

Benchmark and validation of Open
Source CFD codes, with focus on
compressible and rotating capabilities, for
integration on the SimScale platform.
Master’s Thesis in Engineering Mathematics & Computational
Sciences

Magnus Winter

Department of Applied Mechanics
Chalmers University of Technology
Gothenburg, Sweden 2013
Master’s Thesis 2013:81

MASTER’S THESIS IN ENGINEERING MATHEMATICS

Benchmark and validation of Open Source CFD codes, with focus
on compressible and rotating capabilities, for integration on the

SimScale platform.

MAGNUS WINTER

Department of Applied Mechanics
Division of Fluid Dynamics

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2013

Benchmark and validation of Open Source CFD codes, with focus on
compressible and rotating capabilities, for integration on the SimScale platform.
MAGNUS WINTER

c© MAGNUS WINTER, 2013

Master’s Thesis no 2013:81
ISSN 1652-8557
Department of Applied Mechanics
Division of Fluid Dynamics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover: Rotating cylinder (ω = 1.2733 [rad/s]) in a free stream flow with Reynolds
number Re = 333.33 and at the time t = 17.5 [s], calculated using Gerris.

Chalmers Reproservice
Göteborg, Sweden 2013

Benchmark and validation of Open Source CFD codes, with focus on compressible and rotating
capabilities, for integration on the SimScale platform.
Magnus Winter
Department of Applied Mechanics
Division of Fluid Dynamics

Chalmers University of Technology

Abstract

The use of CFD is widely spread in industry today. However, smaller business have
difficulty to make use of this tool, due to high costs for commercial licenses and hard-
ware. As SimScale provides the combination of cloud computing with open source CFD
software, the prerequisites to use CFD are lowered. To provide more diverse solvers for
the platform, different CFD software are integrated onto the platform.

As OpenFOAM was the sole CFD software on the platform at the start of this
thesis, two other open source software were researched and compared to OpenFOAM.
OpenFOAM was compared to Gerris and SU2 in three different validation cases.

OpenFOAM and Gerris rotating body capabilities are investigated in an analyti-
cal solvable case of laminar Taylor-Couette flow. Two different approaches were used
in OpenFOAM, where AMI (Adaptive Mesh Interface) and MRF (Multiple Reference
Frame) were used to solve the problem.

OpenFOAM and SU2’s turbulent capabilities are compared using a turbulent flat
plate case from Wieghardt [1]. Compressible transonic flow over a RAE2822 airfoil was
set up for OpenFOAM and SU2. The results were compared to data from NASA [2] It
was found that the rotating body capabilities (MRF and AMI) of OpenFOAM were suit-
able for integration onto the SimScale platform. Gerris as a software was deemed to be
easy to work with, but would require a new work flow on the platform to be integrated.
SU2 was integrated onto the platform during this thesis work, but was deemed to still
suffer from some early development issues as its first release was done in January 2013.

Keywords: OpenFOAM, SU2, Gerris, Turbulent flat plate, Taylor-Couette, RAE2822,
RANS, DNS, AMI, MRF

Acknowledgements

The conducted thesis was done at SimScale GmbH in Garching bei München. First and
foremost I would like to express my gratitude to my supervisor at SimScale, Johannes
Probst, for always making time to help me when I encountered problems. Also I would
like to express my thanks to David Heiny for giving me the opportunity to conduct my
thesis at SimScale and to my colleagues at SimScale for keeping an uplifting and fun
atmosphere at the workplace.

I also like to thank my supervisor at Chalmers, Lars Davidsson, for his support and
help during this thesis.

To all the developers of the open source software used in this thesis including but not
limited to, SU2, OpenFOAM, Gerris, Salome, Eclipse, SVN, Kile, LATEX and Ubuntu.
Finally to my friends in Gothenburg and Munich for being helpful distractions from CFD.

Magnus Winter, Munich 7/12/13

Nomenclature

Abbreviation
AMI Arbitrary Mesh Interface
BiCGSTAB Biconjugate Gradient Stabilized
BC Boundary Condition
CFD Computational Fluid Dynamics
CFL Courant-Friedrich-Lewy number
CGS Conjugate Gradient Squared
DNS Direct Numerical Simulation
GAMG Generalized Geometric-Algebraic Multigrid
GMRES Generalized Minimum Residual Method
ILU Incomplete Lower Upper factorization
LES Large Eddy Simulation
LUDS Linear Upwind Scheme
MAC Marker and Cell
MRF Multiple Reference Frame
OpenFOAM Open source Field Operation And Manipulation
PISO Pressure-Implicit Split-Operator
QUICK Quadratic Upwind Scheme
RANS Reynolds Averaged Navier-Stokes
SA Spalart-Allmaras
SIMPLE Semi-Implicit Method for Pressure Linked Equations
SU2 Stanford University Unstructured
TVD Total Variation Diminishing

Dimensionless quantities
Cf Skin Friction Coefficient
CP Pressure Coefficient
M Mach number
Pr Prandtl number

i

Greek symbols
δ Kronecker delta
ρ Density
γ Isentropic Expansion Factor
µ Dynamic viscosity
ν Kinematic viscosity
∂ Partial derivative
ω Specific turbulent dissipation
τij Viscous stress tensor
ε Turbulent dissipation

Roman symbols
CD Coefficient of Drag
CL Coefficient of Lift
E Energy
R Specific gas constant
CV Heat capacity at constant volume
q Heat flux
ni Surface normal gradient
p Pressure
T Temperature
t Time
k Turbulent kinetic energy
ui Velocity vector
x Space variable

Subscripts
∞ Free stream property
i,j,k Tensor indices
t Turbulence

ii

Contents

1 Introduction 1
1.1 Objective . 2
1.2 Limitations . 2
1.3 Outline of Thesis . 2

2 Theory 3
2.1 Governing equations . 3

2.1.1 Incompressible fluids . 3
2.2 Modeling . 4

2.2.1 RANS . 4
2.2.2 Turbulence models . 5

2.2.2.1 Spalart-Allmaras . 5
2.2.2.2 k − ω SST . 5

2.2.3 Artificial compressibility . 6
2.3 SU2 modeled equations . 7

2.3.1 Compressible solver . 7
2.3.2 Incompressible solver . 8

2.4 OpenFOAM modeled equations . 8
2.4.1 simpleFoam . 8
2.4.2 pimpleFoam . 9
2.4.3 rhoCentralFoam . 9

2.5 Gerris modeled equations . 10
2.6 Finite volume method . 10

2.6.1 CFL number . 11
2.6.2 y+ . 11
2.6.3 Wall functions . 11

2.7 Discretization of Modeled Equations . 11
2.7.1 Time discretization . 12
2.7.2 Convective discretization . 12

2.7.2.1 Centered schemes . 12

iii

CONTENTS

2.7.2.2 Upwind schemes . 13
2.7.2.3 TVD schemes . 13
2.7.2.4 Compressible flow . 14

2.7.3 Gradient discretization . 15
2.7.4 Viscous discretization . 15

2.8 Linear Solvers . 16
2.8.1 Krylov subspace methods . 16

2.8.1.1 GMRES . 16
2.8.1.2 Conjugate Gradient Method 16
2.8.1.3 Biconjugate Gradient Method 17
2.8.1.4 BiCGSTAB . 17

2.8.2 LU-SGS . 17
2.9 Acceleration techniques . 17

2.9.1 Multigrid method . 17
2.9.2 Preconditioners . 18
2.9.3 Linelet preconditioning . 18

2.9.3.1 Roe-Turkel preconditioner 18
2.10 Rotating motion . 19

2.10.1 MRF . 19
2.10.2 AMI . 19

3 Software 21
3.1 OpenFOAM . 21

3.1.1 0 . 22
3.1.2 system . 22

3.1.2.1 fvSchemes . 23
3.1.2.2 fvSolution . 24

3.1.3 constant . 25
3.1.3.1 polyMesh . 25

3.2 SU2 . 25
3.2.1 Mesh file . 25
3.2.2 Configuration file . 28

3.2.2.1 Time discretization . 28
3.2.2.2 Viscous terms discretization 28
3.2.2.3 Convective terms discretization 28
3.2.2.4 Linear solvers . 29
3.2.2.5 Convergence criterion . 29

3.3 Gerris . 29

4 Results 31
4.1 Rotating Taylor-Couette . 31

4.1.1 OpenFOAM - MRF . 31
4.1.1.1 Case creation . 32
4.1.1.2 Results . 34

iv

CONTENTS

4.1.2 OpenFOAM - AMI . 36
4.1.2.1 Case creation . 37
4.1.2.2 Results . 39

4.1.3 Gerris . 41
4.1.3.1 Case creation . 42
4.1.3.2 Results . 42

4.2 Turbulent flat plate . 43
4.2.1 OpenFOAM setup . 44
4.2.2 SU2 setup . 45
4.2.3 Mesh . 45
4.2.4 Results . 45

4.3 RAE2822 . 48
4.3.1 Results . 49

4.4 Integration of SU2 . 52

5 Conclusions and prospects 55

Bibliography 60

A Appendix 61
A.1 Taylor-Couette . 61

A.1.1 Taylor-Couette OpenFOAM MRF files 62
A.1.2 Taylor-Couette OpenFOAM AMI files 64
A.1.3 Taylor-Couette Gerris file . 68

v

1
Introduction

The usage of Computational Fluid Dynamics (CFD) is widely spread today. As CPU’s
become more powerful and affordable, most larger companies in industry are using it
today. However, investing in the required hardware and commercial licenses is still a
hurdle for smaller businesses to use CFD.

Open source softwares provide a cheap approach to simulations, compared to com-
mercial software. However, the open source softwares are dependent on a more knowl-
edgeable user than for the commercial softwares, as more freedom is provided with the
software and documentation can be limited. Also, as mentioned previously, another
limitation for small businesses is the need for computing power to perform simulations
without having to invest in the hardware. The start-up SimScale GmbH are currently
developing a web platform where users can use open source CFD software with an user in-
terface and computer clusters. This cloud computing approach provides small businesses
with the required computational power needed with the user friendliness of commercial
softwares.

As different open source CFD softwares have their strengths and weaknesses, pro-
viding a variety of solvers to the customer is of importance. A short introduction of a
subset of the large variety of open source CFD softwares can be seen below.

SU2 is developed by Stanford University and is a acronym for Stanford University
Unstructured. The first release of SU2 was done in January of 2013. Thus SU2 still
undergoes development and is set to release version 3.0 in January 2014. It is developed
in C++ [3].

Gerris is developed by Stéphane Popinet and supported by the National Institute
of Water and Atmospheric research in New Zealand. Its first release was in 2003. It is
developed in C [4].

OpenFOAM is produced by OpenCFD Ltd. It contains over 80 solver applications
to simulate specific problems in engineering. It has been released as open source since
2004. The code is developed in C++ [5].

1

1.1. OBJECTIVE CHAPTER 1. INTRODUCTION

1.1 Objective

At the starting point of this thesis, OpenFOAM was the main fluid solver on the Sim-
Scale platform. To provide more capabilities and different solvers on the platform an
evaluation of the open source CFD softwares SU2 and Gerris was tasked. The main
focus was to investigate new compressible capabilities and dynamic mesh operations,
mainly rotational motion, to the platform. Also a possible integration onto the SimScale
platform was to be investigated and, if deemed possible, to integrate the software onto
the platform.

The versions of the softwares used were OpenFOAM version 2.2.0, SU2 version 2.0.8
and Gerris version 1.3.2.

1.2 Limitations

Only one compressible solver in OpenFOAM is compared to SU2. There are several
other compressible solvers including steady solvers. The rhoCentralFoam solver was
chosen due to its similar set up as the compressible solver in SU2, as it is also a density
based solver. Comparing SU2 with other compressible solvers from OpenFOAM such as
rhoSimpleFoam is left out from this thesis.

The incompressible solver of SU2 was found to be difficult to find convergence with.
In the end, only the compressible solver from SU2 was used.

A part of the SU2 code was integrated on the SimScale platform in the course of
this thesis. Due to trade secrets of SimScale only the outline of the integration will be
published in this paper.

1.3 Outline of Thesis

The thesis was conducted as a combined literature study of the capabilities of the different
softwares and testing the capabilities of the solver against suitable benchmark cases.
Theory, covering the fundamentals of the numerics of CFD softwares, is given in section
2 and referenced in the subsequent secctions when comparing the capabilities of the
different softwares. An overview of capabilities and strengths and weaknesses of the
softwares are done in section 3 of the thesis. The benchmark cases conducted with the
softwares are displayed in section 4. Recommendations, conclusions and future work is
discussed in section 5.

2

2
Theory

2.1 Governing equations

The governing equations for fluids consists of a continuity equation (2.1), a momentum
equation (2.2), an energy balance (2.3) and a state equation, connecting density to
pressure. If the fluid is assumed to be Newtonian the equations reduce to,

∂ρ

∂t
+
∂ρui
∂xi

= 0 (2.1)

(
∂ρui
∂t

+
∂ρujui
∂xj

)
= − ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij

)
+ ρfi (2.2)(

∂ρE

∂t
+
∂ρujE

∂xj

)
= −∂puj

∂xj
+
∂uiτji
∂xj

+
∂

∂xj

(
k
∂T

∂xj

)
+ SE (2.3)

In the above equations, fi is an force applied on the fluid, SE is an energy source term
and the tensor τij = µ(∂ui/∂xj + ∂uj/∂xi) − 2

3µ∂uk/∂xk. Equations of state relate
pressure p = p(ρ,T) and internal energy i = i(ρ,T) to the variables ρ and T . Thus
allowing the above equations to be solved. An example of this relation is the equations
of state for an ideal gas, [6]

p = ρRT and i = CvT. (2.4)

2.1.1 Incompressible fluids

At low Mach numbers, compressible effects can be neglected. As the continuity equation
(2.1) reduces to

∂uj
∂xj

= 0, (2.5)

3

2.2. MODELING CHAPTER 2. THEORY

there is no need to solve the energy equation as there is no link between the energy
equation and momentum and continuity equations. As a result the calculated pressure
field is not unique. After simplifying the governing equations using the incompressible
condition (2.5), the following system of equations is received, [6]

∂ρuj
∂xj

= 0 (2.6)

(
∂ρui
∂t

+
∂ρujui
∂xj

)
= − ∂p

∂xi
+

∂

∂xj

(
µ
∂ui
∂xj

)
+ ρfi. (2.7)

2.2 Modeling

To solve the governing equations some simplifications have to be made. To remove de-
pendence on small fluctuations usually the Reynolds Averaged Navier-Stokes assumption
is used. There are other models, more advanced (and computationaly heavy) as LES
and DNS, but they will not be covered in this thesis.

2.2.1 RANS

To model the Reynolds Averaged Navier Stokes equation, all variables are split into a
time-averaged part and a fluctuating part, φ = φ̄+ φ′. The time-averaged part is calcu-
lated as, φ̄ = 1

T

∫
T φ(x,t)dt. For compressible flows often another form of decomposition

is done using Favre-averaging. Here variables are decomposed as θ = θ̃ + θ′′, where
θ̃ = ρθ/ρ̄. Thus θ′′ not only includes the turbulent fluctuations but also the density
fluctuations. After Favre averaging the velocity and energy and performing a standard
time-averaging for ρ and p, the following equations are derived.

∂ρ̄

∂t
+
∂ρ̄ũi
∂xi

= 0 (2.8)

(
∂ρ̄ũi
∂t

+
∂ρ̄ũj ũi
∂xj

)
= − ∂p̄

∂xi
+

∂

∂xj

(
τij − ρu′′i u′′j

)
(2.9)

Here τij =
(
µ
(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3µ
∂uk
∂xk

δij

)
and τij = τ̃ij + τ ′′ij . For the energy equation a

similar tranformation is done with the resulting Favre averaged equation,(
∂ρẼ

∂t
+
∂ρũjẼ

∂xj

)
= −∂pũj

∂xj
+
∂uiτji
∂xj

− ∂

∂xj
(qj)−

∂

∂xj
u′′j p−

∂

∂xj
ρu′′jE

′′. (2.10)

This is the decomposition made in compressible codes. For incompressible codes the
Favre decomposition is not used and the RANS equations are derived from the standard
time-averaging. For solving the RANS equations assumptions have to be made regarding
the turbulent terms. The equations solved can be found in section 3 of the respective
softwares (SU2 and OpenFoam) [6].

4

2.2. MODELING CHAPTER 2. THEORY

2.2.2 Turbulence models

When modeling the governing equations with RANS, the need to model the turbulent
scales is apparent. There are several models which deal with how to model turbulence.
Here only the Spalart-Allmaras and the k − ω SST model will be reviewed.

2.2.2.1 Spalart-Allmaras

The turbulence model Spalart-Allmaras is an one equation model, where the kinematic
eddy viscosity is calculated through a transport equation and a length scale is found
from an algebraic expression. The model is a cheap way of calculating the boundary
layers in aerodynamics. In the Spalart-Allmaras model an eddy viscosity parameter ν̃ is
calculated. It is related to the eddy viscosity through,

νt = ν̃fν1 . (2.11)

The Reynolds stresses are calculated using the following assumption,

− ρu′iu′j = ρν̃fν1

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. (2.12)

A transport equation is set up for ν̃ to find the eddy viscosity,

∂ρν̃

∂t
+
∂ρν̃ūk
∂xk

=
1

σν

[
∂

∂xk

(
(µ+ ρν̃)

∂ν̃

∂xk

)
+ Cb2ρ

∂ν̃

∂xk

∂ν̃

∂xk

]
+Cb1ρν̃Ω̃−Cw1ρ

(
ν̃

κy

)2

fw

(2.13)
Where Ω̃ = Ω + ν̃

(κy)2
fν2 , and Ω is the mean vorticity. The wall functions are dependent

on the following variables fν2 = fν2(ν̃/ν) and fw = fw(ν̃/(Ω̃κ2y2)). The turbulent length
scale can be found from κy, where y is the distance from the wall.

The model constants are set as σν = 2/3, κ = 0.4187, Cb1 = 0.1355, Cb2 = 0.622 and
Cw1 = 0.56203 [6]. There are further coefficients in the wall functions, not given here.
For all the model details, see [7].

2.2.2.2 k − ω SST

The k − ω SST model is a mix of the k − ω and k − ε models. In the near-wall region
the k − ω model is used and further away from the wall in the fully turbulent regions
the k − ε method is used. The eddy viscosity is

µt = ρk/ω,

and the Reynolds stresses are derived from the Boussinesq assumption.

τij = −ρu′iu′j = µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
ρkδij (2.14)

5

2.2. MODELING CHAPTER 2. THEORY

The transport equation for k is,

∂(ρk)

∂t
+

∂

∂xi
(ρkūi) =

∂

∂xi

[(
µ+

µt
σk

)
∂k

∂xi

]
+ 2µtSijSij −

2

3
ρk
∂ūi
∂xj

δij − β∗ρkω (2.15)

where

Sij =
∂ūi
∂xj

+
∂ūj
∂xi

.

The ω equation is,

∂(ρω)

∂t
+

∂

∂xi
(ρωūi) =

∂

∂xi

[(
µ+

µt
σω,1

)
∂ω

∂xi

]
+ γ2

(
2ρSijSij −

2

3
ρω

∂ūi
∂xj

δij

)
+ (2.16)

− β2ρω
2 + 2

ρ

σω,2ω

∂k

∂xk

∂ω

∂xk
.

The model constants are σk = 1.0, σω,1 = 2.0, σω,2 = 1.17, γ2 = 0.44, β2 = 0.083 and
β∗ = 0.09 [6]. Blending functions are implemented to assure a smooth transition between
the k − ω model and the k − ε model is done, see more in [8].

2.2.3 Artificial compressibility

Instead of implementing a pure incompressible solver a compressible solver can be mod-
ified with an artificial compressibility to satisfy the incompressible conditions. The com-
pressible equations are hyperbolic and the incompressible have a mixed parabolic/elliptic
character. This difference stems from the lack of time derivative in the continuity equa-
tion for the incompressible flow. To amend for this difference in behavior, a time deriva-
tive for pressure (∂p∂t) is added to the continuity equation.

1

β

∂p

∂t
+
∂ρui
∂xi

= 0 (2.17)

For steady flows the solution is run until convergence, and thus satisfies the continuity
equation. The parameter β is here the artificial compressibility, the larger the value of β
the more incompressible the equations are. The value of β determines the performance
of the method, usually it is chosen between 0.1 and 10 [9].

The artificial compressibility method has also been applied to unsteady flows. Either
the equations are solved as in the steady case with a sufficiently large β such that the
contribution of the added pressure time derivative is negligible, or a dual time τ is
introduced to the equation, as seen in (2.18).

1

β

∂p

∂τ
+
∂ρui
∂xi

= 0

ρ
∂ui
∂τ

+ ρ
∂ui
∂t

+ ρ
∂ (uiuj)

∂xj
+
∂p

∂xi
− µ ∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
= 0 (2.18)

The dual time method is computationally more demanding than the single time method,
as an iterative process is run for every time step tn in the dual time τ until steady state

6

2.3. SU2 MODELED EQUATIONS CHAPTER 2. THEORY

is achieved in τ . In return it gives the advantage that the continuity equation is fulfilled
at every time step.

From numerical simulations it has also been verified that reasonably good results can
be achieved with this method of simulation, especially for the dual time approach [10].

2.3 SU 2 modeled equations

The governing equations (2.1), (2.2) and (2.3) are coupled. Thus a system of equations
is built as to correlate the variables naturally. As this system of equations is linearized,
the corresponding linear system will be of a block-banded structure [9].
In the open source CFD software SU2, the equations are modeled as coupled. All
equations solved are of the form,

∂U

∂t
+∇ · ~F c −∇ · ~F ν = Q. (2.19)

U is a vector containing the state variables, ~F c(U) represents the convective fluxes,
~F ν(U) are the viscous fluxes and Q(U) is the source term.

2.3.1 Compressible solver

For compressible flow the state vector is defined as U = (ρ, ρv1, ρv2, ρv3, ρE)T . The
convective and viscous fluxes are given as,

~F ci =

ρvi

ρviv1 + Pδi1

ρviv2 + Pδi2

ρviv3 + Pδi3

ρviH

, ~F νi =

.

τi1

τi2

τi3

ρvjτij + µ∗totCp∂iT

, Q =

.

.

.

ρg

.

, i = 1,2,3

Here P is the static pressure, H is the fluid enthalpy H = E + p/ρ and the viscous
stresses are given as τij = µtot

(
∂jvi + ∂ivj − 2

3δij∂kvk
)
. The source term Q can contain

a gravity term, with g = 9.81 if the user chooses so. The gravity term can at this point
(SU2 version 2.0.8) only be chosen in the z-direction in 3D-calculations or y-direction for
2D-calculations. The ideal gas law is used to relate temperature, pressure and density
T = P/(Rρ). Also from the ideal gas law the specific heat is given as Cp = γR/(γ − 1)
To take into accordance the temperature dependence of the dynamic viscosity µdyn, the
Sutherland’s law is applied,

µdyn = As
T 3/2

T + C
. (2.20)

In the source code of SU2, the following constants are chosen As = 1.46 · 10−6 and
C = 110.3 [3]. The total viscosity µtot is calculated by summing the contribution of the

7

2.4. OPENFOAM MODELED EQUATIONS CHAPTER 2. THEORY

dynamic viscosity and the turbulent viscosity, thus µtot = µdyn + µturb. Furthermore for
the heat transfer the viscosity is calculated as µ∗tot = µdyn/Prdyn + µturb/Prturb. Here
Prdyn is the laminar Prandtl number and Prturb is the turbulent Prandtl number. For
air the values are approximately Prdyn = 0.9 and Prturb = 0.72 [3].

The turbulent viscosity is calculated by a chosen turbulence model. At the moment
available turbulence models, in SU2 version 2.0.8, are the Spalart-Allmaras (SA) and
the k − ω SST models. The turbulence model is solved seperately from the governing
equations, eventhough these are coupled.

2.3.2 Incompressible solver

The incompressible solver is based on the artificial compressibility formulation by Chorin,
which is only valid for steady-state calculations. The state variable is set to U =
(P,ρv1, ρv2, ρv3)T , P is the pressure and vi the velocity in a Cartesian coordinate system.
The convective and viscous fluxes are given by,

~F ci =

β2vi

ρviv1 + Pδi1

ρviv2 + Pδi2

ρviv3 + Pδi3

 , ~F νi =

.

µtot∂iv1

µtot∂iv2

µtot∂iv3

 , Q =

.

.

.

− ρ
Fr2

 , i = 1,2,3.

The artificial compressibility parameter is here denoted by β2, also the Froude number
Fr is included in the equations to provide a source term for gravity. The gravity source
term can be chosen to be included or not in the same way as in the compressible case [3].

2.4 OpenFOAM modeled equations

In OpenFOAM the governing equations are not solved as a coupled system of equations
as in SU2 but rather the continuity, momentum and energy equations are all solved
seperately. A short description of what equations and algorithms the solvers in this
paper use is provided in this section.

2.4.1 simpleFoam

This solver is a steady-state incompressible solver. Due to the incompressibility, the en-
ergy equation does not need to be solved, as there is no link between the momentum and
continuity equations. Instead the momentum equation is solved and a pressure correc-
tion is performed, thus a physical pressure is not solved but rather pressure differences
are found [6].

If the divergence is taken of the momentum equation and the continuity equation is
used to expand the term ∂

∂xk
(∂∂tρuk), a Poisson equation for the pressure is found.

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

[
∂

∂xj
(ρuiuj − τij)

]
+
∂(ρgi)

∂xi
+
∂2ρ

∂t2
(2.21)

8

2.4. OPENFOAM MODELED EQUATIONS CHAPTER 2. THEORY

In the case of constant density and viscosity the equation reduces to,

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

[
∂

∂xj
(ρuiuj)

]
. (2.22)

The SIMPLE algorithm, which the simpleFoam solver is based upon, is solving the mo-
mentum equation (2.7) and the Poisson pressure equation (2.22). As OpenFOAM utilizes
a collocated grid Rhie-Chow interpolation is used for the pressure-velocity coupling. The
SIMPLE algorithm can be found in [9].

2.4.2 pimpleFoam

The solver is a transient solver for incompressible fluids and is a merged solver consisting
of the PISO and SIMPLE algorithms. The solver is using SIMPLE algorithm in an inner
loop with an outer PISO loop. The SIMPLE algorithm neglects the velocity corrections
as they are unknown, which results in slow convergence. In the PISO loop these are
taken into consideration, and thus faster convergence [9].

2.4.3 rhoCentralFoam

This solver is solving each of the governing compressible equations seperately. First the
continuity equation is solved, providing a new value for ρ. Thereafter the momentum
equation is solved in two steps where first the inviscid part is calculated and the values
updated and afterwards the viscid part is added. The energy equation is first solved
without the diffusive flux of heat, which is later added when the updated temperature
is calculated.

The continuity equation,
∂ρ

∂t
+

∂

∂xi
(uiρ) = 0

is solved with the previous time step velocity values.
For convention purposes ûi = ρui and Ê = ρE. After the continuity equation is

solved the inviscid momentum equation is solved,(
∂ûi
∂t

)
I

+
∂

∂xj
(uiûj) +

∂p

∂xi
= 0 (2.23)

Equation (2.23) explicitly calculates ûi and thus no linear solver is needed. The time
derivative (∂/∂t)I is only the inviscid contributions. The new velocity ui is updated by
using the updated density ρ, thus ui = ûi/ρ. The diffusion correction equation is now
solved (2.24) for ui, where the viscous terms are added.(

∂(ρui)

∂t

)
V

− ∂

∂xj

(
µ
∂ui
∂xj

)
− ∂

∂xj
µ

(
∂uexpj

∂xi
− 2

3

∂uexpk

∂xk
δij

)
= 0 (2.24)

In the equation the time derivative (∂/∂t)V is the contribution of diffusion and viscous
forces. The velocities uexpi are taken from the solution of the inviscid equation (2.23).

9

2.5. GERRIS MODELED EQUATIONS CHAPTER 2. THEORY

The laplacian term is added implicitly in ui and solved for with a linear solver available
in OpenFOAM.

A similar procedure is done for the energy equation. First Ê at the new time step is
found explicitly from the equation,(

∂Ê

∂t

)
I

+
∂

∂xk

[
uk

(
Ê + p

)]
− ∂

∂xi
µuj

(
∂uj
∂xi

+
∂ui
∂xj
− 2

3

∂uk
∂xk

δij

)
= 0. (2.25)

From Ê the temperature T is calculated through,

T =
1

Cv

(
Ê

ρ
− ukuk

2

)
. (2.26)

Then a diffusion correction equation for T is solved to include the diffusive terms,(
∂(ρCvT)

∂t

)
V

− ∂

∂xk

(
k
∂T

∂xk

)
= 0 (2.27)

The diffusion correction equation (2.27) for T is carried out implicitly, thus the laplacian
of T is taken at the new time step. An iterative solver of choice is used to solve this
system of equations. After the temperature is calculated the temperature dependent
quantities k and µ are evaluated at the new temperature T . Also the pressure p = ρRT
is updated. The variables k, µ and p are held constant through each iteration and only
updated at the end of it [11].

2.5 Gerris modeled equations

For the time being Gerris does not include steady state, compressible or turbulent capa-
bilities. Thus incompressible DNS calculations is what is available at the moment. To
counter this a powerful adaptive mesh refinement is provided in Gerris in combination
with an octree-mesh structure. Calculations with Gerris are done through a projection
method. This method utilizes a pressure correction with the equation (2.22) [4]. As
Gerris utilizes a collocated grid an approximate projection method is used to calculate
the divergence free velocity field. The intermediate velocity field is calculated at the cell
faces by interpolation and the created staggered (MAC) field is then projected. From this
the cell centered pressure gradients are constructed and thus an approximate divergence
free velocity can be calculated at the new time step [12].

For solving the discretized equations a Godunov solver is implemented in Gerris for
the convective terms.

2.6 Finite volume method

The finite volume method utilizes an integration over a control volume. The control vol-
ume is constructed from a given mesh. Depending on whether the mesh is unstructured

10

2.7. DISCRETIZATION OF MODELED EQUATIONS CHAPTER 2. THEORY

or structured the control volumes for every cell node is created differently. The Gaussian
theorem (2.28) is used to simplify terms in the governing equations,∫

CV

∂φi
∂xi

dV =

∫
A
niφidA. (2.28)

where CV is the control volume, A is the area of the control volume and ni is the normal
vector to the surface area integrated.

2.6.1 CFL number

The Courant-Friedrich-Lewy condition is a numerical constraint which determines the
allowed time step for a specific grid size. This constraint determines that information can
only propagate no further than one cell away from the original cell. In explicit schemes
this constraint is necessary for convergence. If information propagates with the speed ũ,
then the CFL number is given in equation (2.29) for a one dimensional case.

ũ
∆t

∆x
< C (2.29)

where C is a number which determines the CFL condition. For explicit schemes C < 1
is required, but it can be larger for implicit schemes [13].

2.6.2 y+

y+ is a non-dimensional wall distance used to determine the boundary layer at which a
control volume is located. It is calculated from (2.30).

y+ =
uτy

ν
(2.30)

Where uτ =
√
τw/ρ is the friction velocity. For y+ < 5 the cell resides in the viscous

sublayer, where u/uτ = y+ and for y+ > 30 the flow is in the log-law region [8].

2.6.3 Wall functions

Wall functions are used to lessen the amount of cells needed to resolve a domain, as the
viscous sublayer is not fully resolved close to walls. Instead the first computational node
is put at around 30 < y+ < 100 in the log-law region. Problems using this approach
may arise in separation and attachment regions [9].

2.7 Discretization of Modeled Equations

To solve the modeled equations, a discretization has to be made of the modeled equa-
tions. Different discretization schemes are used for different components of the modeled
equations.

11

2.7. DISCRETIZATION OF MODELED EQUATIONS CHAPTER 2. THEORY

2.7.1 Time discretization

The time discretization determines the way the algorithm updates the solution in time.
The term ∂/∂t can be discretized a various ways. Let (2.31) be a partial differential
equation.

∂φ

∂t
= f(φ, ψ) (2.31)

The explicit Euler, implicit Euler and Crank-Nicholson methods can be explained with
the following discretization,

φn+1 − φn

∆t
= f(θφn+1 + (1− θ)φn, ψn). (2.32)

The notation φn+1 indicates the variable φ at the time step n + 1 and ∆t = tn+1 −
tn. The variable ψ is set as explicit as it is not solved for in the equation. If θ = 0
the discretization is called explicit Euler and is first order accurate. For θ = 1 the
discretization is called implicit Euler and it is also first order accurate. For θ = 1/2 it is
the Crank-Nicholson method, which is second order accurate.

More advanced schemes like Runge-Kutta are also available for time discretization,
these schemes can reach high order of accuracy, but are more computationally expensive.
The time discretization term in the finite volume method is taken as piecewise constants
over the control volumes. Thus, [6]∫

CV

∂φ

∂t
dV = VCV

(
∂φ

∂t

)
P

. (2.33)

2.7.2 Convective discretization

If the modeled equations contain divergence terms ∂/∂xj(ρujφi), the finite volume
method requires the evaluation of φi at the control volume faces in accordance with
the Gaussian theorem (2.28),∫

CV

∂ρujφi
∂xj

dV =
∑
k

∫
Sk

njρujφidSk. (2.34)

The integer k is the number of faces of the control volume. For a Cartesian grid in three
dimensions, a control volume is a hexahedron and has six faces. As the value of φ is not
known at the faces, an interpolation has to be made between the cell nodes.

2.7.2.1 Centered schemes

The convective terms can be discretized using one of the common interpolation schemes
such as the central difference scheme. This approach is unlikely to be used in CFD appli-
cation as the interpolation schemes are not bounded and do not fulfill the transportivness
requirement [6].

12

2.7. DISCRETIZATION OF MODELED EQUATIONS CHAPTER 2. THEORY

2.7.2.2 Upwind schemes

A simple solution is to use an upwind scheme to find the values at the faces. The upwind
scheme is enforced as the following for φ at a face between two cell nodes P and A,

φPA =φP if Fk > 0 (2.35)

φPA =φA if Fk < 0. (2.36)

The flux Fk is defined as Fk = niρui∆Sk, where ∆Sk is the surface of the k control
volume face. This method is easily implemented, conservative, bounded and first order
accurate. The issue with this scheme lies in the fact that when the flow is not aligned
with the grid a false diffusion error is introduced to the solution. The linear upwind
scheme (LUDS) and the quadratic upwind scheme (QUICK) use the same principle as
the upwind scheme but uses interpolation between nodes to increase the accuracy. The
linear upwind scheme is second order accurate and the QUICK scheme is third order
accurate. The drawback of the QUICK scheme is that it suffers from oscillatory behavior
for high Peclet number flows.

2.7.2.3 TVD schemes

The TVD (Total Variation Diminishing) schemes were developed to counter the oscil-
latory behavior of higher order upwind schemes while still achieving a high order of
accuracy. This is done by introducing a monotonicity criterion. This criterion states
that a scheme must not create local extrema and that the value of an existing local
minimum/maximum be non-decreasing respectively non-increasing [6].

In a structured grid, a TVD scheme is constructed from a flux limiter function Ψ(r)
and a nonlinear function r. The non-linear function r is defined as, if the velocity at the
face vi+1/2 > 0,

r =
φi − φi−1

φi+1 − φi
. (2.37)

The index i determines what node points are used, for instance if the flux is calculated
at a face in the x direction, i+ 1 would correspond to the eastward node and i−1 to the
westward node. Flux limited schemes are described from the following equation (still
assuming vi+1/2 > 0),

φi+1/2 = φi +
1

2
Ψ(r) (φi+1 − φi) . (2.38)

A TVD scheme is created by imposing requirements on the flux limiter function Ψ(r).
The upwind schemes in section 2.7.2.2 can be written in this format. The upwind scheme
is attained from Ψ(r) = 0, LUDS from Ψ(r) = r and QUICK from Ψ(r) = (3 + r)/4.
However, only the upwind scheme is TVD.

Necessary and sufficient conditions for a scheme to be TVD are,{
Ψ(r) ≤ 2r 0 < r < 1

Ψ(r) ≤ 2 r ≥ 1.
(2.39)

13

2.7. DISCRETIZATION OF MODELED EQUATIONS CHAPTER 2. THEORY

A few flux limiters for TVD schemes are,

Van Leer
r + |r|
1 + r

MUSCL
r + |r|
1 + |r|

SUPERBEE max(0,min(1,2r),min(2,r)).

For unstructured grids equation (2.37), does not always hold. A modification is proposed
in (2.40). Let the indexes D denote a neighboring and C denote the current cells node.

r =

[
(2∇φC · ~rCD)

φD − φC
− 1

]
φ(r) =φC +

1

2
Ψ(r)(φD − φC) (2.40)

The vector ~rCD is the vector between the nodes C and D [14].
Another way to impose the monotonicity criterion is to impose the condition that

the values of the reconstructed polynomial in the control volume is not to exceed the
maximum and minimum values at the neighbors. This condition was slightly modified
to,

min(φN ,φP) ≤ (φP + Ψj∇φP · ~rjP) ≤ max(φN ,φP) ∀N ∈ Neighbors(P) (2.41)

where Ψ is the flux limiter, rjP is the distance between the points j and P (cell center)
and j is an arbitrary point in the control volume of P . The reconstruction polynomial
(RP (rjP) = (φP + Ψj∇φP · ~rjP)) is evaluated at each cell face. The flux limiter function
reduces to,

Ψf =

Φ
(

max(φN ,φP)−φP
∇φP ·~rfP

)
φf > φP

Φ
(
φP−min(φN ,φP)
∇φP ·~rfP

)
φf < φP

1 φf = φP

(2.42)

where Φ(x) = min(x,1). For the flux limiter the minimal value over all cell faces are
chosen, ΨP = min(Ψf).

Venkatakrishnan [15] improved this approach by changing the function Φ to,

Φ(x) =
x2 + 2x+ ε2

x2 + x+ 2 + ε2
(2.43)

where ε = (Kh)3. K is a user-specified constant and h a local mesh size [14].

2.7.2.4 Compressible flow

For a compressible flow fluid properties are not only transported by the flow, but also
by waves. This can give arise to shocks which are discontinuous. Different types of

14

2.7. DISCRETIZATION OF MODELED EQUATIONS CHAPTER 2. THEORY

discretization are needed for these flows. The methods can be divided into either cen-
tral schemes such as the Lax-Friedrich method and the Kurganov-Tadmor scheme [16]
(used in rhoCentralFoam) or approximate Riemann solvers such as Godunov’s and Roe’s
method [13].

2.7.3 Gradient discretization

From the modeled equations terms of the form ∂/∂xi(φ) appear. These terms are dis-
cretized in the finite volume method as,∫

CV
∂/∂xiφdV =

∑
k

∫
Sk

φnidSk (2.44)

The values of φ needs to be calculated at the surfaces of the control volumes. This is
done by an interpolation scheme for the value of φ at the cell centers.

Alternatively a least squares method can be used to calculate the gradient. Instead
of calculating the values of φ at the cell faces the gradient ∂/∂xi(φ) is calculated at the
cell point P . This is done by a least squares method where the gradients between the
cell and its neighbors are calculated [9].

2.7.4 Viscous discretization

The modeled equations contain terms of the form ∂/∂xi(Γ∂φk/∂xk). When these terms
are integrated over a control volume the following is found,∫

CV

∂

∂xk

(
Γ
∂

∂xk
φ

)
dV =

∑
k

∫
Sk

njΓ
∂φ

∂xj
dSk (2.45)

This requires the calculation of gradients at the surfaces of the control volumes. A way
to do this is to calculate the gradients of the cell centers and then use interpolation to
find the value on cell faces. To find the value of the gradient at the cell center P , it is
approximated as the average value over the cell as proposed in equation (2.46).(

∂φ

∂xi

)
P

≈
∫

Ω
∂φ
∂xi
dΩ

∆Ω
(2.46)

Through the finite volume approximation this is simplified to,(
∂φ

∂xi

)
P

≈
∑

k φk∆Skn
(k)
i

∆Ω
(2.47)

where n
(k)
i is the outward normal of the surface k in the control volume. The gradients

can then be interpolated to the faces after they have been calculated. The gradient at
the cell center can be derived using a least squares method as well [9].

15

2.8. LINEAR SOLVERS CHAPTER 2. THEORY

2.8 Linear Solvers

After discretization of the Navier-Stokes equations linear solvers are needed to solve
linear equations of the form Ax = b. As these systems of equations are too large for
direct solvers, iterative methods are used to find a solution. The most commonly used
method for solving linear systems iteratively, make use of Krylov subspace methods. In
the open source CFD codes OpenFoam, SU2 and Gerris, mainly Krylov solvers are used
to solve the linear systems. Though in some solvers of OpenFOAM more basic iterative
methods like Jacobi and Gauss-Seidel are used. To increase performance, preconditioning
and multigrid methods are also used [17].

2.8.1 Krylov subspace methods

Let x0 be an initial guess to the problem Ax = b and r0 = b − Ax0. An approximate
solution xm is found in the affine space,

xm ∈ x0 +Km(A,r0). (2.48)

where the space K is defined as,

Km(A,r0) = span
{
r0,Ar0,A

2r0,...,A
m−1r0

}
. (2.49)

Furthermore a Petrov-Galerkin condition is applied on xm such that

b−Axm ⊥ Lm, (2.50)

where Lm is a subspace of dimension m. The choice of Lm and the preconditioning of the
initial linear system defines the Krylov subspace method used. Thus the approximation
of the solution x∗ will always be of the form A−1b ≈ x0 + qm−1(A)r0, where qm−1 is a
polynomial of degree m− 1.

2.8.1.1 GMRES

The Generalized Minimum Residual Method (GMRES) is a Krylov subspace method
with K = Km and L = AKm. Using a version of the Arnoldi’s method, which creates
an orthonormal matrix that spans Km, a solution is found. This solver can handle both
symmetric and asymmetric matrices.

2.8.1.2 Conjugate Gradient Method

This method also utilizes a form of the Arnoldi’s method, but in the case when A
is symmetric positive definite. For symmetric positive definite matrices the Anorldi’s
method reduces to the Lanczos method. It requires that Lm = Km, thus making the
solution an orthogonal projection onto the Krylov subspace Km(r0,A).

16

2.9. ACCELERATION TECHNIQUES CHAPTER 2. THEORY

2.8.1.3 Biconjugate Gradient Method

This method uses an extension to Lanczos method used in the Conjugate Gradient
Method. The solution is a projection onto Km = span

{
v1,Av1,...,A

m−1v1

}
, orthogonally

to Lm = span
{
w1,Aw1,...,A

m−1w1

}
. Usually v1 = r0/ ‖r0‖2, and w1 can be chosen

arbitrarily as long as (v1,w1) 6= 0 but is often chosen as v1 [17].

2.8.1.4 BiCGSTAB

The Biconjugate Gradient Stabilized is a method where the transpose AT is not needed
to be computed explicitly. This reduces the computational time. It is an improved
version of the Conjugate Gradient Squared (CGS) algorithm. For further reading [17]
is recommended. The advantages of this method compared to the Biconjugate Gradient
Method is a smoother and faster convergence properties [3].

2.8.2 LU-SGS

In SU2 another solver for the linear system is implemented. The Lower-Upper Symmetric-
Gauss-Seidel (LU-SGS) method, [18] which is a stationary iterative method.

2.9 Acceleration techniques

To accelerate the convergence of linear solvers a few different techniques are used in
CFD codes. A brief description of some of the more common techniques are given in
this section. Mainly preconditioning of the linear system and the multigrid method will
be covered.

2.9.1 Multigrid method

Multigrid methods were created from the observation of iterative methods dependency
on the spectral radius of the iteration matrix (eη+1 = Meη). M is the iteration matrix
and eη is the error eη = u− uη where u is the exact solution. The eigenvectors with the
largest eigenvalues determine the rate of convergence for the method.[9] The Gauss-Seidel
method is able to damp out high-frequency modes after only a few iterations, whereas
for low-frequency modes a longer time is required to achieve convergence. However many
of the low-frequency modes can be mapped onto a coarser grid as high-frequency modes.
Thus the idea of the multigrid method was formed [17].

The Geometric multigrid, performs transforms between different coarse sized grids.
Iterations with some iterative scheme are performed to smoothen the solution on each
grid level, to remove the high-frequency errors. There are different ways of implementing
the Multigrid method, some of the most common algorithms used are either the V-cycle
,W-cycle or Full Multigrid Method (FMG). If the multigrid method is applied without
using any knowledge of the grid and only from the initial linear system Ax = b, the
Algebraic Multigrid Method (AMG) is a viable method. It has the advantage over

17

2.9. ACCELERATION TECHNIQUES CHAPTER 2. THEORY

the Geometric Multigrid Method that it can better solve problems with anisotropic or
discontinuous coefficients. For further reading on the topics of multigrid methods [17] is
recommended.

2.9.2 Preconditioners

The efficiency and robustness of iterative solvers can be improved by the use of precon-
ditioners. The reliability of of iterative techniques is often determined by what precon-
ditioner is used, rather than what Krylov subspace method is chosen. After determining
the preconditioned matrix M for the linear system Ax = b, the preconditioner either is
applied from the left

M−1Ax = M−1b

or from the right
AM−1u = b, x = M−1u.

One of the simplest ways to construct a preconditioner is to perform an incomplete
factorization of the original matrix A. A decomposition of the form A = LU −R where
L and U have the same nonzero structure as the lower and upper parts of A respectively,
and R is the residual error of the factorization. This incomplete factorization is called
ILU. It is an inexpensive way to compute a preconditioner, but often requires the Krylov
subspace method to perform many iterations before convergence. For a symmetric matrix
the Incomplete Cholesky factorization can be used as a preconditioner instead to preserve
symmetry.

Another simple preconditioner is the Jacobi preconditioner. Which is also known
as a diagonal preconditioner, as the preconditioner is chosen to be the diagonal of the
matrix A [17].

2.9.3 Linelet preconditioning

In SU2 a linelet preconditioner has been implemented to improve the convergence of the
Krylov subspace solvers. Lines are constructed in the mesh which lie in the direction
normal to the grid stretching. By assembling the system matrix and the non-diagonal
entries of the edges belonging to the linelets the preconditioned matrix is received. With
appropriate numbering the preconditioned matrix will be a block tridiagonal matrix. For
zones where linelets are not defined a Jacobi preconditioner is used. The preconditioned
system is now block diagonal and can be inverted by using the Thomas algorithm [3].

2.9.3.1 Roe-Turkel preconditioner

The numerical discretization of the governing compressible equations often result in
excess artificial viscosity at low Mach numbers. The Roe-Turkel preconditioning allows
the solving of nearly incompressible problems using the same numerical methods as for
compressible problems. This preconditioning is, in particular, useful in flows where parts
of the flow is incompressible.

18

2.10. ROTATING MOTION CHAPTER 2. THEORY

A correction of the convective fluxes discretization is performed and involves modi-
fying the artificial viscosity, such that correct scaling of it can be achieved at low Mach
numbers. This preconditioning does not affect the time accuracy of unsteady problems.
Furthermore it is important to realize that this preconditioner is a modification of the
Roe method of discretizing the convective fluxes [3].

2.10 Rotating motion

Different approaches can be chosen for rotating geometries. For simple geometries, such
as a sphere, a velocity can be prescribed at the boundary to induce a rotating motion.
For more complex geometries more advanced methods have to be used.

2.10.1 MRF

If a rotational frame of reference is chosen, a rotating object can be viewed as stationary
through a transformation of the Navier-Stokes equation.

The properties of the flow between stationary and rotating zones are translated at
the specified interfaces between them. For OpenFOAM the MRF (Multiple Reference
Frame) capability is only able to handle steady-state simulations [5].

2.10.2 AMI

In contrary to MRF there occurs mesh motion in AMI (Arbitrary Mesh Interface). There
needs to be two meshes and an interface which is geometrically identically joining the
two meshes. One of the meshes is rotated whereas the other is kept stationary.

Standard consistent interpolation is unfortunately not a viable option for connecting
the AMI surfaces. Interpolating a field qD from the donor mesh (denoted TD) to a target
mesh (denoted TT) receiving qT suffers from some critical drawbacks, such as not being
conservative, minima and maxima are eroded and have issues handling discontinuous
fields. Instead if a Galerkin projection is used, the projection from the donor mesh to
the target mesh is optimally accurate in the L2 norm and from it, conservation follows.
To project from the donor mesh an intermediate supermesh is created.

The Galerkin projection is defined as,

‖qD − qT ‖2 = minq∈VT ‖qD − q‖2 (2.51)

here VT = span
{
φ

(i)
T

}
and φ

(i)
T are the basis functions of the target mesh. Equation

(2.51) can be rewritten as,∫
Ω

2φ
(i)
T (qD − q)dV = 0, for all i ∈ 1,...,NT . (2.52)

The constant NT is the number of basis functions in the target mesh. Noticing that
q = qT it is easily verfied that the projection is conservative if the constant function

19

2.10. ROTATING MOTION CHAPTER 2. THEORY

1 is contained in φ
(i)
T for i ∈ 1,...,NT . If all components are written out the equations

become, ∫
Ω

ND∑
i=1

q
(i)
D φ

(i)
D φ

(k)
T dV =

∫
Ω

NT∑
j=1

q
(j)
D φ

(j)
D φ

(k)
T dV (2.53)

or in matrix form,
MT qT = MTDqD. (2.54)

The matrix MTD can be viewed as a mixed mass matrix between the meshes TD and TT ,
and problems can arise while assembling the matrix. To assemble MTD the products of
TD and TT have to be integrated, over each element TT the basis functions of TD can
be discontinuous. If the basis functions are evaluated at each of the quadrature points
of TT , the integral will not be exact as these methods are not specified for piecewise
polynomials. To solve this issue a supermesh is introduced, where the intersection of
the target and donor mesh elements define the mesh. On each of the new elements in
the supermesh, the donor and target basis functions are polynomials and quadrature
integration can be performed [19].

20

3
Software

In the observed open source CFD softwares, there are different ways of specifying a
simulation. In this section a view on the different ways of initializing a simulation is
made. Main focus will be put on SU2 which was integrated on the SimScale platform.
For the other solvers a brief overview will be given of the input structure.

3.1 OpenFOAM

In OpenFOAM a certain structure of the input files is expected. A case has to be set
up in a predestined manner which contains a minimum of three directories. A constant
folder and a system folder are needed. Also a time folder is needed, this is usually named
0, but can be named differently if 0 is not the starting time. There are also subfolders
and files that are contained in the mentioned folders, a few options are reviewed here.
The structure of an OpenFOAM case can be seen in figure 3.1.

21

3.1. OPENFOAM CHAPTER 3. SOFTWARE

Case

0 constantsystem

-U
-p
-nut
-T
-mut
-alphat

-RASProperties
-turbulenceProperties
-thermodynamicProperties
-thermophysicalProperties
-transportProperties
-dynamicMeshDict

-controlDict
-fvSchemes
-fvSolution
-fvOptions
-decomposeParDict
-topoSetDict

polyMesh

-boundary
-points
-faces
-neighbour
-owner

Figure 3.1: Case structure in OpenFOAM

3.1.1 0

This folder contains files with the initial conditions of the used variables. For laminar
incompressible Navier-Stokes equation only files containing the initial conditions of U
and p are needed. For turbulence models or compressible flow other variables will need
to be added as well.

Three entries have to be done for each variable file. The dimension of the variable
is assigned through dimensions in the file (for instance m/s for the velocity). The
internal field is assigned through internalField and the boundary field is given through
boundaryField [5].

3.1.2 system

This folder contains the specifications for the simulation. In the decomposeParDict file
the mesh is decomposed into an assigned number of parts for parallel simulations. The
topoSetDict creates sets in the mesh, which can be used to define areas with extra source
terms. For the fvOptions file extra source terms can be assigned to sets, such as done
for MRF in section 4.1.1. In controlDict the frequency of solution file outputs, run time,
time steps and Courant number are assigned [5].

22

3.1. OPENFOAM CHAPTER 3. SOFTWARE

3.1.2.1 fvSchemes

In the fvSchemes file the numerical discretization schemes for the different components
in the modeled equations are assigned. For time discretization the schemes shown in
table 3.1 are available. They are assigned under ddtSchemes in the fvSchemes file.

In the CrankNicholson case a blending function parameter ψ ∈ [0,1] can be chosen.

Euler First order, bounded, implicit

localEuler Local-time step, first order, bounded, implicit

CrankNicholson ψ Second order, bounded, implicit

backward Second order, implicit

steadyState No solving of time derivatives

Table 3.1: Time schemes

For ψ = 1, the normal Crank-Nicholson scheme is used, whereas if ψ = 0 is chosen it
corresponds to an Euler scheme [5].

Available interpolation schemes are given in table 3.2. These are assigned under
interpolationSchemes

linear Linear interpolation

cubicCorrection Cubic scheme

midPoint Linear interpolation with symmetric weighting

Table 3.2: Interpolation schemes

There are also upwind schemes that can be used for interpolation, but these are seldom
used except for convective terms.

Gradients can be discretized as seen in table 3.3 and are assigned under gradSchemes.
Interpolation schemes used for gradient calculations, are generally chosen to be a centered

Gauss <interpolationScheme> Second order, Gaussian integration

leastSquares Second order, least squares

fourth Fourth order, least squares

cellLimited <gradScheme> Cell limited version of one of the above schemes

faceLimited <gradScheme> Face limited version of one of the above schemes

Table 3.3: Gradient schemes

23

3.1. OPENFOAM CHAPTER 3. SOFTWARE

scheme such as linear or cubic interpolation. Upwind based interpolation is available but
seldom used for this purpose.

For discretization of divergence terms the schemes are presented in table 3.4 and
assigned under divSchemes. Other interpolation schemes than upwind based schemes can

upwind First order bounded

linearUpwind First/second order linear upwind scheme, bounded

QUICK First/second order bounded

TVD schemes First/second order bounded

SFCD Second order bounded

NVD schemes First/Second order bounded

Table 3.4: Divergence schemes

be used. For instance the centered schemes of table 3.2 are available for discretization,
but seldom used.

For laplacian terms an interpolation scheme is required for interpolation of diffusion
coefficients and also a surface normal gradient scheme for the surface gradient. As the
possible interpolation schemes already have been mentioned in table 3.2 only the surface
normal schemes are presented in table 3.5. The laplacian terms are assigned under
laplacianSchemes. The limited correction has to be assigned a value to φ ∈ [0,1], which
determines how much non-orthogonal correction is made.

corrected Explicit non-orthogonal correction

uncorrected No non-orthogonal correction

limited φ Limited non-orthogonal correction

bounded Bounded correction

fourth Fourth order

Table 3.5: Surface normal gradients for laplacian terms calculations

3.1.2.2 fvSolution

In this file the linear solvers for the sequential equations are assigned. Also the linear
solver tolerance and maximum number of iterations are assigned here. In OpenFOAM
the available linear solvers are preconditioned conjugate or bi-conjugate gradient solvers,
smooth solvers, generalized geometric-algebraic multi-grid (GAMG) solvers and also
diagonal solvers (for explicit systems).

24

3.2. SU2 CHAPTER 3. SOFTWARE

The conjugate gradient solvers can use the preconditioners diagonal-incomplete LU
(DILU for asymmetric systems), diagonal-incomplete Cholesky (DIC for symmetric sys-
tems), diagonal preconditioning and GAMG preconditioning.

Available smoothers are Gauss-Seidel and Diagonal incomplete-Cholesky (for sym-
metric matrices).

Under relaxation of the sequential equations can be set in this file, and if SIMPLE
or PISO algorithms are used settings for these can also be specified.

3.1.3 constant

This folder contains specifications for turbulence and fluid properties. Depending on
the solver chosen, different files need to be specified. For all solvers which calculate the
RANS equations, the file RASProperties determines the turbulence model used. The
type of turbulence model applied is determined in turbulenceProperties where either
LES, RAS or laminar model can be chosen. For incompressible solvers the file transport-
Properties determines the behavior of the kinematic viscosity ν. For the compressible
solver rhoCentralFoam temperature dependency is determined in the files thermodynam-
icProperties and thermophysicalProperties.

For dynamic mesh operations, the file dynamicMeshDict prescribes the conditions.
To use dynamic mesh operations specific solvers have to be used such as pimpleDyM-
Foam.

3.1.3.1 polyMesh

OpenFOAM uses a cell-centered control volume for its calculations. In the polyMesh
folder files are contained describing the mesh. These files include points, which contain
the points of the mesh. faces, which contain the faces of the cells. owner, that contains
what faces belong to a cell and neighbour which contains the information about the
connectivity between cells. Also the boundaries are given in the file boundary, here the
boundaries are assigned names and also of what type they are, such as empty, wall or
patch for instance [5].

3.2 SU2

3.2.1 Mesh file

SU2 uses its own mesh format .su2. This format is similar to the VTK format, and uses
the same notation for cells. It is also utilizes vertex-based control volumes. As SU2 has
the capability to either have a two dimensional or three dimensional mesh as input the
first thing specified in this mesh is NDIME, which can be set to either 2 or 3, depending
on the dimension of the specified problem.

To demonstrate this a unit square with two triangular elements is created with the
SU2 native format, as seen in figure 3.2.

25

3.2. SU2 CHAPTER 3. SOFTWARE

0 1

23

0

1

x

y

top

rightleft

bottom

Figure 3.2: Example mesh of SU2

Thus first line of the input file is,

%Problem dimension

NDIME= 2

Next the number of points and their coordinates are specified. First the total number of
points are specified in NPOIN, then the point coordinates are assigned in the following
fashion,

... ...

xi yi zi i

... ...

The index i indexes the points, the indexing starts from 0 and goes to NPOIN -1. If
the simulation is two dimensional the zi coordinate is left out. For our unit square this
would be the input.

%Number of points

NPOIN= 4

0.0 0.0 0

1.0 0.0 1

1.0 1.0 2

0.0 1.0 3

26

3.2. SU2 CHAPTER 3. SOFTWARE

To create the mesh, the points have to be connected together in elements. This is done
by following the VTK format, the following elements and their identifiers are shown here,

Element Type Identifier

Line 3

Triangle 5

Rectangle 9

Tetrahedral 10

Hexahedral 12

Wedge 13

Pyramid 14

In the example mesh, the square is divided into two triangles. Thus two elements are
present in this mesh, which is assigned to the variable NELEM. This is demonstrated
in the example mesh by,

%Elements

NELEM= 2

5 0 1 3

5 1 2 3

As the mesh also consists of boundaries, these have to be defined as well. The number of
boundaries in the mesh are prescribed to NMARK. The boundaries are defined by tag
names in MARKER TAG and the number of elements in a boundary are prescribed
by MARKER ELEM. In the example case the squares boundaries are named left,
right, top and bottom.

%Boundaries

NMARK= 4

MARKER_TAG= top

MARKER_ELEM= 1

3 2 3

MARKER_TAG= bottom

MARKER_ELEM= 1

3 0 1

MARKER_TAG= left

MARKER_ELEM= 1

3 0 3

MARKER_TAG= right

MARKER_ELEM= 1

3 1 2

27

3.2. SU2 CHAPTER 3. SOFTWARE

3.2.2 Configuration file

To assign solvers, specify boundary conditions and other conditions necessary for a sim-
ulation, the correct options have to be set in SU2’s configuration file .cfg. In SU2 most
specifications are already assigned by default. In the configuration file these default val-
ues can be changed. As the integration of SU2 on the SimScale platform is intended for
Compressible Navier-Stokes equation only the settings which cover this subject will be
touched upon here.

3.2.2.1 Time discretization

Discretization in time is either done implicitly or explicitly. In SU2 time is discretized
in one of the following ways [20].

Euler First order, explicit

Euler implicit First order, bounded, implicit

Runge-Kutta Up to 4th order, either explicit or implicit

To set the time discretization the command TIME DISCRE FLOW is changed in the
configuration file, by default a Runge-Kutta scheme is applied for the flow. Also relevant
for the time stepping is the Courant-Friedrichs-Lewy (CFL) number, this time stepping
constraint is easily changed in SU2, when changing the command CFL NUMBER.
For steady simulations the CFL number is set to 1.2 by default. Furthermore for steady
simulations local time stepping is implemented and regulated by the CFL number.

3.2.2.2 Viscous terms discretization

The gradients of the flow variables can be calculated using a Green-Gauss method or a
least squares method, at the cell nodes. By default a Green-Gauss method is chosen. The
variable for determining the way gradients are calculated is NUM METHOD GRAD [20].

The gradients are then calculated to the cell faces by either averaging or corrected
averaging of the gradients at the nodes. The gradient at the cell faces can also be
calculated by a Galerkin method. The way this is done is determined by the command
VISC NUM METHOD FLOW in the configuration file.

3.2.2.3 Convective terms discretization

For the convective terms a lot of options are available in SU2. The command
CONV NUM METHOD FLOW determines the way the convective terms are dis-
cretized. The available schemes for the convective terms are,

28

3.3. GERRIS CHAPTER 3. SOFTWARE

Roe-1st order First order in space, upwind scheme

Roe-2nd order Second order in space, MUSCL scheme with slope limiter

Lax-Friedrich First order in space, centered scheme

Jameson-Schmidt-Turkel (JST) First order in space, centered scheme

HLLC 1st and 2nd order First/Second order in space, approximate Riemann solver

with slope limiter

AUSM 1st and 2nd order First/Second order in space, approximate Riemann solver

with slope limiter

Available slope limiters for for the schemes are Venkatakrishnan, Bartha and Minmod
limiters.

3.2.2.4 Linear solvers

As the system of equations are not symmetric in SU2, a non-symmetric linear solver
has to be chosen. The available linear solvers in SU2 for flow calculations are LU-SGS,
BiCGSTAB and GMRES. Also Newton, quasi-Newton and steepest decent methods
are available but not recommended for flow calculations. For acceleration techniques
multigrid is available, and preconditioners like Jacobi or Linelet preconditioners. By
default LU-SGS is chosen as the linear solver and Jacobi as the preconditioner [20].

3.2.2.5 Convergence criterion

Either a residual reduction criterion is enforced, where the maximum residual in the
domain is reduced by a set order of magnitude. Or a Cauchy convergence criterion can
be enforced, where a chosen calculated value (such as CD or CL) is summed up over an
assigned number of time steps and its change evaluated against the assigned convergence
tolerance [20].

3.3 Gerris

This software uses an octree-grid mesh for its calculations. As Gerris produces its own
mesh either an analytical expression of a geometry or a geometry file needs to be pro-
vided. The provided geometry file needs to be of the type .gts. There are tools such
as stl2gts which can convert standard geometry files into this format. The input file is
denoted as a .gfs file.

First the type of simulation is determined in the input file. For incompressible Navier-
Stokes two possible simulation types are available. For non moving meshes the GfsSim-
ulation is used and for moving meshes the GfsMovingSimulation is used. As these sim-
ulation types by default are solving the incompressible Euler equations (inviscid flow), a

29

3.3. GERRIS CHAPTER 3. SOFTWARE

kinematic viscosity has to be added by using GfsSourceViscosity. If need be, the viscosity
can be dependent on a scalar tracer quantity (such as temperature).

The calculated domain is bounded within boxes of size unity, which can be scaled but
have to remain cubical in shape. The syntax for initializing the computational domain
for GfsSimulation or GfsMovingSimulation is to prescribe the number of GfsBox the
domain consists of and the number of GfsEdge which connect the boxes. Boundary
conditions are applied on the faces of the boxes or on surfaces specified analytically
through GfsSurfaceBc [4].

In appendix A.1.3 a rotating cylinder case can be viewed as an example.

30

4
Results

4.1 Rotating Taylor-Couette

Two dimensional Taylor-Couette flow is chosen as a validating flow as there exists an
analytical solution for this flow. For a short derivation of the analytical flow see appendix
A.1. For the validation cases the inner radius of the two cylinders was chosen to r1 =
0.35 [m] and the outer cylinder was chosen to r2 = 1.0 [m]. The angular velocity of
the inner cylinder was chosen to ω = 0.001 [rad/s], which translates to a velocity of
uθ = 0.00035 [m/s]. The angular velocity of the outer cylinder is set to ω = 0 [rad/s].
These values are purposely set low as to make certain that the flow stays laminar.

This validation is carried out to find the work flow needed for integration to the
SimScale platform and also validating the effectiveness of different rotational methods.
Only methods that are applicable for arbitrary rotating bodies are used. Three different
ways of calculating this simple case are proposed. Two ways in OpenFOAM are provided,
one using simpleFoam with MRF and one using pimpleDyMFoam with AMI. This case
was also done with Gerris to provide a comparison with OpenFOAM. As a possible
integration to the SimScale platform is investigated of the rotating capabilities, the
creation and setup of the simulations are displayed more thoroughly than for the other
validations.

4.1.1 OpenFOAM - MRF

Using the Multiple Reference Frame capability from OpenFOAM, the case was set up.
A cylinder of radius 0.4 [m] was specified using OpenFOAM’s topoSetDict, inside which
the rotating reference frame will be calculated.

31

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

4.1.1.1 Case creation

A mesh is created using Salome (version 7.2.0), with Netgen-2D settings Max. Size:
0.01, Min. Size: 0.001, Growth Rate: 0.1. After performing an extrusion on the mesh,
a fine mesh as seen in figure 4.1 is generated. Faces are named in Salome in accordance
with the boundaries. The mesh is exported from Salome into UNV format. To create
an OpenFOAM case the ideasUnvToFoam tool provided in OpenFOAM can be used.
If the OpenFOAM case name is MRF-OF-case and the produced mesh from Salome is
MRF-Salome.unv a way to initialize the mesh in OpenFOAM would be,

$ ideasUnvToFoam -case MRF-OF-case MRF-Salome.unv

Figure 4.1: Mesh created by Salome

To use MRF in OpenFOAM cellZones have to be created to distinguish where different
reference frames are used. In this case a cylinder around the smaller cylinder is defined to
have a rotating reference frame. This is done using system/topoSetDict in the following
way,

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object topoSetDict;

}

// * //

32

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

actions

(

{

name rotorCellSet;

type cellSet;

action new;

source cylinderToCell;

sourceInfo

{

p1 (0 0 -1);

p2 (0 0 1);

radius 0.4;

}

}

{

name rotor;

type cellZoneSet;

action new;

source setToCellZone;

sourceInfo

{

set rotorCellSet;

}

}

);

To assign what reference frame is used inside this cellZone (called rotor) the file sys-
tem/fvOptions is used. In the demonstrated case, it is the following.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvOptions;

}

// * //

MRF1

{

type MRFSource;

active yes;

selectionMode cellZone;

33

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

cellZone rotor;

MRFSourceCoeffs

{

nonRotatingPatches ();

origin (0 0 0);

axis (0 0 1);

omega constant 1E-3;

}

}

Wall boundary conditions are assigned to the cylinders. As this is an incompressible
simulation, only U and p have to be initialized and given boundary conditions. No slip
boundary conditions are assigned for the velocity on the walls and zero gradient boundary
conditions for the pressure on the walls. The viscosity is set to ν = 10−5 [m2/s], which
gives a Reynolds number of Re = uθ1(r2 − r1)/ν = 22.75. In appendix A.1.1, the
files system/fvSchemes and system/fvSolution can be viewed, to see the schemes and
discretizations used for the case. The case is ready to be run by typing the following
into the terminal.

$ topoSet

$ simpleFoam

4.1.1.2 Results

Results are sampled along the line y = 0, x ∈ [0.35,1] and the y-component of the
velocity is plotted as uθ. After sufficient convergence has been reached the velocity
profile is found to be a good match as seen in figure 4.2. A more detailed look is given
by the relative error of the velocity. The relative velocity error is given in equation (4.1)
as

uθ,rel =

∣∣∣∣uθ,simulation − uθ,analyticaluθ,analytical

∣∣∣∣ . (4.1)

This is seen in figure 4.3.

34

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.4 0.5 0.6 0.7 0.8 0.9 1

U
θ
 [

m
/s

]

r [m]

SimpleFOAM
Analytical

Figure 4.2: Velocity plot compared to analytical solution

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti
v
e

 e
rr

o
r

v
e

lo
c
it
y
 [

]

r [m]

Error

Figure 4.3: Relative error of the velocity

As can be seen in figure 4.4, the pressure profile is in good agreement but with a small
offset close to the outer cylinder. The residuals are given in figure 4.5, which are of the
order of magnitude 10−11 and are deemed as sufficiently small.

35

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

-0.00000004

-0.00000004

-0.00000003

-0.00000003

-0.00000002

-0.00000002

-0.00000001

-0.00000001

0.00000000

0.00000000

 0.4 0.5 0.6 0.7 0.8 0.9 1

p
 [

m
2
/s

2
]

r [m]

SimpleFOAM
Analytical

Figure 4.4: Relative error of the velocity

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10000 20000 30000 40000 50000 60000 70000

R
e

s
id

u
a

l

Iterations

pressure residual
Ux residual
Uy residual

Figure 4.5: Residual plot

4.1.2 OpenFOAM - AMI

An arbitrary mesh interface approach was also done in OpenFOAM. This method is less
straight forward than the MRF approach, as two seperate meshes are created with an
AMI surface connecting them. It is advantageous as the mesh is moving with time and
is the only choice for unsteady simulations.

36

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

4.1.2.1 Case creation

As in section 4.1.1.1 the meshes are created in Salome with the same mesh creation
settings. However for AMI, two meshes are needed as output from Salome. An inner
mesh from the AMI surface to the inner rotating cylinder, and an outer mesh from the
AMI surface to the stationary outer cylinder.

The AMI surface was set at two different radii to compare the effects on the solution.
The two radii chosen to place the AMI surface were set at r = 0.4 [m] and r = 0.5 [m].
The mesh files are exported from Salome as UNV and will be denoted InnerAMI.unv for
the inner mesh and OuterAMI.unv for the outer mesh.

First the UNV-meshes are transformed into OpenFOAM cases by the ideasUnvTo-
Foam tool.

$ ideasUnvToFoam -case InnerAMI-OF-Case InnerAMI.unv

$ ideasUnvToFoam -case OuterAMI-OF-Case OuterAMI.unv

Rename the boundaries so that none of the boundaries in the two OpenFOAM cases
share the same name, as this will lead to problems when merging the meshes. Merge the
meshes once this is made sure with the following commands in.

$ mergeMeshes -overwrite OuterAMI-OF-Case InnerAMI-OF-Case

$ mv OuterAMI-OF-Case AMI-OF-Case

This overwrites the OuterAMI-OF-Case case with the merged meshes. Often the non
rotating mesh is written first (in this case the OuterAMI-OF-Case). This will assign the
mesh of OuterAMI-OF-Case to a cellZone named region0, and the mesh of InnerAMI-
OF-Case will be assigned to a cellZone named region1 in the merged mesh. The second
command renames the OpenFOAM case to AMI-OF-Case instead.

Enter the AMI-OF-Case and rename the AMI surfaces (the surfaces neighboring each
other in the original meshes) to the form AMI*, for instance AMI-inner for the inner
surface and AMI-outer for the outer surface. No other boundaries may be named this
way as this will lead to errors when creating the faceSet for the AMI surface.

Next create a constant/dynamicMeshDict to prescribe the movement of the inner
mesh. The following constant/dynamicMeshDict was created for the Taylor-Couette
case.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object dynamicMeshDict;

}

// * //

37

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

dynamicFvMesh solidBodyMotionFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solidBodyMotionFvMeshCoeffs

{

cellZone region1;

solidBodyMotionFunction rotatingMotion;

rotatingMotionCoeffs

{

CofG (0 0 0.05);

radialVelocity (0 0 0.0572957795131); // deg/s

}

}

Next create a topoSetDict to assign a faceSet to the AMI surface between the two merged
meshes. The faceSet is needed for the boundary conditions assigned later.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object topoSetDict;

}

// * //

actions

(

{

name AMI;

type faceSet;

action new;

source patchToFace;

sourceInfo

{

name "AMI.*";

}

}

);

The boundaries of the AMI surfaces have to be changed. This is done in the file con-
stant/polyMesh/boundary. The exported boundaries from Salome will be of the form,

38

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

AMI-outer

{

type patch;

nFaces 314;

startFace 183461;

}

which have to be changed into this form,

AMI-outer

{

type cyclicAMI;

nFaces 314;

startFace 183461;

matchTolerance 0.0001;

neighbourPatch AMI_inner;

transform noOrdering;

}

The same is done for the AMI-inner boundary.
Assuming that the starting time is 0, the initial conditions also have to be changed for

the AMI surfaces. Assign in the U and p files in the 0 directory the following boundary
conditions for the AMI surfaces.

AMI-outer

{

type cyclicAMI;

value $internalField;

}

The inner cylinder boundary is assigned a movingWallVelocity type boundary condition
and for the pressure a zeroGradient boundary condition. For the outer wall a fixedValue
condition is applied for the velocity and also a zeroGradient boundary condition is set
for the pressure. A uniform 0 velocity and pressure field are used as initial conditions.

With these steps the Taylor-Couette case can now be run with AMI. Start the sim-
ulation by typing in the terminal,

$ topoSet

$ pimpleDyMFoam

4.1.2.2 Results

After T = 50000 [s], which is roughly equivalent to 8 complete revolutions of the inner
cylinder, the unsteady simulation is deemed to have reached steady state. The relative
error for the velocity is shown in figure 4.6. As can be seen, the solutions are reasonably
converged with only an error of ∼ 1% compared to the analytical solution. Both solutions
have the largest error close to the stationary wall.

39

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti
v
e

 e
rr

o
r

v
e

lo
c
it
y
 [

]

r [m]

Error

(a) rAMI = 0.4

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti
v
e

 e
rr

o
r

v
e

lo
c
it
y
 [

]

r [m]

Error

(b) rAMI = 0.5

Figure 4.6: Relative velocity error for (a) AMI surface at r=0.4, (b) AMI surface at r=0.5

For the pressure a rather large offset to the analytical solution is found for both AMI
radii, as seen in figure 4.7. Also the influence of where the AMI surface is located seems
to influence the solution accuracy. Outside the rotating zone, the pressure offset seems
to be constant, thus the pressure solution inside the rotating zone might be introducing
an offset compared to the analytical solution.

40

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

-0.00000004

-0.00000004

-0.00000003

-0.00000003

-0.00000002

-0.00000002

-0.00000001

-0.00000001

0.00000000

 0.4 0.5 0.6 0.7 0.8 0.9 1

p
 [

m
2
/s

2
]

r [m]

PimpleDyMFoam
Analytical

(a) rAMI = 0.4

-0.00000004

-0.00000003

-0.00000003

-0.00000002

-0.00000002

-0.00000001

-0.00000001

0.00000000

0.00000000

 0.4 0.5 0.6 0.7 0.8 0.9 1

p
 [

m
2
/s

2
]

r [m]

PimpleDyMFoam
Analytical

(b) rAMI = 0.5

Figure 4.7: Axial pressure for (a) AMI surface at r=0.4, (b) AMI surface at r=0.5

In appendix A.1.2 the schemes and the methods of discretization can be viewed.

4.1.3 Gerris

The case was also conducted in Gerris as to determine the moving mesh capability of the
solver. Gerris does not use AMI or MRF to produce rotating cases, but instead moves
the mesh and utilizes adaptive mesh refinement around the body.

41

4.1. ROTATING TAYLOR-COUETTE CHAPTER 4. RESULTS

4.1.3.1 Case creation

Creating the case in Gerris is a simple procedure. As the following case is a GfsMov-
ingSimulation, a geometry file for the rotating cylinder is needed. Using the following
command line in the terminal a cylinder with radius 0.25 is created.

$ shapes ellipse > cylinder.gts

Two cylinders are then prescribed in Gerris by the command,

SolidMoving cylinder.gts {scale = 1.4} {level = 10}

Solid (ellipse (0,0,1.0,1.0)) {flip = 1}

where the flip command is necessary for the solver to realize the flow is internal and the
scale command scales the rotating cylinder to the correct size. As the incompressible
Navier-Stokes equations are solved a viscosity has to be prescribed. A constant viscosity
is given through,

SourceViscosity {} 1e-5

To rotate only the inner cylinder, the SurfaceBc command can be used in the following
way,

SurfaceBc U Dirichlet (x*x + y*y > 0.4*0.4 ? 0. : - 1e-3*y)

SurfaceBc V Dirichlet (x*x + y*y > 0.4*0.4 ? 0. : 1e-3*x)

A Godunov scheme is used to calculate the convective terms. The refinement level
of the mesh is increased around the moving solid boundary. With these settings the
Taylor-Couette case is set up. See appendix A.1.3 for the full configuration file.

4.1.3.2 Results

After T = 50000s the velocity has converged close to the analytical solution except at the
node closest to the stationary wall, as can be seen in figure 4.8. A maximum deviation of
2% from the analytical solution was registered, except at the stationary node which had
a deviation of almost 90%. For the pressure a reasonably good convergence is registered,
as can be seen in figure 4.9.

42

4.2. TURBULENT FLAT PLATE CHAPTER 4. RESULTS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti
v
e

 v
e

lo
c
it
y
 e

rr
o

r
[]

r [m]

Relative error

Figure 4.8: Relative velocity error

-0.00000017

-0.00000017

-0.00000016

-0.00000015

-0.00000015

-0.00000014

-0.00000014

-0.00000013

-0.00000013

-0.00000012

 0.4 0.5 0.6 0.7 0.8 0.9 1

p
 [

m
2
/s

2
]

r [m]

Gerris
Analytical

Figure 4.9: Pressure profile

4.2 Turbulent flat plate

A turbulent flat plate was chosen to validated the turbulent incompressible capabilities
of OpenFOAM and SU2. Unfortunately, in SU2 the incompressible solver was deemed
unstable and thus the case was calculated with the compressible solver of SU2. This is
expected to improve the results for the SU2 solver as this case is a compressible case.
The case set up can be seen in figure 4.10.

43

4.2. TURBULENT FLAT PLATE CHAPTER 4. RESULTS

inlet outlet

symmetry
flat plate

outfield

Figure 4.10: Turbulent flat plate

The flat plate is 5 m long in x-direction and the symmetry boundary is 0.5 m long. The
height of the simulated area is taken to be 0.8m high in y-direction. From Wieghardt [1]
the inlet conditions are, M = 0.2, P = 101325 [Pa] and T = 294.44 [K]. The used fluid
is air.

4.2.1 OpenFOAM setup

For the OpenFOAM case an incompressible approach is taken. Thus the pressure and
temperature are not of importance. The case is calculated using a k − ω SST turbu-
lence model. Symmetry boundary conditions are applied at the outfield and symmetry
boundaries. For the pressure, zero gradient boundary condition is applied on the flat
plate and inlet, and for the outlet a Dirichlet boundary is enforced and set to 0. For the
velocity zero gradient condition is set at the outlet and no slip boundary condition at
the flat plate. As for the inlet boundary condition a Mach number of 0.2 is equivalent to
68.8 [m/s]. For the turbulent variables k and ω, OpenFOAM wall functions are applied
at the flat plate. For ω the omegaWallFunction is used and for k the wall function
kqRWallFunction is applied. For the turbulent viscosity νt a wall function is also applied
through nutkWallFunction.

For the turbulent variables inlet conditions the turbulent kinetic energy k, can be
deduced from [6],

k = 3/2(UI)2. (4.2)

The variable I is the turbulent intensity. In this simulation it is chosen to I = 0.05.
Thus in this case the inlet condition is k = 17.75 [m2/s2]. For ω a mixing length of
approximately l ≈ 0.085 [m] is taken by choice, which gives the inlet condition for ω
from,

ω = C−1/4
µ

√
k

l
. (4.3)

The constant is Cµ = 0.09.

44

4.2. TURBULENT FLAT PLATE CHAPTER 4. RESULTS

4.2.2 SU2 setup

In SU2 a compressible approach is done. The Mach number and temperature are assigned
to the free stream values. The free stream Reynolds number is set to Re = 4.5 ·106. The
flat plate is given a no slip boundary condition. For the inlet a total temperature and
total pressure are assigned. These are calculated as,

TTotal =Ts

(
1 +

γ − 1

2
M2

)
PTotal =ps

(
1 +

1

2
γM2

)
(4.4)

where ps is the static pressure and Ts is the stagnation temperature. The ratio of specific
heats is assigned as γ = 1.4. For turbulence modeling the SA model is chosen. Attempts
were made with the k−ω SST model but unfortunately no converging configuration was
found.

4.2.3 Mesh

The mesh is created using OpenFOAM’s blockMesh tool. The mesh was given 260 cells
in the x-direction. 70 of these cells are placed from the inlet until the start of the flat
plate, and the rest is distributed over the flat plate. The cells decrease the closer they
are the point separating the symmetry boundary condition and the flat plate. In the
y-direction 180 cells are distributed with decreased size the closer they are to the flat
plate.

4.2.4 Results

With the 260×180 mesh the following results for the skin friction coefficient Cf was cal-
culated and compared to experimental results. The skin friction coefficient is calculated
from,

Cf =
τw

1
2ρU∞

(4.5)

where τw is the wall shear stress, ρ is the density and U∞ is the free stream velocity [21].
From the simulations the friction coefficients are calculated and shown in figure 4.11.
To evaluate the quality of the mesh a plot of y+ over the flat plate is conducted for the
OpenFOAM case, as seen in figure 4.12.

45

4.2. TURBULENT FLAT PLATE CHAPTER 4. RESULTS

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 1 2 3 4 5

C
f
[]

x [m]

Experimental
SU2 SA-model
OF SimpleFoam k-ω SST

Figure 4.11: Skin friction coefficient

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 1 2 3 4 5

y
+

 [
-]

x [m]

y+

Figure 4.12: y+ plot from OpenFOAM

Residuals for both the OpenFOAM and SU2 case can be seen in figure 4.13. It should
be noted that the residual axis of SU2 is logarithmic. And as can be seen the residuals
are reduced to a reasonably low level.

46

4.2. TURBULENT FLAT PLATE CHAPTER 4. RESULTS

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
e

s
id

u
a

l

Iterations

p residual
Ux residual
Uy residual
ω residual
k residual

(a) OpenFOAM residuals

-8

-6

-4

-2

 0

 2

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
e

s
id

u
a

l

Iterations

ρ residual
ρv1 residual
ρv2 residual
ρE residual

ν
~
 residual

(b) SU2 residuals

Figure 4.13: Residuals of turbulent flat plate simulation

47

4.3. RAE2822 CHAPTER 4. RESULTS

4.3 RAE2822

An investigation of the compressible capabilities of OpenFOAM and SU2 were also con-
ducted. The case set up can be seen in figure 4.14.

c

x

y

inletoutlet

top

bottom

Figure 4.14: RAE2822 case

The calculated airfoil is a RAE2822 with a chord length c = 0.3048 [m]. The airfoil
resides in a free stream where the Mach number is M = 0.729, the static pressure
P∞ = 108987 [Pa], a temperature of T∞ = 255.55 [K] and an angle of attack α = 2.39◦.
Air is used as a medium and given the already mentioned data. Given the data the
density in the free stream and the dynamic viscosity can be calculated. From the ideal
gas law the density follows from,

ρ∞ =
P∞

RspecificT∞
(4.6)

where Rspecific = 287.87 [J/kg·K] for air. This gives the free stream a density of
ρ∞ = 1.4857 [kg/m3]. As for the dynamic viscosity µ, Sutherland’s law is used as
in equation (2.20), which gives a value for the free stream dynamic viscosity of µ =
3.46126 · 10−6 [kg/(m·s)].

The mesh for this case is done by blockMesh created by Daniele Trimarchi from
Southampton University. The mesh is spanned in the y-direction by [−1.5,1.5] and in
the x-direction by [−3.0,1.5]. Notice that the flow in this configuration is in the negative
x-direction. For the SU2 case the mesh was modified to achieve a lower y+-value (y+ ≈ 5)
as well, due to the fact that the utilized version of SU2 (version 2.0.8) does not have wall
functions implemented. Also, as convergence was unable to be found for SU2 with the
created blockMesh, the provided plot3D mesh from [2] was converted into SU2 to test
whether convergence could be achieved with this mesh.

For the boundary conditions a free stream boundary condition is applied to all bound-
aries except the airfoil which has a no-slip boundary condition in SU2.

48

4.3. RAE2822 CHAPTER 4. RESULTS

In OpenFOAM a wave transmissive condition is applied at the outlet for the pressure
and zero gradient boundary conditions are applied elsewhere. For the velocity a free
stream boundary conditions is applied everywhere except at the wing where no-slip is
enforced. Temperature is set as uniform T = 255.55K at the inlet and zero gradient
conditions are enforced on all other boundaries. As for turbulence the SA-model is used
in both OpenFOAM and SU2. Inlet conditions for the variable ν̃ is set according to the
source code from SU2 which is,

ν̃∞ = 3
µ∞
ρ∞

. (4.7)

In OpenFOAM the same parameters for the Sutherland’s law is in SU2 are used to
calculate the temperature dependency of µdyn.
Measurements are made of the negative pressure coefficient,

CP = − p− p∞1
2ρ∞u

2
∞

(4.8)

and are compared to experimental data provided at [2].

4.3.1 Results

As the solver rhoCentralFoam is unsteady, steady state is assumed to be reached after
0.25 [s] which is roughly 13 times the required time for the free stream to pass through the
domain. In figure 4.15 the results obtained using rhoCentralFoam can be seen, note that
the chord length has been normalized in these plots. Results in SU2 are more difficult

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

C
P

x [m]

rhoCentralFoam
Experimental

Figure 4.15: CP from rhoCentralFoam

to demonstrate as the solution diverges when seemingly close to convergence. Different
configurations were attempted to find a converging solution, unfortunately, none was

49

4.3. RAE2822 CHAPTER 4. RESULTS

found during the duration of this thesis work. Demonstrated here is a JST solver with
CFL = 0.8 at quasi time step t = 3500 using the converted mesh from NASA [2]. The
pressure coefficient is close to convergence as seen in figure 4.16 but as can be seen from
the residual plot in figure 4.17 it diverges shortly after.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

C
P

x [m]

SU
2
 SA-model

Experimental

Figure 4.16: CP right before divergence for SU2 with NASA mesh

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

R
e

s
id

u
a

l

Iterations

ρ residual
ρv1 residual
ρv2 residual
ρE residual

ν
~
 residual

Figure 4.17: Residuals for SU2 with NASA mesh

Also the mesh created from blockMesh in OpenFOAM had convergence issues. Another
simulation utilizing a JST algorithm is shown here at quasi time step t = 6500. A Roe

50

4.3. RAE2822 CHAPTER 4. RESULTS

2nd order solver was also attempted, but was also unable to produce convergence. In
figure 4.18 the pressure coefficient can be viewed right before divergence and in figure
4.19 the residuals can be viewed.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

C
P

x [m]

SU
2
 SA-model

Experimental

Figure 4.18: CP right before divergence for SU2 with OpenFOAM mesh

-8

-6

-4

-2

 0

 2

 4

 0 1000 2000 3000 4000 5000 6000 7000

R
e

s
id

u
a

l

Iterations

ρ residual
ρv1 residual
ρv2 residual
ρE residual

ν
~
 residual

Figure 4.19: Residuals for SU2 with OpenFOAM mesh

51

4.4. INTEGRATION OF SU2 CHAPTER 4. RESULTS

4.4 Integration of SU2

The stable SU2 version 2.0 was integrated on the SimScale platform. An inviscid and a
viscid compressible fluid solver are provided for the customer. After creating a suitable
mesh on the platform, SU2 can be chosen in the Analysis type menu, as can be seen in
figure 4.20.

The boundary conditions implemented for SU2 was chosen to be a farfield BC
(Boundary Condition), symmetry BC, inlet BC, outlet BC and a Navier-Stokes BC
(no-slip) for the viscid solver and a Euler BC (slip) for the inviscid solver.

Fluid properties can be assigned under the Simulation Model Properties. Here fluid
specific properties such as the isentropic exponent (γ), the specific gas constant R and
the laminar and turbulent Prandtl numbers are assigned. Also freestream properties such
as the Mach number, Reynolds number, pressure and temperature are prescribed here.
The kinematic viscosity is given from the assigned Reynolds number and the density
calculated using the kinematic viscosity calculated from the Sutherland’s law.

SU2 contains a variety of numerical schemes and solvers, these are prescribed under
Numerics, as can be seen in figure 4.21. The convergence criteria can be chosen as
either a Cauchy criterion or the reduction of the maximum residual to a certain level.
For the 2.0 version the only available turbulence model is the SA-model, thus only this
turbulence model is available on the platform. For the discretized equations a linear
solver is chosen here, two Krylov based solvers (GMRES and BCGSTAB) are provided
in SU2 and one stationary iterative solver (LU-SGS).

A converter of the user provided input data from the platform was written to create
a SU2 configuration file. The exact procedure can not be disclosed due to trademark
secrets.

52

4.4. INTEGRATION OF SU2 CHAPTER 4. RESULTS

Figure 4.20: Available solvers for SU2

53

4.4. INTEGRATION OF SU2 CHAPTER 4. RESULTS

Figure 4.21: Available numerical schemes for SU2

54

5
Conclusions and prospects

The rotating Taylor-Couette validation showed different methods of simulating rotating
bodies. What can be observed is that the MRF approach in OpenFOAM gave the best
results. This might be expected from a simple geometry as a cylinder and the fact that
the flow is steady.

As the approaches using AMI and Gerris are unsteady, steady state might not have
been reached after 8 revolution of the inner cylinder. But the velocities seem to have
reached reasonably close to the analytical solution. For the velocity the AMI solution
is actually closer to the analytical one than the MRF or Gerris simulations. For all
simulations, the stationary outer cylinder is the most difficult to simulate, as here the
largest relative error to the analytical solution is observed. This can be attributed to the
near zero velocity at the walls, which is a demanding criterion for the numerical solution
to fulfill. Thus the data point closest to the stationary wall should not be put too much
emphasize on.

For the pressure the AMI simulation had a large offset compared to the analytical
solution. This is not noted for the Gerris and MRF simulations which produce reasonably
accurate results. The explanation to this offset could be the mesh, as AMI might require a
finer mesh due to its more advanced algorithm than MRF. However for the incompressible
case, the convergence of the pressure equation is not of importance as the aim is to solve
the continuity equation and the Navier-Stokes equation.

Gerris produced good results with only ∼ 2% offset compared to the analytical veloc-
ity (except at the stationary wall). For this case the performance of the unsteady solver
was better, compared to the AMI approach of OpenFOAM. However, the mesh quality
between the two solvers cases can not be compared, so it is difficult to say whether
one or the other had a significant better mesh. Furthermore, Gerris does not support
turbulence models, and thus needs to resolve all turbulent scales through adaptive mesh
refinement. This effects simulation time for complex rotating geometries with turbulence,
and utilizing AMI from OpenFOAM has an advantage here. Also as Gerris is strictly an

55

CHAPTER 5. CONCLUSIONS AND PROSPECTS

incompressible solver, compressible cases can not be set up. This can be done in Open-
FOAM with for instance rhoPimpleDyMFoam or rhoCentralDyMFoam. The strength of
Gerris over OpenFOAM for the rotating cases is the ease with which it is set up, and
for simpler cases not much extra computational time is needed for the simulation.

To integrate rotating body capability on the SimScale platform, new user features
would have to be implemented. For MRF, the user has to chose a volume to create a
cell set in which the rotating frame is specified. A variety of shapes can be used for this
but the most suitable might be the use of a cylinder. Rotation has to be prescribed in
the fvOptions file where the origin and the axis of rotation are needed to be specified,
which is not that difficult to achieve.

For the AMI approach in OpenFOAM a more tedious work flow is needed to set
up a simulation. As a sliding interface is needed between two meshes, two separate
meshes have to be created. When the geometry is created a surface has to be added
which separates the geometry into an inner rotating geometry and an outer stationary
geometry. The inner and outer geometries have to be meshed separately and the meshes
have to be transformed into OpenFOAM cases. Boundary conditions will have to be
changed and boundaries renamed, this will require some clever scripting to implement
on the platform. The work flow is manageable to extend to the platform, but will require
more work than for the MRF case.

For the Gerris solver the import of a geometry object, in the .gts format, is needed
if the object is to be rotated. The tool stl2gts can be used to convert a STL geometry
file into the correct format. Surface boundary conditions are applied with an analytical
expression on the objects boundaries and so a rotating motion can be achieved. The issue
with Gerris is the requirement that the computational domain needs to be enclosed in
(scalable) unit squares. For external flows this is not an issue, but for internal flows, with
complex outflows, difficulties arise when trying to apply the correct boundary conditions
onto boundaries.

For the implementation of rotating bodies on the SimScale platform, a natural step
forward would be to integrate the MRF capability of OpenFOAM. This would only
require that a user can specify a volume where to apply the MRF region. As MRF
is only suitable for steady state simulations, AMI would need to be implemented at
some point. This is not as straight forward to implement as MRF, but is possible to
implement with some new meshing tools. As for Gerris, a complete new work flow is
needed to handle this solver on the platform. From a platform perspective to implement
Gerris solely for its capabilities for rotating bodies is not feasible. However, Gerris as a
software is a flexible and easy to use tool for CFD calculations, it would be recommended
to integrate this solver at some point in the future.

The turbulent flat plate case was set up to test the turbulence models of the different
solvers. In OpenFOAM the simulation was calculated as incompressible unlike SU2 which
is calculated as compressible. This would suggest that SU2 would perform better than
OpenFOAM as the case is compressible, but incompressible simulations give almost the
same result. For OpenFOAM a k−ω SST model was chosen, which was attempted to use
as well for SU2, but a converging solution was only achieved for the SA-model. The skin

56

CHAPTER 5. CONCLUSIONS AND PROSPECTS

friction coefficient, from experimental data, was approximated well in the OpenFOAM
case, whereas a noticeable offset is noted in the converged SU2 solution. As no wall
functions are implemented in SU2 at this time, a low enough y+ value is needed, this
is confirmed to be the case from figure 4.12. As the SA-model is used, it is expected
to perform worse than the k − ω SST model. But it would seem as if the offset is too
large to only be explained by the turbulence model. There might be some convergence
issues with SU2, as it was difficult to set up the case incompressible or with a k − ω
SST turbulence model, more investigation will have to be put into this. Also it has to
be taken into consideration that SU2 is still under heavy development, and performance
can vary greatly between versions.

For the compressible flow validation a transonic airfoil (RAE2822) was investigated.
The OpenFOAM case, using rhoCentralFoam, give the pressure coefficient profile as can
be seen in figure 4.15. It seems as if the shock is overpredicted and smeared out, this
can be explained by the fact that a linear upwind method was used for the discretization
of the divergence terms. A TVD scheme should be used to achieve better result for this
case.

The SU2 cases show initially good convergence and seem from the residuals to be
heading for convergence, before abruptly diverging. The mesh created with blockMesh
seem to have larger convergence issues than the mesh taken from NASA. But both
diverge while being close to convergence. Both a central scheme (JST) and a Riemann
approximative solver (Roe method) were applied to the problem, but both failed to reach
convergence. The case, as it contains shocks is expected to be numerically unstable.
However as the divergence is occurring so abruptly in the simulation, there might be
some convergence issues in the steady state algorithm of SU2. However there is too little
data to draw a conclusion from this limited data set, and more set up variations could be
tested for the airfoil. Especially interesting would be to find convergence with the NASA
mesh as this could be directly compared to the results achieved from CFL3D (NASA’s
CFD solver).

From a solver perspective, SU2 should be superior to rhoCentralFoam as it has sev-
eral central and approximate Riemann solvers, whereas rhoCentralFoam only has two
available central solvers. Unfortunately the capabilities of rhoPimpleFoam and rhoSim-
pleFoam were not investigated, otherwise a comparison between SU2 and OpenFOAM
as compressible solvers could be drawn.

For the integration of SU2 on the SimScale platform the basic compressible capabil-
ities were integrated. At this moment the multigrid capability of SU2 was not put on
the platform, this is something to be done in the future. When specifying a simulation
in SU2 the Reynolds number is assigned rather than the viscosity, and the inlet velocity
is specified by total pressure and total temperature than the actual velocity. To increase
user friendliness, a tool to set up dimensionalized simulations can be created. As only
the basic capabilities of SU2 were put on the platform, a variety of analysis types are still
available for integration. Especially interesting would be to integrate the adjoint solver
which the developers at SU2 have put a lot of time into. However, further integration
of the SU2 software would be advised to be done after the release of the upcoming 3.0

57

CHAPTER 5. CONCLUSIONS AND PROSPECTS

version.
As the three different solvers have been investigated some strengths and weaknesses

became clear. OpenFOAM has a lot of different solvers and can solve a variety of cases.
But it seems to be limited when it comes to compressible flows and the case set up of
OpenFOAM is tedious.

For SU2 a variety of solvers was found for compressible cases and it is simple to set
up. However it suffers from, what was found in this thesis, being difficult to achieve
convergence. Although it should be kept in mind that this solver is still undergoing
development and that these issues probably will be resolved in the near future.

Gerris was found to be a capable solver for incompressible flows and it was extremely
easy to set up cases. The drawbacks of the solver was found to be its requirement to
define the computational domain with a set of unit cubes. This makes it difficult to
integrate on the SimScale platform.

58

Bibliography

[1] K. Wieghardt, W. Tillman, On the Turbulent Friction Layer for Rising Pressure,
Tech. Rep. TM-1314, NACA (1951).

[2] NASA (2008), RAE 2822 Transonic Airfoil: Study #4, downloaded: (21-11-2013).
URL http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf04/raetaf04.

html

[3] F. Palacios, R. M. Colonno, A. C. Aranake, A. Campos, S. R. Copeland, T. D.
Economon, A. K. Lonkar, T. W. Lukaczyk, T. W. R. Taylor, J. J. Alonso, Stanford
University Unstructured (SU2): An open-source integrated computational environ-
ment for multi-physics simulation and design, in: 51st AIAA Aerospace Sciences
Meeting and Exhibit, Grapevine, Texas, USA, 2013, AIAA Paper 2013-0287.

[4] Stéphane Popinet (2013), Gerris Flow Solver, downloaded: (21-11-2013).
URL http://gfs.sourceforge.net/wiki/index.php/Main_Page

[5] OpenFOAM Foundation (2013), OpenFOAM user guide, downloaded: (4-11-2013).
URL http://www.openfoam.org/docs/user/

[6] H. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics,
2nd Edition, Pearson Education Limited, Harlow, England, 2007.

[7] P. R. Spalart, S. R. Allmaras, A One-Equation Turbulence Model for Aerodynamic
Flows, Paper 92-0439, AIAA (1992).

[8] L. Davidsson, Fluid mechanics, turbulent flow and turbulence modeling, Course ma-
terial in MSc courses, Division of Fluid Dynamics, Dept. of Applied Mechanics,
Chalmers University of Technology (2013).

[9] J. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3rd Edition,
Springer, Berlin, 2002.

[10] K. Kozel, P. Louda, J. Prihoda, Numerical Solution of an Unsteady Flow Using
Artificial Compressibility Method, in: Proceedings of the Czech-Japanese Seminar
in Applied Mathematics, Czech Technical University, 2006, pp. 148–155.

59

http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf04/raetaf04.html
http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf04/raetaf04.html
http://gfs.sourceforge.net/wiki/index.php/Main_Page
http://www.openfoam.org/docs/user/

BIBLIOGRAPHY

[11] C. J. Greenshields, H. G. Weller, L. Gasparini, R. J. M, Implementation of semi-
discrete, non-staggered central schemes in a colocated, polyhedral, finite volume
framework, for high-speed viscous flows, Int. J. Numer. Meth. Fluids 63 (2010) 1–21.

[12] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equa-
tions in complex geometries, J. Comp. Phys. 190 (2003) 572–600.

[13] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 1st Edition, Cam-
bridge University Press, Cambridge, 2002.

[14] M. S. Darwish, F. Moukalled, TVD schemes for unstructured grids, International
Journal of Heat and Mass Transfer 46 (2003) 599–611.

[15] V. Venkatakrishnan, Convergence to steady state solutions of the Euler equations
on unstructured grids with limiters, J. Comp. Phys. 118 (1995) 120–130.

[16] A. Kurganov, E. Tadmor, New High-Resolution Central Schemes for Nonlinear Con-
servation Laws and Convection–Diffusion Equations, J. Comp. Phys. 160 (2000)
241–282.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, Society for
Industrial and Applied Mathematics, Philadelphia, 2003.

[18] S. Yoon, A. Jameson, Lower-Upper Symmetric-Gauss-Seidel method for the Euler
and Navier-Stokes equations, AIAA Journal 26 (9).

[19] P. E. Farrel, J. R. Maddison, Conservative intepolation between volume meshes by
local Galerkin projection, Computational Methods for Applied Mechanical Engi-
neering 200 (2011) 89–100.

[20] aerospacedesignlab (2013), Configuration file, downloaded: (6-11-2013).
URL http://adl.stanford.edu/docs/display/SUSQUARED/Configuration+

file

[21] T. von Karman, Turbulence and Skin Friction, J. of the Aeronautical Sciences 1 (1)
(1934) 1–20.

60

http://adl.stanford.edu/docs/display/SUSQUARED/Configuration+file
http://adl.stanford.edu/docs/display/SUSQUARED/Configuration+file

A
Appendix

A.1 Taylor-Couette

Taylor-Couette flow is a flow between two cylinders. The inner radius will be denoted
as r1 and the outer radius as r2. Assuming constant viscosity, incompressible flow,
axisymmetrical flow and that ur = 0 and uz = 0. Navier-Stokes equation in cylindrical
coordinates can be reduced to,

u2
θ

r
=
∂p

∂r
uθ
r

=
1

r

∂

∂r

(
r
∂uθ
∂r

)
(A.1)

The pressure p is not the physical pressure but the physical pressure wheighted with
frac1ρ. Expanding the second equation of (A.1),

r2∂
2uθ
∂r2

+ r
∂uθ
∂r
− uθ = 0 (A.2)

and set the solution as uθ = rγ , the following solution is found if Dirichlet boundary
conditions are applied to the boundaries uθ(r1) = u1 and uθ(r2) = u2.

uθ =Ar +
B

r

A =
(u2r2 − u1r1)

r2
2 − r2

1

B =u1r1 −Ar2
1 (A.3)

For the pressure the first equation of (A.1) is integrated and the following equation is
found,

p =
A2r2

2
+ 2AB log(r)− B2

2r2
+ C. (A.4)

61

A.1. TAYLOR-COUETTE APPENDIX A. APPENDIX

C is a constant which physically is of no importance as only pressure differences are of
importance in the incompressible formulation.

A.1.1 Taylor-Couette OpenFOAM MRF files

For system/fvScheme this is the file used in the Taylor-Couette case.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;

}

// * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

grad(U) Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss linearUpwind grad(U);

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;

62

A.1. TAYLOR-COUETTE APPENDIX A. APPENDIX

interpolate(HbyA) linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

p ;

}

For system/fvSolution the following file is specified in the MRF case.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * //

solvers

{

p

{

solver GAMG;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration off;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 10;

mergeLevels 1;

tolerance 1e-12;

relTol 0;

}

U

63

A.1. TAYLOR-COUETTE APPENDIX A. APPENDIX

{

solver smoothSolver;

smoother GaussSeidel;

tolerance 1e-12;

relTol 0;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 2;

pRefCell 0;

pRefValue 0;

residualControl

{

p 1e-11;

U 1e-11;

nuTilda 1e-12;

}

}

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U 0.5;

}

}

A.1.2 Taylor-Couette OpenFOAM AMI files

For the AMI case the following schemes and discretizations are made. In system/fvScheme
the following file is used,

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

64

A.1. TAYLOR-COUETTE APPENDIX A. APPENDIX

object fvSchemes;

}

// * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

grad(U) Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss linearUpwind grad(U);

// div(phi,U) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;

interpolate(HbyA) linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

65

A.1. TAYLOR-COUETTE APPENDIX A. APPENDIX

pcorr ;

p ;

}

The following schemes were used for the case,

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * //

solvers

{

pcorr

{

solver GAMG;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration off;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 10;

mergeLevels 1;

tolerance 1e-10;

relTol 0;

}

p

{

$pcorr;

tolerance 1e-10;

relTol 0;

}

pFinal

{

$p;

tolerance 1e-10;

66

A.1. TAYLOR-COUETTE APPENDIX A. APPENDIX

relTol 0;

}

U

{

solver smoothSolver;

smoother GaussSeidel;

tolerance 1e-8;

relTol 0;

}

UFinal

{

$U;

tolerance 1e-8;

relTol 0;

}

}

PIMPLE

{

correctPhi no;

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 4;

pRefCell 0;

pRefValue 0;

}

SIMPLE

{

nNonOrthogonalCorrectors 2;

pRefCell 0;

pRefValue 0;

}

relaxationFactors

{

fields

{

p 0.3;

67

A.1. TAYLOR-COUETTE APPENDIX A. APPENDIX

}

equations

{

U 0.5;

}

}

A.1.3 Taylor-Couette Gerris file

The following .gfs file is used to run the Taylor-Couette case. Every 5000s of the simu-
lation a VTK file is written with the solution.

1 0 GfsSimulationMoving GfsBox GfsGEdge {} {

GfsTime { end = 50000 }

Refine 7

GfsRefineSolid 9

PhysicalParams { L = 2.2 }

SolidMoving cylinder.gts {scale = 1.4} {level = 10}

Solid (ellipse (0,0,1.0,1.0)) {flip = 1}

ApproxProjectionParams { tolerance = 1e-9 }

AdvectionParams { scheme = godunov

moving_order = 1

}

SourceViscosity {} 1e-5

SurfaceBc U Dirichlet (x*x + y*y > 0.4 ? 0. : - 1e-3*y)

SurfaceBc V Dirichlet (x*x + y*y > 0.4 ? 0. : 1e-3*x)

OutputSimulation { step = 5000 } result%f.vtk {format = VTK}

OutputSimulation { start = end } result-end.vtk {format = VTK}

}

GfsBox {}

68

	Introduction
	Objective
	Limitations
	Outline of Thesis

	Theory
	Governing equations
	Incompressible fluids

	Modeling
	RANS
	Turbulence models
	Spalart-Allmaras
	k- SST

	Artificial compressibility

	SU2 modeled equations
	Compressible solver
	Incompressible solver

	OpenFOAM modeled equations
	simpleFoam
	pimpleFoam
	rhoCentralFoam

	Gerris modeled equations
	Finite volume method
	CFL number
	y+
	Wall functions

	Discretization of Modeled Equations
	Time discretization
	Convective discretization
	Centered schemes
	Upwind schemes
	TVD schemes
	Compressible flow

	Gradient discretization
	Viscous discretization

	Linear Solvers
	Krylov subspace methods
	GMRES
	Conjugate Gradient Method
	Biconjugate Gradient Method
	BiCGSTAB

	LU-SGS

	Acceleration techniques
	Multigrid method
	Preconditioners
	Linelet preconditioning
	Roe-Turkel preconditioner

	Rotating motion
	MRF
	AMI

	Software
	OpenFOAM
	0
	system
	fvSchemes
	fvSolution

	constant
	polyMesh

	SU2
	Mesh file
	Configuration file
	Time discretization
	Viscous terms discretization
	Convective terms discretization
	Linear solvers
	Convergence criterion

	Gerris

	Results
	Rotating Taylor-Couette
	OpenFOAM - MRF
	Case creation
	Results

	OpenFOAM - AMI
	Case creation
	Results

	Gerris
	Case creation
	Results

	Turbulent flat plate
	OpenFOAM setup
	SU2 setup
	Mesh
	Results

	RAE2822
	Results

	Integration of SU2

	Conclusions and prospects
	 Bibliography
	Appendix
	Taylor-Couette
	Taylor-Couette OpenFOAM MRF files
	Taylor-Couette OpenFOAM AMI files
	Taylor-Couette Gerris file

