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Abstract 

In Europe, bicyclist road fatalities have increased for the last ten years. Active safety 

systems such as Automated Emergency Braking can give a considerable benefit in 

reducing bicyclist road fatalities, but knowledge on when they should intervene is still 

limited. Estimation of Time to Collision (TTC) when the driver starts planning to 

overtake (planning point) could help in improving active safety systems, since TTC is 

a good estimate of the available mitigation time for the algorithms to intervene. This 

thesis, carried out using naturalistic driving data from the UDRIVE project, mainly 

consisted in extracting data from bicyclist overtaking scenarios on rural road and 

modelling TTC and longitudinal distance to quantify how they are influenced by 

different factors. The result of the estimation is that the presence of oncoming traffic 

and an increase in bicyclist lateral distance caused a decrease of both TTC and 

longitudinal distance at the planning point. Moreover, male drivers showed higher 

TTC at the planning point than female drivers. Interestingly, the planning point was 

not affected by the overtaking strategy.  
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Abbreviations 

 

AEB Automated Emergency Braking 

CAN Controller Area Network 
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UDRIVE eUropean naturalistic Driving and Riding for Infrastructure & Vehicle 

safety and Environment 

 

Symbols – Manual annotation and data extraction 

 

𝑑 Bicyclist longitudinal distance 

𝑑𝑃𝑃 Longitudinal distance at the planning point 

𝑑𝐿𝑏  Bicyclist lane position 

𝑑𝐿𝑒𝑔𝑜  Ego vehicle lane position 

𝑅𝑉 Relative Speed 

𝑇  Time axis 

𝑇𝑏𝑒𝑔𝑖𝑛 Beginning of the segment 

𝑇𝑒𝑛𝑑 End of the segment 

𝑇𝑃𝑃 Planning point 

𝑇𝑆𝑃 Steer away point 

𝑇𝑠 Time stamp in which ego vehicle and bicyclist are travelling at the same 

speed  

𝑇0  Time stamp in which the bicyclist disappears from MobilEye 

𝑇𝑥 Time stamp in which the bicyclist appears from MobilEye 

𝑇𝑇𝐶 Time to collision 

𝑇𝑇𝐶𝑃𝑃 Time to collision at the planning point 

𝑇𝑇𝐶𝑆𝑃 Time to collision at the steer away point 

𝑉𝑏 Bicyclist speed 

𝑉𝑒𝑔𝑜 Ego vehicle speed 

𝑥̃  Bicyclist longitudinal distance before bicyclist appears 

𝑥𝑀𝐸   Bicyclist longitudinal distance from Mobileye 

𝑦𝑀𝐸  Bicyclist lateral distance from MobilEye 

𝑦𝑃𝑃  Bicyclist lateral distance at the planning point 

𝑦𝑆𝑃  Bicyclist lateral distance at the steer away point 

𝜏 Auxiliary integration variable 

𝜓 Heading angle 
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𝑥  Car-fixed longitudinal coordinate 
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Symbols – Generalised Linear Mixed Model 

 

𝐴𝐼𝐶 Akaike Information Criterion 

𝑔(⋅) Link function 

𝑅𝑎𝑑𝑗
2  Adjusted coefficient of correlation 

𝑅𝑜𝑟𝑑
2  Ordinary coefficient of correlation 

𝑢 Random effects vector 

𝑤  Weight 

𝑥  Observable factor 

𝑿 Fixed effects design matrix 

𝑦 Response 

𝒁 Random effects design matrix 

𝛽 Fixed effects vector 

𝜖 Model offset 

𝜇 Mean 

𝜂  Linear predictor 

𝜎 Standard deviation 





 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2019:64  1 

 

1 Introduction 

Bicycles are a common mode of transportation, either for commuting or for sports 

(Pucher, J., et al. , 2011). Bicyclists are classified as Vulnerable Road Users (VRUs) 

because of the limited amount of protection they have, compared to drivers in motor 

vehicles (SWOV, 2012). Bicyclists are also bounded to look straight not to fall and do 

not have rear mirrors (Nero, 2017). In the United States, the number of bicyclist road 

fatalities is estimated to be twelve times higher than the road fatalities involving 

drivers in motor vehicles (Pucher, J., Dijkstra, L. , 2003). A recent study in Europe 

has shown that bicyclist road fatalities increased from 6% (2007) to 8% (2016) of all 

road fatalities in Europe (European Commission, June 2018). Accidents in which the 

driver approaches the bicyclist from behind are the most likely to be fatal or to result 

in severe injuries (Feng, F., Bao, S., 2018) and are more likely to occur on rural roads 

rather than in urban areas (Boufous, S., et al., 2012). Moreover, the high speed of 

motor vehicles compared to bicyclists make overtaking manoeuvres particularly 

dangerous (Dozza, M., et al., 2015). More details about how an overtaking is defined 

is given in Section 2.1. 

  

Active safety systems such as Automated Emergency Braking (AEB) can have 

a strong influence in bicyclist road injuries or fatalities reduction, given that most of 

the collisions between bicyclists and motor vehicles is due to driver or bicyclist 

inattention (Räsänen, M., Summala, H., 1998) (The Royal Society for the Prevention 

of Accidents, 2017). To date, Bicyclist-AEB efficiency is limited due to its high 

conservativeness, which implies activation only when the scenario is considerably 

dangerous (Duan, J., et al., 2017). Moreover, the higher speed of bicyclists compared 

to pedestrians makes them difficult VRUs to recognize: the collision is not always 

avoided in EuroNCAP tests (EuroNCAP, 2018).  

Estimation of Time to Collision (TTC) at the planning point during an 

overtaking of a bicyclist can contribute in improving the existing active safety 

systems, since it is an estimation of the time available for the AEB algorithm to 

intervene and mitigate or avoid a collision. 

 
The aim of this thesis is to provide a method to identify bicyclist overtaking 

manoeuvres on rural road, to define and identify the planning point, to calculate TTC 

and longitudinal distance at the planning point and to create a model of the extracted 

TTC and longitudinal distance to quantify the influence of external factors. The long-

term objective is to contribute in the improvement of the existing active safety 

systems in terms of bicyclist road injuries and fatalities reduction. The thesis is based 

on Naturalistic Driving Data (NDD) from the eUropean naturalistic Driving and 

Riding for Infrastructure & Vehicle safety and Environment (UDRIVE) project. 

 

1.1 Problem definition 

 

• When is the planning point? 

 

• Which signals and information are needed for the estimation of TTC at the 

planning point? 

 

• Which factors significantly influence the TTC at the planning point? 
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2 Literature review 

In Section 2.1, the definition of overtaking is provided. Section 2.2 provides a 

description of how drivers plan to overtake. 

 

2.1 Definition of overtaking 

An overtaking is defined in the Collins dictionary as “an act or the process of moving 

past another vehicle or person travelling in the same direction” (Collins Dictionary, 

2019). An overtaking can be described with higher level of detail by defining a 

strategy and by dividing it into different phases. 

 

Firstly, an overtaking must be characterized by a certain strategy, that defines 

how the overtaking is performed. In a previous study (Hegeman, G., et al., 2005), the 

overtaking strategy was defined as follows:  

 

• Accelerative - the driver slows down and follows the leading road user for a 

while before passing. 

 

• Flying - the driver overtakes the leading road user keeping a relatively 

constant speed. 

 

• Piggy backing - the driver is following its leading vehicle in a row, while the 

leading vehicle is performing an overtaking. 

 

• 2+ - the driver overtakes more than one vehicle in the same manoeuvre. 

 

Secondly, an overtaking is not a punctual event, but it has a certain duration that 

allows to divide it in different phases and to potentially analyse each of them 

separately. The definition used in this thesis is the one provided by Marco Dozza et al. 

(Dozza, M., et al., 2015), to be consistent with the definition adopted in previous 

works (Schindler, R., Bast, V., 2015) (Kovaceva, J., et al., 2018) (Nero, 2017) (Rasch, 

2018) (Panero, 2018). 

 

• Phase 1, also called approaching phase, is the phase in which the driver 

approaches the road user from behind. 

 

• Phase 2, also called steering away phase, is the phase in which the driver 

diverges from its current lane position, to avoid the collision. The steer away 

point is the point in time in which the driver starts diverging by steering. 

 

• Phase 3, also called passing phase, is the phase in which the driver is inside 

the passing zone: this zone is defined from two meters behind to two meters 

ahead of the passed road user. 

 

• Phase 4, also called returning phase, is the phase in which the driver exits the 

passing zone and returns the same lane position as before performing the 

overtaking. 
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The phases are illustrated in Figure 1. 

  

 
Figure 1  Different phases of the overtaking (M. Dozza et al., 2015). 

 

2.2 Planning to overtake 

When any moving object is perceived (perception), the driver starts planning and, 

then, decides an action to perform (Zago, M., et al., 2008). Specifically, in describing 

the decision-making process in bicyclist overtaking manoeuvres, perception indicates 

the moment in which the bicyclist is perceived by the driver, planning consists in 

deciding if the overtaking should be performed or not and action consists in preparing 

to overtake by, for instance, pressing the gas pedal, activating the turn indicator or 

steering away. The focus in this thesis is planning: according to previous studies 

(Hegeman, G., et al., 2005), when the driver is planning to overtake, the following 

questions need to be answered: 

 

• Is it needed to overtake? This mainly depends on behavioural factors, 

as well as on the ego vehicle speed.  

 

• Is it allowed to overtake? The driver checks the surroundings, looks 

the road signals or the lane markings to understand if overtaking is 

allowed by the regulations. 

 

• Is there the opportunity to overtake? The driver wants to know if there 

is any possible danger in performing the overtaking. In particular, the 

driver predicts the path to travel during the manoeuvre and assesses 

whether it is dangerous or not. 

 

The planning point is defined as the moment when planning starts. The 

decision to overtake is made when all the three questions above have an affirmative 

answer, and is followed by an action, e.g. activating the turn indicator or steering 

away. 
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3 Methodology 

In this chapter, the methodology is provided. Section 3.1 is a brief introduction to 

NDD and the tools used in this thesis. Section 3.2 is a list of the raw data used. 

Section 3.3 provides the procedure used to reduce data before performing manual 

annotation, explained in Section 3.4, and data extraction, explained in Section 3.5. 

Finally, Generalised Linear Mixed Models are used to model the TTC and the 

longitudinal distance at the planning point, as explained in Section 3.6. 

  

3.1 Naturalistic Driving Data 

The study is performed using NDD, which are data collected during real traffic 

conditions, using instrumented vehicles. The strength of NDD is that drivers are 

performing their daily activities while data is collected, and the influence of the 

measurement systems installed in the vehicle (already made less obtrusive as 

possible) should not affect the driver’s behaviour. UDRIVE is a project that involved 

120 cars, developed in seven European countries, that counts more than 45000 total 

car driving hours (Castermans, J., 2017). 

 Vehicles were instrumented with a Data Acquisition System (DAS) that 

collects data from the ego vehicle’s CAN bus, a GPS sensor, video cameras mounted 

in the driver compartment, and MobilEye. Mobileye is a smart camera that provides 

data describing up to four road users, when they are in its Field of View (FoV), based 

on computer vision. The four sources have different sampling frequencies. The 

interface that allowed to handle NDD was SALSA, Smart Automation for Large data 

Sets Analysis.  

 

The following is a summary of how the database is structured: 

 

• Full record - full trip done by a driver, characterized by attributes and time 

series. 

 

• Segment - portion of record defined from a begin time to an end time, 

characterized by attributes and time series. 

 

• Attribute - property defined by the user via manual annotation, applicable to 

either a full record or a segment. 

 

• Time series – collection of all the signals synchronized on the same time 

vector. For instance, all the signals from the CAN bus are grouped in one time 

series, signals from MobilEye are collected in another time series (different 

source implies different sampling frequency and, consequently, different time 

vector). A time series can also be defined by the user. 

 

• Signals – vectors of time dependent data. 

 

• Node – scripts used to handle data in records or in segments. Nodes can be 

used on the full records to generate segments, or to create new user-defined 

time series and signals. 
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3.2 Raw data used 

Table 1 provides a list of the raw data used in this thesis and the corresponding source 

(either CAN bus, MobilEye, GPS sensor or video feed, as in Section 3.1). 

 

Table 1 Raw data used, with corresponding source. 

Source Variable 

CAN bus 

Accelerator pedal position [arbitrary] 

Brake pedal status [categorical] 

Ego vehicle speed [𝑘𝑚/ℎ] 

Steering wheel angle [𝑑𝑒𝑔] 

Turn indicator status [categorical] 

Yaw Rate [𝑑𝑒𝑔/𝑠] 

MobilEye 

Lane position – left marking/edge distance [𝑚] 

Lane position – right marking/edge distance [𝑚] 

Road user lateral distance [𝑚] 

Road user longitudinal distance [𝑚] 

Road user relative speed [𝑚/𝑠] 

Road user type [categorical] 

GPS Road type [categorical] 

Video feed Frontal and lateral views; driver’s face, cabin and pedals views 

 

3.3 Data Reduction 

The events of interest for this study are bicyclist overtaking manoeuvres on rural road, 

either accelerative or flying (see Section 2.1), which are a minor part of the extensive 

amount of driving hours available within the UDRIVE project. Hence, data reduction 

was needed first. A filtering algorithm was applied to all the records to create 

overtaking segments, as described in Section 3.3.1. The algorithm created 8623 

segments. An ideal filter should be able to detect all the overtaking manoeuvres (no 

false negatives) with 100% hit rate (no false positives). Since the perfect filter cannot 

be coded, the segments created by the filtering algorithm were subsequently validated 

via manual annotation as in Section 3.3.2. The segments reviewed for validation were 

roughly 500 out of the 8623 total segments. The rest of the analysis (starting from 

Section 3.4) was performed on the validated segments only. After manual annotation 

of validated segments and data extraction, a quality check of the extracted data 

allowed to remove segments before the statistical analysis. The procedure is 

illustrated in Figure 2.  

Figure 3 qualitatively illustrates the relation among all the created segments, the 

validated segments and the real subset of accelerative or flying bicyclist overtaking 

manoeuvres on rural roads within the full database.  
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Figure 2  Flowchart showing the steps for data analysis. N is the number of 

selected segments after each step. 

 

 
 

Figure 3  Data reduction: subsets in the database (the size of the Venn diagrams 

is just qualitative). 
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3.3.1 Segments creation 

The road type from the GPS, the ego vehicle speed from the CAN bus, the road user 

type and relative speed from MobilEye were given as an input to a node (see Section 

3.1). The node implemented a filtering algorithm in each record of the database to 

create segments. The following conditions were used for the creation of segments: 

 

1. The road type from the GPS sensor was “rural road”. 

 

2. One of the four road users identified by MobilEye was a bicyclist.  

 

3. The absolute speed of the bicyclist, calculated as the sum of the ego 

vehicle speed and the bicyclist relative speed from MobilEye, was 

positive.  

 

The first and second conditions were used to isolate identifications of a 

bicyclist on rural road, the third condition was added to exclude bicyclists travelling 

in opposite direction. A fourth condition of having a negative bicyclist speed 

relatively to the ego vehicle, even if compliant with the definition of overtaking, was 

not used. This choice was made knowing that bicyclists are intrinsically slower than 

motor vehicles and to avoid having a too selective filter. 

The filtering algorithm created a Boolean signal, “false” by default, and “true” 

when all the conditions above were respected, with an addition of ten seconds before 

and after their occurrence to include all the phases of the overtaking (see Section 2.1): 

a segment was extracted from the record whenever the Boolean signal was true. 

 

3.3.2 Segments validation 

Manual annotation was firstly used to validate the segments created by the algorithm 

explained in Section 3.3.1. Specifically, segments validation consisted in looking at 

the video feed and the signals of each segment to assess if it should be included in the 

analysis provided starting from Section 3.4 or not. To be included in the analysis, a 

segment had to be compliant with the following requirements: 

 

1. The segment included a bicyclist overtaking on a rural road, with a clearly 

distinguishable steer away point. 

 

2. If the segment included an overtaking, the overtaking strategy was not piggy 

backing or 2+, as this thesis is focused on accelerative and flying overtaking 

manoeuvres only. 

 

The majority of the segments discarded based on the first condition included 

bicyclists travelling in opposite direction (although the third condition given in 

Section 3.3.1, bicyclist travelling in opposite direction were present because of errors 

in measurements), as well as bicyclists travelling on the side walk, on a bicyclist lane 

or on another road, still close enough to be detected by MobilEye.  

The criteria used to identify piggy backing and 2+ overtaking manoeuvres were 

the following: 
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• Piggy backing – Regardless of the speed variation of the ego vehicle, 

overtaking manoeuvres were annotated as “piggy backing” when a leading 

vehicle was followed in a row by the ego vehicle. This was assessed by 

ensuring that a leading vehicle was present within MobilEye’s FoV and that 

the longitudinal distance was kept relatively constant for the whole 

manoeuvre. 

 

• 2+ – Multiple road users were overtaken during the same manoeuvre. 

 

3.4 Manual annotation of validated segments 

Manual annotation was used not only as a filtering tool, as in Section 3.3.2, but also as 

a tool to define the attributes of the validated segments. This section provides a 

description of how the manual annotation continued for the validated segments. The 

list of attributes defined via manual annotation is provided in Table 2. 

 

Table 2  List of the annotated attributes for the validated segments. 

Annotated attributes Type Based on: 

Overtaking strategy (see Section 3.4.1) Categorical Ego vehicle speed  

Oncoming traffic (see Section 3.4.1) Boolean Video feed, MobilEye 

Steer away point (see Section 3.4.1) Time stamp 
Video feed, steering 

wheel angle   

Planning point (see Section 3.4.2) Time stamp 

Video feed, pedals, turn 

indicator, steering wheel 

angle 

Planning point indicator  

(see Section 3.4.2) 
Categorical 

Video feed, pedals, turn 

indicator, steering wheel 

angle 

Bicyclist action type 

(see Section 3.4.3) 
Categorical Video feed 

Bicyclist and ego vehicle are travelling at 

the same speed (see Section 3.4.3) 
Time stamp MobilEye, Video feed 

Road Inclination (see Section 3.4.3) Categorical Video feed 

Ego vehicle stops - signal  

(see Section 3.4.4) 
Time stamp Ego vehicle speed  

Ego vehicle stops - video 

(see Section 3.4.4) 
Time stamp Video feed  
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3.4.1 Overtaking details 

Each overtaking was classified as either accelerative or flying, using the definition 

given in Section 2.1, by means of the categorical variable “overtaking strategy”. 

During manual annotation, to be consistent during the whole analysis and to be able to 

classify also “intermediate” overtaking strategies, the following criteria based on the 

ego vehicle speed were used to assess the overtaking strategy: 

 

• Accelerative - The ego vehicle reduced its speed during the approaching 

phase of at least 15% with respect to the speed before the manoeuvre started. 

 

• Flying - The ego vehicle speed was relatively constant, in complementarity 

with the accelerative overtaking definition. 

  

Presence of oncoming traffic was annotated using a Boolean, which was set to 

“true” if a road user moving on the opposite lane was detected by MobilEye during 

the manoeuvre. 

The steer away point, 𝑇𝑆𝑃, was a time stamp annotated based on the video feed 

and the steering wheel angle. Specifically, 𝑇𝑆𝑃 was annoatated as the time stamp in 

which the vehicle was visibly changing lane position, after moving the steering wheel, 

to perform the overtaking.  

 

3.4.2 Planning point 

In this thesis, the planning point was defined as the first time stamp in which data 

proved for the first point in time that the driver was planning to overtake (see Section 

2.2). Specifically, all the signals that could give hints about the fact that the driver was 

planning to overtake were analysed. The name of the signal, among the following, 

that allowed the identification of the planning point was annotated using the 

categorical variable “planning point indicator”. Follows a list of the possible planning 

point indicators:  

 

• Eyes - The driver looks far away to verify if there is a bicyclist, looks the 

speedometer or looks the rear mirror to make sure no vehicle is performing an 

overtaking. 

 

• Pedals - The driver might release the accelerator pedal when a bicyclist is 

visible and decelerate, for instance to have more time to check if there is 

oncoming traffic, to look the rear mirror, or because the decision to follow the 

bicyclist and perform an accelerative overtaking was taken. The instant when 

the accelerator pedal position sets to zero or to a value lower than the 

beginning of the segment is considered. 

 

• Turn indicator - The turn indicator could be activated before the steer away 

point.  

 

• Steering wheel - The steering wheel angle signal was analysed together with 

the video to annotate the steer away point. The steer away point could be 

coincident with the planning point in case of flying overtaking. 
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The time stamp in which there was evidence that the driver was planning to overtake 

was annotated as planning point and labelled with the corresponding indicator. If 

more than one indicator was providing a possible planning point, only the first 

occurrence was considered, as illustrated in Figure 4. 

 
Figure 4  An example of what a driver could do during the approaching phase. 

In this case more planning point indicators could be used to identify the planning 

point: the annotated planning point is the first point in time 𝑇𝑃𝑃 and the annotated 

planning point indicator is “Eyes”. 

 

3.4.3 Bicyclist details and road inclination 

Bicyclist details and road inclination were annotated to support the bicyclist speed 

calculations, performed as in Section 3.5.3, and consisted in: 

 

• Bicyclist action type - categorical variable. It was “standing” if the bicyclist 

had a foot on the ground, “fast” if the bicyclist was wearing sportswear and/or 

moving with an aerodynamic body position, “normal” elsewhere. The 

nomenclature used is consistent with the one used in a previous work (Panero, 

2018). 

 

• 𝑇𝑠 - time stamp in which ego vehicle and bicyclist are travelling at the same 

speed 

 

• Road inclination - categorical variable. It was either “flat”, “downhill” or 

“uphill”. 

 

While the bicyclist action type and the road inclination were easy to annotate, 𝑇𝑠 
needs some further explanation. In some overtaking manoeuvres, the ego vehicle 

followed the bicyclist at its same speed for a while: this was assessed by checking if 

the raw signal from MobilEye gave a relatively constant longitudinal distance of the 

bicyclist from the ego vehicle for a few time stamps and by looking at the video feed. 

In such cases, one of the time stamps in which the bicyclist longitudinal distance was 

constant was annotated as 𝑇𝑠. 
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3.4.4 Quantification of the delay between video and signals 

The videos and the signals have a time delay of decimals of second. This delay was 

quantified using the same procedure used in (Nero, 2017): the time stamps in which 

the vehicle stopped in both the signal and the video feed were annotated separately 

and used to calculate the delay. Continuing, the time stamps annotated based on the 

video feed (the planning point when the indicator was “Eyes” and the steer away 

point) were synchronized with the signals using the calculated delay. Notice that the 

time stamp in which bicyclist and ego vehicle are travelling at the same speed 𝑇𝑆 was 

not corrected because it was based on the signal from MobilEye, while video feed was 

used only to check whether the bicyclist and the driver were really travelling at the 

same speed (see Section 3.4.3).  

 

3.5 Data extraction 

While data about the ego vehicle was always available from the CAN bus, the 

information about the bicyclist was only available when it was in the FoV of 

MobilEye. Hence, the bicyclist distance and speed at the planning point had to be 

extrapolated before extracting the data needed for the statistical analysis. The 

procedure for data extrapolation and extraction was inspired by previous works done 

for pedestrian overtaking manoeuvres (Rasch, 2018) (Panero, 2018) and bicyclist 

overtaking manoeuvres (Nero, 2017). Table 3 provides an overview of the data 

extracted from each segment. 

 

Table 3 Variables extracted from each segment 

Extracted variable Type 

Ego vehicle speed at the planning point Continuous [𝑘𝑚/ℎ] 

Driver’s ID (see Section 3.5.1) Categorical 

Driver’s gender - Male/Female (see Section 3.5.1) Categorical 

Driver’s age (see Section 3.5.1) Continuous [𝑦𝑒𝑎𝑟𝑠] 

Country (see Section 3.5.1) Categorical 

Bicyclist speed (see Section 3.5.3) Continuous [𝑘𝑚/ℎ] 

Bicyclist longitudinal distance from the ego vehicle at the 

planning point (see Section 3.5.4) 
Continuous [𝑚] 

Bicyclist lateral distance from the ego vehicle at the planning 

point (see Section 3.5.5) 
Continuous [𝑚] 

TTC at the planning point (see Section 3.5.6) Continuous [𝑠] 

TTC at the steer away point (see Section 3.5.6) Continuous [𝑠] 
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3.5.1 Driver information and country 

The information about the driver was provided in the database. The variables of 

interest concerning the driver were the driver’s age (in years), the driver’s gender 

(male/female) and the driver’s ID (a number associated to each driver, useful as a 

grouping variable for the observed data). The country where the overtaking was 

observed was extracted from the database as a categorical variable. The country was 

used to have an overview of where the overtaking manoeuvres were collected and was 

used in the calculation of the bicyclist lateral distance at the planning point (see 

Section 3.5.5) to use the same sign convention in the United Kingdom (only left-hand 

traffic country involved in the UDRIVE project) and in right-hand traffic countries.  

 

3.5.2 Rotation of MobilEye data 

Since data from MobilEye was given in a local coordinate system, translating and 

rotating together with the ego vehicle, there was the need to transform the provided 

values in a car-fixed coordinate system (only translating with the vehicle). The car-

fixed coordinate system provided data about the relative position of the bicyclist 

keeping a constant orientation of longitudinal and lateral coordinate. The ego vehicle 

heading angle 𝜓  was used to calculate a rotation matrix 𝑹(𝜓), used to rotate the 

coordinate system.  

The ego vehicle heading angle was calculated as in equation (1).  

 

𝜓(𝑇) =  ∫ 𝜔𝑧(𝜏)𝑑𝜏 
𝑇

𝑇𝑆𝑃

                     𝑇𝑏𝑒𝑔𝑖𝑛 < 𝑇 < 𝑇𝑒𝑛𝑑 
   

(1) 

 

where 𝑇 is the time axis, 𝜓(𝑇) is the time history of the heading angle, 𝜔𝑧(𝑇) is the 

time history of the yaw rate from the CAN bus, 𝑇𝑏𝑒𝑔𝑖𝑛  is the beginning of the 

overtaking segment, 𝑇𝑒𝑛𝑑 is the end of the overtaking segment, 𝑇𝑆𝑃 is the steer away 

point and 𝜏 is an auxiliary variable to express the integral. The steer away point is 

chosen as a starting point for the integral to obtain null heading angle when the driver 

enters the steering away phase (see Section 2.1).  

 

The rotation from a local coordinate system to a car-fixed coordinate system 

was performed as in equation (2).  

 

[
𝑥
𝑦] = [

cos(𝜓) − sin(𝜓)

sin(𝜓 ) cos(𝜓)
]

⏟            
𝑹(𝜓)

⋅ [
𝑥′

𝑦′
] 

 

   

(2) 

where 𝑥 and 𝑦 are the car-fixed coordinates, 𝑥’ and 𝑦’ are the local coordinates, 𝜓 is 

the heading angle and 𝑹(𝜓) is the rotation matrix. The two coordinate systems are 

illustrated on the ego vehicle in Figure 5. Figure 6 shows how the projections of a 

generic positive position vector, 𝑝𝑚𝑒, change from a local to a car-fixed coordinate 

system.  

Starting from the next Section, the terms longitudinal distance and lateral distance 

from MobilEye refer to the values in car-fixed coordinates. 
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For some overtaking manoeuvres, the yaw rate from the CAN bus was not 

available. In this case, the values from MobilEye were assumed to be directly given in 

car-fixed coordinates. 

 
Figure 5  Illustration of the car-fixed coordinate system x-y, the local 

coordinate system x’-y’ and the heading angle. 

 
Figure 6 Rotation of the coordinate system using the rotation matrix R(ψ), for 

the same generic vector 𝑝𝑀𝐸. 
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3.5.3 Bicyclist speed 

If the time stamp in which bicyclist and ego vehicle are travelling at the same speed 

(𝑇𝑠) was annotated (see Section 3.4.3), the bicyclist speed was set equal to the ego 

vehicle speed from the CAN bus in such time stamp, and the rest of the calculations 

provided in this section was not performed. 

  If 𝑇𝑆  was not annotated, the bicyclist speed was calculated using the 

longitudinal distance provided by MobilEye: after fitting it with a linear polynomial, 

using the MATLAB® function polyfit (MathWorks, Polynomial Curve Fitting, 2019), 

the linear term of the polynomial was assumed to be the relative speed between the 

bicyclist and the ego vehicle (Nero, 2017) when the bicyclist appears. The bicyclist 

speed was calculated as in equation (3). 

 

 𝑉𝑏 = 𝑉𝑒𝑔𝑜(𝑇𝑥) − 𝑅𝑉(𝑇𝑥)    (3) 

 

where 𝑉𝑏 is the bicyclist speed, 𝑇𝑥 is the time stamp in which the bicyclist appears, 

𝑅𝑉(𝑇𝑥) is the relative speed of the bicyclist when the bicyclist appears, calculated 

from the longitudinal distance provided by MobilEye, 𝑉𝑒𝑔𝑜(𝑇𝑥) is the ego vehicle 

speed when the bicyclist appears. The bicyclist speed was assumed to be constant for 

the whole overtaking. 

 

The bicyclist speed had to be in the range from 0 𝑘𝑚/ℎ  to 40 𝑘𝑚/ℎ  to be 

included in the statistical analysis described in Section 3.6: negative values were not 

possible since the ego vehicle and the bicyclist were travelling in the same direction, 

while values above 40 𝑘𝑚/ℎ are generally difficult to reach (What is a reasonable 

speed for long distances on a bike?, 2011) (Nero, 2017). The annotated road 

inclination and bicyclist action type (see Section 3.4.3) were used to support the 

calculated bicyclist speed. 

 

3.5.4 Bicyclist longitudinal distance 

After calculating the bicyclist speed as in Section 3.5.3, the time history of the relative 

speed throughout the whole segment was calculated using equation (4). 

 

 𝑅𝑉(𝑇) = 𝑉𝑒𝑔𝑜(𝑇) − 𝑉𝑏    (4) 

 

Where 𝑇 is the time axis, 𝑅𝑉(𝑇) is the time history of the relative speed and 𝑉𝑏 is the 

bicyclist speed, calculated as in Section 3.5.3. 

The value of the longitudinal distance before the bicyclist appears is calculated as in 

equation (5). 

 

𝑥̃(𝑇) =  𝑥𝑀𝐸(𝑇𝑥)  + ∫ 𝑅𝑉(𝜏) ⋅ |𝜏 − 𝑇𝑥|𝑑𝜏
𝑇

𝑇𝑥

,        𝑇𝑏𝑒𝑔𝑖𝑛 < 𝑇 < 𝑇𝑥 
   

(5) 

 

where 𝑇 is the time axis, 𝑥̃(𝑇) is the time history of the longitudinal distance before 

the bicyclist appears, 𝑇𝑥 is the time stamp when the bicyclist appears in MobilEye, 

𝑇𝑏𝑒𝑔𝑖𝑛 and 𝑇𝑒𝑛𝑑 are respectively the beginning and the end of the overtaking segment 

and 𝜏 is an a3.5.3uxiliary variable to express the integral. Note that the absolute value 
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of the time is considered, to have positive values of longitudinal distance before the 

bicyclist appears, consistently with the longitudinal distance provided by MobilEye. 

The longitudinal distance before the bicyclist appears was joined to the longitudinal 

distance available from MobilEye to express the bicyclist longitudinal distance as in 

equation (6). 

 

  𝑑(𝑇) = {
𝑥̃(𝑇),           𝑇𝑏𝑒𝑔𝑖𝑛 < 𝑇 < 𝑇𝑥
 𝑥𝑀𝐸(𝑇),            𝑇𝑥 ≤ 𝑇 < 𝑇0

 

 

 

   (6) 

where 𝑇 is the time axis, 𝑇𝑥 is the time stamp when the bicyclist appears, 𝑇0 is the 

time stamp when the bicyclist disappears, 𝑇𝑏𝑒𝑔𝑖𝑛 is the beginning of the overtaking 

segment, 𝑑(𝑇) is the time history of the bicyclist longitudinal distance, 𝑥𝑀𝐸(𝑇) is the 

time history of the bicyclist longitudinal distance from MobilEye and 𝑥̃(𝑇) is the time 

history of the longitudinal distance before the bicyclist appears in MobilEye, 

calculated as in Equation (5). The longitudinal distance was not calculated after the 

bicyclist disappeared from MobilEye, since the planning point is before bicyclist 

disappearance. 

 

3.5.5 Bicyclist lateral distance at the planning point 

The lateral distance between ego vehicle and bicyclist at the planning point, 𝑦𝑃𝑃, was 

calculated using the distance of the ego vehicle to the lane markings, or the lane edges 

(lane position) and the bicyclist lateral distance, both detected by MobilEye. 

Figure 7 illustrates the geometry used to perform the calculations in this 

section: 𝑦𝑝𝑝 is the lateral distance at the planning point, 𝑑𝐿𝑒𝑔𝑜 is the lane position of 

the ego vehicle, 𝑑𝐿𝑏 is the lane position of the bicyclist, 𝑦𝑀𝐸 is the lateral distance 

provided by MobilEye. The information about the country (see Section 3.5.1) was 

used to choose the same sign convention in United Kingdom and in the other right-

hand traffic countries. In the United Kingdom, 𝑦𝑀𝐸 was considered positive when the 

bicyclist was on the left side of the ego vehicle, and the lane position was set equal to 

the left edge (or marking) distance. In right-hand traffic countries, 𝑦𝑀𝐸  was 

considered positive when the bicyclist was on the right side of the ego vehicle, and the 

lane position was set equal to the right edge (or marking) distance. 

 

  

Figure 7 Geometry for the calculation of the lateral distance at the planning 

point 𝑦𝑃𝑃 . The dashed vertical lines highlight when the bicyclist is in the FoV of 

MobilEye. 
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The known values from the database are the lane position of the ego vehicle in every 

time stamp 𝑑𝐿𝑒𝑔𝑜(𝑇) and the lateral distance in car-fixed coordinates of the bicyclist 

given by MobilEye 𝑦𝑀𝐸. 

The bicyclist lane position 𝑑𝐿𝑏 was calculated as the average of all the bicyclist lane 

positions calculated for each time stamp in which the bicyclist was detected, as in 

equation (7). 

𝑑𝐿𝑏 = 𝑚𝑒𝑎𝑛
𝑇 ∈ [𝑇𝑥,𝑇0]

(𝑑𝐿𝑒𝑔𝑜(𝑇) − 𝑦𝑀𝐸(𝑇) )   (7) 

 

where 𝑇 is the time axis, 𝑇𝑥 is the time stamp in which the bicyclist appears, 𝑇0 is the 

time stamp in which the bicyclist disappears, 𝑑𝐿𝑏 is the lane position of the bicyclist, 

𝑑𝐿𝑒𝑔𝑜 is the lane position of the ego vehicle, 𝑦𝑀𝐸 is the bicyclist lateral distance from 

MobilEye. The time average was performed to exploit all the data available during the 

bicyclist detection and in an attempt to filter eventual outliers in the lateral distance 

from MobilEye 𝑦𝑀𝐸 . Continuing, the lateral distance at the planning point was 

calculated as in equation (8). 

 

 𝑦𝑃𝑃 = 𝑦𝑆𝑃 =  𝑑𝐿𝑒𝑔𝑜(𝑇𝑆𝑃) −  𝑑𝐿𝑏    (8) 

 

where 𝑦𝑝𝑝  is the bicyclist lateral distance at the planning point, 𝑦𝑆𝑃  is the lateral 

distance at the steer away point, 𝑇𝑆𝑃 is the steer away point, 𝑑𝐿𝑒𝑔𝑜(𝑇𝑆𝑃) is the ego 

vehicle lane position at the steer away point and 𝑑𝐿𝑏  is the bicyclist lane position 

extracted as in equation (7). The assumption in this procedure is that the lateral 

distance at the planning point is the same as the lateral distance at the steer away 

point. This assumption was done because the lane position provided by MobilEye 

strongly depended on the infrastructure and the value of the signal at the planning 

point might have been considerably different from the steer away point: this happened 

not because of lateral motion of the ego vehicle, but because the lane markings’ 

detection was different due to either a different visibility of the paint or a real change 

in where the lane markings were positioned. Choosing the steer away point, that is 

closer to when the bicyclist is detected, allowed to minimize the error due to this 

effect. The calculated value of lateral distance at the planning point was compared 

with the evidence from the video feed: overtaking manoeuvres in which the calculated 

lateral distance did not match with the evidence from the video feed were not included 

in the statistical analysis provided in Section 3.6. 

 

3.5.6 Time to Collision 

TTC was calculated applying the definition, given in equation (9). 

 

 
𝑇𝑇𝐶 =  

𝑑

𝑅𝑉
 

   (9) 

 

 

where 𝑑  is the longitudinal distance and 𝑅𝑉  is the relative speed, calculated as in 

Section 3.5.3. The value of TTC was calculated at both the planning point and the 

steer away point, as in equation (10) and equation (11). 
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𝑇𝑇𝐶𝑃𝑃  =  

𝑑(𝑇𝑃𝑃)

𝑅𝑉(𝑇𝑃𝑃)
 

   (10) 

   

 

 
𝑇𝑇𝐶𝑆𝑃  =  

𝑑(𝑇𝑆𝑃)

𝑅𝑉(𝑇𝑆𝑃)
 

   (11) 

 

where 𝑇𝑃𝑃  and 𝑇𝑆𝑃  are the planning point and the steer away point respectively, 

𝑇𝑇𝐶𝑃𝑃 is the TTC at the planning point, 𝑇𝑇𝐶𝑆𝑃 is the TTC at the steer away point, 

𝑑(𝑇𝑃𝑃) is the longitudinal distance at the planning point, 𝑑(𝑇𝑆𝑃) is the longitudinal 

distance at the steer away point, 𝑅𝑉(𝑇𝑃𝑃) is the relative speed at the planning point 

and 𝑅𝑉(𝑇𝑆𝑃) is the relative speed at the steer away point. All the calculated values of 

TTC were positive, since no crash was observed during the analysis. 

   

3.6 Generalised Linear Mixed Model (GLMM) 

TTC and longitudinal distance at the planning point were analysed using generalised 

linear mixed models, or GLMMs.  

 

GLMMs are used to describe the relation between a response, also called 

dependent variable, and one or more factors, also called independent variables. The 

factors can be either observable or unobservable. The effects represent the influence 

of the factors on the responses. The set of effects includes both fixed effects and 

random effects (from which the name mixed model).  

The fixed effects express the influence of the observable factors on the response, 

while random effects express the influence of unobservable factors on the response: 

random effects need to be considered to correctly estimate the fixed effects. An 

unobservable factor could be, for instance, related to grouping data during collection. 

In this thesis, when analysing NDD, a grouping variable is the driver ID (see Section 

3.5.1): it is reasonable to think that differences between two similar overtaking 

manoeuvres are due to the driver’s driving style, that is intrinsically an unobservable 

factor. Using a mixed effect model allows to account for the influence of the driver’s 

driving style and to correctly estimate the influence of the observable factors only. 

The model can be expressed as in equation (12) (MathWorks, 2019). 

 

𝑦𝑖|𝑢 ~ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝜇𝑖,
𝜎2

𝑤𝑖
) 

 
𝑔(𝜇) = 𝜂 

 
 𝜂 = 𝑿𝛽 + 𝒁𝑢 + 𝜖, 𝑿 ∈ ℝ𝑟 x 𝑛, 𝒁 ∈ ℝ𝑟 x 𝑚 

 

𝑢|𝜎2, 𝜃 ~ 𝑁(0, 𝜎2𝐷(𝜃))  

 

 

 

 

(12) 

 

 

The 𝑖𝑡ℎ  response out of 𝑟  observations, 𝑦𝑖 , is assumed to belong to a certain 

distribution, 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝜇𝑖 ,
𝜎2

𝑤𝑖
) , with mean 𝜇𝑖  and variance 

𝜎2

𝑤𝑖
, where 𝑤𝑖  is a 

weight associated to each observation. The response is modelled as a function of 𝑛 

observable factors and 𝑚 unobservable factors. The mean vector 𝜇 is calculated as a 
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function of a linear predictor 𝜂. Continuing, 𝜂 is a linear combination of the fixed 

effects design matrix 𝑿, weighted by the fixed effect vector 𝛽, and of the random 

effects design matrix 𝒁, weighted by the random effects vector 𝑢, plus a model offset 

𝜖. The random effects vector is assumed to be normally distributed with null mean 

and standard deviation 𝜎2𝐷(𝜃), where 𝐷(𝜃) is a semi-positive matrix, function of the 

parameter 𝜃. The relation between the linear predictor and the mean is given by the 

link function 𝑔(𝜇). The model is parametrized by 𝛽, 𝜎2 and 𝜃. The GLMM calculates 

the model parameters 𝛽 , 𝜎2  and 𝜃  that best fit the observed responses. After the 

calculation of the parameters, the mean of the fitted response is estimated as in 

equation (13). 

 

 

 𝜇 = 𝑔−1(𝜂̂) = 𝑔−1(𝑿𝛽 + 𝒁𝑢)    (13) 

 

 

In this thesis, the focus is on the fixed effects vector 𝛽, to estimate the influence of the 

observable factors on the responses to model (TTC and longitudinal distance at the 

planning point). 

 

3.6.1 Factors and responses 

The responses to model were the TTC at the planning point, 𝑇𝑇𝐶𝑃𝑃 , and the 

longitudinal distance at the planning point, 𝑑𝑃𝑃. 𝑇𝑇𝐶𝑃𝑃 was modelled as an inverse 

gaussian distribution and 𝑑𝑃𝑃  was modelled as a gamma distribution, while the 

chosen link function was an identity function for both the models. The distributions 

were chosen by trial-and-error for each of the responses: the choice was between 

either a gamma or an inverse gaussian distribution, as 𝑑𝑃𝑃 and 𝑇𝑇𝐶𝑃𝑃 were known to 

be positive (see Section 3.5.4 and Section 3.5.6) (MathWorks, 2019).  

 

The set of the possible observable factors, taken from the annotated attributes in 

Table 2 and the extracted data in Table 3, is provided in Table 4. 

 

Table 4 List of the single observable factors for the GLMMs of TTC and longitudinal 

distance at the planning point. The values in the table are observed at the planning 

point. 

Source Variable 

Continuous 

Bicyclist speed 𝑥𝑉𝑏  [𝑘𝑚/ℎ] 

Ego vehicle speed 𝑥𝑉𝑒𝑔𝑜 [𝑘𝑚/ℎ] 

Lateral distance 𝑥𝑦 [𝑚] 

Driver’s age 𝑥𝑎𝑔𝑒 [𝑦𝑒𝑎𝑟𝑠] 

Boolean 

Oncoming traffic 𝑥𝑜𝑛 (present = 1, absent = 0) 

Overtaking strategy 𝑥𝑓𝑙  (flying = 1, accelerative = 0) 

Driver’s gender 𝑥𝑀 (M = 1, F = 0) 
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The model was built considering as observable factors all the single 

observable factors provided in Table 4 and all the possible two-way interactions 

between the single observable factors 𝑥𝑖: 𝑥𝑗  (higher order interactions were not 

included in the model); the only unobservable factor was assumed to be a variation in 

the intercept of the response due to the driver and was symbolized as (1|𝐼𝐷). The 

overtaking strategy (see Table 2) and the driver’s gender (see Table 3) were 

considered as Boolean variables in the statistical analysis since they originally were 

binary categorical variables.  

 

3.6.2 Implementation in MATLAB® 

The GLMM was implemented using the MATLAB® function fitglme (MathWorks, 

fitglme, 2019). The function requires an input formula, providing the response to 

model and the factors to include in the model, a distribution and a link function. 

 

While the random effect was included by default, the fixed effects were 

analysed to select the significant ones only. This was done by using a stepwise 

algorithm, similar to the one proposed in a previous work (Boda, C.-N., et al., 2018). 

The stepwise algorithm: 1) used the MATLAB® function fitglme to fit the response 

including all the factors given in Section 3.6.1, 2) calculated the fixed effects, 3) 

discarded the observable factor associated to the fixed effect with the highest 𝑝-value, 

if this was greater than 0.05, 4) repeated again with the left observable factors, 

iteratively. The final result is a set of fixed effects with 𝑝-values lower than 0.05, 

meaning that the corresponding factors had a significant influence on the response, 

according to the chosen convention of 𝑝 -value  ≤ 0.05 . This algorithm was 

implemented to both 𝑇𝑇𝐶𝑃𝑃  and 𝑑𝑃𝑃 , using the distribution and the link function 

provided in Section 3.6.1. The formulas provided in the rest of this section are the 

result of this algorithm. 

The formulas for the TTC at the planning point and the longitudinal distance 

at the planning point are respectively given in equation (14) and equation (15). The 

notation used is the one provided in MATLAB® documentation (MathWorks, fitglme, 

2019): a response (left part of the equation) is distributed as ( “~” ) a list of factors 

(right part of the equation). 

 

𝑇𝑇𝐶𝑃𝑃 ~  1 +  𝑥𝑦 + 𝑥𝑉𝑏  + 𝑥𝑉𝑒𝑔𝑜 + 𝑥𝑜𝑛 + 𝑥𝑚𝑎𝑙𝑒 + 𝑥𝑉𝑒𝑔𝑜 : 𝑥𝑦 + 𝑥𝑉𝑒𝑔𝑜 : 𝑥𝑜𝑛
+ 𝑥𝑦: 𝑥𝑚𝑎𝑙𝑒  +  𝑥𝑦: 𝑥𝑎𝑔𝑒 + 𝑥𝑉𝑏: 𝑥𝑎𝑔𝑒 + (1|𝐼𝐷)  

   

(14) 

 

 

𝑑𝑃𝑃 ~  1 +  𝑥𝑦 + 𝑥𝑉𝑏  +  𝑥𝑜𝑛 + 𝑥𝑉𝑒𝑔𝑜 : 𝑥𝑦 + 𝑥𝑉𝑒𝑔𝑜 : 𝑥𝑜𝑛 + (1|𝐼𝐷)  

   

(15) 

 

The selected distribution for 𝑇𝑇𝐶𝑃𝑃 was an inverse gaussian distribution, the selected 

distribution for 𝑑𝑃𝑃 was a gamma distribution and the selected link function was an 

identity function for both, as mentioned in Section 3.6.1. 
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4 Results 

In this chapter, the results of the methodology are provided. Section 4.1 provides an 

overview of the collected overtaking manoeuvres, Section 4.2 presents the collected 

TTC at the planning point, Section 4.3 presents the collected longitudinal distance at 

the planning point (results are provided considering the overtaking strategy, the 

presence of oncoming traffic and the ego vehicle speed to qualitatively identify any 

possible trend), Section 4.4 presents TTC at the planning point and at the steer away 

point, Section 4.5 provides the results from the GLMMs of TTC and longitudinal 

distance at the planning point. 

 

4.1 Analysed overtaking manoeuvres  

Starting from the full database, a data reduction phase gave a total number of 136 

overtaking manoeuvres (see Section 3.3). Followed further annotation (see Section 

3.4) and data extraction (see Section 3.5). The statistical analysis was performed on 

only 100 overtaking manoeuvres: 36 overtaking manoeuvres were excluded from the 

statistical analysis because the bicyclist speed was negative or above 40 𝑘𝑚/ℎ (see 

Section 3.5.3) or because the lateral distance was considerably different from the 

evidence in the video feed (see Section 3.5.5). Percentages are not reported, as the 

number of selected overtaking manoeuvres happened to be exactly 100. 

40 drivers were involved in the analysis: 27 male drivers performed 61 

overtaking manoeuvres (30 accelerative and 31 flying overtaking manoeuvres), 13 

female drivers performed 39 overtaking manoeuvres (26 accelerative and 13 flying). 

The average age of all the drivers was 42 years (average age per gender was 45 years 

for male drivers and 37 years for female drivers). The number of overtaking 

manoeuvres per driver ranged from one overtaking to a maximum of eight overtaking 

manoeuvres, with a mean value of 2.5 overtaking manoeuvres per driver. The 

planning point indicator (see Section 3.4.2) was “eyes” in 46 overtaking manoeuvres 

and “pedals” in 54 overtaking manoeuvres. The number of overtaking manoeuvres per 

country, classified per overtaking strategy, is given in Table 5. The number of 

overtaking manoeuvres per country, classified per presence of oncoming traffic, is 

given in Table 6. 44 overtaking manoeuvres were flying while 56 were accelerative; 

61 overtaking manoeuvres were performed with oncoming traffic while 39 were 

performed without oncoming traffic.   

 

Table 5 Number of overtaking manoeuvres per country, classified per 

overtaking strategy. 

Country Flying Accelerative Total 

Poland 20 29 49 

United Kingdom 13 13 26 

France 7 13 20 

Netherlands 4 0 4 

Germany 0 1 1 

All countries 44 56 100 
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Table 6 Number of overtaking manoeuvres per country, classified per presence 

of oncoming traffic. 

Country Oncoming No oncoming Total 

Poland 32 17 49 

United Kingdom 17 9 26 

France 10 10 20 

Netherlands 1 3 4 

Germany 1 0 1 

All countries 61 39 100 

 

 

The number of overtaking manoeuvres, classified per overtaking strategy and 

presence of oncoming traffic, is given in Table 7. The influence of the presence of 

oncoming traffic on the chosen strategy is noticeable, since 77 overtaking manoeuvres 

out of 100 were either accelerative with oncoming traffic or flying without oncoming 

traffic. 

 

Table 7 Number of overtaking manoeuvres, grouped per overtaking strategy 

and presence of oncoming traffic. 

 Flying Accelerative Total 

Oncoming 14 47 61 

No oncoming 30 9 39 

Total 44 56  

 

4.2 TTC at the planning point 

An overview of the TTC at the planning point, in terms of mean and standard 

deviation, is given in Table 8. The mean does not seem to considerably vary due to 

presence of oncoming traffic in case of accelerative overtaking manoeuvres but has a 

more visible variation if flying overtaking manoeuvres are considered (it is higher if 

oncoming traffic is present). The standard deviation is higher for the groups with less 

observations (accelerative without oncoming traffic and flying with oncoming traffic, 

as provided in Table 7). 

 

Table 8  Mean and standard deviation of the TTC at the planning point, 

grouped per overtaking strategy and presence of oncoming traffic 

  Mean [𝑠] 
Standard 

deviation [𝑠]   

Accelerative 
Oncoming  2.3683  ± 0.9062 

No oncoming  2.3266  ± 1.1042 

Flying 
Oncoming  2.4371  ± 0.9624 

No oncoming  1.9505  ± 0.6306 
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Values of TTC at the planning point, grouped per overtaking strategy and 

presence of oncoming traffic, are respectively provided in Figure 8 and Figure 9. 

Figure 8 shows that in case of flying overtaking manoeuvres, the median of TTC 

when the drivers started planning to overtake is lower compared to accelerative 

overtaking manoeuvres. Similarly, Figure 9 shows that the median of TTC when the 

drivers started planning to overtake is lower when oncoming traffic is absent 

compared to when oncoming traffic is present. Moreover, the range of values (region 

between the whiskers) of TTC when oncoming traffic is absent is fully included in the 

range of TTC when oncoming traffic is present.  

 

 
Figure 8  Boxplot of TTC at the planning point, grouped per overtaking strategy. 

The edges of each box represent the first and the third quartile, the whiskers give the 

range of the observations, the centre line represents the median, the notched region 

represents the 95% confidence interval for the median, the plus symbols represent the 

outliers. 
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Figure 9 Boxplot of TTC at the planning point, grouped per presence of 

oncoming traffic. The edges of each box represent the first and the third quartile, the 

whiskers give the range of the observations, the centre line represents the median, the 

notched region represents the 95% confidence interval for the median, the plus 

symbols represent the outliers. 

Figure 10 provides the TTC at the planning point, grouped considering the interaction 

between overtaking strategy and presence of oncoming traffic. It seems that the 

overtaking strategy does not influence the TTC at the planning point. Vice versa, 

presence of oncoming traffic has a more visible influence, causing a reduction of the 

median of TTC for both strategies. Hence, the main contributor in causing a 

difference in the TTC provided in Figure 8 is not the overtaking strategy, but the fact 

that the majority of flying manoeuvres were performed without oncoming traffic and 

the majority of accelerative overtaking manoeuvres were performed with oncoming 

traffic (see Table 7). 
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Figure 10 Boxplots of TTC at the planning point, grouped per overtaking strategy 

and presence of oncoming traffic. The edges of each box represent the first and the 

third quartile, the whiskers give the range of the observations, the centre line 

represents the median, the notched region represents the 95% confidence interval for 

the median, the plus symbols represent the outliers. 

 

 Scatter plots of the TTC at the planning point and the corresponding ego 

vehicle speed, grouped per interaction of overtaking strategy and presence of 

oncoming traffic, are provided in Figure 11 and Figure 12. The plotted lines are the 

result of a linear regression and are used to qualitatively identify an increasing or 

decreasing trend of the TTC with increasing ego vehicle speed. The fitting lines are 

plotted considering the overtaking strategy in Figure 11. The same scatter plot, with 

fitting lines plotted considering the presence of oncoming traffic, is provided in 

Figure 12. The TTC does not seem to be considerably influenced by the ego vehicle 

speed, since all the fitting lines have a low absolute value of the slope (maximum 

variation possible is roughly 0.5 𝑠 , when the vehicle speed increases from 

approximately 25 𝑘𝑚/ℎ to approximately 110 𝑘𝑚/ℎ ).  
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Figure 11 Scatter plot of TTC at the planning point and the corresponding ego 

vehicle speed. Fitting lines, with corresponding 95% confidence intervals (dotted 

lines), are plotted separately for flying and accelerative manoeuvres. 
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Figure 12 Scatter plot of TTC at the planning point and the corresponding ego 

vehicle speed. Fitting lines, with corresponding 95% confidence intervals (dotted 

lines), are plotted separately for present and absent oncoming traffic. 

4.3 Longitudinal distance at the planning point 

An overview of the longitudinal distance at the planning point, in terms of mean and 

standard deviation, is given in Table 9. When accelerative overtaking manoeuvres are 

considered, the mean of the longitudinal distance is higher when oncoming traffic is 

absent. On the contrary, when flying overtaking manoeuvres are considered, the mean 

of the longitudinal distance is higher when oncoming traffic is present. The standard 

deviation is higher when oncoming traffic is present compared to when oncoming 

traffic is absent for both strategies. The mean values are always above 100 𝑚. 

 

Table 9 Mean and standard deviation of the longitudinal distance at the 

planning point, grouped per overtaking strategy and presence of oncoming traffic 

  Mean [𝑚] 
Standard 

deviation [𝑚]   

Accelerative 
Oncoming  101.9882  ±58.0464 

No oncoming  107.4715  ±45.9728 

Flying 
Oncoming  122.4627  ±63.3499 

No oncoming  106.9782  ±46.6257 
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Figure 13 and Figure 14 provide the values of longitudinal distance at the planning 

point, respectively grouped per overtaking strategy and presence of oncoming traffic. 

It seems that drivers started planning to overtake when closer to the bicyclist (lower 

median of longitudinal distance) in case of accelerative overtaking manoeuvres 

compared to flying overtaking manoeuvres (see Figure 13) and if oncoming traffic 

was present compared to when it was absent (see Figure 14). 

 

 
Figure 13 Boxplot of longitudinal distance at the planning point, grouped per 

overtaking strategy. The edges of each box represent the first and the third quartile, 

the whiskers give the range of the observations, the centre line represents the median, 

the notched region represents the 95% confidence interval for the median. 
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Figure 14 Boxplot of longitudinal distance at the planning point, grouped per 

presence of oncoming traffic. The edges of each box represent the first and the third 

quartile, the whiskers give the range of the observations, the centre line represents the 

median, the notched region represents the 95% confidence interval for the median. 

Figure 15 provides the longitudinal distance at the planning point, grouped 

considering the interaction between overtaking strategy and presence of oncoming 

traffic. It can be noticed that the longitudinal distance at the planning point does not 

seem to depend on the overtaking strategy if there is no oncoming traffic. On the 

contrary, if there is oncoming traffic, the median of the longitudinal distance is higher 

for flying overtaking manoeuvres compared to accelerative overtaking manoeuvres. 
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Figure 15 Boxplots of longitudinal distance at the planning point, grouped per 

overtaking strategy and presence of oncoming traffic. The edges of each box 

represent the first and the third quartile, the whiskers give the range of the 

observations, the centre line represents the median, the notched region represents the 

95% confidence interval for the median. 

 Scatter plots of the longitudinal distance and the corresponding ego vehicle 

speed, grouped per interaction of overtaking strategy and presence of oncoming 

traffic, are provided in Figure 16 and Figure 17. The plotted lines are the result of a 

linear regression and are used to qualitatively identify an increasing or decreasing 

trend of the longitudinal distance with increasing ego vehicle speed. The fitting lines 

are plotted considering the overtaking strategy in Figure 16. The same scatter plot, 

with fitting lines plotted considering the presence of oncoming traffic, is provided in 

Figure 17. The longitudinal distance shows an increasing trend with the ego vehicle 

speed (roughly 150 𝑚 when the ego vehicle speed increases from approximately 25 

𝑘𝑚/ℎ to approximately 110 𝑘𝑚/ℎ).  
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Figure 16 Scatter plot of the longitudinal distance at the planning point and the 

corresponding ego vehicle speed. Fitting lines, with 95% confidence interval (dotted), 

are plotted separately for flying and accelerative manoeuvres. 
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Figure 17 Scatter plot of the longitudinal distance at the planning point and the 

corresponding ego vehicle speed. Fitting lines are plotted separately for present and 

absent oncoming traffic. 
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4.4 TTC comparison between planning point and steer 

away point 

TTC at the planning point is compared to TTC at the steer away point. A boxplot 

providing TTC at the planning point and at the steer away point is provided in Figure 

18. Figure 19 (a) provides boxplots for the TTC at the planning point and at the steer 

away point grouped per oncoming traffic, Figure 19 (b) provides the same values 

grouped per overtaking strategy. From both figures it seems that the TTC at the steer 

away point is lower than TTC at the planning point (excluding the outliers), regardless 

of the strategy or the presence of oncoming traffic. The median of TTC at the steer 

away point is always below one second.  

 

 
Figure 18 Boxplot of TTC at planning point (PP) and steer away point (SP). The 

edges of each box represent the first and the third quartile, the whiskers give the 

range of the observations, the centre line represents the median, the notched region 

represents the 95% confidence interval for the median, the plus symbols represent the 

outliers. Notice that three outliers were removed from the steer away point to ease 

comparison between the interquartile ranges. 
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Figure 19 Time to collision at planning point (PP) and steer away point (SP). 

Data are grouped per overtaking strategy in Figure (a) and per presence of oncoming 

traffic in figure (b). The edges of each box represent the first and the third quartile, 

the whiskers give the range of the observations, the centre line represents the median, 

the notched region represents the 95% confidence interval for the median, the plus 

symbols represent the outliers. Three outliers were removed at the steer away point in 

case of accelerative manoeuvres and manoeuvres with oncoming traffic, to ease 

comparison between the interquartile ranges. 

 

4.5 GLMM results 

The fixed effects are provided for both the longitudinal distance and for the TTC at 

the planning point in Table 10 and in Table 11. Specifically, the tables provide the 

estimated value and the 𝑝-value of each of the fixed effects together with the ordinary 

and adjusted coefficient of correlation 𝑅2 and the Akaike Information Criterion (𝐴𝐼𝐶). 

The effect “intercept” is the estimate of the response when all the influencing factors 

are null. The 𝑝-value is the result of a t-test with null hypothesis of null fixed effect. 

Smaller 𝑝-values indicate higher statistical significance of the given values.  

The TTC at the planning point increases with an increase in the bicyclist 

speed, the interaction of ego vehicle speed with lateral distance, the interaction of ego 

vehicle speed with presence of oncoming traffic, and the interaction of lateral distance 

with driver’s age. TTC at the planning point decreases with an increase in the lateral 

distance, the ego vehicle speed, the interaction of the lateral distance with the driver’s 

gender and the interaction of the bicyclist speed with the driver’s age. TTC is higher 

for male drivers compared to female drivers and is lower when oncoming traffic is 

present compared to when it is absent. The three most influencing factors (where 

“most influencing” means higher absolute value of the fixed effect estimate compared 

to the others) are the bicyclist lateral distance, the presence of oncoming traffic and 

the driver’s gender. 

The longitudinal distance at the planning point increases with an increase in 

the interaction of the ego vehicle speed with the lateral distance, the interaction 

between the ego vehicle speed and the presence of oncoming traffic and the 

interaction between the lateral distance and the driver’s age. The longitudinal distance 

at the planning point decreases with an increase in the lateral distance and the 

interaction between the bicyclist speed and the driver’s age. Moreover, the 

longitudinal distance is lower if oncoming traffic is present. The two most influencing 
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factors for the longitudinal distance are, similarly to TTC, the bicyclist lateral distance 

and the presence of oncoming traffic. The driver’s gender does not show a significant 

influence on the longitudinal distance. 

In both models, the overtaking strategy did not show any statistically 

significant influence on the response. 

 

Table 10 GLMM of the TTC at the planning point: fixed effects, adjusted and 

ordinary coefficient of correlation 𝑅2 and AIC. Level of significance was set to 0.05.  

Name Estimate 𝑝-value 

Intercept 2.38 9.7 ⋅ 10−3 

Lateral distance −1.04 0.02 

Bicyclist speed 0.09 7.94 ⋅ 10−4 

Ego vehicle speed −0.03 0.02 

Oncoming traffic −1.08 0.04 

Male driver 1.42 3.08 ⋅ 10−3 

Ego vehicle speed : lateral distance 0.01 0.03 

Ego vehicle speed : oncoming traffic 0.02 8.08 ⋅ 10−3 

Lateral distance : male driver −0.75 8.86 ⋅ 10−4 

Lateral distance : age 0.02 2.09 ⋅ 10−3 

Bicyclist speed : age −0.002 7.68 ⋅ 10−3 

𝑅𝑜𝑟𝑑
2 = 0.8370         𝑅𝑎𝑑𝑗

2 = 0.8186         𝐴𝐼𝐶 = 249.76 

 

 

Table 11 GLMM of the longitudinal distance at the planning point: fixed effects, 

adjusted and ordinary coefficient of correlation 𝑅2  and AIC. Level of significance 

was set to 0.05. 

Name Estimate 𝑝-value 

Intercept 110.68 5.86 ⋅ 10−15 

Lateral distance −68.68 6.03 ⋅ 10−8 

Oncoming traffic −75.32 2.11 ⋅ 10−6 

Ego vehicle speed : lateral distance 0.75 5.30 ⋅ 10−11 

Ego vehicle speed : oncoming traffic 1.28 2.50 ⋅ 10−7 

Lateral distance : age 0.54 1.47 ⋅ 10−3 

Bicyclist speed : age −0.03 2.81 ⋅ 10−5 

𝑅𝑜𝑟𝑑
2 = 0.8482         𝑅𝑎𝑑𝑗

2 = 0.8384         𝐴𝐼𝐶 = 984.03 

 

 

The goodness of fit was briefly evaluated considering the coefficient of 

determination 𝑅2 for each of the models and by plotting the fitted values of the 

responses and the corresponding observed values, as in Figure 20 and Figure 21. 

What can be noticed from the figures is that the fitted values of the longitudinal 

distance and TTC, when plotted with the observed values, do not show a high 

dispersion around the red dotted line (a 45 degrees line representing where the fitted 

values are exactly equal to the observed values), supporting the high values of 

coefficient of correlation 𝑅2 (always higher than 0.8). Lower values of coefficient of 

correlation 𝑅2 for the TTC model compared to the longitudinal distance model could 

be explained considering that higher values of observed TTC were underestimated by 
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the model (in Figure 21, all the fitted values of TTC when the observed TTC is higher 

than 3 seconds are all placed below the red dotted line). 

 
Figure 20 Comparison of the fitted and the observed values of TTC at the 

planning point. The red dotted line represents the region where fitted values are 

exactly equal to the observed values 

 

 
Figure 21 Comparison of the fitted and the observed values of longitudinal 

distance at the planning point. The red dotted line represents the region where fitted 

values are exactly equal to the observed value. 
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Appendix A and Appendix B provide additional Figures that allow to 

qualitatively see the influence of the driver’s gender and the bicyclist lateral distance 

(factors highlighted by the GLMM in addition to the presence of oncoming traffic) on 

the responses. Figure 22 and Figure 25 respectively provide the TTC and the 

longitudinal distance at the planning point, grouped per driver’s gender. As opposed 

to the result of the GLMMs, the driver’s gender does not seem to influence the TTC 

and seems to influence the longitudinal distance at the planning point, which is higher 

for male drivers compared to female drivers. Scatter plots of the TTC at the planning 

point and the corresponding bicyclist lateral distance are provided in Figure 23 and 

Figure 24: the observations are grouped per presence of oncoming traffic and 

overtaking strategy, the fitting lines are plotted considering the overtaking strategy 

(Figure 23) or the presence of oncoming traffic (Figure 24). The TTC seems to 

increase with the bicyclist lateral distance, as opposed to the result of the GLMM. 

Scatter plots of the longitudinal distance at the planning point and the corresponding 

bicyclist lateral distance are provided in Figure 26 and Figure 27: the observations are 

grouped per presence of oncoming traffic and overtaking strategy, the fitting lines are 

plotted considering the overtaking strategy (Figure 26) or the presence of oncoming 

traffic (Figure 27). The longitudinal distance seems to show an increasing trend with 

the bicyclist lateral distance, as opposed to the result of the GLMM.  

 The explanation for the differences between the results of the GLMMs and the 

Figures in Appendix A and Appendix B is that boxplots and scatterplots do not 

consider all the factors together, justifying the need of a statistical model that 

considers all the factors.  
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5 Discussion 

This chapter provides an interpretation of the results and comments about the 

methodology. Section 5.1 is a discussion about the identification of the planning 

point, Section 5.2 is a qualitative analysis of the results, Section 5.3 provides a 

discussion about the GLMMs and an interpretation of the output of the GLMMs, 

Section 5.4 is a discussion about the main limitations of this thesis. 

 

5.1 When is the planning point? 

The identification of the planning point was performed during manual annotation of 

the overtaking manoeuvres. The two indicators that allowed to identify the planning 

point were the eyes and the pedals only, without including turn indicator and steering 

wheel angle (see Section 3.4.2). In particular, eyes were used to check the 

surroundings and to assess if it was allowed and if there was the opportunity to 

overtake (see Section 2.2). Regarding the pedals, the analysed drivers used to release 

the gas pedal before checking the surroundings, for instance to have more time to 

decide whether to overtake or not and to be ready in case the decision is to brake and 

follow the bicyclist. In case of flying overtaking manoeuvres, after releasing the gas 

pedal for a small amount of time (roughly no more than one second), the driver 

pressed the gas pedal again to perform the overtaking without considerably changing 

the speed. For accelerative overtaking manoeuvres the gas pedal was not pressed, and 

the brake was possibly used, depending on the ego vehicle speed at the planning 

point.  

 

Even if the turn indicator was initially considered as a possible planning point 

indicator (see Section 3.4.2), the annotation performed on the validated segments 

showed that the turn indicator was activated only after planning to overtake, when the 

decision is made (see Section 2.2). Similar principle applies for the steering wheel 

angle: it is a clear indicator of the steer away point, that could be coincident with the 

decision point if the driver decides to immediately change its lane position without 

getting closer to the bicyclist, but not of the planning point. 

 

5.2 Qualitative analysis 

A qualitative analysis can be performed by looking at the figures provided in Section 

4.2, Section 4.3 and Section 4.4. What can be noticed from Figure 9 is that, although 

the higher number of observed overtaking manoeuvres with oncoming traffic (61 out 

of 100), the TTC at the planning point has higher dispersion when there is oncoming 

traffic compared to when there is no oncoming traffic. An explanation for this could 

be that the planning point depends on when the oncoming traffic is perceived as well 

as on its speed and distance (not analysed in this thesis), while if there is no oncoming 

traffic the driver is free to steer away as soon as possible, so that the planning does not 

have any dependence on other factors that could make it more dispersed. The same 

interpretation applies when comparing the longitudinal distance with and without 

oncoming traffic (see Figure 14). 

 When the longitudinal distance at the planning point is analysed considering 

the interaction between overtaking strategy and presence of oncoming traffic (see 

Figure 15), it can be noticed that the presence of oncoming traffic seems to have an 

opposite effect depending on the strategy: for accelerative overtaking manoeuvres, the 

presence of oncoming traffic causes a decrease of the median compared to when there 
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is no oncoming traffic; vice versa, for flying overtaking manoeuvres, the presence of 

oncoming traffic causes an increase of the median compared to when there is no 

oncoming traffic. The median values of both the strategies with no oncoming traffic 

are close (both medians are slightly above 100 𝑚). These values are in accordance to 

the assumption of 100 𝑚 for the longitudinal distance at which the driver is deciding 

the overtaking strategy (Farah, H., et al., 2019). Regarding the overtaking manoeuvres 

with oncoming traffic, the inter-quartile range of longitudinal distance for flying 

overtaking manoeuvres is almost fully included in the inter-quartile range of 

longitudinal distance for accelerative overtaking manoeuvres.  

Unlike the longitudinal distance, the presence of oncoming traffic seems to 

have the same effect on the TTC at the planning point regardless of the strategy (see 

Figure 10): for both strategies, oncoming traffic seems to increase the median value of 

TTC as well as its dispersion.  

 

While the longitudinal distance at the planning point has a clear increasing 

trend with increasing ego vehicle speed (see Figure 16 and Figure 17), also confirmed 

by the results of the GLMM (see Table 11, where the ego vehicle speed appears in the 

interaction with bicyclist lateral distance or with presence of oncoming traffic), it is 

difficult to identify a trend for the TTC at the planning point by just looking at the 

scatter plots (see Figure 11 and Figure 12), since the slope of the fitting lines changes 

its sign depending on how the observed values of TTC are grouped.  

 

 The TTC at the steer away point has a lower median and a lower dispersion 

compared to the TTC at the planning point, as shown in Figure 18. The outliers were 

far above the value of seven seconds at the steer away point. The main reason for this 

is that, while the longitudinal distance has a finite positive value at the steer away 

point, the ego vehicle speed and the bicyclist speed might be close, causing the 

denominator of TTC to be close to zero, causing an overall high value of TTC. This 

happens when the driver has to follow the driver for a while before steering away, 

hence outliers with considerably high value of TTC at the steer away point only 

appear in accelerative overtaking manoeuvres, or in overtaking manoeuvres with 

oncoming traffic (see Figure 19). The TTC at the steer away point has a higher 

dispersion for accelerative overtaking manoeuvres or when oncoming traffic is 

present.   

 

5.3 GLMM 

GLMM was chosen to model TTC and longitudinal distance at the planning point for 

three reasons.  

The first reason is the assumption of linearity (linear model), so that the 

responses are based on a linear combination of the factors (see Section 3.6): this is a 

starting point, and was assumed to be true by default. A non-linear model would have 

been chosen if the results with the assumption of linearity were not acceptable or if 

more time was allotted to this thesis.  

The second reason why GLMM was chosen is that it is a mixed model: giving 

as an input all the factors together, including the random effect due to the driver, was 

crucial to better estimate the fixed effects. This can be seen considering how the 

results from the GLMM were not visible from a qualitative analysis of the results. 

The third reason why GLMM was used is that it allows to choose a 

distribution of the responses when creating the model (generalised model): it was 
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important to choose a distribution defined only for positive values, since the observed 

values of the responses (TTC and longitudinal distance at the planning point) were 

always positive. The tested distributions for each response were a gamma distribution 

and an inverse gaussian distribution: the distribution that gave the highest coefficient 

of correlation 𝑅2  was chosen to model the response. The best distribution was a 

gamma distribution for the longitudinal distance at the planning point and an inverse 

gaussian distribution for the TTC at the planning point. The normal distribution was 

also tested: it resulted in considerably lower values of coefficient of correlation 𝑅2, 

justifying the use of a generalised model. 

 

 The chosen link function was an identity function: the mean of the response 

was set equal to the linear predictor. This choice was made to ease the interpretation 

of the fixed effects, but it also improved the model (higher coefficient of correlation 

𝑅2 ) compared to the canonical link function, used by default by the MATLAB® 

function fitglme according to the chosen distribution of the response (MathWorks, 

fitglme, 2019). 

 

Follows a critical interpretation of the results from the GLMM. The fixed 

effects for TTC and longitudinal distance at the planning point are provided in Table 

10 and Table 11.  

 

5.3.1 Lateral distance 

Both the longitudinal distance and the TTC at the planning point considerably 

decrease as the bicyclist lateral distance increases (TTC is 1.04 𝑠  lower and 

longitudinal distance is 68.68 𝑚 lower when the bicyclist lateral distance increases of 

1 𝑚). A possible explanation for this could be that the bicyclist was perceived later if 

its lateral distance was higher, thus the driver started planning to overtake when closer 

to the bicyclist both in terms of longitudinal distance and TTC. 

 

5.3.2 Bicyclist speed 

An increase in bicyclist speed causes a decrease of the longitudinal distance at the 

planning point if the interaction with the age is considered: this means that the driver 

plans to overtake when closer to the bicyclist, and this effect is more pronounced for 

increasing driver’s age. Given a fixed driver’s age, an explanation for how an increase 

in bicyclist speed causes a decrease in longitudinal distance could be that, if high 

speed of the bicyclist was perceived, the driver could afford getting closer to the 

bicyclist before planning to overtake. Increasing bicyclist speed has an opposite effect 

on TTC, which increases as the bicyclist travels faster. This can be explained by 

considering that, even if the longitudinal distance at the planning point decreases with 

the bicyclist speed, the relative velocity at the denominator of TTC decreases as well. 

Hence, the decrease in the relative speed prevails over the decrease in longitudinal 

distance, causing an overall increase of TTC.  

 

5.3.3 Ego vehicle speed 

The ego vehicle speed has no significant influence on the longitudinal distance at the 

planning point but influences the TTC at the planning point: if the ego vehicle speed 

increases of 1 𝑘𝑚/ℎ, TTC decreases of 0.03 𝑠. This could be explained considering 

that, while the longitudinal distance is not influenced by this factor, the relative speed 
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at the denominator of the TTC increases with the ego vehicle speed, causing an 

overall decrease of TTC (see equation (9)).  

 

5.3.4 Presence of oncoming traffic 

The presence of oncoming traffic causes a considerable decrease of the TTC and of 

the longitudinal distance at the planning point. TTC decreases of 1.08 𝑠  and 

longitudinal distance decreases of 75.32 𝑚  when oncoming traffic is present. An 

explanation for this could be that, if oncoming traffic is perceived, the driver decides 

to wait before planning to overtake, having a smaller TTC and longitudinal distance. 

It is worth mentioning that the influence of oncoming traffic on TTC is considerably 

less significant (𝑝 -value = 0.04) compared to the influence on the longitudinal 

distance (𝑝-value = 2.11 ⋅ 10−6).  

 The influence of oncoming traffic on the overtaking manoeuvres was also 

noticed when studying the Comfort Zone Boundaries (CZBs). Oncoming traffic 

caused a reduction in minimum lateral clearance (Dozza, M., et al., 2015) (Kovaceva, 

J., et al., 2018): the results of this thesis provide that oncoming traffic has an 

analogous reduction effect on the longitudinal distance and TTC at the planning point. 

 

5.3.5 Overtaking strategy 

The overtaking strategy did not show any significant influence on both TTC and 

longitudinal distance at the planning point. An explanation for this could be that most 

of the accelerative overtaking manoeuvres were characterized by presence of 

oncoming traffic and, vice versa, most of the flying overtaking manoeuvres were 

characterized by absence of oncoming traffic (see Section 4.1, Table 7). While the 

overtaking strategy did not show any influence at the planning point, it made a 

difference when analysing the CZBs (Dozza, M., et al., 2015). This might be a proof 

that the overtaking strategy is chosen while planning, thus it does not affect the 

planning point but affects the CZBs. 

 

5.3.6 Gender 

The gender influences the TTC at the planning point. The observed values of TTC at 

the planning point were higher for male drivers compared to female drivers, meaning 

that male drivers start planning earlier. This is in contrast with previous studies 

(Farah, 2011) showing that male drivers are more aggressive than female drivers. A 

reason for this contrast might be the small number of female drivers involved in the 

analysis (13 only). An analysis involving more drivers, with a similar amount of male 

and female drivers, could make the results more accurate and possibly similar to the 

findings in the literature (Farah, 2011). Nevertheless, 26 out of 39 overtaking 

manoeuvres performed by female drivers were accelerative, while 30 out of 61 

overtaking manoeuvres performed by male drivers were flying, showing that female 

drivers preferred to choose an accelerative overtaking strategy, in accordance to the 

literature (Farah, 2011). 

 

5.3.7 Age 

The age appears in two-way interactions in the model for TTC. TTC increases with 

the increase of two-way interaction between lateral distance and age and decreases 
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with the two-way interaction between bicyclist speed and age. It can be noticed that 

the coefficients for the interaction of bicyclist speed with the age and lateral distance 

with the age are low compared to the single fixed effects (bicyclist speed and lateral 

distance). 

 

5.4 Limitations 

The main limitations of this thesis consist in the small dataset (100 overtaking 

manoeuvres used in the statistical analysis), in subjective error during manual 

annotation (see Section 5.4.1) and in the assumptions needed to extract data at the 

planning point (see Section 5.4.2). 

 

5.4.1 Manual annotation  

 Manual annotation of the overtaking manoeuvres might cause a strong 

influence of the annotator’s subjective perception on the results. In an attempt to make 

the results as objective as possible, new definitions were given for the purpose of 

annotating (see Section 3.4). This could have led to some bias in the results. For 

instance, overtaking manoeuvres were oncoming traffic was annotated as present (see 

Section 3.4.1) included overtaking manoeuvres in which the oncoming traffic 

appeared only after the passing phase: in such a case, it is difficult to assess whether 

the oncoming traffic had an influence on the planning point or not. Oncoming traffic 

could have an influence on the planning point if it was perceived before the planning 

point. Vice versa, if oncoming traffic was too far or if the infrastructure did not make 

it visible before the planning point, oncoming traffic could not have an influence on it. 

Another example regards the annotation of the overtaking strategy. In some 

overtaking manoeuvres the driver reduced the speed but steered away without 

following the bicyclist. This kind of overtaking is a borderline case, close to a flying 

overtaking because the driver does not follow the bicyclist, but also close to an 

accelerative because the driver is reducing its speed. Some overtaking manoeuvres 

that were flying in principle could have been classified as accelerative, or vice versa, 

to be consistent with the definition given in Section 3.4.1. 

 

5.4.2 Data extraction 

As discussed in Section 3.5, data from the ego vehicle was always defined, but 

data about the bicyclist was not available at the planning point. Hence, some 

assumptions were done to extract data about the bicyclist at the planning point. 

The bicyclist speed was assumed to be constant. This assumption is reasonable 

for a bicyclist on rural roads, as the bicyclist is just travelling straight without 

encountering any intersection or pedestrian crossing typical of an urban environment. 

One drawback of this assumption is that the bicyclist might have changed its speed as 

the ego vehicle approached. 

The lateral distance was calculated assuming constant lane position of the 

bicyclist, using the lane position calculated during bicyclist detection from MobilEye, 

when the ego vehicle was very close to the bicyclist. If allowed, the bicyclist could 

have changed its lane position to give more space to the driver to perform the 

overtaking. Hence, the lateral distance at the planning point might have been 

overestimated because of this effect. Moreover, the pressure zone created by the ego 

vehicle might have caused lateral oscillations of the bicyclist when the ego vehicle 

was close to it (Nero, 2017) (Schindler, R., Bast, V., 2015) (Kato, Y., et al., 1981). 



 

 

42  CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2019:64 

 

The error due to the oscillations might have been reduced by the time average, as 

described in Section 3.5.5. The assumption of lateral distance at the planning point 

equal to lateral distance at the steer away point is reasonable, since the steer away 

point was defined as the moment when the vehicle starts diverging from the original 

lane position: a possible difference in lane position between planning point and steer 

away point might only be due to small trajectory adjustments performed by the driver, 

which can be considered negligible.  

The heading angle was used to rotate the bicyclist longitudinal and lateral 

distance given by MobilEye in a car-fixed coordinate system before extracting the 

values of bicyclist speed, longitudinal distance and lateral distance at the planning 

point. The underlying assumption in the calculation of the heading angle as in Section  

3.5.2 is that the road is straight from the steer away point to the bicyclist 

disappearance. This is not an issue in case of straight roads but might cause errors if 

the overtaking was performed while travelling on a curve. However, all the analysed 

overtaking manoeuvres that were not performed on a straight road were performed on 

curves with a visibly high turning radius: hence, the effect of the curvature on the 

heading angle was negligible with respect to the effect of the overtaking manoeuvre. 

The overtaking manoeuvres without yaw rate were analysed assuming 

negligible heading angle. This is a strong assumption, made to include as many 

overtaking manoeuvres as possible in the statistical analysis. An analysis was made 

on a few overtaking manoeuvres where the heading angle was available to check if 

this assumption strongly affected the results (the bicyclist speed and the bicyclist 

lateral distance). The difference between the results calculated with and without using 

the heading angle was relatively low, meaning that it has not a strong influence on the 

results.  
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6 Conclusion and future works 

This thesis provided a methodology for the extraction of bicyclist overtaking 

manoeuvres on rural roads and for the extraction and estimation of TTC and 

longitudinal distance at the planning point, from naturalistic driving data. 

Data reduction allowed to identify bicyclist overtaking manoeuvres on rural 

roads in the database. Continuing, manual annotation and data extraction were 

performed to collect the data needed to estimate TTC and longitudinal distance at the 

planning point. After data extraction, and after removing observations with non-valid 

data (for instance, non-realistic bicyclist speed), a statistical analysis was performed 

on the collected data.  

GLMMs of TTC and longitudinal distance at the planning point were 

developed to understand which factors influenced them and to quantify their 

influence. The conclusion from the GLMMs of TTC and longitudinal distance at the 

planning point is that they both considerably decrease with increasing lateral distance 

of the bicyclist and they both considerably decrease if oncoming traffic is present. 

Moreover, TTC at the planning point is higher for male drivers than female drivers. 

 Knowledge of TTC at the planning point could contribute in the improvement 

of active safety systems by making them less conservative. Knowing when the driver 

is planning to overtake could help to understand how to prevent driver annoyance 

when AEB is activated (activation of AEB while the driver is still planning would be 

perceived as too early). Moreover, knowledge of TTC at the planning point might be 

useful to assess if the driver did not start planning to overtake yet, even if planning 

was expected to occur, and could be used by the safety systems algorithms as a metric 

to decide when to intervene. The long-term scope of TTC estimation is to increase the 

efficiency of AEB algorithms to reduce bicyclist fatalities in rear-end collisions, 

typical of overtaking scenarios on rural roads, where the high speed difference 

increases the risk of collisions resulting in severe injuries or fatalities. 

 

6.1 Future works 

This thesis consisted in extracting and estimating the TTC and the longitudinal 

distance at the planning point during an overtaking of a bicyclist using NDD from the 

UDRIVE project.  

During manual annotation, the planning point was annotated as in Section 

3.4.2: this thesis focused only on the first evidence that the driver is planning to 

overtake. It would be interesting to annotate all the points in which one different 

action is performed, to have a wider knowledge of what the drivers do during and 

after the decision-making process.  

Future studies might also collect more overtaking manoeuvres to include in 

the statistical analysis: specifically, more flying overtaking manoeuvres with 

oncoming traffic and more accelerative overtaking manoeuvres without oncoming 

traffic could be collected to make the population more homogeneous.  

The set of possible influencing factors in the GLMM could be extended, 

including more accurate description of oncoming traffic (which, in this thesis, was 

just a Boolean): for instance, TTC or longitudinal distance of the oncoming traffic 

could be used. The goodness of fit of the proposed model can be better assessed using 

more advanced methods than just looking at the coefficient of correlation 𝑅2 . 

Moreover, different statistical models, such as nonlinear regressive models, could be 

possibly used to either confirm or increase the accuracy of the results obtained using 

GLMM.  
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Appendices 
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A Time to Collision at the planning point – 

additional figures 

 

 
Figure 22 TTC at the planning point, grouped per driver's gender. The edges of 

each box represent the first and the third quartile, the whiskers give the range of the 

observations, the centre line represents the median, the notched region represents the 

95% confidence interval for the median, the plus symbols represent the outliers. 
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Figure 23 Scatter plot of TTC at the planning point and the corresponding 

bicyclist lateral distance. Fitting lines, with corresponding 95% confidence intervals 

(dotted lines), are plotted separately for flying and accelerative manoeuvres

 

Figure 24 Scatter plot of TTC at the planning point and the corresponding bicyclist 

lateral distance. Fitting lines, with corresponding 95% confidence intervals (dotted 

lines), are plotted separately for present and absent oncoming traffic. 
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B Longitudinal distance at the planning point – 

additional figures 
 

 
Figure 25 Longitudinal distance at the planning point, grouped per driver's 

gender. The edges of each box represent the first and the third quartile, the whiskers 

give the range of the observations, the centre line represents the median, the notched 

region represents the 95% confidence interval for the median. 
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Figure 26 Scatter plot of longitudinal distance at the planning point and the 

corresponding bicyclist lateral distance. Fitting lines, with corresponding 95% 

confidence intervals (dotted lines), are plotted separately for flying and accelerative 

manoeuvres. 

 
Figure 27 Scatter plot of longitudinal distance at the planning point and the 

corresponding bicyclist lateral distance. Fitting lines, with corresponding 95% 

confidence intervals (dotted lines), are plotted separately for present and absent 

oncoming traffic. 


