
Deep Learning for Drug Discovery
Property Prediction with Neural Networks on Raw Molecular Graphs

Master’s thesis in Complex Adaptive Systems

EDVARD LINDELÖF

Department of Biology and Biological Engineering
Chalmers University of Technology
Gothenburg, Sweden 2019





Master’s thesis

Deep Learning for Drug Discovery

Property Prediction with Neural Networks on Raw Molecular Graphs

EDVARD LINDELÖF

Department of Biology and Biological Engineering
Division of Systems and Synthetic Biology
Chalmers University of Technology

Gothenburg, Sweden 2019



Deep Learning for Drug Discovery
Property Prediction with Neural Networks on Raw Molecular Graphs
EDVARD LINDELÖF

c© EDVARD LINDELÖF, 2019.

Collaborator: Michael Withnall, AstraZeneca
Supervisor: Hongming Chen, AstraZeneca

Ola Engkvist, AstraZeneca
Examiner: Christer Larsson, Department of Biology and Biological Engineering

Master’s Thesis
Department of Biology and Biological Engineering
Division of Systems and Synthetic Biology
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019



Deep Learning for Drug Discovery
Property Prediction with Neural Networks on Raw Molecular Graphs
EDVARD LINDELÖF
Department of Biology and Biological Engineering
Chalmers University of Technology

Abstract
The lengthy and expensive process of developing new medicines is a driving force in the develop-
ment of machine learning on molecules. Classical approaches involve extensive work to select the
right chemical descriptors to use as input data. The scope of this thesis is neural network archi-
tectures learning directly on raw molecular graphs, thereby eliminating the feature engineering
step. The starting point of experimentation is a reimplementation of the previously proposed
message passing neural networks framework for learning on graphs, analogous to convolutional
neural networks in how it updates node hidden states through aggregation of neighbourhoods.
Three modifications of models in this framework are proposed and evaluated: employment of
a recently introduced activation function, a neighbourhood aggregation step involving weighted
averaging and a message passing model incorporating hidden states in the graph’s directed edges
instead of its nodes. The resulting models are hyperparameter optimized using a parallelized
variant of Bayesian optimization. Comparison to literature benchmarks for machine learning on
molecules shows that the new models are competitive with state-of-the-art, outperforming it on
some datasets.

Keywords: drug discovery, cheminformatics, graph neural networks, deep learning, Bayesian
optimization.
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Introduction

Drug discovery – the work carried out by pharmaceutical companies to find candidates for new
medicines – is a slow and expensive process. The relevant chemical space is so large that only
a tiny fraction of it can be tested through chemical experiments, even if fully automatized
robotic systems are used. Molecules to consider for these screening experiments do not have to
be chosen entirely at random, since there are relationships that can be identified between the
structure of a molecule and its physiological effect. These structure-activity relationships are
not easily analyzable, however, and there is no general method for modelling them. Machine
learning approaches therefore become a natural part of the toolbox of medicinal chemists and
cheminformaticians working to make the drug discovery process more effective. A challenge when
applying classical machine learning algorithms is that they require data of a rigid format, e.g.
fixed length vectors containing decimal numbers. When working with molecules, this limitation
manifests itself in tedious feature engineering to select chemical descriptors. The emerging field
of neural networks taking graphs as input data – in this document referred to as graph neural
networks (GNNs) – presents great potential for overcoming the problem by learning directly on
the compounds’ raw graph representations.

1.1 The drug discovery process

The process leading to a new medicine can be seen as an iterative screening. The starting point
is an extremely large set of compounds in chemical space. The set is then shrunk in many steps,
where each one is designed to only let through compounds that possess desired properties.

In The Practice of Medicinal Chemistry, a breakdown of the whole process into intermediate
steps is described [1]. First and foremost a biochemical target is chosen. This can be for example
an enzyme, a protein or a receptor, thought to in some way be related to a medical condition
one wishes to treat. The first objective of the drug discovery process is then to find chemical
compounds that interact with said target. Chemical experiments are carried out to this end and
compounds that appear to interact, according to some measured signal, are called hits. Merely
knowing that a compound is a hit is very far from having a new medicine however. The next
step is to test for activity again under various experimental conditions to see that it’s robust.
Compounds that stand this test are labelled validated hits. The subset of validated hits that
are judged interesting with regards to parameters such as patentability and synthesizability are
called leads. A lead needs to be further examined and perhaps slightly varied to assure that it
possesses physico-chemical properties such that it can be used as a drug in practice, for example
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1. Introduction

the human body must be able to absorb and distribute it. For a resulting optimized lead to
become a clinical candidate, it must first be tested for toxicity in animal or cell models. The
described steps are summarized in a flowchart in Figure 1.1.

When considering the low success rate and large cost of some steps of drug discovery, the
potential for applying machine learning methods becomes clear. The hit screening phase, for
example, is typically carried out at very large scale. High-throughput screening (HTS) with
industrial robots may be utilized to conduct a vast number of experiments in a relatively short
amount of time. A prediction algorithm can classify molecules as probable hits before any
experiments have started, and thereby aid medicinal chemists in selecting a subset of chemical
space to search through by HTS.

Figure 1.1: Overview of the drug development process.

1.2 Machine learning on molecules

The concept of using chemical information about a compound to predict their biological prop-
erties with a mathematical model is more than 50 years old [2]. The typical approach is called
quantitative structure-activity relationship (QSAR) modelling. The use of such a model to
generate a predicted value ŷ of a biological property using a function f can be described as

ŷ = f(chemical descriptors) + ε ,

where ε is the error. Since f may be anything from a linear function to some more complicated
model, the QSAR approach has naturally employed various classical machine learning algorithms
such as support-vector machine (SVM) and random forest [3], methods that became refined
enough for practical use in the 1990’s [4] and early 2000’s [5], respectively.

A challenging step in designing a QSAR model is the selection of chemical descriptors. Since
it is not certain that an applied machine learning algorithm is able to handle high-dimensional
input, the choice of descriptors should be small, but made carefully enough to still be able to
characterize the relevant behaviour. There exists no generally effective method to make this
selection. Approaches to systematize it to avoid relying on chemical experience and ‘intuition’
include stepwise-selection procedures and genetic algorithms, among other things [6].
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1. Introduction


x1
x2
...
xn


machine learning method

ŷ
featurization

Figure 1.2: Steps needed to construct a prediction algorithm for molecules. Typically the
molecule must somehow be featurized into a fixed length vector (x1, · · · , xn)ᵀ before it can
be passed through a classical machine learning algorithm such as SVM, that generates a
prediction ŷ. Molecule graphics and SVM illustration from Wikimedia Commons [7, 8].

Figure 1.2 illustrates the needed steps to construct a prediction algorithm to work on molecules.
First, the molecule needs to somehow be transformed into a fixed length vector. Once a method
of doing this has been chosen, any of a large range of popular machine learning methods can be
applied but will not work well if the molecule-to-vector step was designed poorly. The methods
that this work focuses on take the approach of inputting raw graph representations of molecules,
with basic chemical information about atoms and bonds, into a GNN architecture. The GNN
takes care of all steps from molecule to prediction.

Given the tediousness of the QSAR modelling mentioned above, the development of methods
that do not need explicit feature engineering is well motivated. Since graphs are such a general
data structure and since so much feature engineering gets avoided when applying graph neural
networks, they can truly be considered instances of deep learning.

1.3 Objective

The purpose of this thesis work is to explore how deep learning methods for drug discovery,
specifically property prediction algorithms taking molecular graphs as input data, can be im-
proved. The approach entails replacement of all steps shown in Figure 1.2 with a neural network
architecture whose building blocks are trained jointly end-to-end. It is a true instance of deep
learning in that it generalizes and automates the molecule-to-feature-vector step and eliminates
the need for application specific knowledge.

1.3.1 Delimitations

All implementation work of this project focuses on neural networks for graphs. As will be
understood in Chapter 3, GNNs are a novel field with a large number of possible directions of
advancement. Therefore, a specific class of GNNs known as message passing neural networks
(MPNNs) is given major focus. Novel contributions are implemented and described in terms of
extensions to and modifications of this framework.

Some non-graph-based machine learning methods are interesting to discuss for benchmarking
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1. Introduction

purposes. This is done by referencing the literature, not by implementation.

The data used for training and evaluation of implemented models consists of publicly available
datasets relevant to various steps of the drug discovery process. The implemented models can
in principle be used on any molecular datasets, or in fact on any dataset consisting of pairs of
graphs and output values. While there are some interesting available datasets related to, for
example, quantum chemistry, anything that is not drug discovery related is considered out of
scope. Furthermore, there is much to say about how to curate chemical data appropriately for
machine learning, as well as what metrics to use for evaluations. Mainly for the sake of enabling
proper benchmarking, most data aggregation is done in an identical manner as in closely related
literature, as is the selection of all performance metrics used.

1.4 Thesis outline

An overview of the drug discovery process has been given and the motivation of deep learning
models for molecules has become clear. The remainder of the document aims to build up an
understanding of state-of-the-art GNNs and then describe the experimental work to improve
them that constitutes this project.

Chapter 2 covers a range of neural network architectures and techniques, selected based on
their relevancy to the class of implemented models. All the concepts are however well-known in
the machine learning community. Depending on the reader’s familiarity with neural networks
and machine learning, a large part of it may be skipped. Chapter 3 contains a description
of state-of-the-art GNNs, some useful terminology regarding them and how they relate to two
earlier approaches – one from cheminformatics and one from image analysis. The proposed
improvements to MPNNs that constitute the principal novelty of this work are described in
Chapter 4. Aspects that need to be laid out clearly before training the models, such as data,
programming frameworks and performance metrics, are covered in Chapter 5. A conceptually
heavy part of it is on the Bayesian optimization used for hyperparameter optimization which,
albeit not containing any parts that are scientifically novel, makes up an important component
of this project engineering-wise. Chapters 6-8 describe a scientific process that demonstrates
the performance improvement from implementing the new extensions: the experimental setup,
a presentation of results and a discussion. The document is wrapped up with the concluding
Chapter 9.
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2

Supervised machine learning and neu-
ral networks

The main scope of this work is GNNs, a specific class of neural network architectures covered
in depth in Chapter 3. The use of neural networks for prediction is a part of the larger machine
learning field. A few of the aspects covered in this section are general to machine learning
while the remainder are specific to neural networks. All included concepts are relevant either
to understand how to design GNNs, how to train them, or how to tune them for increased
performance.

2.1 Machine learning concepts

Machine learning is the study of algorithms that utilize data to carry out certain tasks. The
subfield of machine learning concerned with datasets consisting of input/output pairs and whose
objective is to learn how to predict the output of a certain input, is called supervised learning.
The process of feeding the algorithm with input/output pairs in the hope that it learns the
relevant patterns is called training. For some algorithms it is useful to feed the data more than
once, each full traversal of data during training is then called an epoch. A notorious problem
with trained algorithms is that despite fitting the training data well, the prediction performance
may not generalize to new input. To be able to critically assess whether a model can generalize,
the dataset is typically split into two parts, referred to as training set and test set. The test set
is kept out of reach of the algorithm during training but is used afterwards to see how well the
algorithm’s predictions match the previously unseen test output. It is common to further divide
the dataset by removing a part from the training set to use as validation set. The validation
set may turn out useful for example when several models have been trained, and the best one
is to be chosen. If this selection is made based on performance on the test set, the test set is in
principle not a test set, so the selection is instead made using the validation set. In summary,
the division into three is useful to be able to carry out the following scheme for training, choosing
and evaluating models.

1. Train several models to the input/output pairs of the training set

2. Choose the trained model that has the best validation score (that best predicts the outputs
of the validation set)

5



2. Supervised machine learning and neural networks

3. Assess generalized performance of the chosen model by computing the test score when
predicting the outputs of the test set

Step 1 is typically a hyperparameter optimization – a search for good values of model parameters
that affect performance but cannot be adjusted as part of training. A very common thing is that
the training score of a model, the score achieved when predicting outputs of the to-the-model
already known training set, is lower than the validation score. This is called overfitting. There
exist certain regularization techniques that can be incorporated into models for the specific
purpose of minimizing overfitting. These usually have parameters that are tuned in the first and
second steps of the scheme above, rendering the training-validation-test split especially useful.

2.2 Neural networks

The term neural network is in a machine learning context used to refer to various parameterized
functions with the important property of being differentiable with respect to each parameter.
The differentiability assures that gradient-based methods may be used to attempt to train them
to minimize a differentiable loss function given a set of input data. Different neural networks can
be combined in quite flexible ways to form new, bigger (“deeper” or “wider”) neural networks
that are differentiable with respect to all the parameters of the smaller ones. For example, if
f : X −→ Z and g : Z −→ Y are neural networks, l : Y −→ R a loss function and
x ∈ X some data, then differentiating the loss l(g(f(x)) with respect to the parameters of both
f and g is simply a matter of applying the chain rule. The same generalizes to any number of
nested neural networks and is then known as the backpropagation [9] principle. Because of the
possibility to build larger architectures from smaller ones, it is often convenient to use terms
like layers and blocks when discussing larger networks.

2.2.1 Feed forward neural network

The most appropriate architecture to give as a concrete example of a neural network is the fully
connected feed forward network (FFNN), sometimes also known as the multilayer perceptron
[10]. Each layer of this network consists of an affine transformation followed by application of a
so called activation function. The layer maps a vector zn−1 to a new vector zn according to

zn = σ(W nzn−1 + bn) , (2.1)

where W n and bn are a matrix and a vector parameterizing the layer, and σ is known as an
activation function, that may in practice be chosen to be for example the hyperbolic tangent. N
nested operations of this form constitutes an N -layer feed forward network. If applied to data
x on its own, z0 = x is the input and zN is the output, whose number of elements is decided
by properly choosing dimensions of W N and bN . z1, . . . ,zN−1 are called hidden states, and
the layers computing them hidden layers. A common way to illustrate a feed forward neural
network is seen in Figure 2.1, here with one hidden layer.

It was shown in 1989-1991 [11, 12] that under mild assumptions on the activation function, a feed
forward network with one hidden layer can approximate any reasonable function to arbitrary
precision with a finite number of elements in z1. One may thus believe that further work to
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2. Supervised machine learning and neural networks

z0,1 = x1

z0,2 = x2

z0,3 = x3

z1,1

z1,2

z1,3

z1,4

y1 = z2,1

y2 = z2,2

W 1 W 2

Figure 2.1: Common illustration of a feed forward neural network. This particular one
has one hidden layer and takes the input x ∈ R3 to generate the output y ∈ R2.

create neural network architectures is unnecessary. However, the theorem merely states the
existence of parameters W 1, b1, . . . ,W N , bN that give arbitrary precision, but nothing about
how to find them. In the typical practical case, the optimal parameters are impossible to find
because the optimization problem is too hard. The deep learning field however demonstrates
that application-tailored neural network architectures, designed in ways heuristically thought to
handle particular tasks well, are in practice possible to tune to greater performance.

2.2.2 Recurrent neural network

Recurrent neural networks [9] (RNNs) are particularly suitable for learning on data that is
sequential in nature. Suppose the data is the sequence of vectors x1, . . . ,xT . To describe the
idea of a recurrent neural network, two equations are necessary,

ht =fh(xt,ht−1)
yt =fo(ht) .

The parameterized functions fh and fo may take on various forms. In a “classical” recurrent
neural network, they may be set to something similar to the layer (2.1). The hidden state ht may
be thought of as a memory where information about the so-far-encountered inputs x1, . . . ,xt−1
is stored. h0 may be instantiated to for example 0. Depending on the application, the output
of the network may be taken as the whole sequence y1, . . . ,yT , or simply the last vector yT . A
common way of illustrating a recurrent neural network is seen in Figure 2.2.

It has turned out that for good performance, a somewhat more engineered layer than (2.1) is
highly useful [13, 14]. One such layer is the gated recurrent unit [15] (GRU), whose fh is defined
by the equations

rt = sigmoid(W rxt + U rht−1 + br)
h̃t = tanh(W hxt + Uh(rt � ht−1) + bh)
zt = sigmoid(W zxt + U zht−1 + bz)
ht = zt � ht−1 + (1− zt)� h̃t ,

where W r,W h,W z,U r,Uh and U z are parameter matrices, br, bh and hz are parameter vec-
tors, and � denotes element-wise multiplication. To get an understanding of the intuitions that
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2. Supervised machine learning and neural networks

h0 h1 h2 h3

y1 y2 y3

x1 x2 x3

Figure 2.2: One way to illustrate the use of a recurrent neural network. Each rectangle
represents application of the same neural network block. The block itself may take on various
architectures.

lead to this procedure for updating the hidden state, consider one of its elements ht,j and exam-
ine the equations one by one. First, a reset gate rt,j is computed based on the latest input xt

and the current memory ht−1. Since rt,j ∈ (0, 1) while ht−1 ∈ (−1, 1) (having been computed
with the sigmoid function and the hyperbolic tangent function, respectively) the element-wise
multiplication in the computation of the new candidate state h̃t can be thought of as a means of
letting the former turn off the impact of the latter. Aside from the element-wise multiplication,
the computation of the candidate state is a simple affine transformation followed by an acti-
vation function, much like a normal feed forward layer. In the third and fourth equations, the
update gate zt,j ∈ (0, 1) is computed to decide how much influence the candidate state element
h̃t,j should be allowed on the hidden state element ht,j .

An important layer which is similar to GRU, and a predecessor of it, is the long-short term
memory unit (LSTM). Only GRU is described in detail because it is built on similar concepts as
LSTM but is slightly simpler. Empirical evaluation [16] shows that employing either a GRU or
a LSTM vastly improves performance compared to a classical RNN, but which one is the better
of the two is unclear. The networks implemented in this work may contain both GRUs and
LSTM units as part of certain blocks. The impact of choosing one over the other is considered
out of scope.

2.2.3 Activation functions

The choice of activation function can significantly impact performance of networks. The men-
tioned sigmoid and hyperbolic tangent alternatives are simple and have easily computable deriva-
tives. In the last few years many alternatives have been proposed however. One that is important
to mention as it is used in GNNs from literature discussed later in this document, is the rectified
linear unit activation function [17]

ReLU(x) =
{
x if x > 0
0 otherwise

. (2.2)

One of the ideas behind ReLU is to encourage a network to “turn off” some hidden units, yielding
a sparser signal. The non-differentiability at 0 appears to not matter in practice.

Another important function that may be considered an activation function is the softmax σ :

8



2. Supervised machine learning and neural networks

R
K −→ R

K ,
σ(z)j = exp (zj)∑

k
exp (zk)

,

which can be said to normalize the input vector in the sense of rescaling it so that its elements
sum up to 1. It is therefore a natural choice for modelling probabilities. In this work it is mainly
used in a set aggregation context to generate weights for doing weighted summation.

2.2.4 Training a neural network

In the common approach to finding the weights of a neural network that is used in this work,
differentiability with respect to every parameter of the network is vital. By the backpropagation
principle and careful making sure that every neural network block and layer is fully differentiable,
the gradient with respect to the vector wn of all network parameters can be computed. This
can be used to update the weights iteratively according to some gradient descent-based method
[18], of which the simplest form is

wt+1 = wt − η∇wft . (2.3)

Simple gradient descent effectively takes steps in the direction where the differentiated function
is the steepest, with a step length determined by the so-called learning rate η. Under some
assumptions on the function to be optimized, for example involving convexity, the convergence
to the global minimum of some gradient descent methods can be guaranteed. For all but
the most trivial neural network architectures however, this assurance cannot be had. It has
been empirically established that simple gradient descent is insufficient for reaching satisfactory
performance, but that various extensions can work well. These extensions usually incorporate
some form of stochasticity, typically by feeding the training input/output pairs in small randomly
chosen batches [10]. The gradient descent then takes a step based on the gradient of the loss
given a single batch of training data, rather than all of it.

A popular such alternative is the Adam optimizer [19], which is used in this work. This method
replaces the simple gradient descent update rule with

mt = β1mt−1 + (1− β1)∇wft

vt = β2vt−1 + (1− β2)(∇wft)2

m̂t = mt

1− βt
1

v̂t = vt

1− βt
2

wt+1 = wt − η
m̂t√
v̂t + ε

,

where all operations applied to the vectors are done elementwise. ε is a small constant just to
avoid division by 0. mt and vt are exponentially smoothed moving averages of the square of
the gradient. m̂t and v̂t are versions corrected for the bias present in early iterations because of
the initialization to 0. The last equation comprises a clever choice of effective step size. When
the element of the gradient fluctuates over iterations, its average will be small while the average
of its square will be large, and thus so the corresponding element in m̂t/

√
v̂t. The optimizer
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2. Supervised machine learning and neural networks

thus adaptively modifies the effective learning rate for each parameter between iterations. The
hyperparameters β1, β2 ∈ [0, 1) can be said to determine the time scale of the effective learning
rate adaptation.

2.2.5 Regularization techniques

Since overfitting is a notorious problem for neural networks, the techniques developed to coun-
teract it are numerous. The primary ones used in this work are weight decay and dropout. Of
these two, the former is the simplest and most straight forward to implement [20]. Adding a
simple term in the gradient descent rule is sufficient. In the simplest case, (2.3) becomes

wt+1 = wt − η(∇wft + λwt) ,

where λ is a constant determining the severity of the decay. Applying weight decay to one
neural network parameter wi is equivalent to adding λw

2
i

2 to the network’s loss function, since
∂
∂wi

(
λ
w2

i
2
)

= λwi. Weight decay can therefore be understood as a penalty on network parame-
ters, favoring smaller values on those that are not important, which sometimes leads to better
generalizability.

Dropout is a more recent idea which compared to weight decay is less mathematically elegant
but has turned out effective in practice [21]. The application of dropout at a given layer (of
input units or hidden units) is simple to describe: let each unit have probability p of being
set to 0. This is done during training only, and the units are rescaled with a factor 1

1− p to
compensate the weakening of the signal. The idea behind dropout is to make neurons rely on
robust and simple patterns rather than intricate ones involving co-adaptation to each other.

2.2.6 Techniques to deal with large depth

There are some challenges to training neural networks that are particularly troublesome for
architectures that are deep (that have many hidden layers). Notably one may run into the
problems of vanishing or exploding gradients. How the vanishing problem can appear is described
in the following. Consider the computation of the derivative of the loss function with respect
to a weight in an early layer of a deep feed forward neural network. Since this computation
is done through backpropagation (iterative application of the chain rule) the derivative is a
sum of products, each having among the factors one derivative per activation function in later
layers. Common choices of activation functions, for example the hyperbolic tangent and sigmoid
functions, have derivatives close to 0 for large inputs. The products then become even smaller
and thus partial derivatives may vanish.

Various techniques can be employed to counteract these depth-related problems. For example,
well-engineered RNNs like the GRU and the LSTM unit possess intrinsic properties that deal
with it [15]. Another popular way of solving the problem is to use the ReLU activation function.
The property of ReLU that is beneficial with respect to the vanishing gradient problem is that
its derivative is 1 for all positive inputs.

10



2. Supervised machine learning and neural networks

An alternative that can be used regardless of chosen activation functions and building blocks
is explicit normalization between layers. The technique is then to rescale hidden units in some
intermediate step of the architecture, by subtracting with a mean and dividing by a standard
deviation. The statistics may be computed per-element, using the values that element takes
on for the different samples in a batch, and is then known as batch normalization [22]. Or
they may be computed per-hidden state vector, in which case it’s called layer normalization
[23]. Assuring mean 0 and variance 1 in this way solves both the problem of vanishing and of
exploding gradient.

This work uses a normalization scheme that entails using an activation that implicitly leads to
normalized hidden units. This is a very recent idea and will be covered further in Chapter 4.
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3

Previous work on graph neural net-
works

This chapter aims to give an overview of GNNs, detailed enough to enable good understand-
ing of the new contributions presented the subsequent chapter. First the (molecular) graph
data representation is described clearly, together with some corresponding definitions and no-
tation. For historical curiosity but also for understanding, two techniques that may be viewed
as predecessors to GNNs on molecules are then briefly mentioned before moving on to GNNs.
The subclass of GNNs that will be the most thoroughly covered is the message passing neural
networks (MPNN) framework.

3.1 Graphs – definitions

A graph is an ordered pair G = (V,E) of a set V of nodes together with a set E of edges, which
are pairs of elements of V . It is said that the node v is part of the graph G, or that v ∈ G, if
v ∈ V . The neighbourhood of v is the set N(v) = {w | (w, v) ∈ E}. If the pairs in E are ordered,
the graph is said to be directed, otherwise it is said to be undirected.

The representation of a molecule as an undirected graph is intuitive. Atoms are simply repre-
sented as nodes while chemical bonds between atoms are represented as edges. To be able to
represent information about atoms and bonds, a graph comes together with two corresponding
sets {nv | v ∈ V } of node feature vectors and {evw | (v, w) ∈ E} of edge feature vectors.
Throughout this document, the term “graph” is used to implicitly refer to these two sets, to-
gether with the graph itself. An illustration of the data structure is seen in Figure 3.1.

3.2 Two predecessors to graph neural networks

Convolutional neural networks (CNNs) are well known for their high performance in image
classification. A simple convolutional layer (a layer that in CNN terminology has stride size 1,
one input channel and one output channel) can be written

(f ∗ g)[i, j] =
K∑

k=−K

K∑
l=−K

f(i− k, j − l)g(k, l) , (3.1)

12
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Figure 3.1: Illustration of the data structure used to describe a molecule: an undirected
graph, a feature vector for each node and a feature vector for each edge.

where f(i, j) is the image intensity of the pixel at (i, j). The matrix (g(i, j))K
i,j=−K is adjusted

during training. (f ∗ g)[i, j] is a weighted sum of intensities of a neighbourhood of pixels.
Since images are special cases of graphs, a natural question is whether (3.1) can be generalized.
This turns out to require quite severe approximations. GNNs can be viewed as analogous to
convolutional neural networks, however, in that they contain blocks that like (3.1) aggregates
information from neighbourhoods.

A second technique that can be viewed as a predecessor to GNNs for molecules is that of
extended-connectivity circular fingerprints [24] (ECFP). An outline of the algorithm, that turns
a molecular graph into a fixed length “fingerprint” vector f , is given in Figure 3.2. As can

1. h(0)
v ← g(nv) for all v in G (compute an integer representing each atom)

2. s← {h(0)
v | v ∈ G}

3. for t = 0, . . . ,K
for each v in G

(a) m← {h(t)
v | v ∈ N(v)} (take neighbourhood)

(b) h(t+1)
v ← hash(m) (update atom integer based on it)

(c) add h(t+1)
v to s

4. fi = 1 if s has an element h such that h mod L = i, otherwise fi = 0

Figure 3.2: Outline of how an ECFP vector f of length L is generated.

be seen, ECFP has a neighbourhood aggregation step. This makes the technique analogous to
GNNs in the same way that CNNs are. An important difference is that the step is not learned
during training. Instead it is engineered in a way thought to be generally useful for QSAR
modelling.

3.3 Graph neural networks

An important paper in bringing graph convolutions into the context of machine learning on
molecules is Convolutional Networks on Graphs for Learning Molecular Fingerprints [25]. The

13



3. Previous work on graph neural networks

method is designed with ECFP as a starting point. The main difference is that no hash function
is used, but that the neighbourhood aggregation step involves matrix multiplication of each
neighbour with a learned weight matrix. The authors demonstrate that their model performs
similarly to ECFP if the weights are large and random, and better than ECFP if the weights are
then adjusted with training. Semi-Supervised Classification with Graph Convolutional Networks
[26] proposes another locally applied matrix operation and describes more precisely in what sense
it approximates a convolution. It has been pointed out [27] that the use of the term “convolution”
to describe the layers of these papers is a harsh approximation. Analogous to convolutional layers
of CNNs, they are applied locally to each node of the graph. They are however not true to the
mathematical concept of convolution as an integral that can be approximated by a weighted
sum. The summation of neighbours is not weighted.

Aside from the above-mentioned papers, there are several others [28] proposing various layers to
be used in a similar fashion. It is only a fraction of them that focus on molecular data. Others
may for example study large citation networks, where the task is typically to make one prediction
per node rather than one for the whole graph. Ideas that have shown to be effective for node-level
predictions can potentially be employed for graph-level prediction. An example of this is in how
the present work takes inspiration from Graph Attention Networks [29], covered in Section 4.2.
The commonality between all mentioned methods is that they use some form of operation to
locally aggregate information from neighbourhoods of nodes, and that the operation’s learned
parameters are kept the same regardless of where in the graph it is applied. The main source of
inspiration for this work, Neural Message Passing for Quantum Chemistry [30], highlights this
and defines a framework of which eight previously proposed models can be seen as special cases
(at least with small modifications of it). It is covered in detail in the following section.

3.4 The message passing neural networks framework

An MPNN consists of two steps. The first is called the message passing phase. In several
iterations, node states are updated using information from their intermediate neighbourhoods.
After the message passing follows the readout step, which transforms the set of final node states
into a fixed length vector in a way that is invariant to node ordering. All functions used are
constructed with neural network building blocks, frequently FFNNs, described in Section 2.2.1.
If the MPNN is to be used for making graph-level predictions, as in all experiments of this work,
this graph embedding vector is then fed through a FFNN to generate output appropriately
formatted for the task.

A formal description of how an MPNN turns a graph into an embedding is given in the following.
Node hidden states are initialized with the node features: h(0)

v = nv for all v in G. The message
passing phase then follows the update rule

m
(t)
v =

∑
w∈N(v)

Mt(h(t)
v ,h(t)

w , evw)

h(t+1)
v = Ut(h(t)

v ,m
(t)
v )

, (3.2)

where Mt and Ut are neural network blocks. The readout step following K iterations of message
passing is written

r = R
(
{(h(K)

v ,h(0)
v ) | v ∈ G}

)
, (3.3)
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embedding

Figure 3.3: MPNN steps. The first two panels illustrate the update of one node. The drawn
messages correspond to terms in the sum in equations (3.2). The right panel illustrates the
readout step, which aggregates the set of final node hidden states.

where R should be constructed from neural network blocks in such a way that it is invariant to
node ordering. An illustration of the whole procedure is provided in Figure 3.3.

In a powerful MPNN of the MPNN paper [30] , Mt, Ut and R consist of an edge network, a GRU
unit and a Set2Vec [31] block, respectively. The GRU unit has been described in Section 2.2.2.
This architecture is denoted ENNS2V throughout the remainder of this document. The edge
network is a FFNN taking the edge feature vector as input to generate a matrix Avw to be
multiplied with the neighbour hidden state. In other words, letting fNN denote the FFNN,

Mt(h(t)
v ,h(t)

w , evw) = Avwh(t)
w =

(
fNN(evw)

)
h(t)

w . (3.4)

The GRU layer treats h(t)
v as hidden state and m

(t)
v as input. Set2Vec uses an LSTM unit,

mentioned in Section 2.2.2 to sequentially take weighted averages of all the vectors of a set. The
weights are generated by computing one score per vector then normalizing them with softmax.
The final embedding depends on the whole sequence of averages.

Another MPNN showing good performance was originally proposed in Gated Graph Sequence
Neural Networks [32], though the version of it with hidden layers in the message function is more
recent [33]. Throughout this document it is denoted GGNN. The model assumes categorical edge
features and uses one FFNN per edge type. The message function can thus be written

Mt(h(t)
v ,h(t)

w , evw) = f
(evw)
NN (h(t)

w ) ,

where f (evw)
NN denotes the FFNN corresponding to the edge type indicated by evw. The update

function is a GRU just as for ENNS2V. The readout function is a graph gather step using two
FFNNs. More precisely,

R
(
{(h(K)

v ,h(0)
v )}

)
=
∑
v∈G

fNN(h(K)
v )� σ

(
gNN((h(K)

v ,h(0)
v ))

)
, (3.5)

where fNN and gNN are FFNNs, � denotes elementwise multiplication, σ is the sigmoid function
and the ( , ) of the right hand side denotes concatenation.
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4

New contributions

The starting point of the experimentation of this work is reimplementation of the ENNS2V
and GGNN models. This chapter covers the three main modifications of them. The first,
employment of the very recent SELU activation function, is minor in terms of novelty and
trivial when it comes to implementation. Nevertheless, it is a modification important enough
to be highlighted. The second is a method to make the MPNN message passing step more
expressive through weighted summation. The third idea is to remove the hidden states from the
nodes and instead put a hidden state in each directed edge.

4.1 The SELU activation function

A first and implementation-wise simple modification of the models copied from the literature
is to employ the scaled exponential linear unit (SELU) activation function [34]. This replaces
Eq. (2.2) with

SELU(x) =
{
λx if x > 0
λα(ex − 1) otherwise

,

where λ and α are set to constant values slightly larger than 1. Applying SELU gives neural
networks a “self-normalizing” property. The authors take a dynamical systems approach to
analyze how the mean and variance of activations are affected when iteratively applying large
layers with this activation function. They show that under reasonable assumptions the system
has an attractive fixed point, and analytically compute λ and α to set this point to mean 0 and
variance 1.

Because GNN architecture designs easily become deep, the employment of some sort of interme-
diate normalization is likely beneficial. The popular batch- and layer-normalization techniques
come with potential problems. For the former it is that the batch dimension for a batch of graphs
is hard to define; should it be normalized over the graphs, over the nodes, over the edges, or
maybe over all nodes or all edges of the whole batch? Layer-normalization may be problematic
as well because many layers of the architecture are small. SELU becomes the natural choice of
normalization scheme for GNNs.
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4. New contributions

4.2 A more expressive message passing step

Defining the new message passing step requires considering a somewhat more general version of
the MPNN framework. The non-weighted summation in Eq. (3.2) constitutes a limitation. The
generalization of the first row in Eq. (3.2) that is instead considered is

m(t)
v = At

(
h(t)

v , {(h(t)
w , evw) | w ∈ N(v)}

)
, (4.1)

where the aggregation function At, like the readout function, is invariant to the order of set
members.

A challenge in designing an aggregation function lies in eliminating the dimension corresponding
to the cardinality i.e. the unknown number of set members. The previously mentioned Set2Vec
block does this by generating weights with help of softmax to be able to take weighted averages,
as does the graph attentional layer of Graph Attention Networks [29]. The latter can be expressed
as the aggregation function

At

(
h(t)

v , {(h(t)
w , evw)}

)
=

∑
w∈N(v)

W h(t)
w

exp
(
gNN(W h(t)

v ,W h(t)
w )
)∑

w′∈N(v)
exp

(
gNN(W h(t)

v ,W h
(t)
w′ )
) ,

where W is a learned matrix and gNN is a neural network that takes two vectors and outputs
a scalar. The layer is computationally efficient, especially if keeping gNN small, and therefore
suitable for node classification in very large graphs. The layer is furthermore employed in a
multi-head manner, meaning that several instances of it, with matrices W (1), . . . ,W (L) and
neural networks g(1)

NN, . . . , g
(L)
NN, are applied in parallel and the results then concatenated.

Inspired by the graph attentional layer, the aggregation function used in the present work is
computationally heavier but potentially more expressive. It also takes edge features into account.
Two FFNNs f (evw)

NN and g(evw)
NN per edge type are used, that all output vectors of length dm. It

can be written

At

(
h(t)

v , {(h(t)
w , evw)}

)
=

∑
w∈N(v)

f
(evw)
NN (h(t)

w )�
exp

(
g

(evw)
NN (h(t)

w )
)∑

w′∈N(v)
exp

(
g

(evw′)
NN (h(t)

w′ )
) , (4.2)

where � and the fraction bar represent element-wise multiplication and element-wise division,
respectively. The cardinality is eliminated by taking dm weighted averages. One weight for
every element of every vector in the neighbourhood set is generated, that depends on every
other element of the set; along one dimension via softmax and along the other via g(evw)

NN . The
same is in principle true for a dm-headed graph attentional layer with W (1), . . . ,W (dm) ∈ R1×dn

(where dn is the length of the node vectors). The latter however potentially mitigates the power
of the neural networks g(1)

NN, . . . , g
(L)
NN, as they each only take two scalars as input, which in turn

are generated with matrices that also must be able to do the work of f (evw)
NN .

17



4. New contributions

Figure 4.1: Illustration of the information used to update the hidden state of a directed
edge.

4.3 Edge hidden states

A potential limitation of the MPNN framework is that every message pass entails aggregation
of information from a symmetric neighbourhood. This work investigates the idea of putting a
hidden state in each directed edge and aggregating hidden states from directed edges that are
neighbours in an edge sense. In the resulting message passing step, the update of a hidden state
has a corresponding direction. Note that even if the input graph is undirected, as is the case for
a molecule, it is considered directed during the message passing step.

A directed edge is considered a neighbour of another directed edge if it bites the latter’s tail.
What information is used to update one hidden state is illustrated in Figure 4.1. Formally, the set
of neighbours to an edge (v, w) in a graph G = (V,E) is the set N(v, w) = {(w, v′) ∈ E | v′ 6= v}.
The edge hidden state h(t)

vw of edge (v, w) at time t is updated according to
m

(t)
vw = At

(
evw, {hwv′ | (w, v′) ∈ N(v, w)}

)
h(t+1)

vw = Ut(h(t)
vw,m

(t)
vw)

, (4.3)

where the aggregation function At is invariant to the order of set members.

One hypothetical advantage compared to MPNN is explained in the following. Consider a small
graph of three nodes A, B and C connected as A–B–C, as illustrated in Figure 4.2. Suppose
information passage from A to C is relevant for the task. For information to travel this path,
two message passes are necessary. In the first pass, information is passed from A to B, as
desired. However, information is also passed from C to B, so that part of B’s memory is
being occupied with information that the final destination C already has. This back-and-forth
passing of information happening in an MPNN hypothetically dilutes the hidden state of node
B. When hidden states instead reside in the directed edges, it cannot happen. The closest thing
corresponding to a hidden state in B is the hidden states in the edges (directed towards B) AB
and CB. The update of C (more precisely the edge BC) uses information from AB, but not from
CB.

For the experiments of this work, node features are embedded into edge features by feeding the
concatenation of the raw edge and node feature vectors through a FFNN f emb

NN ,

e′vw = f emb
NN ((evw,nv,nw)) ,

before the message step is carried with e′vw in place of evw in (4.3). An aggregation function
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A
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C

Figure 4.2: The path for information to travel to a second order neighbour via two message
passing iterations. For information to get from A to C, it must get to B in an intermediate
step. Since the message passing iterations has no concepts of direction, some information
will be passed from C to B then back to C. Hypothetically this dilutes the information
storage of each node.

similar to (4.2) is used, namely

At

(
e′vw, {hwv′}

)
=

∑
x∈S

(t)
vw

fNN(x)�
exp

(
gNN(x)

)∑
x′∈S

(t)
vw

exp
(
gNN(x′)

) ,

where S(t)
vw = {e′vw} ∪ {hwv′ | (w, v′) ∈ N(v, w)}. After an edge message passing step of K

iterations, a node hidden state for each node is taken as the sum of the edge hidden state of
edges that the node is end of,

h(K)
v =

∑
w∈N(v)

h(K)
vw .

This is done to be able to utilize the same readout functions as seen effective for the MPNNs.
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5

Training and implementation details

The following covers details that need to be defined before setting up any experiment involving
the described models. The five datasets considered are described, as well as the format they
are stored as and what performance metrics are appropriate to use. What chemical information
is used for atom feature vectors and edge feature vectors is then covered, before loss functions
appropriate for the different types of datasets are described. The heaviest part of the chapter
is a description of Bayesian optimization, which is used for tuning the hyperparameters of the
models. Finally, a range of used technologies in the form of programming frameworks and
hardware is listed.

5.1 Data

Five different datasets are used for evaluation of models. All of them are public datasets provided
by and described in MoleculeNet: A Benchmark for Molecular Machine Learning [35], which
also recommends a performance metric as well as splitting method for each. All molecules in
all datasets are stored as strings formatted according to the simplified molecular-input line-
entry system (SMILES) specification [36] but are readily converted into corresponding graph
representations using a software package. The output of a molecule is a vector of one or more
values, which are binary labels for classification and real numbers for regression. Some of the
multitask datasets are sparse in the sense that aside from containing known positive and negative
labels, they also contain missing ones.

The estimated solubility dataset ESOL is a regression dataset with. The prediction target
for each compound is the solubility in water. Being able to predict this is useful for the lead
optimization step of the drug discovery process. The recommended performance metric for
this dataset is root-mean-square-error. The blood-brain barrier penetration dataset BBBP
contains one label per compound, telling whether it is able to enter the brain or not. The blood-
brain barrier of the human body is very effective at locking out foreign substances, including
many drugs. Hence the challenge is highly relevant in developing drugs targeting the central
nervous system. This is the only dataset that is not split randomly but instead according
to a scaffold method. This assigns molecules into clusters of high structural similarity, and
its use is considered to yield results that are more practically meaningful. The recommended
performance metric for this dataset, as well as for subsequently mentioned SIDER and Tox21,
is area under the curve of the receiver operating characteristic (ROC-AUC). The area refers
to an integral over decision thresholds, computed to eliminate a trade-off problem between
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true positive and false positive rates. The Side Effect Resource Database SIDER contains
information about adverse drug reactions. The version of it used by MoleculeNet groups side
effects into 27 groups. Two examples of categories are eye disorders and metabolic disorders.
The version of the Tox21 dataset used contains 8014 compounds. The literature contains
benchmarks on various subsets of Tox21, whose original version contains 12707 compounds [37].
The output labels represent outcome of various experiments indicating toxicity. The maximum
unbiased validation dataset MUV is the largest dataset used in this work. The 17 tasks are
challenging to predict biochemical target activities and the MoleculeNet benchmark is reported
in terms of area under the precision-recall curve (PR-AUC). PR-AUC is similar to ROC-AUC
but considered more appropriate for highly imbalanced datasets. MUV has very few actives. A
summary of all datasets used is seen in Table 5.1.

Table 5.1: Dataset details.

Dataset Number of
compounds

Number
of tasks

Task
type

Splitting
method

Performance
metric

ESOL 1128 1 regression random RMSE
BBBP 2039 1 classification scaffold ROC-AUC
SIDER 1427 27 classification random ROC-AUC
Tox21 7831 12 classification random ROC-AUC
MUV 93087 17 classification random PR-AUC

5.2 Atom features and bond features

In the experiments, each atom feature vector has 75 binary valued elements and is generated
with a readily available function in a utilized software package. It is a concatenation of one-
hot encoded vectors of various relatively low-level features. Specifically, it contains information
about chemical element, number of directly bonded neighbours, formal charge, whether the atom
has an unpaired valence electron, hybridization type, whether the atom is aromatic and number
of hydrogens. Each edge feature vector is a 4-element one-hot encoding of the bond types single,
double, triple and aromatic.

5.3 Loss functions

For ESOL, which is the only regression dataset, the mean squared error loss function is used.
Given a batch of predictions ŷ ∈ RN and target values y ∈ Rn, the loss is then

l(ŷ,y) = 1
n

n∑
i=1

(ŷi − yi)2 .

The remaining four datasets are all classification datasets, and three contain data about more
than one task. Furthermore, Tox21 and MUV contain missing labels; a compound may not have
values indicating activity or non-activity for all tasks. The main loss function for classification
in this work is a form of multitask cross entropy that ignores missing data points [37]. Let
Y ∈ {0, 1}n×p and M ∈ {0, 1}n×p represent a batch of target values in a multitask classification
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context, where Yij = 1 means compound i is known positive for task j, and Mij = 1 means the
datapoint is not missing. Given a matrix of rescaled network outputs Ŷ ∈ [0, 1]n×p, the loss
function is

l(Ŷ ,Y ) = − 1
m

n∑
i=1

p∑
j=1

Mij

(
Yij log(Ŷij) + (1− Yij) log(1− Ŷij)

)
,

where m =
∑n

i=1
∑p

j=1Mij is the number of present datapoints in the batch. The rescaling of
neural network outputs to [0, 1] gives numbers that can be interpreted as probabilities and is
done by using the sigmoid function.

Because all classification datasets considered have unbalanced positive/negative class ratios, a
variant of the aforementioned loss that incorporates task weighting is also investigated:

l(Ŷ ,Y ) = − 1
m

n∑
i=1

p∑
j=1

Mij

(
wjYij log(Ŷij) + (1− Yij) log(1− Ŷij)

)
, (5.1)

where wj is the the number of negatives for task j in the training set divided by the number of
positives for task j in the training set. Given a training set with few positives, this potentially
improves performance by making the training focus more on the few positives that are to be
found.

5.4 Parallelized Bayesian optimization of hyperparameters

Selection of hyperparameters for neural network architectures, especially more intricate ones,
has great impact on performance [38]. As a next step after guessing values based on experience
and intuition, the simplest method is a grid search, meaning an exhaustive evaluation of every
point of a selected subset of hyperparameter space. This approach is trivially parallelizable but
suffers greatly from the curse of dimensionality. With d hyperparameters, and ai the number of
included values along dimension i for i = (1, . . . , d), the number of evaluations is

∏d
i=1 ai. Since

one evaluation is a whole training run of a neural network, grid search easily becomes infeasible.
One way to allow for a large dimensionality is to do a random search, i.e. to sample points to
evaluate from a uniform distribution.

Bayesian optimization [39] (BO) is a strategy that in practice works for a relatively broad range
of functions. It is claimed to work for problems of dimensionality up to about d = 20 [39]. The
idea is to model the observations of the objective function as a stochastic process and use this
to give a hint on where it is best to evaluate the function next. After some initial number of
evaluations are made, a sequential iterative procedure starts, in which the stochastic process is
fit with all so-far observed evaluations then used to compute the next point to evaluate. The
assumptions on the objective function are loose; for example, it does not need to be differentiable
and its observations may be noisy.

The aforementioned properties render BO useful for the hyperparameter tuning of many neural
networks. The method has for example been applied to an at the time state-of-the-art convo-
lutional neural network with 9 hyperparameters [40]. The result was a drop in test error from
18% to 15% on image classification. GNNs tend to have a large number of hyperparameters and
thus a BO strategy to tune them is justified. The particular kind of setup used in this work is
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a parallelized version, that can for practical purpose be seen as a trade-off between a trivially
parallelizable random search and the sequential BO. A description is given in the following.

5.4.1 Description

In Bayesian optimization of a noisy objective function f , the observations made so far are
modelled as a stochastic process, in practice usually as a Gaussian process. In the context of
tuning a neural network, f(x) is the validation score resulting from a training run as a function
of the vector of hyperparameters x. Suppose the points that have been evaluated so far are
x1, . . . ,xn ∈ Rd and that yn = (y1, . . . , yn)ᵀ is the vector of observations of f . According to
the Gaussian process model, the observation at a new point x is then normally distributed with
mean

µn(x) = kn(x)ᵀ
(
Kn + σ2

nI
)−1

yn (5.2)
and variance

σ2
n(x) = k(x,x)− kn(x)ᵀ

(
Kn + σ2

nI
)−1

kn(x) , (5.3)
where k is a chosen kernel function, kn(x) = (k(x1,x), . . . , k(xn,x))ᵀ, Kn is the matrix such
that (Kn)ij = k(xi,xj) and σ2

n is the estimated variance of the prior.

Known properties of the posterior distribution defined by (5.2) and (5.3) are exploited to decide
where to next evaluate f . After collecting the new observation, the kernel parameters are refitted
and a new posterior is had, and the procedure continues iteratively. The point at which to make
the next evaluation is found through maximizing an acquisition function, which ideally takes on
larger values where it is better to make the next evaluation of f . A typical acquisition function
to use is expected improvement, which gives the maximization problem

xn+1 = argmax
x

E[f(x)− f∗n | (x1, y1, . . . ,xn, yn)] , (5.4)

where f∗n is the largest of the previous observations y1, . . . , yn.

The parallelized BO used in the present work entails a modification of the acquisition function
optimization step. The problem with (5.4) is that it returns only one point. The suggestion
xn+2 is acquired only after the costly objective evaluation of xn+1 is done, rendering the method
entirely sequential with respect to objective function evaluations. Local penalization [41] is one
method to instead acquire a batch of K points xn+k, . . . ,xn+K to evaluate in parallel, by
replacing (5.4) with

xn+k = argmax
x

(
E[f(x)− f∗n | (x1, y1, . . . ,xn, yn)]

k−1∏
j=1

ϕ(x,xn+j)
)

for k = 1, . . . ,K . (5.5)

The local penalty factor ϕ is a chosen function that is non-decreasing in |x− xn+k−1| and takes
values in [0, 1]. It penalizes the points xn+1, . . . ,xn+k−1, making the maximization in (5.5)
favour unevaluated points.

The kernel function models the spatial dependence of covariance between observations. A choice
that has been proposed suitable for hyperparameter optimization of machine learning models
[40] is the Matern 5/2 kernel

k(x,x′) = θ0
(
1 +

√
5r2(x,x′) + 5

3r
2(x,x′)

)
exp

(
−
√

5r2(x,x′)
)
,
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5. Training and implementation details

where

r2(x,x′) =
d∑

i=1

(xi − x
′
i)2

θ2
i

.

The above description leaves out a number of details that are beyond the scope of this work,
namely how to solve (5.4) and (5.5), how to choose ϕ and how to fit ϕ and k. These things are
internally handled by the utilized software.

5.5 Software and hardware

All model implementations are in the Python programming language. The most important
python library used is the deep learning framework PyTorch [42]. It essentially consists of a
collection of neural network building blocks that keep track of their own gradients, a collection
of gradient descent-based optimizers and support for GPU acceleration. Furthermore the chem-
informatics library RDKit [43] is used to turn SMILES strings into graphs and to generate
edge feature vectors. The DeepChem [44] library provides the function for generating atom
feature vectors. scikit-learn [45] is used to compute ROC-AUC and PR-AUC. The Bayesian
optimization implementation is that of GPyOpt [46].

The training of models is done on a GPU cluster managed through the job scheduling software
Slurm. Training of a model utilizes one GPU, which is either an NVIDIA GK210GL Tesla K80
or an NVIDIA GV100GL Tesla V100 PCIe.

24



6

Experimental setup

The main experimental work is roughly organized into two stages. The first is to use models
from the literature as a starting point, then add various extensions thought to possibly increase
performance. The models that appear most powerful are then selected for comparison to bench-
marks, to thoroughly evaluate their performance. After the benchmarking, one dataset/model
combination is evaluated once more, but with a modified data preprocessing step.

All evaluations of dataset/model combinations except those for the MUV dataset entail the
running of one hyperparameter optimization. Hyperparameter optimization of MUV falls outside
of the time plan for this project work, but standalone training runs for three models are carried
out. For every training run, part of the hyperparameter optimization or otherwise, the validation
score and test score considered are those of the model state of the epoch after which it showed
the highest validation score.

6.1 Model experimentation

All experiments in this section except that involving a modified loss function are done on the
BBBP dataset only. BBBP is conveniently small for this purpose. Furthermore, it is a classifi-
cation dataset and the results might therefore carry over better to SIDER, Tox21 and MUV.

The reimplemented models from literature, ENNS2V and GGNN described in Section 3.4, are
first evaluated without modification. The replacement of the ReLU activation function with
SELU in all FFNNs is then evaluated. Two more modifications of GGNN are investigated: an
attention mechanism in the message function and a slight change of the attention mechanism
of the readout function. The former is that described in detail in Section 4.2 and the resulting
model is denoted AttentionGGNN. The latter is done by replacing the sigmoid function in
Eq. (3.5) with softmax, so that the weights of an element in a term, corresponding to a node,
in the weighted sum depends on the weights of all other elements.

The model implemented with edge hidden states is denoted EdgeModel. It borrows building
blocks seen to work for the above models. The update function of the edge message passing step
is thus the GRU. As described in Section 4.3, the edge hidden states are aggregated into their
corresponding nodes after the message passing to be able to use the same readout function as
for the previous models. The readout function is the graph gather of Eq. (3.5), with the only
difference being that h(0)

v is replaced with h(K)
v .
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The final modification investigated that could be considered part of the model experimentation
phase is the modified loss function of Eq. (5.1). This is evaluated for one model but for the
Tox21 dataset in addition to BBBP. The modified loss function generates different weights for
different tasks, thus Tox21 is an appropriate dataset to evaluate it on as it contains multiple
tasks.

6.2 Benchmarking

Papers on deep learning methods [26, 30, 35] generally present results as a table that compares
the performance of new methods to that of previously known ones on several datasets. A proper
benchmark comprises a dataset preprocessed in a specific way, a prediction algorithm and a
performance metric. To be able to compare a new algorithm to previous ones, factors that are
not part of the algorithm itself need to be kept fixed.

To be able to thoroughly compare the implemented models to state-of-the-art from literature,
the benchmarking evaluations of this work are made according to the same scheme as used for
the molecular machine learning benchmark collection MoleculeNet [35]. The code provided by
the authors is used to generate three different training-validation-testing splits (meaning nine
subsets in total) in a 80/10/10 ratio, with the correct random seeds. The performance evaluation
of one model on one dataset is done by first hyperparameter optimizing the validation score of one
split, then rerunning training on each of the three splits using the found hyperparameter setting.
Mean and standard deviation over the reruns are then computed. BBBP is an exception to the
scheme with three splits. Since scaffold (not random) splitting is prescribed for this dataset,
only one split is used.

The number of epochs per training run is set so that the individual training runs appear to
converge. This is done for each dataset through guesswork followed by a small number (≤ 3)
of preliminary training runs. The chosen values are included in Appendix A. The values are
doubled before starting the reruns, as this gives at least some likelihood for improvement at a
small computational cost.

6.3 Modified data preprocessing

The data aggregated with MoleculeNet code has two traits that it would not have if using a
modified preprocessing step, which is arguably more appropriate. The first is that missing labels
are treated as negatives. This means that the graceful handling of missing labels described in
Section 5.3 is not used, and that the computation performance metrics includes negative labels
that really represent missing information. The second is that some dataset samples contain small
counterions together with the druglike molecule, the presence of which ought to be irrelevant
when the substance is dissolved in the blood.

To investigate the impact of the factors above, the evaluation of AttentionGGNN on Tox21 is
run again, but using a preprocessing procedure that includes the information about missing
labels and that removes fragments not covalently bonded to the druglike molecules. Tox21 is
chosen because it contains information about missing labels.
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6. Experimental setup

6.4 Hyperparameter search

The setup of the parallel Bayesian optimization (BO) comprises many choices, notably a search
space need to be designed. The tuning is largely a matter of trial-and-error and a trade-off
of computational resources and time, not the result of a rigorous analysis. Two principal BO
parameters are batch size (of the parallel BO, i.e. not related to the batch size when training
a neural network) and number of iterations. For the model experimentation phase, iterations
are set to 20 and batch size to 10. This results in a total of 210 training runs, of which 10
are of the initial batch, which evaluates randomly sampled hyperparameter settings. From the
model experimentation logs it appears large improvements rarely happen towards the end of an
optimization. For the benchmark optimizations the number of iterations is therefore lowered
to 9, for a total of 100 training runs. The total optimization time varies between models and
datasets. The fastest ones take approximately two days while the slowest take eight.

In the following are some rules of thumb on how to set up the search space to render the method
effective with the above settings. Table 6.1 shows the domain setting used for GGNN. Domains
for three other models are found in Appendix B.

6.4.1 Practical setup of Bayesian optimization

To find settings and hyperparameter domains of the BO routine, a phase of preliminary experi-
mentation turned out necessary. Some practical takeaways from this tuning, that may be useful
for successful BO in general, are the following:

• Including 10 well-chosen hyperparameters in the optimization and setting the rest to fixed
values yields good results. Increasing the dimensionality may lead to worse results in a
practical context.

• Hyperparameters commonly reported in powers of 10, e.g. learning rate and weight decay,
need rescaling before being passed to the BO. This can be achieved either by simply taking
the logarithm or by using a general input warping scheme.

• When working with a high dimensional domain, it is better to keep some integer-valued
ranges sparse rather than dense. As an example, it might be better to let a hidden layer
size take on values in {25, 50, 100} than in {25, 26, . . . , 100}.

• It is vital to define the domain so that all of its values lead to at least reasonable perfor-
mance. This is especially true for hyperparameters that abruptly break the learning if set
too big or too small such as the log-rescaled learning rate.

Some further practical observations, more specific to hyperparameter optimization of GNNs,
are:

• Leaving the number of hidden layers of a given FFNN fixed and varying the hidden layer
size is more effective than varying both of them.

• When including hyperparameters for explicit regularization in the form of weight decay
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6. Experimental setup

on all parameters or dropout ratios for the various FFNNs, all appeared to be set to very
small values by the BO. Setting all of them to 0 up front yields better results.

• The message size and hidden layer sizes of FFNNs of the message passing step should be
set relatively small, i.e. ∼ 35.

• The gather width and hidden layer sizes of the output FFNN should be set relatively big,
i.e. ∼ 350.

The BO domain for GGNN shown in Table 6.1 is an example of a domain defined according
to the above specified rules of thumb. A choice remaining to explain is the fixed value 50 for
the batch size, which is chosen more for practical reasons than anything else. 50 appears to
be a good trade-off on the given hardware, allowing for headspace memory-wise when tuning
e.g. the FFNN sizes while letting the training run at close to maximum speed. The fact that
each evaluation in a batch finishes in the same amount of time also renders the optimization
faster, as the routine will not start a new BO batch of evaluations before the whole previous
one has finished. Varying the batch size may theoretically yield better performance as it affects
the degree of stochasticity of the gradient descent, but the aforementioned advantages outweigh
this.

Table 6.1: Domain for hyperparameter optimization of GGNN. The model
specific neural network blocks are defined in Section 3.4.

Hyperparameter Domain/value

Varied

Learning rate [10−5.5, 10−4]a
Message passes {1, 2, . . . , 10}
Message size {10, 16, 25, 40}

Hidden dimension of f (evw)
NN {50, 85, 150}

Hidden dimension of fNN {15, 26, 45, 80}
Hidden dimension of gNN {15, 26, 45, 80}

Readout dimension of fNN and gNN {30, 45, 70, 100}
First hidden dimension of output FFNN {360, 450, 560}
Second hidden dimension of output FFNN [0.2, 0.6]b

Dropout p of output FFNN [0.0, 0.1]

Fixed

Batch size 50
Weight decay 0

Hidden layers in f (evw)
NN , fNN and gNN 2

Hidden layers in output FFNN 2
Dropout p of f (evw)

NN , fNN and gNN 0
a Log-rescaled
b Relative to the first hidden dimension
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Results

This chapter is divided into sections that roughly appear in the chronology of the experimental
work. First, results from the model extension phase are reported. This includes scores on one
dataset for literature models and their extended versions, as well as an evaluation of performance
impact from employing the modified classification loss function together with one model. Then,
the thorough benchmarking process is covered. Scores for three new models are compared to
literature values, for four different datasets. After that, performance impact from refining the
data preprocessing is shown, to give a hint on how important data curation is when evaluating
machine learning models on molecular data. Finally, scores for some standalone runs on the
MUV dataset are reported.

7.1 Model extension phase

The results of the model extension phase are summarized in Table 7.1. Out of the two models
reimplemented as described in literature, ENNS2V outperforms GGNN. Upon switching activa-
tion function from ReLU to SELU however, the GGNN is at an advantage. While the addition
of softmax to the GGNN with ReLU leads to an improvement, the same thing reduces perfor-
mance of the GGNN SELU. Addition of attention to the message passing phase of the GGNN
SELU is neutral or slightly negative. EdgeModel appears to be on par with the best performing
GGNN. The three models showing best performance at this stage, and that are thus selected
for further and more careful evaluation, are one instance each of GGNN, AttentionGGNN and
EdgeModel. All use the SELU activation function.

7.1.1 Comparison of loss functions for classification

According to the result of two hyperparameter optimizations on two different classification
datasets, the modified weighted loss function yields no apparent performance benefit. The
best validation score of the best training run of the hyperparameter optimizations is seen in
Table 7.2.
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Table 7.1: Performances in the form of ROC-AUC of different models on the BBBP dataset.
The validation scores reported are from the best model of the best training run of a parallel
BO of 20 iterations. The total number of training runs per model is 210 and each training
run was allowed 100 epochs. The models chosen for benchmarking are highlighted in bold.

Model Extension Validation score

ENNS2V – 0.963995
SELU 0.968168

GGNN

– 0.949631
gather softmax 0.959627

SELU 0.976514
SELU+gather softmax 0.964771

AttentionGGNN SELU 0.972147
SELU+gather softmax 0.948175

EdgeModela SELU 0.976029
a Only run for 17 iterations as opposed to 20, because too little
GPU-time was allocated at the cluster and a rerun suspected
to have small impact on result

Table 7.2: Performances in the form of ROC-AUC using different classification loss func-
tions. The validation scores reported are from the best model of the best training run of a
parallel BO. For BBBP, BO iterations were set to 20 and epochs to 100. For Tox21 they
were set to 10 and 200.

Dataset Validation score Validation score
Normal loss function Modified loss function

BBBP 0.972147 0.971370
Tox21 0.852888 0.842929

7.2 Comparison to benchmarks

The results of the new experiments are summarized together with MoleculeNet results in Ta-
ble 7.3. All three of GGNN, AttentionGGNN and EdgeModel use the SELU activation function,
as seen beneficial in the previous section. The measured improvements of the new models vary
between datasets. On ESOL, all three new models beat the best MoleculeNet model with re-
gards to both validation score and test score. On BBBP and SIDER, MoleculeNets best graph
model test scores are beaten by AttentionGGNN and EdgeModel, respectively. On Tox21, all
new models beat the validation scores of the best MoleculeNet model, but none matches the
test scores. Of the new models, EdgeModel consistently yields the best average validation score,
while the test scores do not exhibit the same pattern.

7.3 Impact of preprocessing

Evaluation of the impact of using a more refined preprocessing shows that this is indeed an
important factor in evaluating machine learning methods on molecular data. The scores resulting
from two different preprocessing procedures are seen in Table 7.4.
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Table 7.3: Comparison of three implemented models to benchmarks from MoleculeNet.
The results of the implemented models were generated according to the same pattern as
used in MoleculeNet. The best models of MoleculeNet are chosen based on test score. The
best validation scores and test scores of implemented models (i.e. the best of the non-
MoleculeNet scores) are highlighted in bold.

Benchmark Model Validation score Test score

ESOL RMSE

Best of MoleculeNet 0.55± 0.02 0.58± 0.03
Best graph model of MoleculeNet 0.55± 0.02 0.58± 0.03

GGNN 0.247± 0.008 0.279± 0.029
AttentionGGNN 0.258± 0.008 0.276± 0.048

EdgeModel 0.255± 0.019 0.295± 0.024

BBBP ROC-AUC

Best of MoleculeNet 0.964± 0.000 0.729± 0.000
Best graph model of MoleculeNet 0.943± 0.002 0.690± 0.009

GGNN 0.965± 0.004 0.656± 0.040
AttentionGGNN 0.955± 0.004 0.713± 0.010

EdgeModel 0.965± 0.001 0.689± 0.014

SIDER ROC-AUC

Best of MoleculeNet 0.650± 0.013 0.684± 0.009
Best graph model of MoleculeNet 0.609± 0.021 0.638± 0.012

GGNN 0.649± 0.021 0.633± 0.018
AttentionGGNN 0.654± 0.013 0.632± 0.012

EdgeModela 0.662± 0.006 0.642± 0.025

Tox21 ROC-AUC

Best of MoleculeNet 0.825± 0.013 0.829± 0.006
Best graph model of MoleculeNet 0.825± 0.013 0.829± 0.006

GGNN 0.834± 0.004 0.821± 0.013
AttentionGGNN 0.840± 0.007 0.823± 0.004

EdgeModel 0.841± 0.010 0.820± 0.004
a Only includes 40 training runs instead of 100 because too little GPU-time was allocated at
the cluster and a restart suspected to have small impact on result

Table 7.4: Performance in the form of ROC-AUC on Tox21, using different preprocessing
procedures. The BOs were run in batches of 10 for a total of 100 training runs. Epochs of
each hyperparameter optimization training run were set to 250.

Preprocessing Validation score Test score
MoleculeNet 0.840± 0.007 0.823± 0.004
Modified 0.859± 0.004 0.847± 0.005

7.4 MUV performance

The result of standalone training runs on MUV for different models and under different prepro-
cessing schemes is shown in Table 7.5. Hyperparameter settings are taken from hyperparame-
ter optimization results for Tox21. AttentionGGNN with modified data preprocessing yields a
higher reported test score than for any other case. The importance of preprocessing and graceful
handling of missing labels is increasingly clear.
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Table 7.5: Results of standalone training runs on MUV PR-AUC, with the two different
preprocessing schemes. Each training run ran for 300 epochs.

Preprocessing Model Validation score Test score

MoleculeNet

Best of MoleculeNet 0.202± 0.032 0.184± 0.020
Best graph model of MoleculeNet 0.127± 0.028 0.109± 0.028
Graph Convolution of MoleculeNet 0.049± 0.023 0.046± 0.031

AttentionGGNN 0.118 0.053

Modified
GGNN 0.190 0.175

AttentionGGNN 0.177 0.189
EdgeModel 0.212 0.178
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Discussion

This chapter begins with an analysis of the experimental results, which appear strong. The
experimental work has however unravelled that there is a great need for skepticism towards the
kind of numerical scores reported, motivating the critical discussion that then follows. Finally,
the discussion is wrapped up with a description of some identified advantages and disadvantages
of the class of implemented models.

8.1 Performance

In the model extension phase, the clearest of all improvements is that achieved by employing
SELU in the literature GGNN. Doing the same modification to the literature ENNS2V model
seems to give an improvement too, but it’s not as clear. A hypothetical explanation could be
that the original models are dissimilar with regards to depth. The SELU authors demonstrate
clearly that the activation function leads to the greatest improvement for deep networks. The
given GGNN implementation is effectively deeper than the ENNS2V, having two hidden layers
in the message function and two hidden layers in the readout function. The latter effectively
has a linear transformation in the message function and no concept of depth in the Set2Vec
readout function. When it comes to the switching from simple sigmoid to softmax in the GGNN
readout function, it interestingly seems to lead to improvement when SELU is not involved, but
not if it is. Hypothetically this could be attributed to a need of normalization in the GGNN, as
both SELU and softmax can be viewed as normalizing methods. Adding the attention aggregate
function in the message function of the GGNN with SELU does not lead to an improvement, but
neither is the decrease in performance significant. The same is true for the comparison between
GGNN with SELU and the EdgeModel.

When comparing models to MoleculeNet benchmarks using the prescribed dataset splits, met-
rics and evaluation pattern, the emerging picture is that all three new models are competitive
with state-of-the-art. Looking more closely, one observes variation between datasets. The clear-
est improvements are seen for ESOL, where all the three new models outperform all Molecu-
leNet models with good margin. For BBBP, AttentionGGNN outperforms the best graph-based
MoleculeNet model with a relatively good margin, but not the overall best model. Despite not
beating all competition, this represents progress because the graph-based models require no fea-
ture engineering. The winning MoleculeNet model is a kernel SVM on molecular fingerprints, a
featurization hand-engineered specifically for molecules.
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There seems to be a pattern in that the newly run experiments have a bigger difference between
validation score and testing score than MoleculeNet experiments. One thing that could in
principle affect this is the hyperparameter optimization, as it adapts the hyperparameters to
the validation set provided to it. This effect should however be small, since the reported score is
the average of three reruns, of which only one uses the same validation set as the hyperparameter
optimization. The validation set is in the context of a rerun a tool to decide which model to
use; the reported testing score is that which the model performs at the point during training
that it achieves the highest validation score. It is possible that the corresponding method
used by MoleculeNet is not exactly the same. Nevertheless, a high validation score indicates a
potentially powerful model because there are things that can increase the generalizability beyond
the validation set, for example the use of a bigger validation set.

The uncertainty in impact of the use of validation score during training is only one reason why
benchmarking machine learning models is inherently difficult.

8.2 Challenges in interpreting results

There is a clear increase in measured scores when preprocessing the Tox21 and MUV data
differently, by excluding missing labels instead of treating them as negative and cleaning the
samples of counterions. This is on one hand an illustration of the importance of taking meticulous
care to gracefully curate data, on the other it is one more example of something that may distort
benchmark comparisons.

Further reasons to be skeptical about the numerical results lie in the stochasticity of several steps
in the evaluation scheme. The hyperparameter optimization is one of them. Being notoriously
expensive, running it more than once to be able to compute standard deviations is practically
infeasible. The initialization and training of each model are other steps involving stochasticity.
It is difficult to assess whether results are a product of luck in finding good hyperparameters.
Assuming this step is repeatable, there may still be luck involved in the three reruns.

A last potential confounding factor that should be mentioned is the impact of the different
Bayesian optimization setup. MoleculeNet does 20 hyperparameter evaluations in sequence
while the present work uses 10 iterations of 10 evaluations each. How much impact this has
would be expensive to assess. In one view, the use of a more sophisticated method is justified in
the case of the new models, as their number of hyperparameters is inherently large. MoleculeNet
optimizes a notably smaller number of hyperparameters.

8.3 Advantages and disadvantages of the approach

Aside from the demonstrated high performance on certain tasks, the most immediate advantage
of using GNNs for molecular property prediction is the elimination of feature engineering. Com-
peting methods may use for example the fixed ECFP featurization. This is relatively “deep”, as
it works on molecular graphs. The design details of ECFP is nevertheless a case of feature en-
gineering to achieve something which works well for cheminformatics tasks. A GNN is “deeper”
since an input graph does not necessarily have to be a molecule.
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Another advantage to GNNs is that, as any neural network, they are flexible. Taking any of
the GNNs described in this document, but removing the output FFNN, what one obtains is a
neural network building block that generates a potentially powerful graph embedding. A new
field with great potential that uses GNNs this way is that of de novo molecular generation [47,
48]. These use neural networks to represent a distribution of possible building steps, conditioned
on the current molecular graph. A building step can for example be to add a node at a certain
place in the graph. Starting from a smaller molecular graph or just one atom, building steps are
sampled iteratively to generate larger molecular graphs one step at a time.

The above advantages come with caveats. When designing a GNN architecture, one easily
ends up with a large number of hyperparameters. This necessitates the use of well-engineered
methods to optimize them, such as a properly set up Bayesian optimization. The automation
of domain specific feature engineering comes at the cost of increasing the size of this extra layer
of parameters in need of tuning. Furthermore, GNNs require a long time to train, as does any
large neural network. This is despite the use of powerful GPU acceleration. During some quick
sanity-check experiments during the project work a known to be fast random forest classifier
has been seen to train to convergence in less than one minute on hardware that needs an hour
to train a GNN. The long training time becomes especially problematic given the necessity to
train many models to find good hyperparameters.

Using MPNN architectures is computationally expensive, and the new modifications make them
more so. While in principle the methods work on any graphs, the cost makes them infeasible
for graphs that are large and/or dense. The molecular graphs of the datasets considered in this
work largely fulfill the following requirements:

• small size (5-50 nodes rather than thousands)

• relatively few edges

• low maximum node degree (an atom having more than three non-hydrogen neighbours is
very rare)

It can be argued that for the specific domain of drug discovery, large computational cost is not
an issue in light of the unavoidable large cost of developing any medicine. For other domains
and applications, this might not be the case.
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Conclusion

This thesis provides a detailed description of a class of neural network architectures for graphs,
as well as three newly proposed modifications that could be made to its previous instances in the
literature. Furthermore, it describes how to use an appropriate parallel Bayesian optimization
to tune their hyperparameters.

The comparison to benchmarks shows that the new implementations are at least on par with
state-of-the-art machine learning techniques for molecular property prediction. For certain
benchmarks, all previous methods are outperformed. The cases in which the new models
outperform previous graph-based models but are still beaten by classical algorithms on fixed
featurizations, can also be seen as representing progress. This is because graph-based models
are truer examples of deep learning in the sense that they require less feature engineering. The
comparison of graph-based models with older techniques such as SVM is between something in
its infancy and something mature. That the former shows comparable performance at all indi-
cates that there is more to come if refining the approach. A key learning from the benchmarking
process is that future work on deep learning on molecules needs to be carried out with a great
deal of caution in terms of preprocessing datasets appropriately.

The non-need of feature engineering is a characteristic of graph neural networks that stands
out. It is debatable, however, how truly general the class of implemented methods is; the
computational cost of the architectures restricts them to practical use on relatively small graphs.
Another advantage is the flexibility of the architectures, rendering them useful in for example
de novo molecular generation.
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A

Number of epochs

Table A.1: Number of epochs used in hyperparameter optimizations.

Dataset Number of epochs
ESOL 1200
BBBP 600
SIDER 1000
Tox21 250
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B

Hyperparameter domains

Table B.1: Domain for hyperparameter optimization of ENNS2V. fNN is
defined in Section 3.4. Set2Vec is defined in the corresponding paper[31].

Hyperparameter Domain/value

Varied

Learning rate [10−5.5, 10−4]a
Message passes {1, 2, . . . , 10}
Message size {10, 16, 25, 40}

Hidden dimension of fNN {50, 85, 150}
Set2Vec LSTM iterations {5, 6, . . . , 12}b
Set2Vec memory size {15, 23, 35, 50}b

First hidden dimension of output FFNN {360, 450, 560}
Second hidden dimension of output FFNN [0.2, 0.6]c

Dropout p of output FFNN [0.0, 0.1]

Fixed

Batch size 50
Weight decay 0

Hidden layers in fNN 3
Hidden layers in output FFNN 2

Dropout p of fNN 0
a Log-rescaled
b Analogous to half GGNNs readout dimension
c Relative to the first hidden dimension
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B. Hyperparameter domains

Table B.2: Domain for hyperparameter optimization of AttentionGGNN. The
model specific neural network blocks are defined in Section 3.4 or 4.2.

Hyperparameter Domain/value

Varied

Learning rate [10−5.5, 10−4]a
Message passes {1, 2, . . . , 10}
Message size {10, 16, 25, 40}

Hidden dimension of f (evw)
NN {50, 85, 150}

Hidden dimension of g(evw)
NN {50, 85, 150}

Hidden dimension of fNN {15, 26, 45, 80}
Hidden dimension of gNN {15, 26, 45, 80}

Readout dimension of fNN and gNN {30, 45, 70, 100}
First hidden dimension of output FFNN {360, 450, 560}
Second hidden dimension of output FFNN [0.2, 0.6]b

Dropout p of output FFNN [0.0, 0.1]

Fixed

Batch size 50
Weight decay 0

Hidden layers in f (evw)
NN , g(evw)

NN , fNN and gNN 2
Hidden layers in output FFNN 2

Dropout p of f (evw)
NN , g(evw)

NN , fNN and gNN 0
a Log-rescaled
b Relative to the first hidden dimension
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B. Hyperparameter domains

Table B.3: Domain for hyperparameter optimization of EdgeModel. Message
fNN and gNN, and f emb

NN , are defined in Section 4.3. Gather fNN and gNN are
defined in Section 3.4.

Hyperparameter Domain/value

Varied

Learning rate [10−5.5, 10−4]a
Message passes {1, 2, . . . , 8}

Hidden dimension of f emb
NN {60, 105, 180}

Edge embedding size {30, 50, 80, 130}
Hidden dimension of message fNN {50, 85, 150}
Hidden dimension of message gNN {50, 85, 150}
Hidden dimension of gather fNN {15, 26, 45, 80}
Hidden dimension of gather gNN {15, 26, 45, 80}

Readout dimension of gather fNN and gNN {30, 45, 70, 100}
First hidden dimension of output FFNN {360, 450, 560}
Second hidden dimension of output FFNN [0.2, 0.6]b

Dropout p of output FFNN [0.0, 0.1]

Fixed

Batch size 50
Weight decay 0

Hidden layers in f emb
NN 2

Hidden layers in message fNN and gNN 2
Hidden layers in gather fNN and gNN 2

Depth of output FFNN 2
Dropout p of f emb

NN 0
Dropout p of message fNN and gNN 0
Dropout p of gather fNN and gNN 0

a Log-rescaled
b Relative to the first hidden dimension
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