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Abstract

Tires operated at or close to their friction limits show a highly nonlinear force response. This state is called
limit handling condition. The objective of this research is to minimize lateral path tracking error whilst
the tires operate in limit handling. The State Dependent Riccati Equation (SDRE) technique is employed
to develop a feedback-feedforward steering controller. It gives a systematic approach to take into account
model nonlinearities such as combined slip tire characteristics. Furthermore the controller was implemented
on real-time hardware and tested on a test track. The controller shows reliable path tracking performance
up to the friction limits and also for conditions with large body sideslip angle, also referred to as ”Drifting”.
Additionally a linear throttle controller was implemented to achieve autonomous body slip control on top of
the path control. Experimental evaluation of this controller also showed promising results in terms of combined
position and vehicle state control.

Keywords: Lateral Control, Path Tracking, Steering Controller, Autonomous Drifting

i



ii



Preface

This is the final report of a Master Thesis Project. It represents one requirement in order to complete a Masters
study programme at Chalmers University of Technology and acquire the title Master of Science. In this case
the project was proposed by TNO in Helmond, Netherlands, which provided the assignment and resources to
conduct the project.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Dr. Mohsen Alirezaei for the continuous
support of my graduation project. His guidance, and the countless discussions together with him, have always
been very positive and productive.
Besides my supervisor I would like to thank my examiner Prof. Dr. Fredrik Bruzelius. His valuable feedback
gave direction to the research and broadened my horizon at the same time.
I want to thank TNO for providing the assignment and for giving me excellent opportunities to conduct the
experiments. Thanks to all the collogues who made the time at TNO a very positive experience. In particular
to mention are the other graduate students at TNO: Robbin, Niels, Jorrit, Wouter, Koos, Manikandan, Sujit,
Chyannie and Manigandan, who made the year in Eindhoven such a great time.
Especially I want to thank my parents and family, who not only supported me during the time of my graduation
project, but throughout all the endeavours of my Master studies.

iii



iv



Nomenclature

Acronyms
CG Center of Gravity
DYC Direct Yaw Control
FB Feedback
FF Feedforward
LH Left Hand
LQR Linear Quadratic Regulator
MF Magic Formula
MPC Model Predictive Control
OS Oversteer
PID Proportional Integral Differential
RE Riccati Equation
RH Right Hand
SDC State Dependent Coefficient
SDRE State Dependent Riccati Equation
SMC Sliding Mode Control
US Understeer

Greek Symbols
αi Tire sideslip angle of tire or axle i
β Body sideslip angle
δ Steering angle at the front wheel(s)
λi Longitudinal tire slip of the respective tire i
ζ Solution of the Hamiltonian
µ Tire-road friction coefficient
ω Rotational wheel speed
ψ Heading angle
ρ Curvature of the actual trajectory
ρdes Desired/reference curvature that is to be tracked
ρpath Path curvature

Roman Symbols
A System dynamics
B System inputs
K Feedback control gain matrix
P Solution of the Riccati Equation
Q State weighting matrix
R Input weighting matrix
u Input
x Vehicle state
~egx/y Axis of the global frame of reference
~evx/y Axis of the vehicle frame of reference
ax Longitudinal acceleration
ay Lateral acceleration
atot Total/cornering acceleration:

√
a2x + a2y

Cα,i Lateral stiffness of tire or axle i
Cλ,i Longitudinal stiffness of tire or axle i
d Distance along a path/arc length
eψ Heading error
eρ Curvature Error
ela Look-ahead error
Fx,i Longitudinal tire force of respective tire or axle i
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Fy,i Lateral tire force of tire or axle i
Fz,i Vertical tire force of respective tire or axle i
g Gravitational constant: 9.81 m/s2
hCG Vehicle CG height
Iz Vehicle inertia around z-axis
J Quadratic cost performance index
KUS Understeering gradient
L Look-ahead point
l Wheelbase
lf Distance from CG to front axle
lr Length from CG to front axle
lt Track width
m Vehicle mass
Mz Moment around vehicle z-axis
R Corner radius
r Yaw rate
rw Wheel radius
t Time
v/vtot Total velocity
vx Longitudinal velocity
vy Lateral velocity
X Cartesian coordinate in respective axis
xla Look-ahead distance
Y Cartesian coordinate in respective axis
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Part I

Introduction

1 Background

Road traffic injuries are the leading cause of death among people between five and 29 years old in Europe [09].
This is the reason for a consistent demand to increase road safety. One way to reduce the number of accidents
is to introduce safety systems to road vehicles. Figure 1.1 shows the roadmap of passive and active systems
and how they provide to the aim of minimizing traffic fatalities.

Figure 1.1: Roadmap to minimizing of road traffic fatalities via Autonomous Driving [Ali15]

The causes behind traffic accidents are 72% purely due to human error [Tho+13]. Therefore the ultimate aim
is to take the responsibility from the human driver and introduce fully autonomous driving. Therefore one
necessity is to have reliable autonomous action of the vehicle in any driving scenario. A particularly extreme
case in that sense is collision avoidance. While autonomous driving cars are intended to avoid safety critical
situations in the first place these can occur when non-predictable objects pop up on the intended track of the
vehicle, for example approaching traffic or dropped cargo.
If the required stopping distance then is too small, evasive manoeuvring and exploitation of the vehicle handling
limits might be necessary to reduce risk of a collision. To guarantee reliable and safe autonomous action up
to the limits of handling marks one of the pieces in the puzzle, that has to be put into place to complete the
roadmap towards autonomous driving.

2 Problem

Active yaw rate control using differential braking, that allowed to keep a vehicle stable in dangerous driving
conditions, was firstly introduced to passenger cars in 1995 [Lie+]. It became enforced by law to be standard
safety feature for new cars in the EU from 2014 on [Par09]. The system supports the driver in the sence of
helping to keep the vehicle controllable via preventing skidding and spinning out. Logic controllers distribute
braking torque over all four wheels in a predefined manner, in order that large sideslip angles are avoided and
tires are controlled to stay in the linear regime. Therefore the drivers demanded yaw rate might be compromised
[Raj12]. Supporting the driver in dangerous situations with this system it is still his responsibility to steer the
car and track his desired path.
The essence of autonomous driving is that the vehicle will take responsibility of tracking the desired path.
Facilitating active steering, a number of different controllers have been proposed and are already employed in
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passenger cars for lane following assistance systems. Mainly linear controllers have been employed for safe lane
following in highway like environments. The main characteristics of highway driving in fact is that highway
lanes make smooth bends. Therefore small steering inputs together with low yaw rates are expected.
Evasive maneuvering like in a collision avoidance scenario happens in a short time horizon and requires large
actuator inputs together with high yaw rates. Tires will operate close to their friction limits and can partly
be oversaturated, coming together with large sideslips. In this condition tire force characteristics become
highly nonlinear making it hard to stabilize the vehicle, which is therefore called limit handling condition.
Controllability via steering input becomes very much limited in these conditions [Hin13]. Authority over yaw
dynamics at high sideslip manoeuvres can be gained using differential braking as additional actuator to the
steering.
There is few controllers developed for specific cases of limit handling scenarios like collision avoidance in a
structured urban environment [Gra+], for autonomous drifting experiments [Hin13] or for following a racing
line [Kri12]. However the variability and generality of the control approaches is limited since they were designed
for specific scenarios or are only valid for limited sideslip angles. A further step is to put emphasis on path
tracking under limit handling conditions when following an avoidance path. Therefore the command of the
existing actuators have to be intelligently distributed to achieve maximum tracking performance with minimum
vehicle excitation in varying environmental conditions. Figure 2.1 shows the problem schematically.
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Figure 2.1: Problem visualization: The vehicle is required to do an evasive manoeuvre for reducing risk of a
collision.

The vehicle shown has to track the reference path in an evasive fashion, otherwise a risk for collision is prevailing.
In this specific scenario the reference path is a quick lane-change, whereas case dependent the path can have
any shape.

3 Delimitations

In this research the goal is to control the lateral motion of a vehicle in limit handling condition, whilst following
a desired path. To achieve this, the control approach relies on existing and cost effective sensors for detecting
the position with reference to the path.
Forward-looking sensors like camera and radar are the available tools for active safety applications in today’s
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vehicles. Furthermore research shows that vehicle states and friction estimates can be estimated in real-time
using standard sensors available in production cars, such as gyroscpopes and wheel speed sensors [Hoe16]. State
information is taken for granted for possible control schemes in this research. Also the path planning is done
independently, so the method will rely on available path information, which is computed offline. Summarized
the delimitations are:

• Reference path is available, see also Section 9.1 for delimitations on the path,
• path information from Radar and Camera are available for path tracking task and
• vehicle state feedback is available in real-time.

There is a Toyota Prius available at TNO for experimental investigation. With this prospect vehicle and tire
parameters are taken from the Prius as well. Therefore calculations, simulations and results in this thesis are
done on behalf of the Prius, see Appendix A. In case other parameters are used it is pointed out explicitly.
However in the process of the thesis work it was concluded that for experimentation of limit handling scenarios
a different vehicle would be more suitable. Therefore, from Chapter 22 simulation and experimentation is done
on behalf of a BMW 5 series, see Appendix B.

4 Report Outline
Before developing the lateral motion controller, it is necessary to discuss fundamentals and recent research
results in this field. In Part II relevant fundamentals in lateral vehicle motion are treated with special emphasis
on the nonlinear nature of tire-road friction. Also a definition of the limit handling operation regime is given.
Subsequently in Part III the path tracking control problem is defined together with an investigation of related
problem formulations from literature. Taking the problem description in mind a survey of control method
alternatives is done.
In Part IV the development of the SDRE controller is described together with an explanation of the control
method itself. Together with the SDRE feedback controller also feedforward terms are used and therefore
described in here. Part V contains the explanation of relevant scenarios for testing the controller. Results of
computer simulation are shown and discussed. Also a basic investigation of body sideslip control is done. Part
VI describes necessary adaptions made for controller implementation into a real car for testing. Also testing
results are shown. The report finishes off with conclusions about the project and recommendations for future
work.
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Part II

Lateral Vehicle Motion
Relevant fundamentals about lateral vehicle dynamics with special emphasis on vehicle stability and tire-road
friction are to be discussed in this part. These are prerequisites for designing the lateral path tracking controller.
Vehicle dynamics are discussed on behalf of a well suited lateral model using the convention as it can be seen
in Figure 2.1. The vehicle moves in a global frame of reference ~eg. The vehicle reference frame ~ev is fixed
to the center of gravity (CG) of the vehicle and aligned with the vehicle in a sense that ~evx points towards
the front and ~evx points towards the left, each in positive direction respectively. The vehicle translates with
longitudinal and lateral velocity, vx and vy, respectively. The orientation of the vehicle ψ changes due to the
yaw rate r, whereas positive yaw rate means turning to the left. This convention is used throughout the whole
report together with SI units. Furthermore for generation of graphs shown in this chapter the Toyota Prius
parameters are used, see Appendix A. Concluding in this part the explanation of the limit handling operating
regime is given.

5 Linearized Model

Looking at a generic four wheel vehicle with front wheel steering, the wheels of each axle can be modelled
into one wheel per axle for simplification. A bicycle like planar model is the result, see Figure 5.1. It has
three degrees of freedom, these beeing longitudinal velocity vx, lateral velocity vy and yaw rate r. The steering
input is depicted by δ. The length from CG to front and rear axle are represented by lf and lr respectively.
Negotiating a turn with this bicycle model, a particular relation between steering angle and turning radius can
be found.

δ = arctan
(
l

R

)
(5.1)

This purely kinematic relation holds for low velocities with approximately zero lateral acceleration. The
governing assumption is that the velocity vectors at the front and rear wheel point in the direction of the wheel
respectively [Raj12].

αr

δ − αr

γ
R

αf

δ

αr

CG

lf

lr

β

Figure 5.1: Bicycle model cornering with lateral acceleration present

For higher vehicle speeds this assumption can no longer be made. Lateral acceleration is present, yielding tire
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lateral forces. Result is a lateral velocity component of each wheel meaning that the velocity vector no longer
points in the direction of the wheel. The slip angle is defined as the angle between the orientation of a wheel
and the orientation of the velocity vector of that wheel [Raj12]. Figure 5.1 shows a bicycle model cornering
with lateral acceleration present and points out the slip angles.

αf = δ − arctan
(
vy + lfr

vx

)
(5.2)

αr = arctan
(
−vy + lrr

vx

)
(5.3)

Experimental data shows that tire lateral force is proportional to the tire slip-angle, for small slip angles [Raj12]
[Gil92].

Fy,i = Cα,iαi (5.4)

The tire lateral stiffness Cα is tire specific and depends on different parameters like vertical load, tire pressure,
size, type and number of plies. When assuming longitudinal speed to be constant a two degree of freedom
model can be obtained using Newtons second law. Force and moment balance at the center of gravity yield

mÿ = m(v̇y + vxr) = Fy,f + Fy,r (5.5)
Izψ̈ = Iz ṙ = lfFy,f − lrFy,r (5.6)

Using Equation 5.4 for calculating tire forces, Fy,f/r, the two degree of freedom bicycle model is obtained.[
v̇y
ṙ

]
=

[
−Cα,f+Cα,r

mvx
−vx + lrCα,r−lfCα,f

mvx
lrCα,r−lfCα,f

Izvx
− l2rCα,r−l

2
fCα,f

Izvx

] [
vy
r

]
+

[
Cαf
m

lfCαf
Iz

]
δ (5.7)

From this system in the form of ẋ = Ax + Bu, fundamental stability properties of lateral vehicle motion can
be obtained as follows.

6 Steady-state Cornering and Stability

Applying a step input in steering will lead to lateral slip on the front wheel, which in turn creates lateral
force and the model will enter a turn. Lateral acceleration of the model occurs when entering a turn. As a
result, also the rear wheel will create lateral slip. Geometrical properties, mass, tire stiffness and longitudinal
velocity will decide if the vehicle can stable negotiate the turn. If assumed that R� l the geometric relation
for steering can be obtained from Figure 5.1.

δ =
l

R
+ αf − αr (6.1)

Steady-state cornering implies constant lateral acceleration and zero change in yaw rate, r = vx/R.

ay,SS = vxr (6.2)

=
v2x
R

(6.3)

A relation for steering input necessary to negotiate a turn with radius R dependent on longitudinal velocity vx
is obtained for steady-state condition [Raj12].

δ =
l

R
+KUS

v2x
R

(6.4)

where
KUS =

m

l

(
lr
Cα,f

− lf
Cα,r

)
(6.5)

KUS depicts the Understeering Gradient. Depending on it, the required steering input to negotiate a turn with
radius R will differ from the pure geometrical contribution L/R. There exist three different cases [Raj12].
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1. Neutral steer, KUS = 0
Negotiating a turn with constant radius R does not require a change in steering input as speed is varied.

2. Understeer, KUS > 0
Negotiating a turn with constant radius R does require an increase in steering input as speed is increased.

3. Oversteer, KUS < 0
Negotiating a turn with constant radius R does require a decrease in steering input as speed is increased.

Figure 6.1 shows steering input as a function of lateral acceleration in g for the respective cases. The speed at
which the steering input is zero for oversteering case is called critical speed vcrit.

ay

g (vcrit)
0

l
R

KUS > 0

KUS = 0

KUS < 0

ay

g

δ

Figure 6.1: Required steering input with respect to lateral acceleration in order to negotiate a turn with radius R

At this speed the bicycle model becomes unstable and can no longer negotiate the turn. This relation represents
the Hurwitz stability criteria of the bicycle model from Equation 5.7. Furthermore due to the lateral velocity
component a body sideslip β adheres to the model.

β = arctan
(
vy
vx

)
≈ vy
vx
, for vx � |vy| (6.6)

As seen from Figure 5.1, the body sideslip angle represents the heading error with respect to the vehicle
trajectory. This means a mismatch between heading vector and velocity vector of the CG and equals zero only
if αr is equal to the angle γ = lr/R. This is the case at the exact speed, when vx fulfils

lr
R

=
lf

Cα,rl

m v2x
R

(6.7)

This error however is predefined, since the slip angles at rear and front are completely determined for fixed
radius R and speed vx [Raj12].

7 Tire Characteristics and Limit Handling
Lateral motion at higher accelerations involves significant tire lateral slip, and the linear model does not hold
any more. Tire forces show a particular and highly nonlinear friction characteristic for increasing lateral slip.
Additionally to lateral slip, which yields lateral tire force, as introduced in Section 5, there is longitudinal slip,
yielding longitudinal tire force. It is defined as normalized relative movement between tire running surface and
road,

λ =
ω rw − vx

vx
. (7.1)

Furthermore, lateral and longitudinal tire forces are mutually dependent. A lot of research has been spent
on the tire and yielded several types of mathematical models for tire force calculation. The range spans from
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empirical models (using experimental data only) to theoretical models (using physical models). All types
support their specific purpose, while inheriting different levels of accuracy and complexity. A widely used and
practical model is the semi-empirical Magic Formula (MF) tire model [Pac12]. A MF model is shown in Figure
7.1.

0 0.2 0.4 0.6 0.8 1
0
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1
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µ
x
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Figure 7.1: Left: Magic Formula lateral and longitudinal slip curve for a typical passenger car tire, Right:
Combined lateral and longitudinal slip friction circle

The governing dependency of longitudinal/lateral tire-road friction, µx/y =
Fx/y
Fz

, on longitudinal/lateral tire
slip, λ/α, is shown. Firstly, pure slip scenarios are considered, where α = 0 for the µx-graph and λ = 0 for
the µy-graph. At about zero slip, both curves show an approximately linear stiffness, which decays to zero
and yields the tire friction peak at about 10% slip. The peak is followed by a large saturation range, which
represents the physical limitation of tire-road friction. However, for combined slip scenarios, lateral capabilities
of the tire are compromised by the longitudinal slip and vice versa. This is expressed in terms of the so called
friction circle on the right. Friction values do not exceed it. Therefore, in order to exploit the full capabilities of
a vehicle in an evasive manoeuvre, the applied control system should account for this combined slip behaviour.
Furthermore, the saturation at large tire sideslip should be considered, as changes in steering have then a highly
reduced impact onto change of yaw rate. This behavior is different in comparison to maneuvering within the
linear range. It makes the vehicle hardly controllable for average drivers [Raj12]. This condition is therefore
called limit handling.
First active lateral stability control systems were introduced in commercial cars in the 1990s. Examples are the
ESP from Mercedes and the DSC3 from BMW. In the meanwhile these systems became state of the art and
even compulsory for new production cars in Europe. They are aimed to keep the vehicle in a handling envelope,
which is safe for the driver when doing lateral manoeuvres. Facilitating differential braking between left and
right wheels yaw moment is controlled in order to limit yaw rate depending on the desired corner radius [Raj12].
The vehicle is prevented from spinning out (exceeding desired curvature), and tire saturation of only one axle
is avoided to sustain controllability for the driver [Lie+]. Direct Yaw Control (DYC) Systems only facilitate
the brake system and do not take path tracking into account. Application of active steering additionally to
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the differential braking can take the responsibility of path following from the driver in emergency cases. Such
evasive manoeuvres require the control system to make optimal use of the tire potential in every time instance,
and therefore take combined slip behaviour into account.

8 Cornering with Saturated Tires
Lateral motion at the friction limits can be investigated when taking tire nonlinearities into account. This
can be done using the bicycle model and incorporating a nonlinear tire model for pure lateral slip. Also the
influence of steering angle on lateral front axle force can be taken into account.[

β̇
ṙ

]
=

[
Fy,f cos δ+Fy,r

mvx
− r

lfFy,f cos δ−lrFy,r
IZ

]
(8.1)

where the relation between lateral velocity and sideslip is β = vy/vx. The nonlinear tire model of the Prius is
represented through Fy,i = f(αi). Figure 8.1 shows a phase portrait of the model for one fixed set of steer
angle δ = 3 deg and speed vx = 15 m/s. As demonstrated in literature there are three equilibria appearing
[Ono+13] [Klo10] [Hin13].
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Figure 8.1: Phase portrait of lateral vehicle dynamic model (Equation 8.1) with Prius parameters for vx =
15m/s and δ = 3 deg

One of them appears to be a stable equilibrium where the system trajectories converge to in a certain envelope
for limited sideslip and yaw rate. Two appear to be open loop unstable drift equilibria. One appears for positive,
left hand (LH) turning with moderate absolute sideslip and one appears for right hand (RH) turning (negative
yaw rate) and large absolute sideslip angle. Both are located in the phase plane where the vehicle is highly
excited and at the edge to spin out, which can be seen from the divergence in sideslip. A well known example,
where cornering techniques using these so called drift equilibria are applied, is rallye racing. For rally drivers it
is quite common to corner with the rear tires of their racecar saturated and working the vehicle at the edge of
the stable handling envelope. This is directly opposing the DYC principle which aims to avoid tire saturation
in order to keep the vehicle stable and controllable for the driver.
A successful drifting controller using linearization about one of these equilibria could be presented [VHG10].
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Based on human driver data, it was investigated how the control strategy for producing such a manoeuvre
would look like. It usually consists of two sequences, an open and a closed loop sequence. During the open
loop sequence the driver ramps, then holds a relatively large and constant steering input, bringing the car near
the limits of handling. Initiation of the drift is done by saturating the rear tires using rear brake. Due to the
combined slip characteristic, a sudden drop in rear lateral force yields an increase in yaw moment. Then the
yaw rate peaks, yielding an increase in lateral velocity magnitude and sideslip magnitude as well. This marks
an initial condition and from then on closed loop activity occurs where the driver actively avoids a vehicle
spinout via increasing counter steering and actively avoids an exit of the drift via reducing counter steering.
The control scheme presented follows the same process as the drivers intuition. An open loop sequence brings
the vehicle over a threshold value of vy. Then the steering controller is activated. The feedback controller is
designed based upon a linearized bicycle model of the desired equilibrium, using constant stabilizing gains for
lateral velocity and yaw rate error. Longitudinal velocity is controlled using rear drive torque. Generally for
drifting to sustain necessary forward velocity, longitudinal slip needs to be generated on the saturated rear
tires, to gain longitudinal force.
Three governing characteristics of the drift equilibria were proposed [Hin13]. The first one is that the sideslip is
highly sensitive to yaw rate variations. The impact of steering input on sideslip is mainly outweighed by the
effect of it via yaw dynamics. Secondly, the front tires work around their maximum friction potential meaning
that controllability through steering is limited. Thirdly, the rear drive force holds main control authority as a
result of the combined slip characteristic at rear tire saturation. Also by [EP09] and [Vel+09] it was concluded
that sufficient drive torque plays a prominent role for drifting. It is also possible to find cornering equilibria for
vehicles only equipped with differential drives and without steering input. There exist multiple equilibria for
any cornering radius in combination with a certain longitudinal speed [VFT09].
Especially in sharp, hair-pin turns and on low friction surfaces, using this practice they achieve maximum
performance (minimum time on track) [Hin13]. In longer turns even a steady-state condition with large sideslip
can be observed. Dynamic programming showed that rallye driving techniques correspond to the minimum-time
cornering solution when a fast exit of the turn is most important [Efs08] [E V]. However this is not always the
case and one more reason why this cornering technique is mostly used for races on dirt and loose surfaces is
that tire behaviour is different on solid surfaces, in comparison to loose gravel for instance. For the latter case,
tire force does not experience a typical decline at large slip, to the contrary it even increases slightly. This
effect presumably rather originates from the tire interacting with loose objects than from pure slipping on a
solid surface, see Figure 8.2.
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Figure 8.2: Dependence of tire force between different grounds, according to [Trz08]

However, for drifting on solid grounds, there is ultimately not more grip to be expected (for normal car tires).
The total friction is limited as seen from the concept of the friction circle. Though, for sharp turns there
can still be an advantage using rear tire saturation. The maximum cornering acceleration resulting from the
friction limits can not be achieved for sharp turns when only using steering input. This effect is called steering
effectiveness in literature [Fra08]. A thorough explanation of it can not be found however. It might appear
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from the reason that for very sharp turns a limit in achievable yaw rate exists, rmax. Using the relations for
longitudinal and lateral acceleration, ay = v̇y + vxr and ax = v̇x − vyr respectively, and assuming steady-state
cornering the following relation for cornering acceleration can be obtained.

atot =
√
(vxr)2 + (−vyr)2 = rvtot (8.2)

For sharp turns v decreases and the required yaw rate r tends to infinity. As well the cornering radius R
becomes very small and turning transfers to a kinematic problem, where the slip angle of the rear tire drops
close to zero. Imagine the geometrical cornering problem, as seen in Figure 8.3. The term −vy + lrr converges
to zero, as does the rear lateral slip.

R

l

δ

Turning-
center

Figure 8.3: Kinematic Turn

In these cases it is beneficial to saturate the rear tires and force them into larger sideslip angle. This can be
compared to rear wheel steering and allows for exploitation of sharp turns which is also referred to as doughnuts.
Furthermore another investigation gives also a different view on the term steering effectiveness. Solving the
system of Equation 8.1 for the cornering equilibria with the maximum cornering acceleration atot,max dependent
on speed vx, yields the graph in Figure 8.4.
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Figure 8.4: Equilibria with maximum cornering acceleration of the nonlinear bicycle from Equation 8.1
.

It can be seen that for vx smaller than 12 m/s the maximum cornering acceleration drops significantly. When
looking at the corresponding steering input, it can be seen that with increasing steering angle the maximum
available cornering acceleration drops. The reason is that due to turning the front wheel the lateral force
component of the front tire contributing to cornering reduces with the factor cos δ. For speed vx smaller than 6
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m/s, steering reaches the considered mechanical steering limit of 35 degree. This lets the maximum cornering
acceleration drop further. This investigation shows that for speeds below 12 m/s, there might be the advantage
of increased body sideslip in terms of drifting, yielding to reduced steering effort and in turn increased maximum
cornering performance.
The following points became apparent from the literature study.

1. Increasing the β-r handling envelope, in which the vehicle can be stabilized allows accounting for external
disturbances, that could otherwise make the vehicle unstable when it is already in limit handling condition

2. Large sideslip manoeuvres are connected to higher yaw rates as seen from Figure 8.1 which can be
beneficial in certain transient conditions. This could be for instance that collision avoidance requires
entering a sharp turn or changing direction. Deliberate tire saturation could be beneficial and increase
handling capabilities in these scenarios.

3. Drifting trims could increase maximum cornering acceleration for certain grounds and for low speeds,
when steering effectiveness comes into play.

Therefore considering drifting handling regimes is relevant for the limit handling lateral controller in this
research. Further research is necessary in order to show the benefits quantitatively.
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Part III

Path Tracking Control Problem
In this part the task of path tracking in limit handling is broken down to the underlying control problem.
In the first place this task implies the vehicle has to track a certain reference, which in turn was designed
having underlying capabilities of the vehicle itself in mind. The reference should be output of a high level
path planning algorithm, which takes data from the environment sensors like camera and radar into account.
The focus in this research is to exploit the performance for tracking a reference path given from a high level
path planner. This path is assumed to be given and can be somewhat arbitrary, as it results from arbitrary
avoidance situations in real traffic.
However, when assuming tire-road contact to be the only mechanical connection between vehicle and environment,
then there is a strict physical limit to the arbitrariness and therefore achieveability of the path. This should
be clarified first and gives delimitations on the project. Furthermore, related control problem formulations
from literature are investigated in order to find the best suiting formulation for path tracking in limit handling
condition. Also control alternatives are compared to see which one suits best for the control problem.

9 Definition of Reference Path
It must be defined, in which physical quantity the reference path appears as input and what means path
achievability.

9.1 Curvature Achievebility

A path is represented in terms of a curvature, ρ = 1/R, and as a function of distance d along the path itself,
ρpath = f(d). Assuming constant speed v, the relation between two-dimensional Cartesian coordinates X,Y
and path curvature ρpath is as follows.

X =

∫
v cosψdt (9.1)

Y =

∫
v sinψdt (9.2)

ψ =

∫
ρpath(t)vdt (9.3)

Assuming a vehicle to have point mass properties, it could achieve a maximum horizontal acceleration of
amax = µv,maxg, where µv,max is the maximum friction coefficient. The latter one is mainly dependent on the
peak tire-road friction coefficient, but also other factors. For instance due to weight transfer and suspension
dynamics not all tires can work at their peak friction in every condition. Nevertheless, for simplification purpose
it can be seen as a constant and be taken as the peak lateral value from the friction ellipse. Assuming the
vehicle to be travelling along a steady-state arc with constant speed, a maximum curvature for the vehicle can
be found.

1

ρmax
≥ v2

amax
(9.4)

Figure 9.1 shows the relation graphically for different µv,max. A path is generally inachieveable if the desired
curvature at any instance of the path, ρdes, exceeds ρmax. However, for actual paths where curvature and
speed are not constant, desired yaw rate of the vehicle changes.

rdes(t) = v(t)ρdes(t) (9.5)

Is the vehicle already moving at its friction limits or close to it, it will most probably not be able to follow
a required (significant) change in curvature. With tires working on their friction limits, there is simply not
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Figure 9.1: Maximum curvature a vehicle (with point mass properties) can achieve dependent on friction

enough yaw moment that can be created quick enough. So the scope of this project is to increase achievability
of paths with |ρdes| / ρmax. The heading of the vehicle should be changed as quick as possible, whilst retaining
positional constraints to the path when tires operate at or close to the friction limits.

9.2 Curvature as a Function of Time

In an avoidance path, rate of change in desired curvature is large in comparison to normal highway driving. A
path can be seen as a connection of transient parts, where one part resembles the change from one steady-state
condition (cornering equilibrium) to another. In this situation the vehicle will deviate from the path if it can’t
gain a large enough curvature rate. Figure 9.2 shows a qualitative curvature profile over time, where a change
from one equilibrium to another is negotiated. When speed along the path is considered to be constant, then
time axis also represents distance d along the path.

Eq1

Eq2

ρ̇(ȧ)

t(d)

ρ
(a
)

X

Y

Eq1

Transition

Eq2

Figure 9.2: Transition between one curvature equilibrium to another dependent on time t, or distance d, for
constant speed along the path

The curvature rate ρ̇ of the vehicle can be seen as the ability to change its course.

ρ =
r

v
(9.6)

ρ̇ =
d

dt

r(t)

v(t)
(9.7)

ρ̇ =
ṙ

v
− ρ

v̇

v
(9.8)
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where v is the total velocity of the vehicle.

vtot =
√
v2x + v2y , ∀vx ≥ 0 (9.9)

It follows
ρ̇ =

ṙ

vtot
− ρ

vxv̇x + vy v̇y
v2tot

(9.10)

where when assuming v̇x = 0 and using v̇y = β̇vx

ρ̇ =
ṙ

vtot
− β̇

v2tot
ρvxvy (9.11)

Assume a vehicle with vx > 0 negotiating a positive turn, ρ > 0, in steady-state condtition, vy = constant.
Therefore ρ̇ is directly proportional to ṙ and −β̇vy. So the ability of a vehicle to change its course is directly
dependent on its capabilities in yaw acceleration and changing sideslip. These two quantities need to be
optimized in order to track a path as agile as possible. As seen from Equation 5.6, yaw acceleration is dependent
on the yaw moment that can be created around the z-axis of the vehicle.
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Figure 9.3: Pole zero map and step response of β for open loop bicycle model

As it is desired in this project to use differential wheel inputs, these can be used to create additional yaw
moment and should increase path tracking performance. However for change in sideslip this relation is not as
trivial. Some insight brings investigation of the open-loop bicycle model, see Equation 5.7. Figure 9.3 shows a
pole-zero-map and normalized step response for β = vy/vx and changing vx. Since the Prius has a positive
understeering gradient the state is open-loop stable, but for velocities greater than 20 m/s the response looses
phase due to a positive zero. This behavior is far from optimal, but it lies within the nature of the bicycle
model, that following a steering input, firstly the front axle builds up slip and force. Thus the initial response
is positive sideslip.
It should be checked to what extent the response in sideslip can be altered using differential wheel slip inputs.
These actuators act as an additional input for the state r. A four wheeled vehicle is assumed, where the two
inner wheels (with respect to the turn) produce yaw moment via negative slip. It represents the use of selective
braking actuation. The resulting additional yaw moment is

Mz,λ =
2Cλlt
Iz

λ (9.12)
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Figure 9.4: Pole zero map and step response of β for open loop bicycle model with additional actuators

where Cλ represents the linearized longitudinal tire stiffness and lt represents the half track width of the vehicle.
The term Bu from Equation 5.7 can be altered to

[
Cαf
m 0

lfCαf
Iz

2Cλlt
Iz

] [
δ
λ

]
(9.13)

When adding the two transfer functions δ → β and λ→ β together, the influence of the additional input can
be investigated. Figure 9.4 shows the pole-zero-map and step response.
The new transfer function shows three zeros, of which one still remains in the right half plane, see Figure 9.4.
The non-minimum phase characteristic for higher velocities persists, but since two zeros remain in the left half
plane and are located closer to the origin, these act as dominant and improve the transient behaviour of β.
This can be seen in a less oscillatory transient part compared to the system with only steering input. Also
the system reacts in a way that further increase of yaw moment input would further reduce the impact of the
positive zeros, and therefore further decouple yaw motion from lateral motion. This shows how wheel slip
inputs alter the characteristics in terms of body slip response.

9.3 Curvature Response

The actual response in terms of curvature can be assessed for the linear bicycle, using ρ̇ = ṙ
vx

. Different actuator
combinations should be analysed to see the influence on the curvature response of the bicycle model. Five
relevant setups are compared.
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Figure 9.5: Step response in curvature for different actuator combinations

1. Front wheel steering input δf : This resembles the standard input for the bicycle model.

2. Front wheel steering input, δf together with wheel slip input λ on the rear axle: As both
wheels of the rear axle get the same slip, representing rear wheel drive propulsion torque, the rear
cornering stiffness will drop due to the tire combined slip behavior. This in terms of the bicycle model
will represent a vehicle with smaller understeering gradient, therefore rather oversteering. Two cases
are considered, one with rear cornering stiffness reduced by 50% (Line 2 in plot) and one case with rear
cornering stiffness reduced by 95% (Line 2b in plot). The latter one represents a fully saturated rear axle,
which can only be generated with large longitudinal tire slip |λr|, due to driving or braking toque.

3. Front wheel steering input δf and wheel slip λ on the inner wheel (with respect to the
turn), on the rear axle in order to generate additional yaw moment, according to Equation
9.13: This represents the case with differential braking actuation. Only one wheel is considered and
represents a minimum in available actuators (worst case). It is considered that this wheel is part of the
rear axle, and also the rear axle cornering stiffness is reduced by 50% to represent the combined slip
characteristic.

4. Same as Setup 3, but additional yaw moment is generated with λ at the inner wheel of the
front axle: Respectively is the front axle cornering stiffness reduced by 50% (to represent combined slip
tire characteristics).

5. Front wheel steering input δf and rear wheel steering input δr: This represents a costly option
that is not relevant for small and middle class production cars at this moment, but is considered as a
benchmark.

Figure 9.5 shows a step response in curvature of the above mentioned setups. The setup numbers correspond
with the figure. Focus is the initial curvature response, since it indicates on how quick a vehicle can change its
course.
It can be seen that Setup 1,2 and 2b show an identical initial response. Decreased understeering gradient
yields a response with a smaller decrease in curvature. It even shows instability in terms of diverging curvature
response for Setup 2b, with further decreased understeering gradient. This shows an oversteering vehicle, where
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the critical speed vcrit is exceeded in all four plots. However it can be seen that there is no variation in initial
response, and that the rear tire saturation does not influence initial response.
To change initial response additional actuators are necessary, as the graph for Setup 3 shows. With creating
additional yaw moment on the rear axle, Setup 3 reaches the maximum response at all speeds. In comparison,
Setup 4 performs less good, where the additional yaw moment is created on the front axle. This is a relevant
observation, since it suggests to prioritize the use of additional actuation for the rear axle. The reason lies
within the decrease in front axle cornering stiffness. For equal initial steering input this yields less initial lateral
force. Figure 9.6 shows the response in slip angle of front and rear axle for only steering input. It can be seen
that the steering input yields instant slip on the front axle and thus lateral force. For the rear axle slip needs
to build up first, before lateral force can be created.
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Figure 9.6: Step response of slip angles for front and rear axle after step input in steering for speed of 20 m/s

Concluding, it can be seen that the initial response in curvature is only dependent on the front axle for the
bicycle model. Therefore, lowering the front axle cornering stiffness would yield a lower response. Setup 5
with rear wheel steering shows also good performance, but still for all speeds lower performance than Setup
3. Overall the results only represent a tendency of how the setups perform with respect to each other. An
investigation with a fully nonlinear model is required as well. Not only the change in stiffness, but also tire
force saturation plays a role when entering a turn and using large actuator inputs.

10 Path Following Scheme

An error definition that imposes positional constraint to the reference path is required to tell if the vehicle is
located on the path as desired, or if it is deviating from the path. Different approaches for this control problem
have been discussed in literature. Rajamani et al. [Raj12] shows how to obtain the feedforward steering angle
for path following. Nevertheless, a feedback scheme is necessary to react to disturbances and uncertainties.
This resembles the manner in which human drivers sense the road curvature ahead of the vehicle and provide
output feedback for their steering task [HM90] [LL94].
A variety of driver steering models has been developed so far [HM90]. A dynamic model approach using
measurements ahead of the vehicle has been investigated by [OUH95]. A fixed controller is used with its gain
proportional to the lateral error at a certain look-ahead distance. Depending on the longitudinal velocity the
look-ahead distance can always be chosen large enough to provide closed-loop stability. This is generally valid
for look-ahead scheme systems [Koš96]. It has been investigated that adding or increasing the look-ahead
distance creates more damping in the system, because it increases the phase margin [Koš96].
Further studies were done with emphasis on performance improvements for path following systems using the
control law at a look-ahead distance, or at the center of gravity of the vehicle [GTP96] [PT90]. The latter one
examines performance limitations with the use of lateral displacement sensors at front and rear bumper for so
called look-down systems. Furthermore, the vision processing delay plays a big role when using output feedback
strategies. There is a tradeoff between look-ahead distance and minimum curvature that can be tracked. Using
an observer estimating the vehicle states, full state-feedback is possible, and the delay does not need to be
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modeled explicitly [Koš96]. Figure 10.1 shows the vision based model, which uses look-ahead distance concept
to calculate error state feedback. The measure yla points out the lateral error at the look-ahead distance.

e1 = ye
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Figure 10.1: Different error definitions for the path tracking control problem

The red line resembles processed measurement points of the vision based sensor system, showing the path
to follow. Point L represents the virtual control point. It is located inline with the longitudinal velocity
vector at the look-ahead distance xla. Additionally, the heading error at the look-ahead distance, ψla, can be
controlled [Koš+98]. Using this second error takes vehicle orientation into account and is therefore beneficial, as
it indicates whether the vehicle is going to deviate from the path. This provides additional damping. However,
measuring both errors at a position ahead of the vehicle yields to significant corner cutting for corners with
small radius.
An alternative error definition, preventing this behavior, is used by [RSG00]. The idea is to measure both
error signals not at the look-ahead distance, but at the CG. Therefore the lateral offset is represented by the
shortest distance between the CG and the reference path and the heading error is as well defined at the CG.
These definitions are represented by ye and ψe, respectively. Look-ahead distance can be incorporated into this
concept as seen in Figure 10.1 as well. The resulting error ela is obtained.

ela = ye + xlasin(ψe) (10.1)

It is constructed by defining a line tangent to the reference path, at the path point intersecting with a line
through ~evy. Then ela is defined as the distance between this tangent line and ~evx, measured at the look-ahead
distance. This error definition avoids the effect of cutting corners, but therefore will the controller only receive
an error if the vehicle has already departed from the desired path. Consequently the vehicle will only then
negotiate back towards the reference path. This is typical behaviour for feedback control.
A combination of these two concepts was proposed for a driver steering model [SCS00]. The heading error, ψe,
at the vehicle CG would be taken into account, and additionally a weighted sum out of multiple look-ahead
errors ei at respective look-ahead distances. Using at least four error states with this approach, there is also
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more path information required from ahead of the vehicle.
As discussed in Chapter 8 for collision avoidance manoeuvres relatively large lateral velocities are to be expected.
Therefore it seems natural to put the virtual control point in line with the total velocity vector ~v. It provides
more accurate information about where the vehicle is going to be in the near future, based on where the vehicle
is currently moving towards, for the case when significant sideslip is present. However, this approach can lead
to decreased stability margins [KG15].

11 Efficient Use of Actuators

Active steering systems are discussed so far. In this chapter it should be mentioned how additional actuators,
in terms of differential brakes, can enhance path tracking performance, and what requirements that puts onto
suitable controllers. Differential braking can improve tracking performance since it allows for the creation of
additional yaw moment as described in Chapter 9.3. Therefore the control problem is getting more complex
since there will be five actuators instead of only one steering actuator. For the yaw moment necessary to
negotiate a turn, this imposes the existence of multiple solutions of actuator distribution that yield the same
result [VFT09]. This task is said to be under determined when only having to fulfil the yaw moment objective.
As discussed in [HC13], conventional DYC systems are mostly build upon logical controllers, that determine a
lumped braking torque for wheels, either at two sides or one side instead of all four independently. Systems show
hierarchical approaches, in the first step determining target yaw moment, and secondly control distribution
to the wheels. To achieve optimum performance an optimization has to be solved requiring a well defined
objective.
Ono et al. defines the objective as to minimize the work load of each tire, and shows global optimality of this
approach [Ono+06]. For a similar control system Tjønnås and Johansen choose to minimize steering angle and
slip ratios, and also show theoretical optimality for limited model errors [TJ10]. However, two major drawbacks
arise from the control distribution problem, which is firstly that the feedback system might not be stable. This
occurs due to the fact that there are dynamics between tire forces and traction/braking torques, which are
mostly not modeled. The second fact is that optimization incorporates numerical search techniques which
inhibit heavy computational burdon [HC13] [Ono+06] [TJ10].
Alirezaei et al. also minimizes combined slip for a DYC system, but using optimal control. With the State
Dependent Riccati Equation (SDRE) technique the actuator inputs fulfil a performance index. Practical
experiments of a double lane change manoeuvre show minimized impact on longitudinal dynamics and driving
comfort beyond keeping the vehicle stable, with minimized sideslip [Ali+13].

12 Nonlinear Control Methods

Summarized from the literature research there is relevant requirements on the desired control approach:

1. Tire nonlinearities and combined slip tire behaviour play a big role for evasive manoeuvring. Drifting might
allow for higher yaw rates and a controller is necessary, that can deal with nonlinear state relationships.
The initiation of a drift is usually done by saturating the rear tires via applying of braking torque. A
certain intelligence of the controller is necessary to accomplish this task. Again this figures the use of a
rather sophisticated vehicle model within the (model based) controller.

2. The path following error scheme implies the use of classic feedback control to minimize lateral error. It
makes use of measuring the error at a look-ahead distance in order to have built in damping. Special
emphasis lies in the tuning of the look-ahead distance. Possibly a velocity dependent function becomes
necessary. Tracking performance has to be evaluated and it must be checked if a feed forward controller
is required.

3. As there are five actuators available for tracking the desired path, a law must be developed on how to
distribute actuator inputs efficiently. Out of this overactuated system an optimization problem arises.
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The solution of the latter one allows for optimum performance of the collision avoidance system. This
point is particularly important, since a collision avoidance manoeuvre is a safety critical task.

Relevant nonlinear control methods are briefly examined in this chapter, also with emphasis on the application.
To choose the most suitable method for this project, the methods are evaluated with respect to the criteria of:
Control performance/optimality, ease of design, implementation, possibility of real time implementation and
robustness.

12.1 Feedback Linearization

For this method state feedback is required. The aim is to cancel out nonlinear terms in the differential equations
of the system by multiplying the state feedback with respective coefficients. An additional linear term is added
to the state feedback that can be shaped as a controller stabilizing the system [Kha02]. The advantage is that
linear control laws can be applied.
Hsu et al. uses a feedback linearized system to guide a steer by wire vehicle smoothly along the limits of
friction using steering saturation when driver inputs exceed slip thresholds and the vehicle leaves the linear
range [HG05]. Liaw et al. did a theoretical study on stabilization of vehicles around unstable equilibria using
steering as only input, limited to constant longitudinal speed [LC08]. For the specified conditions the stable
region in state-space could be enhanced. However, feedback linearization may obscure the underlying dynamics
at a drift equilibrium, but it does not eliminate these dynamics [Hin13].
In contrast it has been shown that feedback linearization can lead to unnecessary high actuator inputs and
cause instability in the presence of actuator saturation or uncertainties [Clo+]. Therefore it is rather prawn to
error caused by uncertainties in the system, and not always can any nonlinearities be cancelled to apply linear
control methods. Thus implementation may be simple, but lack of performance and stability is likely.

12.2 Gain Scheduling Linear Quadratic Regulator (LQR) Control

Gain scheduling uses classic linear control theory for stable pole placement. For known states the closed-loop
poles can be placed arbitrarily resulting in a controllable system. Nonlinear systems can be linearized around
arbitrary points in state-space and respective gains stabilizing the system in the desired envelope can be defined.
This is done offline and the gains are stored in a look-up table, from which the controller in operation picks the
set of gains corresponding to the current working point. Using a linearized vehicle model these gains can be
obtained using Linear Quadratic Regulator (LQR) technique. This optimal control method regulates errors to
zero by minimizing the cost function

J =
1

2

∫ tf

t0

(xTQx + uTRu)dt (12.1)

The optimal feedback gains are obtained solving the corresponding Riccati equation. Therefore a linear system
in the form of ẋ = Ax + Bu is necessary. The main issue with gain scheduling is that for any parameter
changes a new set of gains has to be computed offline. For instance if only three parameters are varied within
the lateral model, like speed in 20 increments, friction coefficient in 4 increments and look-ahead distance in
three increments, the number of set of gains would already be 20 × 4 × 3 = 240. Xiong et al. uses a linear
model together with a cornering stiffness estimator and shows successful application of the approach for a
double lane change manoeuvre [Xio+12].
However, if the model should incorporate highly nonlinear relations like it is the case for tire models the system
needs to be linearized around a sufficient amount of points in state space and this increases the variety of
necessary sets of gains further, especially if there is a number of actuators involved. What makes this method
impractical at the end, is a huge testing effort that corresponds to a large amount of gain sets. Even though
the method is easy to apply, practicality is limited and therefore the performance is significantly limited.
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12.3 State Dependent Riccati Equation (SDRE) Technique

When using the State Dependent Riccati Equation (SDRE) technique the same objective function as for gain
scheduling will be solved in order to minimize state error and control input. The difference comes with solving
the State Dependent Riccati Equation. The system matrices are state dependent, A(x) and B(x) respectively.
This is achieved via writing the systems nonlinear differential equations in linear like state dependent coefficient
(SDC) form. The RE is then computed on-line in order to calculate the optimized actuator inputs [ime08].
The SDRE method of nonlinear control design comprises promising advantages for employment in a collision
avoidance system [Ali+13]. First of all the method can incorporate nonlinear dynamics in terms of the SDC
form. Within this variable framework it is easy to incorporate modeling changes and change amount and kind
of actuators. Furthermore, fulfilling the performance index, minimum actuator effort is expected. The system
description within the SDRE is nonunique which requires more emphasis on finding a suitable solution, but this
also gives desireable degrees of freedom for tuning and stabilizing the system. This degree of freedom should
be used for instance to tune the radius of robustness against parameter uncertainty [NS11]. Stability can be
shown within the domain of interest. Since there exist a number of numerical methods to solve the algebraic
Riccati equation (ARE) in real-time, experimental validation is feasible.

12.4 Model Predictive Control (MPC)

Model Predictive Control (MPC) has been used for path tracking applications. It resembles a finite horizon
optimal control scheme. A plant model is used to iteratively predict future evolution of the states. With
this, it computes the input sequence such that the predicted states satisfy given constraints and minimize a
user-defined objective function [And+10].
Falcone et al. uses a linear time varying vehicle model together with additional stabilizing constraints within
a MPC approach [Fal+10]. Even though experiments show, that the model can handle counter steering in
case of excessive sideslip, the objective is to recover saturated tires into the linear region, and not make full
use of the friction limits. One remaining drawback of MPC is the relatively high computational burden. The
challenge resides in the real-time solution of a Nonlinear Programming problem, which typically takes 20 -
50 ms [Fal+08]. Research has made great progress, but still the necessity of controller model simplifications
remains in order to make the effort real time feasible. Falcone et al. simplifies the model by lumping differential
brake actuators together [Fal+08]. Reducing the problem size through model simplification is a challenging
trade-off between model complexity and accuracy.
For path tracking in limit handling condition Gray et al. shows, that in certain emergency conditions a collision
can only be avoided when having the vehicle operate around drift equilibria [Gra+]. In their study a set
of motion primitives is used to calculate feasible avoidance manoeuvres offline. To accomplish these motion
primitives an MPC approach according to [Fal+08] is chosen and successfully tested for low velocities on icy
surface. This principle focuses on highly structured driving environments like they occur in urban driving.
Expected performance with MPC is good as literature shows, only could there be a significant drawback if
model complexity has to be reduced in order to allow for real-time implementation.

12.5 Sliding Mode Control (SMC)

Sliding Mode Control (SMC) represents a variable structure control system. As the name suggests for such
systems the control law is deliberately changed during the control process according to defined rules depending
on the state of the system. So called switching functions guide the state along a line or surface in state space.
This is done in a way that it drives states towards the desired equilibrium. By introducing a rule for switching
between two control structures, which independently do not provide stability, a stable closed-loop system can
be obtained [ES98]. However, this method is prone to high frequency switching between two different control
structures, as the system trajectories repeatedly cross the switching line or surface. This high frequency motion
is described as chattering.
Hsu et al. [HC13] proposes an approach to reduce chattering in an optimal controller for path following, and
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shows positive results in theory. An SDC related approach which would only define a safe envelope of vehicle
condition in state space is used by Bobier et al. [BG13]. If detected that the vehicle is close or outside the safe
envelope, control action is taken, whereas inside the envelope there is no control action taken, and the driver
controls the vehicle. Pang et al. [PW] focuses on the improvement of robustness and integrated sliding mode
control with the State Dependent Riccati Equation.

12.6 Other Approaches

Talvala et al. [TKG11] and Kritayakirana et al. [Kri12] use feedforward steering input together with feedback
lanekeeping and yaw damping error for lateral control of a vehicle. The aim is to exploit the full tire potential
whilst following a racing line. The current potential is obtained via friction circle concept. It is shown that lane
keeping can be robust with simple lookahead control schemes, even at the friction limits. The heading error
with respect to the desired path is minimized and therefore the vehicle is recovered out of tire saturation by
counter steering.
A different approach to the path tracking problem is described by Gordon et al. [GBD02]. Using convergent
vector fields for any location of the vehicle with respect to the reference path a desired vehicle mass center
velocity is obtained. The vector field is build considering nonlinear tire friction and vehicle properties. Stable
and robust control is possible even in the case of limit handling. Though, heavy offline analysis is necessary.
Using differential flatness technique Peters et al. [PI11] reduces the nonlinear bicycle to a point mass containing
yaw dynamics. The resulting system shows instability for body sideslip angles exceeding the unstable drift
equilibria.

12.7 Discussion

Control problem definitions from literature were discussed and a task description for the lateral control in limit
handling was given. Also different suitable control methods were proposed, which are Feedback Linearization,
Linear Quadratic Regulator (LQR), State Dependent Riccati Equation (SDRE) Technique, Model Predictive
Control (MPC), Sliding Mode Control (SMC) and two miscellaneous approaches. Results of this investigation
are summarized in Table 12.1.

Table 12.1: Properties of discussed control methods

Method Performance/
optimality

Ease of imple-
mentation

Real-time im-
plementation

Robustness

Feedback Lin. - + + +
LQR 0 - + -
SDRE + + 0 0
MPC + + - 0
SMC 0 0 + +

LQR was taken as reference, since there is most knowledge available about this control method, and it is
seen as baseline here. Performance of LQR is very much dependent on how much datapoints are available in
the look-up table. Is this number to small then interpolation becomes necessary and penalizes performance
and optimality. Therefore, this value was set to ”0” as neutral value. For a larger set of gains calculated,
implementation becomes a serious issue, especially if the complex nonlinearities of the tire should be considered.
In our case that is a strong requirement. So this value is set to ”-”. Anyway, real-time implementation is easy
for LQR, since the controller is calculated off-line and therefore a ”+” is chosen. Robustness is a weak property
for the LQR approach, since not only the parameter uncertainty is neglected in the control approach, but also
does the underlying linearized controller model not match effects like tire saturation.
In comparison, Feedback Linearization has the biggest drawback in terms of performance/ optimality. It is no
optimal control approach. The SDRE technique shows a drawback in terms of real-time implementation. For
high controller model fidelity this can become an issue. Also robustness could be considered as a weak point
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here, but due to the degree of freedom in the model parameterization, robustness can be addressed to some
extent. MPC has a drawback in terms of real-time implementation. Whereas it shows great performance, as
good as the SDRE approach, all solutions found in literature dealt significant compromising of model accuracy
for real-time implementability. Finally SMC shows uncertain drawbacks in terms of performance/ optimality
since chattering is to expect when using SMC. Furthermore it is not necessary optimal and uncertainty lies
within the implementation. To meet the performance requirements, adaption of the SMC would be necessary,
which makes implementation more complicated and uncertain.
Due to this result the choice is made for the SDRE control approach, especially because good performance
is expected and this can be seen as major requirement. It shows the capability to systematically handle
model nonlinearities, work in a wide operating region and minimize actuator effort together with control error.
Whereas there is no guarantee for robustness towards parameter uncertainty, this can be assessed for a certain
radius of interest and tweaked adapting the parameterization of the system. Thus, SDRE is chosen, as it shows
an overall well suiting characteristic for path tracking in limit handling conditions.
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Part IV

Modelling and Controller Development
The buildup of the controller is explained in this part. Figure 12.1 shows the layout of the developed controller.
Obtaining the state dependent control gain K(x) is done using the SDRE technique. Multiplication with the
path tracking error e yields the feedback control input.

SDRE

×

x

e Input

Controller

Inverseρdes δFF

δFB

K(x)

Vehicle State and
Path Tracking Feedback

Vehicle + Path

Vehicle Model

λi;FB
u

Controller

Plant

Figure 12.1: Controller Layout

There is also a feedforward steering term, which is a function of the desired path curvature ρdes. The latter one
together with path tracking error e and vehicle state information x are considered to be given from a state
estimator. Input u to the plant is steering δ and wheel slip λr. However, firstly the plant model is described,
from which eventually the controller model will be derived.

13 Plant Model
The plant model should represent the real system as accurate as possible, but not more than required.
Unnecessary complexity increases effort in setting up and computing the simulation. The plant model is
comprised of a vehicle model for calculating the evolution of the vehicle states dependent on the actuator inputs.
The second part is a camera model for detecting the predefined path which is given in a global reference frame
and expressing it in terms of vehicle coordinates. The third block represents post-processing of the camera
information to obtain error states. This schematic can be seen in Figure 13.1.

Path

Local

Path Info.

VehicleActuator Inputs u
Vehicle State x

Post-
pro-
cessing

Camera

X;Y
Error States e

Plant model

Information

Figure 13.1: Plant model with inputs and outputs

The subfunctions of these models are broken down further.
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13.1 Camera and Post-Processing

The camera model produces a polynomial, which represents the path close to the vehicle with a certain radius
of interest. Therefore it would pick up global path points ahead of the vehicle and transfer them into local
coordinates. This represents the method how the real mobile camera gives path information to the lane following
controller, see Figure 13.2.

~e
v

x

~e
v

y

5th order polynomial

Path points
ye

ys y(xs)

xsCG

Figure 13.2: Path polynomial in vehicle reference frame and measurement of lateral displacement

The lateral error ye, as discussed in Chapter 10, can be obtained evaluating the polynomial at x = 0.

y(x) = c0 + c1x+ c2x
2 + c3x

3 + ...+ cix
i (13.1)

Heading error,

eψ(x) = arctan
(
dye(x)

dx

)
(13.2)

Curvature [Wei16],

ρ(x) =
d2y(x)
dx2(

1 +
(
dy(x)
dx

)2
) 3

2

(13.3)

Using this convention for significant body sideslip and or large heading with respect to the path, ye becomes
large even though the vehicle is close to the path. If the lateral error should rather represent the shortest
distance from CG to the path, then ys is used instead of ye, see Figure 13.2.

ys =
√
x2s + y(xs)2 sign(y(xs)) (13.4)

To find the candidate points for xs, the term (x2s + y(xs))
2 has to be minimized. Therefore,

d

dx
(x2 + y(x)2) = 0 and d2

dx2
(x2 + y(x)2) > 0 (13.5)

has to be fulfilled. From the candidate points the one closest to the origin represents xs.

13.2 Vehicle

The vehicle model incorporates evaluation of the vehicle states, vx, vy, and r, dependent on its inputs, δ and
λi. A planar two-track vehicle model is considered and can be seen in Figure 13.3.
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Figure 13.3: Two-track vehicle model

The state derivatives can be computed dependent to the tire forces Fx/y,i, which are oriented in wheel reference
frame, inline with the wheel. The front tire forces are brought into chassis frame of reference via correction for
steering δ on the front wheels. It followsv̇xv̇y

ṙ

 =

 0 r 0
−r 0 0
0 0 0

vxvy
r



+

 1
m 0 0
0 1

m 0
0 0 1

IZ

 cos δ cos δ 1 1
sin δ sin δ 0 0
lf sin δ
−lt cos δ

lf sin δ
+lt cos δ −lt lt
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+
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
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Fy,fr
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 (13.6)

The tire forces are a function of lateral and longitudinal slip, as well as tire load: Fx/y,i = f(λi, αi, Fz,i). They
are obtained using the combined slip Magic Formula tire model [Pac12].

Fx,i = Gx,i(λi, αi)Fx0,i(λi, Fz,i)

Fy,i = Gy,i(λi, αi)Fy0,i(αi, Fz,i) (13.7)

Pure slip forces are represented by Fx0,i(λi, Fz,i) and Fy0,i(αi, Fz,i), which have the following shape:

ymf = Dmf sin(Cmf arctan(Bmfxmf − Emf (Bmfxmf − arctan(Bmfxmf ))) (13.8)

where output ymf represents pure slip tire force and input xmf represents longitudinal slip λ or lateral slip α
respectively. The coefficients are there to fit the slip curve properties:

• Bmf the stiffness,
• Cmf the shape,
• Dmf the peak value and
• Emf the curvature [Pac12].

The combined slip relation is represented through the weighting functions Gx,i(λi, αi) and Gy,i(λi, αi). Required
parameters are determined via curve fitting of experimental data. The Prius tire parameters are provided by
TNO, a detailed description is not relevant for this research. The slip angles αi are derived in the same fashion
as it is shown in Chapter 5. Additionally there is the term ltr appearing in the equations, due to the track
width contribution of the two-track model.

αfl = δ − arctan
(
vy + lfr

vx − ltr

)
αfr = δ − arctan

(
vy + lfr

vx + ltr

)
(13.9)

αrl = arctan
(
−vy + lrr

vx − ltr

)
αrr = arctan

(
−vy + lrr

vx + ltr

)
(13.10)
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Static load transfer due to longitudinal and lateral acceleration is taken into account when calculating the
vertical tire loads. The static loads

Fz,f,l/r,static =
lr
l

mg

2
(13.11)

Fz,r,l/r,static =
lf
l

mg

2
(13.12)

together with longitudinal and lateral load transfer

∆Fz,long,l/r =
maxhCG

2l
(13.13)

∆Fz,lat,front =
lrmayhCG

2ltl
(13.14)

∆Fz,lat,rear =
lfmayhCG

2ltl
(13.15)

are added as follows

Fz,fl = Fz,f,l/r −∆Fz,long,l/r −∆Fz,lat,front (13.16)
Fz,fr = Fz,f,l/r −∆Fz,long,l/r +∆Fz,lat,front (13.17)
Fz,rl = Fz,f,l/r +∆Fz,long,l/r −∆Fz,lat,rear (13.18)
Fz,rr = Fz,f,l/r +∆Fz,long,l/r +∆Fz,lat,rear (13.19)

(13.20)

Roll-Stiffness distribution due to load transfer is not taken into account and there is no influence of suspension or
aerodynamic resistance considered within the plant model. Compliance of the suspension system is represented
within the tire stiffness, which is adapted accordingly in order to fit the real understeering gradient.

14 State Dependent Riccati Equation

A nonlinear system representable in the control-affine form ẋ(t) = f(x) + B(x)u(t) and holding an equilibrium
in the origin, f(0) = 0, can be driven there by minimizing the infinite time quadratic performance index [ime08]
[CDM96].

J =
1

2

∫ ∞

t0

(xTQ(x)x + uTR(x)u)dt (14.1)

Matrices Q(x) and R(x) are positive semi-definite and diagonal and generally state dependent. They represent
state and input weightings, where the respective elements are chosen to be:

• qi, the maximum expected or acceptable value of 1/x2i and
• ri, the maximum expected or acceptable value of 1/u2i

for practical applications. The Hamiltonian then relates the performance index together with the path constraint
of the system in the form of A(x)x + B(x)u [Pad].

H =
1

2
(xTQx + uTRu) + ζT (A(x)x + B(x)u) (14.2)

Furthermore
ζ̇ = −∂H

∂x = −(Qx + A(x)T ζ) (14.3)

and the optimal control equation is
∂H

∂u = Ru + B(x)T ζ = 0 (14.4)

Control can be obtained and results to
u = −R−1B(x)T ζ (14.5)
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Apparently a unique solution exists, where ζ(t) is a linear function of x(t) [Ber95].

ζ(t) = P(t)x(t) (14.6)

Using Equation 14.3, 14.5 and 14.6, the differential Riccati Equation can be obtained.

Ṗ + PA(x) + A(x)TP − PB(x)R−1B(x)TP + Q = 0 (14.7)

For infinite time horizon and {Q(x),R(x)} = constant, it can be shown that Ṗ → 0 [Pad]. Furthermore Q(x)
and R(x) are considered to be constant throughout the time step where a solution is attempted. The result is
the algebraic Riccati Equation (ARE).

PA(x) + A(x)TP − PB(x)R(x)−1B(x)TP + Q(x) = 0 (14.8)

The nonlinearity of the system is represented by state dependent system matrices A(x) and B(x), so it is called
State Dependent Riccati Equation (SDRE). It has to be computed on-line in order to obtain the control

u = −(R−1BTP)x = −Kx (14.9)

A solver, that is tested on real-time hardware is to be used to obtain matrix P for this research [AJJ16]. Since
solving the Riccati Equation for high-order systems can be computationally demanding, the complexity and
therefore fidelity of the controller model is somehow limited.

15 Controller Model

The SDRE controller obtains the control gain matrix K dependent on vehicle state feedback. Furthermore
there is a feedforward control intended, which is described in Chapter 19. Figure 15.1 shows the layout of the
feedback-feedforward controller.

Riccati
Solver

Controller
Model

A(x)
B(x)
R
Q

×

Vehicle State x

Error e Input u

Controller

Inverse Vehicle Model
Curvature ρdes uFF

uFB

K(x)

Figure 15.1: Controller Model

For model based control, controller performance depends to a large extent on controller model fidelity, which
will be discussed first. Besides a representation of the vehicle, also error dynamics are part of the controller
model. Furthermore, to fit the model into the SDRE framework, it needs to be brought into parameterized
form. This will be discussed in the subsequent chapter, together with related implementation issues.

15.1 Vehicle Model Fidelity

The more accurate the model represents the plant, the better can the controller adapt to the inherent plant
dynamics and obtain control gains accordingly. But high model fidelity also leads to a more complex controller
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model, which in turn yields increased computational effort for the Riccati solver. This is the case especially
if the order of the system is increased, and decreases reliability. Furthermore, increased complexity in the
controller means increased effort for tuning is required. There is a tradeoff to be made. The model should take
into account the governing nonlinearities, but not more than necessary. Therefore, the dynamics taken into
account are chosen as follows.

1. Combined slip tire model
Tire saturation is expected for cornering at the limits of handling. In these conditions lateral force
capabilities are compromised by longitudinal slip of the tire. Since longitudinal slip of the tires will
be distributed via the controller it is particularly important to account for this behaviour in order to
not compromise lateral tracking performance. Instead with purposefully distribution the slip inputs are
supposed to improve lateral tracking performance.

2. Two-track property of the vehicle
In order to be able to distribute wheel slip inputs for all four wheels, it is required that the model
represents four independent tires with respective lateral slip, longitudinal slip and vertical load. See
Chapter 13.2 for a representation of the two-track model.

3. Load transfer
For manoeuvres, where the vehicle is operated at the edge of instability, especially longitudinal load
transfer can have significant importance. It allows for change in distribution of lateral force between front
and rear axle and therefore change the yawrate [VTL07].

Therefore, the controller model becomes identical fidelity as the plant model described in Chapter 13.2. It has
three degree-of-freedom: vx, vy and r.

15.2 State for Tracking Curvature

The discussion in Chapter 9.2 gave the motivation to also include a curvature state into the controller. It can
be translated into an error state when subtracting the curvature of the actual (vehicle) trajectory from the
desired (path) curvature.

eρ = ρdes − ρ (15.1)

Together with Equation 9.9 and 9.10 the state equation can be written down.

ėρ = − ṙ

vtot
− eρ

vxv̇x + vy v̇y
v2tot

+ ρdes
vxv̇x + vy v̇y

v2tot
+ ˙ρdes (15.2)

It can be seen that the curvature error state is dependent on all vehicle state equations. It has to be checked if
this state can improve path tracking performance in certain conditions.

15.3 Heading and Lateral Error Dynamics

The error dynamics of the positional errors describe how the vehicle moves with respect to the path. As a result
of the literature review in Chapter 10, there were chosen to be two error states: a lateral error at a certain
look-ahead distance, ela, and a heading error at the CG, eψ. Figure 15.2 shows the geometrical definition of
these errors as it is used in the controller model.
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Figure 15.2: Error definition

It is of importance to notice that the lateral error at the CG was defined to span the shortest distance between
CG and path, ey, see also ys in Chapter 13.1. There is zero error whenever the CG is located on the path and
the vehicle heading equals the path heading. The derivation is as follows. The heading error eψ determines
the deviation between path heading and vehicle heading at the CG. Therefore the component of the vehicles
velocity that points in the direction of the path, vx cos eψ + vy sin eψ, is relevant.

ėψ = −(vx cos eψ + vy sin eψ)ρdes + r (15.3)

The lateral error ey describes the offset, respectively the shortest distance, at the CG and therefore the
component of the velocity perpendicular to the path, vy cos eψ + vy sin eψ, is relevant.

ėy = vy cos eψ + vx sin eψ (15.4)

The look ahead error ela resembles a weighted sum of both, using look-ahead distance xla.

ela = ey + xla sin eψ (15.5)

and therefore

ėla = ėy + xla
d

dt
sin eψ

= vy cos eψ + vx sin eψ + xla cos eψ[−(vx cos eψ + vy sin eψ)ρdes + r] (15.6)

Heading error and look-ahead error become states of the controller model. An alternative error definition,
where heading error is measured with respect to the vehicle moving direction instead of the vehicle heading, is
presented in Appendix D.
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16 Controller Model SDC-Form

To solve the State Dependent Riccati Equation, it is required to have the system ẋ(t) = f(x,u) brought into a
linear like form.

ẋ = A(x)x + B(x)u (16.1)
It follows a linear structure with the system matrices having State Dependent Coefficients (SDC), which is also
referred to as Extended Linearisation [ime08]. For multi-variable systems, as considered in this research, the
parameterization appears to be non-unique. Nonlinear terms fi(x) appearing in one of the state equations can
be used as coefficients for arbitrary states xj in this equation, of the form fi(x)/xj . Furthermore two distinct
parameterizations fulfilling f(x) = A1(x)x = A2(x)x can always be written in the form

A(x,θ) = θA1(x) + (1− θ)As(x) (16.2)

This nonuniqueness property brings additional degree of freedom to the approach, as it will be discussed later.
This section will focus on retrieving a generic SDC form for the controller model, that can be altered and
adapted later for tuning purposes. Firstly, a SDC form of the vehicle state equations, vx, vy and r is derived,
then also a parameterization of the error states eρ, ela and eψ. They are assembled to one complete SDC
representation at the end, of course. At the end of the chapter, there will be come back to some implementation
and numerical issues that arise when using parameterization.

16.1 Tire Force Parameterization

The combined slip force calculation needs to be brought into a parametrized form. Therefore the tire forces
Fx,i and Fy,i are respectively represented by a linear combination of longitudinal slip and lateral slip.

Fx,i = Cx,i,ααi + Cx,i,λλi (16.3)
Fy,i = Cy,i,ααi + Cy,i,λλi (16.4)

The factor Cx/y,i,α/λ is associated with slip stiffness and calculated in real-time dependent on the vehicle state
and tire model. This allows to calculate tire forces in a separate model and the bulky functions do not have to
be part of system matrices [Ali+13]. Figure 16.1 shows how this concept is schematically implemented into the
model.

SDC Form

Vehicle State x

Slip and Tire
Load Transfer Model

αi;λi

Fz;i

Fx;i

Fy;i

A(x)

B(x)

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

Figure 16.1: SDC Form schematically: via the tiremodel tireforces are retrieved in real-time as an input for the
system matrices

The factorization is arbitrary and is one of the degrees of freedom of the SDC form. Most importantly the
factorization has to be chosen in a fashion that it gives smooth values over the whole envelope of α and λ.
With the following definition this could be achieved.

Cx,i,α = Fx,i(λi, αi) Cx,i,λ =
Fx,i(λi, αi)(1− αi)

λi
(16.5)

Cy,i,α =
Fy,i(λi, αi)(1− λi)

αi
Cy,i,λ = Fy,i(λi, αi) (16.6)
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For the fact that the definitions of Cx,i,λ and Cy,i,α would only be valid for nonzero slip, the latter one had to
be saturated for values smaller than a defined threshold hλ,th and hα,th. Slips would be replaced by fλ(λi) and
fα(αi) respectively for simulation implementation.

fλ(λi) =

{
λi, for |λi| > hλ,th

hλ,th, for |λi| ≤ hλ,th
(16.7)

and

fα(αi) =

{
αi, for |αi| > hα,th

hα,th, for |αi| ≤ hα,th
(16.8)

Figure 16.2 shows Cx/y,i,λ/α plotted over the whole slip envelope.
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Figure 16.2: The factors Cx/y,i,α/λ to be used for tire force calculation within the SDC form

The alleged stiffness factors show smooth transition surfaces.

16.2 Vehicle Model Parameterization

The model described in Chapter 15.1 needs to be parameterized. As the representation in the strict form
of ẋ = A(x)x + B(x)u yields confusingly large matrices, the state equations can be collapsed into multiple
overseeable matrices. Furthermore A and B can be functions of both x and u. For x =

[
vx vy r

]T the
system is written in the form of

ẋ = [Av(x) + Am · As(u) · At(x) · Aα(x)]︸ ︷︷ ︸
Aveh(x,u)

·x + Am · As(u) · Bt(x) · Bu︸ ︷︷ ︸
Bveh(x,u)

·u (16.9)

The matrices hold the following relations:
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• Av(x) the dependence of vx and vy on yawing motion,
• Am the division by mass and inertia,
• As(u) the translation of tire reference frame to chassis reference frame via steering,
• At(x) the tire parameterization in terms of Cx/y,i,α,
• Aα(x) the arctan-terms of slip angle calculation,
• Bt(x) the tire parameterization in terms of Cx/y,i,α/λ and
• Bu(x,u) the allocation of actuators to tire forces.

See the matrices as follows.

Av(x) =

 0 r 0
−r 0 0
0 0 0

 (16.10)

Am =

 1
m 0 0
0 1

m 0
0 0 1

IZ

 (16.11)

As(u) =

 cos δ cos δ 1 1 − sin δ − sin δ 0 0
sin δ sin δ 0 0 cos δ cos δ 1 1
lf sin δ
−lt cos δ

lf sin δ
+lt cos δ −lt lt

lf cos δ
+lt sin δ

lf cos δ
−lt sin δ −lr −lr

 (16.12)

At(x) =



Cx,α,fl 0 0 0
0 Cx,α,fr 0 0
0 0 Cx,α,rl 0
0 0 0 Cx,α,rr

Cy,α,fl 0 0 0
0 Cy,α,fr 0 0
0 0 Cy,α,rl 0
0 0 0 Cy,α,rr


(16.13)

Aα(x) =


− arctan

(
vy+lfr
vx−ltr

)
1
vx

0 0

− arctan
(
vy+lfr
vx+ltr

)
1
vx

0 0

arctan
(

−vy+lrr
vx−lrr

)
1
vx

0 0

arctan
(

−vy+lfr
vx+ltr

)
1
vx

0 0

 (16.14)

Bt(x) =



Cx,α,fl 0 0 0 Cx,λ,fl 0 0 0
0 Cx,α,fr 0 0 0 Cx,λ,fr 0 0
0 0 Cx,α,rl 0 0 0 Cx,λ,rl 0
0 0 0 Cx,α,rr 0 0 0 Cx,λ,rr

Cy,α,fl 0 0 0 Cy,λ,fl 0 0 0
0 Cy,α,fr 0 0 0 Cy,λ,fr 0 0
0 0 Cy,α,rl 0 0 0 Cy,λ,rl 0
0 0 0 Cy,α,rr 0 0 0 Cy,λ,rr


(16.15)

Bu =



1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(16.16)

The arctan terms in matrix Aα(x) in Equation 16.14 are chosen as a parameterization of vx.
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16.3 Error Dynamics Parameterization

According to Equation 15.2 the change in curvature error is

ėρ = − ṙ
v
− eρ

vxv̇x
v2

− eρ
vy v̇y
v2

+ ρdes
vxv̇x
v2

+ ρdes
vy v̇y
v2

+ ρ̇des (16.17)

Since the dependency on vehicle state derivatives shows up in a linear combination, it can be brought into a
similar matrix representation as the vehicle states, where matrices As(u),Bt(x), Bu(x,u) and the input u
remain identical. This simplifies collecting all state equations into one big matrix representation at the end.
For x =

[
vx vy r eρ

]T , it follows

ėρ = [Av,ρ(x) + Am,ρ(x) · As(u) · At(x) · Aα(x)]︸ ︷︷ ︸
Aρ(x,u)

·x + Am,ρ(x) · As(u) · Bt(x) · Bu︸ ︷︷ ︸
Bρ(x,u)

·u

+([Ev,ρ(x) + E2,ρ(x) · As(u) · At(x) · Aα(x)] · x + Em,ρ(x) · As(u) · Bt(x) · Bu · u)︸ ︷︷ ︸
Eρ,1(x,u)

·ρdes

+Eρ,2ρ̇des (16.18)

where

Av,ρ(x) =
[ vyreρ

v2 −vxreρ
v2 0 0

]
(16.19)

Am,ρ(x) =
[
−vxeρ
mv2 −vyeρ

mv2 − 1
IZv

]
(16.20)

Ev,ρ(x) =
[
−vyr

v2
vxr
v2 0 0

]
(16.21)

Em,ρ(x) =
[
vx
mv2

vy
mv2 0

]
(16.22)

Eρ,2 = 1 (16.23)

and v =
√
v2x + v2y. For implementing into the controller all influences of ρdes and ρ̇des in terms of matrices

Eρ,i are considered as a disturbance input to the system and therefore neglected when solving the RE.
Displacement and heading error, according to Equation 15.6 and 15.3, are brought into parametrized form as
well. This appears to be less complex, since there is no dependence on input u in this state equations. For
x =

[
vx vy r ela eψ

]T it follows [
˙ela
˙eψ

]
= Ae(x)x + Ee(x)ρdes (16.24)

where

Ae(x) =
[
sin eψ cos eψ xla cos eψ 0 0
0 0 1 0 0

]
(16.25)

Ee(x) =
[
−xla cos eψ(vx cos eψ + vy sin eψ)

−(vx cos eψ + vy sin eψ)

]
(16.26)

As mentioned above, dependencies on road curvature in terms of Ee(x) are considered as disturbance input
and therefore neglected.

16.4 Implementation and Numerical Issues

The system is assembled and brought into the form ẋ = A(x)x + B(x,u)u with all six states, so it can be used
within the RE solver. Equations 16.9, 16.18 and 16.24 yield.

v̇x
v̇y
ṙ
ėρ
ėla
ėψ

 =

Aveh(x,u)
Aρ(x,u)
Ae(x)

 ·


vx
vy
r
eρ
ela
eψ

+


Bveh(x,u)
Bρ(x,u)

0
0

 ·
[
δ
λi

]
(16.27)
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Two rows of zeros in B appear since ela and eψ are not dependent on u.
For implementation into simulation it has to be taken into account, that the system is only valid for vx > 0.
In the first place, vehicles with vx < 0 are driving backwards and neglected for this research. Furthermore
conditions with vx = 0 mean there is no movement in longitudinal direction or even stand-still, which are not
interesting either. So requirement of vx > 0 is achievable without loosing validity for the system in relevant
scenarios.
Furthermore, the controllability matrix in the linear sense, CM =

[
B AB A2B A3B A4B A5B

]
has

only rank of five. Since the system itself is of order six it is not controllable. This originates from the fact,
that that look-ahead error and heading error can not be controlled directly, but only via the control of the
vehicle states. Adapting Ae(x) and generating a cross term between ela and eψ can generate full rank in the
controllability matrix. It needs to be mentioned here, that the linear system concept of controllability is not
generally transferable to nonlinear systems. But for finding a valid SDC form, which yields a convergence of the
Riccati solver, it has proven suitable. Generally to accomplish a parameterization with full rank, a single matrix
element can be altered and made a coefficient of a different state xi or input ui. Thus the parameterization is
nonunique, as the following example shows.

f(x) = f(x)
xi

xi (16.28)

The nonlinear term f(x) can be used as a coefficient to an arbitrary state xi. Accordingly the term
Ae(x)i=1,j=1 = sin eψ, being a coefficient of vx, is altered to be a coefficient of eψ: vx sin eψ

eψ
. The draw-

back here is that in case eψ = 0, the term yields division by zero. However since eψ appears in the numerator
in terms of a sinus function, the limit for eψ converging to zero is finite,

lim
eψ→0

sin eψ
eψ

= 1 (16.29)

Thus an auxiliary function can be defined to avoid division by zero.

fa =

{ sin eψ
eψ

, for eψ 6= 0

1, for eψ = 0
(16.30)

And therefore Ae(x)i=1,j=1 = 0 and Ae(x)i=1,j=6 = vxfa. With this adoption the system becomes controllable
and represents a straightforward parameterization of the controller model. It is used as initial setup for
simulation with further adoptions to be expected throughout the simulation and tuning process. Also to
mention is that matrix Bu is used to allocate actuators and therefore relevant for defining the kind of drivetrain
of the vehicle.
The controllability matrix is moreover a suitable tool in order to assess the conditioning of the system. One
way to analyse this is calculating the condition number of CM, it being the ratio of the largest singular value
of CM to the smallest. It gives indication on how sensitive a solution attempted using the particular system is,
when changing inputs to the system. A large conditioning number of CM indicates a nearly singular system in
terms of its SDC form. Also will the Riccati solver from a certain threshold not be able to retreive a solution.
Tests showed that condition number larger than approximately 108 yield problems. Therefore the SDC form
was checked for different states. States with low speed vx yield large condition numbers due to the fact that vx
appears multiple times in terms of denominator inside A(x) and B(x). Respective terms tend to infinity for vx
tending to zero making the system singular. A saturation, vx > 5 m/s, was implemented to account. This
in turn yields to a less accurate system description inside the controller for low speeds. However since limit
handling control for these low speeds is practically not relevant, less accuracy for this regime is acceptable.

17 Actuator Model and Longitudinal Controller

17.1 Actuator Saturation and Dynamics

Actuators in vehicles are underlying certain physical limitations, which are to be regarded in the model. In
terms of steering a maximum steering angle δmax = ±35[deg] is taken into account. To model the steering
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actuator in the car, an identified model of the Prius is used in terms of the following second-order transfer
function.

Gδ =
306.25

s2 + 24.5s+ 306.25
(17.1)

For the differential wheel actuators saturation in slip input was taken into account. For the lateral controller
only differential braking and no drive torque input is considered. Therefore the limit slip inputs would be
λi,max = 0 and λi,min = -1. For representation of physical properties and inertia in the wheel when applying
brakes, a first order system with a time constant of 0.1 seconds is included in the model.

Gλ =
1

0.1s+ 1
(17.2)

17.2 Longitudinal Controller

Lateral manoeuvre induce also longitudinal forces on the vehicle, forcing it to slow down. However, during
the lateral manoeuvres to be tested, speed is desired to be kept constant in order to compare different
controller setups with each other. For this task a longitudinal controller is used, which keeps the total velocity
vtot =

√
v2x + v2y constant. During a lateral manoeuvre with large sideslip, the lateral velocity makes a significant

amount of the speed, with which the vehicle is travelling along its path. Therefore it was chosen to keep total
velocity constant. Thus dependent on lateral velocity and desired total velocity the desired longitudinal velocity
can be obtained.

vx,des =
√
v2des − v2y, for |vy| > |vdes| (17.3)

The control error is
ev,x = vx,des − vx (17.4)

A PID controller is used to generate the wheel slip input dependent on the error.

λ(t) = kpev,x + ki

∫ t

0

ev,x(τ)dτ + kd
dev,x
dt

(17.5)

Both wheels of the driven axle therefore receive the same slip input from the cruise controller.

17.3 Axle Differential

Also an axle differential is modelled and represents a real passenger car drivetrain with open differential. An
axle differential yields to equal drive torque on both wheels of one axle and therefore of course only works in
case drive torque is applied to that axle. Thus the longitudinal force of each of the wheels is only as great as
of the wheel with the least potential tractive force. Mainly is longitudinal potential of a wheel dependent on
wheel load and friction, and therefore are these the limiting factors. In case of neglecting the function of the
differential and giving equal slip to left and right wheel, the higher loaded one will create larger longitudinal
forces and induce additional yawing moment, which would influence lateral motion.
The differential is modelled as part of the plant and uses longitudinal tire forces as input. The larger force of
both is detected at the previous time step, and the slip input of the respective wheel is cut off in order that
both wheels match in terms of longitudinal tire force. The differential is only active if both wheels have λ > 0
and can be applied to both front and rear axle, dependent on which one is chosen to be the driven one.

18 Linearized Controller Model

The fully nonlinear system was discussed so far. A linearized model is derived in this Chapter, which can be
used for basic system analysis and linear control methods. The model is used to design an LQR controller
from it, as a benchmark for the SDRE controller. For normal driving, in the linear operating range of the
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tires, nonlinear and linear controller should perform similar. Furthermore, also for limit handling scenarios the
benchmark should be used as a reference, to judge in which way the nonlinear controller changes the response
of the system. A four-degree-of-freedom linearized model is derived from the full model.
Vehicle states are described with the bicycle model according to Equation 5.7. Underlying assumptions are:
small steering angle, lumped linear tire stiffness, constant velocity and steering as the only input. There is only
steering input considered, because wheel slip input has a highly nonlinear influence onto lateral dynamics. This
comes through the combined slip tire characteristics, and wheel slip input is neglected through assuming a
linear tire. The error state equations are obtained from linearization of Equation 15.3 and 15.6 around the
origin.

ėψ = r − vxρdes (18.1)
ėy = vy + vxeψ (18.2)
ėla = vy + vxeψ + xlar − xlavxρdes (18.3)

The four-degree-of-freedom model follows.
v̇y
ṙ
ėla
ėψ

 =


−Cα,f−Cα,r

vxm
−vx+

Cα,rlr−Cα,f lf
vxm

0 0
Cα,rlr−Cα,f lf

IZvx

−Cα,f l
2
f−Cα,rl2r
IZvx

0 0

1 xla 0 vx
0 1 0 0



vy
r
ela
eψ

+


Cα,f
m

Cα,f lf
IZ
0
0

 δ +


0
0

−vx
−xlavx

 ρdes (18.4)

This model can further be used to investigate basic stability and tracking properties of the path following
scheme. It is used as well for design of the steering feedforward control law.

19 Feedforward Control
In the optimal control layout, the feedback gains are obtained solving the Riccati equation. However, these are
proportional and the control law does not possess an integral term. That means constant disturbance inputs
yield a steady-state offset. One approach would be to augment states such that the feedback gets integral
action. However, potential risk of instability would be introduced with this approach. Furthermore, road
curvature ρdes appears in Equations 15.2, 15.3 and 15.6 as a disturbance input. An appropriate way in this
case is using feedforward control, since ρdes is known and measurable. Also the impact on the system and
therefore the control variables are known. Another advantage of feedforward control is that it can react very
quickly. This will eventually lead to the vehicle changing direction before it deviates from the path and an
error can be measured.

19.1 Geometric and Sideslip Terms

Road curvature ρdes resembles the measurable disturbance input. The geometric cornering relation of the
linearized bicycle model is used to generate a steering input depending on road curvature according to Equation
6.4.

δFF,geo = (l +KUSv
2
x)ρdes = GFF,geoρdes (19.1)

The steady-state offset of ey should be minimized. Therefore the linearized closed-loop system of the path-
tracking problem is analysed. Steering input consists of error state feedback and the feedforward steering input.

δ = −kp,1ela − kp,2eψ + δFF,geo (19.2)
The system can be written in closed-loop form ẋ = Ax + Bρdes with road curvature ρdes as input.

v̇y
ṙ
ėla
ėψ

 =


−Cα,f−Cα,r

vxm
−vx+

Cα,rlr−Cα,f lf
vxm

−kp,1
Cα,f
m −kp,2

Cα,f
m

Cα,rlr−Cα,f lf
IZvx

−Cα,f l
2
f−Cα,rl2r
IZvx

−kp,1
Cα,f lf
IZ

−kp,2
Cα,f lf
IZ

1 xla 0 vx
0 1 0 0



vy
r
ela
eψ

+


Cα,f
m GFF,geo

Cα,f lf
IZ

GFF,geo
−vxxla
−vx

 ρdes (19.3)
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The steady-state error of the system can be computed according to

eSS = A−1BρSS (19.4)

Steady-state error is demonstrated with an example. Therefore a constant road curvature input of ρSS = 0.3/v2x
is chosen. It is speed dependent and yields a constant cornering acceleration of 0.3g invariant with speed.
Feedback gains were chosen to kp,1 = 0.05, kp,2 = 0.1 and xla = 12.5m. Obtained errors are shown in Figure
19.1.
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Figure 19.1: Steady-State errors depending on speed for different feedforward controllers

Heading and look-ahead errors remain with a nonzero steady-state offset. Also ey shows an offset, it is not
controlled directly though, but only appears as a term of the look-ahead error. The occurring steady-state
offset is seen as a drawback of the error definition, which does not take body sideslip into account. As discussed
in Chapter 6, the bicycle model inherits a certain body sideslip for constant cornering. Only for one particular
speed which shows zero sideslip, vx = 19.73 m/s, zero steady-state error can be observed as well, see also
Equation 6.7. It is observed that eψ = −β and therefore the steady-state steering input remains with an offset
of exactly the term kp,2eψ. One way to address this issue is altering the control law and adding body sideslip
feedback.

δ = −kp,1ela − kp,2eψ − kp,3β + δFF,geo (19.5)
When adding body sideslip with equal proportion as heading error feedback, kp,3 = kp,2, then look-ahead error
ela is driven to zero. However, it is desired to drive the displacement at the CG, ey, to zero. When substituting
ela = ey + xlaeψ into Equation 19.5 and assuming eψ = −β it follows for the feedback steering input:

δFB = −kp,1ey + kp,1xlaβ (19.6)

It can be seen that in order to drive ey to zero, the body sideslip feedback also needs to be weighted with
kp,1xla and it follows

kp,3 = kp,1xla + kp,2 (19.7)
in order to drive ey to zero. This approach yields two drawbacks. Firstly, body sideslip feedback is required,
and also is kp,3 dependent on kp,1 and kp,2. Though in the Optimal Control framework the gains are computed
on-line and independent of each other. Therefore it would be preferable to know the steady-state body sideslip
of the bicycle model and feedback could be avoided. Then it could be transferred into a feedforward term. This
can be achieved as follows. In the equation for look-ahead error, ela = ey + xlaeψ, replacing xla with the center
of percussion, xCOP = IZ

lrm
, yields a decoupling of lateral motion and yaw motion [KG12]. Therefore the front

and rear axle lateral forces for steady-state cornering can be obtained from the error dynamics equations.

ëCOP = ëy + xCOP ëψ = v̇y + vxėψ + xCOP (ṙ − (v̇xρ+ vxρ̇)) (19.8)
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Taking ëCOP = v̇x = ρ̇ = 0 and xCOP = IZ
lrm

, it follows the front axle lateral force for steady-state cornering
[KG15].

Ff,FF =
mlrv

2
x

l
ρSS (19.9)

Using the yaw rate derivative the rear axle steady-state force can be computed.

Fr,FF =
mlfv

2
x

l
ρSS (19.10)

Using the slip angle definition
αr = −βSS +

lrr

vx
(19.11)

together with Fr,FF = αrCα,r yields

βSS =

(
−mlfv

2
x

lCα,r
+ lr

)
ρSS (19.12)

Weighted with the feedback gains, this term is used as a second feedforward input additionally to δFF,geo
[KG15].

δFF,β =

(
−mlfv

2
x

lCα,r
+ lr

)
(kp,1xla + kp,2)ρdes (19.13)

GFF,β =

(
−mlfv

2
x

lCα,r
+ lr

)
(kp,1xla + kp,2) (19.14)

The B matrix of the closed loop system alters to
Cα,f
m (GFF,geo −GFF,β)

Cα,f lf
IZ

(GFF,geo −GFF,β)

−vxxla
−vx

 (19.15)

For the linearized model this approach yields zero steady-state offset in ey as it can be seen in Figure 19.1.
Therefore, since the vehicle is located on the path, the non-zero heading error is of no concern and will remain
as it has the same absolute value as the body sideslip.

19.2 Nonlinear Understeering Gradient

The feedforward steering terms, δFF,geo and δFF,β , are a function of the linearized axle cornering stiffnesses
Cα,f and Cα,r and therefore a function of the understeering gradient KUS . Thus a sufficient path tracking
performance can only be expected up to a certain cornering acceleration, where tires are still working in their
linear regime. To assess the performance, the path following controller was tested for tracking a curvature
in steady-state condition. Therefore a simulation for tracking a steady-state circular path was done. The
curvature was set to ρdes = 0.016 rad/m, which means a cornering acceleration atot =

√
a2x + a2y of about 0.65g,

when tracking the curvature perfectly with a speed of 25 m/s. This represents fast cornering with utilizing
about 70 % of the whole friction potential of the tire-road contact for the Prius (on dry asphalt).
Lateral error ela and heading error eψ are controlled for this experiment, using the SDRE feedback controller
together with the feedforward controller of Equation 19.1 and 19.13. Figure 19.2 shows the lateral displacement
for this experiment.
The initial motion is straight line driving and after 25 meters respective one second a spiral with linear curvature
rate yields to the steady-state cornering motion, which continues to the end of the simulation. Even though
feedforward terms of Equation 19.1 and 19.13 are applied, there is still a significant offset of approximately 0.3
metres prevailing. The representation of cornering stiffness into a lumped linear factor does not hold for this
cornering acceleration. Rather yield front and rear lateral tire force characteristics to a change in cornering
stiffness, dependent on cornering accelerations and therefore dependent on slip angle, see Figure 19.3
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Figure 19.2: Path tracking error comparison of feedforward control with linear and nonlinear axle cornering
stiffness, the simulation was done width vtot = 25m/s and constant curvature ρdes = 0.016rad/m, yielding a
cornering acceleration atot =

√
a2x + a2y of about 0.65g
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Figure 19.3: Nonlinear handling diagram for the Prius. The diagram was created negotiating a turn with
constant curvature ρdes = 0.016 rad/m, for varying velocities. Velocities were kept constant with cruise control
on the front wheels. The Prius shows limit understeer. Around the maximum friction an increase in steering
input does have no effect, only does the front wheels slip even more. The friction limit for this curvature can be
read off the diagram.

To control lateral motion accurately at the friction limits this change in axle cornering stiffnesses Cα,f/r and
therefore in understeering gradient KUS needs to be taken into account. Therefore, it is proposed to consider
a linear description of the nonlinear tire model, at the current operating point: Cα(xj) = F (xj)

α(xj) (∀α 6= 0). It
is further on referred to as factorized cornering stiffness, as it is obtained by factorizing tire force: F (xj) =
Cα(xj)α(xj). Figure 19.4 shows this concept.

0 α(xj)
0

Fy(xj)

Cα Cα(xj)

α

F
y

Figure 19.4: Comparison of linearized cornering stiffness Cα and factorized cornering stiffness Cα(xj), at
operating point xj with large slip
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Respective tireforces are obtained using Equation 13.7. The lumped factorized front and rear axle cornering
stiffness is obtained in real-time and replaces Cα,f/r in 19.1 and 19.13.

Cα,f =
Fy,fl cos δ + Fx,fl sin δ

αfl
+
Fy,fr cos δ + Fx,fr sin δ

αfr
, (∀αi 6= 0) (19.16)

Cα,r =
Fy,rl
αrl

+
Fy,rr
αrr

, (∀αi 6= 0) (19.17)

In the case of αi = 0, the linearized lateral tire stiffness from the i-th tire is substituted.
Besides the influence of steering and load transfer, also the impact of driving or braking forces is considered.
Through the combined slip tire characteristics, driving or braking forces have significant influence on the
cornering stiffness. Using this method the axle cornering stiffness required for calculating the feedforward
input becomes dependent on state feedback via the controller tire model. As it is to expect that cornering
stiffness changes low frequent, no influence of the transient path tracking is expected. The improvement in
path tracking can be seen in Figure 19.2. Steady-state error is decreased by approximately 90% in this case.
A further advantage of this concept is that influences of propulsive or braking forces changing the lateral axle
stiffness are taken into account via the combined slip tire model within the controller. As can be seen in Figure
7.1, the amount of longitudinal slip applied to a tire has a major influence on its lateral slip stiffness. An
increase in longitudinal slip yields a decrease in lateral tire stiffness. Therefore the understeering gradient KUS

is a function of longitudinal slip applied to the wheels. This nonlinear relation is dependent on the specific tire
model. Figure 19.5 shows for the Prius tire model the specific case where slip is only applied to the rear axle,
λr. This represents braking actuation only on the rear axle or rear wheel drive.
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Figure 19.6: Feedforward Steering input δFF,geo
dependent on KUS according to Equation 19.1 for
vx = 25m/s and ρdes = 0.0016rad/m

It can be seen that due to λr the understeering gradient drops significantly and for |λr| greater than 0.18 the
understeering gradient drops below zero and the vehicle becomes oversteered according to Equation 6.4. Figure
19.6 shows the feedforward steering input for the respective range of understeering gradient from Figure 19.5,
for tracking a curvature ρdes of 0.016 rad/m, with a speed vx of 25 m/s. It can be seen that for KUS smaller
than -0.0042 the feedforward steering input becomes negative, representing a counter steering input to adapt
for the oversteering vehicle condition. This is an advantage of using the nonlinear understeering gradient in
terms of the factorized cornering stiffness.
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Part V

Simulation and Tuning
The SDRE controller developed in Part IV is used to perform path following tasks in Simulation. Different
paths are chosen as well as different controller setups. Focus is to assess the performance dependent on different
error states to be penalized. The aim of tuning is to minimize lateral path tracking offset ey, see Chapter
15.3. All simulations are done using Matlab Simulink. The vehicle model represents the Prius using respective
parameters, see Appendix A. The speed during the simulations is kept constant with the longitudinal controller
as described in Chapter 17. Rear wheel drive is chosen for the experiments.
It is started with control for steady-state conditions in order to gain basic understanding of the controller
behaviour and the steady-state offset for large cornering accelerations. After that transient, actual path tracking
manoeuvres are considered. Basic path tracking elements, representing elementary pieces of arbitrarily complex
paths, are investigated. As a relevant manoeuvre for real collision avoidance scenarios, a lane-change is chosen
as well. Also parameter variation robustness is tested with the lane change path. Finally, body sideslip control
is considered.

20 Steady-state Cornering when only Steering
Results for steady-state cornering with cornering acceleration greater than 0.5g for different path curvatures
are obtained using simulation, see Figure 20.1. Offset error ela, heading error eψ and curvature error eρ are
penalized within the SDRE feedback controller. Therefore, state weighting in Q and actuator weighting in R
were tuned heuristically. Speed is kept constant with the output feedback slip controller, and an axle differential
is taken into account as mentioned above.
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Figure 20.1: Steady-state lateral error for cornering at the limits of handling with the Prius

The path used for simulation consists of an initial straight driving part, followed by a smooth transient piece,
yielding into the steady-state cornering part with constant curvature. The transition from straight line driving
into the turn is defined with a low curvature rate in order that transient oscillations are minimized, and
the vehicle reaches to steady-state quickly. Displacement error is measured after transients vanished. This
setup, using SDRE controller together with feedforward controller shows stable path tracking up to the limits
of handling for the Prius. The offset error ey does not exceed 0.3 m up to the very maximum of tire-road
friction. Only when exceeding this limit using a too large desired cornering speed, the longitudinal controller
oversaturates the front tires. As a result, the vehicle state drops into an equilibrium at lower cornering
acceleration, with greater steering input and significant displacement error of greater than 0.3 meters.
This limit understeering behaviour is predicted from the handling diagram in Figure 19.3. To avoid this
behaviour, desired velocity should be decreased in such situations. Differential braking actuators can be used
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in order to reduce speed whilst cornering. However, cornering speed that exceeds amax due to the friction
limits, is neglected in this research, see Chapter 9.1. Aside this case, where cornering speed is too large, it is
concluded that during steady-state cornering, only steering input is required to control the vehicle laterally.
Only for the case, where the cornering acceleration should be optimized to its global optimum, further actuation
may be required. However, aiming for the global optimum also requires high fidelity vehicle modelling taking
into account suspension dynamics, roll stiffness and compliances to be of practical advantage. Eventually,
the expected gain in peak cornering acceleration is marginal. More complex models in turn would also bring
robustness issues. Therefore, and due to the fact that in relevant driving scenarios for this project, transients
are more important, further optimizing of the peak cornering performance is not relevant for this project.
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Figure 20.2: Feedforward and feedback contribution to steady-state steering input

Figure 20.2 shows the steering input for the one respective trim with ρdes = 0.016 rad/m and atot
g ≈ 0.85. It

can be seen, that the feedforward term holds main contribution. It is therefore important to keep in mind,
that the controller highly depends on the cornering stiffness values coming from the underlying nonlinear tire
model. This determines that, for application in any car, performance significantly depends on accuracy of the
tire model. This model dependency is a known drawback of model based control. The setup yields overall
satisfying performance for steady-state cornering. Consequently transient cornering and additional slip input is
treated in the subsequent chapters.

21 Transient Cornering

Transient cornering for path tracking means that the vehicle has to follow a change in desired curvature from
one constant value to another. Especially for collision avoidance manoeuvres this change needs to be as quick
as possible. Therefore the task of path tracking in evasive manoeuvring boils down to the curvature rate, that
can be achieved by the vehicle. For constant total velocity this is ρ̇des = ṙ/v. As shown in Chapter 9.2, for the
linear bicycle model, additional wheel slip input adds yaw moment and therefore improves curvature response.
To accomplish this for the fully nonlinear model, feedforward control was added, which would compensate for
the ρ̇des disturbance term in Equation 16.18.

21.1 Wheel Slip Controller

As the steering controller can minimize offset error in steady-state conditions, there is no need for feedforward
slip input when cornering in steady-state with constant road curvature. It is rather required to use wheel slip
inputs for transient sections in order to track curvatures accurately. The required yaw moment for a certain
velocity can be obtained dependent on ρ̇des.

MZ,des =
IZ
vtot

ρ̇des (21.1)
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The actual yaw moment of the vehicle can be determined using the tire forces according to Equation 13.7.

MZ = (Fy,fl + Fy,fr)lf − (Fy,rl + Fy,rr)lr (21.2)

The lack of actual yaw moment with respect to desired yaw moment has to be compensated via feedforward slip
inputs. Since only differential braking is considered, there will be only negative slip inputs on the corresponding
inner wheels with respect to turning direction. These inner wheels have to generate a certain amount of
longitudinal force Fx,in,FF

∆MZ =MZ,des −MZ (21.3)
= Fx,in,FF lt (21.4)

where

Fx,in,FF =

{
Fx,fl,FF + Fx,rl,FF , ρ̇des ≥ 0

Fx,fr,FF + Fx,rr,FF , ρ̇des < 0
(21.5)

As a measure to distribute the input between front and rear inner wheels load transfer is taken into account
and the input is put proportional to the tire load. This is to avoid that one of the tires gets overly saturated.

Fx,f,in,FF = Fx,in,FF
Fz,f,in

Fz,f,in + Fz,r,in
(21.6)

Fx,r,in,FF = Fx,in,FF
Fz,r,in

Fz,f,in + Fz,r,in
(21.7)

Then the slip inputs are obtained,

λf,in,FF =
Fx,f,in,FF
Cλ,f,in

(21.8)

λr,in,FF =
Fx,r,in,FF
Cλ,r,in

(21.9)

where the longitudinal stiffness is obtained using Fx,i from the tire model and λi as well as δ from the plant
inputs. The concept of factorized stiffness, as described in Chapter 19.2 for lateral cornering stiffness, is applied
here for obtaining longitudinal tire stiffness respectively.

Cλ,fl =
Fx,fl cos δ

λfl
Cλ,fr =

Fx,fr cos δ
λfr

(21.10)

Cλ,rl =
Fx,rl
λrl

Cλ,rr =
Fx,rr
λrr

(21.11)

In the case of λi = 0, the linearized longitudinal tire stiffness from the i-th tire is substituted. Furthermore,
via the combined slip relation, too large longitudinal slip would compromise lateral performance. Therefore a
saturation of the slip inputs is implemented to avoid excessive longitudinal slip.

21.2 Curvature Tracking

Tracking a step like input in curvature for the controller is investigated first. The feedforward slip input only
adds when ρ̇des 6= 0, which means only one sample in terms of a step input. To account for that, and better
show the influence of the feedforward controller, the step input would be stretched over 0.1 seconds. The
desired value was chosen to achieve a certain steady-state cornering acceleration when tracking the curvature
perfectly, see Table 21.1.

Table 21.1: Testcases for curvature response, curvature values in [rad/m]
atot
g 10m/s 20m/s 30m/s

≈ 0.2 0.0200 0.0050 0.0022
≈ 0.5 0.0500 0.0120 0.0055
≈ 0.8 0.0750 0.0200 0.0090
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The input for 0.2g represents rather normal driving in highway conditions. The cases for 0.5g and 0.8g
represent cases, which rather do not appear under normal driving conditions. They rather occur in collision
avoidance scenarios. Figure 21.1 shows the responses in curvature. Only eρ is penalized. Different controllers
are compared:

• Steering feedback input: δFB
• Steering feedback and feedforward input: δFB + δFF
• Steering feedback and feedforward input together with wheel slip feedback input: δFB + δFF + λFB
• Steering feedback and feedforward input together with wheel slip feedback and feedforward input:
δFB + δFF + λFB + λFF
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Figure 21.1: Controller curvature response for variation in speed and cornering acceleration

The data shows that using feedforward steering input does not improve the initial curvature rate of the vehicle
for low velocities. For greater velocities only feedback steering input yields a poor response in comparison.
However this is due to the fact that the total steering input is low and brings the vehicle in a different
steady-state equilibrium with smaller curvature. Furthermore it can be seen that feedback slip input does
achieve no significant improvement in the response. However, when also adding the feedforward term of wheel
slips, then a larger initial curvature rate can be achieved for all cases. The rise time is shortened. This proofs
the results from the step response investigation for the open loop bicycle model as discussed in Chapter 9.3.
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21.3 Path Tracking

Path tracking performance is to be assessed. In the first place, just changing from one cornering equilibrium
to another one should be tested. Any more complex path can be assembled out of sequences of different
cornering equilibria with transitions inbetween, as discussed in Chapter 9.2. The transition should be linear,
as in Figure 21.2. This guarantees a linear change in feedforward steering input without oscillations when
travelling along the path [Kri12]. Three initial controller setups are chosen to compete with each other in path
tracking performance:

• LQR controller with only steering input as a benchmark (see Chapter 18),
• SDRE controller with only steering input and
• SDRE controller with steering input and wheel slip input.

A single linear change in curvature from one cornering equilibrium to another is tested first. Furthermore, the
controller setup is altered in order to investigate the influence of the different error states. Afterwards, also a
lane change manoeuvre is investigated, which consists of two equilibrium changes in a row, and represents a
relevant scenario for collision avoidance.

21.3.1 Single Linear Transition

A basic path setup was chosen, as can be seen in Figure 21.2, where the initial equilibrium has zero curvature
representing straight line driving. The second equilibrium is set for a cornering acceleration of 0.86 g which
represents 95% of the maximum capabilities of the Prius according to the handling diagram, see Figure 19.3.
The transition between the equilibria was chosen with a rate larger than could only be achieved via steering.
This is done in order to invoke wheel slip inputs. This rate was set to be 0.86 g/s and therefore the Prius would
be brought from straight line driving into limit handling condition within one second. The path setup can be
seen in Figure 21.2. Respective controller setups are shown in Table 21.2.
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Figure 21.2: Basic simulation path setup for constant speed of 20 m/s along the path

Table 21.2: Initial Controller Setups

Setup Lateral Controller Penalized States Actuators FF δ-Controller FF λi-Controller
1 LQR ela, eψ δ nonlinear
2 SDRE ela, eψ δ nonlinear
3 SDRE ela, eψ δ, λi nonlinear x

Firstly, only lateral error ela and heading error eψ are penalized. To compare the linear LQR controller with
the nonlinear SDRE controller, Q and R were tuned in order to provide equal gains for the unexcited systems.
Gains for the respective states can be seen in Figure 21.3.
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The gains for the nonlinear controller change over time, dependent on the vehicle states. This shows the
advantage of the nonlinear controller, and in Figure 21.4 can be seen, that in fact the LQR controller shows the
largest lateral error ey. All setups achieve the same steady-state offset for the second equilibrium. This is due
to the fact that identical feedforward steering terms are used for all setups.
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Figure 21.4: Errors for the basic path tracking experiment

Finally, the best performance is obtained with the nonlinear controller and using all inputs. Due to the
feedforward wheel slip inputs, additional yaw moment is accessed. This allows to track the path curvature even
better. In this particular experiment, use of differential braking reduces the maximum absolute error by 9%.
In the following simulation the use of curvature error eρ in the controller is investigated. Therefore only the
nonlinear controller is used with respective setups, see Table 21.3.
For Setup 4 only the heading error ela is penalized. For Setup 5 also heading error eψ is penalized, and expected
to add additional damping and path tracking performance. With Setup 6 the benefit of also penalizing the
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Table 21.3: Controller Setups for test of curvature error eρ
Setup Lateral Controller Penalized States Actuators FF δ-Controller FF λi-Controller

4 SDRE ela δ, λi nonlinear x
5 SDRE ela, eψ δ, λi nonlinear x
6 SDRE ela, eψ, eρ δ, λi nonlinear x
7 SDRE ela, eρ δ, λi nonlinear x

curvature error eρ is investigated. The latter one however has a similar effect as the heading error, as it
determines where the vehicle is going to be in the future and if it will deviate from the path. Therefore with
Setup 7 it should be investigated if the curvature state can substitute the functionality of the heading error.
The results can be seen in Figure 21.5.
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Figure 21.5: Errors for the basic path tracking experiment

Looking at the lateral offset ey, it can be seen that Setup 4 yields the poorest path tracking performance
in comparison. Taking into account the heading error as well for Setup 5 yields the expected performance
improvement. Also taking into account curvature error in terms of Setup 6, yields further improvement, which
is rather marginal however. When increasing the gain for the look-ahead error slightly, then the combination of
ela and eψ in Setup 7 can achieve up to the same performance as Setup 5, see the respective gains in Figure
21.6.
The results show, that the curvature error can possibly substitute the functionality of the heading error. This
has to be tested in practical application as well however. For further simulation it was chosen to make use of
all three error states.

21.3.2 Lane Change

As a practically relevant example, a lane change manoeuvre was chosen to demonstrate the effect of the
controller. The path was defined in order that it could represent an evasive collision avoidance manoeuvre for a
vehicle travelling with 20 m/s. The lane change has an offset of approximately four meters and extends over a
distance of about thirty meters. For a vehicle travelling with 20 m/s that means the avoidance manoeuvre
takes place over a time frame of about 1.5 seconds. The path together with the curvature profile and heading
profile can be seen in Figure 21.7.
Furthermore, there is straight pieces of path added ahead of the lane change and proceeding the lane change.
In the simulation the manoeuvre therefore starts after one second of straight line driving. The curvature profile
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Figure 21.7: Lane change path

starts with a steep linear transition up to the maximum curvature. The latter one again is chosen that the Prius
reaches up to 95 % of its friction limit. Then, the direction change is again resembled by a linear transition
and subsequent the minimum curvature is reached before the lane change exit occurs. The setup with and
without wheel slip inputs are compared for this path, see Table 21.4.

Table 21.4: Initial Controller Setups

Setup Lateral Controller Penalized States Actuators FF δ-Controller FF λi-Controller
8 SDRE ela, eψ, eρ δ nonlinear
9 SDRE ela, eψ, eρ δ, λi nonlinear x

The actual trajectory achieved in the simulation can be seen in Figure 21.8.
Evolution of the vehicle states is shown in Figure 21.9. The excitation in lateral velocity remains smaller with
the controller of Setup 9, meaning the motion is more stable.
Evolution of the errors is shown in Figure 21.10. It can be seen that when entering the lane change to the left,
the lateral error ey remains small and below 0.2 metres. The acceleration, as can be seen in Figure 21.11, rises
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Figure 21.9: Vehicle state during lanechange manoeuvre

−4
−2
0
2
4
×10−2

ρ
[ra

d/
m

−
1
]

ρdes

8: δ

9: δ + λi

−0.5

0

0.5

1

e y
[m

]

−2

0

2

4
×10−2

e ρ
[ra

d/
m

]

−2
−1
0
1
2

e l
a

[m
]

0 0.5 1 1.5 2 2.5 3 3.5 4
−10
−5
0
5

10

time [s]

e ψ
[d

eg
]

Figure 21.10: Error state during lanechange manoeuvre

up to almost one g and therefore reaching the ultimate friction limits of the Prius, at about 1.5 seconds. At
this situation the reference path requires to decrease yawing motion again, and ultimately a change towards
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Figure 21.11: Acceleration during lanechange manoeuvre
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Figure 21.12: Actuator inputs during lanechange manoeuvre

negative curvature. With the tires close to saturation the required buildup in negative yaw moment proceeds
slow. This yields overshoot towards the left side of the path which is about two times as large as the overshoot
before. In this particular scenario the slip input can reduce the maximum lateral error by approximately 50
percent. Also does the vehicle remain stable and the course of cornering acceleration remains smooth, with
both setups.
Figure 21.12 shows the actuator inputs. To be noted is that the relatively large amount of rear wheel slip
throughout the whole experiment originates from the cruise controller applied to the rear wheels. The front
wheel slip input clearly indicates the effort, which the wheel slip controller is making to improve yaw response.
For the left front wheel a peak appears at one second, where the vehicle has to turn to the left. After that
the vehicle has to change direction and the corresponding slip input on the front right wheel can be seen at
around 1.75 seconds. At the end of the manoeuvre the yawing motion has to be stopped to bring the vehicle in
constant heading again. The respective slip input appears in the left front wheel at 2.5 seconds. Of relevance is
also that due to the slip input, less control in terms of steering is required as it can be seen from the graph.
Without slip input the steering input remains for 0.35 seconds within the mechanical limit stop of -35 degree.
However, the simulation shows that the controller can reliably track a single lane change up close to the friction
limits, whereas slip input even improves path tracking performance.
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21.4 Parametric Robustness

The performance of the model based controller is largely dependent on model accuracy. In reality however the
controller has no access to absolute accurate information of model parameters. Therefore it should be tested in
terms of robustness against parameter variation. Three prominent examples are chosen: vehicle mass, tire-road
friction and tire-model correspondence [AJJ16].
Vehicle mass varies for instance with fuel fill level and even more drastically with number of passengers or
amount of cargo in the vehicle. Furthermore an accurate real-time estimation of vehicle mass is costly. For
the simulation vehicle mass and inertia inside the plant were increased by 10% and parameters inside the
controller kept the same. The above used lane change manoeuvre is used here as well with controller Setup 9.
The evolution of the errors can be seen in Figure 21.13. The path tracking performance decreases only slightly
and the system remains stable, giving the indication of the controller to be rather insensitive to changes in
vehicle mass.
In terms of variation in road friction a simulation is done where the plant shows lower friction than by the
controller anticipated. In real application this could happen if sudden friction change appears due to change in
road surface for instance. Furthermore accurate and quick friction estimation is difficult. Therefore the state of
road friction is always afflicted by inaccuracy and uncertainty as input of the controller. For the simulation
friction in the plant is lowered by 10%. The error states of the experiment can be seen in Figure 21.13.
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Figure 21.13: Errors during lane change manoeuvre for plant parameter variation

Path tracking performance drops significantly and an approximately 18% larger maximum lateral offset ey is
the result. Since the desired lane change path is intended for the expected tire road friction limit, the drop in
friction experienced by the plant essentially yields an unachievable path. Therefore the errors grow significantly
showing how sensitive the vehicle dynamics are to friction change when operating at the limits of handling.
Correspondence between tire model and plant is never fully given. This is due to the fact that even an
experimentally well matched tire model does not account for changes in environmental conditions during
operation and operational conditions of the tire itself. Examples are tire temperature, tire wear and inflation
pressure. In worst case scenario the controller tire model can be far off with tire lateral stiffness value for
instance which is a vital parameter to achieve reasonable lateral control performance. Therefore the controller

53



was also tested with a change in rear tire lateral stiffness by minus 20%. This essentially represents a vehicle
with smaller understeering gradient. Results can be seen in Figure 21.13 showing the largest lateral error.
Especially from the large heading error can be seen that significant yawing oscillation occurs, but stability
remains however.

22 Body Sideslip Control

In the previous chapters of this report the focus lies on minimizing path tracking errors eρ, ela and eψ, for
steady-state and transient cornering whilst the vehicle is operated close to the friction limits. Therefore steering
was controlled in a way, that the yaw rate changes accordingly for minimizing path tracking errors. The body
sideslip is only inherited through the dynamics of the system. But for certain conditions it can be beneficial to
control body sideslip, as discussed in the literature study in Chapter 8. Exploring the possibility of controlling
body sideslip on top of the existent path tracking controller is the purpose of this chapter. Therefore simulation
based investigation on the nonlinear bicycle model is done, and a simple way of controlling the vehicle states is
described. Furthermore, any investigation from now on is done on behalf of the BMW parameters, see also
Appendix B, as it is used for experimentation later.

22.1 Equilibria Investigation

In Chapter 8 it was discussed, that there exist certain equilibria in the β − r plane for the nonlinear bicycle
model. In Figure 8.1 one open loop stable equilibrium and two open loop unstable equilibria are depicted. This
representation is somewhat misleading however. Basically the shape of front and rear, pure lateral slip, tire
curves decide over the location and existence of these equilibria. But for sustaining large body sideslip in a
manoeuvre, rear wheel drive torque is substantial to overcome the slowing of the vehicle. And the resulting
longitudinal slip in the rear tires yields significant change in the lateral force response due to the combined
slip tire behaviour. This means, the shape of the rear lateral tire curve changes in a sense that the cornering
stiffness drops as well as the maximum lateral force. The result in terms of the bicycle model would be an
oversteering vehicle with KUS < 0, which does inherit neither stable nor unstable open loop equilibria.
Looking at the problem from a controllability point of view can give further insight. Figure 22.1 shows how the
stable cornering equilibria for the BMW change dependent on steering input within the state space. Greyed
out in the background are the open loop state trajectories for zero steering input given as a reference.
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Figure 22.1: Open loop stable equilibria of the bicycle model for ranging steering input, greyed out state
trajectories for the model with zero degree steering input are given as reference
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It can be seen that steering has major control authority on yaw rate and brings an inherited, marginal body
sideslip. The system is not fully controllable, but for normal cornering steering input as it changes front axle
lateral force is sufficient to negotiate the vehicle. In order to get control authority over body sideslip as well, an
additional actuator must be considered, that can change the rear lateral force. Eventually that is precisely
what can be achieved with longitudinal slip input at the rear wheels. Through the combined slip tire behaviour,
rear wheel slip lowers the cornering stiffness of the rear axle, and therefore reduces rear axle lateral force. Thus,
this change in rear cornering stiffness gives control authority for body sideslip.

22.2 Feedback State Controller

Steering input exists and is determined from the path tracking controller. Furthermore, it is a function of rear
axle cornering stiffness and therefore also of the body sideslip angle as demonstrated in Chapter 19.2. This
means if the vehicle comes into induced oversteering, the steering controller applies counter steering in order
to keep the path constraint and track the desired curvature. Thus, the steering input is considered as given.
Therefore only rear wheel slip input λ needs to be computed to induce the right amount of oversteer in order to
track a desired body sideslip βdes. Proportional feedback seems to be suited for this problem in the first place.
Considering only lateral dynamics, the control error can be computed using the deviation between desired and
actual body sideslip. The desired lateral velocity could be computed using the desired body sideslip.

vy,des =
√
v2x + v2y sinβdes (22.1)

However, also a yaw rate feedback should be added in order to assure that the yawing motion has the desired
direction. The desired yaw rate can be computed from the path curvature.

rdes = ρdesvtot (22.2)

The rear wheel slip control input can be computed.

λFB = (vy,des − vy)kβ + (rdes − r)kr (22.3)

When assuming the steering input to be fixed and known, coming from the path tracking controller, then this
controller can be applied to the nonlinear two-degree-of-freedom bicycle model. The wheel slip input in that
sense simply changes the cornering stiffness of the rear axle in order to control the body sideslip motion. Figure
22.2 shows a cloud of equilibrium points for which the controller was able to stabilize the nonlinear bicycle
model with BMW parameters. The color bar indicates steering angles for the respective points. The aim was to
stabilize the system with a desired positive yaw rate in order to simulate positive, left hand turning. Therefore
an increased body sideslip means negative body sideslip angle and requires counter steering, respective more
negative steering input. Steering was taken into account from -35 to 10 degree. As a reference also the open
loop equilibria of the bicycle model with only steering are plotted in terms of a line.
The controller was tuned heuristically, with the aim to achieve a wide range of equilibria in the state space. So
it is neither optimal nor complete, but still a couple of conclusions can be drawn from the result. Looking
only at positive yaw rate, first of all, a wide range of equilibria is achievable, varying in both yaw rate and
body sideslip. Amongst these are equilibria with very small body sideslip and yaw rate meaning that the tires
operate in their linear (not saturated) region. For larger body sideslip it seems, that stabilizing the vehicle
is only possible inside a smaller regime of yaw rate, as the number of equilibira is rather limited. For the
understeering case, meaning a positive body sideslip angle, no equilibria appear. Only with making the vehicle
more understeered, meaning reducing front axle cornering stiffness, this could theoretically be achieved.
The view given through the two-degree-of-freedom model is limited to the lateral dynamics. As the longitudinal
dynamics come into play, not all off the obtained equilibria will be achievable in the end. Eventually, stabilizing
a drifting vehicle means solving a three-degree-of-freedom system. So when computing slip input also the
longitudinal dynamics must be regarded. Taking this into account in terms of the feedback controller, there
should be the term (vx,des − vx)kv added to the input, where vx,des comes from Equation 17.3. Furthermore a
feedforward slip input is required.
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Figure 22.2: Obatined closed loop equilibria for using the body sideslip controller within the nonlinear bicycle
model

22.3 Feedforward State Controller

The longitudinal dynamics of the nonlinear bicycle with rear wheel drive are given.

mv̇x = Fx,r − Fy,f sin δ + vyrm (22.4)

Substituting desired values from path tracking, desired body sideslip and Fx = Cλ,rλFF , the feedforward wheel
slip input is obtained.

λFF =
Cy,f (δff − βdes − lf

rdes
vx,des

) sin δff + vy,desrdesm

Cλ,r
(22.5)

The rear tire longitudinal stiffness Cλ,r comes from Equation 21.11 and δFF comes from the path tracking
feedforward controller.
Summarized can be said, that the body sideslip controller should be used additionally to the existing steering
controller. In that sense there is a sort of task division between both controllers: the path tracking controller
uses steering input to track a desired path and the body sideslip controller uses rear wheel slip input in order
to control body sideslip. However the main key is, that the steering input is taken as parameter to the body
sideslip controller. This circumvents the necessity to solve a nonlinear system of third order in real-time, since
actually the steering input is a function of the slip input coming from the body sideslip controller itself. This
simplification might influence the stability of the system especially for conditions with excessive body sideslip
where longitudinal and lateral dynamics become heavily dependent on each other. Therefore the controller
needs testing.
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Part VI

Experiments and Results
The purpose was to test the steering controller for different scenarios.

1. In the first place it should be checked if the controller can track a path for the normal, understeering case
of cornering. Focus is on minimizing the steady-state offset.

2. After that it should be checked if the steering controller can react accordingly in situations where the
vehicle is brought into oversteering scenarios, as discussed in Chapter 19.2.

3. Finally the combined scenario of path tracking together with body sideslip control is to be tested, as it
was discussed in Chapter 22.2.

The slip controller for transient conditions, as described in Chapter 21.1 is not considered for testing. Therefore,
main attention in the experimental validation is paid to steady-state conditions and the influence of the slip
input on these conditions. This limits the required actuators to steering and throttle. A rear wheel drive vehicle
is required. Before the actual testing results are presented in this chapter, the experimental setup is described.

23 Experimental Setup
The first step was to make the model work on the real-time framework that TNO is using for experimental
validation. Then, also a suitable test track and vehicle had to be chosen.

23.1 Real-time Implementation

The Riccati solver uses an iterative method to retreive the solution [Mad+12]. The number of iterations can be
chosen, whereas an increase of numbers of iterations means convergence closer to the actual solution. Three
iterations yield 80 percent accuracy and ten iterations yield a solution within 95 percent of the optimum
[BMV10]. However increasing the amount of iterations also yields more computational load for the real-time
hardware. The framework used at TNO consists of a dSpace AutoBox. Test runs were done in order to check if
the SDC form containing six states and five actuators, as developed in Chapter 16 showed real-time feasibility.
When using more then ten iterations real-time feasibility was not given. It was chosen to use five iterations
for the experiments which leaves a reasonable safety margin in terms of processing capacity. Furthermore the
state saturation, which was used to avoid singularity in the controller model, as described in Chapter 16.4, was
tested. Therefore the model was run in the vehicle for low speed and it was checked if the solver still produced
valid output.

23.2 Track

In order to spare tire and mechanical components of the testing vehicle, it was looked for a testing track
equipped with a low friction surface. In that case required forces to achieve limit handling regime are much less
and dynamic tests become slower. Also, smaller testing areal with less safety space next to the testing pad
become applicable. The RDW Test Centre in Lelystad in the Netherlands was chosen, as it is equipped with a
low friction skid pad of reasonable size. Figure 23.1 shows the skid pad test ground from top view.
The ground of the circular low friction pad consists of a polymer and appears white. Covered with water the
friction with respect to vehicle tires appears to be approximately µ = 0.13. The outer diameter of the pad is
38.5 metres and the inner 32.5 metres. This yields a track with of about six metres. The dashed line represents
the path chosen for testing, starting at a tangential entrance and making a transition towards the steady-state
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Figure 23.1: Skid pad test ground at the RDW Test Centre in Lelystad (Netherlands), top view

cornering on the pad, ending on the pad after one completed lap. The curvature profile of the path is equal to
the one considered in Figure 9.2. However, for this test the focus lies on the steady-state cornering part. More
information on the test track can be found in Appendix C.

23.3 Vehicle

A BMW 5 series, which was equipped by TNO as a vehicle dynamics testlab would be available for testing, see
Figure 23.2. It could be equipped with a sophisticated steering robot allowing for precise steering input with a
high bandwidth. A high precision GPS system could be used for path tracking feedback. Also vehicle state
feedback was retrieved via the GPS system.

Figure 23.2: BMW 5 test vehicle

Most importantly the BMW possesses the rear wheel drive that makes it possible to be used for body sideslip
control. However there is no traction or wheel slip control available in the car and also no wheel slip measurement.
Therefore it is only possible to send a throttle setpoint to the engine control unit in order to control wheel
torque and in turn regulate wheel slip. Throttle input is typically sent in percent. In this case the desired slip
would be directly translated into throttle input. Vehicle parameters and testing setup is presented in Appendix
B.1.

23.4 Testing Procedure and Parameter Estimation

The tests were conducted on 25.-26.08.2016. After arriving at the testsite and before starting the actual
testruns, a few things had to be prepared. The GPS had to be setup in a sense that the local GPS antenna
had to be positioned asides the track and connected with the car. In order to get an accurate GPS reference,
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random movement of the car with respect to the antenna is required for calibration. This was done by driving
around the test areal for 10 minutes. After setting up the GPS and via following the outer and inner edge of
the skid pad with low speed, the exact global coordinates of the test track could be retrieved. As well a self
defined reference starting point and starting heading for the manoeuvres could be defined. With the respective
loggings, the skid pad could be transformed into local reference with respect to the starting point and starting
heading. Then a reference path was fitted to the data, it making a smooth transition from starting point into
the circular pad. As a preparation, also braking manoeuvres on the test surface were undertaken and logged.
Afterwards, offline friction estimates were obtained, for adaption of the friction parameter within the tire model,
see Appendix C.2.
For the controller to receive path tracking error state feedback, the camera model was used, which was developed
for the plant model, see Chapter 13.1. State feedback in terms of vx, vy and r, which is required by the camera
model and also the controller, would be retrieved from the GPS system. A test run would always start from the
origin with standstill. Then the test driver or the longitudinal controller respectively, would start and speed up
to cornering speed within the transient phase, before entering the turn. The test run ends after maximum one
lap on the pad is complete, then the test driver takes over control again and brings the car back to the origin.
In between subsequent tests, controller gains and parameters could be adapted using ControlDesk software,
without requiring recompilation of the model, which saved time.
Furthermore, since wheel slip feedback is not available, which is a required parameter for calculating tire forces
in the controller model though, the desired wheel slip output of the controller would be used instead. This
however is not accurate and introduces uncertainty within the tire model. Also an accurate tiremodel of the
specific tires mounted to the BMW was not available. Instead a model for tires of similar type was used.
Furthermore, in order to facilitate engaging into oversteering, degraded tires with less friction were mounted to
the rear axle. Though for these tires no tire parameters were available. Consequently model uncertainty is
introduced, which challenges controller robustness. Compliance in the front axle was modelled, altering the
front tire cornering stiffness. After initial testing the friction inside the tiremodel was adapted to µ = 0.4. This
does not represent the actual friction limit measured, but yields minimized oscillatory steering control and is
therefore preferable. In total, there are a few model inaccuracies related to the tire model which will affect the
computation of cornering stiffness and therefore influence the control inputs. In the end, the results therefore
will also give an indication on how sensitive the SDRE controller is to model inaccuracies.

23.5 Controller Setup

For the three different experiments the respective controller Setups can be found in Table 23.1

Table 23.1: Penalized states for the three chosen experiments

Setup Steering Controller (SDRE+FF) State Controller via Throttle Input
Path Control (vx,des − vx), ela, eψ, eρ -

Driver Induced Oversteering ela, eψ, eρ manual by driver
Combined Path and State Control ela, eψ, eρ (vx,des − vx), (vy,des − vy), (rdes − r)

Desired speed is vx,des =
√
v2des − v2y, as explained in Chapter 17.2. Desired yaw rate is rdes = ρdes

√
v2x + v2y,

as described in Chapter 22.2. Desired lateral velocity is vy,des =
√
v2x + v2y sinβdes, as described in Chapter

22.2. Testing results for the three different setups is described in the subsequent chapters.

24 Path Control

With this experiment it should be shown if the steering controller is capable of tracking curvature with
minimized lateral offset ey, for cornering close to the friction limits. Figure 24.1 shows the position of the
vehicle with respect to the desired path. Figure 24.2 shows states, errors and inputs of the experiment. Total
cornering speed vtot ≈ 6 m/s and with a cornering radius of 35.5 metres yields a cornering acceleration of 0.1g.
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Considering the friction potential of about µ = 0.13 of the skid pad, this means cornering at 77% of the friction
limit.
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Figure 24.1: Path Control Experiment Position
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Figure 24.2: Path Control Experiment States, Errors and Inputs

Looking at the position of the vehicle with respect to the desired path, it is observed that it tracks the path
rather accurately throughout the entire experiment. Looking at the path tracking errors of the experiment it
can be seen that the deviation with respect to the path |ey| remains below 0.4 metres. Furthermore, heading
error eψ incorporates body sideslip, due to the error definition, see Chapter 19. Thus, eψ − β was plotted
instead. This represents the heading of the velocity vector and it can be judged in which direction the vehicle
moves with respect to the path. From the plot can be seen, that there is a steady-state offset in heading of
about two degree, whereas a small oscillation with amplitude of one degree exists on top of that. Since the
vehicle tracks the path without significant growing deviation, the heading error mean should be zero eventually.
Therefore it can be concluded, that there exists a measurement offset in the system of about two degree.
Steering input and throttle input remain smooth and steady throughout the experiment, showing a suitable
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tuning of the feedback gains.
The same experiment was also done with greater desired speed. This lead to spinning out of the vehicle shortly
after entering the circle. As the speed approaches the maximum cornering speed given through the friction
limit, small oscillation in slip input yield the rear tire lateral force potential drop and rear sideslip increases.
The vehicle begins to spin and decrease in speed is penalized with increased slip input and the spinning motion
gets even more amplified. This is a general drawback of rear wheel driven cars. In order to stop the runaway in
sideslip, slip input would have to be decreased. This represents a case were body sideslip control should be
applied in order to prevent the vehicle from spinning out. In fact it can be seen as a requirement for stabilizing
an oversteering vehicle in path tracking scenarios with cornering close to the friction limits.
A steady-state offset in speed is prevailing throughout the experiment. It was concluded that this offset
originates from non-modelled resistance effects that slow the vehicle. Such are rolling resistance of the tires,
as well as inner resistance of the engine. The latter one means that a certain amount of throttle input is
required in order to overcome the inner friction of the engine and drivetrain. Together, these effects can yield
a steady-state offset in speed which is only controlled with feedback terms. Overall the experiment shows a
positive performance of the controller. The achieved rather small lateral path tracking error originates from
parameter uncertainties in terms of tire model.

25 Driver Induced Oversteering

In this experiment it should be tested if the steering controller can stabilize an oversteering vehicle, and at the
same time retain path tracking constraint. Therefore the steering controller would be activated and the test
driver manually pushes the vehicle towards oversteering, using throttle input. Figure 25.1 shows the position of
the vehicle with respect to the desired path. Figure 25.2 shows states, errors and inputs of the experiment.
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Figure 25.1: Driver Induced Oversteering Experiment Position

The vehicle position of the experiment gives a few indications. First of all, after the vehicle enters the circle,
the driver starts to increase throttle input and the cornering happens within a different cornering equilibrium.
This can be seen in terms of a larger offset with respect to the path. After three quarters of the circle, as the
driver pushes the throttle further, the vehicle eventually spins out, see the kink in the graph. At this point the
experiment is stopped. Task of the driver was to increase body sideslip gradually throughout the experiment.
Looking at the evolution of body sideslip, this was managed well by the driver, as it shows an almost linear
slope up to an absolute value of greater than 20 degree. Correlating to the body sideslip, also the lateral
error |ey| increases up to two metres, meaning the vehicle negotiates a slightly sharper turn than intended.
The reason for that lies within parameter uncertainties of the tire model. For significant slip angles on the
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Figure 25.2: Driver Induced Oversteering Experiment States, Errors and Inputs

tires in the range of saturation, the modelled force response is not accurate any more. The heading eψ shows
an oscillation within an amplitude of six degrees, set off by approximately 2 degree, as seen in the previous
experiment. Looking at the steering input it can be observed that from the same time, as the body sideslip is
increased, the steering input decreases gradually. At 19 seconds when the bodysideslip reaches approximately -7
degree, the steering input is zero. After that counter steering is applied, which allows further on for stabilizing
the vehicle in an unstable cornering equilibrium up to an absolute body sideslip of 20 degree.
The throttle input gives notable insight into the manual control of such a manoeuvre. At about 15 seconds the
vehicle enters the low friction pad. The driver increases throttle input and the buildup in sideslip is triggered.
From then on the driver controls the sideslip with fine throttle oscillations between 10 and 20 percent. Whereas
the absolute body sideslip increases strictly further up to 10 degree, no strict increasing throttle input is
required. At this point, at around 22 seconds, the driver gives a rather significant throttle push, whilst body
sideslip increases further and from now on the driver controls the throttle with corrections in notable smaller
amplitude. At this point also the longitudinal slip λr makes a significant jump. It seems that force response
characteristic changes within this range of body sideslip. From this it is assumed that for high body sideslip β
and therefore also rear tire sideslip αr, in the range of tire saturation, the control of body sideslip appears
smoother with less feedback action. For larger sideslip the change in longitudinal slip λr has less impact on the
lateral motion.
For further increase of absolute body sideslip beyond 25 degree, the steering input appears oscillatory and
together with driver throttle inputs the system appeared unstable. Further controller tuning and better fitting
of the tire model would be required. Though the experiment showed that the steering controller is capable of
giving a smooth steering input and holding an oversteering vehicle close to the friction limits while retaining
a path constraint. Moreover the achieved cornering velocity of seven meters per second means an achieved
cornering acceleration of 0.14 g. This in fact even exceeds the measured friction limit of µ = 0.13. Reaching
this maximum in lateral grip was observed for a range of absolute body sideslip angle of 5 to 20 degree.

26 Combined Path and State Control

After validating the performance of the steering controller, also the body sideslip controller using throttle input
should be tested. This would yield fully autonomous combined path and vehicle state control. The test runs
were done in the sense that every run was started with the controller setup for path tracking, see Table 23.1.
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After entering the low friction pad, the state controller would be engaged manually via the real-time Control
Desk interface. At this moment, a step input in sideslip is given. In the experiment to be discussed here the
step is -20 degree. Figure 25.1 shows the position of the vehicle with respect to the desired path. Figure 25.2
shows states, errors and inputs of the experiment.
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Figure 26.1: Combined Path and State Control Experiment Position
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Figure 26.2: Combined Path and State Control Experiment States, Errors and Inputs

From the position of the vehicle, it can be seen that the path constraint is retained, as the whole circle is
completed. A certain lateral oscillation prevails while the vehicle is brushing the reference path from the inside
of it. Desired speed for the experiment is vdes = 7 m/s, whereas a steady-state offset can be observed which
is comparable to the first experiment with path tracking only. Looking at the body sideslip it can be seen
that the state controller attempts to follow the step input seen by a steep slope in sideslip. After reaching a
maximum absolute value of 13 degree, the sideslip drops again, about three seconds after the step input. An
oscillation in body sideslip follows ranging between maximum zero and minimum -11 degree. The lateral offset
ey mirrors this oscillation meaning that for increase in body sideslip the vehicle increases lateral offset and vice
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versa. It resembles the same behaviour as seen in the second experiment, where the driver pushes towards
oversteering and the vehicle increases lateral offset. As the vehicle in that sense moves closer and further from
the path, the heading, epsi − β, shows the same trend.
Also the steering input shows the same trend as the body sideslip, as it corrects for the build-up in lateral error
and heading error. However, as investigation shows the feedback weighting was chosen rather large and shows
overcompensation yielding the relatively large oscillations in steering. This in turn also enforces oscillations in
body sideslip. However, the presumably most relevant contributor to the oscillations in body sideslip becomes
apparent when looking at the rear axle slip λr. The desired slip which is used as throttle input shows the
desired increase, as the step input is applied. However for the wheel slip to react to the input takes 0.2 seconds.
This time delay originates from the dynamics of engine and drivetrain and also results in reduced damping of
the system. An overshoot in wheel slip up to 30% follows, which is above the desired value of about 25%. As a
result the desired wheel slip is over-adjusted via the controller and the actual wheel slip drops back to almost
zero, and is then increased rapidly again. This is the reason for the large oscillation in body sideslip at this
moment. Following the trend of the wheel slip, it can be seen that there exists a steady-state offset between
desired slip in terms of throttle input, and actual slip. Except when the desired wheel slip reaches a certain
threshold of about 15 %, then the wheels start to spin rapidly and the offset is reduced rapidly. The offset is
assumed also to cause the steady-state offset in body sideslip, that can be seen from the graph. This highly
nonlinear relation between throttle input and wheel slip response is expected to be induced by the longitudinal
force characteristic of the tire as well as the combustion engine dynamics whose torque response is not linear
either. This result strongly calls for use of a slip controller in order to accurately regulate wheel slip.
Looking at the throttle input generated by the test driver for the second experiment in Figure 25.2, it gives an
indication on how the throttle input should look like in order to control wheel slip more accurately. Furthermore,
it appears that the step input in desired body sideslip is responsible for harsh wheel slip input and initiates the
oscillation. Instead should a ramp input yield a smoother body sideslip response and faster damping out of
transients. Looking back at the graph, in fact it can be seen that at the time of 25 seconds transients have
reduced. This is due to the fact that wheel slip enters a stage where it appears less oscillatory, with maximum
13% and minimum 3% between 25 and 35 seconds. In this stage body sideslip ranges between -5 and -10 degree.
This shows a sustained autonomous drift over a substantial time frame, when at the same time considering
the path constraint of the vehicle. Giving the fact that there was no wheel slip controller available for the
experiment and the controller was not tuned to the optimum yet, this is seen as a positive result.

27 Results
Summarized there is a few things that limited the performance in the experiments

1. Wheel Slip Controller
A low level wheel slip controller would be required in order to track the desired wheel slip coming from
the state controller.

2. Tuning Steering Feedback
Too large gains in the SDRE feedback controller yield steering overcompensation as the vehicle increases
lateral path tracking offset slightly due to increased sideslip.

3. Ramp Input
A ramp input instead of step input for desired body sideslip reduces transient oscillations in body sideslip.

4. Wheel Slip Feedback
Wheel slip feedback increases tire model accuracy within the SDRE controller and therefore improves
feedback steering input.

5. Parameter Estimation
Accurate parameter estimation for tire model and vehicle model improve feedback and feedforward input.

However testing showed promising results and proved the controller concept could work for the intended purpose
in the scope of autonomous driving in general.
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Part VII

Conclusion and Recommendation

28 Conclusion

The research problem is to track a desired path, whilst the tires operate in limit handling condition. The latter
one means large tire sideslip essentially. In the scope of autonomous driving, large tire sideslip can occur in
scenarios like an evasive lane change, where the vehicle has to avoid an unpredictable situation. In such a
situation, a reference path will be represented in terms of a curvature profile. It was found suitable to assess
the path tracking capabilities of a vehicle based on its actual curvature, which is the quotient of yaw rate and
speed of the vehicle. In order to track evasive paths, the vehicle has to possess a good curvature response. An
investigation on behalf of the bicycle model was done with different actuator setups. It could be concluded that
differential wheel slip inputs show a comparable improvement in curvature response with rear wheel steering.
Thus steering and differential wheel slip inputs (only negative, for braking) were considered as actuators for
path tracking. Positive slip (driving torque) would be considered for controlling speed to keep the vehicle
within the limit handling regime.
After choosing a suitable error definition, a feedback controller was developed using the State Dependent Riccati
Equation technique. However feedforward steering input appeared to be necessary for minimizing steady-state
errors, and account for body sideslip angle of the vehicle. Using nonlinear cornering stiffness obtained from
a tire model in real-time, the path tracking controller was shown in simulation to reliably track steady-state
curvatures up to the the friction limits, with lateral offset smaller 0.3 meters. Furthermore through taking
the changes in cornering stiffness into account in real-time, the controller is capable of reacting to a drop in
rear cornering stiffness. This means the controller applies counter steering in case of oversteering. The use of
differential braking inputs for a lanechange manoeuvre could lower the maximum path tracking error by 33%.
Furthermore from simulation it became apparent that rear wheel driven or oversteering vehicles could not be
stabilized at the limits of friction. This results from the longitudinal controller, as it does not possess any
sideslip feedback. Therefore it does not reduce the throttle when sideslip begins to rise, indicating a spinning
out of the vehicle. This reason and also the initial literature investigation suggests that body sideslip control
can be beneficial in certain scenarios. Thus it was decided that further investigation into body sideslip control
was necessary, and the scope of the project switched towards this direction in the remainder of the project.
Cornering equilibria of the nonlinear bicycle model were investigated. It was concluded that the phase portrait
representations of the unstable drift equilibria are somewhat misleading, as they only result from the particular
slip curve shape of the pure lateral slip tire model. In contrast, the combined slip tire behavior was added
to the bicycle model. Combined with a simple proportional feedback controller this allows for stabilizing the
bicycle in numerous equilibria of body sideslip angle and yaw rate. Amongst these are also closed loop equilibria
within the linear range of the tire meaning small tire sideslips. A feedforward wheel slip term was added in
order to produce the required amount of propulsion force for sustaining the drift. The SDRE steering controller
and proportional body sideslip controller were implemented and tested in a BMW test vehicle and showed
promising results.
Testing track was a low friction circular pad for steady-state cornering tests. The steering controller showed to
stabilize the vehicle up to the friction limits and can also stabilize an oversteering vehicle via counter steering
whilst still satisfying the path tracking constraint. This was shown up to an absolute body sideslip angle of
20 degree. For completely autonomous manoeuvres where also speed is controlled automatically, the body
sideslip controller becomes necessary to stabilize an oversteering vehicle and prevent spinning out. In the
control scheme the steering input would be used to reduce path tracking errors and the rear wheel slip input
would be used to control body sideslip. This task separation was demonstrated to work well in experiment.
During a path following task, the vehicle was able to autonomously engage into a drift and as well leave the
drift, whilst at all times regard the path tracking constraint. This was shown for a slip angle of minus 7.5
degree and could be sustained for approximately ten seconds. The results proof that the control concept is
working. Also considering that no actual wheel slip controller was available in the experiment and only the
desired wheel slip would be used as throttle input, the result is promising.
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29 Recommendation
The path following controller showed good performance. Therefore recommendations mainly originate from the
testing of the body sideslip controller.

1. Wheel Slip Controller
For future experiments a wheel slip controller should be used. So far only was the desired slip input used
to control the throttle of the BMW. Data acquisition after testing showed that there was a much larger
error between desired slip and actual slip than expected. This had negative influence on tracking body
sideslip. The use of a wheel slip controller will therefore increase the control performance significantly.

2. Desired Body Sideslip
So far a body sideslip controller was developed and the desired input was chosen randomly only for
testing its functionality. The next step would be to make an investigation on which cornering equilibrium
is actually desired for what condition. This goes together with finding the quantitative advantage of
controlling body sideslip in transient manoeuvres. The desired scenario would be to have a body sideslip
setpoint dependent on path curvature and rate in path curvature.

3. Differential Braking
For the body sideslip controller rear wheel slip input was used only. Applying also differential braking
input would give more authority over tracking a desired body sideslip. Especially for transient manoeuvres
which appear in typical collision avoidance scenarios this would be relevant.

4. SDRE Control
The body sideslip controller should be integrated within the SDRE framework in order to adapt the
control input to the model nonlinearities.

5. Modelling Drivetrain
Tests within this research were done on low friction surface. On surfaces with large friction such as dry
asphalt the accelerations occuring will be much larger and therefore load transfer becomes significant.
Due to different normal loads on the driven wheels, dynamics of the rear axle differential will have a great
influence on wheel slip and must be regarded.
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A Toyota Prius Parameters

Table A.1: Vehicle Parameters of Toyota Prius 2012

Parameter Value Unit Designation Source
l 2.7 m wheelbase TNO parameterfile
lt 1.5 m track width TNO parameterfile
mf 966 kg nominal load on front axle TNO parameterfile
mr 688 kg nominal load on rear axle TNO parameterfile
m 1654 kg nominal total vehicle mass mf +mr

IZ 2865.6106 kg m2 yaw moment of Inertia TNO parameterfile
lf 1.1231 m x-distance CG to front axle lmrm
lr 1.5769 m x-distance CG to rear axle l

mf
m

hCG 0.54 m nominal CG height TNO parameterfile
Cα,f 117620 N/rad front axle lateral stiffness derived from TNO Prius MF tire model
Cα,r 169960 N/rad rear axle lateral stiffness derived from TNO Prius MF tire model
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B BMW 5 Parameters and Testing Setup

Table B.1: Vehicle Parameters of BMW

Parameter Value Unit Designation Source
l 2.888 m wheelbase TNO parameterfile
lt 1.570 m track width TNO parameterfile
mf 927.8 kg nominal load on front axle TNO parameterfile
mr 972.2 kg nominal load on rear axle TNO parameterfile
m 1900 kg nominal total vehicle mass mf +mr

IZ 3498 kg m2 yaw moment of Inertia TNO parameterfile
lf 1.478 m x-distance CG to front axle lmrm
lr 1.410 m x-distance CG to rear axle l

mf
m

hCG 0.544 m nominal CG height TNO parameterfile
Cα,f 122440 N/rad front axle lateral stiffness derived from TNO MF tire model of BMW similar tire
Cα,r 213630 N/rad rear axle lateral stiffness derived from TNO MF tire model of BMW similar tire

Figure B.1: TNO BMW 5.45 (E60) vehicle dynamics test lab, with automatic gearbox

Figure B.2: Steering robot installation
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C Testtrack

Figure C.1: Skid Pad with artificial irrigation
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Figure C.2: Progressive braking manoeuvre on the low friction skid pad surface. The friction estimate is
determined by the first peak of the longitudinal acceleration with about -1.3 m/s2. The second peak represents
full wheel lock at almost stand still, where the water below the wheels is pushed away, and therefore larger
absolute acceleration is measured.

C1



D Alternative Error Definition

An alternative error definition accounting for body sideslip β is presented. Heading and look-ahead error both
yield zero when the vehicle is located on the path and the total velocity vector points in the direction of the
path. See the error definition in Figure D.1.
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Figure D.1: Error definition

The nonlinear state equations can be obtained using

eψ = eψ,β + β, (D.1)

as can be seen from the figure. It follows:

˙eψ,β = [vxcos(eψ,β + β) + vysin(eψ,β + β)]ρdes − r − β̇ (D.2)

β̇ =
1

1 + (
vy
vx
)2
v̇yvx − vy v̇x

v2x
(D.3)

˙ela,β = ėy + xlacos(eψ,β) ˙eψ,β (D.4)

ėy = −vycos(eψ,β + β) + vxsin(eψ,β + β) (D.5)

This error definition is dependent on β-feedback. A linearized model was tested by [KG15] and it was concluded
that stability margins are reduced in comparison to the normal error definition.

D1


	Abstract
	Preface
	Acknowledgements
	Nomenclature
	I Introduction
	Background
	Problem
	Delimitations
	Report Outline

	II Lateral Vehicle Motion
	Linearized Model
	Steady-state Cornering and Stability
	Tire Characteristics and Limit Handling
	Cornering with Saturated Tires

	III Path Tracking Control Problem
	Definition of Reference Path
	Curvature Achievebility
	Curvature as a Function of Time
	Curvature Response

	Path Following Scheme
	Efficient Use of Actuators
	Nonlinear Control Methods
	Feedback Linearization
	Gain Scheduling Linear Quadratic Regulator (LQR) Control
	State Dependent Riccati Equation (SDRE) Technique
	Model Predictive Control (MPC)
	Sliding Mode Control (SMC)
	Other Approaches
	Discussion


	IV Modelling and Controller Development
	Plant Model
	Camera and Post-Processing
	Vehicle

	State Dependent Riccati Equation
	Controller Model
	Vehicle Model Fidelity
	State for Tracking Curvature
	Heading and Lateral Error Dynamics

	Controller Model SDC-Form
	Tire Force Parameterization
	Vehicle Model Parameterization
	Error Dynamics Parameterization
	Implementation and Numerical Issues

	Actuator Model and Longitudinal Controller
	Actuator Saturation and Dynamics
	Longitudinal Controller
	Axle Differential

	Linearized Controller Model
	Feedforward Control
	Geometric and Sideslip Terms
	Nonlinear Understeering Gradient


	V Simulation and Tuning
	Steady-state Cornering when only Steering
	Transient Cornering
	Wheel Slip Controller
	Curvature Tracking
	Path Tracking
	Single Linear Transition
	Lane Change

	Parametric Robustness

	Body Sideslip Control
	Equilibria Investigation
	Feedback State Controller
	Feedforward State Controller


	VI Experiments and Results
	Experimental Setup
	Real-time Implementation
	Track
	Vehicle
	Testing Procedure and Parameter Estimation
	Controller Setup

	Path Control
	Driver Induced Oversteering
	Combined Path and State Control
	Results

	VII Conclusion and Recommendation
	Conclusion
	Recommendation
	References
	Toyota Prius Parameters
	BMW 5 Parameters and Testing Setup
	Testtrack
	Alternative Error Definition


