0 , (.)

or, equivalently, 2Γ[MN ]
P +Y PQ

RNΓQM
R = 0. Note that the result from ordinary geometry

is recovered for Y = 0.

It is straightforward to take a trace to determine which combination of the two R1’s is

torsion and which is torsion-free. Contracting eq. (.) with δNP and using ZMP
PN = |R1|

9−nδ
M
N

shows that a torsion-free connection satisfies

ΓMN
N + |R1|

9−nΓNM
N = 0 . (.)

1 It has been observed in ref. [] that this torsion module can be identified with the embedding tensor

of gauged supergravity. Work by Palmkvist [] identifies a new class of algebras, symmetric under

Rp → R9−n−p where torsion appears as R−1.
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On the other hand, contracting eq. (.) with δMP gives

YMN
QRΓQR

N = −2Γ[NM ]
N = −

(
1 + |R1|

9−n

)
ΓNM

N . (.)

For n < 7 this identity may be used to derive a “stronger” constraint. Since YMN
QRΓQR

P

can only contain the R1 part of a torsion-free connection2, it must be proportional to

YMN
PQΓRQ

R, and the proportionality constant is determined from eq. (.). The resulting

relation is

YMN
QRΓQR

P + YMN
PQΓRQ

R = 0 . (.)

This relation is useful for determining when covariant derivatives are connection-free; see

below.

The generalised Lie derivative on a vector does not contain any non-homogeneously

transforming connection, if one replaces the naked derivatives with covariant ones. This

is verified by replacing the derivatives in LUV of eq. (.) with covariant derivatives and

checking that the connections come in the torsion combination of eq. (.). This property

was used as a definition of torsion (equivalent to ours) in ref. [].

Eq. (.) contains the torsion modules in the connection. The actual torsion-free connec-

tion cannot be obtained simply by adding a multiple of TMN
P to ΓMN

P , since the different

torsion modules take different eigenvalues under Γ → T .

4. Vielbeins and compatible connections

The structure group G = En(n) × R+ has a locally realised subgroup H , which in the

signature we are using is the maximal compact subgroup H = K(En(n)). We denote R1

indices under H by A,B, . . .

Consider a vielbein (frame field) EM
A, which is a group element of En(n)×R+. Locally

it represents an element of the coset G/H , so it should be considered modulo local H-

transformations from the right. It can be used to form a metric GMN = EM
AEN

BδAB,

where δAB is an H-invariant constant metric.

We want to impose that the vielbein is covariantly constant, when transported by a

covariant derivative containing both affine and spin connections:

DMEN
A = ∂MEN

A + ΓMN
PEP

A − EN
BΩMB

A = 0 . (.)

2 Because R2 ⊗ R1 does not contain the big torsion-free connection module. This is not true for n = 7,

where R2 is the adjoint.
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We now want to examine to what extent the connections are determined from the

vanishing of torsion together with the compatibility equation (.). The affine connection

can be eliminated from the equation by the use of the vanishing torsion condition — this

simply amounts to forming a combination of eq. (.) that contains Γ through T of eq. (.).

The result is

(D
(Ω)
M EE−1)N

P + ZPQ
RN (D

(Ω)
Q EE−1)M

R = 0 . (.)

On the other hand, the spin connection can be eliminated by projecting the compatibility

equation on its g/h part. Note that when we talk about the local subgroup H we always

mean the one defined by the vielbein. The projection is easy, since after lowering one index,

the symmetric part of g is g/h and the antisymmetric part h. This leads to

(E−1D
(Γ)
M E)(AB) = 0 , (.)

or, equivalently,

DMGNP = ∂MGNP + 2ΓM(NP ) = 0 . (.)

To analyse the compatibility equations for the spin connection (.) and the affine

connection (.), one must decompose into H-modules. One then finds that the content of

eq. (.), which is identical to the torsion modules of Table 2, is smaller than the content of

Ω, which is R1⊗h. The missing module Σ is the “big” irreducible module in R1⊗h, i.e., the

H-module whose highest weight is the sum of the highest weights of R1 and h. Similarly, the

same result is obtained from the compatibility for the affine connection, so there is always

an undefined part (in the same module) of a torsion-free compatible affine connection. This

is summarised in the table below, whose content agrees with ref. [].

n H undetermined connection Σ

4 SO(5) 35 = (04)

5 (Spin(5)× Spin(5))/Z2 (4,20)⊕ (20,4) = (01)(03)⊕ (03)(01)

6 USp(8)/Z2 594 = (2100)

7 SU(8)/Z2 1280⊕ 1280 = (1100001)⊕ (1000011)

Table 3: The undetermined part of a compatible torsion-free connection

This means, that if connection is not to represent independent degrees of freedom,

one should only introduce covariant derivatives mapping between certain special pairs of

modules. Consider two modules U and V under H (or its double cover), and let a covariant
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derivative map from one to the other. This means that R1 ⊗ U ⊃ V . We are then only

allowed to do this for pairs where at the same time Σ⊗ U 6⊃ V . Some such pairs (“spinor”

and “gravitino” modules) were discussed in refs. [,], and we will encounter other ones

later.

A special case of such well-defined covariant derivatives consists of situations where

not only the Σ part of a connection is absent, but where connection is altogether absent,

and a covariant derivative equals an ordinary derivative. Such connection-free actions of

derivatives will be important for our description of tensor gauge fields in Section , but we

will already at this point check what the weight of a vector WM must be in order for the

divergence DMWM to be connection-free. From eq. (.) it follows that

DMWM = ∂MWM − ΓMN
MWN + w−1

9−nΓNM
NWM . (.)

The connection terms cancel for w = 10− n, which can be expressed as

|G|−
9−n
2|R1|DMV M = ∂M

(
|G|−

9−n
2|R1|V M

)
(.)

for a vector of weight 1. This result will have bearing on any discussion on measures and

partial integration.

At this point, we would also like to comment on the relation between the present ap-

proach and the one used in a recent paper by Park and Suh []. There, the affine connection

is subject to precisely the right number of constraints to make it uniquely determined from

compatibility. In addition to the torsion condition, this procedure amounts to setting, by

hand, the Σ module in Γ to zero. The resulting derivative with connection is then not fully

covariant, but will behave as such acting between certain modules, the pairs described in

the previous paragraph. We tend to prefer the present, geometric description, which allows

for connections to transform as such (both with respect to generalised diffeomorphisms and

local H transformations).
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5. Curvature

We will now examine how curvature can be defined. We write the transformation rule (.)

for the affine connection as

∆ξΓMN
P ≡ (δξ − Lξ)ΓMN

P = ZPQ
RN∂M∂Qξ

R , (.)

in order to manifest the inhomogeneous term. Tensors are characterised by ∆ξ = 0. This

leads to the corresponding transformation of its derivative:

∆ξ∂MΓNP
Q = ZQR

SP∂M∂N∂Rξ
S

+∆ξΓMR
QΓNP

R −∆ξΓMN
RΓRP

Q −∆ξΓMP
RΓNR

Q .
(.)

There are two possibilities to make the ∂3ξ terms vanish — antisymmetrisation [MN ] or

symmetrisation and projection on R2. We have not found any way of directly using the

R2 (although it will become clear below that it really is a specific combination of the two

possibilities that leads to a tensor). Antisymmetrisation gives

∆ξ

(
∂[MΓN ]P

Q + Γ[M|P |
RΓN ]R

Q
)
= −∆ξΓ[MN ]

RΓRP
Q = 1

2Y
RS

TN∆ξΓSM
TΓRP

Q , (.)

where we have used the tensor property of the torsion of eq. (.) in the last step. This is a

nice form that reduces to the covariant transformation of the Riemann tensor for ordinary

geometry (Y = 0). The middle step clearly shows why an attempt to construct a “Riemann

tensor” fails, when the torsion-free condition does not suffice to set Γ[MN ]
P to zero. If however

the expression on the right hand side of eq. (.) is contracted with δNQ and symmetrised in

(MP ), it can be written as ∆ξ(
1
4Y

RS
TQΓSM

TΓRP
Q). Therefore,

RMN = ∂(MΓ|P |N)
P − ∂PΓ(MN)

P

+ Γ(MN)
QΓPQ

P − ΓP (M
QΓN)Q

P − 1
2Y

PQ
RSΓPM

SΓQN
R

(.)

transforms as a tensor. If we restrict to vanishing torsion, the last term may be rewritten

using eq. (.), and the curvature takes the form

RMN = ∂(MΓ|P |N)
P − ∂PΓ(MN)

P

+ Γ(MN)
QΓPQ

P − 1
2ΓPM

QΓQN
P − 1

2ΓP (M
QΓN)Q

P .
(.)
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An alternative way of deriving curvature is to start from the covariant constancy of the

generalised vielbein, eq. (.). The procedure is to act with one more covariant derivative,

and use only combinations where second derivatives on the vielbein are absent, due to

either antisymmetry or the section condition. The result (which of course is zero) should

be expressible as the difference of two tensors, of which the one expressed in terms of Ω

should be manifestly a tensor, and the one expressed in Γ manifestly invariant under local

transformations in H . Then the equality of the two expressions implies that each of them

enjoys the property manifest in the other.

Acting with a second derivative on eq. (.) gives

0 = ∂M∂NEP
A + ∂MΓNP

QEQ
A − EP

B∂MΩNB
A

− (ΓNΓM )P
QEQ

A − EP
B(ΩMΩN )B

A + 2(Γ(MEΩN))P
A .

(.)

Antisymmetrising in [MN ] gives

0 = (∂[MΓN ] + Γ[MΓN ])P
QEQ

A

− EP
B(∂[MΩN ] +Ω[MΩN ])B

A ,
(.)

exactly as in ordinary geometry. The expression ∂[MΩN ] on the second line is however not

a tensor, since Γ[MN ]
P is not torsion. One has to form some combination of terms so that

the ΓΩ terms in eq. (.) combine with the ∂Ω terms into covariant derivatives D(Γ). They

can then be converted into Ω using DMAN = EN
ADMAA. This can be achieved with one

contraction of indices and symmetrisation in the remaining two (as in the construction of

the curvature above)3. The resulting curvature is identical to the one given in eq. (.), and

its expression in terms of Ω is

RMN = E(M
A∂N)ΩBA

B − E(M
AEN)

BEC
P∂PΩAB

C − 1
2Y

PA
B(MEN)

C∂PΩAC
B

+Ω(MN)
AΩBA

B − ΩAM
BΩBN

A

− 1
2Y

AB
C(M

(
Ω|AB

DΩD|N)
C +Ω|A|N)

DΩBD
C
)
.

(.)

(Here, we have used vanishing torsion and restricted the calculation to n ≤ 6. We have also

converted indices with the vielbein.)

We do not have a direct proof that RMN exhausts the possible curvature tensors,

although we suspect that this is the case. It is however clear that it is large enough to

3 Hohm and Zwiebach manage to form a 4-index tensor in the O(d, d) situation, where one has access to

an H-invariant metric []. We do not see how that construction generalises to the exceptional cases.
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contain anything we need. For example, R1 contains a 2-form in n dimensions, so there is

enough room in RMN for the modules of an ordinary Riemann tensor.

An important question is to what extent this curvature is defined in terms of a vielbein.

This especially concerns its projection on g/h, since that part is a candidate for a “Ricci”

or “Einstein” tensor, providing equations of motion for the geometry. A variation of the

curvature gives at hand that

δRMN = D(MδΓ|P |N)
P −DP δΓ(MN)

P . (.)

There is nothing here that prevents the undefined module Σ from appearing in the second

term. But if we consider the projection on g/h, we observe that (g/h) ⊗ R1 6⊃ Σ, so the

variation of RMN does not contain the Σ part of δΓ. Thus, R{MN}, the projection of RMN

on g/h, is well-defined, and can serve as a Ricci tensor4.

From this it is also clear that the singlet, the curvature scalar R = GMNRMN (which

is part of R{MN}), is well-defined in terms of the metric.

It is tempting to think of the curvature scalar as a Lagrangian for generalised grav-

ity, whose variation should give an Einstein tensor. This of course has to rely on partial

integration, since

δR = δ(GMNRMN ) = δGMNRMN +DM (δΓN
MN − δΓN

NM ) . (.)

The DδΓ terms cannot be discarded unless the expression is multiplied by a scalar density

from the measure, and it follows from eq. (.) that this density must have weight 9 − n.

So, if the Lagrangian density is

L = |G|−
9−n
2|R1|R , (.)

the equations of motion for GMN , the generalised Einstein’s equations, become

R{MN} +
9−n
2|R1|GMNR = 0 . (.)

4 The independence of the Σ part of Γ cannot be observed by simply entering an expression for Γ in

terms of its decomposition in H-modules into eq. (.). Then the ΓΓ part of the second term would

seems to contain Σ. One has to realise that the H subgroup defined by the vielbein/metric is special;

only for this subgroup the covariant derivatives respect the decomposition into H-modules. We have

checked in a couple of examples (n = 4, 5) that an explicit decomposition in H modules yields no Σ2

in the g/h part, but indeed terms linear in Σ.
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For pure generalised gravity, this is of course equivalent to R{MN} = 0, but in presence

of matter fields, as in the following section, eq. (.) provides the left hand side of the

generalised Einstein’s equations.

We note that our density |G|−
9−n
2|R1| agrees with the one given in ref. [] for n = 4.

There, the density is written as “M−1”, where M is the determinant of a metric on the

fundamental 5 of SL(5). We have − 9−n
2|R1| = − 1

4 , but our GMN is a metric on the module

10. The double weight of G and the double size of the determinant together account for the

factor 4 compared to ref. [].

6. Tensor fields

It is well known that the k-form gauge fields in dimensionally reduced theories come in

the modules Rk under the U-duality group. Here, we instead ask for the dynamics in the

“internal” directions, i.e., for the descriptions of fields in Rk on a generalised manifold (at

least locally). We need to be able to describe gauge symmetry and field equations, as well

as some counting of degrees of freedom. The resulting description provides the U-duality

version of the spinor of Ramond–Ramond fields for T-duality and double field theory [].

The sequences {Rk} are symmetric under Rk ↔ R9−n−k (and the proper reassignment

of R weight), in analogy with forms. When we occasionally talk about modules Rk outside

the window 1 ≤ k ≤ 8 − n, which e.g. are needed for the complete reducibility, we will

take the ones for k ≥ 9− n to agree with the ones given in ref. [], which agrees with the

positive levels of a Borcherds algebra [] (the precise reason for this will be the subject of

a future publication []). For k ≤ 0, we will assume that the symmetry around k = 9−n
2

remains. Seen as objects with k upper indices, entities FM1...Mk in Rk are in general neither

totally antisymmetric nor symmetric, but have mixed symmetry. R2 is always symmetric,

but already R3 is a module of mixed symmetry .

In ref. [] it was shown how the Rk’s arise as an infinite sequence of ghosts related to the

generalised diffeomorphisms and its reducibility. An essential property is that a derivative,

∂ : Rk → Rk−1, is nilpotent, so the sequence forms a complex. With this knowledge, it

seems natural that the same modules should be responsible for gauge transformations of

tensor fields (and their reducibilities).

We will now proceed to show that the sequence of modules {Rk}8−n
k=1 in many respects

plays a rôle similar to that of forms on an ordinary manifold. An important piece of in-

formation is to what extent the affine connection takes part in the covariantised operation

D : Rk → Rk−1. Ideally, we would want connection to be absent, and “D = ∂”, in analogy

with the situation for the exterior derivative on forms.
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It turns out that the derivative from Rk to Rk−1 is connection-free for 2 ≤ k ≤ 8 − n.

For some simple cases, like R2 → R1 (n ≤ 6), it is straightforward to show:

DNWMN = ∂NWMN − ΓNP
MWPN − ΓNP

NWMP

= ∂NWMN − 1
2(n−1)

(
Y NP

RSΓNP
M + Y MP

RSΓNP
N
)
WRS = 0 ,

(.)

with the use of eq. (.). For R3 → R2, the proof is more involved, and relies on the hook

( ) property of R3. For higher k it is more convenient to use R9−n−k = Rk and to treat

them as tensor densities. For example, the covariant derivative from R1 with weight w to

R2 is (n ≤ 6)

YMN
PQDPWQ = YMN

PQ
(
∂PWQ − 8−n−w

9−n ΓRP
RWQ

)
, (.)

where eq. (.) has been used again, showing that the derivativeR8−n → R7−n is connection-

free (n ≤ 6).

However, it is obvious from direct inspection that R1 → R0 and R9−n → R8−n contain

connection. Neither is it possible to make the complex finite by using singlets at k = 0 and

k = 9−n; the corresponding derivatives also contain connection. These singlets actually both

take the rôle one would have wanted from the other: the derivative 1 → R1 is connection-

free for weight 0, and the divergence R1 → 1, as we have seen, is connection-free when the

singlet has weight 9 − n. In some sense, it looks as though we had an (9 − n)-dimensional

manifold, but with an exterior derivative “acting the wrong way”. To some extent, it becomes

clearer from the diagrams in Appendix B what happens. They depict the action of an

ordinary derivative on the modules Rk decomposed into GL(n) modules. There are always

two sequences containing forms. All sequences are finite, but the ones starting at R1 (or

lower) or ending at R8−n (or higher) consist of the tensor product of a complex of forms

with some non-trivial GL(n) module.

The problematic situation at the limits of the connection-free window does not prevent

us from describing gauge connections and their field strengths within the window. It makes

it more complicated to describe a gauge field in R1 (more about this below), and it seems to

obstruct a complete covariant description of the full reducibility of the gauge transformations

at any k.

Consider a gauge field A in Rk+1, 1 ≤ k ≤ 7−n. It will have a field strength F = ∂A in

Rk. There is a gauge symmetry δΛA = ∂Λ with parameter Λ in Rk+2 and a Bianchi identity

∂F = 0 in Rk−1. (For k = 7− n the above discussion shows a difficulty with the covariance

of the gauge transformation, and similarly with the Bianchi identity for k = 1. We will for

the moment ignore this issue.)

Given a metric, there is a natural duality operation, taking F in Rk to ∗F in R9−n−k.

This can be written in two ways (analogous to lower or upper indices for ordinary forms).
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One is obtained by simply lowering the k indices with the metric. This results in a tensor

in Rk with weight −k. A tensor in R9−n−k has weight 9 − n − k, so the weight has to be

adjusted by an appropriate power of |G|. The correct dual field strength is

∗FM1...Mk
= |G|−

9−n
2|R1|GM1N1 . . .GMkNk

FN1...Nk . (.)

The other way is to use an invariant tensor ΣA1...A9−n , which after conversion of indices with

inverse vielbeins becomes a tensor ΣM1...M9−n and write

∗FMk+1...M9−n = ΣM1...M9−nGM1N1 . . . GMkNk
FN1...Nk . (.)

The equation of motion for A can now be written

∂∗F = 0 . (.)

Since only connection-free derivatives have been used for forming the field strengths and the

equations of motion, it is clear that there are no problems with undefined connection. The

metric enters only through the dualisation. There is a duality symmetry under k → 9−n−k

exchanging equations of motion and Bianchi identities. Again, we find that a Lagrangian

density F ∗ F with weight 9− n is necessary in order to make partial integration possible.

It may seem that it is problematic to use a gauge potential in R1, since the field

strength would belong to R0, which is outside the connection-free window. For a number

of reasons (one is the field content of maximally supersymmetric generalised supergravity,

see below) one would still like to have potentials in R1. Although we will leave the detailed

formulation to future work, we would like to argue that it is meaningful to have such a

potential. The argument is based on dimensional reduction of generalised gravity. We will

consider linearised fields. The linearised degrees of freedom of generalised gravity lie in

g/h. Consider the decomposition under “dimensional reduction”, i.e., when n is lowered

by 1. We drop the singlet part, which is irrelevant for the argument, and do not consider

the weights of resulting modules. Let us denote the module en(n)/k(en(n)) by φn. Under

dimensional reduction, φn → φn−1 ⊕R
(n−1)
1 ⊕ 1. The R1 in the lower-dimensional theory is

a “generalised graviphoton”, whose dynamics is dictated by generalised gravity in the higher

dimension. We have not examined the details of this, but it clearly shows that one can have

fields in R1.
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The following is also worth noticing about derivatives on R1. Taking a derivative of a

field A in R1 gives DQA
R = ∂QA

R − ΓQM
RAM We can use the Z-tensor to pick out the g

part:

ZPQ
RNDQA

R = ZPQ
RN (∂QA

R − ΓQM
RAM ) = ZPQ

RN∂QA
R + ΓMN

PAM , (.)

where the the torsion-free property was used for the second term. If the free index pair N
P

is projected on g/h, only well-defined connection enters. In addition, the g/h part of the

compatibility equation (.) tells us that the g/h-valued part of a compatible ΓM contains

a ∂M and obeys the section condition. Therefore, even if the derivative R1 → g/h contains

connection, a field strength F = (DA)|g/h allows for a gauge invariance with parameter in

R2. Such an invariance is expected, since R
(n)
1 → R

(n−1)
1 ⊕ R

(n−1)
2 ⊕ 1 under dimensional

reduction.

We would like to say some words about the counting of degrees of freedom, both off-shell

and on-shell. The models we are dealing with are effectively euclidean field theories, so in

a strict sense it is not meaningful to talk about local on-shell degrees of freedom. What we

mean is the number of physical polarisations the on-shell fields would carry, had the model

been formulated with another real form of G corresponding to Minkowski signature after

solution of the section condition. This gives numbers that are of practical use, especially

when it comes to supersymmetric models [,] and matching of bosonic and fermionic

degrees of freedom.

The counting of off-shell degrees of freedom is straightforward. It is simply given by

the number of field components subtracted with the number of gauge parameters. Here, the

infinite reducibility has to be taken into account, and we thus know that the number of

off-shell degrees of freedom of a gauge field in Rk is

Nk =

∞∑

ℓ=0

(−1)ℓ|Rk+ℓ| . (.)

Such sums are näıvely divergent (the terms are alternating but growing) but have a mean-

ingful regularisation [,]. Of course, it is enough to perform the regularisation for N1 and

calculated the finite difference. The result for 1 ≤ k ≤ 8− n is

N
(n)
k =

{
|R(n−1)

k |+ 1 k = 1 ,

|R(n−1)
k | 2 ≤ k ≤ 8− n .

(.)

The numbers have the property N
(n)
k = N

(n)
10−n−k.
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The on-shell number of degrees of freedom can safely be deduced from the observation

that all the fields on the n-dimensional solution of the section condition are forms (ordinary

massless tensor fields). Therefore, the number of on-shell degrees of freedom of a field in

R
(n)
k is obtained as |R(n−2)

k |. The number of physical polarisations of a field is obtained by

regarding the “same” field in “two dimensions less”, just as the counting goes for massless

fields in Minkowski space. Since R
(n−2)
k+1 = R

(n−2)

10−n−k, this counting agrees with the dualisation

from a potential for F in R
(n)
k+1 to a potential for ∗F in R

(n)
10−n−k.

The counting has been tested on a number of non-gravitational supermultiplets [].

Here we will illustrate it by counting the bosonic degrees of freedom in the maximal gen-

eralised supergravity. Fields will transform under the SL(11 − n) or SO(1, 10 − n) “R-

symmetry” of the “reduced” directions, and behave as forms under these. If one associates

Rk with a k-form for k = 1, . . . [ 11−n
2 ], and asks for a selfduality for R 11−n

2
when n is odd,

the resulting counting is as follows:

n gen. gravity scalar coset Rk total

4 2 28
(
7
1

)
× 3 +

(
7
2

)
× 2 +

(
7
3

)
× 1 = 98 128

5 6 21
(
6
1

)
× 6 +

(
6
2

)
× 3 + 1

2 ×
(
6
3

)
× 2 = 101 128

6 13 15
(
5
1

)
× 10 +

(
5
2

)
× 5 = 100 128

7 24 10
(
4
1

)
× 16 + 1

2 ×
(
4
2

)
× 10 = 94 128

Table 4: Counting of bosonic degrees of freedom for maximal supersymmetry.

Note that for n = 7 also R2 = R9−n = 133, which we have not discussed above, is needed.

Maybe the dual of the well-defined derivative R1 → g/h can be of use. The appearance of

fields as forms in Rk is well known. In the present context it can also be obtained from

dimensional reduction. We have already seen that the generalised gravity on dimensional

reduction gives rise to a generalised graviphoton in R1. The generic rule for tensor fields is

that R
(n)
k gives rise to R

(n−1)
k and R

(n−1)
k+1 (with an extra singlet for k = 1 and k = 8 − n),

in close analogy to form fields. This is how the binomial coefficients are sequentially built.

7. Conclusions

We have presented a tensor calculus for exceptional generalised geometry. This includes

universal and covariant expressions for connections and curvatures. Our analysis agrees

with ref. [], but has manifest covariance, and with ref. [] for n = 4. We have also given

details on tensor gauge fields and their coupling to exceptional geometry. Some technical
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issues remain concerning the “generalised graviphoton” field. Even if the local description

in terms of a tensor calculus respecting infinitesimal transformation now seems complete,

important questions concerning the concept of generalised manifolds remain open. Hohm

and Zwiebach have discussed the issue of exponentiating the Lie derivative in double field

theory to a large diffeomorphism, but there are many remaining questions. An important

one is to find an integration measure.

In ref. [], minimal exceptional supergravity was formulated. In an accompanying pa-

per [] non-gravitational supermultiplets based on the tensor fields we present here were

constructed. Extended supergravity will demand inclusion of such multiplets. It would be

very interesting to investigate the possibility of formulating such models as some gener-

alised supergeometry. It is not clear which set of modules will accompany the Rk’s in order

to build the correspondence to “forms on superspace”. Such a formulation, preferably in an

off-shell version using pure spinor techniques generalising refs. [,], could perhaps provide

a simultaneous manifestation of supersymmetry and U-duality.

Note added: The paper [], which appeared on the completion of our work, specialises

on n = 7 and has a substantial overlap with the present paper concerning the geometric

analysis.

Acknowledgements: MC would like to thank Axel Kleinschmidt, Jakob Palmkvist and David

Berman for discussions.

Appendix A: Notation

G and H denote throughout the paper the groups G = En(n)×R+ and its compact subgroup

H = K(En(n)), and their Lie algebras (and adjoint modules) are written g and h. For the

complement to h in g we use “g/h” (even if “g ⊖ h” might have been more correct). A

projection of a 2-index object on g/h is denoted by curly brackets: {MN}.
We use the notation ∨ for symmetrised tensor product. The dimension of a module R

is denoted |R|. When a module in the sequence {Rk} carries an upper index, R
(n)
k , it refers

to n, the rank of the exceptional group.
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Appendix B: The action of a derivative among the Rk

Below are diagrams showing the action of a derivative fulfilling the section condition on

elements in Rk, 0 ≤ k ≤ 9 − n. The modules are split into modules of SL(n) × R. For
n = 6, 7, there is an SL(2) which is broken to R by the solution of the section condition.

Note that there are always two lines containing the ordinary n-dimensional forms. Other

lines consist of the tensor product of the forms by some non-trivial module. Such lines begin

at R1 and end at R8−n, and may be seen as responsible for the appearance of connection.

n = 4:

41 41
14/5

43/5 62/5

✛

41/5

✛

(4⊗ 4)0
✛

(4⊗ 4)0
4−1/5

✛

6−2/5

✛

4−3/5

✛

1−4/5

✛

4−1

✛
4−1

n = 5:

15/4
101 101

53/4
51/2

✛

101/4

✛

(5⊗ 5)0
✛

(5⊗ 5)0
10−1/4

✛

5−1/2

✛

5−3/4

✛

10−1

✛
10−1

1−5/4

✛
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n = 6:

12 12

201 61 61

✛
201

(6⊗ 6)0
✛

150

✛
150

✛
(6⊗ 6)0

20−1

✛
6−1

✛
6−1

✛
20−1

1−2

✛
1−2

n = 7:

72 72

73/2

351 351

211/2

✛

(7⊗ 7)0

✛

(7⊗ 7)0

21−1/2

✛

35−1

✛

35−1

7−3/2

✛

7−2

✛

7−2
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