CHALMERS |

UNIVERSITY OF TECHNOLOGY

¥ UNIVERSITY OF GOTHENBURG

Leveraging Data Augmentation for
Better Named Entity Recognition in Low-
Resource Settings

Master’s thesis in Computer science and engineering

Philip Bjornerud

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2024

MASTER’S THESIS 2024

Leveraging Data Augmentation for
Better Named Entity Recognition in
Low-Resource Settings

Philip Bjornerud

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2024

Leveraging Data Augmentation for Better Named Entity Recognition in Low-Resource
Settings
Philip Bjoérnerud

© Philip Bjornerud, 2024.

Supervisor: Dana Dannélls, Department of Swedish, Multilingualism, Language
Technology

Supervisor: Dimitrios Kokkinakis, Department of Swedish, Multilingualism, Lan-
guage Technology

Examiner: Jean-Philippe Bernardy, Department of Computer Science and Engineer-

ing

Master’s Thesis 2024

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: The illustration provides an abstract and artistic interpretation of Data
augmentation in natural language processing. Created by DALL - E.

Typeset in KTEX
Gothenburg, Sweden 2024

v

Leveraging Data Augmentation for Better Named Entity Recognition in Low-Resource
Settings

Philip Bjoérnerud

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

This thesis investigates the challenges in the field of Natural Language Processing
(NLP), with a focus on Named Entity Recognition (NER), a subtask within NLP
that involves classifying entities. Addressing the issue of data scarcity, which is
particularly critical in non-English languages like Swedish, this study investigates
various data augmentation methods by fine-tuning the transformer-based model,
KB-BERT. The datasets are simulated as low-resource settings, drawing inspiration
from the study X Dai and H Adel (2020) [1] work, using three sets of training data
containing 50, 150, and 500 instances respectively. The thesis also explores whether
a newly developed state-of-the-art data augmentation method can outperform other
data augmentation methods in enhancing an NLP model, centering on three data
augmentation methods: Synonym replacement, Mention replacement, and AugGPT,
the last being a state-of-the-art method. The findings of this study highlight that
synonym replacement emerged as the most effective data augmentation method
across various low-resource settings, achieving the highest Fl-score increase in all
scenarios. AugGPT achieved the second highest average Fl-score, while mention
replacement achieved the lowest across the tested settings.

Keywords: Named Entity Recognition, Data Augmentation, Low-Resource Settings,
Synonym Replacement, Mention Replacement, AugGPT.

Acknowledgements

I want to thank Dana Dannélls and Dimitrios Kokkinakis for all their help and
guidance during this project. Their support and advice have been really important
to me. Thank you both so much!

Philip Bjornerud, Gothenburg, 2024-01-25

vii

List of Figures

List of Tables

1

Contents

Introduction

1.1 Problem

1.2 Purpose

1.3 Limitationso

1.4 Ethical considerations and risks

Theory

2.1 Neural networkso
2.1.1 Attention
2.1.2 Transformerso
213 BERT

2.1.3.1 KB-BERT model

214 GPT .. oo

2.2 Named Entity Recognition
2.2.1 Ruled-based and lexicon-based approaches
2.2.2 Neural network approaches

2.3 Data augmentation00 Lo

Related work

3.1 Swedish NER resources

3.2 Low-Resource settings in NLP

3.3 Data augmentation in NLP

Data

4.1 Data e
4.1.1 Entities

Methods

5.1 Preprocessing o
5.1.1 Data Preparation and Tokenization
5.1.2 Simulating Low-resource settings and data split

5.2 Data augmentation

xiii

XV

15
15
16
17

19
19
20

21
22
22
23
24

ix

Contents

5.2.1 Augmentation methods
5.2.1.1 Synonym replacement
5.2.1.2 Mention replacement
5.2.1.3 AugGPT

5.2.2 Parameter setup and augmentation process

5.3 Model implementation and training

5.3.1 Model

5.3.2 Creating baseline and fine-tuning the model

5.3.3 Hyperparameter optimization

5.4 Ewvaluation

5.4.1 Evaluation of Data augmentation effectiveness in various low-
resource settingso

5.4.2 Augmentation Impacto

Results
6.1 Baseline
6.2 Synonym replacemento

6.2.1 Small training seto

6.2.2 Medium trainingset

6.2.3 Large training set 0oL

6.3 Mention replacement

6.3.1 Small training seto

6.3.2 Medium training seto

6.3.3 Large training set 0oL

6.4 AugGPT

6.4.1 Small training seto

6.4.2 Medium trainingset

6.4.3 Large trainingseto oL

6.5 Method comparisons
6.6 Cosine similiarty Lo

6.6.1 Small training seto

6.6.2 Medium trainingset

6.6.3 Large trainingset oo

Discussion

7.0.1 Data augmentation in various low-resource settings

7.0.2 NER AugGPT and traditional techniques

7.0.3 Cosine similarity versus Fl-score

Conclusion

8.1 Conclusion

82 Futurework
Bibliography

A Appendix Augmentation examples

35
35
35
36
37
39
40
41
42
42
44
44
45
46
47
49
49
49
50

53
53
54
55

57
57
57

59

Contents

B Appendix AugGPT Prompt 111

X1

Contents

xii

2.1
2.2

2.3
24

5.1
5.2
9.3
5.4
2.5
5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12
6.13

List of Figures

Example of an LSTM Network employing an attention mechanism to
highlight relational memory activation. Credit to the paper [18§]
Transformers architecture
BERT’s pretraining and the fine-tuning phase
Data augmentation levels

Pipeline
Entity class percentages
AugGPT method pipeline
New training datasets
Baselines creation Lo
Augmented datasets fine-tuning

F1-score comparison with a line chart for synonym replacement with
a large-sized dataseto
F1-score comparison with a line chart for synonym replacement with
a medium-sized dataset
F1-score comparison with a line chart for synonym replacement with
a large-sized dataset oL
F1-score comparison with a line chart for mention replacement with
a small-sized dataset 0L
F'l-score comparison with a line chart for mention replacement with
a medium-sized dataset oL
Fl-score comparison with a line chart for mention replacement with
a large-sized dataset
F'1-score comparison with a line chart for AugGPT with a small-sized
dataset
Fl-score comparison with a line chart for AugGPT with a medium-
sized dataset
F'1-score comparison with a line chart for AugGPT with a large-sized
dataset
Line chart for combined F1-score Comparison for synonym replace-
ment, mention replacement, and AugGPT
Cosine similarity for 50 instances
Cosine similarity for 150 instances
Cosine similarity for 500 instances

List of Figures

Xiv

4.1
4.2

0.1

0.2

2.3

6.1

6.2

6.3

List of Tables

Distribution of Named Entities in Swe-NERC Dataset
Named Entity Distribution by genre in the Swe-NERC Dataset. This
table presents the total number of tokens and instances of named
entities across different genres, providing insights into the dataset’s
composition and the prevalence of named entities in each genre.

Augmentation of the sentence "Anders went to the market" using
synonym replacement for non-entity tokens. In this case, "Anders"
is an entity that is not within the "O" class, labeled as a person.
Thus, it was not changed. The words "went," "to," and "market" are
"O" entity classes, and are the targets for synonym replacement. The
process involves finding synonyms for these words and replacing them
to create new sentences with similar meanings but different phrasing.
Our mentioned replacement method was used for the sentence "Yes-
terday, Julia visited a town' to generate augmented versions. We
used the resource from Sprakbanken, which provided us with a list
of alternative names corresponding to specific entity classes. ’Julia’,
classified under the PRS class, was replaced with other names like
‘Gustav’, ’Alex’, or 'Emma’. 0L
In our example, "Anders" is the entity to be maintained. Our method
is using the prompt: "Rewrite the following sentence Yesterday, An-
ders went to school three times". This ensures that the name ’Anders’
is included in each new sentence and that the output is three distinct
sentences that will keep the entity’s context.

Average Fl-scores and their percentage increases for different sizes of
training sets in synonym replacement augmentation, including delta
INCTEASES. .+ .« v v v v v e e et e
This table displays Fl-scores and their percentage increases across
different levels of augmentation and p-values in synonym replacement
methods. The table illustrates the impact each parameter setting had
on a small training set compared to the baseline.
This table displays Fl-scores and their percentage increases across
different levels of augmentation and p-values in synonym replacement
methods. The table illustrates the impact each parameter setting had
on a medium training set compared to the baseline.

20

25

XV

List of Tables

Xvi

6.4 This table displays F1l-scores and their percentage increases across
different levels of augmentation and p-values in synonym replacement
methods. The table illustrates the impact each parameter setting had
on a large training set compared to the baseline.

6.5 Fl-score Comparison for mention replacement across different sizes
of training sets, showing percentage and delta changes.

6.6 This table displays F1l-scores and their percentage increases across
different levels of augmentation in the mentioned replacement method.
The table illustrates the impact each parameter setting had on a small
training set compared to the baseline.

6.7 This table displays F1l-scores and their percentage increases across
different levels of augmentation in the mentioned replacement method.
The table illustrates the impact each parameter setting had on a
medium training set compared to the baseline.

6.8 This table displays Fl-scores and their percentage increases across
different levels of augmentation in the mentioned replacement method.
The table illustrates the impact each parameter setting had on a large
training set compared to the baseline.

6.9 Fl-score Comparison for AugGPT across different sizes of training
sets, showing percentage and delta changes.

6.10 This table displays Fl-scores and their percentage increases across
different levels of augmentation in the AugGPT method. The table
illustrates the impact each parameter setting had on a small training
set compared to the baseline.

6.11 This table displays Fl-scores and their percentage increases across
different levels of augmentation in the AugGPT method. The table
illustrates the impact each parameter setting had on a medium train-
ing set compared to the baseline.

6.12 This table displays Fl-scores and their percentage increases across
different levels of augmentation in the AugGPT method. The table
illustrates the impact each parameter setting had on a large training
set compared to the baseline.

6.13 Combined F1-score Comparison for synonym replacement, mention
replacement, and AugGPT across different sizes of training sets, show-
ing average increases and delta changes.

A.1 Data Augmentation for Original Sentence 1
A.2 Data Augmentation for Original Sentence 2
A.3 Data Augmentation for Original Sentence 3

1

Introduction

The rapid growth of data, combined with the advancements in technology, has po-
sitioned Natural Language Processing (NLP) at the forefront of machine learning
(ML) research. However, the quality of NLP models depends highly on the quality
and quantity of available training data. This is because these models learn based
on the patterns from the training data. This dependency poses a unique set of
challenges for languages like Swedish, where the availability of annotated data is
limited. With limited training data available, it can be challenging to train reliable
NLP models that generalize well. One of the important NLP subtasks is Named En-
tity Recognition (NER)[2], which is a task that involves recognizing and classifying
entities (e.g., persons, organizations, locations, medical terms, time expressions, etc)
within a given sentence. NER is an important task for understanding the meaning
of human language since the method not only helps in extracting data from large
volumes of text but also aids in analyzing the text efficiently. The availability of
training datasets significantly impacts the NER model’s performance, particularly
in low-resource environments, like newly developed domains. This is particularly
challenging as many non-English languages and specific domains lack annotated
data. Thus, finding ways which improve NER models in low-resource environments
can make advanced language tools more available, and enable the development of
new NLP applications across various domains.

There are several ways to mitigate the dependency on labeled data, one way is
to use fine-tuned models, which are pre-trained models that are adjusted for specific
tasks. Another approach has been to use methods such as data augmentation to
enhance the ML model’s effectiveness in NER tasks in low-resource environments.
Interestingly, these two methods can be effectively combined, by using data augmen-
tation to enrich the dataset before fine-tuning the model. However, utilizing data
augmentation is an area of ongoing research in numerous NLP tasks [3]. Since, the
area is constantly developing, where new data augmentation methods have emerged
with the help of large language models.

To demonstrate the significance of data augmentation methods within low-resource
settings, this study aims to evaluate the performance of both existing and newly
developed state-of-the-art data augmentation methods. By simulating different sets
of environments where annotated data is scarce, the study seeks to understand how
effectively these augmentation methods can mitigate the challenges posed by limited
data availability.

1. Introduction

1.1 Problem

NLP tasks depend heavily on the quality and quantity of available training data.
However, as mentioned in the introduction, this poses a set of challenges for low-
resource languages like Swedish, where annotated data is very limited. Annotation
can be very expensive and time-consuming and it is also required to have specialized
knowledge, making it a costly and often tedious process [3]. The lack of annotated
data can limit the potential of the NLP models. It has also been shown to be a
problem for particular tasks like NER. Therefore, it is a noteworthy problem to
address.

A potential solution to this issue is data augmentation, a method designed to expand
and improve the datasets by creating variants of the existing data. While data
augmentation is a promising approach, it is not without limitations. Some studies
have pointed out that certain data augmentation methods can be ineffective, thereby
it is important to also explore other state-of-the-art methods [4].

Thus, this thesis aims to address three problems:

1. Can various data augmentation methods, including modern, cutting-edge meth-
ods, effectively improve a NER model’s performance, particularly in a low-
resource setting?

2. Can a newly developed state-of-the-art data augmentation method demon-
strate superior performance in enhancing an NER model over existing meth-
ods?

3. How do different data augmentation methods impact the NER model in dif-
ferent low-resource settings?

1.2 Purpose

This research explores whether data augmentation can enhance performance in low-
resource settings with Swedish language datasets. Moreover, it has been inspired by
the X Dai and H Adel (2020) [1] work, which demonstrated that simple augmentation
methods can enhance the performance of transformer-based models, particularly for
very small training sets, which simulated a low-resource setting environment.

To determine if data augmentation can improve performance, we will be analyzing
subsets of the Swe-NERC Version 1 dataset [5]. The subsets will be selected following
the approach proposed by X Dai and H Adel (2020) [1] but with a slightly modified
approach. The three subsets will consist of 50, 150, and 500 sentences from the
training set, which will be used to create small, medium, and large training sets.

For the three subgroups, we will use both traditional data augmentation methods,
including synonym replacement and mention replacement, as well as modern method
like AugGPT, which utilizes the capabilities of ChatGPT [6]. These methods will
be used to determine whether augmentation can improve scenarios where the data

1. Introduction

resource is very scarce, by applying these methods to the scarce dataset and then fine-
tuning them separately with the same initial transformer model. To our knowledge,
there exists no study where ChatGPT has been used as a data augmentation method
for Swedish NER tasks. Thus, this is an interesting and unexplored area for our
study. Should our study yield successful results, AugGPT could potentially emerge
as a data augmentation method for low-resource languages such as Swedish.

The contributions of this thesis include:

1. An investigation on the effects of data augmentation methods in various low-
resource scenarios, categorized as small (50 instances), medium(150 instances),
and large(500 instances) to determine their effectiveness in enhancing a NER
model.

2. A introduction of cutting-edge data augmentation method, such as AugGPT,
into the context of Swedish NER, a research field that has not been applied
before.

3. A study of how F1-score relates to cosine-similarity when augmenting data.

4. A study of various data augmentation methods on the Swe-NERC dataset, a
21st-century Swedish text.

1.3 Limitations

One of the limitations of this thesis is the scope of ML models and datasets explored.
Due to the time constraints for this research, we have limited our study to use a
single ML model, Swedish BERT (KB-BERT) [7], and only the Swe-NERC dataset.
While this focused approach allows for a more in-depth analysis of the selected model
and dataset, it also leaves room for questioning the generalizability of the results.
Moreover, there exist endless data augmentation methods and model combinations
that could potentially improve the robustness of the solutions we propose. Given
the time limit of this work, we have to restrict the scope of what data augmentation
methods and models to use.

In this study, we use ChatGPT version 3.5, a large language model developed by
OpenAl, to augment data. However, it’s important to note that while the results
we have generated are unique and not fully reproducible in their exact form, similar
outcomes can be achieved through repeated experimentation.

1.4 Ethical considerations and risks

One ethical element to consider is the possibility of biases in the dataset. Social
media data often reflect the biases in society, which can propagated into the ML
models. The data is open-sourced, which largely mitigates problems over data pri-
vacy and anonymization.

1. Introduction

2

Theory

In this chapter, we will introduce the theory for our study, focusing on Transformer
architecture, BERT, Named Entity Recognition, and Data augmentation.

2.1 Neural networks

An artificial neural network model is a simplified and generalized version of the
brain’s actual neurons, which in recent years have achieved a significant accomplish-
ment in a broad range of domains, such as healthcare, business, education, and
economics [8].

A neural network consists of three types of node layers, which include an input
layer, at least one hidden layer, and an output layer. The input layer receives
numerical data in the shape of feature vectors and passes it on to the hidden layers
for processing. The functionality of the input layer is to work as an interface between
the neural network and the inputs. Once the numerical data has left the input layer,
it will pass through the hidden layers, where most of the computation occurs. The
concept of the hidden layers is to detect the underlying features of the input data.
When the data reaches the output layer, it will perform its last computation to
produce an output, which is used for decision-making. [9]

Each node layer will apply a linear transformation and add a bias vector to the
data that passes through from the previous layer. From this result, a non-linear
transformation will be applied through a so-called activation function, which is an
important feature of the architecture since it introduces non-linearity, and will help
the network to capture complex patterns. There are different types of activation
functions and the selection can influence the network performance since each is
suited for different tasks and network architectures. One of the more common
activation functions is Rectified Linear Units (ReLU) [10]. The equation is defined
as f(z) = max(0,z), where if 2 (the input to the function) is positive or zero, the
output is z itself, and if = is negative, the output is 0.

After feeding the input data, the network computes a prediction, and the difference
between the output and the true output value is calculated using a loss function.
The loss function computes the error, which denotes how distant the neural networks
predictions are from the true values. The objective of the network is to minimize
errors, which is often accomplished by something called backpropagation. During

2. Theory

the process of backpropagation, the gradients of the loss function for the model pa-
rameters are computed, which is later used to update the weights of the nodes. The
entire process is called one training step [11].

During training, hyperparameters influence the structure of the network and how
it learns, which affects the model’s performance. Some common hyperparameters
are learning rates, warm-up steps, early stopping rates, and batch sizes [12]. The
learning rate affects how much the network updates its weights based on the loss
gradient [13]. A learning rate that is too high may cause the model to overshoot the
minimum loss value, preventing it from converging to the optimal solution. However,
a too-low learning rate will cause the model to learn slowly, and possibly make the
model not converge at all. Warm-up steps are an extension of the learning rate,
which is designed to provide a model with an acceptable learning rate. It starts
initially with a reduced learning rate, after these steps, the network then adopts
the specified learning rate. Early stopping is a technique that is used as a security
mechanism to ensure the model does not overfit. During training, early stopping
monitors network performance and stops the learning when the model’s performance
stops improving [14]. Batch size is a hyperparameter that specifies the number of
training examples used in one iteration. A smaller batch size often provides the
network with lower generalization error, and a larger batch size helps the network
to converge faster [15].

2.1.1 Attention

Traditional models within the NLP domain have often struggled with long sequences,
while also maintaining context [16]. Attention mechanisms are a crucial tool within
neural network-based NLP as the architecture allows the network to focus on relevant
parts of input data for generating outputs [17]. Attention archives this by assigning
varying degrees of importance to different parts of the input, allowing the network
to focus on relevant parts and provide contextual attention. Figure 2.1 illustrates
how a long short-term memory network (LSTMN) [18] processes the sentence "The
FBI is chasing a criminal on the run" with the help of the attention mechanism.
The red color indicates the word currently being processed, while the blue color
marks previously processed words that the network considers relevant to the present
word. The intensity of the blue color illustrates the degree of memory activation,
illustrating how the model links the current word with its previously examined words

18].

6

2. Theory

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .
The FBI 8 chasing a criminal on the run .
The FBI is chasing a criminal on the run.

The FBI is chasing a criminal on the run.
The FBI is chasing a criminal on the run.
The FBI # chasing a criminal em the run.
The FBI is chasing @ criminal em the run.

The FBI is chasing a criminal on the run

Figure 2.1: Example of an LSTM Network employing an attention mechanism to
highlight relational memory activation. Credit to the paper [18]

The mechanism of attention involves the transformation of a query and a set of
key-value pairs into an output. This output is then calculated as a weighted sum of
the values, which serves to estimate the relevance of each value with respect to the
given query context.

Self-attention [19] is an extension of the attention mechanism. The difference is
that it further allows the model to consider the importance of some parts within a
sequence. Thus, allowing the model to examine the relationship between the input
sequence and the output sequence. In the context of self-attention mechanisms, the
components are the query (Q), keys (K), and values (V). The attention mechanism is
calculated as the dot product of the Q value and the K value, where the dot product
can also be scaled, resulting to a particular attention mechanism called Scaled Dot-
Product Attention [20]. The equation for the Scaled Dot-Product Attention can be
seen at equation 2.1

Attention(Q, K, V') = Softma (QKT> Vv (2.1)
ntion(Q, K, V) = max :
ven

In this equation, dj is the dimensionality of the K vectors, and the dot product is
scaled by +/dj, which is a feature of the Scaled Dot-Product Attention mechanism.

2.1.2 Transformers

The transformer architecture was introduced by Ashish Vaswani et al. [20] and since
its introduction, transformer models have significantly improved the state-of-the-art
applications for numerous NLP tasks. Transformers are a popular choice in deep
learning due to their ability to leverage parallel processing, which lets the mecha-

7

2. Theory

nism handle entire sequences in parallel. This handling improves the computational
efficiency.

The architecture of transformers is illustrated by Figure 2.2. In the processing
of data, two primary components are used in the model, the encoder component,
which is on the left of the architecture, and the decoder, which is on the right of the
architecture. Each of these main components is made up of sub-components, which
operate sequentially. The objective of the encoder component is to analyze the input
data and store the relevant information in a memory for the decoder to use later.
The encoder component contains multiple layers that work together to capture the
relationships between the input data. In contrast, the decoder’s primary role is to
create an output sequence, using the context provided by the encoder. It does this
by obtaining the output from the encoder and with its previous output [20].

Output
Probabilities

-
Add & Norm
Feed
Forward
e | ™\ | Add & Norm ﬁ
Eaeiong) Multi-Head
Feed Attention
Forward 7 Nx
\
Nix Add & Norm
(—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At it
- J >,
Positional @_@ ¢ Positional
Encoding y Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 2.2: Transformers architecture

The encoder component consists of six layers. Each layer consists of two sub-layers,

8

2. Theory

a multi-head self-attention mechanism, and a position-wise fully connected feed-
forward network. Each sub-layer is surrounded by a residual connection and a
normalization layer, which results in outputs of dimension 512 [20]. The decoder
component consists of six identical layers. However, it also includes an additional
sub-layer for multi-head attention over the encoder’s output. Additionally, the self-
attention sub-layer in the decoder is modified to prevent forward-looking attention,
which ensures the predictions only depend on previously known outputs [20]. The
primary objective for creating this architecture was to solve the issue of past archi-
tectures being unable to maintain the strength of the pre-trained representations,
particularly when using the fine-tuning method.

2.1.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-
based model that was introduced by Google in 2018 [21]. The BERT model is
developed using the transformer architecture, with the primary objective of manag-
ing the problem of previous architectures being unable to maintain the effectiveness
of pre-trained representations when using the fine-tuning method. The main draw-
back with the previous models was due to the models being unidirectional, which
limited the available options for pre-training architectures. Thus, those models were
not optimal for two different tasks, tasks that were in sentence-level, and tasks that
required context from both directions [21]. However, BERT tackles this problem by
using something called a Masked language model (MLM). The technique functions
by hiding selected tokens in the input at random, forcing the model to identify the
original vocabulary of these masked tokens, which enhances the model’s understand-
ing of the sounding context [21].

Figure 2.3 illustrates the two main stages of BERT’s training, the pre-training and
the fine-tuning phase.

NSP Mask LM Mask LM /@ MAD Start/End Span\
& @

BERT BERT

Masked Sentence A - Masked Sentence B Question P Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 2.3: BERT’s pretraining and the fine-tuning phase

2. Theory

During the pre-training phase, the BERT model will process unlabeled sentences
with two methods. The first method is called the Masked Language Model. The
MLM method will label certain words, which will later be masked, which will en-
able the model to predict words with the use of the surrounding context. This
will strengthen BERT’s ability to understand the surrounding context. The second
method is called Next-sentence prediction (NSP). NSP is used to decide what re-
lationship two sentences have to each other. In this approach, the BERT model
develops an understanding of the context at the paragraph level, by analyzing the
relationships between sentences. This will help the model to achieve a better under-
standing of the content. The left part of Figure 2.3 illustrates BERT’s analysis of
how two sentences are contextually related.

During the fine-tuning phase, which is illustrated in the right part of Figure 2.3,
BERT is customized for particular NLP tasks and will optimize all parameters with
the task-specific inputs and outputs. The pretraining phase is an unsupervised
method, whereas the fine-tuning phase is supervised. Thus, throughout this phase,
BERT requires labeled data since labeled data will provide important direction for
the model’s learning process during fine-tuning.

2.1.3.1 KB-BERT model

KB-BERT was developed by the National Library of Sweden’s KBLab [7]. The
model aimed to tackle the lack of dedicated resources specifically for the Swedish
language. Since the dependency on the previous models like Googles multilingual
M-BERT ! and Arbetsférmedlingens model ? was not fully optimized for the Swedish
language.

The effectiveness of KB-BERT is based on the quality of its training data, which
contains newspapers, reports, Swedish Wikipedia texts, and emails. As a result,
the model encapsulates a wide range of elements of the Swedish language and the
dataset ensures the model’s understanding of various linguistic semantics.

KB-BERT uses the foundation of Google’s BERT architecture, the training of the
model was conducted on the TensorFlow Research Cloud, which allowed for exten-
sive computational processing. The model underwent strict testing and benchmark-
ing, particularly using NER and Part-Of-Speech tagging (POS), where it illustrated
higher accuracy than the existing language models.

2.14 GPT

The Generative Pre-trained Transformer (GPT) architecture, was developed by Ope-
nAl [6], and is fundamentally based on the transformer model. The model is pre-
trained on a wide range of texts scraped from the internet, which enables it to
understand and produce human-like text. OpenAl has progressed through the GPT
series, including GPT-1, GPT-2, GPT-3, GPT-4, and recently GPT-4 Turbo, which
illustrates a continuous increase in the model’s size and complexity of the algorithms.

"https://github.com/google-research/bert/blob/master/multilingual .md
’https://github.com/af-ai-center/SweBERT

10

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/af-ai-center/SweBERT

2. Theory

ChatGPT, based on the GPT-3.5 and GPT-4 architecture, is a culmination of these
developments. Unlike its predecessors, ChatGPT is fine-tuned specifically for con-
versational tasks. It uses both supervised learning and reinforcement learning from
human feedback (RLHF)[6], a method in which its responses are more aligned with
human-like responses. This fine-tuning process allows ChatGPT to demonstrate
more contextual understanding.

2.2 Named Entity Recognition

Named Entity Recognition (NER) is a subfield of Natural Language Processing
(NLP) that focuses on determining and classifying named entities in textual data.
Some commonly used entities are names of people, organizations, locations, and
words that describe time. However, the scope of entities can be expanded depend-
ing on the specific needs of a task. For example, in medical applications, entities
like drugs, symptoms, and diseases could be used for the task [22]. The primary
goal of the NER task is to extract structural information from textual data. One of
the issues with NER applications is the understanding of the context in which an
entity appears. The same entity can appear with a different meaning in different
contexts. Thus, making it hard to determine which class an entity should belong
to. For instance, the word "Volvo" can be defined as an artifact, while simultane-
ously referring to Volvo as an organization. Some common methods for performing
NER tasks are rule-based, and Neural network approaches. However, some hybrid
approaches combine rule-based and neural networks [23].

2.2.1 Ruled-based and lexicon-based approaches

The rule-based method is a technique where linguistic specialists set linguistic rules
to identify named entities [24]. These rules are based on the structure of the language
and common patterns that indicate the characteristics of a specific named entity.

There are various strategies to construct rules for the ruled-based method. Lexical
rules are often derived by analyzing the words that are often based on specific word
structures. For example, lexical rules might identify capitalized words used in certain
contexts as nouns, hence the word is a potential entity class. In contrast, contextual
rules focus on individual words to consider the whole sentence. These rules analyze
the whole sentence to understand an entitys classification. For example, a word
that follows prepositions like "at" could be classified as an entity location. The
effectiveness of the rule-based method largely depends on the construction of the
rules because certain rules might not cover all entity variations, especially those
characterized by misspellings. Since these examples can differ from the rule criteria
[25].

2.2.2 Neural network approaches

Deep learning methods can perform tasks without the reliance on predefined rules
and self-made features. Recurrent Neural Networks (RNNs), Bi-directional Long

11

2. Theory

Short-Term Memory (BiLSTM) networks, and Convolutional Neural Networks (CNNs)
have become common models in the domain of NER tasks [26]. These deep learning
architectures are widely used due to their features to effectively process sequential
data, which is crucial when classifying named entities.

Transfer learning has become a crucial strategy in deep learning NER tasks, partic-
ularly useful for low-resource settings [26] since it involves training models on large
text corpora followed by fine-tuning for independent NER tasks. This method takes
advantage of the first model’s understanding of language structure, resulting in more
efficient recognition of named entity classes.

2.3 Data augmentation

The general goal of data augmentation is to construct diverse new data samples,
which also maintain the diversity of the data. The process involves generating new
data from existing data by applying various transformative methods. This exposes
the model to a wider range of variations. Thus, improves the model’s generaliza-
tion for unseen data. Data augmentation is applied in various fields, notably in
domains such as computer vision and NLP [27]. Within the domain of computer
vision, a variety of methods are used to augment data, including methods such as
rotation, scaling, and color changing, which are applied directly to the image pix-
els [28]. These methods generate diverse visual representations of the model, by
varying images in ways that simulate variations that represent real-world scenarios.
Although data augmentation has proven to be a practical tool in computer vision,
it introduces a different set of challenges in NLP. Instead of dealing with pixels,
augmentation methods in NLP focus on augmenting textual data, where each word
might have a specific semantic meaning. Thus, such methods require a different
approach to augment the data. Due to the complex structure of language, a spe-
cific methodology is required, where it is essential to augment the data in a way
that ensures the method introduces variations into the data while preserving some
contextual meaning [29]. This is because the structure of the data influences the
model’s performance and if the data differs too much from the original meaning, the
model could learn inaccurate patterns.

In the domain of NLP, data augmentation operates on four distinct levels as illus-
trated in Figure 2.4. These levels are:

o Character level: This involves editing text at the character level, Some com-
mon methods are random insertion, deletion, or replacement of characters.
These methods enhance the model’s capability to process texts with spelling
errors by incorporating noise-like mistakes during training. Thus, this ap-
proach trains the model to identify texts with similar errors more effectively,
improving its overall performance in handling such errors. [30].

e Word level: This method changes text at the word level, some common
methods are random deletion, word swap, and synonym replacement to in-
crease the diversity of the dataset. Thus improving the robustness of NLP
models against variations in language usage [31].

12

2. Theory

o Phrase level: Phrase level augmentation changes chunks of text. A common
method is back-translation, which is a process of translating a sentence into
another language and then translating it back to the original language, aiming
to maintain the same semantic content while potentially altering the structure
of the sentence [32].

e Document level: This approach alters entire documents. Some methods
involve reordering paragraphs or adding context to the model’s ability to un-
derstand and generate contextually relevant text.

Data Augmentation
Approaches

Character Word Phrase Document
level level level level

Figure 2.4: Data augmentation levels

Each level of augmentation is designed to simulate different types of variations and
challenges that an NLP model might encounter in real-world applications.

13

2. Theory

14

3

Related work

In the related work chapter, we will cover other work, which is related to our thesis
study. We will explore three areas: Swedish NER Resources, Low-Resource Settings
in NLP, and data augmentation in NLP.

3.1 Swedish NER resources

For the Swedish language, there have been several studies focusing on the field of
NER tasks. The paper by Ek et al. (2011) [33] addresses a NER system designed
for short text messages on mobile platforms. This research tackled problems such as
the lack of structured data, and shorthand expressions, which are diverse language
structures with slang and emojis. The study’s focus was on identifying entities
such as locations, names, dates, times, and phone numbers. The study employed
a rules-based method, which used a combination of regular expressions and logistic
regression classifiers to process the text efficiently, achieving an F-score of 0.86.

The paper by KBLab [7] pioneers a new direction for NER tasks in NLP with the
development of the Swedish BERT model, "KB-BERT". This study highlights the
creation and training of a language-specific BERT model for Swedish. The KB-
BERT model outperforms existing established NER models in various NLP tasks,
models such as Swedish Public Employment Service and Googles M-BERT. The
training of the model involved one million steps, utilizing a maximum sequence
length of 128 tokens and employing a batch size of 512. The results from this
training were as follows: at 10k steps, the NER F1-score was 0.8687, at 50k it was
0.912, at 150k it reached 0.918, at 350k it increased to 0.926, it was 0.925 at 700k,
slightly decreased to 0.923 at 1M, and peaked at 0.927 for 2M steps. However, the
research also acknowledges the ongoing challenges in NLP for lesser-used languages,
particularly highlighted by the limited availability and quality of training data for
languages like Swedish.

Stockholm-Umea Corpus (SUC) has traditionally been used as a golden standard
benchmark dataset for NER. However, SUC does not grasp the linguistic meaning
of the 21st-century Swedish language. The study conducted by Ahrenberg (2020)
introduced a new gold standard resource for Swedish Named-Entity Recognition
[34], the Swe-NERC Version 1 dataset. The new resource uses several categories for
the NER classification task, including Event (EVN), Organisation (GRO), Location
(LOC), Treatment (MNT), Person (PRS), Symptom (SMP), Time entity (TME),

15

3. Related work

and WorkOfArt/Product (WRK). The categories of symptoms and treatment are
new additions that are not used in the SUC dataset. The texts included in this
resource are mainly from around 2010, which provides a more modern language.
Thus, some of the texts have been extracted from various Swedish social media web-
sites, such as Flashback and Familjeliv, as well as from the Smittskydd website and
Wikipedia. The paper from Sparkbanken Text used the pre-trained BERT language
model for Swedish developed at KB-Lab, KB-Bert [35], where they integrated this
with a NER system devised by Kamal Raj !. The paper observed the average re-
sult from precision, recall, and Fl-score are nearly 10 % points below the results
obtained when using the SUC dataset with the same ML model. The paper by
Ahrenberg (2020) mentions that it is not a fair comparison to evaluate the newly
created resource against SUC 3.0 dataset since the SUC lacks name entity classes
for Treatments and Symptoms.

3.2 Low-Resource settings in NLP

The challenge of reaching high performance in NLP tasks under low-resource settings
has led to different approaches in data augmentation. Several studies highlight
methods and their effectiveness in such simulation settings.

The paper by X Dai and H Adel (2020) [1] study focuses on data augmentation
for NER tasks in the biomedical domains. The study demonstrated that even sim-
ple augmentation techniques could boost the performance of both recurrent and
transformer-based models. The low-resource environment was simulated by creat-
ing small, medium, and large training sets, selecting the first 50, 150, and 500 sen-
tences containing at least one entity mentioned from the training set. This approach
showed notable improvements over strong baselines, especially in smaller training
sets.

The work of Ahin, G. G. (2022) [36] delves into another direction of text augmen-
tation techniques in low-resource settings. The study found that text augmentation
greatly improved NLP models in three domains, dependency parsing, followed by
part-of-speech tagging, and semantic role labeling. The study also highlighted that
character-level methods were the most consistent performers in enhancing a model
in a low-resource setting, the paper sampled 250, 500, and 1,000 sentences from the
training data.

The paper by Wei, J., & Zou, K. (2019) [37] presents an EDA (easy data augmen-
tation) approach, which uses four different data augmentation methods: synonym
replacement, random insertion, random swap, and random deletion. The paper
illustrated that EDA methods improved performance in text classification tasks,
particularly for smaller datasets. The study conducted experiments using varying
fractions of training data, showing that training with data augmentation methods
on just 50% of the data could achieve the same accuracy as training with the full
dataset.

"https://github.com/kamalkraj/BERT-NER

16

https://github.com/kamalkraj/BERT-NER

3. Related work

3.3 Data augmentation in NLP

In the context of NER tasks, several studies have illustrated the successful utilization
of different data augmentation techniques to solve the challenge of limited data
availability. However, when it comes to research focusing specifically on the Swedish
language, there is a noticeable gap of lack of studies.

The paper by Erd et al.(2022) [38] applied three data augmentation techniques
to a German Legal Entity Recognition dataset, addressing the challenge of lim-
ited labeled data within German legal text. The study used synonym replacement,
mention replacement, and back translation methods as their data augmentation
methods. These methods were trained on models that used BiLSTM-CRF [39] and
a transformer-based architecture. The key findings were that synonym and men-
tion replacements yielded similar improvements, with mention replacement being
more time-efficient. However, back translation faced challenges due to the complex
nature of legal texts. In terms of performance gains, mention replacement using
the XLM-RoBERTa [40] model showed the most influential improvement, especially
with smaller datasets. The paper highlighted potential future improvements for each
data augmentation method. For back translation, the paper suggested improving
the structural framework of the technique to more effectively manage the complexi-
ties of legal language, for mention replacement, the paper suggested expanding the
method by integrating a knowledge base to introduce new entities that were more
relevant, and for synonym replacement, it highlighted the need to adjusting the
method to make sure the new words aren’t too identical to the original ones.

Motivated by the success of the current large language models, specifically Chat-
GPT, the paper by Dai et al, 2023 [4] proposes a new data augmentation approach,
AugGPT. AugGPT rephrases sentences in training samples into multiple semanti-
cally varied instances that enhance the dataset for model training. The study uti-
lized three distinct datasets. The Amazon dataset, which is composed of customer
reviews, the symptoms dataset, sourced from Kaggle, which is composed of descrip-
tions of medical symptoms, and the PubMed20K dataset, which contains annotated
data from the biomedical field. These datasets were chosen for their relevance to
the study’s focus on clinical NLP, as annotated data is often limited. The AugGPT
method consists of two main steps. First, it uses ChatGPT to create new sentences,
which are semantically similar data samples to the original data. Second step, it
trains a BERT-based sentence classifier using these newly generated samples. The
results reveal that AugGPT performs better than the current data augmentation
method within text classification tasks with limited data.

17

3. Related work

18

4

Data

In the Data chapter of this report, we provide an overview of the datasets used for
fine-tuning our models. In this chapter, we will explore the formatting and content
of the dataset.

4.1 Data

For this study, we used the Swe-NERC dataset [5], a corpus focused on NER in
the 21-century Swedish language. The dataset has been sourced by scraping various
social media platforms and websites, providing a wide range of data on different
genres of text and also unfiltered language usage. Unlike traditional publications
or edited works, social media texts often provide language that is unfiltered and
raw. During the inspection of the Swe-NERC dataset, I found a range of spelling
errors and grammatical inconsistencies. For instance, the Swedish word "original
was often misspelled as "orginal," and common expressions like "tyvarr," and "i sa
fall" also appeared in incorrect spelling such as "tyvér" and "isafall". The Swe-NERC
dataset contains the following genres:

1. bloggmix: Texts from blogs that focus on the life of young people.

2. Familjeliv-barnhilsa: Posts from a social forum that discusses children’s
health.

3. Flashback-fordon: Posts that are centered around cars and other vehicles.
4. SIC: Blog that is describing everyday activities.

5. Goteborgsposten: Articles from daily newspaper .

6. Smittskydd: Texts from a medical periodical.

7. Wikipedia-krig: Wikipedia articles on wars history.

In Table 4.1, the distribution of named entities within the Swe-NERC dataset is
outlined by genre. This table provides an enumeration of the number of tokens and
instances of named entities for each genre. Highlighting the dataset’s diversity.

19

4. Data

Table 4.1: Distribution of Named Entities in Swe-NERC Dataset

Genre Tokens | Instances
Bloggmix 29,052 1,079
Familjeliv-barnhalsa | 25,867 768
Flashback-fordon 23,824 940
SIC 9,938 397
Goteborgsposten 20,971 1,549
Smittskydd 16,927 928
Wikipedia-krig 15,855 1,815

Table 4.2: Named Entity Distribution by genre in the Swe-NERC Dataset. This
table presents the total number of tokens and instances of named entities across
different genres, providing insights into the dataset’s composition and the prevalence
of named entities in each genre.

4.1.1 Entities

The Swe-NERC dataset includes a wide range set of named entities across different
categories. The different categories and their associated metrics are enumerated as
follows:

1. Event (EVN): This entity contains 564 tokens and 275 instances. Entities in
this category refer to occurrences of events like gatherings, natural disasters,
or historical events.

2. Organisation (GRO): This entity contains the names of corporations, in-
stitutions, and other types of organizations. It holds 1,910 tokens and 1,439
instances.

3. Location (LOC): This entity contains geographical locations such as coun-
tries, cities, and landmarks. It holds 1,205 tokens and 1,031 instances.

4. Treatment (MNT): This entity contains medical treatments, drugs, and
medical procedures, with 267 tokens and 197 instances.

5. Person (PRS): This entity contains fictional or real names. It holds 2,186
tokens and 1,323 instances.

6. Symptom (SMP): This entity contains 1,248 tokens and 792 instances. Symp-
toms and medical conditions are classified under this entity.

7. Time entity (TME): This entity contains 2,806 tokens and 1,377 instances.
Time-related words such as dates, and periods related to time are used here.

8. Work of Art / Product (WRK): This entity contains 2,081 tokens and
1,042 instances. Names of artistic works and movies are included here.

9. Other (O): This category is for words (or entities) that do not fit into any of
the above. It includes 130,239 tokens.

20

O

Methods

In this chapter, we will present the methods used in this thesis. Iterative processes
have been used to shape the approaches. Here, we will explain how we preprocessed
the data before training, what data augmentation methods we used for our thesis,
and our model implementation. The pipeline described in Figure 5.1 illustrates a
view of the study’s implementation.

50

sentences sentences

150

500
sentences

—

Swe-NERC Dataset ——| Train Split (80%) |—| -oW-Tesource
; : settings
Synonym
__ o
Evaluation Training Data Augmentation Re’;‘,g’;ﬂ;"em
AugGPT
KB-BERT
model

Figure 5.1: Pipeline

The overall methodology begins with the Swe-NERC Dataset. This dataset was
split and 80% of the data was allocated for training. However, further modifications
were made to the training data to simulate low-resource settings. Therefore, three
different subsets of the training data were created, corresponding to 50, 150, and
500 sentences, where we ensured to have a variety of genres. These three subsets
were then used for fine-tuning the model.

In the data augmentation phase, different techniques were implemented, such as syn-

21

5. Methods

onym replacement, mention replacement, and AugGPT, which generated multiple
new datasets.

The chosen model for this study was KB-BERT, which was independently fine-tuned
with our three low-resource training sets, from which we derived the baseline F1-
scores from. Additionally, we independently trained the model with new training
sets, generated with our data augmentation methods applied to the low-resource
training sets. Further details on the training procedure are provided in Sections
5.2.2 and 5.3.2.

5.1 Preprocessing

Preprocessing is a crucial step for NLP tasks. The method serves as an approach
for structuring raw data into an appropriate structure before feeding it to the ML
model. For this section, we will detail the steps we took to preprocess the data.

5.1.1 Data Preparation and Tokenization

During this step, we were involved in several stages of data preparation before
training the machine-learning model.

The first step was to prepare data for NER by filtering representative sentences with
two filter criteria. The first filter criteria saved sentences that contained at least one
label other than "O", and removed all sentences only containing the class "O". In
NER tasks, "O" stands for non-entity class and usually indicates that the word or
token doesn’t belong to any named entity category. By choosing sentences with
at least one named entity, we ensured the model got entities to learn from during
the training. The second part of the filtering criteria involved the sentence length,
which was done by limiting the sentences by 25 tokens. This length criterion made
sure that the model was trained on sentences that were reasonably sized, which was
essential for computational efficiency, and also enabled the model to achieve better
generalization.

Our second step was to tokenize the data. Tokenization is a method used in NLP
to split a text into smaller parts. This method is important for preparing text be-
fore using ML models since it breaks down language into smaller parts, which is
easier for the model to process. For this part, we employed the AutoTokenizer from
the Hugging Face Transformers library [41]. The AutoTokenizer we used was the
"KBLab/bert-base-swedish-cased-ner" model !. Despite the sentences already being
split into tokens, the KBLab’s tokenizer was necessary to use, since it provides a
specific input format, which the BERT model needs. Another reason for using that
tokenizer was due to its incorporation of special tokens, such as [UNK] for unknown
words, [SEP] and [CLS] for separating and classifying sentences, respectively, and
[PAD] for padding shorter sequences to a uniform length, which is important en-
abling the model’s understanding of sentence context. The tokenizer from KBLab is
a standard BERT base tokenizer for the Swedish language, which has been trained

https://huggingface.co/KB/bert-base-swedish-cased

22

https://huggingface.co/KB/bert-base-swedish-cased

5. Methods

on a wide collection of text sources, and has a vocabulary size of around 50,000
words. The tokenizers converted words into token IDs and generated metadata for
the BERT model, including attention masks and segment IDs. These components
are important as they allow the BERT model to process the input data effectively.

5.1.2 Simulating Low-resource settings and data split

In the field of NLP, situations, where data are scarce, are often referred to as "low-
resource settings'.

Within the context of this thesis, an attempt was made to replicate and evaluate
performance under these low-resource scenarios. The initial dataset was split with a
ratio of 80% for training, 10% for validation, and 10% for testing. The training data
was further modified to simulate a low-resource setting by creating three unique
training subsets to simulate various low-resource scenarios, these subsets were then
used as our training datasets when fine-tuning our model (the remainder of the
training data was not used). These subsets were also created to contain a diverse
range of genres from the SWE-NERC dataset, which was achieved by randomizing
the data. Additionally, we made sure that the distribution of entities in these subsets
closely resembled the entity distribution found in the original dataset.

The three distinct training subsets are outlined below:
o Small: This subset included 50 sentences.
e Medium: This subset included 150 sentences.
o Large: This set included 500 sentences.

The goal of creating these subsets was to determine the model’s performance when
trained on a very constrained amount of data.

Figure 5.2 illustrates the distribution of each entity class between the training, val-
idation, and test datasets split, excluding the "O" class. Each bar represents the
percentage of a specific entity relative to the total number of non "O" entities within
its respective dataset. The training dataset illustrates the initial distribution used
for training the model. The test dataset was created with a unique set of examples
that the model has not encountered before. Using this method guarantees that the
test set performance of the model is a reliable measurement.

23

Percentage (%)

5. Methods

Entity Distribution (Percentage) Across Different Dataset Subsets

Dataset Subsets
257 HE Small
N Medium
H large
I \alidation
20 Test
15+
10t
5_ I t
0 © & - (@] N) Q &
& N N N & & 23 &

Entity Types

Figure 5.2: Entity class percentages

5.2 Data augmentation

In this section, we will present the chosen data augmentation methods utilized in
our study, along with the specific parameters applied for each method.

5.2.1 Augmentation methods

In this section, we will detail the data augmentation methods used to enhance the
model. Some of the real augmented examples and their corresponding results can
be viewed in Appendix A.

5.2.1.1 Synonym replacement

Our method, synonym replacement is inspired by the paper Dai, X., & Adel, H.
(2020) [1]. The idea behind this method was to substitute some selected words which
were labeled with the entity "O". The selected word was substituted with its related
synonym, allowing us to generate sentences that maintain semantic similarity while
introducing some variation to the model. This method ensured that named entity
classes, which held contextual meanings, remained unchanged. Thus, the method
could deliver a balanced combination of various sentences, while also keeping the
contextual meaning of the original sentences. For this method, we primarily used
Sprakbanken’s lexicon Swesaurus [42] as a resource. The resource was mainly used

24

5. Methods

because it is a reliable source specifically designed for Swedish synonyms. The
resource contains around 12,764 synonyms. However, when the method could not
identify a synonym, we supplemented it with an external API to ensure completeness.
For this objective, we utilized the API provided by Synonymord [43]. Sometimes we
obtained multiple synonyms for a specific word. In such cases, we randomly selected
one synonym to use in our dataset.

Table 5.1 shows how one sentence can be augmented three times with the synonym
replacement method.

Original Sentence
Token | Anders | went to market
Label | PRS O O O
Augmented Example 1
Token | Anders | traveled toward | marketplace
Label | PRS O O O
Augmented Example 2
Token | Anders | journeyed | into bazaar
Label | PRS O O O
Augmented Example 3
Token | Anders | moved towards | emporium
Label | PRS O O O

Table 5.1: Augmentation of the sentence "Anders went to the market" using synonym
replacement for non-entity tokens. In this case, "Anders" is an entity that is not
within the "O" class, labeled as a person. Thus, it was not changed. The words
"went," "to," and "market" are "O" entity classes, and are the targets for synonym
replacement. The process involves finding synonyms for these words and replacing
them to create new sentences with similar meanings but different phrasing.

5.2.1.2 Mention replacement

Our second data augmentation is inspired by Erd, R., Feddoul, L., Lachenmaier,
C., Mauch, M. J. (2022) [38]. Mention replacement is a method for enriching
training data for NER models. The method targets entities in sentences labeled
with classes other than "O". The mentioned replacement method involves replacing
labeled entities in the dataset with different entities of the same entity class. Entities
labeled as "O" were left out. This method ensured the introduction of variations in
the dataset while maintaining the grammatical structure of the original sentences.

In implementing our approach, we utilized a collection of entity words from the
Sprakbanken language resources [44] [45]. The SMP class included 3,206 words
related to medical symptoms. Entities associated with WRK and GRO classes
included 3,163 words. The TME class provided a collection of 105 words, the EVN
class included 797 words, the MN'T class provided us with 2,773 words, the PRS class
contained 1,449 words, and the LOC class included 107,190 words that correspond
to locations.

25

5. Methods

For our implementation, we started by creating a function to load entities from a text
file, and we categorized them by their respective class labels. Then, we implemented
a function to shuffle these entities and generate a unique set of replacements for each
entity class, intentionally excluding the non-entity "O" class. Our augmentation
procedure involved iterating over each sentence in the dataset and replacing named
entities with their randomly generated alternatives. This was repeated to produce
multiple augmented variants of each original sentence.

The table 5.2 illustrates augmentation example with the method mentioned replace-
ment,

Original Sentence
Token | Yesterday | | Julia | visited | a | town
Label O @) PRS @) O O
Augmented Example 1
Token | Yesterday | , | Gustav | visited | a | town
Label O) PRS @) O O
Augmented Example 2
Token | Yesterday | |, Alex | visited | a | town
Label O @) PRS O O O
Augmented Example 3
Token | Yesterday | , | Emma | visited | a | town
Label O O PRS O O O

Table 5.2: Our mentioned replacement method was used for the sentence "Yesterday,
Julia visited a town" to generate augmented versions. We used the resource from
Sprakbanken, which provided us with a list of alternative names corresponding to
specific entity classes. ’Julia’, classified under the PRS class, was replaced with
other names like 'Gustav’, ’Alex’, or 'Emma’.

5.2.1.3 AugGPT

For our third method, we got inspired by the approach by Dai et al, 2023 [4]. How-
ever, some modification was made, since the Dai et al approach was made for text
classification problems. Our modified method was designed to preserve non-’O’
classes while changing the surrounding context. Thus, extending the dataset with-
out altering the semantic structure, and creating diverse linguistic variations around
the entities.

During the augmentation process, a prompt is constructed to guide the GPT model
in rewriting the sentence. The prompt, written in English for clarity here, instructs
the model to "Rewrite the sentence x times, retaining the following words [list of
entities]". The prompt used for this thesis can be seen in Appendix 2. The con-
struction of this prompt is crucial since it tells the model which words are essential
to preserve while altering the rest of the sentence. If a word containing an entity
(which should be retained) is altered, it becomes impossible to map the entity back
to its original class, as we no longer know to which class it belonged.

26

5. Methods

Figure 5.3 illustrates an overview of the AugGPT method pipeline, showcasing how
the method maintains specific entities within a sentence during augmentation. These
entities, referred to as "word1" and "word2" in the figure are the entities not belonging
to the "O" class in that sentence. The AugGPT model takes the original sentence
and, through a predefined prompt is instructed to construct new sentences that
maintain the original meaning but with some variation.

Augmented sentence 1

Prompt:

Sentence = “Rewrite the following

. Augmented sentence 2
sentence three 1II'T'IES, 9

retaining the words:
*word1”, “word2"

Augmented sentence 3

Figure 5.3: AugGPT method pipeline

The table 5.3 illustrates augmentation example with the method AugGPT,

Original Sentence
Token | Yesterday , Anders went to school
Label O O PRS O O O
Augmented Example 1
Token | Anders | attended | school | yesterday .
Label PRS O O O O

Augmented Example 2
Token | School was where | Anders | spent | yesterday
Label O O O PRS O O
Augmented Example 3
Token | Yesterday saw Anders | heading to classes
Label O O PRS O O O

Table 5.3: In our example, "Anders" is the entity to be maintained. Our method is
using the prompt: "Rewrite the following sentence Yesterday, Anders went to school
three times". This ensures that the name ’Anders’ is included in each new sentence
and that the output is three distinct sentences that will keep the entity’s context.

5.2.2 Parameter setup and augmentation process

In this section, we will detail the specific settings used for data augmentation. The
first key tuning parameter relates to the number of generated instances of the raw
dataset, for every raw data sample in the training set(50,150,500). We selected an

27

5. Methods

augmentation level parameter from a predefined list of ratios: {1, 3, 5}, which is
how many augmented instances are created from each original sentence from that
raw dataset. For example, if we are working with the small training set with 50
raw sentences and select a ratio of 3, this would result in the outcome of 150 new
augmented sentences. Likewise, if 500 raw sentences are selected with a ratio of
5, it would result in the outcome of 2500 new augmented sentences. Our second
setting parameter was a "p-value', which sets the probability of whether a specific
word in a sentence will be augmented or not. The following p-values [0.3, 0.5, 0.7]
were used. Synonym replacement relies on a probabilistic approach where each word
in a sentence that is within the "O" class entity has a certain probability of being
replaced with a synonym, making the method dependent on the p-value parameter.
In contrast, AugGPT doesnt focus on modifying individual words, instead, it gener-
ates entirely new text based on the entity classes that are not the "O" class. Similar
to the mentioned replacement method which works on a different approach, where
the method replaces all occurrences of entities that are not within the class "O" in
each sentence, rather than making probabilistic changes to individual words.

In our methodology, each data augmentation method was applied once to the three
training datasets, where 15 new training sets were created from each raw training
set. In total, we created 45 new augmented training datasets by combining all
three methods and their respective parameters. Synonym replacement contributed
to 27 new training datasets in total (because of its two parameters used), while the
mentioned replacement and AugGPT contributed to 9 each. The procedure can
be viewed in Figure 5.4. The KB-BERT model was then independently fine-tuned
using each of the new training datasets.

Training
Small (50 Medium (150 Large (500
(80%) (50) (150) ge (500)
Validation
SWE-NERC (10%)
Synonym Synonym Synonym
replacement replacement replacement
Test : _ ,
10% Mention Mention Mention
(°) replacement replacement replacement
Auggpt Auggpt Auggpt
| |
_L | i |
15 new 15 new 15 new
training set training set training set

Figure 5.4: New training datasets

28

5. Methods

5.3 Model implementation and training

In this part, we will explain the implementation of the model used in the thesis,
along with the choice of our hyperparameters, and how we fine-tuned the model.

5.3.1 Model

In this study, we used the fine-tuned model checkpoint "KBLab/bert-base-swedish-
cased-ner" 2, which is fine-tuned NER model, with similar NER task.

Choosing this specific model was motivated by several factors, including:

o Language: The KB-BERT model is designed for the Swedish language. Thus,
making the model a suitable choice for our study.

o Task Optimization: The model offers a useful basis to evaluate the level of
training performance in low-resource settings since it is already fine-tuned for
a similar NER task.

The model was built using PyTorch [46] and Hugging Face’s transformers library
[47]. PyTorch handled the deep learning tasks, and the transformers library made
it easy to use the pre-trained model and tools. Thus, making the implementation
straightforward.

5.3.2 Creating baseline and fine-tuning the model

Our study focuses on the influence of data augmentation on model performance
within low-resource settings. Thus, it was essential to create a reliable baseline.
The baseline serves as our reference for our data augmentation methods. Figure 5.5
illustrates the creation of our baselines.

2https://huggingface.co/KB/bert-base-swedish-cased-ner

29

https://huggingface.co/KB/bert-base-swedish-cased-ner

5. Methods

Simulating Low-resource settings

Training
Small (50 Medium (150 Large (500)
Validation Fine tuning separately
SWE-NERC (10%)
KB-BERT KB-BERT KB-BERT
Test
(10%)
[Evaluation Evaluation Evaluation
F1-score for F1-score for F1-score for
small dataset medium dataset large dataset
baseline baseline baseline

Figure 5.5: Baselines creation

The baseline refers to the Fl-score acquired from the KB-BERT model when fine-
tuned on the small, medium, and large datasets, where no data augmentation was
applied. We created our baseline by creating three raw datasets reflecting the com-
mon limitations found in low-resource settings, one with 50 sentences, a second with
150 sentences, and a third, with 500 sentences. Our approach to establishing the
baseline involved fine-tuning the KB-BERT model on each of these new training
sets independently.

The fine-tuning was conducted by first downloading the pre-trained model, KB-
BERT from the Hugging Face Transformers library. We instantiate the model
by using the Trainer class from the library, where we configured the pre-trained
KB-BERT model with hyperparameter optimization to optimize the model’s perfor-
mance during the fine-tuning phase.

Following the establishment of the baseline with the raw datasets, we applied our
data augmentation methods to each dataset, creating new datasets, which were
illustrated in Figure 5.4. The augmented datasets were then fine-tuned on the same
initial KB-BERT model, with the same configurations as the fine-tuning for our
baseline. Figure 5.6 illustrates an example of the pipeline for the large training set,
the same procedure was done on low and medium training sets.

30

5. Methods

Fine-tuning separately with

Low-resource Augmentation methods New datasets training & validation set

training set

Evaluation with test set F1-scores for comparisons

| hl
Synonym - [.l ; u \ -~
— ' KB-BERT'S ; s
replacement I — —_— Models]_, Evaluations F1-scores

Mention
Large (500) 2])
- atasets| — l KB-BERT'S | [Models ‘ F1-scores
replacement dataset Evaluations
AugGPT |:‘ . h
g datasets . r P
KB-BERT'S l f F1-scores

1

.‘

Figure 5.6: Augmented datasets fine-tuning

5.3.3 Hyperparameter optimization

Hyperparameters were optimized during the training process of our model to in-
crease the model’s ability for learning and data generalization. We implemented
a random search method [48], which allowed us to have a wide exploration of the
best parameter values, increasing the possibility of selecting the best combination of
hyperparameters. Random search operates by randomly choosing combinations of
hyperparameters from a specified range for each hyperparameter. This randomized
strategy is effective in quickly deciding the most optimal parameters, often requiring
fewer iterations compared to other methods, such as grid search [48], which explores
all possible combinations of hyperparameters.

Below, we describe the individual hyperparameters we used for our study:

e Max Epochs: Our training was conducted with a maximum of 20 epochs to
allow for wide performance evaluation.

e Learning Rate: We began with an initial learning rate of 2 x 107°. Through
our random search, we tested learning rates ranging from 5 x 107% to 5 x 107°,
with 2 x 1075 being the starting point.

« Weight Decay: We utilized a weight decay of 0.01 to negate potential overfit-
ting. The parameter was varied between 0.001 and 0.1, during the fine-tuning
phase.

e Warm-Up Steps: A warm-up phase using between 10 and 500 steps was
used to scale the learning rate up.

o Batch Size: We chose a batch size in the range of 8 to 32.

o Early Stopping: An early stopping criterion was implemented to halt train-
ing if the validation performance did not improve for a certain number of
epochs. We set a maximum of 5 epochs.

31

5. Methods

5.4 Evaluation

In this section, we evaluated our NLP model and methods, focusing on their impact
in different low-resource settings and the impact augmentation had on the score. Our
evaluation was based on metrics such as the F1-score to measure entity recognition
accuracy and the cosine similarity to understand how augmentation affected the
score.

5.4.1 Evaluation of Data augmentation effectiveness in var-
ious low-resource settings

In this subsection, we evaluated the performance of our model on datasets of 50, 150,
and 500 sentences, to simulate different low-resource environments. To measure the
models’ entity recognition abilities, we used the F1-score metric. For calculating the
Fl-score, we used the seqeval metric library [49], with the micro-averaging. This
metric allowed us to evaluate the model’s performance by considering the correct
and incorrect predictions of entity classes.

For this evaluation process, we began by setting a baseline, where we fine-tuned the
KB-BERT model on each of the raw datasets independently, recording the F1-scores.
Following the baseline result, we applied our three data augmentation methods:
Synonym Replacement, Mentioned replacement, and AugGPT, each with multiple
parameters, which created multiple new datasets. We fine-tuned the KB-BERT
model independently on each of the augmented datasets to evaluate the effect of
each data augmentation method and its parameters. We then recalculated the F1-
scores for the models fine-tuned on the augmented datasets and compared them
to their respective baseline F1-scores, and to each other. This evaluation provided
us with insights into how data augmentation affected performance in various low-
resource settings.

5.4.2 Augmentation Impact

To evaluate the impact our augmentation method had on our model’s performance,
we used the Swedish sentence-BERT transformer 3. The method involved calculating
the cosine similarity [50] between the original sentences and their augmented version,
which provided us with an understanding of the effect the augmentation had on the
performance of the model. The metric calculates the degree of similarity of two
sentences. Thus creating a basis for data augmentation evaluation. A score of 1
implies that the two sentences are semantically identical, meaning the augmentation
method has made no changes to the original meaning of the sentence. A score lower
than 1 indicates deviation during the augmentation method. For each method and
dataset, we calculated the average value of all these cosine similarity scores with the
Swedish sentence-BERT transformer. The mean value provided us with a general
view of how the augmentation preserved the original sentence’s meaning with the
method. We then extended our approach by creating a plot that displayed the

Shttps://huggingface.co/KBLab/sentence-bert-swedish-cased

32

https://huggingface.co/KBLab/sentence-bert-swedish-cased

5. Methods

cosine similarity values against the Fl-score, which illustrated the influence of cosine
similarity on the Fl-score for each method and dataset.

33

5. Methods

34

O

Results

The Results section of this thesis is structured to analyze the impact of various
augmentation methods on dataset performance. We begin each section by present-
ing an overview of a specific augmentation method, highlighting its average results
across all used parameters. This is followed by detailed subsections where we illus-
trate how each parameter influences performance across different datasets: small
(50 instances), medium (150 instances), and large (500 instances). Subsequently, we
will present a comparison analysis of the different methods used in this thesis. The
chapter will also present an analysis of the relationship between cosine similarity
and Fl-score across each dataset.

6.1 Baseline

The baseline F1-scores for small, medium, and large training sets were recorded at
0.384, 0.445, and 0.639, respectively, which served as a reference for evaluating the
impact of the augmentation.

6.2 Synonym replacement

In evaluating the effectiveness of synonym replacement as a data augmentation
method, we observed significant improvements in the F1-scores across various train-
ing set sizes. The results displayed in Table 6.1 illustrate the impact of the synonym
replacement method, where both the percentage increase and the Delta are calcu-
lated based on the average result from all different parameter settings used for the
specific dataset size. For the synonym replacement method, the F1l-scores showed
significant increases for all low-resource settings. For the small training set, the
increase went from 0.384 to 0.409. The medium and large training sets, however,
showed more noticeable improvements. The F1-score for the medium training set
went from 0.445 to 0.538, and for the large set, it went from 0.639 to 0.728. For
the average improvement on the Fl-score with the synonym replacement method,
we observed increases of 0.025, 0.093, and 0.089 for the small, medium, and large
sets, respectively. The average delta increase across all sizes was calculated at 0.069.
These enhancements result in percentage increases of 6.48%, 21.00%, and 13.93%.

35

6. Results

Synonym replacement | Small | Medium | Large | Overall Avg. Increase
Baseline 0.384 | 0.445 0.639 -

F1-Score 0.409 | 0.538 0.728 -

Percentage Increase 6.48% | 21.00% 13.93% | 13.80%

A 0.025 | 0.093 0.089 0.069

Table 6.1: Average Fl-scores and their percentage increases for different sizes of
training sets in synonym replacement augmentation, including delta increases.

6.2.1 Small training set

In the analysis of the impact of synonym replacement on the F1-score, Figure 6.1 and
Table 6.2 provide an overview of the outcomes at various augmentation levels and
p-values. The data shows a fluctuation in F1-scores depending on the augmentation
parameters. For small-sized datasets, the best parameter setting was an augmenta-
tion level of 5 with a p-value of 0.7, resulting in the highest F'1-score of 0.471. The
least effective setting for small-sized datasets occurred at an augmentation level of
1 with a p-value of 0.5, where the F1-score increased to only 0.386.

At augmentation level 1 and a p-value of 0.3, the Fl-score increased to 0.390. When
the p-value was raised to 0.5, the Fl-score increased to 0.386, and at a p-value of
0.7, it further increased to 0.394. At augmentation level 3 with a p-value of 0.3,
the F1-score significantly increased to 0.431. With a p-value of 0.5 at this level, the
Fl-score was 0.398, and at a p-value of 0.7, it further increased to a notable 12.50%
improvement from the baseline. At the highest augmentation level of 5, a p-value of
0.3 led to an Fl-score of 0.391. A p-value of 0.5 resulted in a score of 0.387, while
a p-value of 0.7 significantly improved the score to 0.471.

Synonym replacement methods | F1-score | Percentage increase
Baseline 0.384 -
Augmentation level=1, p-value=0.3 | 0.390 1.56%
Augmentation level=1, p-value=0.5 | 0.386 0.52%
Augmentation level=1, p-value=0.7 | 0.394 2.60%
Augmentation level=3, p-value=0.3 | 0.431 12.24%
Augmentation level=3, p-value=0.5 | 0.398 3.65%
Augmentation level=3, p-value=0.7 | 0.432 12.50%
Augmentation level=5, p-value=0.3 | 0.391 1.82%
Augmentation level=5, p-value=0.5 | 0.387 0.78%
Augmentation level=5, p-value=0.7 | 0.471 22.66%
Average 0.409 6.48%

Table 6.2: This table displays F1l-scores and their percentage increases across dif-
ferent levels of augmentation and p-values in synonym replacement methods. The
table illustrates the impact each parameter setting had on a small training set com-
pared to the baseline.

36

F1 Score

6. Results

F1-Score Visualization for Synonym Replacement

0.46
0.44
0.42
0.40 ¢

¥ 0“’ 0‘0 0/\ Q?’ 0?) 0,\ 00’ 0<° 0/\

P 7 Y Z 7 Z Z % Z 7

ol < Q < Q < < Q < Q
Q® 2 Al e e 2 e P e 2
O O O O © O RS O O
> > > ? > ? ? ? ?

Augmentation Level

Figure 6.1: Fl-score comparison with a line chart for synonym replacement with a
large-sized dataset

6.2.2 Medium training set

In the study of the medium-sized dataset, different levels of synonym replacement
had varied effects on Fl-scores. Fluctuations in Fl-scores were also observed here
across various parameter settings, which can be seen in Figure 6.2 and Table 6.3.
For medium-sized datasets, the best parameter setting was an augmentation level of
5 with a p-value of 0.7, resulting in the highest F1-score of 0.622. The least effective
setting for medium-sized datasets occurred at an augmentation level of 5 with a
p-value of 0.5, where the F1-score decreased to 0.460.

At an augmentation level of 1 with a p-value of 0.3, the F1-score improved to 0.494.
When the p-value increased to 0.5, the score slightly decreased to 0.488. With a
further increase in p-value to 0.7, the Fl-score reached 0.496. At an augmentation
level of 3 and a p-value of 0.3, the F1l-score significantly jumped to 0.549. However,
increasing the p-value to 0.5 at this level resulted in a reduced F1-score of 0.525. The
highest score in the study, 0.608, was observed at this augmentation level with a
p-value of 0.7. With the augmentation level of 5, the outcomes varied with different
p-values. At a p-value of 0.3, the F1-score was 0.605. A decrease to 0.460 was noted
at a p-value of 0.5. The largest improvement, with an F'l-score of 0.622, occurred
at a p-value of 0.7.

37

0.625¢}

0.600

0.575}

o
[
a0
o

0.525

F1 Score

0.500

0.475¢}

0.450

6. Results

F1-Score Visualization for Synonym Replacement with 150 Instances

Augmentation Level

Figure 6.2: Fl-score comparison with a line chart for synonym replacement with a
medium-sized dataset

Synonym replacement methods | Fl-score | Percentage increase
Baseline 0.445 -
Augmentation level=1, p-value=0.3 | 0.494 10.98%
Augmentation level=1, p-value=0.5 | 0.488 9.69%
Augmentation level=1, p-value=0.7 | 0.496 11.47%
Augmentation level=3, p-value=0.3 | 0.549 23.37%
Augmentation level=3, p-value=0.5 | 0.525 17.99%
Augmentation level=3, p-value=0.7 | 0.608 36.63%
Augmentation level=5, p-value=0.3 | 0.605 35.95%
Augmentation level=5, p-value=0.5 | 0.460 3.38%
Augmentation level=5, p-value=0.7 | 0.622 39.78%
Average 0.538 21.00%

Table 6.3: This table displays F1l-scores and their percentage increases across dif-
ferent levels of augmentation and p-values in synonym replacement methods. The
table illustrates the impact each parameter setting had on a medium training set
compared to the baseline.

38

F1 Score

6. Results

6.2.3 Large training set

In the study involving a large-sized dataset, the effects of various levels of synonym
replacement on F'l-scores were analyzed, and the result is illustrated in Figure 6.3
and Table 6.4. For large-sized datasets, the best parameter setting was an augmen-
tation level of 3 with a p-value of 0.3, resulting in the highest F1-score of 0.753. The
least effective setting for medium-sized datasets occurred at an augmentation level
of 1 with a p-value of 0.5, where the F1-score decreased to 0.696.

At an augmentation level of 1 and a p-value of 0.3, the F1-score increased to 0.709,
showing a 10.92% improvement. A rise in the p-value to 0.5 led to a slightly reduced
Fl-score of 0.696, but it was still 8.85% above the baseline. Further increasing the
p-value to 0.7 resulted in an Fl-score of 0.712, an 11.42% improvement. At an
augmentation level of 3, the Fl-score went up to 0.753 with a p-value of 0.3, which
resulted in a 17.80% increase. However, at p-values of 0.5 and 0.7, the Fl-scores
were 0.744 and 0.728 respectively, indicating decreasing returns at higher synonym
replacement probabilities. At the highest tested augmentation level of 5, the F1-
score was 0.736 with a p-value of 0.3. With p-values of 0.5 and 0.7, the Fl-scores
were 0.743 and 0.730 respectively, indicating improvements of 16.21% and 14.22%.

F1-Score Visualization for Synonym Replacement with 500 Instances

0.74

0.72F

o
g
o

0.68}

0.66

0.64

&
Q,’O i //»\,‘ //\, //o)\ 2 2 //<,>‘ /<,) .
O O N N N

Augmentation Level

Figure 6.3: Fl-score comparison with a line chart for synonym replacement with a
large-sized dataset

39

6. Results

Synonym replacement methods | F1-score | Percentage increase
Baseline 0.639 -
Augmentation level=1, p-value=0.3 | 0.709 10.92%
Augmentation level=1, p-value=0.5 | 0.696 8.85%
Augmentation level=1, p-value=0.7 | 0.712 11.42%
Augmentation level=3, p-value=0.3 | 0.753 17.80%
Augmentation level=3, p-value=0.5 | 0.744 16.37%
Augmentation level=3, p-value=0.7 | 0.728 13.90%
Augmentation level=5, p-value=0.3 | 0.736 15.16%
Augmentation level=5, p-value=0.5 | 0.743 16.21%
Augmentation level=5, p-value=0.7 | 0.730 14.22%
Average 0.728 13.85%

Table 6.4: This table displays F1l-scores and their percentage increases across dif-
ferent levels of augmentation and p-values in synonym replacement methods. The
table illustrates the impact each parameter setting had on a large training set com-
pared to the baseline.

6.3 Mention replacement

In our study, we investigated the effect of mention replacement on model perfor-
mance across training sets of varying sizes, as detailed in Table 6.5. The results
displayed in the table illustrate the impact of the mentioned replacement method,
where both the percentage increase and the Delta are calculated based on the average
result from all different parameter settings used for the specific dataset size.

Upon implementing the mentioned replacement method, a diverse impact on the F1-
scores was observed. For the small training set, the F1l-score decreased from 0.384
to 0.343, indicating a reduction in model performance by 10.68%. Contrariwise, in
the medium and large training sets, mentioned replacement led to an increase in
F1-scores. The medium set experienced a slight improvement from 0.445 to 0.452, a
modest increase of 1.49%, while the large set showed a more significant improvement
from 0.639 to 0.675, a 5.61% increase. The overall average delta change in Fl-score,
calculated across all sizes, was approximately 0.00067, a minimal average change.
This indicates that while mentioned replacement can have varying effects depending
on the dataset size.

Small | Medium | Large | Avg. Increase across datasets
Baseline 0.384 0.445 0.639 | -
Mention Replacement | 0.343 0.452 0.675
Precentage Increase | -10.68% | 1.49% 5.61% |-1.19
A -0.041 0.007 0.036 | 0.00067

Table 6.5: Fl-score Comparison for mention replacement across different sizes of
training sets, showing percentage and delta changes.

40

6. Results

6.3.1 Small training set

In the study involving a small-sized dataset, the effects of various levels of mention
replacement on F1-scores were analyzed, the result is illustrated in Figure 6.4 and
Table 6.6. For small-sized datasets, the results demonstrate that the data augmenta-
tion method mentioned replacement led to a reduction in model performance across
all tested levels. When augmentation was applied at level 1, the Fl-score reduced
to 0.343, which resulted in a decrease of 10.68%. Increasing the augmentation to
level 3 resulted in a slightly higher Fl-score of 0.351, yet still 8.61% lower than the
baseline. At the highest augmentation level of 5, the Fl-score further declined to
0.336, a 12.51% decrease from the baseline.

F1-Score Visualization for Mention Replacement with 50 Instances

0.38

0.37f

F1 Score
o
w
o

0.35f

0.34

’b\)Q ®°Q @\\9

Augmentation Level

Figure 6.4: Fl-score comparison with a line chart for mention replacement with a
small-sized dataset

Mention Replacement Methods | F1-score | Percentage Change
Baseline 0.384 -

Augmentation Level=1 0.343 -10.68%
Augmentation Level=3 0.351 -8.61%

Augmentation Level=5 0.336 -12.51%

Average 0.343 -10.68%

Table 6.6: This table displays F1l-scores and their percentage increases across dif-
ferent levels of augmentation in the mentioned replacement method. The table
illustrates the impact each parameter setting had on a small training set compared
to the baseline.

41

6. Results

6.3.2 Medium training set

In the investigation that included a medium-sized dataset, we examined how re-
placing mentions at different levels affects F1-scores. The outcomes are illustrated
in Figure 6.5 and Table 6.7. The data shows a fluctuation in F1-scores depending
on the augmentation parameters. For medium-sized datasets, the best parameter
setting was an augmentation level of 5, resulting in the highest F1-score of 0.452,
a 4.95% increase compared to the baseline. The least effective setting for medium-
sized datasets occurred at an augmentation level of 3, where the F1-score decreased
to 0.427, a -4.17% decrease compared to the baseline. When augmentation was ap-
plied at level 1, there was a slight increase in the F1-score to 0.461, an improvement
of 3.64% over the baseline.

F1-Score Visualization for Mention Replacement with 150 Instances

0.465
0.460

0.455 1

o o
I N
N o
[)

F1 Score

0.440

0.435¢}

0.430

0.425¢E

Augmentation Level

Figure 6.5: Fl-score comparison with a line chart for mention replacement with a
medium-sized dataset

6.3.3 Large training set

In the mention replacement study with a large-sized dataset, the F1-scores displayed
a positive trend with increasing levels of augmentation. The results are visualized in
Figure 6.6 and presented in Table 6.8. With an augmentation level of 1, the F1-score
increased to 0.655, indicating a 2.49% improvement over the baseline. When the
augmentation level was increased to 3, a more significant improvement was observed,
with the F1-score reaching 0.685, a 7.19% increase compared to the baseline. Further,
augmentation at level 5 resulted in an Fl-score of 0.686, which resulted in a 7.34%
improvement from the baseline.

42

F1 Score

6. Results

Mention Replacement Methods | F1-score | Percentage Change
Baseline 0.445 -

Augmentation Level=1 0.461 3.64%

Augmentation Level=3 0.427 -4.17%

Augmentation Level=>5 0.467 4.95%

Average 0.452 1.49%

Table 6.7: This table displays F1l-scores and their percentage increases across dif-
ferent levels of augmentation in the mentioned replacement method. The table
illustrates the impact each parameter setting had on a medium training set com-
pared to the baseline.

F1-Score Visualization for Mention Replacement with 500 Instances

0.68
0.67
0.66
0.65
0.64
\\(\e q,/'\/ Q;) q//%
& N N N

Augmentation Level

Figure 6.6: Fl-score comparison with a line chart for mention replacement with a
large-sized dataset

Mention Replacement Methods | F1-score | Percentage Change
Baseline 0.639 -

Augmentation Level=1 0.655 2.49%

Augmentation Level=3 0.685 7.19%

Augmentation Level=5 0.686 7.34%

Average 0.675 5.61%

Table 6.8: This table displays F1l-scores and their percentage increases across dif-
ferent levels of augmentation in the mentioned replacement method. The table
illustrates the impact each parameter setting had on a large training set compared
to the baseline.

43

6. Results

6.4 AugGPT

The results displayed in Table 6.9 illustrate the impact of the AugGPT method,
where both the percentage increase and the Delta are calculated based on the average
result from all different parameter settings used for the specific dataset size.

AugGPT method improved F1-scores across all training set sizes. The small training
set had an Fl-score increase from 0.384 to 0.397, reflecting a 3.39% change. The
F1-score for the medium-sized training set increased from 0.445 to 0.524, which is a
17.74% improvement. For the large training set, the Fl-score improved from 0.639
to 0.663, a change of 3.68%. While the relative improvement is less pronounced
compared to the medium set, it still signifies the positive impact of AugGPT in
larger datasets. The overall average delta change in Fl-score, calculated across all
sizes, was approximately 0.0387, a change of 927%.

Small | Medium | Large | Avg. Increase across datasets
Baseline 0.384 | 0.445 0.639 | -
AugGPT 0.397 | 0.524 0.663 | -
Precentage Increase | 3.39% | 17.74% 3.68% | 8.27 %
A 0.013 | 0.079 0.024 | 0.0387

Table 6.9: Fl-score Comparison for AugGPT across different sizes of training sets,
showing percentage and delta changes.

6.4.1 Small training set

In the experiment involving AugGPT with a small-sized dataset, the Fl-scores dis-
played varying results at different augmentation levels. The outcomes are shown in
Figure 6.7 and Table 6.10. At an augmentation level of 1, the F1-score slightly de-
creased to 0.374, showing a reduction of 2.67%, which also was the lowest F1-score.
When the augmentation level was increased to 3, the Fl-score improved to 0.400,
which resulted in an increase of 4.09% from the baseline. Further increasing the
augmentation level to 5 led to the highest F1l-score of 0.418, an 8.80% improvement
over the baseline.

AugGPT Augmentation Methods | F1-score | Percentage Change
Baseline 0.384 -

Augmentation Level=1 0.374 -2.67%

Augmentation Level=3 0.400 4.09%

Augmentation Level=>5 0.418 8.80%

Average 0.397 3.39%

Table 6.10: This table displays F1-scores and their percentage increases across differ-
ent levels of augmentation in the AugGPT method. The table illustrates the impact
each parameter setting had on a small training set compared to the baseline.

44

6. Results

042 F1-Score Visualization for AugGPT with 50 Instances

041

0.40F

F1 Score

0.39F

0.381

’boq ’on ’boq

Augmentation Level

Figure 6.7: Fl-score comparison with a line chart for AugGPT with a small-sized
dataset

6.4.2 Medium training set

In the research that included a medium-sized dataset, we examined how the method
AugGPT affects Fl-scores at different augmentation levels. The outcomes are shown
in Figure 6.8 and Table 6.11. The data shows a fluctuation in F1-scores depending
on the augmentation level.

With an augmentation level of 1, the Fl-score increased to 0.482, which resulted in
an improvement of 8.27% over the baseline. Increasing the augmentation level to 3
led to a more substantial improvement, with the Fl-score rising to 0.550, a 23.61%
increase compared to the baseline. At the highest tested augmentation level of 5,
the Fl-score was 0.540, which is a 21.34 improvement over the baseline. Although
slightly lower than the Fl-score at augmentation level 3.

AugGPT Augmentation Methods | F1-score | Percentage Change
Baseline 0.445 -

Augmentation Level=1 0.482 8.27%

Augmentation Level=3 0.550 23.61%
Augmentation Level=5 0.540 21.34%

Average 0.524 17.74%

Table 6.11: This table displays F1-scores and their percentage increases across differ-
ent levels of augmentation in the AugGPT method. The table illustrates the impact
each parameter setting had on a medium training set compared to the baseline.

45

0.54

0.52

o
)
<)

F1 Score

0.481

0.46

0.44

6. Results

F1-Score Visualization for AugGPT with 150 Instances

’boq ’on ’boq

Augmentation Level

Figure 6.8: F1l-score comparison with a line chart for AugGPT with a medium-sized
dataset

6.4.3 Large training set

In the AugGPT experiment with a large-sized dataset, the impact of different aug-
mentation levels on Fl-scores was analyzed. The outcomes are illustrated in Figure
6.9 and Table 6.12. Here fluctuations in F1l-scores were also observed across vari-
ous parameter settings. At an augmentation level of 1, the Fl-score saw a slight
increase to 0.643, a modest improvement of 0.60% over the baseline. The most sig-
nificant change was observed at an augmentation level of 3, where the F1-score rose
to 0.700, which resulted in a 9.55% improvement compared to the baseline. Further
increasing the augmentation to level 5 resulted in an Fl-score of 0.645, which is a
0.95% improvement over the baseline. Although higher than the baseline, this level
of augmentation did not result in as significant an improvement as seen at level 3.

AugGPT Augmentation Methods | F1-score | Percentage Change
Baseline 0.639 -

Augmentation Level=1 0.643 0.60%

Augmentation Level=3 0.700 9.55%

Augmentation Level=5 0.645 0.95%

Average 0.663 3.68%

Table 6.12: This table displays F1-scores and their percentage increases across differ-
ent levels of augmentation in the AugGPT method. The table illustrates the impact
each parameter setting had on a large training set compared to the baseline.

46

F1 Score

6. Results

F1-Score Visualization for AugGPT with 500 Instances
0.70}

0.69F

0.68

0.67

0.66

0.65

0.64

’boq ’boq ’boq

Augmentation Level

Figure 6.9: Fl-score comparison with a line chart for AugGPT with a large-sized
dataset

6.5 Method comparisons

For our thesis, we evaluated the effectiveness of three data augmentation techniques:
Synonym Replacement, Mention Replacement, and AugGPT across various sizes of
training sets. The results are detailed in Table 6.13 and Figure 6.10.

For small training sets, synonym replacement proved to be the most effective method,
enhancing the baseline F1-score from 0.384 to 0.409. On the other hand, mention
replacement was the least effective in this setting, actually decreasing the F'1-score
from the baseline. AugGPT was the second most effective, with a slightly less
increase than what synonym replacement had. In medium-sized training sets, syn-
onym replacement was shown to also be the most efficient, increasing the F1-score
from 0.445 to 0.538. AugGPT was again the second most effective data augmen-
tation method for the medium-sized training set, with a slightly less increase than
what synonym replacement had. Conversely, mention replacement had a minimal
positive impact in this setting, indicating that its benefits are not as useful as those
of synonym replacement, and AugGPT medium training setting. For large training
sets, synonym replacement again stood out, raising the F1-score from 0.639 to 0.728.
In contrast, AugGPT was the least effective in large training settings, while still
effective, and had a comparatively lesser impact.

Based on the results, synonym replacement was the most effective method for data
augmentation in low-resource settings of different sizes, with the highest average
increase.

47

6. Results

Small | Medium | Large | Avg.% Increase across datasets | Avg. A
Baseline 0.384 | 0.445 0.639 |- -
Synonym Replacement | 0.409 | 0.538 0.728 | 13.80% 0.069
Mention Replacement | 0.343 | 0.452 0.675 |-1.19% 0.00067
AugGPT 0.397 | 0.524 0.663 | 8.27 % 0.0387

Table 6.13: Combined F1-score Comparison for synonym replacement, mention re-
placement, and AugGPT across different sizes of training sets, showing average
increases and delta changes.

F1-score Comparison across Different Data Augmentation Methods

—e— Baseline
—e— Synonym Replacement
0.70T _e— Mention Replacement
—e— AugGPT
0.65f
0.60
]
o 0.55
(9}
Q
—
*0.50
0.45+
0.40
0.35

Small Medium Large
Low-resource Settings

Figure 6.10: Line chart for combined F1-score Comparison for synonym replacement,
mention replacement, and AugGPT

48

0.46

0.44 7}

I
S
N

F1-Score
o
N
o

0.38}

0.36

0.34¢

6. Results

6.6 Cosine similiarty

For this section, we will display our findings on the impact of our augmentation
method on the model’s performance on our three low-resource setting datasets,
which was accomplished by cosine similarity.

6.6.1 Small training set

Figure 6.11 illustrates a scatter plot with a small-sized dataset, where each point
represents the performance of a different method and parameter setting in terms of
cosine similarity and Fl-score. In this context, synonym replacement (SYNONYM)
appears to be the most effective method, achieving the highest scores in both cosine
similarity, with an average of 0.937, and F1-score with an average of 0.409.

On the other hand, AugGPT, which uses a moderate level of text alteration, ranks
second in the fl-score average. With an average cosine similarity of 0.847 and an
Fl-score of 0.397. However, mention replacement (Mention) has the lowest F1-score
average, scoring the lowest with an average cosine similarity of 0.652 and an F1-Score
of 0.343.

Cosine Similarity vs F1-Score by Method and Parameters

Method and Parameters

A AugGPT (Aug=1, p=nan)
AugGPT (Aug=3, p=nan)

AugGPT (Aug=5, p=nan)
® Mention (Aug=1, p=nan)
Mention (Aug=3, p=nan)
Mention (Aug=5, p=nan)
® SYNONYM (Aug=1, p=0.3)
® SYNONYM (Aug=1, p=0.5)
SYNONYM (Aug=1, p=0.7)
SYNONYM (Aug=3, p=0.3)
® SYNONYM (Aug=3, p=0.5)
SYNONYM (Aug=3, p=0.7)
SYNONYM (Aug=5, p=0.3)
® SYNONYM (Aug=5, p=0.5)
4 SYNONYM (Aug=5, p=0.7)

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Mean Cosine Similarity

Figure 6.11: Cosine similarity for 50 instances

6.6.2 Medium training set

Figure 6.12, illustrating cosine similarity vs. Fl-score with a medium-sized dataset,
illustrates a scatter plot where each point represents the performance of a different
method and parameter setting. From the data, the synonym replacement method
appears to have the highest F1-score average, showing the highest mean cosine sim-
ilarity score at 0.938 and also the highest average F1-score at 0.538. The mentioned

49

6. Results

replacement method demonstrates the lowest performance with cosine similarity
scores averaging at 0.666 and F1-scores at 0.452. AugGPT holds the second-highest
scores in both cosine similarity and Fl-score averages, with 0.875 and 0.524 respec-
tively, only slightly behind the method with the highest average F1-score.

0.625

0.600

0.575¢

0.550

o
]
N
(]

F1-Score

0.500

0.475 ¢

0.450

0.425¢

Cosine Similarity vs F1-Score by Method and Parameters (150 Instances)

0.80 0.85
Mean Cosine Similarity

6.6.3 Large training set

0.90

Figure 6.12: Cosine similarity for 150 instances

A

Method and Parameters
AugGPT (Aug=1, p=nan)
AugGPT (Aug=3, p=nan)
AugGPT (Aug=5, p=nan)
Mention (Aug=1, p=nan)
Mention (Aug=3, p=nan)
Mention (Aug=5, p=nan)
SYNONYM (Aug=1, p=0.3)
SYNONYM (Aug=1, p=0.5)
SYNONYM (Aug=1, p=0.7)
SYNONYM (Aug=3, p=0.3)
SYNONYM (Aug=3, p=0.5)
SYNONYM (Aug=3, p=0.7)
SYNONYM (Aug=5, p=0.3)
SYNONYM (Aug=5, p=0.5)
SYNONYM (Aug=5, p=0.7)

Figure 6.13 presents a scatter plot with the performance of different methods and
parameter settings, each represented by a point.
to also be the most effective method with a large-sized dataset, illustrating the
highest average F1-score of 0.728 and the highest mean cosine similarity at around
0.944. On the other hand, mention replacement, despite its significantly lower mean
cosine similarity score of about 0.639, manages to achieve an average F1l-score of
approximately 0.675. AugGPT achieves an average F'1-score of around 0.656, which
is quite close to that of mention replacement. However, it does so with a higher

cosine similarity mean score of approximately 0.877.

50

Synonym replacement appears

F1-Score

0.74

0.72

e
~
o

o
o
©

0.66

0.64

0.62

6. Results

Cosine Similarity vs F1-Score by Method and Parameters (500 Instances)

[]

]
[]

[]

A
A
0.I65 0.‘70 O.I75 0.:30 0.%55 O.éO O.éS
Mean Cosine Similarity
Figure 6.13: Cosine similarity for 500 instances

Method and Parameters
AugGPT (Aug=1)
AugGPT (Aug=3)
AugGPT (Aug=5)
Mention (Aug=1)
Mention (Aug=3)
Mention (Aug=5)
SYNONYM (Aug=1, p=0.3)
SYNONYM (Aug=1, p=0.5)
SYNONYM (Aug=1, p=0.7)
SYNONYM (Aug=3, p=0.3)
SYNONYM (Aug=3, p=0.5)
SYNONYM (Aug=3, p=0.7)
SYNONYM (Aug=5, p=0.3)
SYNONYM (Aug=5, p=0.5)
SYNONYM (Aug=5, p=0.7)

51

6. Results

52

[

Discussion

This chapter will discuss the thesis, explaining the reasoning behind our decisions
and the challenges encountered during the thesis.

7.0.1 Data augmentation in various low-resource settings

In this study, we explored the impact of different data augmentation methods on
NER performance across various low-resource settings, categorized as small (50 in-
stances), medium (150 instances), and large (500 instances). The aim was to identify
which method is most effective in enhancing the accuracy of models when data is lim-
ited. The study illustrates that the effectiveness of data augmentation is connected
to the size of the low-resource setting. While augmentation can significantly improve
model performance in low-resource settings, the choice of the method needs to be
chosen wisely for optimal results. It is also important to note that training on such
limited sample sizes in the baseline scenarios can lead to variability in results. This
variability can derive from the model’s small exposure to diverse data, potentially
leading to overfitting or underfitting. This factor is crucial to consider in evaluating
the performance and robustness of NER models in low-resource situations.

Synonym replacement emerged as the most consistently effective method across all
settings. The success of the method can be derived from a balance between the
introduction of novel lexical variations and the preservation of the semantic content
of the data. AugGPT, with its GPT-driven contextual augmentations, also shows
promise, especially in settings that are small and medium. Mention replacement’s
mixed results highlight its dependency on dataset size and the potential risks of
introducing less relevance for the KB-BERT model. We noticed that in a small
setting, replacing synonyms has enhanced the model’s performance. There was a
6.48% increase in Fl-score, which shows that replacing words with synonyms from
a rich source like Sprakbanken’s lexicon Swesaurus[42] can provide new variations,
which helps models like KB-BERT to learn better in environments with limited re-
sources. On the contrary, the mention replacement method resulted in a 10.68%
decrease in Fl-score. This could be due to the method introducing nonessential
variations, which can confuse the model in such a small dataset, some examples can
be seen in Appendix A. However, to fully understand the impact of these variations,
a more detailed augmentation evaluation is needed on the quality of the new data.
AugGPT showed a subtle improvement, indicating that contextually richer augmen-
tations from GPT models can be beneficial, through small data datasets. In the

53

7. Discussion

medium setting, the benefits of augmentation became more clear. Synonym replace-
ment improved our model with a significant 21.00% increase in the Fl-score. The
improvement could be attributed to its ability to introduce meaningful variability
without significantly altering the original data context, which seems essential for this
setting-sized dataset. AugGPT also performed well, with a 17.74% increase, possibly
due to its ability to generate contextually relevant data enhancements. The slight
improvement seen with mention replacement suggests that as the dataset size in-
creases, this method becomes more effective due to more significant variation in the
dataset. For the large setting, all methods showed improvement over the raw dataset,
but with a less noticeable increase. This result is expected as larger datasets already
provided a significant amount of information for the model to learn from. Thus the
marginal advantage of augmentation decreases. Synonym replacement again had
the most significant improvements. The lesser improvements seen with AugGPT
indicate that while beneficial, their impact is more damped in larger datasets, pos-
sibly due to the size of the dataset. Mention replacement in large resource-setting
datasets, shows significant improvement compared to the previous resource-settings,
thereby strengthening our hypothesis about its increased effectiveness in correlation
with the expansion of dataset size.

When it comes to the exploration of optimal parameters for data augmentation meth-
ods, we couldn’t determine a conclusion on what parameters are most promising, or
regarding the spikes observed in the results for different parameters. The result was
sometimes fluctuated in performance. A theory for some of the fluctuating results
could be due to the inherent randomness in the methods applied. For instance,
in synonym replacement, the method involves selecting a random synonym for the
selected word. This process may potentially result in a synonym that is contextu-
ally wrong with the sentence’s meaning. Such an anomaly could lead to a decline
in the model’s performance. Similarly, in mention replacement, where a word is
replaced with another of the same entity class, the random selection could lead to
not contextually suitable replacements. Such random replacements can significantly
affect the data’s quality and, consequently, the model’s performance. Also upon
a small inspection of the SWE-NERC data, some of the labels were found to be
questionable. This is visible in Appendix A. The questionable labels could affect
the performance of the replacement method mentioned. This is because the new
replacement words may not fit the context correctly. The AugGPT method has also
this issue of reliability due to the unpredictability of its outputs. The generative
model does not always guarantee relevant augmentations, which derives from the
inability to control the model’s output, leading to potential insufficient augmenta-
tion. For example, an entity that should remain intact might be modified by the
AugGPT method, causing it to lose its class label mapping. Thus, the new modified
entity becomes an "O-class", which was described in section 5.2.1.3. This can also
be seen in Appendix A.

7.0.2 NER AugGPT and traditional techniques

Another research question was to compare the effectiveness of AugGPT, a cutting-
edge data augmentation method, to the more traditional methods of synonym re-

o4

7. Discussion

placement and mention replacement for Swedish NER. This comparison aimed to
understand the relative efficacy of advanced Al-driven methods against established,
simpler techniques in the context of a language-specific task.

The general result indicated that while AugGPT showed promise in certain aspects,
traditional methods like synonym replacement often outperformed it in terms of over-
all reliability. Specifically, synonym replacement demonstrated a better performance
in enhancing the NER model’s F1-score. This can be due to its straightforward ap-
proach of substituting words with their synonyms, which introduces variability with-
out significantly altering the context or semantic meaning of the sentences. Such a
method is particularly effective in a language-specific task like Swedish NER, where
maintaining the integrity of linguistic structures is crucial.

In contrast, AugGPT sometimes proved to be less reliable. For instance, as men-
tioned earlier, AugGPT can alter an entity in such a way that it no longer retains its
original class label, resulting in the entity being reclassified as an ’O-class., since we
couldn’t map it to the previous label. This unreliability can be due to the method’s
reliance on large language models that are not always fine-tuned to specific languages
like Swedish and its lack of domain-specific knowledge. Moreover, the generative na-
ture of AugGPT means it can create entirely new sentence structures or phrases
that may not always align with the specific requirements of our tasks.

7.0.3 Cosine similarity versus F1l-score

In analyzing data augmentation effects on various low-resource settings, a key focus
was to understand how different degrees of cosine-similarity from the augmented
dataset influence the F1-score metrics.

In small and medium low-resource settings, a notable positive correlation was ob-
served between cosine similarity and the Fl-score, which suggests that in these
settings, where data is limited, maintaining a higher degree of similarity to the
original dataset contributes positively to the Fl-score. The observed correlation
might derive from the fact that in smaller datasets, each data point yields a more
significant impact on the model’s learning process. Therefore, augmentations that
closely resemble the original data help reinforce patterns, leading to better model
performance as reflected in the Fl-score. However, as the dataset size increased,
the influence of cosine similarity on the Fl-score began to diminish. This was par-
ticularly noticeable in the case of mention replacement in larger datasets. Despite
having a lower cosine similarity score than AugGPT, the mentioned replacement
had a higher F1-score. One hypothesis, for this cause could be due to overfitting. In
small datasets, models are at a higher risk of overfitting to the limited data available.
Hence, augmentations that closely relate to the original data can be beneficial if the
new augmented data doesn’t reflect the real-world data, which is tested with the
test set. In contrast, in larger datasets, the risk of overfitting poor data is lower due
to the variety and volume of data. Here, introducing more diverse data might not
harm the model’s generalization ability. Thus, not greatly affecting the F1-score.

95

7. Discussion

56

S

Conclusion

This chapter will include a conclusion of the thesis, summarizing our findings, which
will end with suggestions for future work and improvements.

8.1 Conclusion

This study aimed to investigate the effectiveness of different data augmentation
methods in low-resource settings, focusing on three key aspects: identifying the
most effective augmentation method across various low-resource settings, comparing
the performance of the advanced AugGPT method with traditional techniques in
enhancing Swedish NER model, and understanding the impact of data augmentation
on F1l-score metrics. Our findings revealed that synonym replacement was the most
effective data augmentation method in various low-resource settings, achieving the
highest Fl-score increase in all of the settings. Meanwhile, AugGPT achieved the
second-highest average F1l-score, while mention replacement achieved the lowest
average Fl-score. We noted as the data volume increased, mention replacement
showed notable improvements in larger datasets. When it comes to determining
the optimal parameters for our data augmentation methods, we couldn’t identify
which parameters were the most optimal. In comparing AugGPT with traditional
methods, we observed that AugGPT did not outperform synonym replacement in
average F'l-score across all datasets, but it outperformed mention replacement. This
leads to the possibility that AugGPT might be a more effective data augmentation
method compared to some traditional approaches. Our analysis for the final research
question revealed that there might be a correlation between F1-score and cosine
similarity in small and medium-sized low-resource datasets, but this correlation
diminished in larger datasets.

8.2 Future work

In future work, it would be beneficial to further investigate the efficacy of data aug-
mentation methods by applying each augmentation multiple times. This approach
would provide a further understanding of their effectiveness. Our thesis applied each
data augmentation method only once, but given that these methods can yield vary-
ing outputs, testing each method multiple times would likely yield more thorough
insights.

57

8. Conclusion

Another future work could be to explore the method AugGPT with alternative
prompting strategies and apply it to newer models such as GPT-4 or GPT-4 Turbo.
The exploration of AugGPT with newer models like GPT-4 and GPT-4 Turbo could
reveal new insights, given that these models are more complex and have shown to
be more powerful [51].

In my thesis, I used ChatGPT as a tool for data augmentation, creating enhanced
datasets to improve my NER model. However, an interesting direction for future
work could be exploring the direct deployment of GPT models in making predic-
tions for NER tasks. Due to time constraints, this potential application was not
investigated in the current study.

Experimenting with different ways of prompting implies trying various types of ques-
tions or instructions to explore how the models respond when using ChatGPT for
tasks like generating language. This approach could show new and more promising
ways to use data augmentation with these advanced models. Additionally, there is
a need for more extended research to determine if approaches like AugGPT could
be suitable as data augmentation methods for NER tasks, this can be done by
investigating different approaches. Furthermore, for this thesis, we have set some
limitations in the scope of NLP models and datasets explored. Future studies should
aim to address this by testing a variety of ML models. By expanding the range of
models tested, future research can show whether the observed result of data aug-
mentation is specific to a model or is generalized. The same principle also applies
when experimenting with various datasets. There is also a need to experiment with
a range of data augmentation techniques, which could uncover even more insights
into which methods are most effective for Swedish language datasets, particularly
in low-resource settings.

58

[10]

[11]

[12]

[13]

Bibliography

X. Dai and H. Adel, “An analysis of simple data augmentation for named
entity recognition,” arXiv preprint arXiv:2010.11683, 2020.

D. Nadeau and S. Sekine, “A survey of named entity recognition and classifi-
cation,” Linguisticae Investigationes, vol. 30, no. 1, pp. 3-26, 2007.

S. Y. Feng, V. Gangal, J. Wei, et al., “A survey of data augmentation ap-
proaches for NLP,” arXiv preprint arXiv:2105.03075, 2021.

H. Dai, Z. Liu, W. Liao, et al., “AugGPT: Leveraging ChatGPT for text data
augmentation,” arXiv preprint arXiv:2302.13007, 2023.

Swe-NERC, https : // spraakbanken . gu . se/1b/resurser /swe - nerc/,
Accessed: 2023-07-18, 2023.

P. P. Ray, “ChatGPT: A comprehensive review on background, applications,
key challenges, bias, ethics, limitations and future scope,” Internet of Things
and Cyber-Physical Systems, vol. 3, pp. 121-154, 2023, 1SSN: 2667-3452. DOI:
https://doi.org/10.1016/j.1iotcps.2023.04.003. [Online|. Available:

https://www.sciencedirect.com/science/article/pii/S266734522300024X.

M. Malmsten, L. Borjeson, and C. Haffenden, “Playing with words at the na-

tional library of Sweden-making a Swedish BERT,” arXiv preprint arXiv:2007.01658,

2020.

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H.
Arshad, “State-of-the-art in artificial neural network applications: A survey,”
Heliyon, vol. 4, no. 11, 2018.

W. H. Delashmit, M. T. Manry, et al., “Recent developments in multilayer
perceptron neural networks,” in Proceedings of the seventh annual memphis
area engineering and science conference, MAESC, 2005, pp. 1-15.

J. Schmidt-Hieber, “Nonparametric regression using deep neural networks
with relu activation function,” 2020.

M. V. Narkhede, P. P. Bartakke, and M. S. Sutaone, “A review on weight ini-
tialization strategies for neural networks,” Artificial intelligence review, vol. 55,
no. 1, pp. 291-322, 2022.

Z. Xu, A. M. Dai, J. Kemp, and L. Metz, “Learning an adaptive learning rate
schedule,” arXiv preprint arXiv:1909.09712, 2019.

L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural net-
works using large learning rates,” in Artificial intelligence and machine learn-
ing for multi-domain operations applications, SPIE, vol. 11006, 2019, pp. 369—
386.

59

https://spraakbanken.gu.se/lb/resurser/swe-nerc/
https://doi.org/https://doi.org/10.1016/j.iotcps.2023.04.003
https://www.sciencedirect.com/science/article/pii/S266734522300024X

Bibliography

[14]

[15]

[16]

[22]

23]

[24]

[26]

[27]

60

K. C. Luk, J. E. Ball, and A. Sharma, “A study of optimal model lag and
spatial inputs to artificial neural network for rainfall forecasting,” Journal of
Hydrology, vol. 227, no. 1-4, pp. 56-65, 2000.

L. N. Smith, “A disciplined approach to neural network hyper-parameters:
Part 1-learning rate, batch size, momentum, and weight decay,” arXiv preprint
arXiw:1803.09820, 2018.

P. P. Ray, “ChatGPT : A comprehensive review on background, applications,
key challenges, bias, ethics, limitations and future scope,” Internet of Things
and Cyber-Physical Systems, 2023.

Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of deep
learning,” Neurocomputing, vol. 452, pp. 48-62, 2021.

J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for
machine reading,” arXiv preprint arXiv:1601.06733, 2016.

P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative position
representations,” arXiv preprint arXiv:1805.02155, 2018.

A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Ad-
vances in neural information processing systems, vol. 30, 2017.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiw:1810.04805, 2018.

S. R. Kundeti, J. Vijayananda, S. Mujjiga, and M. Kalyan, “Clinical named
entity recognition: Challenges and opportunities,” in 2016 IEEE International
Conference on Big Data (Big Data), IEEE, 2016, pp. 1937-1945.

R. Sharnagat, “Named entity recognition: A literature survey,” Center For
Indian Language Technology, pp. 1-27, 2014.

T. Eftimov, B. Koroui Seljak, and P. Koroec, “A rule-based named-entity
recognition method for knowledge extraction of evidence-based dietary recom-
mendations,” PloS one, vol. 12, no. 6, e0179488, 2017.

R. E. Vlas and W. N. Robinson, “Two rule-based natural language strategies
for requirements discovery and classification in open source software develop-
ment projects,” Journal of management information systems, vol. 28, no. 4,
pp. 11-38, 2012.

B. Jehangir, S. Radhakrishnan, and R. Agarwal, “A survey on named entity
recognitiondatasets, tools, and methodologies,” Natural Language Processing
Journal, vol. 3, p. 100017, 2023.

M. Abulaish and A. K. Sah, “A text data augmentation approach for im-
proving the performance of cnn,” in 2019 11th International Conference on
Communication Systems € Networks (COMSNETS), IEEE, 2019, pp. 625—
630.

L. Taylor and G. Nitschke, “Improving deep learning with generic data aug-
mentation,” in 2018 IEEE symposium series on computational intelligence
(SSCI), IEEE, 2018, pp. 1542-1547.

C. Coulombe, “Text data augmentation made simple by leveraging NLP cloud
apis,” arXiv preprint arXiw:1812.04718, 2018.

D. Pluec and J. najder, “Data augmentation for neural NLP,” arXiv preprint
arXiw:2502.11412, 2023.

Bibliography

[37]

[38]

[39]

[40]
[41]

[42]

B. Li, Y. Hou, and W. Che, “Data augmentation approaches in natural lan-
guage processing: A survey,” AI Open, vol. 3, pp. 71-90, 2022.

D. R. Beddiar, M. S. Jahan, and M. Oussalah, “Data expansion using back
translation and paraphrasing for hate speech detection,” Online Social Net-
works and Media, vol. 24, p. 100 153, 2021.

T. Ek, C. Kirkegaard, H. Jonsson, and P. Nugues, “Named entity recogni-
tion for short text messages,” Procedia-Social and Behavioral Sciences, vol. 27,
pp. 178187, 2011.

L. Ahrenberg, J. Frid, and L.-J. Olsson, “A new resource for Swedish named-
entity recognition,” 2020.

Swedish BERT models, https : //github . com/Kungbib /swedish-bert -
models, Accessed: 2023-07-18, 2023.

G. G. ahin, “To augment or not to augment? a comparative study on text
augmentation techniques for low-resource NLP,” Computational Linguistics,
vol. 48, no. 1, pp. 542, 2022.

J. Wei and K. Zou, “Eda: Easy data augmentation techniques for boosting
performance on text classification tasks,” arXiv preprint arXiv:1901.11196,
2019.

R. Erd, L. Feddoul, C. Lachenmaier, and M. J. Mauch, Fvaluation of data
augmentation for named entity recognition in the german legal domain, 2022.
A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf,
“Flair: An easy-to-use framework for state-of-the-art NLP,” in Proceedings
of the 2019 conference of the North American chapter of the association for
computational linguistics (demonstrations), 2019, pp. 54-59.

A. Conneau, K. Khandelwal, N. Goyal, et al., “Unsupervised cross-lingual
representation learning at scale,” arXiv preprint arXiv:1911.02116, 2019.

L. Tunstall, L. Von Werra, and T. Wolf, Natural language processing with
transformers. " O’Reilly Media, Inc.", 2022.

L. Borin and M. Forsberg, “From the peoples synonym dictionary to fuzzy
synsets-first steps,” in Proceedings of the LREC 2010 workshop Semantic re-
lations. Theory and Applications, 2010, pp. 18-25.

Synonymer API, Synonymer api, https://synonymord.se/api/, Accessed:
2023-11-15, 2023.

D. Kokkinakis, J. Niemi, S. Hardwick, K. Lindén, and L. Borin, “HFST-
SweNER — a new NER resource for Swedish,” in Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14),
N. Calzolari, K. Choukri, T. Declerck, et al., Eds., Reykjavik, Iceland: Eu-
ropean Language Resources Association (ELRA), May 2014, pp. 2537-2543.
[Online]. Available: http://www.lrec-conf .org/proceedings/lrec2014/
pdf/391_Paper.pdf.

D. Kokkinakis, “Evaluating the coverage of three controlled health vocabular-
ies with focus on findings, signs and symptoms,” NEALT Proceedings Series,
editor, NODALIDA, vol. 12, pp. 27-31, 2011.

A. Paszke, S. Gross, S. Chintala, et al., “Automatic differentiation in PyTorch,”
2017.

61

https://github.com/Kungbib/swedish-bert-models
https://github.com/Kungbib/swedish-bert-models
https://synonymord.se/api/
http://www.lrec-conf.org/proceedings/lrec2014/pdf/391_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/391_Paper.pdf

Bibliography

[47]
48]
[49]

[50]

[51]

62

T. Wolf, L. Debut, V. Sanh, et al., “Huggingface’s transformers: State-of-the-
art natural language processing,” arXiv preprint arXiv:1910.03771, 2019.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion.,” Journal of machine learning research, vol. 13, no. 2, 2012.

PyPI, Seqeval, https : / / pypi . org / project / seqeval /0.0 . 10/, ver-
sion 0.0.10, Accessed: 2023-11-15, 2019.

F. Rahutomo, T. Kitasuka, and M. Aritsugi, “Semantic cosine similarity,” in
The 7th international student conference on advanced science and technology
ICAST, vol. 4, 2012, p. 1.

OpenAl, Gpt-4 technical report, 2023. arXiv: 2303.08774 [cs.CL].

https://pypi.org/project/seqeval/0.0.10/
https://arxiv.org/abs/2303.08774

A

Appendix Augmentation examples

Here are the results of our augmentation on four different sentence examples with
our 3 augmentation methods.

Sentence

\ Labels

Original

fran och med imorn blir de roligare inligg,
musik, mode och ja ni fattar !

[707’ 707’ 707, Wj[W:"\/‘[E]?7 7077 707, 707’
7077 7077 7097 7097 70), 7037 7077 707}

Augmentation Methods

Mention replacement
frain och med augusti blir de roligare in-
lagg, musik, mode och ja ni fattar !

[7077 707’ 7077 DV]—‘\:"\/‘[EY7 7077 707’ 707’
707, 7077 7077 7077 7077 7077 7077 707}

AugGPT

Imorgon ér dagen da inldggen kommer att
bli roligare med inslag av musik, mode och
mycket annat - ni fattar!

[7077 70’7 7077 707’ 707’ ’O?) ’O?7
7O’7 7077 707’ 707’ 707’ 707’ ?07’ ?07’
7077 707’ 707]

Synonym replacement with p=0.3
av och med imorn blir de roligare inlagg,
musik, mode och ja ni fattar !

[707’ 707’ 7077 7TME7’ 7077 707’ 707’
707, 707, 7077 7077 7077 7O77 707’ 707}

Synonym replacement with p=0.5

av samt tillsammans imorn blir dom roli-
gare kommentar, musik, mode och ja du
fattar !

|:7O77 707’ 707, Wj[W:"\/‘I:EJ?7 7077 707, 707’
7077 7097 7097 7097 7097 7097 7077 707}

Synonym replacement with p=0.7

av samt tillsammans imorn blir dom
roligare kommentar, musik, mode samt
givetvis ni fattar !

[7077 ’07’ 707, 7F:[\1\/J:E77 7O77 7O’7 ?O?)
7077 7077 7077 7077 7077 7077 707’ 707}

Table A.1: Data Augmentation for Original Sentence 1

A. Appendix Augmentation examples

IT

Sentence

\ Labels

Original 2

Aldre barn kan fi vanliga niasdroppar.

[7077 ’()77 7077 7077 7MNT77 7MNT77
707]

Augmentation Methods

Mention replacement
Aldre barn kan fa tenutexkurer agglutina-
tionstest.

[)O?7 ?()77 7077 7077 7MNT77 71\/-[NF_[177
707]

AugGPT
Aldre barn kan ofta anvinda vanliga nés-
droppar for att lindra forkylningssymtom.

[707’ ?07’ 707’ 7O’7 7MNT7’ 7MNT7’
7077 707’ 707]

Synonym replacement with p=0.3
Aldre barn kan f& vanliga nasdroppar.

[707’ 707’ 707’ 7077 7MNT7’ 7MNT7’
707]

Synonym replacement with p=0.5
Aldre unge kan ringa vanliga nisdroppar.

|:7O77 707’ 707’ 7077 7MNT7’ 7MNT7’
707]

Synonym replacement with p=0.7
Aldre barnunge kan erhélla vanliga nés-
droppar.

[7077 ’()77 7077 7077 7MNT77 7MNT77
707]

Table A.2: Data Augmentation for Original Sentence 2

Sentence

‘ Labels

Original 3

I Sverige far foraldrar bekosta rotavirus-
vaccinationen sjalva.

|i7()77 7LOC7’ ?07’ 7077 7077 7MNT7’
707, 707}

Augmentation Methods

Mention replacement
I Kristianstad far foraldrar bekosta pleu-
rostomi sjalva.

[707’ 7LOC7’ ?07’ 7077 7077 7MNT7’
7077 707}

AugGPT

Det &ar vanligt i Sverige att foraldrar sjéalva
far sta for kostnaden for rotavirusvaccina-
tionen.

[707’ 7077 707’ 7()77 7LOC7’ 707’ 707’
707, 707’ 707’ 707’ 707 7MNT7’ 707]

Synonym replacement with p=0.3
I Sverige far fordldrar bekosta rotavirus-
vaccinationen solo.

[7077 7LOC7’ ’077 7O77 7077 7MNT77
707, 707}

Synonym replacement with p=0.5
I Sverige far foraldrar bekosta rotavirus-
vaccinationen solo.

|i7()77 7LOC7’ ?07’ 7077 7077 7MNT7’
707, 707}

Synonym replacement with p=0.7
inom Sverige far foraldrar bekosta ro-
tavirusvaccinationen solo.

[707’ ’LOC’, 707’ 7077 707’ ’MNT’,
7077 707}

Table A.3: Data Augmentation for Original Sentence 3

B

Appendix AugGPT Prompt

Prompt:
Skriv om meningen “X” ganger och behall orden [entity 1, entity 2, etc...]. Numer-
era.

Here, X is the number of times you want to augment a sentence, and the words
inside the “[]” are the entities, which should be preserved.

ITT

	List of Figures
	List of Tables
	Introduction
	Problem
	Purpose
	Limitations
	Ethical considerations and risks

	Theory
	Neural networks
	Attention
	Transformers
	BERT
	KB-BERT model

	GPT

	Named Entity Recognition
	Ruled-based and lexicon-based approaches
	Neural network approaches

	Data augmentation

	Related work
	Swedish NER resources
	Low-Resource settings in NLP
	Data augmentation in NLP

	Data
	Data
	Entities

	Methods
	Preprocessing
	Data Preparation and Tokenization
	Simulating Low-resource settings and data split

	Data augmentation
	Augmentation methods
	Synonym replacement
	Mention replacement
	AugGPT

	Parameter setup and augmentation process

	Model implementation and training
	Model
	Creating baseline and fine-tuning the model
	Hyperparameter optimization

	Evaluation
	Evaluation of Data augmentation effectiveness in various low-resource settings
	Augmentation Impact

	Results
	Baseline
	Synonym replacement
	Small training set
	Medium training set
	Large training set

	Mention replacement
	Small training set
	Medium training set
	Large training set

	AugGPT
	Small training set
	Medium training set
	Large training set

	Method comparisons
	Cosine similiarty
	Small training set
	Medium training set
	Large training set

	Discussion
	Data augmentation in various low-resource settings
	NER AugGPT and traditional techniques
	Cosine similarity versus F1-score

	Conclusion
	Conclusion
	Future work

	Bibliography
	Appendix Augmentation examples
	Appendix AugGPT Prompt

