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Sensor Modeling with a focus on noise modeling in the context of Self-Driving Ve-
hicles using Neural Network
Siamak Esmi
Department of Physics
Chalmers University of Technology

Abstract
System Simulation has become an indistinct part of developments in which there are
complexity involved. In this thesis, modeling of one of the most applicable sensors in
automotive industry is carried out by applying a machine learning method known as
neural networks. This report outlines a method of employing a combination of neural
network techniques to model system behaviour; an applicable method compatible
with any type of data. By integrating this sensor model into simulation environment
(OpenDaVINCI), simulation test which plays an important role in testing of self-
driving vehicles will become more realistic.

Keywords: System identification, neural network, proximity sensor, noise, self-
driving vehicles
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1
Introduction

Sensors are often used to continuously monitor the status of an environment. These
monitoring results are reported to an application for making decisions and answer-
ing user queries in different processes. For instance, for a vehicle to drive by itself,
a sensor system is needed to perceive (detect, identify, localize) the environment
around the vehicle. Various sensor network measurement studies have reported in-
stances of transient noises in sensor readings [Sharma et al., 2010].
Environmental features will always play a dominant role in the type and prevalence
of faults because they play a significant role in determining expected behavior. En-
vironmental perturbations can also affect sensors in adverse ways [Ni et al., 2009].
Modeling Ultrasonic proximity sensors which consequently provides the ability to
predict the sensor output is of an extensive interest since these sensors are widely
being used in autonomous vehicles and basically in mobile robots. One particular
rangefinder sensor, namely, Devantech SRF08 UltraSonic Ranger is chosen for this
modeling based on its robustness, user friendly level, accuracy and low cost.
A modeling technique to some extent based on [Gutierrez-Osuna et al., 1998] is car-
ried out which also compares different neural network architectures for non-linear
regression/mapping.
The result of this modeling will be used as a "Noise Model" in automated simulations
incorporated in OpenDaVINCI1, which is an Open source Development Architecture
for Virtual, Networked, and Cyber-Physical System Infrastructures. OpenDaVINCI
is a compact middle-ware with several extended libraries for simulation and visual-
ization.
This development environment is used on various self-driving vehicles at Chalmer-
s/University of Gothenburg and the aforementioned sensor is the one which is em-
ployed in experimental miniature cars.

1.1 Background

Modeling is an important way of exploring, studying and understanding the world
around. A model is a formal description of a system, which is a separated part of
the world and describes certain essential aspects of a system [Horvath, 2003]. This

1http://www.opendavinci.org
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1. Introduction

separation is necessary when the influence of interaction between the system to be
modeled and the rest of the world has to be reduced.
With respect to the aim of modeling, only some important aspects must be taken
into account. This is why a model is always imperfect and only can "approximate"
a system. It is always trivial to deal with models rather than systems since they
are simpler. Nevertheless, the simplicity limits the validity of the model. Parsimony
is another principle in modeling, it is formulated as the Occam’s razor: "The most
likely hypothesis is the simplest one that is consistent with all observations".

1.2 Goals
When it comes to "adaptive systems", the systems that can learn from the envi-
ronment around, level of perception of surroundings is a determinant factor. The
goal of this thesis is to systematically evaluate and improve model of a proximity
sensor in the virtual test environment to significantly improve the level of “realism”
in automated simulations incorporated in OpenDaVINCI.
The goal of this thesis is divided into the following research questions:

RQ.1 Which parameters for deriving and evaluating representative fault/noise mod-
els for proximity sensors have to be considered?

RQ.2 Which design considerations for a systematically experimentation and mea-
surement of the vertically and horizontally field of view for proximity sensors
need to be regarded?

These research questions seek to provide an answer for how this model can contribute
in the development of real-time systems for self-driving vehicles.

1.3 Methodology
For this modeling purpose, the approach is to conduct an experiment and then esti-
mate the process of proximity measurement by applying the "classic" and "modern"
techniques of neural networks and benchmarking the performance of the exploited
techniques in terms of accuracy and time efficiency.

1.3.1 Experiment Design
Clearly, more available information of a system results in a better model construction
of that system. Lack of having solid and adequate information about attributes and
structure of a system and relying just on observed data will lead to constructing
a black-box or an input-output model. These constructions are highly based on
relevant observations, hence, experiment design is a crucial part of a modeling. This
designation determines which parameters can be measured and how largely they can
affect the model.

2



1. Introduction

1.3.2 Model Parameter Estimation

In order to estimate the desired parameters of a model, the relation between inputs
and outputs of a system has to be formulated in a mathematical form. If the
parameters to be estimated relate output variables to input variables, then the
procedure can be used to model the system.

1.3.3 Artificial Neural Network Model

Using Artificial Neural Networks (ANNs) in system modeling is not the only ap-
proach. There are also other approaches to approximate non-linear mapping of
different systems. However, among all these black box architectures, neural net-
works are far the most popular ones. The reasons – at least partly – come from
the roots of neural networks: from their neurobiological origin, their ability to learn
from examples and from the extremely good problem solving capability of "biolog-
ical systems", which can be mimicked by artificial neural networks. The historical
roots, however, would not be enough for this long time popularity. The real reasons
come from the practical advantages of neural modeling.
In black box modeling, determining the proper size of a model structure is usually a
hard task, and choosing improper size often leads to poor models. A too small model
is not able to approximate a complex system well enough, a too large model with
many free parameters, however, may be very prone to overfitting [Horvath, 2003].
In the next chapter, different Artificial Neural Network topologies and techniques
which were used in this modeling are explained.

1.3.4 Validation

The final step is the validation of the model. To validate a system model, a proper
criterion as a fitness of the model must be used. The choice of this criterion is
extremely important as it determines a measure of the quality of the model. From
the result of the validation one can decide whether or not the model is good enough
for desired purpose.

1.3.5 Massive Parallel Programming Using CUDA

The Compute Unified Device Architecture, CUDA, is a parallel computing platform
and programming model invented by NVIDIA. It enables dramatic increases in com-
puting performance by harnessing the power of the graphics processing unit (GPU).
A performance comparison between GPU and multi-core CPU by implementation
of neural networks is carried out in [Jang et al., 2008]. The result shows achieving
computational times about 15 times faster than the analogous implementation using
CPU and about 4 times faster than implementation on GPU alone. The probable
advantages of using GPU for particular architectures of ANNs will be examined for
this particular real-world problem.
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1. Introduction

1.4 Related Work
Neural network model is widely used in many areas, such as signal and image process-
ing [Sun et al., 2013] and [Shen et al., 2013], wireless sensor network [Barabasi, 1999]
and biological modeling [Maass, 1997].
In this thesis, the idea for experimentation is taken from [Gutierrez-Osuna et al., 1998]
which also by some minor modification is used in [Gamarra-Diezma et al., 2015].
The researchers have utilized a very similar approach for data acquisition. The
former has presented a probabilistic model of ultrasonic range sensors using feed-
forward neural networks trained on experimental data where the latter focused on de-
termination of the suitability of sonars in terms of sound cone, angle errors, crosstalk
errors and field measurements.
In [Gutierrez-Osuna et al., 1998], regardless the experimentation, an approach of
credence estimation is taken else than what is done in this thesis.

4



2
Theory

Identification of nonlinear processes can insufficiently be modelled by conventional
methods, therefore more sophisticated methods are required. Artificial networks of
interconnected neurons with appropriate learning algorithms have been developed
through last decades, promising a high rate of validity.
In this chapter, a basic mathematical approach for statistical modeling is provided,
then fundamentals of ANNs with a focus on input-output mapping and different
techniques with their applicability are presented.

2.1 Statistical Modeling
The goal of statistical modeling is to capture the general pattern of a relationship
in a system and to present it as an equation. To derive the equation from acquired
samples of a system, independent and dependent variables need to be known, also
their dependency on time have to be studied. The equation produced by a modeling
method can be considered as a mapping, because it allows the mapping of any point
in the domain of independent variables onto a point in the domain of dependent
variables.
Assuming that a system implements f : RN → R mapping, the relation between
the input and the output measurement data can be described as

y(i) = f(x(i)) + n(i) (2.1)

where n(i) is the noise, {x(i), y(i)}i=pi=1 are representing the input and output respec-
tively.
This system will be modeled by a general model structure. The mapping of the
model, ˆf(.), will approximate in some sense the mapping of the system

yM(i) = f̂(x(i),Θ) (2.2)

where yM is the output of the model and Θ is the parameter vector of the model
structure.
Nevertheless, this mapping function produces some errors, since the dependent vari-
able may not be equal to the actual result. This error can be measured in several
ways such as the average of the squares of the difference between the estimated
and the actual result. This approach yields to assigning more importance to those
samples for which the error is larger.
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2. Theory

In statistical modeling, there are two sources of error. As it is discussed in previous
chapter, the first source of error is noise. In essence, the inaccuracies in the data,
most likely introduced by the instrument itself or/and power resource or/and de-
fective connections. It also includes inaccuracies due to the fact that independent
variables do not contain all the information needed to determine the dependent vari-
able; other factors not included in the model may play an important role.
Noise is not an inherent randomness or absence of causality in the world; rather, it
is the effect of missing (or inaccurate) information about the world [Smith, 1993].
The second source of error is the fact that the mapping function may not have the
same form as the target function. Target function is an idealized and unknowable
function that express the true relationship between the independent and dependent
variables.
The fields of Statistics and Neural Networks are closely related. The principle dif-
ference between the two fields is that historically statistic has focused on linear
problems, which are relatively tractable, while Neural Networks has been forced to
deal with nonlinearities.

2.2 Artificial Neural Network

As it is stated in [Haykin, 1994], a neural network is a massively parallel distributed
processor made up of simple processing units, which has a natural propensity for
storing experiential knowledge and making it available for use. It resembles the
brain in two respects:

• Knowledge is acquired by network from its environment through a learning
process.

• Interneuron connection strength, known as synaptic weights, are used to store
the acquired knowledge.

Feed-forward neural network as a subset of fully connected neural networks, benefits
of advantages which make it a good approach in input-output mapping.

2.2.1 Feed-forward Neural Network

As the name implies, in feed-forward neural networks, neurons are arranged in layers
in such a way that input samples are fed forward to the input layer and outputs are
produced in the output layer as it is shown in Figure 2.1. The layer(s) in between
have no connection with the external world, hence they are called the hidden layer(s).
Each neuron in one layer is connected to every neurons in next layers but there is
no connection among neurons in a same layer. The number of hidden layers and
the number of neurons in each hidden layer depend on the problem in hand. The
usual way of determining mentioned numbers is by trial and error. More difficult or
strictly, higher degrees of freedom considered in the problem, the greater size of the
neural network will be required.

6



2. Theory

2.2.2 Feed-back Neural Network
Basically, feed-back or recurrent neural networks (RNNs) are neural networks with
one or more feedback loops, from either the output neurons or hidden neurons to
the input layer as it is shown in Figure 2.1. These loops enable neural networks
to do temporal processing and learn the sequences, e.g., perform sequence recogni-
tion/reproduction or temporal association/prediction.
The difference between feed-forward and recurrent ANN may seem trivial, the im-
plications for sequence learning are rather extensive. The equivalent result to the
universal approximation theory for feed-forward NN is that an RNN with a suffi-
cient number of hidden units can approximate any measurable sequence-to-sequence
mapping to arbitrary accuracy [Hammer, 2000].

	

Input 
Layer 

Hidden Layer(s) 

Output 
Layer 

(a) A Recurrent Neural Network model

	

Input 
Layer 

Hidden Layer(s) 

Output 
Layer 

(b) A feed-forward Neural Network model

Figure 2.1: A general feed-foward neural network model versus a recurrent one

There are two major functional uses of recurrent networks:
• Associative memories
• Input-output mapping networks

Utilizing a feed-forward neural network with aforementioned loops, the ability of
nonlinear mapping of feed-forward neural network can be exploited beside some
form of memory. This added property, comes from the fact that more information
of previous input is added to the current input and consequently is being fed to the
neural network.
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2. Theory

2.2.3 Learning Process
A Neural Network which is made up of an interconnection of nonlinear neurons, is
itself nonlinear, however, it is capable of solving both linear and nonlinear problems.
As it is shown in Figure 2.2, the equation

y = Φ
 N∑

i=1
wixi + b

 (2.3)

represents a mathematical description of a neuron. In this example, the input vector
is given by x = [x1, x2, x3]T , whereas w = [w1, w2, w3]T is referred to as the weight
vector and b is the Bias. The function Φ is an Activation or Squashing function
which usually is continuous. This function keeps outputs in a certain desired range.
The principle that a network of neurons follows, which consequently leads to an
approximation of a process based upon the provided information, is not a complex
one, yet it simply presumes an arbitrary approximation and then tries to tune it up
to a more robust approximation. In order to reach that, there are number of methods
and techniques which optimize either of the pre-assumptions and/or fine-tuning.

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.2: A simple structure of a neuron

Activation Function

The most common activation functions are Sigmoid and Hyperbolic tangent which
have the feature of non-linearity. Sigmoid has the property of Step function with an
added region for uncertainty and yields output values in the range [0, 1].
Sigmoid function is given by the relationship below.

σ(t) = 1
1 + e−βt (2.4)

where β is in the range of [0, 1].
Simplicity of derivative calculation of Sigmoid function is another property which
distinguishes this function from other activation functions.
Yielding output values in the range [−1, 1], hyperbolic tangent function is related

8



2. Theory

to Sigmoid function by the following linear transform

tanh(t) = 2σ(2t)− 1 (2.5)

This means that these two functions are equivalent as activation functions in a
neural network with a hidden layer of activation function. As it is shown in Figure
2.3, the difference is the output range, the factor that determines the proper one for
the problem in hand. There are other activation functions which are being used for
different purposes such as classification task which is out of the scope of this work.

-5 0  5  
net

0.5

1

o
u
tp
u
t

-5 5net

0.5

1

o
u
tp
u
t

Figure 2.3: For β = 1; left: Sigmoid non-linearity squashes real values to [0, 1],
right: Hyperbolic tangent non-linearity squashes real values to [−1, 1]

Weight & Bias

The procedure used to perform the learning process is called a learning algorithm,
the function of which is to modify the synaptic weights of the network in an orderly
fashion to attain a desired design objective [Haykin and Network, 2004]. The synap-
tic weights, which are learnable parameters of a NN, usually are randomly initiated
to small values, evenly distributed around zero which refers as symmetry breaking.
If two hidden units have exactly the same bias and exactly the same incoming and
outgoing weights, they will always get exactly the same gradient, consequently, they
can never learn to be different features [G. Hinton and Swersky, 2012].
Weights can get adapted after feeding each sample (online/sequential learning), or
once the whole training samples or a part of that is fed to the neural network, the
latter is called batch learning.

Saturated Sigmoid

Using sigmoid as activation function has its own disadvantages which leads to a
slow convergence and it occurs most likely when the variance of input features is
high. Referring to [Glorot and Bengio, 2010], researchers found out that sigmoid
activation function is not suitable for a deep NN with random initialization of weights

9



2. Theory

because of its mean value, which can drive especially the top hidden layer into
saturation. Nevertheless, using the method they recommend should be investigate
for shallow NN to see its effect on the convergence speed. When activation of a
neuron saturates at either zero or one, the gradient of cost function at these regions
is almost zero. The term vanishing gradient is derived from the fact that this very
small value (almost zero) as a local gradient will be multiplied to the gradient of
this gate’s output for the whole objective during backpropagation, which will cause
that almost no signal will flow through the neuron to its weight and recursively to
its data. However, as it is explained in [He et al., 2015], there are other methods for
weight initialization which avoid reducing or magnifying the magnitudes of input
signals exponentially and keep the data flow to the latter layer with a mean of zero.

Backpropagation

In supervised learning, which is a popular paradigm of learning, the modification
of synaptic weights of a neural network is performed by applying a set of labeled
training samples, i.e. optimising a cost function on the training set

E(w) =
N∑

i=1
Ei(w) (2.6)

where the parameter w which optimizes the cost function Ei(w), is to be estimated
by means of the i− th input pattern in training set. A very common cost function
is Mean Squared Error (MSE), which has the following calculation equation:

MSE = 1
n

N∑
i=1

(ŷi − yi)2 (2.7)

This equation assesses the quality of the predictor ŷ in predicting y.

Gradient Descent

In the case of complex non-linear functions computed by NN, there is no practical
way of directly calculating the optimal values of the weights [Smith, 1993]. The
simplest method is known as gradient descent, which its algorithm is to repeatedly
take a small, fixed-size step in the direction of the negative error gradient of the cost
function. This method has the following iteration:

wt ← wt−1 − η∇wt−1E(wt−1) (2.8)

where η is the step size or learning rate in the range of [0, 1]. The learning rate
determines the size of the steps we take to reach a minimum and usually is set to
0.01.
In batch gradient descent, the gradient of the cost function is computed for the
entire training data set, while stochastic gradient descent (SGD) in contrast per-
forms a parameter update for each training example (pattern). This more frequent
update with a high variance causes the objective function to fluctuate heavily and

10



2. Theory

consequently, enables it to jump to another potentially better local minima. Never-
theless, by mini-batch gradient descent, it is possible to take advantage of the both
mentioned variants. Mini-batch gradient descent performs a weight update for every
mini-batch of training examples.
For an efficient calculation of the gradient, a technique known as backpropagation is
being used. The name backpropagation is derived from the process of propagating
the error information backward from the output nodes to the hidden ones to op-
timize the weights. Backpropagation provides a way of using examples of a target
function to find the coefficients that make a certain mapping function approximate
the target function as closely as possible. This technique is basically a repeated
application of chain rule for partial derivatives.

Nesterov’s Accelerated Gradient

A major issue with gradient descent algorithm in non-linear problems is that it
easily gets stuck at local minima. By addition of a momentum term which simply
adds a fraction of the previous weight update to the current one, the issue can get
mitigated [David E. Rumelhart, 1986].
The momentum, which effectively adds inertia to the motion of the algorithm
through weight space, helps to escape from local minima and hence, speeds up
convergence. By introducing a momentum vector m

mt = µmt−1 +∇wt−1E(wt−1) (2.9)

where µ is an exponential decay factor (momentum coefficient) in the range of [0, 1],
this method has the following iteration in its "standard" form

wt ← wt−1 − η mt (2.10)

where η is the learning rate.
Momentum coefficient determines the relative contribution of the current gradient
and earlier gradients to the weight change.
Learning rate is an important term which determines the magnitude of changes in
weights at each step. The importance of choosing a proper learning rate is that high
such that choosing a small one will delay the convergence and choosing a large one
will cause divergence in the algorithm.
Gradient descent is the only learning method which has been mathematically proven
to converge on the set of weights producing minimum error. Nevertheless, adaptive
learning rate is a technique which benefits of several advantages but the guarantee of
convergence. This method is much faster than gradient descent and does not suffer
of getting stuck at local minima. Having the learning rate set to an arbitrary value,
if the direction in which the error decreases at this weight change is the same as the
direction in which it has been decreasing recently, make the learning rate larger; if
the direction in which the error currently decreases is the opposite of the direction
in which it has been decreasing recently, make learning rate smaller [Smith, 1993].

11



2. Theory

Adaptive sub-gradient descent known as AdaGrad [J. Duchi, 2011], slows down learn-
ing along dimensions that have already changed significantly and speeds up learning
along dimensions that have only changed slightly by dividing the learning rate of
every step by the l2norm of all previous gradients. The weight update has the
following iteration

wt ← wt−1 − η
∇wt−1E(wt−1)
√
nt + ε

(2.11)

where nt is the norm vector (∇E(w)2) and ε is in the range of [0, 1].
The recommended values for learning rate and ε are 0.01 and 1e−08 respectively.
However, as an issue in Adagrad, norm vector eventually becomes so large such that
prevent reaching the local minima. As an extension to Adagrad, a per-dimension
learning rate method for gradient descent is called Adadelta. The method dynami-
cally adapts over time using only first order information and has minimal computa-
tional overhead beyond vanilla stochastic gradient descent. The method requires no
manual tuning of a learning rate and appears robust to noisy gradient information,
different model architecture choices, various data modalities and selection of hyper-
parameters [Zeiler, 2012].
In this method, the sum of gradients is recursively defined as a decaying average of
all past squared gradients instead of storing previous squared gradients. It has the
following iteration

wt ← wt−1 −
RMS(∆wt−1)
RMS(∇E(wt))

∇E(wt) (2.12)

In order to make adaptive learning rate technique perform better, an unpublished
method called RMSProp can be employed which allows the model to continue to
learn indefinitely. Technically, root mean square propagation, is an optimizer that
utilizes the magnitude of recent gradients to normalize the gradients, i.e. divides the
gradient by a running average of its recent magnitude [Tieleman and Hinton, 2012]
as follows

MS(wt) = νMS(wt−1) + (1− ν)(∇E(wt))2 (2.13)

wt ← wt−1 −
η√

MS(wt)) + ε
∇E(wt) (2.14)

where ν is a decaying mean recommended to be set to 0.9.
In order to take advantage of properties of both momentum and RMSProp, Adam is
introduced in [D. Kingma, 2014] which computes adaptive learning rates for each pa-
rameter. In adaptive moment estimation, performance of optimization is improved
by combining momentum (using a decaying mean instead of a decaying sum) with
RMSProp. By denoting mt as the estimates of the first moment (the mean) and vt
as the second moment (the un-centered variance) of the gradients

mt = β1mt−1 + (1− β1)∇E(wt) (2.15)
vt = β2vt−1 + (1− β2)∇E(wt)2 (2.16)
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where β1 = 0.9 and β2 = 0.999, the authors of Adam computed bias-corrected
estimates such that

m̂t = mt

βt1
(2.17)

v̂t = vt
βt2

(2.18)

consequently, the update iteration has the form of

wt ← wt−1 − η
m̂t√
v̂t + ε

(2.19)

where the recommended learning rate in Adam is 0.001.
Nesterov mometum [Nesterov, 1983], is a slightly different version of standard mo-
mentum which is exploited in Nesterov’s accelerated gradient [Sutskever et al., 2013].
This accelerated gradient is a first-order optimization method with better conver-
gence rate guarantee than gradient descent in certain situations by a minimal in-
crease in complexity and on contrary a drastic increase in performance. In Nesterov’s
accelerated gradient (NAG)[Dozat, 2014], by denoting gt as ∇E(wt−1)

ĝt = gt
1−∏t

i=1 µi
(2.20)

mt = µmt−1 + (1− µ)gt (2.21)

m̂t = mt

1−∏t
i=1 µi

(2.22)

nt = νnt−1 + (1− ν)gt (2.23)

n̂t = nt
1− νt (2.24)

m̂t = (1− µt)ĝt + µt+1m̂t (2.25)

where ν = 0.999, ε = 1e−08, and a momentum schedule given by

µt = µ(1− 0.5× 0.96 t
250 ) (2.26)

where µ = 0.99, the weight update are calculated as follows

wt ← wt−1 − η
m̂t√
n̂t + ε

(2.27)

Pre-Processing

Activation functions used in neural networks are centred around a certain value in
their output space; as it is depicted in Figure 2.3, the hyperbolic tangent is centered
around 0 and sigmoid is centered around 0.5 by setting β = 1. Hence, transformation
or pre-processing of input samples (input to the network) is necessary for an efficient
mapping. This pre-processing of input samples matches them to the range of the
activation function which is being used. For this purpose, several operations can be
performed such as normalisation to zero variance and unity standard deviation or
rescaling based on minimum and maximum values of input samples.
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Generalisation

Training the NN proceeds iteratively and each iteration is called an Epoch. Many
epochs are usually required before the weights gradually converge to an optimal set
of values. With input-output mapping, the real goal is to optimise performance
on a test set of untrained data (validation set). The issue of whether training
set performance carries over to the test set is referred to as generalisation and is
of fundamental concepts in machine learning [Bishop, 2006]. Generally, the larger
training set, the better generalisation, but in the case of small training sets, there
are also methods that mitigate the undesired effect of it.
During the training phase, the error rate typically decreases at first on both training
and validation data sets, but after a certain point it begins to rise on the validation
sets, while continuing to decrease on the training set. This behaviour, is known as
overfitting. There are number of methods to prevent this behaviour.
Regulariser are one of the proposed methods to improve the generalisation to prevent
overfitting by applying penalties on layer parameters or layer activity during weight
optimization.
A different way to constrain a network, and thus decrease its complexity, is to limit
the growth of the weights through some kind of weight decay. It can be realized by
adding a term to the cost function that penalizes large weights, as equation below

E(w) = E0(w) + λ

(∑
i
w2
i

)
(2.28)

where E0 is unregularized cost function and λ is a parameter governing how strongly
large weights are penalized [Anders Krogh, 1992]. Applying this method simply
prevents the weights from growing too large unless it is really necessary.
Lasso or l1norm has the form of

E(w) = E0(w) + λ

(∑
i
|wi|

)
(2.29)

which in essence does both continuous shrinkage and automatic variable selection
simultaneously [Tibshirani, 1996].
Elastic net, is the other regularization and variable selection method proposed in
[Zou and Hastie, 2005], which is particularly useful when the number of predictors
is much bigger than the number of observations.
Another method is early stopping. In this method, after assigning a part of input
data as validation set, all stopping criteria are then tested on the validation set
instead of the training set. The ‘best’ weight values are also chosen using the
validation set.
Dropout is another technique for addressing overfitting. The key idea is to randomly
drop units (along with their connections) from the neural network during training,
hence, this prevents units from co-adapting too much [Srivastava et al., 2014].
In this thesis two different in nature NN are put to examination for benchmarking;
a feed-forward and a feed-back NN.

14



2. Theory

2.2.4 MLP
Multi Layer perceptron (MLP) is a feed-forward neural network with one or more
layers between input and output layer. This type of network is trained with the
backpropagation learning algorithm. MLPs are widely used for pattern classification,
recognition, prediction and approximation. The learning algorithm is more and less
similar to what mentioned above.

2.2.5 Long-Short Term Memory
Long-short term memory (LSTM) NN as is introduced in [Schmidhuber, 1997], is a
RNN capable of learning long term dependencies by combining fast training with
efficient learning. Further on, it was improved with forget gates and peephole con-
nections [F. A. Gers and Cummins, 2000]. Added peephole connections enables gate
layers to get the state of the cells. By coupling forget and input gates, the decision
of forgetting or remembering new information is being made.
Hidden layer in LSTM NN consists of memory block cell assemblies. Each mem-
ory block is composed of memory cell units that retain state across time-steps,
as well as three types of specialized gate units that learn to protect, utilize, or
destroy this state as appropriate. The LSTM training algorithm back-propagates
errors from the output units through the memory blocks, adjusting incoming con-
nections of all units in the blocks, but then truncates the back-propagated errors
[Monner and Reggia, 2012]. What distinguishes LSTM NN from "standard" RNN
is that LSTM NN "remember" information for long periods of time by means of
memory block cells.
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2.3 Sensor and Noise
Data noise that have been observed in real deployments which cause the faulty sensor
readings to deviate from the perfect pattern exhibited by non-faulty sensor readings,
are generally generated by either internal or external factors; such as battery failure
or defective connections.
According to [Sharma et al., 2010] and [Ni et al., 2009], the fault in real-world sen-
sor data can be categorised in four groups. These four groups are defined in
[Fang and Dobson, 2013] as below:

• SHORT: A sharp momentary change in the measured value between normal
consecutive readings. Hardware failures like fault in the analog-to-digital con-
vert board may lead to short faults;

• NOISE: sensor readings exhibit an unexpectedly high amount of variation for
a period of time. The noisy variance is beyond the expected variation of the
underlying phenomenon. Usually high noise is due to a hardware failure;

• CONSTANT: also known as “Stuck-at” fault. The readings remain constant
for a period of time greater than expected. The reported constant value usually
is out of the possible range of the expected normal readings and uncorrelated
to the underlying physical phenomena. Constant faults occur due to clipping,
hardware failure or low battery;

• CALIBRATION: sensor readings may have offsets or incorrect gain, rendering
reported data deviating from the true value. Drift faults occur when the offset
or gain change with time.

Mentioned faults are of innate disadvantages which might occur in any sensor driven
system. Nevertheless, there are other typical measurement errors needed to be taken
into account when it comes to beam-based proximity sensors. For instance, inter-
ferences on sonar sensors known as cross-talk, leading to irrelevant measurements
which are the result of reflected beams from an obstacle at completely different
paths. Even when the beam comes from a real obstacle, there will be still noise
in that measurement. However, the consistency of manufacturing tolerance and
claimed range of the sensor also should be evaluated.
In order to develop a fault-tolerant perception architecture, the reliability of sensor
readings needs to be systematically tested. The concept of fault tolerant systems
refers to the systems that are able to compensate faults in order to avoid unplanned
behaviours [Isermann, 2011].
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In this chapter the employed proximity sensor for this work is introduced. Con-
sidered parameters for deriving and evaluating representative noise model for the
sensor beside the designation of the experiment are outlined to address the RQ.1
and RQ.2. The pre-processing of the acquired data samples and the Neural Network
model are also explained.

3.1 Ultrasonic Sensor
Ultrasonic transducers are one of the most popular sensors which have widely been
used in robots and automated driving. These inexpensive sensors, convert ultra-
sound waves to electrical signals and vice versa. By measuring the time of flight
of the emitted beam, distance to reflector can be measured. Devantech SRF08 Ul-
traSonic Ranger, is the proximity sensor employed for this modeling. According
to the data sheet of this sensor, a change of processor made more timers available
in compare with previous model like SRF04. Previous models of this sonar family
suffer from cross-talk. However, one of the problems with terminating the ranging
is that the in-flight “ping” does not know this. For instance, it simply bounces off
a far wall and returns. Now if it happens to return just after a new ranging have
started, the sonar will pick up this earlier “ping” and think there is an object much
closer than there really is. The SRF08 allows the maximum gain to be limited to
reduce this possibility. Nevertheless, this developed feature has to be evaluated as
well.

Table 3.1: Technical specification of Davantech SRF08

voltage 5v
current 15mA Typ. 3mA Standby
frequency 40KHz
max. range 6000mm
min. range 30mm
max analogue gain variable to 1025 in 32 steps
connection standard IIC
echo Multiple echo - keeps looking after first echo

According to a priori knowledge, mounting sonars in a way that its transceivers
are parallel with the ground, sonars are prone to first "detect" the ground for a
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distance less than 200− 300mm between sensor and the ground. Proximity sensors
return a value else than zero in the case there is an object in their field of view
which has reflected the emitted beam from the sensor. This value is calculated by
measuring the time of flight of the sound waves in air which is the longest among
fluids and solids. Time of flight is calculated based on the distance that a beam
(mechanical wave) with velocity of sound (ca. 343m/s at 20◦ C) can travel. In the
context of "robotics", the term "detected" refers to that value, which means that in
a distance of that value there is an object. The field of view for SRF08 is depicted
in Figure 3.1, for a range of approximately 3000mm and 90◦ horizontal field of view.
Observing the graph, it is obvious that for instance, objects located at a further
distance than 1500mm and with an incident angle of 30 − 35◦, are not detectable.
The settings of the range or the analogue gain for graph in Figure 3.1 is not specified
in the data-sheet. Knowing that according to the specification of the sonar which
is summarized in Table 3.1, behaviour of the sonar highly depends on the setting of
the aforementioned factors. Nevertheless, this beam pattern provides an intuition
of what should be expected of this sonar. Until this point, it is clear that the place
which the experiment is going to take place in, shall be engineered in such a way that
it has a certain amplitude from ground, and from the ceiling as well. Conducting a
number of experiments in a room with a ca. 3000mm height, the sonar is prone to
detect ceiling for a distance of ca. 1500mm. The vertical field of view also is needed
to be evaluated to give a better understanding of the sensor behaviour.

Figure 3.1: The beam pattern of SRF08

3.2 Experiment Setup
In order to perform an input-output mapping, obtaining experimental input is re-
quired. This is carried out by collecting a data set at discrete points in the input
space. Two inexpensive, metal stand structures with 1500mm height were assembled
with reasonable resilience. The idea for the structure of the stands are taken from
[Gutierrez-Osuna et al., 1998] with some modifications. A sonar was mounted on a
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stand and another stand was prepared to hold a light object (reflector) steady. The
sensor mounted on the stand, meeting the center of the reflector mounted on the
another stand. The detection of the vertical part of the stand is completely notable;
as it is depicted in Figure 3.2, the mounted reflector is 300mm ahead of the vertical
part of the structure.

1500 mm

300 mm

1500 mm

Figure 3.2: reflector stand and sonar stand

6000 mm

50
 m

m

5°

45
°

Figure 3.3: Grid pattern, the red rectangle resembles the sonar with a range set
to 6000mm

Two different object (reflector), including a rectangular rubber (120x130x15mm) and
a circular mirror of diameter 200mm and depth of 3mm were considered; representing
low and high reflectance respectively. A value of 0.9 is considered for high reflectivity
object (mirror), and 0.1 for low reflectivity object (rubber). These values are chosen
and set in order to comply with data rescaling. Else than reflectance (R) of the
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objects, the incident angle (θ) to the objects and the sensor reading (SR) are the
other parameters to be estimated. The SR is the value returned by the sensor (SR
= d cos θ, where d is the distance between the sensor and the reflector).
A grid (see Figure 3.1), was precisely measured and marked on the floor, according to
the range and beam pattern of the sonar. The sonar was set to operate in a maximum
range of 6000mm and an analogue gain with register value of 0B experienced to
match the specified range. The minimum and the maximum of d is 30 and 6000mm
respectively and the maximum of θ is 45◦. The increment or step size are set to
50mm and 5◦ for distance and angle respectively.
In this experiment, the room temperature is kept around 19◦C and the detection
pattern is assumed to be symmetric, so only a half cone is considered.

3.2.1 Data Acquisition
The sonar is connected to a micro controller (Arduino Mega board) as a communica-
tion interface, transferring the sampled data to be stored. To acquire high resolution
data from the Devantech sensor, the embedded IIC communication bus is used. IIC
is a two-wire, bi-directional serial bus that provides a simple and efficient method
of data exchange between devices. It is most suitable for applications requiring
occasional communication over a short distance between many devices. The IIC
standard is a true multi-master bus including collision detection and arbitration
that prevents data corruption if two or more masters attempt to control the bus
simultaneously [Herveille, 2003].
Below is the algorithm used for communication between a sonar and a micro con-
troller.

Algorithm 1 Sonar-MicroController Communication
Input: Maximum Range, Analogue Gain
Output: Proximity Range
1: procedure Ranging
2: start Serial communication
3: while True do
4: Instruct sensor to read echoes
5: Wait for sensor reading
6: Instruct sensor to return a particular echo reading
7: Request reading from sensor
8: Receive reading from sensor
9: end while

10: end procedure

In this setup, the analogue gain register is set to 0x0E and the maximum range
is limited to 6000mm. Letting the sonar stand to be fixed, the reflector stand
were displaced according to the grid pattern (Figure 3.3). The sampling repeated
50 times for each intersection in the grid, starting at 30mm up to 6000mm with
intervals/increment of size 50mm and from 0◦ up to 45◦ with intervals of 5◦. The
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data were stored as a vector of estimated parameters; angle, reflectance and sensor
reading. With this setting, the mathematical equation modeling the system would
get the form of

f(θ, R, SR) = range (3.1)

The connections between the sonar and the micro controller were not soldered in
order to resemble defective connections.
Identification of the type and the source of the errors is possible by means of statis-
tical methods which is out of the scope of this thesis.

3.3 Neural Network Model
Knowing how Neural Networks can solve almost any non-linear regression problem,
there are some dominant factors one should be aware of prior the initialization of a
neural network.
In order to finely approximate the factors, a couple of questions need to be posed:
What type of information should be learnt by the neural network? Float or binary
digits? How the data should be pre-processed? Re-scaled or normalized? Does
increasing the degree of freedom in input data lead to a better result? How Weights
and Bias are set? What kind of Activation function should be used then? What
kind of output is expected? Does a negative output value indicate any feature of
the data? How the topology of the network should look like? What is the number
of neurons and layers?
Answer to these questions give rise to the parameters which play crucial role in the
training phase, performance of the network and hence the complexity level of the
problem. For instance, initialization and the momentum are of high importance since
poorly initialized networks cannot be trained with momentum and well-initialized
networks perform markedly worse when the momentum is absent or poorly tuned
[Sutskever et al., 2013].
Prior to NN training, data needs to be pre-processed to increase the performance of
the NN. The parameter vector including the angle values (0− 45◦), the reflectance
level (0.1 or 0.9), the credence of sampled sensor readings(0 − 1) and the sampled
data (sensor readings) are obviously positive real numbers (of type float). Normal-
izing to zero mean and unit variance and rescaling to the range of [0, 1] are the
usual alternatives for pre-processing data for NNs. With the made assumptions for
the range of value of reflectance and credence, and the fact that gradient descent is
to be employed in the NN, rescaling the data to the range of [0, 1] seems to be an
appropriate approach. Data rescaling contributes to the transformation of data set,
so that it has unit variance over the whole data set.
Relying exclusively on geometric information, such as the relative position and ori-
entation of the sonar and the reflector, the reflectance level of the reflector and the
credence of sensor readings, yields to a multidimensional input space. The output
has a one dimensional space, which is the mapping of the input space.
The data set is labeled by the actual distance between the sonar and the reflector
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as this is a problem of supervised learning.
Shuffling the data set, it has to be split nine to one, the larger part is the train-
ing set and the other is the validation set. Different configurations based on the
weight/bias initialization, number of layers, number of neurons in each layer and
feeding direction are being considered to find the best result. The NN models are
also implemented to run on both CPU and GPU, hence their efficiency can be eval-
uated in terms of training time.
The next step is to initialize weights and biases both classic approaches and also
according to [He et al., 2015] regarding its promising result.
Mean squared error which is the difference between the estimator and what is esti-
mated, is the selected loss function for this problem. Various optimization methods
need to be evaluated to get the best result. Performance of optimizers such as
Stochastic Gradient Descent (SGD), Adadelta, Adagrad, Adam and Nadam are to
be examined for feed-forward NN and for recurrent NN, RMSProp is the optimizer
to be evaluated because it benefits the efficiency of mini batch learning and conse-
quently speeds up the learning process.
Regularizers are employed in NN models to support one another, i.e. two weight
regularization penalty methods such as weight decay and dropout are considered.
Early stopping criterion is exploited to store the weight which has the "best" result
on validation set, i.e. the one with the least error.
Bias regularization is not considered in NN models for this problem. The reason is
that bias regularizers do not interact with the data through multiplicative interac-
tions, and therefore do not have the interpretation of controlling the influence of a
data dimension on the final objective.
Rescaling the data set to the range of [0, 1], the appropriate activation function is
Sigmoid.
Using the validation set to determine the number of hidden units, two topologies are
evaluated on the data set. The evaluation started by implementing a Multi-layer
perceptron (MLP) as a feed-forward NN and a robust feed-back NN architecture,
called Long-Short term Memory, to compare their performance in this particular
task. Below is a general algorithm used for the training of NN model.
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Algorithm 2 Neural Network Model
Input: Experimental data, Split ratio, Number of Data Features, Maximum num-

ber of Epochs, Number of Hidden Layers,
Output: Trained NN Model
1: procedure Load data & Initialize the model
2: Load Data
3: Rescale Data
4: Split Data to training and validation set
5: Initialize the model based on data features
6: end procedure
7: procedure Build & Train the model
8: Initialize Weights & Biases
9: Set Activation Function

10: Set Loss Function
11: Set Optimizer
12: Set Dropout Ratio
13: Compile the Model
14: Save the Model
15: for number of Epochs do
16: Train the model on Training set
17: Evaluate the model on Validation set
18: Save weights
19: end for
20: Save the best weights
21: end procedure

Having the NN trained, re-instructing the model with the saved weights, the input-
output mapping has the following algorithm.

Algorithm 3 Input-Output Mapping
Input: Experimental Data, Saved Model, Saved Weights
Output: Mapped Data
1: procedure Load the Model & Weights
2: Load the Model
3: Load the best weights
4: Compile the Model
5: Map Experimental Data
6: end procedure

The scripts written in Python to be run on CPU are modified to be applied to a
graphic processing unit as well.
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Results

Regarding the constraints of using ultrasonic sensors, the experiment took place at
ReVeRe (Research Vehicle Resource 1) lab, where the desired range of the sensor
could be covered.
Neural network models are implemented in Python usingKeras library [Chollet, 2015]
with Theano backend on a 2.2GHz Intel Core i7 processor with 16GB 1600MHz
DDR3 memory and also on a GTX 750 Ti with standard memory configuration of
2048 MB.
The NN models are available at https://github.com/speloot/MasterThesis, for
further use, following the provided algorithms for NN training and mapping will
suffice.

4.1 Experimental Samples
During roughly 20x8 hours, a total number of 11x2x121x50 samples, for 11 angles,
2 reflectance and 121 distances were collected and stored. An additionally angle of
22.5◦ is considered for a better resolution at "boundaries" as depicted in the beam
pattern (Figure 3.1). These digits are the acquired samples of different angles, re-
flectance and distance respectively. Each 50 sampling took an average time of 2
minutes regarding the sonar and reflector position; the longer distance to the reflec-
tor, the longer elapsed time.
Sampled data was redundant as it was expected and in certain incident angle and
distances, sonar was unable to detect any object and therefor output zero. In or-
der to take this "phenomena" into account, the credence of measured sample were
calculated and considered as another parameter to be estimated. Credence (Cr) is
calculated as a fraction of number of correct readings and the number of samples. A
range reading is labeled as correct if it falls within ±10% of the nominal distance be-
tween sonar and reflector. Consequently, the mathematical modeling of the system
will get the form of following equation

f(θ, R, SR,Cr) = range (4.1)

A snippet of the prepared input data to be fed to neural network is provided in
Table 4.1.

1https://www.chalmers.se/safer/EN/projects/pre-crash-safety/projects/revere-research-
vehicle
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Figure 4.1: Experimental credence surface of the sampled data in polar coordinates

As it is depicted in Figure 4.1, the credence of the experimental data for both mirror
and rubber reflector is reasonable for a distance of 300mm but for further distance,
sampled data is highly redundant.
By zooming in the credence graph of the mirror, it is clear that even for close ranges
(less than 500mm) the sonar output has a very low credence, and the same result
complies to the rubber reflector.
In the case of rubber reflector, the credence of sampled data is getting lower for
further distance as the incident angle increases.
According to the data sheet of the sonar, the detection pattern of the sonar can be
assumed symmetric, hence, the credence of sampled data in Cartesian coordinate
can be presented in a graph, giving an intuition of the horizontal field of view of the
sonar (see Figure 4.2).
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Figure 4.2: Experimental credence surface of the sampled data in Cartesian coor-
dinates, X axis are in "cm"
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Table 4.1: NN input vector for a degree of 30, a reflectance of 0.9 and a distance
of 3900mm

Angle Reflectance Sensor Reading Credence Label
0.6667 0.9 0.6583 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0.6583 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0.6583 0.88 0.6482
0.6667 0.9 0.6583 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0.6616 0.88 0.6482
0.6667 0.9 0.6616 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0.6616 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482
0.6667 0.9 0 0.88 0.6482
0.6667 0.9 0.6616 0.88 0.6482
0.6667 0.9 0.6600 0.88 0.6482

In order to study the effect of cross-talk, the sampling was done first by mounting
two sonars with the least distance from one another and also with 50mm distance
both vertically and horizontally. The first one was set to "fire" in a regular frequency
while the other one was set to fire more frequent. Observing the acquired data, no
trace of cross-talk between the sonars were detected.
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4.2 Neural Network Models
After feeding the sampled data to a MLP, different optimizers are employed to train
the network. In this comparison, a single hidden layer considered with different
number of neurons.
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Figure 4.3: Validation loss graph for different optimizers, the minimum and max-
imum values for each optimizer are indicated.

As the number of neurons increases, the number of parameters of the NN, such as
weights and biases also increase. Increment in the number of computations leads to
a slightly longer elapsed time of training the NN. Nevertheless, with greater number
of neurons, training the NN yields lower validation loss.
For the NN using Nadam optimizer, as it is shown in Figure 4.3, the validation loss
in the first epoch is considerably lower than NNs with other optimizers. It means
that the optimizer succeeded to escape local minima and consequently quicken the
convergence with a lower loss value than the other optimizers after 15 epochs.
The final value of training and validation loss after 15 epochs and for different
number of neurons and optimizers are gathered in Tables 4.2, 4.3 and 4.4. The
elapsed time indicates that for these shallow NNs (NNs with low number of hidden
layers), the optimization process takes longer time for Nadam since there are more
parameters to be calculated.
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Table 4.2: Loss function result for 10 neurons after 15 epochs

Optimizer train. loss valid. loss ET(min)
SGD 0.0390 0.0376 8.06
ADAGRAD 0.0456 0.0439 7.93
ADADELTA 0.0305 0.0265 9.18
ADAM 0.0206 0.0160 8.47
RMSProp 0.0220 0.0187 8.08
NADAM 0.0198 0.0157 9.20

Table 4.3: Loss function result for 15 neurons after 15 epochs

Optimizer train. loss valid. loss ET(min)
SGD 0.0385 0.0370 7.92
ADAGRAD 0.0454 0.0441 7.97
ADADELTA 0.0285 0.0249 8.98
ADAM 0.0179 0.0149 8.64
RMSProp 0.0221 0.0173 8.23
NADAM 0.0174 0.0146 9.33

Table 4.4: Loss function result for 20 neurons after 15 epochs

Optimizer train. loss valid. loss ET(min)
SGD 0.0393 0.0382 8.35
ADAGRAD 0.0458 0.0442 8.29
ADADELTA 0.0283 0.0252 9.20
ADAM 0.0177 0.0147 8.52
RMSProp 0.0197 0.0160 7.96
NADAM 0.0169 0.0144 9.11

Since each pattern of the training set is a selected pattern out of randomly shuffled
data set, i.e. there should not be any connection between a pattern at time t and
another one at t+ 1, therefore it is decided to update the weights online.
The loss function results given in tables above show that, the Nadam optimizer has a
better performance in comparison with other ones. Hence, with selecting Nadam as
the optimizer, other number of neurons in the hidden layer were examined/evaluated
to decrease the validation loss as much as possible.
In Figure 4.4, training and validation loss of the MLP and the LSTM trained NN
for 25 hidden neurons are depicted.
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Figure 4.4: Training and validation loss graph for 25 neurons, using Nadam opti-
mizer
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(a) Mapped samples by LSTM (Mirror)
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(b) Mapped samples by MLP (Mirror)

Figure 4.5: Credence surface of the mapped sampled data in polar coordinates for
the mirror reflector

The LSTM model outperforms MLP with a less validation loss, but training of
LSTM model surprisingly takes almost 5 times longer than MLP model.
As it is expected, both NN models yield a better result for the mirror reflector since
its sampled data is less redundant.
Calculating the credence of the mapped data, it turns out that LSTM model has
better performance in mapping mirror sampled data for shorter ranges as it is shown
in Figure 4.5 and Figure 4.6.
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(a) Mapped samples by LSTM (Black Rubber)
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(b) Mapped samples by MLP (Black Rubber)

Figure 4.6: Credence surface of the mapped sampled data in polar coordinates for
the black rubber reflector

Different number of hidden units and learning techniques parameter were also eval-
uated but none of them outperformed the specified configuration above.
Training the NNs in mini batches did not yield a better result than online training.
It is needed to mention that training the specified neural networks on both CPU
and GPU took almost the same time; matrix multiplication, convolution, and large
element-wise operations can be accelerated by employing a GPU.
The effect of cross-talk term was highly eliminated in this model of sonar as it is
described previously but a side effect can be the huge uncertainty in sonar output
for close ranges.
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5

Discussion

The result of applying neural networks in system identification highly depends on
the information/data which is to be learned by the network. In real-world problems,
such as the one proceeded in this thesis, there might be many affecting parameters
that either we are not aware of or it is not feasible to model.
With the 4 major parameters taken into account for this model-based system identi-
fication, a neural network with 25 hidden neurons approximate the relation between
mentioned parameters and the sensor output.
As a justification for the performance of the neural networks employed in this work,
one can point out the data which the NN was trained with. For a certain value of
incident angle and reflectance and distance, the sensor tends to output values with
high variance (see Table 4.1). This variety in labeling the same pattern (e.g. zero
labeled patterns) is what "confuses" NN and causes difficulties in learning process
no matter how efficient NN is provided with advanced learning techniques. Mini-
batch normalization or mini-batch training has no application in this problem, since
relating a number of patterns which has the same label but different attributes is
not reasonable.
By comparing the sampled data and the mapped data, it is clear that NN to high
extent succeeded to learn the patterns in the redundant sampled data. As it is de-
picted in Figure 5.1, the NN has identified (learnt) and slightly eliminated the noise
for further distance than 5000mm and higher incident angle, while the same applies
for the noisy samples at 22◦ between 3000 − 4000 distance, where the credence of
mapped data is highly increased.
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(b) Mapped data (Mirrror)

Figure 5.1: Comparison between experimental credence surface of the sampled
data and the mapped data in polar coordinates

By monitoring the loss of training set and the respective loss of validation set as the
one in the appendix, one can promptly deduce if a certain configuration of hidden
neurons and learning techniques will yield a better result than the one before in very
first iterations. Taking this approach can save time in the process of determining a
proper configuration of number of hidden units where one can see where the NN is
being over-fitted or under-fitted.
Identifying the vertical field of view demands a more advanced designation of exper-
iments; with a simple triangular calculation, to catch the effective vertical field of
view, one needs to cover a field with 6000mm length, approximately 4600mm width
and most likely more than 1500mm height (height of the used stand). Fulfilling
this purpose demands a more complicated structure than the one used in this work.
A more complicated experiment would target the parsimony of the model, hence
evaluating the vertical field of view is left for future work.
Taking a smaller interval than what is considered in this modeling, for the incident
angle and the distance between the sonar and the reflector, will result in less per-
turbation in sampled data. Although by providing more training data (patterns),
training of NNs will be improved, but it consequently will take much more time,
which is a trade-off that should be taken into account.

34



6
Conclusion

In this thesis I evaluated noise in an ultrasonic sensor by modeling the one which
is employed in experimental miniature cars at Chalmers/University of Gothenburg.
This noise modeling is to be integrated into OpenDaVINCI to increase the level of
reality in simulation, and hence, contribute the test process of autonomous driving.
Acquiring sampled data by conducting the experiment, neural network is taken as
the approach for this sensor modeling. The horizontal field of view of the sonar was
covered according to the boundaries provided in the sonar data sheet. To evaluate
neural networks proficiency, multilayer perceptron and long-short term memory are
put into practice.
As the result proves, fewer parameter calculation in MLP in comparison with LSTM
makes it a better choice when the time is a determining term, but one should take
into account the fact that LSTMs perform reasonably better and yield better re-
sult than MLP even in input-output mapping, where LSTM is known for its result
achievement in speech/handwriting recognition.
Regardless the robustness of neural network or generally machine learning tech-
niques in input-output mapping, the non-trivial and time consuming experiential
part, plays the most important role in modeling. It is the field measurements which
build up the patterns that are to be "taught" to a network of neurons; a network
whose performance level is just as well as the quantity and quality of its input.

6.1 Future Work

A miniature vehicle (or a robot) does not necessarily have information about the
substance, texture or the angle of objects around, nevertheless, in a pre-defined en-
vironment, one could take advantage of the result of this thesis.
The results could be utilized in a virtual test environment, particularly in Open-
DaVINCI, where the model of the environment can be pre-defined, for instance,
when the goal is to handle a scenario like side-way parking as it is depicted in
Figure 6.1.
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(a) Parking scenario (b) Simulation environment in OpenDaVINCI

Figure 6.1: The self-driving miniature vehicle follows the lane and once it has
found a sufficiently wide parking spot moves into it avoiding any collision by the
boxes.

Placing the self-driving miniature vehicle at the starting point, the vehicle starts
following the lane and meanwhile detecting the "obstacles" on the right side and
measuring the distance to them.
By designing the model of the environment and obstacles (boxes in this case) in a
way that the reflectivity level of the obstacles (the texture), the incident angle be-
tween the sonar and the obstacles and the distance to the obstacles are pre-defined
and known, the sonar readings and its credence could be replaced by the Noise
Model implemented in the virtual test environment.
On the other hand, studying proximity sensors and based on my own experiences
in utilizing sonars (in a humanoid robot project), to cover a particular area at the
vicinity of a miniature vehicle, beside other proximity sensors, usually more than a
sonar is being used. Knowing the credence of the sensor output in certain circum-
stances, and by considering the position (distance and incident angle) of each sensor
to a wall or to an object, sensor fusion techniques can make use of this credence.
Sensor fusion techniques such as Bayesian, Extended Kalman Filter or Fuzzy Logic
are tools that could exploit the credence of fused sensors to improve the accuracy
of vehicle perception of surroundings.
The efficiency of the shallow neural network (the MLP) and its small size could
contribute to improve the motion of vehicle in simulation environment where having
the NN trained, the mapping of a new pattern can be attained in milliseconds.
A very promising approach which is not investigated in this work is the implemen-
tation of a hybrid of aforementioned NN models, where one can train a NN with
MLP first, and then use LSTM to reduce the residual errors and tune up the model.
There are a few difficulties accomplishing the hybrid model, such as initialization
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of backward weights in the recurrent part of the hybrid model. These investigation
might open the doors towards a better approximation of proximity sensors.
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A
Appendix 1

Implementing the Algorithm 2 in Python with Keras libraries, it is possible to di-
rectly monitor the result of validation loss calculation. Modifying parameters such
as number of hidden neurons, learning rate, dropout ratio and optimizing method,
will lead to different result. By monitoring the validation loss value, possible im-
provement in performance of the NN can be assessed. For instance, in the case that
after third or forth epoch, validation loss value is not improved, one can terminate
training of the NN.
Below is an example of a MLP model with 30 neurons using Nadam optimizer. Af-
ter 20 epochs, validation loss reaches its minimum value (see Figure A.1) which is
slightly higher than the result of LSTM with 25 neurons after 15 epochs and same
optimizer, although the elapsed time (ca. 13min) is much less than the elapsed time
of LSTM model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

epoch

0.0134

0.0150
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0.0326

lo
ss

Validation Loss

Training Loss

Figure A.1: Training and validation loss for MLP model with 30 neurons after 20
epochs
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Listing A.1: Tyraining result of MLP model on CPU
Using Theano backend .
Loading DATA ...
123100 training sequences
10000 validation sequences
Number of Neurons = 30
Batch Size = 1
20 Iterations
Building the model ...
Training the model ...
Train on 123100 samples , validate on 10000 samples
Epoch 1/20
123070/123100 [============================ >.] - ETA: 0s - train_loss : 0.0326

val_loss improved from inf to 0.02072 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0326 - val_loss : 0.0207

Epoch 2/20
123094/123100 [============================ >.] - ETA: 0s - train_loss : 0.0203

val_loss improved from 0.02072 to 0.01682 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0203 - val_loss : 0.0168

Epoch 3/20
123069/123100 [============================ >.] - ETA: 0s - train_loss : 0.0178

val_loss improved from 0.01682 to 0.01523 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0178 - val_loss : 0.0152

Epoch 4/20
123082/123100 [============================ >.] - ETA: 0s - train_loss : 0.0167

val_loss improved from 0.01523 to 0.01496 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0167 - val_loss : 0.0150

Epoch 5/20
123096/123100 [============================ >.] - ETA: 0s - train_loss : 0.0161

val_loss improved from 0.01496 to 0.01415 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0161 - val_loss : 0.0141

Epoch 6/20
123088/123100 [============================ >.] - ETA: 0s - train_loss : 0.0159

val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0159 - val_loss : 0.0142

Epoch 7/20
123073/123100 [============================ >.] - ETA: 0s - train_loss : 0.0157

val_loss improved from 0.01415 to 0.01370 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0157 - val_loss : 0.0137

Epoch 8/20
123089/123100 [============================ >.] - ETA: 0s - train_loss : 0.0155
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val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0155 - val_loss : 0.0144

Epoch 9/20
123074/123100 [============================ >.] - ETA: 0s - train_loss : 0.0154

val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0154 - val_loss : 0.0137

Epoch 10/20
123095/123100 [============================ >.] - ETA: 0s - train_loss : 0.0154

val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0154 - val_loss : 0.0141

Epoch 11/20
123069/123100 [============================ >.] - ETA: 0s - train_loss : 0.0153

val_loss improved from 0.01370 to 0.01365 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0153 - val_loss : 0.0136

Epoch 12/20
123085/123100 [============================ >.] - ETA: 0s - train_loss : 0.0152

val_loss improved from 0.01365 to 0.01354 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0152 - val_loss : 0.0135

Epoch 13/20
123085/123100 [============================ >.] - ETA: 0s - train_loss : 0.0152

val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0152 - val_loss : 0.0137

Epoch 14/20
123078/123100 [============================ >.] - ETA: 0s - train_loss : 0.0152

val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0152 - val_loss : 0.0136

Epoch 15/20
123083/123100 [============================ >.] - ETA: 0s - train_loss : 0.0152

val_loss improved from 0.01354 to 0.01345 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0152 - val_loss : 0.0135

Epoch 16/20
123083/123100 [============================ >.] - ETA: 0s - train_loss : 0.0151

val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0151 - val_loss : 0.0141

Epoch 17/20
123078/123100 [============================ >.] - ETA: 0s - train_loss : 0.0151

val_loss did not improve
123100/123100 [==============================] - 39s
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- train_loss : 0.0151 - val_loss : 0.0136

Epoch 18/20
123086/123100 [============================ >.] - ETA: 0s - train_loss : 0.0151

val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0151 - val_loss : 0.0135

Epoch 19/20
123084/123100 [============================ >.] - ETA: 0s - train_loss : 0.0151

val_loss did not improve
123100/123100 [==============================] - 39s
- train_loss : 0.0151 - val_loss : 0.0135

Epoch 20/20
123090/123100 [============================ >.] - ETA: 0s - train_loss : 0.0150

val_loss improved from 0.01345 to 0.01343 , saving weights
123100/123100 [==============================] - 39s
- train_loss : 0.0150 - val_loss : 0.0134

9892/10000 [============================ >.] - ETA: 0

score :[0.013427657528076325 , 0.014800000000000001]

Elapsed time: 13.31573736667633 min

Model saved.
Best weights saved.
____________________________________________________________________________
Layer (type) Output Shape Param # Connected to
============================================================================
dense_1 (Dense) (None , 30) 150 dense_input_1 [0][0]
____________________________________________________________________________
dropout_1 ( Dropout ) (None , 30) 0 dense_1 [0][0]
____________________________________________________________________________
dense_2 (Dense) (None , 1) 31 dropout_1 [0][0]
============================================================================
Total params : 181
____________________________________________________________________________
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