



# Pollution in water and soil from the eruption in Holuhraun, Iceland

## Metal concentration analysis

Master's thesis in the Master's Programme of Infrastructure and Environmental Engineering

## VALA JÓNSDÓTTIR BERGTHORA SMARADOTTIR

Department of Civil and Environmental Engineering CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2015 Master Thesis 2015:114

#### MASTER THESIS 2015:114

## Pollution in water and soil from the eruption in Holuhraun, Iceland Metal concentration analysis

Master of Science Thesis in the Master's Programme Infrastructure and Environmental Engineering

> VALA JÓNSDÓTTIR BERGTHORA SMARADOTTIR

Department of Civil and Environmental Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2015 Pollution in water and soil from the eruption in Holuhraun, Iceland Metal concentration analysis

Master of Science Thesis in the Master's Programme Infrastructure and Environmental Engineering

VALA JÓNSDÓTTIR BERGTHORA SMARADOTTIR

#### © VALA JÓNSDÓTTIR & BERGTHORA SMARADOTTIR, 2015

Examensarbete / Institutionen för bygg- och miljöteknik, Chalmers tekniska högskola 2015:114

Department of Civil and Environmental Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone: + 46 (0)31-772 1000

Cover photo: Holuhraun eruption December 13<sup>th</sup>, 2014. Photo owned and taken by Iurie Belegurschi

Chalmers Reproservice / Department of Civil and Environmental Engineering Gothenburg, Sweden 2015

Pollution in water and soil from the eruption in Holuhraun, Iceland Metal concentration analysis Master's Thesis in the Master's Programme Infrastructure and Environmental Engineering

VALA JÓNSDÓTTIR BERGTHORA SMARADOTTIR Department of Civil and Environmental Engineering Chalmers University of Technology

#### ABSTRACT

A fissure eruption started in Holuhraun, Iceland, on the 29<sup>th</sup> of August 2014. The volcanic activity gradually decreased and finally came to an end on the 27<sup>th</sup> of February 2015.

Thousand tonnes of  $SO_2$  were released to the atmosphere per day since the eruption started. Volcanic eruptions are also a natural source for heavy metals which can be toxic in small doses. Heavy metals bioaccumulate in the food chain and are of concern for flora and fauna.

The aim of this thesis project was to assess potential contamination by the eruption in Holuhraun, as well as assess eventual risks. The work focussed on the occurrence of selected metals in surface waters and topsoil collected in Iceland. Samples were collected in February 2015 in the eastern part of Iceland and in the greater capital area for comparison. One drinking water sample was collected at Seyðisfjörður where surface water is used as a drinking water source.

The results for the drinking water samples only indicated leaching from pipes. The soil sample results indicated that there was no pollution in the soil that could be connected to the eruption. Water samples that were collected in the greater capital area had lower heavy metal concentration, indicating possible pollution from the eruption in surface water in the eastern part of Iceland. Correlation analysis implied the same results.

The sampling site, Lagarfljót, had the highest concentration of heavy metals in surface water and the results strongly indicated pollution from the eruption. Comparison with previous analysis from Lagarfljót showed significant increase of heavy metal concentrations.

Keywords: Heavy metals, pollution, concentration, Holuhraun, eruption, SO<sub>2</sub>, volcanic gases, drinking water, surface water, soil

## **Table of contents**

| 1 | INT   | TRODUCTION                                  | 1  |
|---|-------|---------------------------------------------|----|
|   | 1.1   | Aim and objectives                          | 2  |
|   | 1.2   | Summary of work plan                        | 2  |
|   | 1.3   | Limitations                                 | 2  |
| 2 | BAG   | ACKGROUND                                   | 3  |
|   | 2.1   | Volcanic activity in Iceland                | 3  |
|   | 2.1.  | .1 Recent eruptions                         | 4  |
|   | 2.2   | Pollution from Holuhraun                    | 4  |
|   | 2.2.  | 2.1 Air pollution                           | 4  |
|   | 2.3   | Metals from volcanic eruptions              | 5  |
|   | 2.3.  | Concentrations in volcanic plume            | 5  |
|   | 2.3.  | Concentrations in glacial water             | 6  |
|   | 2.3.  | Concentrations in snow                      | 6  |
|   | 2.3.4 | Concentrations in soil                      | 6  |
|   | 2.4   | Tolerance against SO <sub>2</sub> pollution | 8  |
| 3 | ICE   | ELANDIC REGULATIONS AND GUIDELINES          | 9  |
|   | 3.1   | Surface water regulations                   | 9  |
|   | 3.2   | Drinking water regulations                  | 9  |
|   | 3.3   | Soil guidelines                             | 10 |
| 4 | ME    | ETHOD                                       | 11 |
|   | 4.1   | Sampling                                    | 11 |
|   | 4.1.  | .1 Surface water and soil samples           | 11 |
|   | 4.1.  | .2 Drinking water samples                   | 14 |
|   | 4.2   | Laboratory work                             | 14 |
|   | 4.2.  | Surface water and drinking water samples    | 14 |
|   | 4.2.2 | 2.2 Soil samples                            | 15 |
|   | 4     | 4.2.2.1 Data analysis                       | 16 |
| 5 | RES   | ESULTS                                      | 17 |
|   | 5.1   | Surface water and drinking water samples    | 17 |
|   | 5.1.  | .1 Correlation analysis                     | 20 |
|   | 5.2   | Soil samples                                | 20 |
|   |       |                                             |    |

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2015:114 III

|   | 5.2.1 | .1 Correlation analysis                              | 24 |
|---|-------|------------------------------------------------------|----|
|   | 5.3   | Control samples                                      | 24 |
|   | 5.4   | Results accuracy and precision                       | 25 |
| 6 | DIS   | SCUSSION                                             | 26 |
|   | 6.1   | Metals in surface water                              | 26 |
|   | 6.1.1 | .1 Comparison with Icelandic regulations             | 26 |
|   | 6.1.2 | .2 Comparison with previous studies                  | 26 |
|   | 6.    | 5.1.2.1 Concentrations in glacial water              | 27 |
|   | 6.1.3 | .3 High concentrations in Lagarfljót                 | 27 |
|   | 6.2   | Drinking water                                       | 27 |
|   | 6.3   | Metals in soil                                       |    |
|   | 6.3.1 | .1 Comparison with Icelandic guidelines              |    |
|   | 6.3.2 | .2 Comparison with previous studies                  |    |
|   | 6.4   | Correlation analysis                                 | 29 |
|   | 6.5   | General discussion on surface water and soil results | 29 |
| 7 | CON   | NCLUSION                                             | 31 |
| 8 | REF   | FERENCES                                             | 32 |
| 9 | APP   | PENDICES                                             | 35 |
|   | 9.1   | Appendix I – Data on SO <sub>2</sub> concentration   | 35 |
|   | 9.2   | Appendix II – Drinking water data for Seyðisfjörður  |    |
|   | 9.3   | Appendix III – ICP-MS results for water samples      | 40 |
|   | 9.4   | Appendix IV – ICP-MS results for soil samples        | 43 |
|   | 9.5   | Appendix V – Weather data for Egilsstaðir            | 45 |

## Preface

This Master Thesis was carried out from January 2015 to June 2015 as a part of the master's program Infrastructure and Environmental Engineering at the Department of Civil and Environmental Engineering, Chalmers University of Technology.

Firstly we would like to thank our supervisor, Sebastien Rauch, for his guidance during the work of the thesis. We would also like to thank him for showing an interest in our project when we came to him for advice, he then helped us carry out and modify the idea for this thesis.

We would like to thank Mona Pålsson for her guidance in the laboratory and also Jesper Knutsson for helping us with the soil sample preparation.

Thanks to employees at different companies and institutes in Iceland who gave their time to answer our e-mails.

Lastly, we would like to thank our families for their support during our studies over the years. Special thanks to Smári Sveinsson, Bergthora's father, for his help and for being our driver in Iceland when samples were collected.

Göteborg, June 2015 Vala Jonsdottir & Bergthora Smaradottir

## Notations

| Al               | Aluminium                                                                                      |
|------------------|------------------------------------------------------------------------------------------------|
| As               | Arsenic                                                                                        |
| Bi               | Bismuth                                                                                        |
| Cd               | Cadmium                                                                                        |
| СО               | Carbon monoxide                                                                                |
| Со               | Cobalt                                                                                         |
| $CO_2$           | Carbon dioxide                                                                                 |
| Cr               | Chromium                                                                                       |
| Си               | Copper                                                                                         |
| Fe               | Iron                                                                                           |
| $H_2$            | Hydrogen                                                                                       |
| $H_2O$           | Water                                                                                          |
| $H_2S$           | Hydrogen sulphide                                                                              |
| HCl              | Hydrogen chloride                                                                              |
| Не               | Helium                                                                                         |
| HF               | Hydrogen fluoride                                                                              |
| Hg               | Mercury                                                                                        |
| ICP-MS           | Inductively Coupled Plasma Mass Spectrometry                                                   |
| In               | Indium                                                                                         |
| La               | Lanthanum                                                                                      |
| MilliQ           | Ultrapure water obtained with MilliQ Water Purification Systems (18.2 M $\Omega$ ·cm at 25 °C) |
| Mn               | Manganese                                                                                      |
| Мо               | Molybdenum                                                                                     |
| NHO <sub>3</sub> | Nitric acid                                                                                    |
| Ni               | Nickel                                                                                         |
| Pb               | Lead                                                                                           |
| PE               | Polyethylene                                                                                   |
| Pt               | Platinum                                                                                       |

| ntimony<br>candium<br>elenium<br>amarium |
|------------------------------------------|
| candium<br>elenium<br>amarium            |
| elenium<br>amarium                       |
| amarium                                  |
|                                          |
| in                                       |
| ulphur dioxide                           |
| ellurium                                 |
| itanium                                  |
| hallium                                  |
| ltraviolet                               |
| anadium                                  |
| ungsten                                  |
| inc                                      |
|                                          |

## **1** Introduction

A fissure eruption started in Holuhraun, Iceland, on the  $29^{\text{th}}$  of August 2014 after many weeks of earthquake cycles in Bárðarbunga in Vatnajökull glacier (Keller et al., 2014), see Figure 1. This eruption lasted for only two hours. Two days later, on the  $31^{\text{st}}$  of August 2014, another fissure eruption occurred in a nearby crevice. The volcanic activity gradually decreased and finally came to an end on the  $27^{\text{th}}$  of February 2015. The eruption lasted for almost 6 months or 181 days. Latest information about the size of the lava field is estimated to be 85 km<sup>2</sup> and the volume approximately 1.4 km<sup>3</sup> (Icelandic Meteorological Office, 2015a). The eruption in Holuhraun is the largest fissure eruption since the Laki eruption in 1783 (Bali et al., 2014).



Figure 1 – Map of Iceland and main places discussed regarding the eruption in Holuhraun. Map retrieved and prepared at the website: http://atlas.lmi.is/kortasja/.

Lava and harmful gases, such as sulphur- and carbon compounds, emerge from fissure eruptions (Guðmundsson, 1986). Thousand tonnes of  $SO_2$  were released to the atmosphere per day since the eruption in Holuhraun started (Stefánsson et al., 2014). Therefore the concentration of  $SO_2$  in the atmosphere was carefully monitored all over Iceland. Forecasts for air pollution were also made to make time for appropriate precautions and inhabitants experienced discomfort due to the air pollution all over Iceland.

Volcanic eruptions are a natural source for trace elements such as metals which are volatile at high temperatures (Nriagu, 1989). Although some heavy metals are essential nutrients, they can be toxic in even very small doses and cause damage to all organisms. Heavy metals bioaccumulate in the food chain and they are of concern for flora and fauna (Islam et al., 2007).

For this project, soil and water samples were collected in Iceland in February 2015 to study the impact the eruption in Holuhraun had on metal levels in soil and surface water.

#### 1.1 Aim and objectives

The aim of this thesis project was to assess potential contamination by the eruption in Holuhraun, as well as assess eventual risks. The work focussed on the occurrence of selected metals in surface waters and topsoil collected in the eastern part of Iceland. This was achieved through the following objectives:

- Determine metal concentrations in water and soil from selected locations
- Compare concentrations from different locations to assess volcanic influence
- Compare obtained concentrations with guideline values and regulations

#### **1.2 Summary of work plan**

In order to achieve the aim of the project, the following steps were undertaken. Further details are provided in the method section (chapter 4).

- Review literature related to the project.
- Gather available data on water and soil in Iceland from previous chemical analysis.
- Develop a sampling plan
- Collect water and soil samples in Iceland.
- Prepare samples for ICP-MS analysis in laboratory.
- Analyse samples and evaluate the results.

#### 1.3 Limitations

The studied area was narrowed down to several locations along the coast between Egilsstaðir and Kirkjubæjarklaustur. High air pollution was measured at Höfn,<sup>1</sup> a town located between Egilsstaðir and Kirkjubæjarklaustur. This area was therefore found to be the most interesting to study. The area was narrowed down for financial reasons and because of limited time. The number of samples for analysis had to be limited and the cost for gathering samples was high. The sampling sites were chosen close to Highway 1 due to difficult access to more remote sites during winter. For comparison, few samples were collected in lakes close to Reykjavík.

Few previous chemical analysis are available for surface water and soil in Iceland which makes the evaluation of the results more difficult, i.e. not possible to predict if the level of concentration has increased at the sampling sites.

<sup>&</sup>lt;sup>1</sup> Sigurður H. Magnússon, Plant Ecologist at the Icelandic Institute of Natural History, Áhrif eldgossins á villt dýr og vistkerfi. [Effects of the eruption from Holuhraun on the wildlife ecosystem], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

## 2 Background

Iceland is a volcanic island in the North Atlantic Ocean. The area of Iceland is 103 000 km<sup>2</sup> where approximately 12 000 km<sup>2</sup> are covered with glaciers (Hagstofa Íslands, 2015a). The average yearly temperature for the whole country is around  $4.5^{\circ}$ C (Hagstofa Íslands, 2015b). Total population in Iceland is approximately 329 000 and more than 60% of the population lives in the greater capital area. The population in the studied area is around 12 500 (Hagstofa Íslands, 2015c).

#### 2.1 Volcanic activity in Iceland

The Mid-Atlantic Ridge lies under Iceland where two of the largest continental plates, the North American plate and the Eurasian plate, move away from each other ca 2 cm per year (Einarsson, 1994), see Figure 2. Iceland is also a so called "hotspot" which is believed to be formed with mantel plume, where turbulent flow is in the mantel. Material which is warmer and has less density finds its way up to the surface and the colder material travels downwards. Over the mantel plume is a localized fusion in the mantel which leads to volcanic activity. This excess volcanic activity results in a thicker earth's crust in Iceland, thicker than what is normal in other places along the Mid-Atlantic Ridge (Vegagerðin, 1997).



Figure 2 – The Mid-Atlantic Ridge under Iceland. Retrieved from: https://course.bighistoryproject.com/media/khan/KU4.2.4\_Lava\_img7b.jpg

Combined effects of the continental plates and the mantel plume in Iceland results in high volcanic activity at Vatnajökull glacier area more than in other areas. History shows that volcanic activity can shift in a brief time. The shift can be from active to inactive periods which can be on-going for ten, hundreds or even thousands of years (Vegagerðin, 1997).

Iceland has three volcanic zones; West volcanic zone, East volcanic zone crossing Vatnajökull glacier and a smaller volcanic zone at Snæfellsnes (Einarsson, 1994). Bárðarbunga is one of the main volcanoes located at Vatnajökull glacier (Vegagerðin, 1997).

#### 2.1.1 Recent eruptions

There have been four previous eruptions in the 21<sup>st</sup> century. Two tephra eruptions in Grímsvötn in west Vatnajökull glacier in November 2004 and in May 2011. Grímsvötn is the most active volcano in Iceland. At least 60 eruptions have occurred in the Grímsvötn volcanic system in the last 800 years. (Jarðvísindastofnun Háskólans, 2012).

On the 20<sup>th</sup> of March 2010 started a fissure eruption at Fimmvörðuháls, which is close to Eyjafjallajökull glacier, which ended on the  $12^{th}$  of April 2010. Two days later, on the  $14^{th}$  of April a tephra eruption started in Eyjafjallajökull glacier that lasted until the  $23^{rd}$  of May 2010 (Jarðvísindastofnun Háskólans, 2010). The ash plume from the tephra eruption reached over 8 km into the atmosphere and spread over Central Europe, Great Britain and Scandinavia. The spread of the ash caused the largest aviation shut-down in history where more than 100 000 flights were cancelled (Langmann et al., 2011).

#### 2.2 Pollution from Holuhraun

The timeframe of the eruption was convenient for the flora since the eruption was in the beginning of autumn and during winter. The growth period of the flora was almost over and the flora was therefore less vulnerable to the pollution from the eruption. The location of the eruption was also convenient since there is not much flora growth in the nearest area of the eruption.<sup>2</sup>

Precipitation and wind was well above average during winter time in Iceland in the year 2014-2015 with unusually many storms (Icelandic Meterological Office, 2015b). Regarding pollution from the eruption, the weather was fortunate. If the weather had been calmer the polluted snow would have melted all in once in spring. Instead the polluted snow melted in rainstorms possibly causing smaller pollution peaks in spring.<sup>3</sup>

#### 2.2.1 Air pollution

Unlike the eruption in Eyjafjallajökull glacier the eruption in Holuhraun only emitted volcanic gasses and no tephra. The main volcanic gases from the eruption in Holuhraun were  $H_2O$ ,  $CO_2$  and  $SO_2$ . Other gases in smaller amounts were  $H_2S$ ,  $H_2$ , CO, HCl, HF and He. The main concern for human health was  $SO_2$  which can cause irritation in eyes, throat, and respiratory organs. In large dozes  $SO_2$  can cause respiratory problems (Directorate of Health, 2014). Large amount of  $SO_2$  in the atmosphere can result in acid rain which can affect soil and vegetation as well as infrastructure (Stefánsson et al., 2014).

The amount of  $SO_2$  emission was ranging from 35 000 to 100 000 tonnes per day during the eruption (Stefánsson et al., 2014). That is more than the total  $SO_2$  emission in Iceland caused

<sup>&</sup>lt;sup>2</sup> Sigurður H. Magnússon, Plant Ecologist at the Icelandic Institute of Natural History, Áhrif eldgossins á villt dýr og vistkerfi. [Effects of the eruption from Holuhraun on the wildlife ecosystem], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

<sup>&</sup>lt;sup>3</sup> Eydís Salóme Eiríksdóttir, PhD student at University of Iceland, Mengun yfirborðsvatns. [Surface water pollution], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

by human activity, including geothermal heat, which is now reaching over 80 000 tonnes per year (Hagstofa Íslands, 2015d).

More monitors were installed especially to monitor the concentration level of  $SO_2$  in different places around Iceland. The concentration measured in habituated areas depends on how much  $SO_2$  is emitted in to the atmosphere; how high the plume rises, wind direction and wind strength.<sup>4</sup> Inhabitants can experience discomfort when the concentration of  $SO_2$  exceeds 350  $\mu$ g/m<sup>3</sup> for more than 10 minutes. The health limit for the hourly value of  $SO_2$  pollution is 350  $\mu$ g/m<sup>3</sup> (The Environment Agency of Iceland, 2015). Mice were found dead around Holuhraun and near Höfn and small birds were found dead in Hrafnkelsdalur valley, located in between Holuhraun and Lagarfljót, after high concentration of  $SO_2$  had been measured that day.<sup>5</sup>

Table 1 shows reviewed data on  $SO_2$  concentration from four locations, received from the Environmental Agency of Iceland. Reykjahlíð is located north of Holuhraun and Reyðarfjörður is located south of Egilsstaðir, ca 30 km away. Graphs and further data can be found in Appendix I – Data on  $SO_2$  concentration.

| Location                              | Max<br>SO <sub>2</sub><br>µg/m <sup>3</sup> | Average<br>SO <sub>2</sub><br>µg/m <sup>3</sup> | Hours<br>>350<br>µg/m <sup>3</sup> | Days<br>>350<br>μg/m <sup>3</sup> |
|---------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------|-----------------------------------|
| Reykjahlíð, Elementary school         | 1698                                        | 30                                              | 84                                 | 3.50                              |
| Reyðarfjörður, Hjallaleyra            | 1509                                        | 32                                              | 52                                 | 2.17                              |
| Höfn <sup>*</sup>                     | 3050                                        | 58                                              | 119                                | 4.96                              |
| Reykjavík, Grensásvegur <sup>**</sup> | 823                                         | 30                                              | 59                                 | 2.46                              |

Table 1 – Hourly concentration of  $SO_2$  from  $31^{st}$  of August 2014 –  $1^{st}$  of February 2015.

 $*28^{\text{th}}$  of October 2014 –  $1^{\text{st}}$  of February 2015

 $^{\ast\ast}$  31st of August 2014 – 21st of January 2015

#### 2.3 Metals from volcanic eruptions

Natural sources of trace metals are volcanic eruptions, wild forest fires, wind-borne soil particles and sea salt spray. Metals from volcanic eruptions are among others: As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, V and Zn (Nriagu, 1989).

#### 2.3.1 Concentrations in volcanic plume

Trace metals are known to be emitted with gas from volcanic eruptions. However it is has been difficult to assess because of very high temperature (Gauthier et al., 2015). Trace elements such as K, Na, Fe, Cu, Zn, As, Rb, Mo, Cd, Sn, Cs and Pb are considered to have concentrations ranging from 1 ppb to 15 ppm in high temperature volcanic gases (Africano et al., 2002). An opportunity came along for scientists to analyse plume from the eruption in Holuhraun on October 2<sup>nd</sup>, 2014. Analysis of diluted plume showed that the air was enriched

<sup>&</sup>lt;sup>4</sup> Þorsteinn Jóhannsson, Specialist in air quality at The Environment Agency of Iceland, news interview, September 11<sup>th</sup>, 2014.

<sup>&</sup>lt;sup>5</sup> Sigurður H. Magnússon, Plant Ecologist at the Icelandic Institute of Natural History, Áhrif eldgossins á villt dýr og vistkerfi. [Effects of the eruption from Holuhraun on the wildlife ecosystem], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

of trace metals (Cu, Zn, As, Se, Cd, In, Sn, Sb, Te, Tl, Pb, Bi, Mo, W and Re) compared to the usual atmosphere in Iceland. At the end of 2014 more than 25 tons of Cd had been emitted from the eruption, showing that the eruption is a major pollutant to the atmosphere and the environment (Gauthier et al., 2015).

#### 2.3.2 Concentrations in glacial water

In Iceland, volcanic dust is the main source of heavy metals in glacial water. Studies from 2005 examined samples from Sólheimajökull glacier, the most southern glacier in Iceland, which is a part of Mýrdalsjökull glacier, and Fláajökull glacier which is a part of Vatnajökull glacier in the south west. The results of the study gave the average concentrations of Fe, Zn, Mn and Pb which can be found in Table 2 (Józwiak & Józwiak, 2007).

Table 2 – Average concentrations of metals in glacial water from Sólheimajökull glacier and Fláajökull glacier.

|    | [µg/dm <sup>3</sup> ]<br>(ppb) |
|----|--------------------------------|
| Fe | 9.05                           |
| Zn | 8.60                           |
| Mn | 0.43                           |
| Pb | 0.14                           |

#### 2.3.3 Concentrations in snow

Research on snow that was analysed during the Hekla eruption in Iceland in 1991 showed high concentrations of metals. The results showed high concentrations of Ti, Mn and Fe, higher than 100 ppb. Concentrations of Cu and Zn were between 10 and 100 ppb and concentrations between 1 to 10 ppb of Sc, V, Cr, Co, As, Se, Sn, La and Sm. The research showed that volcanic eruptions can cause heavy metal pollution and could be dangerous to flora and fauna (Ragnarsdóttir et al., 1994).

Another study on polar ice layers showed that volcanic eruptions can cause high concentrations of Cd, Hg, As, Cr, Cu, Ni, Pb and Sb (Nriagu, 1989).

#### 2.3.4 Concentrations in soil

The average values of trace elements in soil worldwide can be found in Table 3. These values are from a database that gives the average concentrations of trace elements in uncontaminated soil (Kabata-Pendias, 2011). Table 3 only shows elements that are relevant to this project. Concentrations of trace elements are dependent on type of soil and geographic region (Kabata-Pendias, 2011).

|    | World soil |
|----|------------|
|    | average    |
|    | [mg/kg]    |
| Cd | 0.41       |
| Cr | 59.5       |
| Со | 11.3       |
| Cu | 38.9       |
| Mn | 488        |
| Ni | 29         |
| Ti | 7038       |
| V  | 129        |
| Zn | 70         |

Table 3 – Average values of trace elements in world soil (Kabata-Pendias, 2011).

La Réunion is a small island in the Indian Ocean which belongs to France. It is formed by two volcanoes, of which one of them is still active. Soil samples were collected on 39 sites, which were analysed with ICP-OES to determine heavy metal concentration (Dælsch et al., 2006).

Table 4 shows the results from the chemical analysis for six elements.

Table 4 – Concentration of heavy metals in soil at La Réunion (Dælsch, et al., 2006).

|         | Cd      | Cr      | Cu      | Hg      | Ni      | Zn      |
|---------|---------|---------|---------|---------|---------|---------|
|         | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg] |
| Minimum | 0.02    | 35      | 6.5     | 0.03    | 15      | 57      |
| Mean    | 0.19    | 300     | 58      | 0.19    | 206     | 162     |
| Maximum | 0.76    | 1108    | 164     | 0.81    | 1038    | 398     |

The values in Table 4 are higher than the world average values in Table 3. High concentration of Cd was directly related to agricultural practices and high concentration of Hg was connected to the volcanic activity on the island. The high concentrations for the rest of the elements are due to the fact that the samples were collected from volcanic soil from the two volcanoes (Dælsch et al., 2006).

Study of characterization of heavy metal in contaminated volcanic soil was done in Solofrana river valley in south of Italy. The study estimated the concentration of heavy metals in soil after a flooding. Samples were taken from five different sampling sites where only one was in no relation to the flooding of the river and not considered polluted. Chemical analysis for that sampling site can be found in Table 5.

Table 5 – Concentration of heavy metals in Solofrana river valley (Adamo, et al., 2003).

|                                     | Fe      | Cr      | Cu      | Mn      | Ni      | Pb      | Zn      |
|-------------------------------------|---------|---------|---------|---------|---------|---------|---------|
|                                     | [mg/kg] |
| Concentration<br>of heavy<br>metals | 60 300  | 45      | 110     | 689     | 41      | 63      | 82      |

#### 2.4 Tolerance against SO<sub>2</sub> pollution

When  $SO_2$  comes in contact with water it produces sulphuric acid and the water becomes acidic.<sup>6</sup> Acid rain lowers the pH-value in surface water and toxic metals become more soluble and bioavailable when pH-value is lowered. (Weiner, 2013). Aluminium is known to have a negative effect on the ecosystem in water in relation to this. Acidic episodes and related metals can be harmful to the ecosystem and the effects depend on the duration and the concentration of the episode.<sup>7</sup>

Alkalinity and the pH-value differ in surface water. When the pH-value and the alkalinity are naturally high, the water has more tolerance against  $SO_2$  pollution. With higher alkalinity, the more acid the water can receive without it affecting the chemical quality.<sup>8</sup>

In areas with young bedrock, close to the volcanic zone, the pH-value and alkalinity is high in the water ecosystem. Therefore the water quality is less sensitive to changes and the pHvalue will not decrease as much. The most vulnerable water ecosystems are in old bedrock where there is not much soil and vegetation. Water's ecosystem, close to the eruption site, should therefore be less sensitive. However the sampling sites are located on old bedrock where surface water tends to have lower alkalinity.<sup>9</sup>

Vatnajökull glacier is located on the volcanic zone and glacial water has high alkalinity. Scientist tested polluted snow from the eruption site and mixed with two different rivers to lower the concentration of aluminium to make it less harmful to salmonids and juveniles. The glacial river Jökulsá á Fjöllum mixed with the polluted snow had to be diluted 5 times. Fjarðará river, which can be consider to have low alkalinity, had to be diluted 35 times to reach the desired aluminium concentration.<sup>10</sup>

<sup>&</sup>lt;sup>6</sup> Halla Margrét Jóhannesdóttir, scientist at Institute of Freshwater Fisheries, Áhrif eldgossins á lífríki í ám og vötnum. [Effect of the eruption on ecosystem in freshwater], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

<sup>&</sup>lt;sup>7</sup>, Halla Margrét Jóhannesdóttir, scientist at Institute of Freshwater Fisheries, Áhrif eldgossins á lífríki í ám og vötnum. [Effect of the eruption on ecosystem in freshwater], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

<sup>&</sup>lt;sup>8</sup> Eydís Salóme Eiríksdóttir, PhD student at University of Iceland, Mengun yfirborðsvatns. [Surface water pollution], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

<sup>&</sup>lt;sup>9</sup> Halla Margrét Jóhannesdóttir, scientist at Institute of Freshwater Fisheries, Áhrif eldgossins á lífríki í ám og vötnum. [Effect of the eruption on ecosystem in freshwater], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

<sup>&</sup>lt;sup>10</sup> Eydís Salóme Eiríksdóttir, PhD student at University of Iceland, Mengun yfirborðsvatns. [Surface water pollution], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

## **3** Icelandic regulations and guidelines

Chapters 3.1 and 3.2 discuss the Icelandic regulations on water quality for surface water and drinking water. There are no existing Icelandic regulations regarding heavy metal pollution in soil. However, guidelines on pollution in soil are discussed in chapter 3.3.

#### 3.1 Surface water regulations

The Icelandic regulations regarding water aim to prevent and minimize pollution in water and its surroundings. Regulation no. 796/1999 describes i.a. the environmental standards for metals in surface water, see Table 6. The standards can be translated to the following (Umhverfisráðuneytið, 1999):

Standard I: No risk or very small possibility of impact

Standard II: Small possibility of impact

Standard III: Possibility of impact on fragile ecosystem

Standard IV: Possibility of impact

Standard V: Unsatisfactory condition of water for ecosystem

| Environmental standards for metal concentration [ppb] |    |      |          |         |         |      |  |
|-------------------------------------------------------|----|------|----------|---------|---------|------|--|
|                                                       |    | Ι    | I II I   |         | IV      | V    |  |
| Copper                                                | Cu | 0.5  | 0.5-3    | 3-9     | 9-45    | >45  |  |
| Zinc                                                  | Zn | 5    | 5-20     | 20-60   | 60-300  | >300 |  |
| Cadmium                                               | Cd | 0.01 | 0.01-0.1 | 0.1-0.3 | 0.3-1.5 | >1.5 |  |
| Lead                                                  | Pb | 0.2  | 0.2-1    | 1-3     | 3-15    | >15  |  |
| Chromium                                              | Cr | 0.3  | 0.3-5    | 5-15    | 15-75   | >75  |  |
| Nickel                                                | Ni | 0.7  | 0.7-15   | 15-45   | 45-225  | >225 |  |

#### 3.2 Drinking water regulations

Iceland is very rich of clear and unpolluted groundwater and almost all drinking water in Iceland, more than 95%, is untreated groundwater. Only few places with small population use surface water for a drinking water source. In most cases the surface water is treated with ultraviolet light before distribution (Jónsson, 2003).

Table 7 shows the maximum concentration for metals in drinking water that were extracted from the Icelandic regulation no. 536/2001 (Umhverfisráðuneytið, 2001).

Table 7 – Maximum concentration of metals in drinking water

|           |    | Maximum<br>concentration<br>[ppb] |
|-----------|----|-----------------------------------|
| Aluminium | Al | 200                               |
| Lead      | Pb | 10                                |
| Iron      | Fe | 200                               |
| Cadmium   | Cd | 5.0                               |
| Copper    | Cu | 2000                              |
| Chromium  | Cr | 50                                |
| Manganese | Mn | 50                                |
| Nickel    | Ni | 20                                |

#### 3.3 Soil guidelines

As previously mentioned, no Icelandic regulations regarding heavy metal concentrations in soil exist. A guideline and a draft for such regulations however exist and were received from the Environmental Agency of Iceland (The Environmental Agency of Iceland, 1998).

The guideline is for soil and marine sediment and is based on Dutch regulations. Few changes were made since the Icelandic background values are higher for Cr, Cu, Ni and Zn. Compared to Europe, Icelandic bedrock has higher concentrations of Cr, Cu, Ni and V, however, less of As, Cd, Hg and Pb. Icelandic soil is also rich of wind-borne volcanic gas particles (The Environmental Agency of Iceland, 1998).

Table 8 shows the guideline for upper and lower threshold of metal concentration in Icelandic soil. The values inside the brackets are the values of the Dutch regulations (The Environmental Agency of Iceland, 1998).

|    | Background<br>values<br>[mg/kg] | Lower<br>threshold<br>[mg/kg] | Upper<br>threshold<br>[mg/kg] |
|----|---------------------------------|-------------------------------|-------------------------------|
| Cd | 0.1-0.3                         | 0.8                           | 12                            |
| Cr | 300-400                         | 300-400 (100)                 | 380                           |
| Cu | 100-200                         | 100-200 (36)                  | 190                           |
| Ni | 10-200                          | 10-200 (35)                   | 210                           |
| Pb | 1-10                            | 85                            | 530                           |
| Zn | 50-200                          | 50-200 (140)                  | 720                           |

Table 8 – Guidelines for metal concentrations in Icelandic soil.

Each case has to be assessed and evaluated if action needs to be taken when metal concentration is between the lower and the upper threshold or above the upper threshold. The ratio of organic material and clay affect the threshold. Pollutants have less impact when the ratio is high and therefore the threshold is higher (The Environmental Agency of Iceland, 1998).

#### Method 4

#### 4.1 Sampling

Water samples were collected in small PE bottles and soil samples were collected in ziplock PE bags. Nitric acid (65% NHO<sub>3</sub>, puriss) was added to the surface and drinking water samples soon after collection, approximately 0.3% of the volume. Small plastic syringes were used to add the acid to the samples. Caution was taken to make sure that the acid did not come in contact with the rubber in the syringes. The scale on the PE bottles and the syringes were not accurate, therefore the accuracy for the added acid was estimated to be  $\pm 0.1\%$ .

After collection both water and soil samples were stored in a cool and dark place until they were shipped to Sweden. After arriving in Sweden they were stored in a refrigerator.

#### 4.1.1 Surface water and soil samples

Three water samples were collected in each site along with three soil samples from the surroundings.

Close to Reykjavík, samples were collected in three lakes; Hvaleyrarvatn, Vífilsstaðavatn and Elliða-vatn, on the 9<sup>th</sup> of February 2015, see Figure 4 for locations.

In the East, from Egilsstaðir to Kirkjubæjarklaustur, samples were collected at; Langavatn, Urriðavatn, Lagarfljót, Nýjalón on the 10<sup>th</sup> of February 2015. Furthermore at Óslandstjörn, Þveit, Smyrlabjargarlón, Hoffell and Jökulsárlón on the 11<sup>th</sup> of February 2015. As previously mentioned the winter in 2014-2015 in Iceland was harsh with many storms and therefore it was very fortunate that the weather was good during sample collection as can be seen in Figure 3. For locations of sampling sites see Figure 5 and Figure 6 and Figure 3 - Collecting water samples at Jökulsárlón. for description of the sites, see Table 9.



(Photo taken by Vala Jónsdóttir, 2015)

#### Table 9 – Description of sampling sites.

| Site               | Туре                  | Description                                                                                                                                                             |
|--------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hvaleyrarvatn      | Lake                  | South of the municipality of Hafnarfjörður.                                                                                                                             |
| Vífilsstaðavatn    | Lake                  | Situated in the municipality of Garðabær.                                                                                                                               |
| Elliðevetn         | Lake/Storage          | Situated in Reykjavík. Storage reservoir for the hydroelectric                                                                                                          |
| Emoavam            | reservoir             | power plant in the Elliðaárdalur valley.                                                                                                                                |
| Langavatn          | Lake                  | 5 km north-west of the town Egilsstaðir                                                                                                                                 |
| Urriðavatn         | Lake                  | 5 km north of the town Egilsstaðir                                                                                                                                      |
| Lagarfljót         | Lake/Glacial<br>river | Glacial river flowing from Eyjabakkajökull glacier<br>(Vatnajökull glacier). Forms the third largest natural lake in<br>Iceland in the valley Fljótsdalur (Rist, 1990). |
| Nýjalón            | Lake/Pond             | South of the town Djúpivogur                                                                                                                                            |
| Óslandstjörn       | Pond                  | South of the town Höfn                                                                                                                                                  |
| Þveit              | Lake                  | 10 km west of the town Höfn                                                                                                                                             |
| Hoffell            | Glacier               | Glacier lagoon at the edge of Hoffellsjökull glacier which is                                                                                                           |
| Homen              | lagoon                | a part of Vatnajökull glacier.                                                                                                                                          |
| Smurlahiargarlán   | Lake/Storage          | Storage reservoir for the hydroelectric power plant                                                                                                                     |
| SillyHabjargarioli | reservoir             | Smyrlabjargarvirkjun.                                                                                                                                                   |
| Iökuleárlán        | Glacier               | Glacier lagoon at the edge of Breiðamerkurjökull glacier                                                                                                                |
| JUKUISAIIUII       | lagoon                | which is a part of Vatnajökull glacier.                                                                                                                                 |



Figure 4 – Location of lakes in the greater capital area. Map retrieved and prepared at the website: http://atlas.lmi.is/kortasja/.



Figure 5 – Location of sample sites north of Holuhraun. Map retrieved and prepared at the website: http://atlas.lmi.is/kortasja/.



Figure 6 – Location of sample sites south of Holuhraun. Map retrieved and prepared at the website: http://atlas.lmi.is/kortasja/.

At sites where lakes were frozen, a hammer was used to crack the ice in order to collect water samples. The PE bottles were slowly lowered upstream in the water to create minimum turbulence when collection took place.

13

Since the soil was frozen in most of the sites, at the time when soil samples were collected, a hammer and a stainless steel chisel were used to loosen the soil, as can be seen in Figure 7. In sites where the soil was loose or not frozen, a stainless steel spatula was used to scoop the soil into the ziplock PE bags. The soil samples were all collected from the surface, at 0-8 cm depth.

All samples were collected as far away from main roads as possible to minimize potential traffic related pollution.



Figure 7 – Collecting soil samples at Smyrlabjargarlón. (Photo taken by Bergthora Smaradottir, 2015)

#### 4.1.2 Drinking water samples

Drinking water samples were collected where surface water is the main drinking water source. On the studied area only one town, Seyðisfjörður, was found to be using surface water as drinking water source where the water is treated with UV light according to the data in Appendix II – Drinking water data for Seyðisfjörður. The data was received from the Department of Environment in the East. Three samples were collected from a tap after the water had been running for a few minutes until steady temperature was reached and to minimize the risk of water contamination from the pipes.

#### 4.2 Laboratory work

All samples were prepared and analysed in the Environmental Chemistry Laboratory at the Department of Civil and Environmental Engineering, Chalmers University of Technology. Samples were prepared using two calibrated pipettes, one pipette for 1000-5000  $\mu$ l with accuracy of ± 40  $\mu$ l and one for 20-200  $\mu$ l with accuracy of ± 1.6  $\mu$ l.

#### 4.2.1 Surface water and drinking water samples

Samples were prepared for ICP-MS analysis by pipetting 10 ml of water samples into 12 ml plastic tubes. Samples were taken out of the refrigerator to reach room temperature before pipetting.

Six additional control samples were prepared, where 9.9 ml of MilliQ water was pipetted into sampling glasses along with 0.1 ml of nitric acid. Three control samples contained suprapure 65% nitric acid (MQ S) and three contained puriss nitric acid (MQ P). The control samples were mixed by turning them upside down five times. The control samples were prepared to check for metal concentration in the acid that could affect the results of the collected samples.

The collected samples along with the six control samples were analysed by ICP-MS. The samples were given the numbering found in Table 10.

Table 10 – Numbering of the water samples.

| Sample<br>number | Location         |
|------------------|------------------|
| 1-3              | Hvaleyrarvatn    |
| 4 - 6            | Vífilsstaðavatn  |
| 7 - 9            | Elliðavatn       |
| 10 - 12          | Langavatn        |
| 13 - 15          | Urriðavatn       |
| 16 - 18          | Lagarfljót       |
| 19 - 21          | Nýjalón          |
| 22 - 24          | Óslandstjörn     |
| 25 - 27          | Þveit            |
| 28 - 30          | Hoffell          |
| 31 - 33          | Smyrlabjargarlón |
| 34 - 36          | Jökulsárlón      |
| 37 - 39          | Seyðisfjörður    |
| 40 - 42          | MQ S             |
| 43 - 45          | MQ P             |

#### 4.2.2 Soil samples

Soil samples were moved from the ziplock PE bags to glass containers and dried overnight at 105°C. After drying, the samples were crushed and stored in a desiccator. Large stones were hand picked out from the samples. Color, maximum grain size, and other necessary information were noted for each sample.

Samples were hand sieved using a brass sieve. Each sample was shaken for one and a half minute to separate grain sizes less than 0.5 mm. About 250 mg of the sieved samples were weighed and put in a Teflon vessel followed with 2 ml of HCl and 6 ml of HNO<sub>3</sub> (*aqua regia*). The samples were then digested in a closed vessels microwave digestion system (CEM Mars5). The samples were digested at 190°C for 30 minutes at 200 psi and let cool down for 15 minutes, or until the temperature reached around 50°C.

The samples were digested in the microwave in three rounds since the microwave could only digest 14 samples at a time. Each round contained one sample from each sampling site. This was done in case if something would go wrong with the digestion.

After digestion the samples were transferred to 12 ml plastic tubes. Three samples turned out to be completely dried up. However, since the dried samples were so few and all from different sampling sites it was not considered necessary to digest these samples again.

Before the samples were analysed by ICP-MS they were diluted 100 times with MilliQ water. The samples were then stored in a refrigerator until analysis. The prepared soil samples were

15

given the numbering found in Table 11. Samples number 6, 7 and 21 were dried up during microwave digestion.

Table 11 - Numbering of the soil samples.

| Sample<br>number | Location         |
|------------------|------------------|
| 1-3              | Hvaleyrarvatn    |
| 4 - 6            | Vífilsstaðavatn  |
| 7 - 9            | Elliðavatn       |
| 10 - 12          | Langavatn        |
| 13 - 15          | Urriðavatn       |
| 16 - 18          | Lagarfljót       |
| 19 - 21          | Nýjalón          |
| 22 - 24          | Óslandstjörn     |
| 25 - 27          | Þveit            |
| 28 - 30          | Hoffell          |
| 31 - 33          | Smyrlabjargarlón |
| 34 - 36          | Jökulsárlón      |

#### 4.2.2.1 Data analysis

In order to find the concentration in the unit mg/kg Equation 1 was used.

Results 
$$\left[\frac{mg}{kg}\right] = \frac{Results \left[\frac{mg}{ml}\right] \cdot Dilution factor \cdot Volume of acid [ml]}{Sample weight [kg]}$$
(Equation 1)

Where the dilution factor is 100 and the volume of acid is 8 ml (6 ml  $NHO_3 + 2$  ml HCl). The sample weight is approximately 250 mg. Results in ppb had to be converted to mg/ml.

## 5 Results

#### 5.1 Surface water and drinking water samples

Heavy metals that were analysed by ICP-MS for the water samples are Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sb, Pt and Pb. The average concentrations of these elements can be found in Table 12, for the three samples taken at each sampling site. Results for each sample by numbering can be found in Appendix III – ICP-MS results for water samples.

|                  | Al    | Ti    | V     | Cr    | Mn    | Fe     | Со    |
|------------------|-------|-------|-------|-------|-------|--------|-------|
|                  | [ppb] | [ppb] | [ppb] | [ppb] | [ppb] | [ppb]  | [ppb] |
| Hvaleyrarvatn    | 65    | 8.4   | 0.22  | 0.06  | 31    | 66     | 0.92  |
| Vífilsstaðavatn  | 21    | 19.3  | 2.8   | 0.49  | 6.5   | 117    | 0.83  |
| Elliðavatn       | 38    | 13.1  | 2.6   | 0.24  | 23    | 343    | 1.11  |
| Langavatn        | 128   | 38    | 0.89  | 0.11  | 90    | 2 282  | 1.05  |
| Urriðavatn       | 19.9  | 15.7  | 0.25  | 0.08  | 51    | 368    | 1.04  |
| Lagarfljót       | 6 782 | 1 182 | 25    | 4.7   | 152   | 11 152 | 3.6   |
| Nýjalón          | 497   | 61    | 3.3   | 0.55  | 85    | 3 205  | 1.11  |
| Óslandstjörn     | 54    | 10.0  | 0.77  | 0.16  | 7.8   | 921    | 0.85  |
| Þveit            | 571   | 83    | 2.8   | 0.44  | 125   | 1 363  | 1.25  |
| Hoffell          | 1 322 | 272   | 24    | 1.18  | 35    | 2 268  | 1.68  |
| Smyrlabjargarlón | 314   | 41    | 1.89  | 0.22  | 43    | 580    | 1.05  |
| Jökulsárlón      | 132   | 438   | 8.9   | 0.29  | 16.7  | 143    | 0.90  |
| Seyðisfjörður    | 165   | 9.0   | 0.46  | 0.02  | 10.5  | 125    | 0.95  |
|                  | Ni    | Cu    | Zn    | Cd    | Sb    | Pt     | Pb    |
|                  | [ppb] | [ppb] | [ppb] | [ppb] | [ppb] | [ppt]  | [ppb] |
| Hvaleyrarvatn    | 0.30  | 0.66  | 2.7   | 0.01  | 0.00  | 0.36   | 0.07  |
| Vífilsstaðavatn  | 0.24  | 0.50  | 1.72  | 0.01  | 0.00  | 1.08   | 0.05  |
| Elliðavatn       | 0.67  | 1.36  | 39    | 0.02  | 0.03  | 0.49   | 0.10  |
| Langavatn        | 0.50  | 0.65  | 4.7   | 0.01  | 0.00  | 1.16   | 0.05  |
| Urriðavatn       | 0.33  | 0.59  | 4.5   | 0.01  | 0.00  | 0.71   | 0.04  |
| Lagarfljót       | 4.3   | 16.8  | 13.0  | 0.02  | 0.00  | 0.78   | 0.14  |
| Nýjalón          | 1.32  | 2.9   | 35    | 0.10  | 0.00  | 0.25   | 0.26  |
| Óslandstjörn     | 0.84  | 1.10  | 8.7   | 0.01  | 0.03  | 0.00   | 0.11  |
| Þveit            | 0.86  | 1.46  | 4.4   | 0.02  | 0.00  | 0.40   | 0.10  |
| Hoffell          | 1.49  | 4.8   | 5.8   | 0.01  | 0.02  | 1.41   | 0.09  |
| Smyrlabjargarlón | 0.43  | 1.43  | 3.3   | 0.01  | 0.00  | 0.34   | 0.07  |
| Jökulsárlón      | 2.1   | 28    | 2.5   | 0.03  | 0.21  | 0.15   | 0.04  |
| Seyðisfjörður    | 0.47  | 3.8   | 1 656 | 0.03  | 0.00  | 0.39   | 0.28  |

| <b>Table 12</b> – A | Average concentration in water sam | nples from ICP-MS analysis. |
|---------------------|------------------------------------|-----------------------------|

Figure 8, Figure 9 and Figure 10 show a schematic view of the results in Table 12, excluding the results for Seyðisfjörður that are discussed later in chapter 6.2. Figure 8 shows that samples collected in the greater capital area have lower Fe, Ti and Al concentrations. This is the first indication that the water in the eastern part of Iceland is affected by the eruption in Holuhraun.

The glacier lagoons, Jökulsárlón and Hoffell, and the glacial river Lagarfljót have the highest concentrations of Ti, Cu and V, according to Figure 8 and Figure 9. Concentrations of Mn and Zn do not seem to follow any specific pattern regarding location. Jökulsárlón, Hoffell and Lagarfljót have the highest concentration of Ni. Concentrations of Cr, Ni and Co at Lagarfljót are significantly higher than at other sampling sites, see Figure 10.



Figure 8 – Schematic view of water results for Fe, Ti and Al.



Figure 9 – Schematic view of water results for Zn, Cu, Mn and V.



Figure 10 – Schematic view of water results for Pb, Cd, Cr, Ni and Co.

19

#### 5.1.1 Correlation analysis

Correlation analysis was done for the metals that were analysed in water and the results are shown in Table 13. The correlation values were obtained in Microsoft Excel using the function correl. The values range between -1 to 1 where -1 is perfect negative correlation and 1 is perfect positive correlation. Values less than 1 have two decimals except for negative values that only have one decimal. One group of metals can be distinguished based on correlations, i.e. Al, Ti, Fe, Co and Ni, whereas the other metals do not show any correlation, except for Pb and Cd.

|    | Al   | Ti   | V    | Cr   | Mn   | Fe   | Со   | Ni   | Cu   | Zn   | Cd   | Sb   | Pt   | Pb |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|----|
| Al | 1    |      |      |      |      |      |      |      |      |      |      |      |      |    |
| Ti | 0.94 | 1    |      |      |      |      |      |      |      |      |      |      |      |    |
| V  | 0.78 | 0.82 | 1    |      |      |      |      |      |      |      |      |      |      |    |
| Cr | 0.99 | 0.94 | 0.81 | 1    |      |      |      |      |      |      |      |      |      |    |
| Mn | 0.67 | 0.55 | 0.35 | 0.63 | 1    |      |      |      |      |      |      |      |      |    |
| Fe | 0.96 | 0.88 | 0.71 | 0.96 | 0.76 | 1    |      |      |      |      |      |      |      |    |
| Со | 0.99 | 0.92 | 0.81 | 0.98 | 0.69 | 0.96 | 1    |      |      |      |      |      |      |    |
| Ni | 0.90 | 0.97 | 0.81 | 0.90 | 0.55 | 0.87 | 0.88 | 1    |      |      |      |      |      |    |
| Cu | 0.43 | 0.71 | 0.52 | 0.44 | 0.11 | 0.35 | 0.39 | 0.73 | 1    |      |      |      |      |    |
| Zn | 0.06 | 0.0  | 0.0  | 0.08 | 0.10 | 0.17 | 0.09 | 0.12 | -0.1 | 1    |      |      |      |    |
| Cd | 0.01 | 0.02 | 0.0  | 0.03 | 0.24 | 0.18 | 0.0  | 0.20 | 0.13 | 0.64 | 1    |      |      |    |
| Sb | -0.1 | 0.20 | 0.12 | -0.1 | -0.4 | -0.2 | -0.2 | 0.26 | 0.82 | -0.1 | 0.07 | 1    |      |    |
| Pt | 0.21 | 0.14 | 0.45 | 0.25 | 0.13 | 0.21 | 0.28 | 0.03 | -0.2 | -0.2 | -0.3 | -0.3 | 1    |    |
| Pb | 0.29 | 0.16 | 0.17 | 0.30 | 0.40 | 0.45 | 0.29 | 0.34 | -0.1 | 0.71 | 0.85 | -0.3 | -0.3 | 1  |

 Table 13 – Correlation of metals for water results

#### 5.2 Soil samples

Heavy metals analysed in the soil samples are Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sb, Pb and Sn. Table 14 shows the average concentration in the soil samples for these elements. Results below 20 have one decimal and results below 2 have two decimals. Results for each sample by numbering can be found in Appendix IV – ICP-MS results for soil samples. Only two of the three sample results for Smyrlabjargarlón were used for the average value, since the third sample result was considered to be an outlier and could not be explained.

The chemical analysis in ICP-MS was run in two separate rounds for the soil samples. Cr, Ni, Cu, Zn, Cd, and Pb were analysed in the first round and Al, Ti, V, Mn, Fe, Co, Sn, Sb were analysed in the second round. Al, Ti, V, Mn, Fe, Co, Sn, Sb concentrations are missing for sample 1 because of a software problem in the second round.

|                                                                                                                                         | Al                                                                               | Ti                                                                                     | V                                                                                           | Cr                                                                                                    | Mn                                                                                                                                                                                                                                                                   | Fe                                                                                                                                                               | Со                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                         | [mg/kg]                                                                          | [mg/kg]                                                                                | [mg/kg]                                                                                     | [mg/kg]                                                                                               | [mg/kg]                                                                                                                                                                                                                                                              | [mg/kg]                                                                                                                                                          | [mg/kg]                                                                                                                                                     |
| Hvaleyrarvatn                                                                                                                           | 89 390                                                                           | 3 946                                                                                  | 213                                                                                         | 239                                                                                                   | 2 484                                                                                                                                                                                                                                                                | 182 746                                                                                                                                                          | 143                                                                                                                                                         |
| Vífilsstaðavatn                                                                                                                         | 47 796                                                                           | 2 990                                                                                  | 124                                                                                         | 34                                                                                                    | 929                                                                                                                                                                                                                                                                  | 66 810                                                                                                                                                           | 29                                                                                                                                                          |
| Elliðavatn                                                                                                                              | 78 298                                                                           | 1 907                                                                                  | 365                                                                                         | 79                                                                                                    | 938                                                                                                                                                                                                                                                                  | 85 641                                                                                                                                                           | 45                                                                                                                                                          |
| Langavatn                                                                                                                               | 66 578                                                                           | 2 646                                                                                  | 190                                                                                         | 58                                                                                                    | 2 857                                                                                                                                                                                                                                                                | 147 782                                                                                                                                                          | 53                                                                                                                                                          |
| Urriðavatn                                                                                                                              | 41 594                                                                           | 2 805                                                                                  | 167                                                                                         | 26                                                                                                    | 5 334                                                                                                                                                                                                                                                                | 118 956                                                                                                                                                          | 85                                                                                                                                                          |
| Lagarfljót                                                                                                                              | 44 708                                                                           | 3 939                                                                                  | 242                                                                                         | 27                                                                                                    | 769                                                                                                                                                                                                                                                                  | 79 931                                                                                                                                                           | 31                                                                                                                                                          |
| Nýjalón                                                                                                                                 | 41 685                                                                           | 3 195                                                                                  | 121                                                                                         | 21                                                                                                    | 868                                                                                                                                                                                                                                                                  | 57 539                                                                                                                                                           | 30                                                                                                                                                          |
| Óslandstjörn                                                                                                                            | 64 769                                                                           | 5 340                                                                                  | 285                                                                                         | 41                                                                                                    | 1 617                                                                                                                                                                                                                                                                | 104 445                                                                                                                                                          | 37                                                                                                                                                          |
| Þveit                                                                                                                                   | 54 634                                                                           | 4 297                                                                                  | 202                                                                                         | 30                                                                                                    | 993                                                                                                                                                                                                                                                                  | 74 716                                                                                                                                                           | 29                                                                                                                                                          |
| Hoffell                                                                                                                                 | 42 279                                                                           | 5 190                                                                                  | 202                                                                                         | 20                                                                                                    | 877                                                                                                                                                                                                                                                                  | 68 239                                                                                                                                                           | 23                                                                                                                                                          |
| Smyrlabjargar-<br>lón                                                                                                                   | 49 784                                                                           | 4 994                                                                                  | 197                                                                                         | 29                                                                                                    | 871                                                                                                                                                                                                                                                                  | 74 533                                                                                                                                                           | 28                                                                                                                                                          |
| Jökulsárlón                                                                                                                             | 33 060                                                                           | 4 846                                                                                  | 130                                                                                         | 27                                                                                                    | 632                                                                                                                                                                                                                                                                  | 49 468                                                                                                                                                           | 19                                                                                                                                                          |
|                                                                                                                                         |                                                                                  |                                                                                        |                                                                                             |                                                                                                       |                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                             |
|                                                                                                                                         | Ni                                                                               | Cu                                                                                     | Zn                                                                                          | Cd                                                                                                    | Sb                                                                                                                                                                                                                                                                   | Pb                                                                                                                                                               | Sn                                                                                                                                                          |
|                                                                                                                                         | Ni<br>[mg/kg]                                                                    | Cu<br>[mg/kg]                                                                          | Zn<br>[mg/kg]                                                                               | Cd<br>[mg/kg]                                                                                         | Sb<br>[mg/kg]                                                                                                                                                                                                                                                        | Pb<br>[mg/kg]                                                                                                                                                    | Sn<br>[mg/kg]                                                                                                                                               |
| Hvaleyrarvatn                                                                                                                           | <b>Ni</b><br>[mg/kg]<br>725                                                      | Cu<br>[mg/kg]<br>313                                                                   | <b>Zn</b><br>[mg/kg]<br>244                                                                 | Cd<br>[mg/kg]<br>0.23                                                                                 | <b>Sb</b><br>[mg/kg]<br>0.06                                                                                                                                                                                                                                         | <b>Pb</b><br>[mg/kg]<br>6.5                                                                                                                                      | <b>Sn</b><br>[mg/kg]<br>1.79                                                                                                                                |
| Hvaleyrarvatn<br>Vífilsstaðavatn                                                                                                        | Ni<br>[mg/kg]<br>725<br>59                                                       | Cu<br>[mg/kg]<br>313<br>59                                                             | <b>Zn</b><br>[mg/kg]<br>244<br>61                                                           | Cd<br>[mg/kg]<br>0.23<br>0.18                                                                         | <b>Sb</b><br>[mg/kg]<br>0.06<br>0.05                                                                                                                                                                                                                                 | <b>Pb</b><br>[mg/kg]<br>6.5<br>7.4                                                                                                                               | <b>Sn</b><br>[mg/kg]<br>1.79<br>2.5                                                                                                                         |
| Hvaleyrarvatn<br>Vífilsstaðavatn<br>Elliðavatn                                                                                          | Ni<br>[mg/kg]<br>725<br>59<br>95                                                 | Cu<br>[mg/kg]<br>313<br>59<br>135                                                      | <b>Zn</b><br>[mg/kg]<br>244<br>61<br>133                                                    | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26                                                                 | Sb           [mg/kg]           0.06           0.05           0.01                                                                                                                                                                                                    | Pb           [mg/kg]           6.5           7.4           6.3                                                                                                   | <b>Sn</b><br>[mg/kg]<br>1.79<br>2.5<br>1.60                                                                                                                 |
| Hvaleyrarvatn<br>Vífilsstaðavatn<br>Elliðavatn<br>Langavatn                                                                             | Ni<br>[mg/kg]<br>725<br>59<br>95<br>68                                           | Cu<br>[mg/kg]<br>313<br>59<br>135<br>158                                               | <b>Zn</b><br>[mg/kg]<br>244<br>61<br>133<br>112                                             | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26<br>0.24                                                         | Sb           [mg/kg]           0.06           0.05           0.01           0.04                                                                                                                                                                                     | Pb           [mg/kg]           6.5           7.4           6.3           4.5                                                                                     | <b>Sn</b><br>[mg/kg]<br>1.79<br>2.5<br>1.60<br>1.21                                                                                                         |
| Hvaleyrarvatn<br>Vífilsstaðavatn<br>Elliðavatn<br>Langavatn<br>Urriðavatn                                                               | Ni<br>[mg/kg]<br>725<br>59<br>95<br>68<br>31                                     | Cu<br>[mg/kg]<br>313<br>59<br>135<br>158<br>86                                         | <b>Zn</b><br>[mg/kg]<br>244<br>61<br>133<br>112<br>73                                       | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26<br>0.24<br>0.16                                                 | Sb           [mg/kg]           0.06           0.05           0.01           0.04           0.02                                                                                                                                                                      | Pb           [mg/kg]           6.5           7.4           6.3           4.5           2.2                                                                       | <b>Sn</b><br>[mg/kg]<br>1.79<br>2.5<br>1.60<br>1.21<br>2.2                                                                                                  |
| Hvaleyrarvatn<br>Vífilsstaðavatn<br>Elliðavatn<br>Langavatn<br>Urriðavatn<br>Lagarfljót                                                 | Ni<br>[mg/kg]<br>725<br>59<br>95<br>68<br>31<br>43                               | Cu<br>[mg/kg]<br>313<br>59<br>135<br>158<br>86<br>102                                  | <b>Zn</b><br>[mg/kg]<br>244<br>61<br>133<br>112<br>73<br>93                                 | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26<br>0.24<br>0.16<br>0.05                                         | Sb           [mg/kg]           0.06           0.05           0.01           0.04           0.02                                                                                                                                                                      | Pb           [mg/kg]           6.5           7.4           6.3           4.5           2.2           1.45                                                        | <b>Sn</b><br>[mg/kg]<br>1.79<br>2.5<br>1.60<br>1.21<br>2.2<br>3.0                                                                                           |
| Hvaleyrarvatn<br>Vífilsstaðavatn<br>Elliðavatn<br>Langavatn<br>Urriðavatn<br>Lagarfljót<br>Nýjalón                                      | Ni<br>[mg/kg]<br>725<br>59<br>95<br>68<br>31<br>43<br>50                         | Cu<br>[mg/kg]<br>313<br>59<br>135<br>158<br>86<br>102<br>55                            | Zn<br>[mg/kg]<br>244<br>61<br>133<br>112<br>73<br>93<br>50                                  | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26<br>0.24<br>0.16<br>0.05<br>0.18                                 | Sb           [mg/kg]           0.06           0.05           0.01           0.04           0.02           0.01                                                                                                                                                       | Pb           [mg/kg]           6.5           7.4           6.3           4.5           2.2           1.45           3.3                                          | <b>Sn</b><br>[mg/kg]<br>1.79<br>2.5<br>1.60<br>1.21<br>2.2<br>3.0<br>1.67                                                                                   |
| Hvaleyrarvatn<br>Vífilsstaðavatn<br>Elliðavatn<br>Langavatn<br>Urriðavatn<br>Lagarfljót<br>Nýjalón<br>Óslandstjörn                      | Ni<br>[mg/kg]<br>725<br>59<br>95<br>68<br>31<br>43<br>50<br>43                   | Cu<br>[mg/kg]<br>313<br>59<br>135<br>158<br>86<br>102<br>55<br>118                     | <b>Zn</b><br>[mg/kg]<br>244<br>61<br>133<br>112<br>73<br>93<br>50<br>168                    | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26<br>0.24<br>0.16<br>0.05<br>0.18<br>0.29                         | Sb           [mg/kg]           0.06           0.05           0.01           0.04           0.02           0.01           0.02           0.01                                                                                                                         | Pb         [mg/kg]       6.5         7.4       6.3         4.5       2.2         1.45       3.3         24       24                                              | <b>Sn</b><br>[mg/kg]<br>1.79<br>2.5<br>1.60<br>1.21<br>2.2<br>3.0<br>1.67<br>3.8                                                                            |
| Hvaleyrarvatn<br>Vífilsstaðavatn<br>Elliðavatn<br>Langavatn<br>Urriðavatn<br>Lagarfljót<br>Nýjalón<br>Óslandstjörn                      | Ni<br>[mg/kg]<br>725<br>59<br>95<br>68<br>31<br>43<br>50<br>43<br>30             | Cu<br>[mg/kg]<br>313<br>59<br>135<br>158<br>86<br>102<br>55<br>118<br>110              | Zn<br>[mg/kg]<br>244<br>61<br>133<br>112<br>73<br>93<br>50<br>168<br>117                    | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26<br>0.24<br>0.16<br>0.05<br>0.18<br>0.29<br>0.21                 | Sb           [mg/kg]           0.06           0.05           0.01           0.04           0.02           0.01           0.02           0.01           0.02           0.01                                                                                           | Pb         [mg/kg]         6.5         7.4         6.3         4.5         2.2         1.45         3.3         24         4.6                                   | Sn         [mg/kg]         1.79         2.5         1.60         1.21         2.2         3.0         1.67         3.8         2.4                          |
| Hvaleyrarvatn<br>Vífilsstaðavatn<br>Elliðavatn<br>Langavatn<br>Urriðavatn<br>ILagarfljót<br>Nýjalón<br>Óslandstjörn<br>Pveit<br>Hoffell | Ni<br>[mg/kg]<br>725<br>59<br>95<br>68<br>31<br>43<br>50<br>43<br>30<br>27       | Cu<br>[mg/kg]<br>313<br>59<br>135<br>158<br>86<br>102<br>55<br>118<br>110<br>102       | Zn<br>[mg/kg]<br>244<br>61<br>133<br>112<br>73<br>93<br>50<br>168<br>117<br>89              | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26<br>0.24<br>0.16<br>0.05<br>0.18<br>0.29<br>0.21<br>0.11         | Sb           [mg/kg]           0.06           0.05           0.01           0.02           0.01           0.02           0.01           0.02           0.01                                                                                                          | Pb           [mg/kg]           6.5           7.4           6.3           4.5           2.2           1.45           3.3           24           4.6           2.2 | Sn         [mg/kg]         1.79         2.5         1.60         1.21         2.2         3.0         1.67         3.8         2.4         2.1              |
| HvaleyrarvatnVífilsstaðavatnElliðavatnLangavatnLangavatnNýjalónÓslandstjörnÞveitHoffellSmyrlabjargar-<br>lón                            | Ni<br>[mg/kg]<br>725<br>59<br>95<br>68<br>31<br>43<br>50<br>43<br>30<br>27<br>28 | Cu<br>[mg/kg]<br>313<br>59<br>135<br>158<br>86<br>102<br>55<br>118<br>110<br>102<br>87 | <b>Zn</b><br>[mg/kg]<br>244<br>61<br>133<br>112<br>73<br>93<br>50<br>168<br>117<br>89<br>57 | Cd<br>[mg/kg]<br>0.23<br>0.18<br>0.26<br>0.24<br>0.16<br>0.05<br>0.18<br>0.29<br>0.21<br>0.11<br>0.10 | Sb           [mg/kg]           0.06           0.05           0.01           0.02           0.01           0.02           0.01           0.02           0.01           0.02           0.01           0.02           0.01           0.02           0.01           0.02 | Pb         [mg/kg]         6.5         7.4         6.3         4.5         2.2         1.45         3.3         24         4.6         2.2         3.8           | Sn         [mg/kg]         1.79         2.5         1.60         1.21         2.2         3.0         1.67         3.8         2.4         2.1         1.95 |

Table 14 – Average concentration in soil samples from ICP-MS analysis.

As previously mentioned only two sample results were used for Smyrlabjargarlón. The third sample results are approximately 10 times higher than the other two, and in no relation to the other two samples. No obvious reasons were found for the high concentration and therefore it was decided to exclude that sample from the average value. A likely reason for the high concentration could be that a fraction of the sample contained very high concentrations of heavy metals. No obvious difference could be seen between the three samples, i.e. the colour, grain size and texture was similar. It would have been preferable to analyse the three samples again to see if the results would be the same, that was however, not done due to lack of time.

Figure 12, Figure 13 and Figure 14 show a schematic view of the results in Table 14. By reviewing all the figures there is no remarkable difference of heavy metal concentration in soil in the greater capital area compared to the other locations.

Hvaleyrarvatn, in the greater capital area has the highest concentrations of Fe and Al according to Figure 12. When the results for the samples for Hvaleyrarvatn are reviewed, in Appendix IV – ICP-MS results for soil samples, it can be seen that the results for sample 3 is relatively higher than sample 1 and 2. Therefore the average concentration for Hvaleyrarvatn is possibly higher for the elements where results for sample 1 are missing. Óslandstjörn has the highest concentration of Ti. According to Figure 13, Urriðavatn has the highest concentration of Mn and Hvaleyrarvatn has the highest concentrations of Cu and Zn. Elliðavatn has the highest concentration of V. Hvaleyrarvatn has the highest concentrations of Cd and Pb.



Figure 11 – Schematic view of soil results for Fe, Ti and Al.



Figure 12 – Schematic view of soil results for Zn, Cu, Mn and V.



Figure 13 – Schematic view of soil results for Pb, Cd, Cr, Ni and Co.

23

#### **5.2.1** Correlation analysis

Correlation analysis for the metals that were analysed for soil are shown in Table 15. As previously, the correlation values range between -1 to 1 where -1 is perfect negative correlation and 1 is perfect positive correlation. Values less than 1 have two decimals except for negative values that only have one decimal. Al, Cr, Fe, Co, Ni, Cu, Zn were found to be associated with each other.

|    | Al   | Ti   | V    | Cr   | Mn   | Fe   | Co   | Ni   | Cu   | Zn   | Cd   | Sb   | Pb   | Sn |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|----|
| Al | 1    |      |      |      |      |      |      |      |      |      |      |      |      |    |
| Ti | -0.3 | 1    |      |      |      |      |      |      |      |      |      |      |      |    |
| V  | 0.62 | -0.1 | 1    |      |      |      |      |      |      |      |      |      |      |    |
| Cr | 0.81 | -0.1 | 0.24 | 1    |      |      |      |      |      |      |      |      |      |    |
| Mn | 0.13 | -0.3 | -0.1 | 0.21 | 1    |      |      |      |      |      |      |      |      |    |
| Fe | 0.74 | -0.2 | 0.22 | 0.78 | 0.64 | 1    |      |      |      |      |      |      |      |    |
| Со | 0.65 | -0.2 | 0.10 | 0.87 | 0.64 | 0.88 | 1    |      |      |      |      |      |      |    |
| Ni | 0.70 | 0.0  | 0.10 | 0.98 | 0.20 | 0.73 | 0.87 | 1    |      |      |      |      |      |    |
| Cu | 0.85 | 0.0  | 0.35 | 0.95 | 0.27 | 0.87 | 0.84 | 0.91 | 1    |      |      |      |      |    |
| Zn | 0.90 | 0.12 | 0.55 | 0.84 | 0.20 | 0.77 | 0.72 | 0.79 | 0.91 | 1    |      |      |      |    |
| Cd | 0.75 | -0.3 | 0.44 | 0.39 | 0.26 | 0.50 | 0.37 | 0.29 | 0.44 | 0.63 | 1    |      |      |    |
| Sb | 0.43 | -0.1 | -0.2 | 0.67 | 0.25 | 0.64 | 0.61 | 0.69 | 0.61 | 0.45 | 0.18 | 1    |      |    |
| Pt | 0.41 | 0.30 | 0.42 | 0.12 | 0.0  | 0.20 | 0.04 | 0.06 | 0.15 | 0.49 | 0.67 | 0.08 | 1    |    |
| Pb | -0.2 | 0.62 | 0.17 | -0.3 | -0.2 | -0.3 | -0.3 | -0.2 | -0.2 | 0.08 | -0.1 | -0.2 | 0.61 | 1  |

Table 15 – Correlation of metals for soil results

#### 5.3 Control samples

Table 16 shows the results for the six control samples containing only MilliQ water and nitric acid. These samples have very low metal concentration and therefore the acid should have minimum effects on the results of the collected water samples.

|          | Al    | Ti    | V     | Cr    | Mn    | Fe    | Со    |
|----------|-------|-------|-------|-------|-------|-------|-------|
|          | [ppb] |
| MQ S - 1 | 6.2   | 0.03  | 0.04  | -0.03 | 0.02  | -0.89 | 0.80  |
| MQ S - 2 | 5.8   | 0.05  | 0.04  | -0.04 | 0.02  | 2.1   | 0.80  |
| MQ S - 3 | 6.1   | 0.04  | 0.04  | 0.00  | 0.02  | 0.37  | 0.80  |
| MQ P - 1 | 7.0   | 0.04  | 0.03  | 0.00  | 0.02  | 0.00  | 0.80  |
| MQ P - 2 | 5.8   | 0.08  | 0.04  | 0.00  | 0.02  | 0.00  | 0.80  |
| MQ P - 3 | 9.7   | 0.06  | 0.04  | 0.00  | 0.02  | 0.00  | 0.80  |
|          | Ni    | Cu    | Zn    | Cd    | Sb    | Pt    | Pb    |
|          | [ppb] | [ppb] | [ppb] | [ppb] | [ppb] | [ppt] | [ppb] |
| MQ S - 1 | 0.02  | 0.10  | 1.57  | 0.01  | 0.01  | 0.67  | 0.04  |
| MQ S - 2 | 0.02  | 0.09  | 1.48  | 0.00  | 0.00  | 0.37  | 0.04  |
| MQ S - 3 | 0.05  | 2.3   | 5.8   | 0.01  | 0.00  | 0.30  | 0.05  |
| MQ P - 1 | 0.03  | 1.83  | 4.5   | 0.01  | 0.00  | 0.63  | 0.03  |
| MQ P - 2 | 0.02  | 1.76  | 4.5   | 0.00  | 0.00  | 0.00  | 0.03  |
| MQ P - 3 | 0.04  | 2.5   | 7.1   | 0.01  | 0.00  | 0.56  | 0.03  |

Table 16 – Results from ICP-MS for the six additional water samples.

#### 5.4 Results accuracy and precision

The accuracy and precision of the results depends on sampling, sample storage, sample preparation and analysis. The human factor plays an important role in precision and accuracy beside the accuracy and precision of the equipment used. The accuracy of ICP-MS is considered to be 3-5%.<sup>11</sup>

Although the initial plan was to use a sediment reference sample to estimate the accuracy of the results, previous results for this sample could not be obtained and the reference sample was therefore not used.

<sup>&</sup>lt;sup>11</sup> Sebastien Rauch, docent in Civil and Environmental Engineering, Chalmers, oral source, May 20<sup>th</sup>, 2015

#### **6** Discussion

#### 6.1 Metals in surface water

#### 6.1.1 Comparison with Icelandic regulations

The comparison of the results in Table 12 with the environmental standards in Table 6 indicates that water quality is a concern at several sites. Copper concentration at Lagarfljót and Jökulsárlón reaches environmental standard IV and at Hoffell it reaches environmental standard III. Zinc concentration at Elliðavatn and Nýjalón reaches environmental standard III. The concentrations of other metals do not exceed environmental standard II.

#### 6.1.2 Comparison with previous studies

Previous chemical analyses were found for Lagarfljót, Elliðavatn and Vífilsstaðavatn which are shown in Table 17 along with the results from Table 12 for comparison. Previous analyses were not done in relation to pollution from eruptions. Data from Lagarfljót was obtained from a study for the dam of the Kárahnjúkar hydropower plant. The data for Elliðavatn and Vífilsstaðavatn were obtained in an environmental quality survey.

|    | Lagarfljót<br>2007-2013<br>(a) | Lagarfljót<br>2015 | Elliðavatn<br>2009 <sup>(b)</sup> | Elliðavatn<br>2015 | Vífilsstaða-<br>vatn 2009<br>(c) | Vífilsstaða-<br>vatn 2015 |
|----|--------------------------------|--------------------|-----------------------------------|--------------------|----------------------------------|---------------------------|
|    |                                |                    | Average                           | values [ppb]       |                                  |                           |
| Al | 18.2                           | 6 782              | -                                 | 38                 | -                                | 21                        |
| Ti | 3.1                            | 1 182              | -                                 | 13.1               | -                                | 19.2                      |
| V  | 4.9                            | 24                 | -                                 | 2.5                | -                                | 2.8                       |
| Cr | 0.06                           | 4.7                | 0.56                              | 0.24               | 0.35                             | 0.49                      |
| Mn | 1.56                           | 151                | -                                 | 22                 | -                                | 6.5                       |
| Fe | 22                             | 11 152             | -                                 | 342                | -                                | 117                       |
| Со | 0.02                           | 3.6                | -                                 | 1.11               | -                                | 0.83                      |
| Ni | 0.10                           | 4.3                | 0.16                              | 0.67               | 0.48                             | 0.24                      |
| Cu | 0.35                           | 16.8               | 0.49                              | 1.36               | 1.45                             | 0.50                      |
| Zn | 0.59                           | 13.0               | 0.45                              | 39                 | 7.6                              | 1.72                      |
| Cd | < 0.0028                       | 0.02               | 0.01                              | 0.02               | < 0.074                          | 0.01                      |
| Pb | < 0.012                        | 0.14               | 0.03                              | 0.10               | <0.44                            | 0.05                      |

Table 17 – Average values for comparison. (a) (Eiríksdóttir et al., 2014), (b) (Þórðarson, 2003), (c) (Þórðarson, 2009)

Concentrations of all metals have increased at Lagarfljót compared to concentrations measured in 2007-2013, which will be discussed further in chapter 6.1.3. The increase ranges from ca. 20 times for Zn to ca. 500 times for Fe. The concentrations of Al, Ti, Co and Fe have increased more than 100 times. In contrast, there are no drastic changes in metal concentration of metals at Elliðavatn except from the large increase in concentration of Zn. The metal concentration in Vífilstaðavatn has decreased except for Cr concentration. Elliðavatn and Vífilstaðavatn are however located in the greater capital area where severe changes were not expected.

#### 6.1.2.1 Concentrations in glacial water

Sampling sites that receive water directly from Vatnajökull glacier, i.e. Jökulsárlón, Hoffell and Lagarfljót, have high concentrations of metals. These sampling sites have the highest concentrations of Ti, Cu, V and Ni according to the results shown in Figure 8, Figure 9 and Figure 10. The reason for this is not known. Possible explanations could be their closeness to the glacier and Holuhraun. Air pollution could be higher at these locations and in their catchment areas. The previous chemical analysis in Table 17 shows that the concentration in Lagarfljót is usually not higher than in the other lakes. There is no previous available data for Hoffell and Jökulsárlón and therefore it cannot be stated if glacial water has usually higher heavy metal concentration compared to other lakes.

Comparing the results in Table 12 to the chemical analysis on glacial water in Table 2 shows that the concentration of Fe is significantly higher in this analysis. The concentration of Fe is even higher at all sampling sites. Comparing the concentrations of Zn, Mn, and Pb shows that there is no remarkable difference.

Vatnajökull glacier covers some of the main volcanoes in Iceland (Grímsvötn and Bárðarbunga) and therefore the glacial ice contains traces of many previous eruptions.

#### 6.1.3 High concentrations in Lagarfljót

Lagarfljót's origin is a glacial river flowing from Eyjabakkajökull glacier a part of Vatnajökull glacier, see Figure 5. Lagarfljót is 53 km<sup>2</sup> and the third largest natural lake in Iceland. The total catchment area is 2 900 km<sup>2</sup> and about 140 km<sup>2</sup> are a part of Vatnajökull glacier (Rist, 1990). The catchment area can consequently be considered relatively large. Data from the Icelandic Meteorological office shows that the week before sample collection the temperature was always above 0°C and up to 11°C as can be seen in Appendix V – Weather data for Egilsstaðir. The high concentration of metals could therefore be because of polluted snow on the catchment area that was delivered to the river. Lagarfljót is closest to Holuhraun of all the sampling sites and therefore expected to have the highest concentration.

More samples would be needed at different locations from Lagarfljót's origin down to where the sample was collected to confirm the suspicion. Signs of other possible pollution sources would also have to be researched.

#### 6.2 Drinking water

The results in Table 12 show that metal concentration in the drinking water is not of concern when compared to the maximum values in Table 7. However a high concentration of Zn indicates that it might be because of leaching from the pipes where the sample was collected. Even though the water had been running for a few minutes, before the samples were collected, to avoid this problem. The concentration of Zn in surface water is usually no more than 10  $\mu$ g/litre (10 ppb) (World Health Organization, 2003).

The Department of Environment in the East has been notified of the results and agrees that possible reason for high Zn concentration is leaching from pipes since it has been noticed before.<sup>12</sup> With higher concentration (3000 ppb) the drinking water could have an undesirable taste (World Health Organization, 2003).

Since no data for previous chemical analysis exists it is not possible to predict if there have been changes in chemical concentrations in the drinking water. It would have been preferable to collect the drinking water sample before the water enters the distribution system.

#### 6.3 Metals in soil

#### 6.3.1 Comparison with Icelandic guidelines

Comparison of the results in Table 14 with the Icelandic guidelines in Table 8 shows that the results of the collected samples are compatible to the background values in the guideline.

The concentrations of Cd, Cr and Pb, in the collected samples, never reach the lower threshold in the guidelines. Concentration of Ni is above the lower threshold at all locations and Hvaleyrarvatn reaches over the upper threshold. Zn values are compatible with the background values, only Hvaleyrarvatn and Smyrlabjargarlón reach over the lower threshold.

#### 6.3.2 Comparison with previous studies

When the results for soil in Table 14 are compared to world soil average concentration in Table 3 it can be seen that the soil samples from Iceland have, in most cases, higher concentrations of trace metals.

For all sampling sites, the concentrations of Mn, Co and Cu are higher than for the world soil average. However there are no world soil average values for Al and Fe and therefore it is difficult to evaluate and cannot be compared.

Further, Table 4, showing concentration of heavy metals in La Réunion, does not contain any values for Al and Fe. However, the results for soil in Table 14 are compatible to the values in Table 4. Concentration of Cu is always higher than the mean value except for at Nýjalón where it is close to the mean value.

Majority of the results in Table 14 are higher than the values in Table 5 which shows the concentration of heavy metals in Solofrana river valley, except for concentration of Pb.

After comparing the results with these three tables (Table 3, Table 4 and Table 5) it is considered that the concentrations in the Icelandic soil are high.

<sup>&</sup>lt;sup>12</sup> Leifur Þorkelsson, Food inspection and pollution control at the Department of Environment in the East, oral source, March 30<sup>th</sup>, 2015

#### 6.4 Correlation analysis

Positive correlation can indicate if the metal concentration has the same source. Table 13 shows that the correlation between Al, Ti, Cr, Fe, Co and Ni is good in the water samples when values higher than 0.9 are examined. The concentration of metals does not correlate as well in the soil samples, see Table 15. Values higher than 0.9 are however for Cr, Cu, Ni and Zn which are the exact same metals that were mentioned in chapter 3.3, because Icelandic soil is rich of these elements

These results indicate that concentrations of Al, Ti, Cr, Fe, Co and Ni in surface water have the same source, likely the eruption in Holuhraun. The results for the soil are more likely a general trend for Icelandic soil, although some could be related to the eruption.

#### 6.5 General discussion on surface water and soil results

The soil samples have higher concentration of heavy metals than the water samples. That was expected since soil contains naturally much more heavy metals.

Unlike the results for the water samples, the samples collected in the greater capital area do not have lower concentrations of Fe, Ti and Al compared to other sampling sites according to Figure 12. The glacier lagoons, Jökulsárlón and Hoffell, and the glacial river Lagarfljót do not have the highest concentrations of Ti, Cu, V and Ni in soil as the results for surface water showed. The concentrations in soil in Lagarfljót are not the highest as it was for the water samples. That indicates that the pollution is relatively new and has not yet affected the soil. No other pollution pattern was found, e.g. in relation to distance from the eruption. Therefore there is no indication that the soil is polluted from the eruption in Holuhraun.

Sudden acidic episodes and related metals can be more harmful to the ecosystem than when the pH-value has slowly decreased. The length and timing of the acidic episode is important for the ecosystem. However, how the Icelandic water ecosystems react to acidic episodes related to eruptions is unknown.<sup>13</sup>

The life expectancy of salmon fry is considered to decrease by 50% when aluminium concentration reaches 11  $\mu$ mol/l (297 ppb).<sup>14</sup> The concentration of aluminium at Lagarfljót is much higher.

Lagarfljót is not used as a drinking water source and the concentration of the metals is therefore not a direct concern for humans. However there is some fish in the river, for example; salmon, arctic char and trout (Jónsson & Árnason, 2011). The effect that the pollution has on the fauna in Lagafljót depends on the period of the high metal concentrations, both timing and duration.

<sup>&</sup>lt;sup>13</sup> Halla Margrét Jóhannesdóttir, scientist at Institute of Freshwater Fisheries, Áhrif eldgossins á lífríki í ám og vötnum. [Effect of the eruption on ecosystem in freshwater], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

<sup>&</sup>lt;sup>14</sup> Eydís Salóme Eiríksdóttir, PhD student at University of Iceland, Mengun yfirborðsvatns. [Surface water pollution], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

The eruption in Holuhraun emitted large amount of gas and lava, however no tephra. Tephra eruptions with lava flow are more common in Iceland and their effects on the environment are therefore better known up to a certain degree. The location of the eruption was fortunate since there is not much flora surrounding the eruption site. Little is known about how the eruption affected wild mammals and birds except for the few mice and birds that died as previously mentioned. The only wild mammals in the eastern part of Iceland are rodents, arctic foxes, minks and reindeers.<sup>15</sup>

30

<sup>&</sup>lt;sup>15</sup> Sigurður H. Magnússon, Plant Ecologist at the Icelandic Institute of Natural History, Áhrif eldgossins á villt dýr og vistkerfi. [Effects of the eruption from Holuhraun on the wildlife ecosystem], seminar regarding the eruption in Holuhraun, March 23<sup>rd</sup>, 2015

## 7 Conclusion

Water and soil samples were collected, following the eruption in Holuhraun, and analysed to determine metal concentrations. The soil sample results indicate that there is no or limited pollution in the soil that can be connected to the eruption in Holuhraun. The concentrations are comparable to the background values of Icelandic soil and there is no visible difference in concentrations in the greater capital area and the other sampling sites in the area where the volcano might have had a larger impact. The timing of the eruption was also fortunate for flora since the growth period was almost over.

The concentration of heavy metals in the water samples for the greater capital area is lower for some elements than for the other locations. That indicates possible pollution from the eruption in surface water in the eastern part of Iceland. Correlation analysis also indicates that surface water is polluted because of the eruption.

Sampling sites that receive water directly from Vatnajökull glacier have notably higher concentrations for some of the heavy metals that were analysed. The glacial river, Lagarfljót, has the highest concentration of heavy metals in surface water which strongly indicates pollution from the eruption in Holuhraun. The reason for higher concentrations in Lagarfljót can be explained by its large catchment area and closeness to the eruption site. Comparing the results with previous analysis in Lagarfljót shows large increase of heavy metal concentration. Other possible pollution source would have to be researched in order to confirm that the eruption is the cause of this pollution. Previous results were not available for most of the sampling sites which makes it harder to identify increase in concentrations.

The results for the drinking water samples collected in Seyðisfjörður indicate leaching from pipes. It would have been preferable to collect samples before the water enters the distribution network to avoid contamination from pipes.

It would be interesting to analyse the concentration of heavy metals when the snow melts in the spring. This analysis could be used for comparison. However, due to many storms with heavy rain and high temperature, during the winter 2014-2015, the concentration peak will possibly be lower in the spring since some of the polluted snow has already melted.

The University of Iceland and the Environmental Agency of Iceland research eruptions and their environmental impacts. Researches done in relation to the eruption in Holuhraun had not been published when this thesis was written. The results will, however, be useful for future eruptions of this kind and to evaluate the environmental impact the eruption had.

31

## 8 References

Adamo, P., Denaix, L., Terribile, F. & Zampella, M., 2003. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). *Geoderma*, 117(3), pp. 347-366.

Africano, F., Rompaey, G. V., Bernard, A. & Guern, F. L., 2002. Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. *Earth Planet Space*, Volume 54, pp. 275-286.

Bali, E. et al., 2014. *Petrology of the new fissure eruption north of Dyngjujökull*. Reykjavik, Jarðfræðafélag Íslands.

Dælsch, E., Macary, H. S. & Kerchove, V. V. d., 2006. Sources of very high heavy metal content in soils of volcanic island (La Réunion). *Journal of Geochemical Exploration*, 88(1), pp. 194-197.

Directorate of Health, 2014. *Volcanic eruption in Holuhraun - Human health effect*. [Online] Available at: <u>http://www.landlaeknir.is/english/volcanic-eruption-in-holuhraun-human-health-effext/</u>

[Accessed 19 01 2015].

Einarsson, Þ., 1994. *Myndun og mótun lands. [Geology of Iceland: rocks and landscape]*. 3rd ed. Reykjavik: Mál og menning.

Eiríksdóttir, E. S. et al., 2014. Efnasamsetning, rennsli og aurburður straumvatna á Austurlandi XI. [Chemical composition, flow and sediment load of streams in the East XI]. *Gagnagrunnur Jarðvísindastofnunar og Veðurstofunnar*, Volume RH-05-2014, p. 126.

Gauthier, P.-J.et al., 2015. Trace element degassing patterns and volcanic fluxes to the atmosphere during the 2014 Holuhraun eruption, Iceland. *EGU General Assembly*, Volume 17.

Guðmundsson, A. T., 1986. Íslandseldar. [Eruptions in Iceland]. Reykjavik: Vaka-Helgafell.

Hagstofa Íslands, 2015a. *Landfræðilegar upplýsingar*. *[Geogrphical information]*. [Online] Available at: <u>http://hagstofa.is/Hagtolur/Land-og-umhverfi/Landfraedilegar-upplysingar</u> [Accessed 19 01 2015].

Hagstofa Íslands, 2015b. *Hitastig og úrkoma. [Temperature and percipitation]*. [Online] Available at: <u>http://hagstofa.is/Hagtolur/Land-og-umhverfi/Hitastig-og-urkoma</u> [Accessed 19 01 2015].

Hagstofa Íslands, 2015c. *Mannfjöldi. [Population]*. [Online] Available at: <u>http://www.hagstofa.is/Hagtolur/Mannfjoldi/Sveitarfelog</u> [Accessed 30 3 2015].

Hagstofa Íslands, 2015d. *Losun lofttegunda*. *[Gas emission]*. [Online] Available at: <u>http://hagstofa.is/Hagtolur/Land-og-umhverfi/Losun-lofttegunda</u> [Accessed 19 01 2015]. Icelandic Meteorological Office, 2015a. *The eruption has come to an end*. [Online] Available at: <u>http://en.vedur.is/about-imo/news/nr/3097</u> [Accessed 10 04 2015].

Icelandic Meterological Office, 2015b. *Veturinn desember 2014 til mars 2015. [The winter December 2014 to March 2015].* [Online] Available at: <u>http://www.vedur.is/um-vi/frettir/nr/3120#veturinn14-15</u> [Accessed 04 05 2015].

Islam, E. u., Yang, X.-e., He, Z.-l. & Mahmood, Q., 2007. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. *Journal of Zhejiang University SCIENCE B*, 8(1), pp. 1-13.

Jarðvísindastofnun Háskólans, 2010. *Eyjafjallajökull 2010*. [Online] Available at: <u>http://jardvis.hi.is/eyjafjallajokull\_2010</u> [Accessed 09 04 2015].

Jarðvísindastofnun Háskólans, 2012. *Grímsvötn*. [Online] Available at: <u>http://jardvis.hi.is/grimsvotn</u> [Accessed 09 04 2015].

Jónsson, G. S., 2003. *Hvernig er ástand neysluvatns á Íslandi?* [What is the condition of *drinking water in Iceland?*]. [Online] Available at: <u>http://visindavefur.is/?id=3449</u> [Accessed 30 3 2015].

Jónsson, I. R. & Árnason, F., 2011. Fiskirannsóknir á vatnasviði Lagarfljóts, Jökulsár á Dal, Fögruhlíðarár og Gilsár 2010. [Fish study in Lagarfljót, Jökulsár á Dal, Fögruhlíðarár og Gilsár 2010], Reykjavík: Landsvirkjun.

Józwiak, M. & Józwiak, M., 2007. The heavy metals in water of select Spitsbergen and Iceland glaciers. *Landform Analysis*, Volume 5, pp. 32-34.

Kabata-Pendias, A., 2011. Chapter 3. Soils and Soil Processes. In: *Trace Elements in Soil and Plants. Fourth Edition.* Boca Raton: Taylor & Francis Group, pp. 37-64.

Keller, N. S. et al., 2014. *Gas and aerosol chemistry of the Holuhraun Plume*. Reykjavík, Jarðfræðafélag Íslands.

Langmann, B., Folch, A., Hensch, M. & Matthias, V., 2011. Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April-May 2010. *Atmospheric Environment,* Volume 48, pp. 1-8.

Nriagu, J. O., 1989. A global assessment of natural sources of atmospheric trace metals. *Nature,* Volume 338, pp. 47-49.

Ragnarsdóttir, K. V. et al., 1994. Ejection of trace metals from volcanoes. *MINERALOGICAL MAGAZINE*, Volume 58A, pp. 752-753.

Rist, S., 1990. Vatns er börf. Reykjavík: Bókaútgáfa menningarsjóðs.

CHALMERS Civil and Environmental Engineering, Master's Thesis 2015:114

Stefánsson, A. et al., 2014. Acid rain caused by Holuhraun eruption. Reykjavík, Jarðfræðafélag Íslands.

The Environment Agency of Iceland, 2015. *Eruption 2014*. [Online] Available at: <u>http://www.ust.is/the-environment-agency-of-iceland/</u> [Accessed 30 3 2015].

The Environmental Agency of Iceland, 1998. (*Draft*) Viðmiðunarmörk fyrir algeng mengunarefni í jarðvegi og seti. [Guidelines for pollutants in soil and sediment], s.l.: Unpublished.

Þórðarson, T., 2003. Mengunarstaða Elliðavatns 2001 - 2002. [Environmental quality of lake Ellidavatn 2001 - 2002], Hveragerði: Háskólasetrið í Hveragerði.

Þórðarson, T., 2009. Mengunarflokkun á Vífilsstaðavatni og efsta hluta Vífilsstaðalækjar. [Environmental quality of lake Vifilsstaðvatn and the upper reaches of Vifilsstadalaekur brook], Garðabær: Heilbrigðiseftirlit Hafnarfjarðar- og Kópavogssvæðis.

Toscano, G., Caristi, C. & Cimino, G., 2008. Sorption of heavy metal from aqueous solution by volcanic ash. *C. R. Chimie*, Volume 11, pp. 765-771.

Umhverfisráðuneytið, 1999. 796/1999 Reglugerð um varnir gegn mengun vatns. [Surface water regulations regardind pollution]. [Online] Available at: <u>http://www.reglugerd.is/interpro/dkm/WebGuard.nsf/key2/796-1999</u> [Accessed 07 04 2015].

Umhverfisráðuneytið, 2001. 536/2001 Reglugerð um neysluvatn. [Drinking water regulations]. [Online] Available at: <u>http://www.reglugerd.is/interpro/dkm/WebGuard.nsf/lookByNumer/5362001?OpenDocumen</u> <u>t</u>

[Accessed 31 03 2015].

Vegagerðin, 1997. Vatnajökull. Gos og hlaup 1996. [Vatnajökull Glacier. Eruption and flood 1996], Reykjavik: Vegagerðin.

Weiner, E. R., 2013. *Applications of Environmental Aquatic Chemistry: A Practical Guide*. 3rd ed. Boca Raton: Taylor & Francis Group.

World Health Organization, 2003. Zinc in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, Geneva: World Health Organization.

## 9 Appendices

#### 9.1 Appendix I – Data on SO<sub>2</sub> concentration

#### Reykjahlíð, Elementary school

| From beginning og eruption 31st of A<br>February 2015 | August 20 | 14 unt | il 1st of |
|-------------------------------------------------------|-----------|--------|-----------|
| Max                                                   | 1697.7    |        |           |
| Min                                                   | -0.1      |        |           |
| Average                                               | 29.9      |        |           |
| Numer of measurements                                 | 3661      |        |           |
| Number equal or higher than $350 \mu g/m3$            | 84        | 3.50   | days      |
| % of measurements=>350                                | 2.29      |        |           |
|                                                       | 109       |        |           |
| Accumulated                                           | 475       |        |           |



#### Reyðarfjörður – Hjallaleyra

| From the begining of the eruption 31st<br>of February 2015 | of Augus | t 2014 | until 1s | st |
|------------------------------------------------------------|----------|--------|----------|----|
| Max                                                        | 1509.3   |        |          |    |
| Min                                                        | -1.8     |        |          |    |
| Average                                                    | 31.6     |        |          |    |
| Numer of measurements                                      | 3601     |        |          |    |
| Number equal or higher than $350 \ \mu g/m3$               | 52       | 2.17   | days     |    |
| % of measurements=>350                                     | 1.44     |        |          |    |
|                                                            | 113      |        |          |    |
| Accumulated                                                | 905      |        |          |    |



| From begining of measuremants until 1st of February 2015 |         |      |      |  |  |  |  |  |  |  |
|----------------------------------------------------------|---------|------|------|--|--|--|--|--|--|--|
| Max                                                      | 3050    |      |      |  |  |  |  |  |  |  |
| Min                                                      | -0.869  |      |      |  |  |  |  |  |  |  |
| Average                                                  | 58.2    |      |      |  |  |  |  |  |  |  |
| Numer of measurements                                    | 2294    |      |      |  |  |  |  |  |  |  |
| Number equal or higher than 350 µg/m3                    | 119     | 4.96 | days |  |  |  |  |  |  |  |
| % of measurements=>350                                   | 5.19    |      |      |  |  |  |  |  |  |  |
| Accumulated                                              | 133 425 |      |      |  |  |  |  |  |  |  |
|                                                          |         |      |      |  |  |  |  |  |  |  |



#### Höfn

#### Reykjavík – Grensás

| From the beginning of the eruption or 21st of February 2015 | n 31st of | August | 2014 until |
|-------------------------------------------------------------|-----------|--------|------------|
| Max                                                         | 823.5     |        |            |
| Min                                                         | -0.7      |        |            |
| Average                                                     | 29.7      |        |            |
| Numer of measurements                                       | 3366      |        |            |
| Number equal or higher than $350 \mu g/m3$                  | 59        | 2.46   | days       |
| % of measurements=>350                                      | 1.75      |        |            |
|                                                             | 100       |        |            |
| Accumulated                                                 | 018       |        |            |



|            | Type of                | Water         |                  |                       | Bacteria         | E.coli    |       |
|------------|------------------------|---------------|------------------|-----------------------|------------------|-----------|-------|
| date       | sample                 | treatment     | Sampling site    | Sampling              | count at         | in<br>100 | pH-   |
|            | WATER 1)               | plant         |                  | reason                | 22 C III<br>1 ml | ml        | value |
| 16-<br>feb | Radiated<br>(UV)       | Seyðisfjarðar | Shellskálinn     | Regular<br>monitoring | 1                | 0         | 7.47  |
| 21-<br>mar | Radiated<br>(UV)       | Seyðisfjarðar | Ránargata 15     | Regular<br>monitoring | 0                | 0         | 7.41  |
| 08-<br>okt | Radiated<br>(UV)       | Seyðisfjarðar | Brimberg         | Regular<br>monitoring | 24               | 0         | 7.12  |
| 25-<br>mar | Radiated<br>(UV) water | Seyðisfjarðar | Samkaup Strax    | Regular<br>monitoring | 1                | 1         | 7.29  |
| 08-<br>apr | Radiated<br>(UV) water | Seyðisfjarðar | Samkaup Strax    | Repetition            | 0                | 0         | 7.2   |
| 03-<br>jul | Radiated<br>(UV) water | Seyðisfjarðar | Brimberg         | Regular<br>monitoring | 4                | 0         | 8.47  |
| 25-<br>nov | Radiated (UV) water    | Seyðisfjarðar | Brimberg         | Total evaluation      | 0                | 0         | 7.4   |
| 16-<br>jan | Radiated<br>water      | Seyðisfjarðar | Samkaup          | Regular monitoring    | 1                | 0         | 7.19  |
| 05-<br>maj | Radiated<br>water      | Seyðisfjarðar | Botnahlíð 33     | Regular<br>monitoring | 0                | 0         | 7.31  |
| 05-<br>aug | Radiated<br>water      | Seyðisfjarðar | Brimberg         | Regular monitoring    | 3                | 0         | 6.7   |
| 04-<br>sep | Radiated<br>water      | Seyðisfjarðar | Brimberg         | Survey                | 4                | 0         | 7.55  |
| 04-<br>sep | Radiated<br>water      | Seyðisfjarðar | Shell skálinn    | Survey                | 11               | 0         | 7.39  |
| 04-<br>sep | Radiated<br>water      | Seyðisfjarðar | HSA Seyðisfirð   | Survey                | 12               | 0         | 7.39  |
| 16-<br>sep | Radiated<br>water      | Seyðisfjarðar | Vatnshreinsistöð | Survey                |                  |           | 7.1   |
| 22-<br>sep | Radiated<br>water      | Seyðisfjarðar | íþróttahús       | Survey                | 0                | 0         | 6.22  |
| 26-<br>sep | Radiated<br>water      | Seyðisfjarðar | bæjarskrifstofa  | Survey                |                  |           | 7     |
| 26-<br>sep | Radiated<br>water      | Seyðisfjarðar | áhaldahús        | Survey                |                  |           | 7.12  |
| 03-<br>okt | Radiated<br>water      | Seyðisfjarðar | íþrótahús        | Survey                |                  |           | 7.15  |
| 04-<br>nov | Radiated<br>water      | Seyðisfjarðar | Dæluskúr         | Regular<br>monitoring | 4                | 0         | 6.5   |
| 04-<br>nov | Radiated<br>water      | Seyðisfjarðar | Áhaldahús        | Survey                | 2                | 0         | 7.05  |
| 02-<br>dec | Radiated<br>water      | Seyðisfjarðar | Íþróttahús       | Other                 |                  |           | 6.43  |
| 08-<br>dec | Radiated<br>water      | seyðisfj      | íþróttahús       | Other                 |                  |           | 7.25  |

## 9.2 Appendix II – Drinking water data for Seyðisfjörður

|           | 27Al     | <b>48</b> Ti     | 51V              | 52Cr             | 55Mn             | 57Fe      | 59Co                                  |
|-----------|----------|------------------|------------------|------------------|------------------|-----------|---------------------------------------|
|           | (KED)    | $(\mathbf{KED})$ | $(\mathbf{KED})$ | $(\mathbf{KED})$ | $(\mathbf{KED})$ | (KED)     | $\frac{(\text{KED})}{\mathbf{V}(-1)}$ |
| G 1 40    | Y (ppb)  | Y (ppb)          | Y (ppb)          | Y (ppb)          | Y (ppb)          | Y (ppb)   | Y (ppb)                               |
| Sample 40 | 6.21     | 0.03             | 0.04             | -0.03            | 0.02             | -0.89     | 0.80                                  |
| Sample 1  | 52.48    | 7.14             | 0.21             | 0.07             | 33.41            | 57.57     | 0.92                                  |
| Sample 2  | 63.84    | 8.52             | 0.21             | 0.05             | 30.80            | 59.98     | 0.91                                  |
| Sample 3  | 78.51    | 9.60             | 0.23             | 0.06             | 29.34            | 79.37     | 0.91                                  |
| Sample 4  | 18.37    | 19.13            | 2.70             | 0.52             | 6.56             | 113.24    | 0.84                                  |
| Sample 5  | 22.25    | 19.38            | 2.78             | 0.48             | 6.43             | 119.73    | 0.83                                  |
| Sample 6  | 21.73    | 19.23            | 2.76             | 0.46             | 6.47             | 118.62    | 0.83                                  |
| Sample 7  | 17.51    | 9.04             | 0.15             | 0.04             | 11.41            | 91.21     | 1.03                                  |
| Sample 8  | 47.02    | 14.67            | 3.60             | 0.33             | 26.85            | 462.03    | 1.14                                  |
| Sample 9  | 50.80    | 15.68            | 3.82             | 0.36             | 29.30            | 475.68    | 1.17                                  |
| Sample 10 | 79.08    | 29.28            | 0.52             | 0.07             | 76.83            | 1 192.99  | 1.00                                  |
| Sample 11 | 281.59   | 65.19            | 1.91             | 0.23             | 123.96           | 4 960.56  | 1.20                                  |
| Sample 12 | 22.08    | 19.49            | 0.25             | 0.01             | 69.34            | 693.04    | 0.96                                  |
| Sample 13 | 21.97    | 15.86            | 0.27             | 0.01             | 69.45            | 471.50    | 1.14                                  |
| Sample 14 | 17.74    | 15.36            | 0.24             | -0.01            | 41.78            | 311.68    | 0.99                                  |
| Sample 15 | 19.99    | 15.75            | 0.25             | 0.25             | 41.19            | 319.33    | 1.01                                  |
| Sample 16 | 6 651.61 | 1 154.47         | 25.40            | 4.63             | 125.30           | 11 096.05 | 3.60                                  |
| Sample 17 | 6 892.41 | 1 272.85         | 25.65            | 5.02             | 170.38           | 11 866.90 | 3.69                                  |
| Sample 18 | 6 802.71 | 1 119.34         | 23.61            | 4.29             | 159.55           | 10 493.61 | 3.43                                  |
| Sample 19 | 235.25   | 31.21            | 1.25             | 0.25             | 72.36            | 794.78    | 0.96                                  |
| Sample 41 | 5.80     | 0.05             | 0.04             | -0.04            | 0.02             | 2.09      | 0.80                                  |
| Sample 20 | 974.34   | 117.45           | 7.40             | 1.14             | 142.06           | 7 985.58  | 1.40                                  |
| Sample 21 | 282.73   | 33.16            | 1.37             | 0.26             | 39.82            | 835.21    | 0.97                                  |
| Sample 22 | 52.66    | 10.42            | 0.76             | 0.20             | 8.02             | 930.81    | 0.86                                  |
| Sample 23 | 55.61    | 9.28             | 0.75             | 0.09             | 7.45             | 913.37    | 0.84                                  |
| Sample 24 | 52.30    | 10.42            | 0.79             | 0.18             | 7.88             | 919.46    | 0.85                                  |
| Sample 25 | 22.53    | 16.20            | 0.37             | -0.01            | 83.97            | 277.87    | 0.85                                  |
| Sample 26 | 1 671.24 | 216.85           | 7.64             | 1.32             | 195.36           | 3 547.35  | 2.07                                  |
| Sample 27 | 18.14    | 16.56            | 0.42             | 0.00             | 96.52            | 265.04    | 0.83                                  |
| Sample 28 | 1 272.84 | 286.39           | 23.30            | 1.24             | 30.22            | 2 264.78  | 1.67                                  |
| Sample 29 | 1 373.83 | 277.83           | 24.25            | 1.14             | 31.42            | 2 314.41  | 1.71                                  |
| Sample 30 | 1 318.10 | 251.39           | 24.23            | 1.17             | 42.35            | 2 224.05  | 1.65                                  |
| Sample 31 | 243.12   | 27.45            | 1.57             | 0.28             | 38.55            | 560.91    | 1.05                                  |
| Sample 32 | 395.80   | 56.57            | 2.18             | 0.20             | 43.52            | 594.67    | 1.04                                  |
| Sample 33 | 302.29   | 39.68            | 1.91             | 0.19             | 47.89            | 584.28    | 1.06                                  |
| Sample 34 | 127.23   | 398.44           | 8.08             | 0.21             | 14.92            | 127.08    | 0.91                                  |
| Sample 35 | 121.82   | 430.68           | 8.82             | 0.36             | 16.95            | 142.09    | 0.87                                  |
| Sample 36 | 146.60   | 484.54           | 9.75             | 0.30             | 18.12            | 158.61    | 0.92                                  |
| Sample 37 | 15.28    | 9.61             | 0.48             | 0.00             | 10.56            | 129.40    | 0.94                                  |

9.3 Appendix III – ICP-MS results for water samples

|           | 27Al<br>(KED) | 48Ti<br>(KED) | 51V<br>(KED) | 52Cr<br>(KED) | 55Mn<br>(KED) | 57Fe<br>(KED) | 59Co<br>(KED) |
|-----------|---------------|---------------|--------------|---------------|---------------|---------------|---------------|
|           | Y (ppb)       | Y (ppb)       | Y (ppb)      | Y (ppb)       | Y (ppb)       | Y (ppb)       | Y (ppb)       |
| Sample 38 | 15.06         | 8.62          | 0.44         | 0.00          | 10.43         | 123.66        | 0.94          |
| Sample 39 | 19.14         | 8.89          | 0.45         | 0.07          | 10.41         | 121.64        | 0.95          |
| Sample 42 | 6.07          | 0.04          | 0.04         | 0.00          | 0.02          | 0.37          | 0.80          |
| Sample 43 | 7.04          | 0.04          | 0.03         | 0.00          | 0.02          | 0.00          | 0.80          |
| Sample 44 | 5.84          | 0.08          | 0.04         | 0.00          | 0.02          | 0.00          | 0.80          |
| Sample 45 | 9.71          | 0.06          | 0.04         | 0.00          | 0.02          | 0.00          | 0.80          |

|           | 60Ni<br>(STD) | 63Cu<br>(STD) | 66Zn<br>(STD) | 111Cd<br>(STD) | 121Sb<br>(KED) | 195Pt<br>(KED) | 208Pb<br>(STD) |
|-----------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|
|           | Y (ppb)       | Y (ppb)       | Y (ppb)       | Y (ppb)        | Y (ppb)        | Y (ppt)        | Y (ppb)        |
| Sample 40 | 0.02          | 0.10          | 1.57          | 0.01           | 0.01           | 0.67           | 0.04           |
| Sample 1  | 0.29          | 0.66          | 2.63          | 0.01           | 0.00           | 0.73           | 0.06           |
| Sample 2  | 0.27          | 0.60          | 2.09          | 0.01           | 0.00           | 0.00           | 0.05           |
| Sample 3  | 0.36          | 0.72          | 3.30          | 0.01           | 0.00           | 0.34           | 0.09           |
| Sample 4  | 0.25          | 0.76          | 1.92          | 0.01           | 0.00           | 0.99           | 0.06           |
| Sample 5  | 0.23          | 0.37          | 1.55          | 0.01           | 0.00           | 1.54           | 0.04           |
| Sample 6  | 0.23          | 0.37          | 1.69          | 0.01           | 0.00           | 0.72           | 0.04           |
| Sample 7  | 0.81          | 0.72          | 2.64          | 0.01           | 0.01           | 0.00           | 0.10           |
| Sample 8  | 0.62          | 1.90          | 64.72         | 0.02           | 0.04           | 0.95           | 0.10           |
| Sample 9  | 0.57          | 1.46          | 50.68         | 0.02           | 0.03           | 0.51           | 0.11           |
| Sample 10 | 0.49          | 0.57          | 4.27          | 0.01           | 0.00           | 1.92           | 0.05           |
| Sample 11 | 0.63          | 0.96          | 5.01          | 0.01           | 0.00           | 1.22           | 0.05           |
| Sample 12 | 0.37          | 0.41          | 4.75          | 0.01           | 0.00           | 0.33           | 0.05           |
| Sample 13 | 0.37          | 0.67          | 1.51          | 0.01           | 0.00           | 0.00           | 0.05           |
| Sample 14 | 0.32          | 0.55          | 5.34          | 0.01           | 0.00           | 1.36           | 0.04           |
| Sample 15 | 0.31          | 0.56          | 6.53          | 0.01           | 0.00           | 0.77           | 0.05           |
| Sample 16 | 4.30          | 16.64         | 12.02         | 0.03           | 0.00           | 0.81           | 0.14           |
| Sample 17 | 4.57          | 17.66         | 13.51         | 0.02           | 0.00           | 0.49           | 0.14           |
| Sample 18 | 4.13          | 16.13         | 13.50         | 0.02           | 0.00           | 1.03           | 0.15           |
| Sample 19 | 0.64          | 1.23          | 18.32         | 0.04           | 0.00           | 0.47           | 0.15           |
| Sample 41 | 0.02          | 0.09          | 1.48          | 0.00           | 0.00           | 0.37           | 0.04           |
| Sample 20 | 2.40          | 5.94          | 47.30         | 0.17           | 0.00           | 0.00           | 0.44           |
| Sample 21 | 0.92          | 1.41          | 40.40         | 0.08           | 0.00           | 0.27           | 0.20           |
| Sample 22 | 1.18          | 1.28          | 11.93         | 0.01           | 0.05           | 0.00           | 0.13           |
| Sample 23 | 0.50          | 0.85          | 6.28          | 0.01           | 0.00           | 0.00           | 0.09           |
| Sample 24 | 0.85          | 1.17          | 7.82          | 0.01           | 0.03           | 0.00           | 0.11           |
| Sample 25 | 0.22          | 0.28          | 1.63          | 0.01           | 0.00           | 0.00           | 0.03           |
| Sample 26 | 2.11          | 3.82          | 9.90          | 0.04           | 0.00           | 0.01           | 0.21           |
| Sample 27 | 0.24          | 0.29          | 1.55          | 0.01           | 0.00           | 1.19           | 0.05           |
| Sample 28 | 1.43          | 4.60          | 6.33          | 0.01           | 0.02           | 0.00           | 0.09           |
| Sample 29 | 1.59          | 4.84          | 7.00          | 0.01           | 0.03           | 1.79           | 0.09           |

CHALMERS Civil and Environmental Engineering, Master's Thesis 2015:114

|           | 60Ni<br>(STD) | 63Cu<br>(STD) | 66Zn<br>(STD) | 111Cd<br>(STD) | 121Sb<br>(KED) | 195Pt<br>(KED) | 208Pb<br>(STD) |
|-----------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|
|           | Y (ppb)       | Y (ppb)       | Y (ppb)       | Y (ppb)        | Y (ppb)        | Y (ppt)        | Y (ppb)        |
| Sample 30 | 1.45          | 4.94          | 4.03          | 0.02           | 0.01           | 2.44           | 0.10           |
| Sample 31 | 0.41          | 1.42          | 2.60          | 0.01           | 0.00           | 0.00           | 0.07           |
| Sample 32 | 0.41          | 1.43          | 2.73          | 0.01           | 0.00           | 0.29           | 0.08           |
| Sample 33 | 0.46          | 1.43          | 4.63          | 0.01           | 0.00           | 0.74           | 0.07           |
| Sample 34 | 2.16          | 18.28         | 3.64          | 0.02           | 0.28           | 0.00           | 0.05           |
| Sample 35 | 2.05          | 28.35         | 1.45          | 0.02           | 0.16           | 0.44           | 0.04           |
| Sample 36 | 2.08          | 37.42         | 2.33          | 0.04           | 0.18           | 0.00           | 0.03           |
| Sample 37 | 0.45          | 3.80          | 1 579.61      | 0.04           | 0.00           | 0.00           | 0.26           |
| Sample 38 | 0.52          | 4.23          | 1 840.25      | 0.03           | 0.00           | 0.57           | 0.29           |
| Sample 39 | 0.44          | 3.40          | 1 548.81      | 0.03           | 0.00           | 0.59           | 0.29           |
| Sample 42 | 0.05          | 2.33          | 5.80          | 0.01           | 0.00           | 0.30           | 0.05           |
| Sample 43 | 0.03          | 1.83          | 4.46          | 0.01           | 0.00           | 0.63           | 0.03           |
| Sample 44 | 0.02          | 1.76          | 4.53          | 0.00           | 0.00           | 0.00           | 0.03           |
| Sample 45 | 0.04          | 2.48          | 7.14          | 0.01           | 0.00           | 0.56           | 0.03           |

|           | Cr Ni Cu Zn<br>(KFD) (STD) (STD) (STD) |         | Zn<br>(STD) | Cd<br>(STD) | Pb<br>(STD) | Al (STD) |           |
|-----------|----------------------------------------|---------|-------------|-------------|-------------|----------|-----------|
|           | Y (ppb)                                | Y (ppb) | Y (ppb)     | Y (ppb)     | Y (ppb)     | Y (ppb)  | Y (ppb)   |
| Sample 1  | 58.16                                  | 120.57  | 77.07       | 53.80       | 0.07        | 1.21     |           |
| Sample 2  | 28.65                                  | 90.36   | 32.07       | 22.86       | 0.01        | 0.42     | 14 190.69 |
| Sample 3  | 137.13                                 | 469.09  | 184.79      | 152.02      | 0.15        | 4.45     | 69 584.80 |
| Sample 4  | 18.50                                  | 38.21   | 33.13       | 26.94       | 0.08        | 2.97     | 23 485.75 |
| Sample 5  | 13.79                                  | 17.51   | 22.38       | 30.18       | 0.09        | 3.98     | 21 306.60 |
| Sample 6  | 0.00                                   | 0.00    | 0.00        | 0.00        | 0.00        | 0.00     | 3.57      |
| Sample 7  | 0.00                                   | 0.00    | 0.00        | 0.00        | 0.00        | 0.00     | 0.00      |
| Sample 8  | 16.84                                  | 26.87   | 36.87       | 56.60       | 0.09        | 4.42     | 19 559.16 |
| Sample 9  | 57.32                                  | 62.61   | 89.49       | 68.21       | 0.15        | 1.52     | 53 835.35 |
| Sample 10 | 15.54                                  | 12.88   | 26.49       | 27.78       | 0.03        | 0.44     | 18 222.98 |
| Sample 11 | 3.88                                   | 6.28    | 25.97       | 14.30       | 0.08        | 0.93     | 2 480.68  |
| Sample 12 | 35.42                                  | 44.51   | 95.69       | 63.04       | 0.11        | 2.82     | 41 728.97 |
| Sample 13 | 5.98                                   | 9.49    | 31.70       | 24.95       | 0.04        | 0.95     | 9 985.58  |
| Sample 14 | 4.09                                   | 10.11   | 20.40       | 19.90       | 0.05        | 0.60     | 7 074.24  |
| Sample 15 | 14.77                                  | 9.97    | 28.72       | 23.73       | 0.05        | 0.53     | 21 984.12 |
| Sample 16 | 8.08                                   | 12.44   | 30.89       | 23.73       | 0.02        | 0.38     | 13 682.38 |
| Sample 17 | 8.57                                   | 12.91   | 29.42       | 31.63       | 0.00        | 0.48     | 12 064.44 |
| Sample 18 | 8.97                                   | 14.44   | 35.49       | 31.50       | 0.02        | 0.50     | 16 064.60 |
| Sample 19 | 11.76                                  | 18.40   | 27.83       | 24.01       | 0.11        | 1.83     | 19 151.44 |
| Sample 20 | 8.38                                   | 28.40   | 24.51       | 23.53       | 0.06        | 1.31     | 20 254.56 |
| Sample 21 | 0.00                                   | 0.00    | 0.00        | 0.00        | 0.00        | 0.00     | 0.00      |
| Sample 22 | 6.47                                   | 7.28    | 19.93       | 25.35       | 0.04        | 2.93     | 12 337.50 |
| Sample 23 | 8.83                                   | 8.54    | 27.15       | 42.13       | 0.08        | 4.13     | 13 356.47 |
| Sample 24 | 22.97                                  | 24.28   | 63.10       | 89.94       | 0.16        | 15.56    | 34 949.54 |
| Sample 25 | 8.81                                   | 8.56    | 28.20       | 49.93       | 0.11        | 2.86     | 16 346.45 |
| Sample 26 | 6.66                                   | 8.12    | 40.98       | 20.09       | 0.03        | 0.47     | 14 921.80 |
| Sample 27 | 12.35                                  | 11.02   | 33.72       | 39.58       | 0.06        | 0.96     | 20 020.29 |
| Sample 28 | 5.20                                   | 6.89    | 26.75       | 20.72       | 0.02        | 0.55     | 11 844.65 |
| Sample 29 | 6.32                                   | 8.19    | 31.00       | 28.59       | 0.03        | 0.73     | 12 551.88 |
| Sample 30 | 7.50                                   | 10.21   | 37.69       | 33.84       | 0.05        | 0.76     | 15 282.72 |
| Sample 31 | 10.86                                  | 8.27    | 29.38       | 16.97       | 0.04        | 1.13     | 16 723.67 |
| Sample 32 | 100.39                                 | 92.07   | 292.24      | 196.46      | 0.62        | 11.36    | 88 285.97 |
| Sample 33 | 7.53                                   | 9.10    | 24.81       | 18.83       | 0.02        | 1.22     | 14 393.90 |
| Sample 34 | 8.01                                   | 9.47    | 23.24       | 17.99       | 0.03        | 0.49     | 10 607.32 |
| Sample 35 | 7.85                                   | 8.25    | 18.50       | 13.71       | 0.02        | 0.45     | 10 435.31 |
| Sample 36 | 9.10                                   | 7.69    | 15.07       | 10.61       | 0.01        | 0.30     | 10 055.53 |

9.4 Appendix IV – ICP-MS results for soil samples

|           | Ti (KED)              | V<br>(KED) | Mn<br>(KED) | Fe (KED)       | Co<br>(KED) | Sn<br>(STD) | Sb<br>(KED) |
|-----------|-----------------------|------------|-------------|----------------|-------------|-------------|-------------|
|           | Y (ppb)               | Y (ppb)    | Y (ppb)     | Y (ppb)        | Y (ppb)     | Y (ppb)     | Y (ppb)     |
| Sample 1  |                       |            |             |                |             |             |             |
| Sample 2  | 742.96                | 35.43      | 326.77      | 26 896.67      | 19.32       | 0.34        | 0.03        |
| Sample 3  | 2 955.18              | 164.37     | 2 001.31    | 144 378.90     | 114.96      | 1.33        | 0.02        |
| Sample 4  | 2 416.30              | 65.56      | 408.51      | 29 837.64      | 14.29       | 1.04        | 0.03        |
| Sample 5  | 382.05                | 50.31      | 462.49      | 32 778.94      | 12.92       | 1.26        | 0.01        |
| Sample 6  | 0.26                  | 0.01       | 0.13        | 10.54          | 0.02        | 0.04        | 0.00        |
| Sample 7  | 0.00                  | 0.00       | 0.00        | 0.88           | 0.01        | 0.04        | 0.00        |
| Sample 8  | 1 522.10              | 66.91      | 189.25      | 19 459.41      | 10.26       | 1.33        | 0.01        |
| Sample 9  | 265.63                | 275.26     | 690.12      | 60 817.99      | 31.69       | 0.13        | 0.00        |
| Sample 10 | 1 621.28              | 59.22      | 484.90      | 45 588.49      | 10.64       | 0.35        | 0.00        |
| Sample 11 | 484.13                | 44.78      | 1 325.31    | 30 171.53      | 11.09       | 0.70        | 0.03        |
| Sample 12 | 370.02                | 73.60      | 866.24      | 62 713.20      | 27.72       | 0.09        | 0.00        |
| Sample 13 | 1 390.47              | 62.85      | 1 621.20    | 42 290.14      | 26.18       | 0.98        | 0.01        |
| Sample 14 | 929.23                | 46.05      | 2 929.49    | 41 365.92      | 42.10       | 0.54        | 0.01        |
| Sample 15 | 320.70                | 47.94      | 468.14      | 28 203.39      | 11.56       | 0.50        | 0.00        |
| Sample 16 | 1 228.24              | 66.03      | 219.67      | 23 027.46      | 8.91        | 0.89        | 0.01        |
| Sample 17 | 1 547.25              | 91.27      | 245.86      | 25 410.49      | 9.55        | 1.02        | 0.00        |
| Sample 18 | 905.36                | 68.91      | 253.14      | 26 299.80      | 10.07       | 0.89        | 0.00        |
| Sample 19 | 2 055.56              | 65.21      | 465.48      | 27 213.73      | 12.99       | 0.85        | 0.00        |
| Sample 20 | 971.74                | 49.26      | 355.70      | 27 186.61      | 14.90       | 0.69        | 0.00        |
| Sample 21 | 0.12                  | 0.00       | 0.02        | 2.57           | 0.06        | 0.04        | 0.00        |
| Sample 22 | 1 690.95              | 58.77      | 250.68      | 17 936.46      | 6.37        | 1.10        | 0.01        |
| Sample 23 | 1 596.30              | 60.54      | 432.31      | 21 373.94      | 8.11        | 0.72        | 0.00        |
| Sample 24 | 1 711.49              | 147.84     | 831.43      | 58 486.09      | 20.56       | 1.69        | 0.00        |
| Sample 25 | 1 940.16              | 69.28      | 308.96      | 25 069.92      | 8.86        | 1.31        | 0.01        |
| Sample 26 | 1 533.52              | 58.66      | 166.73      | 15 886.35      | 7.37        | 0.88        | 0.00        |
| Sample 27 | 561.40                | 61.44      | 455.64      | 29 152.98      | 11.15       | 0.09        | 0.00        |
| Sample 28 | 1 778.69              | 58.80      | 250.87      | 19 516.30      | 6.73        | 0.95        | 0.02        |
| Sample 29 | 1 972.25              | 70.43      | 265.21      | 20 915.03      | 6.97        | 0.82        | 0.00        |
| Sample 30 | 1 121.28              | 60.33      | 306.68      | 23 612.03      | 8.20        | 0.22        | 0.00        |
| Sample 31 | 2 335.14              | 70.23      | 301.57      | 24 503.32      | 9.00        | 1.09        | 0.01        |
| Sample 32 | 15 099.40             | 514.78     | 2 971.35    | 215 319.40     | 84.26       | 4.00        | 0.01        |
| Sample 33 | 787.91                | 52.82      | 243.11      | 22 082.71 8.19 |             | 0.13        | 0.00        |
| Sample 34 | 1 863.39 47.96 221.13 |            | 221.13      | 17 639.77 6.72 |             | 0.76        | 0.01        |
| Sample 35 | 1 600.67              | 41.50      | 202.06      | 15 699.41      | 6.14        | 0.75        | 0.00        |
| Sample 36 | 1 095.96              | 33.31      | 171.83      | 13 203.26      | 5.44        | 0.64        | 0.01        |

| Egilsstaðir airport, station 4271 year 2015 |     |    |           |           |           |          |                |            |            |             |           |  |
|---------------------------------------------|-----|----|-----------|-----------|-----------|----------|----------------|------------|------------|-------------|-----------|--|
| Month                                       | day | hr | temp      | max       | min       | hum.     | wind<br>dir.   | wind       | max        | max<br>gust | perc.     |  |
|                                             |     |    | <u>°C</u> | <u>°C</u> | <u>°C</u> | <u>%</u> | <u>degrees</u> | <u>m/s</u> | <u>m/s</u> | <u>m/s</u>  | <u>mm</u> |  |
| 2                                           | 2   | 1  | -6.8      | -6.7      | -7.0      | 93       | 146            | 0.1        | 1.4        | 2.2         | 0.0       |  |
| 2                                           | 2   | 2  | -6.6      | -6.6      | -6.9      | 94       | 121            | 0.2        | 0.8        | 1.2         | 0.0       |  |
| 2                                           | 2   | 3  | -5.5      | -5.3      | -6.6      | 94       | 356            | 1.1        | 1.1        | 3.1         | 0.3       |  |
| 2                                           | 2   | 4  | -4.4      | -4.4      | -5.7      | 96       | 16             | 5.7        | 5.7        | 7.6         | 0.1       |  |
| 2                                           | 2   | 5  | -3.5      | -3.5      | -4.6      | 96       | 27             | 4.5        | 5.0        | 8.5         | 0.0       |  |
| 2                                           | 2   | 6  | -3.9      | -3.4      | -4.2      | 96       | 5              | 9.8        | 10.8       | 13.2        | 0.0       |  |
| 2                                           | 2   | 7  | -4.2      | -3.9      | -4.3      | 96       | 8              | 8.3        | 10.2       | 12.5        | 0.0       |  |
| 2                                           | 2   | 8  | -4.9      | -4.2      | -4.9      | 95       | 8              | 5.1        | 9.9        | 11.5        | 0.0       |  |
| 2                                           | 2   | 9  | -5.0      | -4.8      | -5.2      | 95       | 12             | 5.7        | 7.1        | 8.9         | 0.0       |  |
| 2                                           | 2   | 10 | -4.8      | -4.5      | -5.2      | 79       | 338            | 6.0        | 8.0        | 9.6         | 0.0       |  |
| 2                                           | 2   | 11 | -5.4      | -4.4      | -5.4      | 70       | 331            | 3.9        | 6.5        | 8.1         | 0.0       |  |
| 2                                           | 2   | 12 | -5.0      | -4.4      | -5.4      | 63       | 6              | 1.6        | 5.5        | 7.3         | 0.0       |  |
| 2                                           | 2   | 13 | -5.1      | -4.6      | -5.4      | 69       | 12             | 3.1        | 5.2        | 10.9        | 0.0       |  |
| 2                                           | 2   | 14 | -5.3      | -5.0      | -5.8      | 82       | 1              | 8.2        | 9.3        | 11.6        | 0.0       |  |
| 2                                           | 2   | 15 | -5.9      | -5.3      | -6.4      | 69       | 38             | 5.5        | 9.5        | 12.2        | 0.0       |  |
| 2                                           | 2   | 16 | -7.1      | -5.8      | -7.1      | 67       | 330            | 9.2        | 9.2        | 12.2        | 0.0       |  |
| 2                                           | 2   | 17 | -7.3      | -7.1      | -7.5      | 68       | 342            | 10.5       | 10.5       | 13.5        | 0.0       |  |
| 2                                           | 2   | 18 | -7.3      | -7.2      | -7.7      | 64       | 7              | 4.5        | 11.7       | 14.7        | 0.0       |  |
| 2                                           | 2   | 19 | -7.2      | -7.1      | -7.4      | 68       | 328            | 5.8        | 7.4        | 10.1        | 0.0       |  |
| 2                                           | 2   | 20 | -7.2      | -7.0      | -7.4      | 70       | 331            | 3.0        | 6.1        | 9.0         | 0.0       |  |
| 2                                           | 2   | 21 | -9.3      | -6.8      | -9.3      | 71       | 70             | 1.8        | 3.8        | 5.5         | 0.0       |  |
| 2                                           | 2   | 22 | -8.7      | -8.1      | -9.6      | 72       | 106            | 2.7        | 2.7        | 4.2         | 0.0       |  |
| 2                                           | 2   | 23 | -7.8      | -7.2      | -9.0      | 68       | 162            | 1.8        | 2.4        | 3.9         | 0.0       |  |
| 2                                           | 2   | 24 | -5.2      | -5.1      | -8.1      | 69       | 304            | 8.0        | 8.0        | 12.0        | 0.0       |  |
| 2                                           | 3   | 1  | -5.0      | -4.8      | -5.3      | 68       | 300            | 7.6        | 8.5        | 12.5        | 0.0       |  |
| 2                                           | 3   | 2  | -4.6      | -4.5      | -5.0      | 68       | 301            | 9.3        | 9.3        | 12.4        | 0.0       |  |
| 2                                           | 3   | 3  | -4.6      | -4.3      | -4.7      | 72       | 296            | 7.6        | 8.1        | 13.1        | 0.0       |  |
| 2                                           | 3   | 4  | -4.8      | -4.3      | -4.9      | 67       | 220            | 2.2        | 8.1        | 12.1        | 0.0       |  |
| 2                                           | 3   | 5  | -5.2      | -4.7      | -5.3      | 69       | 180            | 3.8        | 3.8        | 6.2         | 0.0       |  |
| 2                                           | 3   | 6  | -5.7      | -4.7      | -5.8      | 71       | 187            | 4.7        | 4.7        | 6.8         | 0.0       |  |
| 2                                           | 3   | 7  | -5.8      | -5.7      | -6.3      | 71       | 188            | 4.9        | 4.9        | 6.4         | 0.0       |  |
| 2                                           | 3   | 8  | -5.8      | -5.4      | -5.9      | 69       | 184            | 4.5        | 5.2        | 6.6         | 0.0       |  |
| 2                                           | 3   | 9  | -5.6      | -5.6      | -5.9      | 69       | 181            | 4.5        | 4.6        | 6.4         | 0.0       |  |
| 2                                           | 3   | 10 | -5.7      | -5.5      | -6.0      | 73       | 182            | 3.5        | 5.0        | 6.6         | 0.0       |  |
| 2                                           | 3   | 11 | -5.6      | -5.1      | -5.8      | 72       | 168            | 3.2        | 4.0        | 5.4         | 0.0       |  |
| 2                                           | 3   | 12 | -4.9      | -4.8      | -5.6      | 65       | 165            | 2.5        | 3.3        | 4.5         | 0.0       |  |
| 2                                           | 3   | 13 | -4.8      | -4.1      | -5.0      | 65       | 196            | 1.8        | 3.8        | 4.9         | 0.0       |  |
| 2                                           | 3   | 14 | -4.1      | -3.2      | -4.9      | 68       | 228            | 3.5        | 3.5        | 4.6         | 0.0       |  |

## 9.5 Appendix V – Weather data for Egilsstaðir

| Egilsstaðir airport, station 4271 year 2015 |     |    |           |           |           |          |                |            |            |             |           |
|---------------------------------------------|-----|----|-----------|-----------|-----------|----------|----------------|------------|------------|-------------|-----------|
| Month                                       | day | hr | temp      | max       | min       | hum.     | wind<br>dir.   | wind       | max        | max<br>gust | perc.     |
|                                             |     |    | <u>°C</u> | <u>°C</u> | <u>°C</u> | <u>%</u> | <u>degrees</u> | <u>m/s</u> | <u>m/s</u> | <u>m/s</u>  | <u>mm</u> |
| 2                                           | 3   | 15 | -2.9      | -2.9      | -4.1      | 62       | 157            | 0.7        | 3.1        | 3.9         | 0.0       |
| 2                                           | 3   | 16 | -3.0      | -2.8      | -3.8      | 60       | 210            | 1.3        | 1.5        | 2.6         | 0.0       |
| 2                                           | 3   | 17 | -5.7      | -3.0      | -6.6      | 77       | 224            | 0.6        | 1.9        | 3.0         | 0.0       |
| 2                                           | 3   | 18 | -4.5      | -4.1      | -5.9      | 69       | 194            | 2.4        | 2.4        | 2.9         | 0.0       |
| 2                                           | 3   | 19 | -3.7      | -3.0      | -4.5      | 72       | 190            | 1.5        | 2.7        | 3.8         | 0.0       |
| 2                                           | 3   | 20 | -2.4      | -2.2      | -3.7      | 69       | 180            | 1.6        | 1.8        | 3.0         | 0.0       |
| 2                                           | 3   | 21 | -1.2      | -0.9      | -2.6      | 67       | 223            | 2.0        | 2.2        | 3.0         | 0.0       |
| 2                                           | 3   | 22 | -1.5      | -1.2      | -2.5      | 72       | 205            | 2.4        | 2.8        | 3.8         | 0.0       |
| 2                                           | 3   | 23 | -1.1      | -0.5      | -3.1      | 72       | 166            | 2.2        | 3.5        | 3.9         | 0.0       |
| 2                                           | 3   | 24 | 0.5       | 1.1       | -3.1      | 63       | 161            | 3.2        | 3.2        | 4.7         | 0.0       |
| 2                                           | 4   | 1  | 2.3       | 3.0       | -0.6      | 61       | 194            | 3.2        | 3.2        | 5.2         | 0.0       |
| 2                                           | 4   | 2  | 2.2       | 3.1       | 0.4       | 60       | 180            | 3.6        | 4.1        | 5.8         | 0.0       |
| 2                                           | 4   | 3  | 3.7       | 4.8       | 1.0       | 52       | 202            | 5.2        | 5.7        | 7.9         | 0.0       |
| 2                                           | 4   | 4  | 4.0       | 4.7       | 1.7       | 60       | 213            | 7.4        | 7.4        | 11.5        | 0.0       |
| 2                                           | 4   | 5  | 5.1       | 5.6       | 4.0       | 58       | 193            | 6.7        | 8.2        | 12.7        | 0.0       |
| 2                                           | 4   | 6  | 3.0       | 6.2       | 3.0       | 71       | 196            | 5.3        | 6.2        | 9.8         | 0.0       |
| 2                                           | 4   | 7  | 4.3       | 4.5       | 3.0       | 64       | 256            | 11.3       | 11.3       | 15.8        | 0.0       |
| 2                                           | 4   | 8  | 2.2       | 4.3       | 1.7       | 61       | 248            | 9.7        | 10.5       | 12.8        | 0.0       |
| 2                                           | 4   | 9  | 2.8       | 3.1       | -0.1      | 57       | 184            | 8.0        | 11.9       | 15.0        | 0.0       |
| 2                                           | 4   | 10 | 0.3       | 2.8       | 0.3       | 67       | 214            | 7.7        | 11.3       | 14.6        | 0.0       |
| 2                                           | 4   | 11 | 2.3       | 2.7       | 0.3       | 61       | 213            | 7.1        | 7.1        | 12.0        | 0.0       |
| 2                                           | 4   | 12 | 3.7       | 3.8       | 1.0       | 55       | 204            | 7.1        | 14.3       | 17.3        | 0.0       |
| 2                                           | 4   | 13 | 4.0       | 4.3       | 3.0       | 54       | 246            | 18.0       | 18.0       | 22.3        | 0.0       |
| 2                                           | 4   | 14 | 3.2       | 4.5       | 2.1       | 59       | 245            | 8.9        | 15.9       | 20.4        | 0.0       |
| 2                                           | 4   | 15 | 3.8       | 3.9       | 1.8       | 55       | 210            | 3.5        | 6.7        | 9.3         | 0.0       |
| 2                                           | 4   | 16 | 3.4       | 6.2       | 3.3       | 60       | 219            | 7.8        | 8.5        | 11.5        | 0.0       |
| 2                                           | 4   | 17 | 6.8       | 6.9       | 3.0       | 55       | 185            | 4.7        | 7.3        | 10.4        | 0.0       |
| 2                                           | 4   | 18 | 5.2       | 7.0       | 4.8       | 63       | 212            | 5.0        | 10.5       | 13.8        | 0.0       |
| 2                                           | 4   | 19 | 5.8       | 7.2       | 4.7       | 62       | 227            | 11.3       | 11.3       | 15.5        | 0.0       |
| 2                                           | 4   | 20 | 7.8       | 7.8       | 5.0       | 58       | 189            | 5.6        | 12.2       | 14.9        | 0.0       |
| 2                                           | 4   | 21 | 6.0       | 8.0       | 4.8       | 63       | 252            | 7.3        | 8.9        | 10.4        | 0.0       |
| 2                                           | 4   | 22 | 6.0       | 7.1       | 4.7       | 64       | 233            | 2.0        | 5.8        | 8.5         | 0.0       |
| 2                                           | 4   | 23 | 5.9       | 8.6       | 5.0       | 54       | 175            | 2.8        | 8.0        | 13.8        | 0.0       |
| 2                                           | 4   | 24 | 4.8       | 7.6       | 4.0       | 59       | 127            | 3.0        | 4.2        | 6.6         | 0.0       |
| 2                                           | 5   | 1  | 3.5       | 6.9       | 3.5       | 67       | 241            | 2.3        | 3.1        | 4.9         | 0.0       |
| 2                                           | 5   | 2  | 4.5       | 10.0      | 2.8       | 62       | 106            | 1.3        | 7.1        | 14.0        | 0.0       |
| 2                                           | 5   | 3  | 7.8       | 9.7       | 4.1       | 53       | 203            | 6.8        | 7.3        | 13.6        | 0.0       |
| 2                                           | 5   | 4  | 8.4       | 9.9       | 7.1       | 55       | 192            | 8.0        | 10.1       | 19.7        | 0.0       |
| 2                                           | 5   | 5  | 7.8       | 10.1      | 6.1       | 56       | 220            | 9.4        | 9.4        | 17.6        | 0.0       |
| 2                                           | 5   | 6  | 6.3       | 10.0      | 6.3       | 62       | 225            | 8.6        | 9.7        | 14.9        | 0.0       |

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2015:114

| Egilsstaðir airport, station 4271 year 2015 |     |    |           |           |           |          |                |            |            |             |       |  |
|---------------------------------------------|-----|----|-----------|-----------|-----------|----------|----------------|------------|------------|-------------|-------|--|
| Month                                       | day | hr | temp      | max       | min       | hum.     | wind<br>dir.   | wind       | max        | max<br>gust | perc. |  |
|                                             |     |    | <u>°C</u> | <u>°C</u> | <u>°C</u> | <u>%</u> | <u>degrees</u> | <u>m/s</u> | <u>m/s</u> | <u>m/s</u>  | mm    |  |
| 2                                           | 5   | 7  | 7.1       | 8.7       | 5.8       | 60       | 154            | 1.4        | 8.0        | 12.7        | 0.0   |  |
| 2                                           | 5   | 8  | 5.1       | 8.6       | 5.1       | 66       | 213            | 8.1        | 8.1        | 12.9        | 0.0   |  |
| 2                                           | 5   | 9  | 6.7       | 7.4       | 3.7       | 60       | 216            | 2.6        | 6.1        | 13.4        | 0.0   |  |
| 2                                           | 5   | 10 | 6.8       | 8.5       | 5.8       | 55       | 194            | 1.9        | 4.5        | 10.0        | 0.0   |  |
| 2                                           | 5   | 11 | 6.0       | 8.8       | 4.3       | 60       | 252            | 8.3        | 8.3        | 10.7        | 0.0   |  |
| 2                                           | 5   | 12 | 4.8       | 6.1       | 4.2       | 64       | 159            | 2.8        | 7.0        | 8.3         | 0.0   |  |
| 2                                           | 5   | 13 | 4.4       | 6.7       | 3.8       | 62       | 209            | 1.8        | 3.0        | 4.1         | 0.0   |  |
| 2                                           | 5   | 14 | 6.4       | 6.7       | 3.5       | 50       | 133            | 2.2        | 2.8        | 4.3         | 0.0   |  |
| 2                                           | 5   | 15 | 5.1       | 7.3       | 5.1       | 57       | 132            | 1.9        | 5.2        | 7.6         | 0.0   |  |
| 2                                           | 5   | 16 | 4.8       | 8.1       | 4.6       | 58       | 218            | 3.4        | 5.0        | 7.7         | 0.0   |  |
| 2                                           | 5   | 17 | 4.8       | 7.0       | 4.4       | 59       | 160            | 2.1        | 3.6        | 5.0         | 0.0   |  |
| 2                                           | 5   | 18 | 4.1       | 6.6       | 3.1       | 65       | 158            | 2.2        | 4.2        | 5.8         | 0.0   |  |
| 2                                           | 5   | 19 | 3.7       | 4.8       | 2.6       | 68       | 210            | 2.9        | 4.0        | 5.1         | 0.0   |  |
| 2                                           | 5   | 20 | 2.4       | 3.9       | 2.2       | 73       | 210            | 2.5        | 3.7        | 4.6         | 0.0   |  |
| 2                                           | 5   | 21 | 2.9       | 3.0       | 1.6       | 72       | 149            | 2.2        | 2.6        | 3.5         | 0.0   |  |
| 2                                           | 5   | 22 | 1.7       | 2.9       | 1.5       | 77       | 335            | 0.5        | 1.9        | 2.9         | 0.0   |  |
| 2                                           | 5   | 23 | 4.3       | 4.4       | 1.4       | 60       | 141            | 1.8        | 2.8        | 3.8         | 0.0   |  |
| 2                                           | 5   | 24 | 6.7       | 7.7       | 4.3       | 50       | 241            | 7.5        | 10.5       | 12.9        | 0.0   |  |
| 2                                           | 6   | 1  | 8.4       | 8.4       | 5.9       | 49       | 219            | 8.8        | 10.2       | 13.8        | 0.0   |  |
| 2                                           | 6   | 2  | 7.2       | 8.7       | 5.3       | 53       | 206            | 2.2        | 7.0        | 10.7        | 0.0   |  |
| 2                                           | 6   | 3  | 6.1       | 8.1       | 5.2       | 59       | 183            | 5.3        | 5.8        | 9.9         | 0.0   |  |
| 2                                           | 6   | 4  | 5.4       | 6.9       | 3.5       | 67       | 182            | 6.2        | 6.9        | 9.3         | 0.0   |  |
| 2                                           | 6   | 5  | 4.6       | 6.6       | 4.4       | 71       | 180            | 4.8        | 8.2        | 13.4        | 0.0   |  |
| 2                                           | 6   | 6  | 5.0       | 5.7       | 4.2       | 72       | 224            | 3.9        | 7.0        | 9.4         | 0.0   |  |
| 2                                           | 6   | 7  | 4.9       | 5.9       | 3.5       | 73       | 187            | 5.4        | 7.8        | 10.4        | 0.0   |  |
| 2                                           | 6   | 8  | 4.2       | 5.3       | 3.6       | 72       | 196            | 5.9        | 5.9        | 9.3         | 0.0   |  |
| 2                                           | 6   | 9  | 5.1       | 5.4       | 3.9       | 71       | 206            | 7.6        | 7.6        | 13.0        | 0.0   |  |
| 2                                           | 6   | 10 | 5.0       | 6.7       | 4.2       | 70       | 188            | 7.2        | 9.8        | 14.6        | 0.0   |  |
| 2                                           | 6   | 11 | 5.0       | 6.1       | 4.5       | 74       | 177            | 6.5        | 7.7        | 10.8        | 0.0   |  |
| 2                                           | 6   | 12 | 5.8       | 6.6       | 4.4       | 67       | 217            | 8.4        | 8.4        | 12.7        | 0.0   |  |
| 2                                           | 6   | 13 | 6.3       | 6.9       | 5.1       | 67       | 195            | 9.5        | 9.9        | 14.9        | 0.0   |  |
| 2                                           | 6   | 14 | 4.6       | 6.4       | 4.1       | 63       | 240            | 14.7       | 14.9       | 22.7        | 0.0   |  |
| 2                                           | 6   | 15 | 3.9       | 4.8       | 3.4       | 62       | 179            | 3.9        | 11.6       | 17.8        | 0.0   |  |
| 2                                           | 6   | 16 | 2.6       | 3.9       | 2.4       | 65       | 257            | 5.3        | 7.6        | 11.6        | 0.0   |  |
| 2                                           | 6   | 17 | 0.8       | 2.8       | 0.5       | 63       | 219            | 7.9        | 7.9        | 11.6        | 0.0   |  |
| 2                                           | 6   | 18 | 0.0       | 1.4       | -0.1      | 65       | 219            | 10.6       | 11.4       | 15.6        | 0.0   |  |
| 2                                           | 6   | 19 | 0.2       | 0.7       | -0.1      | 65       | 239            | 14.1       | 14.1       | 19.3        | 0.0   |  |
| 2                                           | 6   | 20 | 0.4       | 0.5       | -0.3      | 61       | 243            | 12.9       | 13.5       | 18.4        | 0.0   |  |
| 2                                           | 6   | 21 | 0.4       | 0.5       | -0.4      | 53       | 259            | 16.4       | 16.4       | 22.9        | 0.0   |  |
| 2                                           | 6   | 22 | 0.3       | 0.5       | -0.1      | 54       | 255            | 14.2       | 16.0       | 23.1        | 0.0   |  |

| Egilsstaðir airport, station 4271 year 2015 |     |    |           |           |           |          |                |            |            |             |           |  |
|---------------------------------------------|-----|----|-----------|-----------|-----------|----------|----------------|------------|------------|-------------|-----------|--|
| Month                                       | day | hr | temp      | max       | min       | hum.     | wind<br>dir.   | wind       | max        | max<br>gust | perc.     |  |
|                                             |     |    | <u>°C</u> | <u>°C</u> | <u>°C</u> | <u>%</u> | <u>degrees</u> | <u>m/s</u> | <u>m/s</u> | <u>m/s</u>  | <u>mm</u> |  |
| 2                                           | 6   | 23 | -0.2      | 0.3       | -0.8      | 60       | 235            | 9.5        | 11.2       | 16.5        | 0.0       |  |
| 2                                           | 6   | 24 | -0.3      | 0.7       | -0.4      | 70       | 235            | 11.4       | 13.0       | 18.3        | 0.0       |  |
| 2                                           | 7   | 1  | 1.1       | 1.4       | -0.3      | 57       | 255            | 13.8       | 15.4       | 22.9        | 0.0       |  |
| 2                                           | 7   | 2  | 1.3       | 1.4       | 0.8       | 57       | 255            | 14.2       | 14.2       | 20.7        | 0.0       |  |
| 2                                           | 7   | 3  | 0.8       | 1.4       | 0.7       | 63       | 269            | 13.4       | 16.5       | 23.1        | 0.0       |  |
| 2                                           | 7   | 4  | 0.9       | 1.2       | 0.4       | 63       | 265            | 12.3       | 14.1       | 21.4        | 0.0       |  |
| 2                                           | 7   | 5  | 0.4       | 0.9       | 0.2       | 66       | 270            | 9.8        | 13.4       | 20.7        | 0.0       |  |
| 2                                           | 7   | 6  | 0.5       | 0.6       | 0.1       | 65       | 274            | 7.5        | 10.1       | 14.7        | 0.0       |  |
| 2                                           | 7   | 7  | 0.4       | 0.9       | 0.3       | 62       | 262            | 5.0        | 7.0        | 10.8        | 0.0       |  |
| 2                                           | 7   | 8  | 0.8       | 0.8       | 0.1       | 57       | 200            | 3.8        | 4.2        | 8.3         | 0.0       |  |
| 2                                           | 7   | 9  | -0.6      | 0.8       | -0.7      | 66       | 157            | 5.9        | 5.9        | 8.0         | 0.0       |  |
| 2                                           | 7   | 10 | 0.4       | 1.3       | -0.7      | 61       | 151            | 5.7        | 6.1        | 8.9         | 0.0       |  |
| 2                                           | 7   | 11 | 2.4       | 2.4       | 0.1       | 55       | 157            | 8.2        | 8.2        | 11.1        | 0.0       |  |
| 2                                           | 7   | 12 | 3.0       | 3.6       | 2.3       | 51       | 174            | 5.0        | 6.7        | 12.1        | 0.0       |  |
| 2                                           | 7   | 13 | 3.0       | 3.1       | 2.3       | 53       | 150            | 6.6        | 6.6        | 10.1        | 0.0       |  |
| 2                                           | 7   | 14 | 3.0       | 4.1       | 2.9       | 52       | 195            | 3.5        | 6.4        | 9.0         | 0.0       |  |
| 2                                           | 7   | 15 | 1.9       | 3.0       | 1.9       | 62       | 149            | 3.3        | 6.2        | 8.2         | 0.0       |  |
| 2                                           | 7   | 16 | 2.3       | 3.2       | 1.5       | 60       | 182            | 3.2        | 5.4        | 7.1         | 0.0       |  |
| 2                                           | 7   | 17 | 2.5       | 3.6       | 2.0       | 62       | 183            | 4.9        | 5.7        | 8.8         | 0.0       |  |
| 2                                           | 7   | 18 | 1.4       | 2.5       | 1.3       | 66       | 167            | 3.8        | 4.8        | 6.0         | 0.0       |  |
| 2                                           | 7   | 19 | 3.9       | 4.4       | 1.4       | 55       | 112            | 3.2        | 4.4        | 6.3         | 0.0       |  |
| 2                                           | 7   | 20 | 4.2       | 6.6       | 3.7       | 54       | 174            | 3.8        | 4.6        | 7.6         | 0.0       |  |
| 2                                           | 7   | 21 | 3.9       | 5.1       | 3.4       | 64       | 187            | 4.3        | 5.1        | 7.3         | 0.0       |  |
| 2                                           | 7   | 22 | 9.7       | 9.8       | 3.6       | 55       | 201            | 7.4        | 7.4        | 14.6        | 0.0       |  |
| 2                                           | 7   | 23 | 8.0       | 10.1      | 7.2       | 60       | 190            | 4.3        | 9.5        | 15.2        | 0.0       |  |
| 2                                           | 7   | 24 | 6.1       | 8.0       | 5.8       | 66       | 192            | 6.9        | 6.9        | 9.2         | 0.0       |  |
| 2                                           | 8   | 1  | 8.1       | 8.3       | 5.8       | 60       | 157            | 5.2        | 8.3        | 12.6        | 0.0       |  |
| 2                                           | 8   | 2  | 9.9       | 10.1      | 6.8       | 56       | 198            | 10.7       | 10.7       | 20.1        | 0.0       |  |
| 2                                           | 8   | 3  | 9.3       | 10.3      | 6.1       | 56       | 179            | 8.8        | 12.4       | 19.5        | 0.0       |  |
| 2                                           | 8   | 4  | 6.1       | 10.0      | 5.5       | 65       | 214            | 8.8        | 11.6       | 17.2        | 0.0       |  |
| 2                                           | 8   | 5  | 7.2       | 8.8       | 6.1       | 62       | 174            | 8.1        | 10.9       | 15.5        | 0.0       |  |
| 2                                           | 8   | 6  | 7.9       | 8.0       | 6.1       | 59       | 158            | 9.9        | 9.9        | 16.0        | 0.0       |  |
| 2                                           | 8   | 7  | 8.0       | 8.9       | 7.5       | 58       | 174            | 9.6        | 11.6       | 16.9        | 0.0       |  |
| 2                                           | 8   | 8  | 8.8       | 9.1       | 7.4       | 54       | 172            | 12.1       | 13.1       | 20.7        | 0.0       |  |
| 2                                           | 8   | 9  | 8.4       | 10.1      | 7.8       | 56       | 179            | 7.9        | 10.8       | 16.5        | 0.0       |  |
| 2                                           | 8   | 10 | 10.1      | 10.5      | 7.3       | 46       | 187            | 11.6       | 13.1       | 22.2        | 0.0       |  |
| 2                                           | 8   | 11 | 7.5       | 10.7      | 7.2       | 55       | 194            | 11.4       | 11.4       | 19.7        | 0.0       |  |
| 2                                           | 8   | 12 | 9.5       | 10.5      | 6.3       | 52       | 183            | 10.6       | 11.3       | 21.3        | 0.0       |  |
| 2                                           | 8   | 13 | 8.5       | 10.0      | 7.8       | 53       | 163            | 8.0        | 10.3       | 16.0        | 0.0       |  |
| 2                                           | 8   | 14 | 8.7       | 9.4       | 7.3       | 49       | 176            | 10.5       | 10.5       | 16.8        | 0.0       |  |

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2015:114

| Egilsstaðir airport, station 4271 year 2015 |     |    |           |           |           |          |                |            |            |             |           |  |
|---------------------------------------------|-----|----|-----------|-----------|-----------|----------|----------------|------------|------------|-------------|-----------|--|
| Month                                       | day | hr | temp      | max       | min       | hum.     | wind<br>dir.   | wind       | max        | max<br>gust | perc.     |  |
|                                             |     |    | <u>°C</u> | <u>°C</u> | <u>°C</u> | <u>%</u> | <u>degrees</u> | <u>m/s</u> | <u>m/s</u> | <u>m/s</u>  | <u>mm</u> |  |
| 2                                           | 8   | 15 | 6.8       | 8.7       | 6.2       | 59       | 204            | 12.2       | 12.3       | 18.3        | 0.0       |  |
| 2                                           | 8   | 16 | 9.1       | 10.8      | 5.3       | 51       | 206            | 10.1       | 11.6       | 21.0        | 0.0       |  |
| 2                                           | 8   | 17 | 7.6       | 9.2       | 6.3       | 59       | 232            | 8.6        | 9.9        | 14.6        | 0.0       |  |
| 2                                           | 8   | 18 | 7.0       | 11.1      | 6.6       | 64       | 220            | 7.0        | 8.0        | 17.0        | 0.0       |  |
| 2                                           | 8   | 19 | 6.5       | 8.7       | 5.7       | 66       | 212            | 7.3        | 11.6       | 14.8        | 0.0       |  |
| 2                                           | 8   | 20 | 5.9       | 8.1       | 5.5       | 72       | 216            | 8.3        | 9.3        | 13.2        | 0.0       |  |
| 2                                           | 8   | 21 | 7.1       | 7.7       | 5.4       | 68       | 188            | 9.2        | 9.2        | 13.4        | 0.0       |  |
| 2                                           | 8   | 22 | 6.4       | 8.8       | 4.8       | 70       | 210            | 10.6       | 11.9       | 15.6        | 0.0       |  |
| 2                                           | 8   | 23 | 7.4       | 8.0       | 5.7       | 69       | 197            | 8.0        | 8.3        | 12.5        | 0.0       |  |
| 2                                           | 8   | 24 | 6.7       | 7.4       | 5.3       | 78       | 230            | 5.2        | 8.3        | 14.9        | 0.0       |  |
| 2                                           | 9   | 1  | 6.3       | 9.9       | 6.3       | 71       | 214            | 4.2        | 8.2        | 11.7        | 0.0       |  |
| 2                                           | 9   | 2  | 9.7       | 11.6      | 6.2       | 60       | 230            | 1.9        | 4.7        | 9.4         | 0.0       |  |
| 2                                           | 9   | 3  | 7.0       | 10.3      | 7.0       | 63       | 125            | 2.6        | 2.8        | 5.2         | 0.0       |  |
| 2                                           | 9   | 4  | 10.0      | 10.7      | 6.3       | 53       | 167            | 2.3        | 5.2        | 9.8         | 0.0       |  |
| 2                                           | 9   | 5  | 5.0       | 10.0      | 5.0       | 68       | 211            | 5.2        | 9.3        | 12.3        | 0.0       |  |
| 2                                           | 9   | 6  | 5.6       | 6.4       | 4.8       | 66       | 220            | 3.7        | 4.2        | 5.9         | 0.0       |  |
| 2                                           | 9   | 7  | 7.2       | 9.1       | 4.8       | 61       | 228            | 10.3       | 10.4       | 14.0        | 0.0       |  |
| 2                                           | 9   | 8  | 7.7       | 8.4       | 5.8       | 60       | 237            | 12.3       | 14.0       | 17.9        | 0.0       |  |
| 2                                           | 9   | 9  | 9.7       | 10.1      | 6.6       | 49       | 190            | 12.0       | 13.3       | 20.4        | 0.0       |  |
| 2                                           | 9   | 10 | 9.1       | 10.1      | 6.3       | 49       | 189            | 7.6        | 10.6       | 17.4        | 0.0       |  |
| 2                                           | 9   | 11 | 7.6       | 9.2       | 6.3       | 57       | 219            | 3.5        | 6.7        | 11.6        | 0.0       |  |
| 2                                           | 9   | 12 | 7.5       | 8.8       | 6.9       | 55       | 203            | 4.2        | 6.0        | 9.8         | 0.0       |  |
| 2                                           | 9   | 13 | 7.6       | 8.0       | 6.8       | 53       | 266            | 5.5        | 6.4        | 10.7        | 0.0       |  |
| 2                                           | 9   | 14 | 7.3       | 7.7       | 5.7       | 52       | 235            | 5.0        | 5.7        | 8.9         | 0.0       |  |
| 2                                           | 9   | 15 | 5.1       | 7.2       | 4.9       | 59       | 246            | 5.6        | 8.5        | 14.5        | 0.0       |  |
| 2                                           | 9   | 16 | 4.9       | 5.6       | 4.5       | 56       | 252            | 8.9        | 10.0       | 15.6        | 0.0       |  |
| 2                                           | 9   | 17 | 4.1       | 5.0       | 3.6       | 59       | 53             | 1.8        | 7.0        | 9.5         | 0.0       |  |
| 2                                           | 9   | 18 | 3.8       | 4.4       | 3.3       | 59       | 312            | 3.4        | 4.1        | 6.7         | 0.0       |  |
| 2                                           | 9   | 19 | 1.2       | 4.2       | 1.0       | 73       | 87             | 2.1        | 3.4        | 4.4         | 0.0       |  |
| 2                                           | 9   | 20 | 1.1       | 2.0       | 1.1       | 73       | 312            | 0.8        | 2.6        | 3.8         | 0.0       |  |
| 2                                           | 9   | 21 | 0.8       | 1.1       | 0.6       | 78       | 38             | 2.7        | 3.0        | 5.5         | 0.0       |  |
| 2                                           | 9   | 22 | 0.7       | 0.9       | 0.4       | 81       | 274            | 1.1        | 2.5        | 4.1         | 0.0       |  |
| 2                                           | 9   | 23 | 0.3       | 0.9       | 0.3       | 83       | 314            | 1.0        | 2.1        | 3.4         | 0.0       |  |
| 2                                           | 9   | 24 | 0.4       | 0.7       | 0.3       | 83       | 1              | 1.7        | 1.7        | 2.4         | 0.0       |  |
| 2                                           | 10  | 1  | 0.7       | 1.1       | 0.2       | 84       | 45             | 2.6        | 2.8        | 3.7         | 0.0       |  |
| 2                                           | 10  | 2  | 4.1       | 4.1       | 0.7       | 76       | 215            | 1.3        | 1.9        | 3.8         | 0.0       |  |
| 2                                           | 10  | 3  | 3.7       | 5.5       | 3.1       | 67       | 220            | 7.2        | 7.2        | 10.2        | 0.0       |  |
| 2                                           | 10  | 4  | 4.2       | 5.1       | 3.3       | 60       | 199            | 5.0        | 6.2        | 10.1        | 0.0       |  |
| 2                                           | 10  | 5  | 3.0       | 4.2       | 2.4       | 67       | 229            | 7.1        | 8.3        | 10.9        | 0.0       |  |
| 2                                           | 10  | 6  | 2.6       | 3.6       | 2.4       | 66       | 210            | 7.9        | 9.0        | 13.9        | 0.0       |  |

| Egilsstaðir airport, station 4271 year 2015 |     |    |           |           |           |          |                |            |            |             |           |  |
|---------------------------------------------|-----|----|-----------|-----------|-----------|----------|----------------|------------|------------|-------------|-----------|--|
| Month                                       | day | hr | temp      | max       | min       | hum.     | wind<br>dir.   | wind       | max        | max<br>gust | perc.     |  |
|                                             |     |    | <u>°C</u> | <u>°C</u> | <u>°C</u> | <u>%</u> | <u>degrees</u> | <u>m/s</u> | <u>m/s</u> | <u>m/s</u>  | <u>mm</u> |  |
| 2                                           | 10  | 7  | 2.1       | 3.0       | 1.5       | 65       | 214            | 7.4        | 9.7        | 14.1        | 0.0       |  |
| 2                                           | 10  | 8  | 1.4       | 2.3       | 0.7       | 60       | 221            | 6.1        | 8.8        | 12.4        | 0.0       |  |
| 2                                           | 10  | 9  | 0.6       | 1.9       | 0.6       | 55       | 237            | 11.4       | 13.3       | 21.0        | 0.0       |  |
| 2                                           | 10  | 10 | -0.9      | 0.6       | -1.0      | 65       | 227            | 7.8        | 12.7       | 16.7        | 0.0       |  |
| 2                                           | 10  | 11 | -1.1      | -0.5      | -1.2      | 57       | 227            | 9.5        | 11.2       | 14.1        | 0.0       |  |
| 2                                           | 10  | 12 | -0.9      | -0.7      | -1.7      | 57       | 236            | 7.0        | 8.8        | 12.2        | 0.0       |  |
| 2                                           | 10  | 13 | -0.1      | -0.1      | -0.9      | 51       | 197            | 6.6        | 10.5       | 13.7        | 0.0       |  |
| 2                                           | 10  | 14 | 0.2       | 0.3       | -0.5      | 48       | 197            | 7.1        | 10.8       | 15.6        | 0.0       |  |
| 2                                           | 10  | 15 | -0.8      | 0.4       | -1.0      | 58       | 208            | 5.5        | 9.9        | 14.7        | 0.0       |  |
| 2                                           | 10  | 16 | -0.1      | 0.2       | -0.8      | 53       | 195            | 5.8        | 5.8        | 9.2         | 0.0       |  |
| 2                                           | 10  | 17 | -0.5      | -0.1      | -0.7      | 52       | 193            | 5.3        | 7.4        | 12.1        | 0.0       |  |
| 2                                           | 10  | 18 | -0.7      | 0.0       | -1.1      | 54       | 191            | 5.3        | 6.4        | 10.1        | 0.0       |  |
| 2                                           | 10  | 19 | -0.8      | -0.6      | -1.3      | 56       | 192            | 6.0        | 6.7        | 11.0        | 0.0       |  |
| 2                                           | 10  | 20 | -1.0      | -0.4      | -1.3      | 54       | 196            | 6.3        | 7.2        | 11.0        | 0.0       |  |
| 2                                           | 10  | 21 | -1.2      | -0.3      | -1.9      | 57       | 200            | 4.6        | 9.1        | 12.9        | 0.0       |  |
| 2                                           | 10  | 22 | -1.3      | -0.1      | -1.8      | 59       | 172            | 5.0        | 7.4        | 11.7        | 0.0       |  |
| 2                                           | 10  | 23 | -1.3      | -0.7      | -2.0      | 58       | 223            | 9.8        | 9.8        | 12.9        | 0.0       |  |
| 2                                           | 10  | 24 | -1.4      | -1.1      | -1.7      | 55       | 185            | 5.1        | 8.8        | 12.4        | 0.0       |  |
| 2                                           | 11  | 1  | -2.1      | -1.4      | -2.2      | 51       | 186            | 7.8        | 8.0        | 11.5        | 0.0       |  |
| 2                                           | 11  | 2  | -2.7      | -2.1      | -2.9      | 51       | 174            | 6.6        | 7.9        | 11.4        | 0.0       |  |
| 2                                           | 11  | 3  | -2.4      | -2.4      | -3.0      | 43       | 174            | 10.3       | 10.3       | 16.7        | 0.0       |  |
| 2                                           | 11  | 4  | -3.4      | -2.2      | -3.5      | 50       | 212            | 8.7        | 10.1       | 15.8        | 0.0       |  |
| 2                                           | 11  | 5  | -3.8      | -3.4      | -4.3      | 54       | 231            | 9.1        | 10.1       | 13.1        | 0.0       |  |
| 2                                           | 11  | 6  | -5.3      | -3.7      | -5.3      | 66       | 208            | 5.6        | 8.2        | 10.9        | 0.0       |  |
| 2                                           | 11  | 7  | -5.2      | -4.5      | -5.5      | 64       | 226            | 6.7        | 7.3        | 8.9         | 0.0       |  |
| 2                                           | 11  | 8  | -6.0      | -5.1      | -6.0      | 66       | 208            | 4.8        | 6.4        | 8.0         | 0.0       |  |
| 2                                           | 11  | 9  | -5.3      | -4.2      | -6.3      | 63       | 244            | 4.7        | 5.6        | 8.4         | 0.0       |  |
| 2                                           | 11  | 10 | -5.8      | -5.1      | -6.0      | 66       | 243            | 4.0        | 4.5        | 5.7         | 0.0       |  |
| 2                                           | 11  | 11 | -6.1      | -5.3      | -6.2      | 69       | 179            | 3.1        | 5.0        | 6.1         | 0.0       |  |
| 2                                           | 11  | 12 | -4.9      | -4.9      | -6.2      | 64       | 177            | 2.8        | 4.0        | 4.7         | 0.0       |  |
| 2                                           | 11  | 13 | -3.8      | -3.8      | -4.9      | 64       | 215            | 2.6        | 5.2        | 6.9         | 0.0       |  |
| 2                                           | 11  | 14 | -3.4      | -3.4      | -4.0      | 53       | 189            | 2.8        | 4.7        | 6.6         | 0.0       |  |
| 2                                           | 11  | 15 | -4.5      | -3.4      | -4.5      | 62       | 208            | 3.4        | 4.3        | 5.8         | 0.0       |  |
| 2                                           | 11  | 16 | -4.4      | -4.3      | -5.5      | 57       | 178            | 3.1        | 4.0        | 5.7         | 0.0       |  |
| 2                                           | 11  | 17 | -4.2      | -3.7      | -5.0      | 62       | 182            | 3.9        | 3.9        | 6.2         | 0.0       |  |
| 2                                           | 11  | 18 | -4.7      | -3.9      | -5.1      | 70       | 216            | 5.0        | 5.0        | 6.5         | 0.0       |  |
| 2                                           | 11  | 19 | -5.0      | -4.7      | -5.4      | 62       | 196            | 4.0        | 4.1        | 6.3         | 0.0       |  |
| 2                                           | 11  | 20 | -4.8      | -4.2      | -5.4      | 56       | 191            | 4.5        | 6.3        | 9.5         | 0.0       |  |
| 2                                           | 11  | 21 | -6.5      | -4.8      | -6.7      | 62       | 174            | 4.2        | 5.1        | 7.2         | 0.0       |  |
| 2                                           | 11  | 22 | -6.1      | -6.1      | -6.8      | 58       | 180            | 5.0        | 5.2        | 6.3         | 0.0       |  |

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2015:114

| Egilsstaðir airport, station 4271 year 2015 |     |    |           |           |           |          |                |            |            |             |           |  |  |
|---------------------------------------------|-----|----|-----------|-----------|-----------|----------|----------------|------------|------------|-------------|-----------|--|--|
| Month                                       | day | hr | temp      | max       | min       | hum.     | wind<br>dir.   | wind       | max        | max<br>gust | perc.     |  |  |
|                                             |     |    | <u>°C</u> | <u>°C</u> | <u>°C</u> | <u>%</u> | <u>degrees</u> | <u>m/s</u> | <u>m/s</u> | <u>m/s</u>  | <u>mm</u> |  |  |
| 2                                           | 11  | 23 | -5.7      | -5.5      | -6.2      | 59       | 192            | 4.5        | 5.2        | 7.1         | 0.0       |  |  |
| 2                                           | 11  | 24 | -6.0      | -5.5      | -6.0      | 60       | 195            | 5.0        | 5.8        | 9.1         | 0.0       |  |  |