
Log Classification using NLP Techniques
Data-Driven Fault Categorization of Multimodal Logs using
Natural Language Processing Techniques

Master’s thesis in Mathematics

ADAM SUHREN GUSTAFSSON
ADAM WIREHED

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Log Classification using NLP Techniques

Data-Driven Fault Categorization of Multimodal Logs using Natural
Language Processing Techniques

ADAM SUHREN GUSTAFSSON
ADAM WIREHED

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2021

Log Classification using NLP Techniques
Data-Driven Fault Categorization of Multimodal Logs using Natural Language
Processing Techniques
ADAM SUHREN GUSTAFSSON
ADAM WIREHED

© ADAM SUHREN GUSTAFSSON, 2021.
© ADAM WIREHED, 2021.

Supervisors: Johan Jonasson, Department of Mathematical Sciences
Rozita Akrami, Ericsson AB

Examiner: Marina Axelson-Fisk, Department of Mathematical Sciences

Master’s Thesis 2021
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Log Classification using NLP Techniques
Data-Driven Fault Categorization of Multimodal Logs using Natural Language
Processing Techniques
ADAM SUHREN GUSTAFSSON
ADAM WIREHED
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
System logs record system states to facilitate debugging of issues and failures. At
Ericsson, several logs are analyzed when faulty baseband hardware is returned
from customer networks. Classifying a unit given several logs can be considered a
multimodal classification problem where each log represents modes of the system.
As systems increase in size and complexity, the resources needed for subject matter
experts to analyze these logs increase to a point where it’s no longer efficient.
Therefore, Ericsson has used machine learning models using manual feature extraction
patterns to analyze these logs according to the best understanding of which features
should be used for classification. However, this manual feature engineering gives no
guarantee of correlation between the best representation of the logs and the output
of the classification model. In this thesis, we have shown that a data-driven NLP
approach where concatenated bag-of-words representations for each log file fitted on
an XGBoost classifier was able to match the production model used by Ericsson.
Attempts to incorporate sequential representations of the log entries and parameter
lists produced by the Spell and Drain log parsers did not yield improved results.
In addition, while deep learning models like Transformers combined with neural
Word2Vec embeddings were able to produce similar results, they are prohibitively
complex in relation to the simpler solution. Our findings indicate that the baseband
unit logs do not show the same high variability in sentence structure, nor seem to
depend on structures of sequences for different hardware- or software faults. We
also propose that care should be taken when treating logs as texts found in other
classical NLP tasks, like sentiment analysis, or document classification where the text
is in fact directly generated by humans, as opposed to automatic logging systems.
All tested models were evaluated on a holdout test dataset used by the current
production model. The existing Ericsson model achieved a macro F1-score of 0.866,
the XGBoost model 0.885, and the Transformer model 0.861.

Keywords: NLP, log, classification, machine learning, word embedding, LSTM,
transformer, XGBoost, Spell, Drain.

v

Acknowledgements
We would like to thank Ericsson for giving us the opportunity and resources to work
on this thesis. Specifically, we also thank our supervisor Rozita Akrami at Ericsson
who was personally responsible for initiating this thesis project with us. We also give
our thanks to our supervisor Johan Jonasson at the Department of Mathematical
Sciences for offering us guidance and valuable input on the theories and methods
of the thesis. We would also like to thank our examiner Marina Axelson-Fisk at
Department of Mathematical Sciences for her input on the thesis.

Adam Suhren Gustafsson & Adam Wirehed, Gothenburg, June 2021

vii

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Ericsson Dataset . 2
1.3 Ericsson Model . 4
1.4 Scope and Delimitations . 4

2 Background 7
2.1 Log Analysis . 7
2.2 Natural Language Processing . 7
2.3 Related work . 8

3 Theory 11
3.1 Log Parsing . 11

3.1.1 Spell . 12
3.1.2 Drain . 14

3.2 NLP Techniques . 15
3.2.1 Bag-of-Words . 15
3.2.2 TFIDF . 16
3.2.3 N-Grams . 16
3.2.4 Word2Vec . 17

3.3 Classification Models . 19
3.3.1 Random Forest . 19
3.3.2 XGBoost . 19
3.3.3 LSTM . 20
3.3.4 Transformer . 22

3.4 Model Evaluation . 25
3.4.1 F1-score . 25
3.4.2 Shapley and SHAP values . 25
3.4.3 Cross-validation . 27
3.4.4 Bootstrapping . 27

ix

Contents

4 Methods 29
4.1 Data ingestion . 29

4.1.1 Data Structure . 29
4.1.2 Basic Regex Parsing . 30
4.1.3 Advanced Structured Parsing 30
4.1.4 Tokenizing . 31

4.2 Feature Extraction . 31
4.2.1 Word token counts . 31
4.2.2 Event token counts . 32
4.2.3 Parameter aggregates . 33
4.2.4 Weighted Average Embedding 33

4.3 Baseline Model . 33
4.3.1 Early fusion XGBoost model 34
4.3.2 Late fusion XGBoost model 35
4.3.3 Model Selection . 35

4.4 Experimental Implementations . 38
4.4.1 Transformer Model . 38
4.4.2 LSTM Model . 39

4.5 Evaluation Method . 40
4.6 Used Hardware and Software . 41

5 Results 43
5.1 Baseline Models . 43

5.1.1 Early fusion XGBoost model 43
5.1.2 Late fusion XGBoost model 46

5.2 Experimental Models . 46
5.2.1 Transformer . 47
5.2.2 LSTM . 48

5.3 Comparison . 49

6 Discussion 53
6.1 Anomaly Detection and Fault Classification 56
6.2 NLP in Log Analysis . 56
6.3 Future Work . 59

7 Conclusion 63

Bibliography 65

References 65

A Appendix 1 I
A.1 Transformer Training History . I
A.2 LSTM Training History . VI
A.3 DistilBERT Training History . VIII

x

List of Figures

1.1 Excerpts of lines from the different log types. These are slightly modi-
fied by removing white space and extra characters to better visualize
their contents. In addition, their contents have been obfuscated in
several places. 4

3.1 Basic workflow of Spell [11] . 13
3.2 Illustration of the workflow of Spell when a new log entry arrives. . . 13
3.3 Illustration of a parser tree with depth 3 of Drain. [12]. 15
3.4 Example of embedding layer for the word ”cat” with vocabulary index

2657 . 17
3.5 CBOW training method (left), Skip-gram training method (right) [5] 18
3.6 Spatial relation between word vectors [19] 18
3.7 Recurrent Neural Network structure example [21] 20
3.8 Unrolled Recurrent Neural Network chain structure [21] 21
3.9 LSTM chain structure [21] . 21
3.10 Transformer architecture [8] . 23
3.11 Attention concept used in the Transformer [8]. Scaled Dot-Product

Attention (left) and Multi-head Attention (right) 24
3.12 Visualization of 5-fold cross-validation data splitting. After the initial

split intro training and test, the training set is further divided into k
splits containing k folds of the data each. For each split, one of the
folds is used as the validation set, while the remaining k − 1 folds are
used for training. 28

4.1 Example of transforming a unstructured log into a structured repre-
sentation using regex patters. 30

4.2 Example of information extracted from a structured log by log parsers. 30
4.3 Workflow of the Weighted Average Embedding (WAEMB) method . . 35
4.4 Architecture of the implemented early fusion XGBoost model 36
4.5 Architecture of the implemented late fusion XGBoost model 37
4.6 Simplified architecture of the implemented Transformer 38
4.7 Architecture of LSTM model . 40

5.1 Top features by their corresponding SHAP value for the early fusion
model. The horizontal position indicates whether the feature con-
tributed to a positive prediction, and the color indicates the magnitude
of the feature value. 46

xi

List of Figures

5.2 Visualization of the mean SHAP value per sample per log type of the
early fusion XGBoost model. The values are also grouped by the true
label for the corresponding samples. 47

5.3 Training and validation loss for Transformer without positional encod-
ing and WAEMB dimension 25 . 49

5.4 F1-score on validation data for Transformer without positional encod-
ing and WAEMB dimension 25 . 50

5.5 Training and validation loss for LSTM model with WAEMB dimension
25 . 51

5.6 F1-score on validation data for LSTM model with WAEMB dimension
25 . 51

6.1 Analysis of Ericsson token occurrences in the Ericsson llog 57
6.2 Analysis of IMDb movie reviews . 58
6.3 Analysis of the token occurrences in the Ericsson hwlog 59
6.4 Bigrams and trigrams of Ericsson hwlog 60
6.5 Number of unique EventIds (log scale) relative to the amount of

documents . 61

A.1 Training and validation loss for MultiTransformer without positional
encoding and WAEMB dimension 25 I

A.2 F1-score on validation data for MultiTransformer without positional
encoding and WAEMB dimension 25 II

A.3 Training and validation loss for MultiTransformer with positional
encoding and WAEMB dimension 25 II

A.4 F1-score on validation data for MultiTransformer with positional
encoding and WAEMB dimension 25 III

A.5 Training and validation loss for MultiTransformer without positional
encoding and WAEMB dimension 50 III

A.6 F1-score on validation data for MultiTransformer without positional
encoding and WAEMB dimension 50 IV

A.7 Training and validation loss for MultiTransformer with positional
encoding and WAEMB dimension 50 IV

A.8 F1-score on validation data for MultiTransformer with positional
encoding and WAEMB dimension 50 V

A.9 Training and validation loss for MultiTransformer with positional
encoding and WAEMB dimension 100 V

A.10 F1-score on validation data for MultiTransformer with positional
encoding and WAEMB dimension 100 VI

A.11 Training and validation loss for LSTM model with WAEMB dimension
50 . VI

A.12 F1-score on validation data for LSTM model with WAEMB dimension
50 . VII

A.13 Training and validation loss for LSTM model with WAEMB dimension
100 . VII

A.14 F1-score on validation data for LSTM model with WAEMB dimension
100 . VIII

xii

List of Figures

A.15 Training and validation loss for DistilBERT model (only llog) VIII
A.16 F1-score on validation data for DistilBERT model (only llog) IX

xiii

List of Figures

xiv

List of Tables

1.1 Information about the original datasets provided by Ericsson for the
previous production model. 3

1.2 Final datasets for use in the project, extracted from the original data
provided by Ericsson. 3

3.1 Example of Bag-of-Words method on three documents with vocabulary
size of six . 16

4.1 Example of how tokenization is performed on a log line. 31
4.2 Feature representations of the logs . 32

5.1 Resulting F1-scores of the early fusion model on 5-fold cross-validation
for different word embedding methods. The table is sorted by the
F1 Macro score in descending order and presented as the mean score
plus-minus the standard deviation. 44

5.2 Resulting F1-scores of the early fusion model on 5-fold cross-validation
for different event embedding methods. The table is sorted by the
F1 Macro score in descending order and presented as the mean score
plus-minus the standard deviation. 45

5.3 Resulting F1-scores of the early fusion model on 5-fold cross-validation
for parameter aggregates of different log parsers. The table is sorted
by the F1 Macro score in descending order and presented as the mean
score plus-minus the standard deviation. 45

5.4 Resulting F1-scores of the early fusion model on 5-fold cross-validation
for combinations of the best feature representations found previously.
The table is sorted by the F1 Macro score in descending order and
presented as the mean score plus-minus the standard deviation. . . . 46

5.5 Resulting F1-scores of the late fusion model on the validation set for
different word embedding methods. The table is sorted by the F1
Macro in descending order. 47

5.6 Hyper parameters used in Transformer model 48
5.7 Resulting F1-scores of the Transformer model over 100 bootstrap iter-

ations with replacement on the validation data for different WAEMB
embedding dimensions and positional encoding. The table is sorted
by the F1 Macro score in descending order and presented as the mean
score plus-minus the standard deviation. 48

5.8 Hyperparameters used in LSTM model 49

xv

List of Tables

5.9 Resulting F1-scores of the LSTM model over 100 bootstrap iterations
with replacement on the validation data for different WAEMB em-
bedding dimensions. The table is sorted by the F1 Macro score in
descending order and presented as the mean score plus-minus the
standard deviation. 50

5.10 Resulting F1-scores of the best models over 100 bootstrap iterations
with replacement on the test data. The table is sorted by the F1
Macro score in descending order and presented as the mean score
plus-minus the standard deviation. 52

xvi

List of Algorithms

3.1 Random Forest for Classification [1] 19
3.2 Bootstrap . 28
4.1 Word token count embedding . 32
4.2 Event token count embedding . 33
4.3 Parameter aggregate embeddings . 34
4.4 Weighted Average Embedding . 35

xvii

List of Algorithms

xviii

Glossary

Baseband Unit
The actual radio hardware unit
from which logs are extracted

BOW
Bag-of-Words

Drain
Log parser using a parser tree

HW, SW, NF
The three classes Hardware Fault,
Software Fault, and No Fault
Found

LSTM
Long-Short-Term Memory

ML
Machine Learning

NLP
Natural Language Processing

RegEx
Regular expression, a sequence of
characters specifying a search pat-
tern

RNN
Recurrent Neural Networks

SHAP
’SHapley Additive exPlanations’,
explaining ML models by connect-
ing credit allocation with local ex-
planations using Shapley values
from game theory [2].

Shapley Value
A game theory solution concept
predicting how to fairly distribute
gains of cooperation among play-
ers [3]. In machine learning,
this can be used to provide inter-
pretability of ML models and the
impact of input features.

SME
Subject Matter Expert

Spell
Log parser using the Longest Com-
mon Subsequence algorithm

TFIDF
Term Frequency Inverse Docu-
ment Frequency

WAEMB
Weighted Average Embedding,
line-level weighted average of
Word2Vec word embeddings

XGBoost
’eXtreme Gradient Boosting’ is
a software library providing a
gradient boosting framework [4].
Boosting is a sequential ensemble
learning algorithm that converts
weak models to stronger ones by
adjusting the data weights of in-
put samples.

xix

1
Introduction

System logs record significant events and system states to facilitate debugging
of performance issues and eventual failures. At Ericsson, such logs are used for
analysis when potentially faulty hardware is returned from the customer network
for troubleshooting. Historically, Ericsson engineers have found that a percentage of
these returned units do not always have a hardware (HW) fault, but might instead
actually have some software (SW) fault, or even no fault found (NF). As the return of
hardware poses a large cost in both time and resources it is advantageous to be able
to automate the troubleshooting process to reduce time and cost for both Ericsson
and its customers.

Among these products are the Ericsson Baseband Units, each of which could have
several different logs that could be used for troubleshooting. The logs might be
interconnected with each other, or be produced by different sub-systems in the unit.
This environment of having multiple sources of data available for categorization can
be considered a multimodal setting, where each log represents different modes of
the system. While these logs are most often able to be read by the developers and
engineers who have created the systems, a large company like Ericsson cannot solely
be dependent on these subject matter experts (SME) for troubleshooting the logs.
As the systems increase in size and complexity, the time needed for SMEs to analyze
these logs increase to a point where it’s no longer efficient.

For this reason, Ericsson has taken a data-mining approach to the analysis of these
logs, utilizing machine learning (ML) models. These current solutions utilize manually
specified feature extraction scripts and data mining to produce statistical metrics
and other rule-based features for the ML models. These features are engineered
with the help of the SME and chosen according to their best understanding of which
features should be used for categorization. However, it is not a guarantee that these
features are in fact the best predictors of the system state for a specific ML model.
This can lead to data with little to no correlation between the features of the system
logs and its behavior and health. For this application, it is therefore favorable to
investigate alternatives where humans neither have to monitor the logs themselves
nor carry out the feature engineering required for feature extraction in the logs.

1

1. Introduction

1.1 Problem Statement

The thesis aims to research and develop a multimodal log analysis system for
classifying baseband units using NLP techniques in a data-driven manner. The
classification of baseband units is to label them as Hardware Fault (HW), Software
Fault (SW) or No Fault found (NF) based on multiple types of log data.

1.2 Ericsson Dataset

The data utilized in this thesis are hardware and software data logs generated by
systems in Ericsson’s Baseband Units. Each unit houses multiple hardware and
software components that log their current state and occurring events. Different log
types stores information about certain areas of the baseband units that could be
informative of the type of fault. As the classification is of each unit, all the available
log types in that unit should be utilized for the classification.

The dataset used for this thesis is a subset of datasets used previously at Ericsson,
for which more information is presented in Section 1.3. An overview of this dataset
can be seen in Table 1.1. In the left group of columns, we see information about
the original dataset. Of special note, are the two flags specifying if the unit has any
logs available at all, as well as if there is enough info in the logs to make predictions
about the classes SW and NF.

• [any_log_available]: If there are no logs available, a special kind of predic-
tion is made with a class specifying that no log is available. For this thesis,
this scenario is not of any interest, so we filter out these samples.

• [has_enough_info_sw_nff]: There also exists a rule in the current model
based on SME knowledge specifying whether or not a prediction about the
labels SW and NF should be made to even start with. While it is completely
possible to utilize the available information in the logs to make this prediction
anyway, we opt to also filter out these units from the dataset.

After the removal of the units with these two flags, we are left with the dataset seen
in the rightmost column group. We note that the availability of all different logs
increases in relation to the original dataset in the leftmost column group. In addition,
the ratio of the training/test sets changes from 0.8/0.2 to 0.84/0.16. We also note
that the distribution of classes changes where the ratio of the HW class decreases, and
the ratio of the NF class increases.

One of the log types found in the dataset is the esilog. This is a very large log file,
which in fact is a collection of several smaller log files. For this reason, we extract
the most useful of these smaller logs from this file, according to SME knowledge.
Specifically, we extract the log files bpmlog and hwlog. After this extraction, we are
left with the final dataset used in the project as seen in Table 1.2. We utilize the
same train and test split of the data as found in the original production model. We

2

1. Introduction

Table 1.1: Information about the original datasets provided by Ericsson for the
previous production model.

Original dataset Selected dataset
All Train Test All Train Test

Number of units 7740 6191 1549 3972 3325 647
Ratio of units 1.00 0.80 0.20 1.00 0.84 0.16
Flag [any_log_available] 0.90 0.88 0.96 1.00 1.00 1.00
Flag [has_enough_info_sw_nff] 0.51 0.54 0.42 1.00 1.00 1.00
Availability of ailog 0.68 0.66 0.77 0.96 0.96 0.99
Availability of llog 0.66 0.64 0.72 0.97 0.97 0.97
Availability of uboot 0.89 0.87 0.96 0.98 0.98 1.00
Availability of esilog 0.65 0.63 0.75 1.00 1.00 1.00
Ratio of HW 0.68 0.68 0.68 0.57 0.58 0.53
Ratio of SW 0.17 0.17 0.17 0.17 0.17 0.17
Ratio of NF 0.16 0.16 0.16 0.25 0.25 0.30

don’t go into detail about exactly what the logs ailog, bpmlog, hwlog, llog, and
uboot contain, or how they are generated by the system. Instead, we treat these all
in the same way, with no further insights into what they might contain, or in what
way they represent the unit state.

Table 1.2: Final datasets for use in the project, extracted from the original data
provided by Ericsson.

Samples Ratio ailog bpmlog hwlog llog uboot

Train 3325 0.837 0.955 0.999 1.0 0.972 0.982
Test 647 0.163 0.989 1.000 1.0 0.972 1.000
All 3972 1.000 0.961 0.999 1.0 0.972 0.985

Without getting into too much detail about the logs, they all contain information
about different areas of the baseband units. Some of the log types contain informa-
tion that was written during its time in the customer network, and some contain
information from diagnostics that have been performed on the units at a screening
center. One purpose of the thesis is to examine data-driven solutions where having
deep knowledge of each log type and the differences between is not be required. You
could argue that the less domain knowledge you have of the logs, the lower are the
chances of using that domain knowledge to improve the solution. This makes the
results and findings from this thesis of data-driven solutions more representative of
real-world use cases. Excerpts from the contents of all log types are presented in
Figure 1.1. Note that not only does the information in the logs vary between the log
types, but also how that information is structured row-wise. Figures throughout the
thesis may obfuscate information from the log files. Note that it does not affect the
results or conclusions.

3

1. Introduction

// Excerpt from "ailog"
.........1 YYYY-MM-DDTHH:MM:SSZ "INFO: Setting system time to software build time: "YYYY-MM-DD HH:MM:SS""
.........2 YYYY-MM-DDTHH:MM:SSZ "INFO: Networkloader type2 booted from partition /dev/sda1"
.........3 YYYY-MM-DDTHH:MM:SSZ "INFO: Running version: "XXXXXXXXX-YYYYYY""
.........4 YYYY-MM-DDTHH:MM:SSZ "INFO: Autointegration waiting for user input"
.........5 YYYY-MM-DDTHH:MM:SSZ "INFO: Zero-touch application loaded - waiting for activation"

// Excerpt from "bpmlog"
=== NVM ===
H uptime=16/16 starts=0/1
[0] System Event: System Startup(e1) ID:0x0 P1:0x0 P2:0x0
[16] System Event: PLD Shutdown(e0) ID:0x0 P1:0x1 P2:0x0
H uptime=53/37 starts=1/1

// Excerpt from "hwlog"
1 700101000011 (004) Power On (Cable plugged in). Timestamp is however from the power off moment 25 Z/XXXXXXXXXXXX/XX_YYY
2 700101000011 (004) Power On (Cable plugged in). Timestamp is however from the power off moment 25 Z/XXXXXXXXXXXX/XX_YYY
3 * 180827024305 (003) SW version : BASEBAND XXXXXXXXXXXX/Y ZZZZ started 1 XXXXXXXXXXXX_X_YYYYYY
4 * 180827024504 (000) Site : XXXXXXXX 1 XXXXXXXXXXXX_X_YYYYYY
5 180827025046 (004) Power On (Cable plugged in). Timestamp is however from the power off moment 25 Z/XXXXXXXXXXXX/XX_YYY

// Excerpt from "llog"
YYYY-MM-DDTHH:MM:SS du1 xxxx[XXXX]: rlog: rlog: $ Power on $ YYYY-MM-DD HH:MM:SS $ - $ - $ Cold $ - $ - $ -
YYYY-MM-DDTHH:MM:SS du1 xxxx[XXXX]: rlog: rlog: $ Ordered restart $ YYYY-MM-DD HH:MM:SS $ - $ - $ Cold $ - $ - $ 'Data restore'
YYYY-MM-DDTHH:MM:SS du1 xxxx[XXXX]: rlog: rlog: $ Power on $ YYYY-MM-DD HH:MM:SS $ - $ - $ Cold $ - $ - $ -
YYYY-MM-DDTHH:MM:SS du1 xxxx[XXXX]: rlog: rlog: $ Ordered restart $ YYYY-MM-DD HH:MM:SS $ - $ - $ Warm $ - $ - $ 'Manual restart'
YYYY-MM-DDTHH:MM:SS du1 xxxx[XXXX]: rlog: rlog: $ Power on $ YYYY-MM-DD HH:MM:SS $ - $ - $ Cold $ - $ - $ -

// Excerpt from "uboot"
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpuacct
[0.000000] Linux version XXX (xxxxxx@yyyyyyyy) (gcc version X.X.X (Linux X.X.X-Y.Y)) ...
[0.000000] CPU: XXX Processor [XXXXXXXX] revision X

Figure 1.1: Excerpts of lines from the different log types. These are slightly
modified by removing white space and extra characters to better visualize their
contents. In addition, their contents have been obfuscated in several places.

1.3 Ericsson Model
A classification model that has been used at Ericsson is an ensemble model in the
form of a Random Forest. This model has been trained on the dataset as described in
Section 1.2. For each sample (unit) in the dataset, features have been extracted from
the raw text contents of the log files through manually created rules and patterns
implemented using regular expressions and text processing scripts. These features
can be the number of occurrences of specific messages in the log files or higher-level
features such as the number of lines. Throughout this report, we will refer to this
model and its feature extraction pipeline as the Ericsson model.

1.4 Scope and Delimitations
The Ericsson model previously mentioned, utilizes manually specified feature extrac-
tion scripts and data mining approaches to produce statistical metrics and other
rule-based features for ML models. One of the purposes of the thesis is to research
and evaluate alternative automated feature-extraction methods to the currently used

4

1. Introduction

manual feature extraction. Therefore, we will not consider manual feature extraction
when developing and researching our own possible feature extraction techniques and
models. However, these solutions will be compared against the Ericsson model which
utilizes this manual data-mining approach.

5

1. Introduction

6

2
Background

2.1 Log Analysis
Computer-generated records, or logs, are often used by software developers to debug
or troubleshoot their system or application. Given a simple and small-scale system, it
might be easy to read the contents of the log file and then understand if it is behaving
as expected. As more and more industries start to rely on software systems, the
corresponding logs get increasingly complex and larger. Without domain knowledge,
these types of logs could be difficult or almost impossible to read or understand,
both in terms of their complexity and the overall amount of logs.

Instead of needing multiple people with extensive domain knowledge to monitor
large amounts of log data, automation would streamline the process and also reduce
the need for monotonous work. Developing algorithms to automatically monitor
and detect anomalous behavior, or classifying faults, in systems on a large scale
is therefore highly sought after. Domain experts can assist during development
by understanding what the algorithms should look for in the logs when evaluating
the state of the system. With useful algorithms in place, SMEs can monitor the
algorithms and their decisions instead of huge amounts of raw textual data. It is also
possible to make the algorithms data-driven and let themselves decide what parts
of the logs are informative and not. Regardless of the algorithms are data-driven
or not, the textual data that is the logs need to be transformed into a numerical
representation to make them interpretable for a computer.

2.2 Natural Language Processing
Natural Language Processing (NLP) techniques have been utilized for many different
methods and solutions when working with textual data. For example, Topic Model-
ing and text categorization using Latent Dirichlet Allocation and other statistical
methods. With the advent of deep learning, the NLP field was presented with new
methods for solving both new and old problems. For example, by utilizing continuous
vectorization of words and characters, with contextualized information stored as
spatial relations between numerical vectors [5].

NLP techniques have been utilized in the log analysis field with promising results in

7

2. Background

the past [6], [7] The most common use case have been to utilize sequential neural
networks such as Recurrent Neural Networks (RNN) or Long-Short-Term-Memory
(LSTM) models for detecting anomalies in log data. The sequential properties of the
models are able to identify patterns during normal behavior reflected in the log data
and are also able to react when this pattern is broken. This makes it possible to
perform binary classification of whether the logs are displaying normal or anomalous
behavior, as well as detecting specifically when these potential anomalies occur. One
related area that has been studied less is the multi-label classification of logs. Instead
of classifying if a log is anomalous or not, the model should be able to classify the
type of error or fault in the system.

With the introduction of Transformers and the attention mechanism in 2017, [8], the
NLP field was again renewed with a new type of model architecture and theory of how
to solve natural language related tasks. In [8] the Transformer model outperformed,
with lower time complexity, many popular sequential models on NLP-related tasks
such as machine translation. The publication had a large effect on the research
within NLP and led to many new publications and high-performing language models
which showcased new state-of-the-art performance [9], [10]. However, these new
attention-based models have not yet made a large impact on the log analysis field.

2.3 Related work
When utilizing NLP techniques within log analysis it has mostly been for the purpose
of anomaly detection. This is a separate problem to that of log classification, in that
we want to detect anomalies locally in log files just as they occur, as opposed to
classifying an entire log file. This might be the detection of an unexpected log entry,
or an abnormal feature value, like e.g. detecting that the CPU temperature is too
high. However, such anomalies might not necessarily be related to the classification
of an entire log. Publications such as DeepLog [6] and LogAnomaly [7] have shown
promising results and performance for detecting anomalous behavior in large systems.
Both of these implementations utilize log parsers that are able to cluster log entries
based on similarity measures. In DeepLog each log entry is parsed using parsers
like Spell or Drain parser [11], [12] where the log key (message type) of the entry is
identified, as well as the corresponding parameter values (see Sections 3.1.1 and 3.1.2).
They take a holistic approach to the problem in which they not only take the actual
log key of each entry into account but also the corresponding variable parameter
values.

The objective of LogAnomaly is to, in an unsupervised way, automatically and
accurately detect both sequential and quantitative log anomalies in real-time. Similar
to Spell and Drain, LogAnomaly utilizes log-templates in its system. The parsing of
the raw logs is handled by the log-parsing system FT-Tree [13] and converted into
templates. The templates are then embedded with the proposed system Template2Vec.
The system is inspired by Google’s Word2Vec and embeds each word in the template
using the distributional lexical-contrast embedding model dLCE [14]. For a given
template, Template2Vec computes its template vector, which is the weighted average

8

2. Background

of the word vectors of the words in the template, to represent the distribution of the
template.

Both of these papers are about anomaly detection, and not fault classification which
is the focus of this thesis. One related topic that could prove useful is document
classification which is another widely researched area in NLP. In the paper, [15] the
authors investigate how deep versions of Neural bag-of-words models (NBOW) can
perform on tasks that have been dominated by syntactically aware models, such as
text classification. Adding depth to an NBOW creates what the authors call a Deep
Averaging Network (DAN). The depth is added to counter one of the issues with
averaging word embeddings, the similarity between averaged values. The authors
examine if the depth could make these small distinctions more apparent and capture
subtle variations in the input better than the standard NBOW model. The fast
and simple computations are still kept as each layer only requires a single matrix
multiplication, so the complexity scales linearly with the number of layers rather than
the number of nodes in a parse tree. Their proposed model also integrates a dropout
method where entire word embeddings are dropped from the vector average. Results
show performance slightly worse or similar to more advanced models on sentence and
document-level sentiment analysis and factoid question answering tasks. However,
their model has a significantly lower training time, while also outperforming simple
RecNN- and bigram naive Bayes models.

One major aspect of the thesis is the multimodal data. There are multiple log types
within a single unit and either the prediction models or the feature extraction needs
to be able to process it. There is existing work related to this which has been carried
out using Ericsson logs previously. One of these projects is in the form of a bachelor’s
thesis from 2020 [16]. In this work, the two methods of early and late multimodal
fusion are investigated for the purpose of anomaly detection. For the early fusion,
two methods were examined:

• In Early Fusion Match Preprocessing the log entries are matched by
finding the closest timestamps and concatenating the event codes of the merged
entries into a tuple

• In Early Fusion Merge Preprocessing the individual events are selected
in chronological order and appended to a new log

For the late fusion, there is only one method used in which the output of one LSTM
model per log type is fed through a leaky integrator and a threshold function is
applied for anomaly detection. This can be seen as a sort of temporal majority vote
of the LSTM model outputs. This publication was a key inspiration for our thought
process in how to process the multimodal data in this thesis.

9

2. Background

10

3
Theory

3.1 Log Parsing

One of the first steps of log analysis is the conversion from unstructured raw log data
into a structured representation. The unstructured representation is in general the
raw text contents of some log file, with some separation of log messages, usually in
the form of a newline character. What exactly defines the structured representation
is however not the same for all log parsing. One structured representation could be to
split each message into separate parts and store each such part in a columnar format,
like a table. This way, the first column could for example contain the timestamp of
the message, the second the log level, etc. Another useful feature of a structured
representation is some sort of identifier specifying the message type of each message.

The simplest approach, and that which has conventionally been used, is to manually
identify various structures of the messages in a log, and try to capture these using a
search pattern system, usually through regular expressions. This has the advantage
of being quite easy to implement, and the features that are extracted can be chosen
using domain knowledge such that they should provide useful information for a
machine learning model. The very obvious disadvantage is that it is very time-
consuming, and while domain knowledge “might” lead to good features, this process
is separate from the machine learning model meaning that it is not a guarantee or
something which the optimization and training itself have control over.

A more auspicious approach is to automatically generate, or infer features from the
logs in an automated manner. There exist several such systems, many of which have
been compiled in the paper Tools and Benchmarks for Automated Log Parsing [17].
Among these, popular approaches are for example Spell [11] which utilizes the LCS
algorithm, or Drain [12] which instead uses parser tree systems. These are systems
that aim to identify which unique message types are present in the log, relate each
line to one of these message types with a unique event id, and also provide a message
template that can be used to extract the variable features (parameters) from each
log line.

To summarize, the following methods are commonly used to parse log from an
unstructured representation to a structured one:

11

3. Theory

• Manual approaches: E,g. through regular expression pattern matching

• Automated log parsers: Such as Spell and Drain

3.1.1 Spell
Spell (Structured Parser for Event Logs using Longest Common Subsequence), is a
log parser capable of parsing “unstructured log messages into structured message
types and parameters in an online streaming fashion” [11]. A key beneficial property
of this log parser is the ability to parse logs in an online fashion, such that new
message types are created by the system “on-the-fly” as new messages are processed
by the log parser. This is opposed to the parser requiring offline batch-processing of
logs before it can be used. In addition, the system implements various pre-filtering
steps to reduce the time complexity of the parser such that it is close to linear with
the number of log entries.

As the name implies, the basic building block of the parser is the Longest Common
Subsequence (LCS) algorithm. As per the notation used in their work, let Σ denote
an alphabet of characters. Given a sequence

α = {a1, a2, ..., am}, ai ∈ Σ ∀i ∈ [1,m], (3.1)

a subsequence of α is defined as

{ax1 , ax2 , ..., axk
}, ∀xi : xi ∈ Z+, 1 ≤ x1 < x2 < ... < xk < m. (3.2)

Let β = {b1, b2, ..., bn}, bj ∈ Σ ∀j ∈ [1, n] be another sequence. A subsequence γ is
then called a Common Subsequence of α and β iff it is a subsequence of each. The
Longest Common Subsequence problem for the problem instance α and β is then the
to find the longest such γ. An example given in the paper is to find the LCS of the
sequences {1, 3, 5, 7, 9} and {1, 5, 7, 10}, which is then {1, 5, 7}.

During parsing, each log entry (line) is tokenized using some system-defined set of
delimiters consisting of suitable characters like spaces, colons, and equal signs. Each
such log entry is assigned a unique incrementing id when they arrive. The algorithm
utilizes a data structure called an LCSOjbect which contains ids and metadata of
log entries which are candidates of a specific message type, see Figure 3.1. These
are in turn stored in the LCSMap. When a new entry arrives, it is compared against
each LCSObject in the LCSMap to decide whether to insert the entry into the existing
LCSOjbect or to create a completely new LCSObject in the event that there’s no
match.

When a new log entry e arrives it is then first tokenized into a sequence of tokens s.
Assume that the ith LCSObject has the existing LCS consisting of tokens qi. The
value li is then the length of LCS(qi, s). If li is the longest such length among all
objects in the LCSMap, it is also compared against the threshold τ = |s|/2 to see
if it is greater. If this is the case, it is considered to be of the same message type
as the other entries in the ith LCSObject. The algorithm then uses backtracking

12

3. Theory

Figure 3.1: Basic workflow of Spell [11]

to generate a new LCS sequence given qi and s. Specifically, the ’<*>’ character
is placed where the two sequences disagree which also marks placeholders for the
parameters. This describes the basic procedure of Spell.

In addition, several efficiency improvements have been implemented in the form of
pre-processing steps. These are performed when attempting to find the matching
LCSObject, before attempting to carry out the full LCS algorithm. These can be
seen in Figure 3.2.

Simple Loop: Maintain one pointer ps at the first token of s and one pointer pq at
the first token of qi. If the tokens match, advance both pointers, otherwise advance
only pq. When pq is at the end of the string, check if ps is also at the end of its string.
A further pruning can also be performed here to skip qi completely if |qi| < |s|/2. In
addition, a set similarity score using the Jaccard index of the strings can be utilized
as a proxy to compare only sequences with at least half common tokens.

Prefix Trees: The sequences qi can also be indexed using a Prefix Tree T to prune
away candidates. For each consecutive token in s, only select the available branches
matching the token, or mark the character as a parameter if there are no matching
branches. This approach guarantees to return a qi = LCS(qi, s) if it exists, but it
does not guarantee that qi is the longest such sequence among all LCS objects. In
practice, this tends to work however since parameters in a log entry tend to appear
near the end.

Input seq PrefixTreeMatch

Return cluster

SimpleLoopMatch
(or set checking proxy) LCS Match

Pre filtering

Find Cluster Prefix
Tree

Proxy Match Loop Match

Return cluster Return cluster

Find LCS

Create new cluster

Return cluster

Length >
tau * length?

Cluster length
> 0.5 * seq?

Jaccard index
> 0.5?

LCS >
0.5 * seq?

Both pointers at
end of string?

All tokens in
cluster in seq?

Figure 3.2: Illustration of the workflow of Spell when a new log entry arrives.

13

3. Theory

3.1.2 Drain
Another online log parser is described in the paper Drain: An Online Log Parsing
Approach with Fixed Depth Tree [12]. Here, the authors aim to improve on earlier
works like Spell [11] by achieving higher accuracies of the resulting event types and
faster running times. Their system utilizes a Parser tree, as shown in Figure 3.3.
When the log entry arrives, it is first matched to one of the children of the root node
which matches the number of tokens of the message. At the subsequent children
of that node, it is then matched on the first token in the message, then the second,
and so on, until it reaches a maximum fixed tree depth at one of the leaves. The
method handles numerical values in a token of the log entry by simply replacing the
entire token with the ’*’ token as a catch-all entry for that token, as can be seen
as an example in the rightmost branch in Figure 3.3. If no matching path is found
in the tree, it is updated by adding more branches in the node in which the search
terminated.

In each of the leaves several groups of log messages are stored, where each group
has a log event and a list of log IDs. The log event is the template that is the
common descriptor for the messages in the group consisting of the constant parts
of the message, as well as parameters denoted by ’*’. The log ID is simply a
unique number associated with each line in the log. The best group is matched by a
similarity measure of the entry and the log group sequence by the average number of
matching aligned tokens in the sequences. The similarity between the new entry and
the events in the groups is calculated as

simSeq =
∑n

i=1 equ(seq1(i), seq2(i))
n

, (3.3)

where seq1 and seq2 represent the new log entry and the group event, respectively.
seq(i) denotes the token at location i in the sequence, and n is the length of the
sequences. The function equ is defined as

equ(t1, t2) =

1 if t1 = t2,

0 otherwise
(3.4)

for two tokens t1 and t2. If the maximum simSeq for some group is larger than a
similarity threshold st, we return this group, otherwise return nothing indicating
that no group was found.

If a group was found, the log entry is added to the group. Further, the event is also
updated by replacing aligned tokens that are not matching with a wildcard character
’*’. If no group was found, a new group is created with only the log ID of the
incoming entry, and where the event template is exactly the message of the entry.

One of the properties of the tree is in fact that it guarantees that the depth of all
leaf nodes are the same and fixed. Further, there is also a maxChild parameter that
limits the maximum number of children in a node. In addition, this method also
assumes that all messages of the same event type are in fact of the same length, as
this is the first property of the message which is used to traverse the tree.

14

3. Theory

Figure 3.3: Illustration of a parser tree with depth 3 of Drain. [12].

3.2 NLP Techniques
When working with textual data in a machine learning context one needs to transform
the data into numerical values. This is also referred to as vectorization or feature
extraction. By utilizing NLP techniques instead of a conventional data-mining
approach it is possible to transform the entirety of the textual data instead of
pre-determined subsets. If extensive domain knowledge is available, data-mining
methods might be more effective since you are aware of what parts of the data should
be informative. The upside of data-driven NLP techniques is a more generalized
approach to the problem where extensive domain knowledge is not necessary and the
ML models themselves can determine what information in the textual data is useful
or not. This could result in models finding subsets or properties of the log data that
were not thought of as informative before, further extending the knowledge of the
domain. Depending on the representation technique chosen, certain information or
properties of the data might not be included in the numerical representation. This can
vary from sequential properties to semantic relations between words and sentences.
Where for example more simple feature representations such as Bag-of-Words do not
contain any of these properties after the vectorization of the textual data.

3.2.1 Bag-of-Words
Bag-of-Words (BOW) is a method for extracting text and transform it into a
numerical representation by describing the occurrences of words within a document.
A document can therefore be represented by a numerical vector (vocabulary) of
size N where each element represents the occurrences of a specific word from the
vocabulary in the document. It is called a ”bag” of words since there is no information
about the sequence of the words or the sentences in the document. In Table 3.1 three
different documents are shown with their corresponding BOW representation. Here
the BOW model’s vocabulary is of size |N | = 6 and contains the words shown in the
table.

15

3. Theory

Table 3.1: Example of Bag-of-Words method on three documents with vocabulary
size of six

Document the cat sat in hat with
the cat sat 1 1 1 0 0 0
the cat sat in the hat 2 1 1 1 1 0
the cat with the hat 2 1 0 0 1 1

3.2.2 TFIDF
Term Frequency Inverse Document Frequency (TFIDF) is a variant of bag-of-words
that intends to reflect how important a word is to a document or corpus. Instead of
only representing the occurrences of each word a weighting factor to the words in
the vocabulary is incorporated. TFIDF is the product of the two statistics, term
frequency in Equation (3.5) and inverse document frequency in Equation (3.6). The
term frequency, tf(t, d) is the frequency of term t,

tf(t, d) = ft,d∑
t′∈d ft′,d

, (3.5)

where ft,d is the raw count, i.e. the number of occurrences of term t in document d.
Inverse document frequency measures how much information words provide based
on how common or how rare they are across all documents in the corpus. It is the
logarithmically scaled inverse fraction of the documents that contain the word,

idf(t,D) = log |D|
|{d ∈ D : t ∈ d}| , (3.6)

where |D| is the number of documents in the corpus. A TFIDF value then increases
proportionally to the number of times the word appears in the document and is
inversely scaled by the number of documents in the corpus that contains the word.

3.2.3 N-Grams
While methods like standard BOW and TFIDF take no consideration to the actual
ordering (sequence) of the tokens in the text, bag-of-n-grams attempts to model
this by calculating the frequency of tuples of n adjacent words in the corpora. It is
also possible to construct n-grams of characters in words, but for this thesis, only
n-grams of words are used. Commonly used frameworks such as Scikit-learn [18]
include n-gram functionality in both their BOW and TFIDF implementations. This
makes it easy to include some sequential information of the data with these simple
NLP methods.

16

3. Theory

3.2.4 Word2Vec
To extract more information from text documents it could be desirable to produce
feature representations that capture similarities and dissimilarities between words and
sentences. Using BOW or TFIDF and representing words as one-hot encoded vectors
will not capture these properties. The words cat and dog will be equally similar (or
dissimilar) to each other as cat and space are to each other. They will simply be
represented by an index in the feature vector. To produce feature representations of
documents, sentences, and words with deeper properties one could use embedding
techniques. Instead of representing words or sentences as one-hot encoded vectors,
they are represented as a continuous vector instead. This could be done with an
embedding layer, which is mathematically equivalent to a one-hot encoding followed
by a linear layer that contains the feature vectors for the words in the vocabulary,
see Figure 3.4.

2657
("cat") [0.7, -1.2, ... , -0.3]

E2657 x

Embedding Layer

0.3, -1.2, ... , 0.4

0.7, -1.2, ..., -0.3

1.1, -0.5, ... , 1.4

= [0.7, -1.2, ... , -0.3]

Figure 3.4: Example of embedding layer for the word ”cat” with vocabulary index
2657

An embedding can be considered a structure-preserving function, or a feature repre-
sentation method where embedding layers can learn and preserve the relationship
between words. This relationship is often measured by the cosine distance between
word vectors. So for the example given before, the cosine distance between cat and
dog would be less than between cat and space. Given that the embedding layer is
pre-trained on a large corpus where this is true, and not only randomly initialized
before use.

One of the more popular word embedding models that can capture contextualized
information is Word2Vec [5]. Two different architectures of the model were presented
in the paper for computing continuous vector representations of words from large
data sets. The two models architectures are Continuous Bag-of-Words (CBOW) and
Continuous Skip-gram, see Figure 3.5.

The models learn word embeddings differently from each other. CBOW tries to
predict the context (current) word based on the surrounding words. In training, this

17

3. Theory

Figure 3.5: CBOW training method (left), Skip-gram training method (right) [5]

results in making the surrounding words closer to the context word in the vector
space. The Continuous Skip-gram does the opposite. Instead of predicting the
current word based on the context, it tries to maximize the classification of a word
based on another word in the same sentence. During training, this results in making
the context words closer to the surrounding words in the vector space.

The two models try to achieve the same goal of generating a vector space of word
embeddings with spatial features. Meaning that similar words or words that appear
together in the same context should be closer to each other in the vector space than
words that do not appear together in the same context. In Figure 3.6 we see five
different word embedding vectors. Due to the spatial relations between the vectors,
by subtracting man and adding woman to the king embedding you get something
that closely resembles the queen embedding. This spatial relation could be useful
when the embeddings are used with a prediction model.

Figure 3.6: Spatial relation between word vectors [19]

18

3. Theory

3.3 Classification Models
To classify the vectorized textual data, machine learning models are implemented.
For this thesis, there are multiple types of textual data (log types) for each sample
(baseband unit). This requires that either the model is capable of ingesting multi-
modal data and output one classification or to have one model for each log type
and then merge the predictions based on a decision rule. Based on the format and
properties of the log data used in the thesis, some model types are more suitable for
one method than the other.

3.3.1 Random Forest
Bagging, or bootstrap aggregation, is a technique for reducing the variance of an
estimated prediction function [1]. The idea of bagging is to average many noisy but
approximately unbiased models to reduce the variance. Random Forest (RF) is an
ensemble learning method for classification and regression that utilizes a modified
bagging method. It builds a large collection of de-correlated isolation trees and then
averages them. As trees can capture complex interaction structures in the data, with
relatively low bias, they are good candidates for bagging. The algorithm for Random
Forest classification is presented in Algorithm 3.1.

Algorithm 3.1 Random Forest for Classification [1]
1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.
(b) Grow a random-forest tree Tb to the bootstrapped data, by re- cursively

repeating the following steps for each terminal node of the tree, until the
minimum node size nmin is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B
1

To make a prediction at a new point x:
Classification: Let Ĉb(x) be the class prediction of the b:th random-forest tree. Then
ĈB

rf (x) = majority vote {Ĉb(x)}B
1

3.3.2 XGBoost
Ensemble learning is a technique in which multiple weak machine learning models
are combined to improve performance. For example, the Random Forest model
(presented in Section 3.3.1) is an example of a bagging (parallel) ensemble model.
Multiple decision tree models are grown in parallel, trained on random subsets of the
data, and individual model decisions are combined through a majority vote. Another
method is a boosting (sequential) ensemble where the separate models are instead
trained sequentially. Initially, the first model of the sequence is trained on a random

19

3. Theory

subset of samples from the data. It then assigns the samples for which it made
the correct prediction a low weight, and the samples with the wrong prediction a
high weight. These re-weighted samples are then put back into the data before it
is fed to the next model in the sequence where the process is repeated. Through
this technique, the next predictor in the sequence can learn from the mistakes of the
previous. Gradient boosting is a further improvement on the boosting technique, in
which the weights assigned by the weak learners are updated using gradient descent
using the error of the predicted output and the ground truth.

XGBoost, Extreme Gradient Boosting, is an optimized distributed gradient boosting
library [20]. It introduces an extreme gradient boosting algorithm and is specially
designed to improve speed and performance compared to other ensemble model
implementations. What separates XGBoost from standard gradient boosting models
is by optimizing this gradient boosting algorithm both on software and hardware
level, such as cache awareness, out-of-core computing and parallelized tree building.
It is, therefore, given the name extreme gradient boosting algorithm. This results in a
highly effective and capable decision-tree-based ensemble machine learning algorithm.
To be clear, XGBoost is in itself a gradient boosting algorithm, while the underlying
model can be considered to be a sequential tree ensemble model. For this work,
however, we refer to this entire algorithm and the underlying model as simply the
“XGBoost model”.

3.3.3 LSTM
A Recurrent Neural Network (RNN) is a type of artificial neural network that uses
sequential data, e.g. time-series data. Unlike traditional feed-forward networks,
RNNs can utilize information from previous inputs in the sequence to influence
future outputs. They do this by having recurrent connections in the network to allow
information to persist, see Figure 3.7.

Figure 3.7: Recurrent Neural Network structure example [21]

In Figure 3.7 the neural network A takes the input xt and produces the output ht.
The recurrent connection allows the information that was present during sequence
t to also be present during sequence t + 1, t + 2 and so on. You can think of an
RNN as multiple copies of the same network in a sequence, see Figure 3.8. By this
chain-like structure, RNNs have a natural architecture to work with sequential data

20

3. Theory

as information from previous sequences can influence later ones.

Figure 3.8: Unrolled Recurrent Neural Network chain structure [21]

When working with long-sequence data, RNNs have the issue of not being able to
handle long-term dependencies. In theory, RNNs should be able to handle these
dependencies, but in practice, they fail to do so. The cause of this is the vanishing
gradient problem. The information from the recurrent connections are put through
a non-linear activation function for each sequence, see Figure 3.8 where the precious
output ht−1 is through the activation function tanh. Each time the stored information
is put through an activation function, its values are in practice scaled down. For long
sequences, this results in less and less information being passed on. To solve this
problem the LSTM (Long Short Term Memory) model was presented by Hochreiter
& Schmidhuber in 1997 [22]. The LSTM model was explicitly designed to avoid the
long-term dependency problem.

As with RNNs, LSTMs also have a chain structure, but instead of only having a
single neural network layer it has four interacting in different ways, see Figure 3.9.

Ct-1

ht-1

ft
it

C't-1

ot

Ct

ht

Figure 3.9: LSTM chain structure [21]

21

3. Theory

The key mechanism in LSTMs is the cell state, which is the horizontal line running
across the top of the diagram in Figure 3.9. It runs through the entire chain with
some minor linear interactions, meaning that it is easy for information to just flow
through it unchanged. This is exactly what is wanted to be able to handle long-term
dependencies. The LSTM has the ability to add or remove information from the
cell state by point-wise operations. The left-most operation in the diagram is a
multiplication of the cell state from the previous iteration, Ct−1 and a sigmoid layer
output ft. This operation decides how much of the previous cell state we want to
keep in our current iteration and is called the “forget gate layer”. It looks at the
previous hidden state ht−1 and the current input xt, and outputs a number between
0 and 1 for each number in the cell state, see Equation (3.7).

ft = σ(Wf · [ht−1, xt] + bf) (3.7)

If the model decides to keep nothing from the previous state it is multiplied by 0,
and 1 if it wants to keep all of the previous cell state. The second operation is adding
new information to the cell state from the current input. This is done through two
steps, first by a sigmoid layer called the “input gate layer” that decides which values
should be updated (it). Secondly, candidate values (C ′t) that should be added to the
cell state are computed, see Equation (3.8). These two vectors are then combined
through multiplication and added to the cell state, as seen in Equation (3.9).

it = σ(Wi · [ht−1, xt] + bi)
C ′t = tanh(WC · [ht−1, xt] + bC) (3.8)

Ct = ft ∗ Ct−1 + it ∗ C ′t (3.9)

Lastly, the new hidden state ht, also called the output, will be computed. The output
is based on the updated cell state Ct, but a filtered version of it. A sigmoid layer
produces ot which decides what parts of the cell state will be in the output. The
cell state is put through the activation function tanh to transform the values to be
between -1 and 1. The output is then the product of the filtering index term ot and
the transformed cell state, see Equation (3.10).

ot = σ(Wo · [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(3.10)

3.3.4 Transformer
As presented in Section 2.2, when the Transformer model was published it paved a
new way of solving NLP-related tasks by using a sequence transduction model [8].
Previously recurrent nets, e.g. LSTM, were the most popular models for these tasks.
However, the authors had an idea for a new kind of solution. Instead of iteratively

22

3. Theory

going over the sequence and recurrently combining the new input with the previous
output, they just “put attention over everything”.

The transformer in Figure 3.10 consists of an encoder (left gray box) and a decoder
(right gray box). The encoder is given the source sentence and the decoder is given
the current target sentence. It could be a sentence where the two first words are
already produced but is missing the last three words. The decoder is followed by a
linear and softmax layer that outputs the token at a specified position for the target
sentence. What makes this efficient is that each single output token is one sample as
the backpropagation is only dependent on the given source and target sentence. For
recurrent models, the entire sentence to sentence is one sample as it backpropagates
through all the recurrent steps.

Figure 3.10: Transformer architecture [8]

Both the encoder and decoder begin with an embedding layer followed by positional
encoding. As the recurrent property is not present in the encoder or decoder the
positional information is not taken into consideration. Therefore, the positions of
the words are encoded into the embeddings using trigonometrical functions as seen
in Equation (3.11).

PE(pos,2i) = sin
(pos

100002i/dmodel

)
PE(pos,2i+1) = cos

(pos
100002i/dmodel

) (3.11)

23

3. Theory

The three orange blocks in Figure 3.10 are utilizing the central attention mechanism.
The implemented attention method is called “Scaled dot-product Attention” and
“Multi-head Attention” as seen in Figure 3.11. The three inputs to each of these
attention modules are Q (queries), K (keys), and V (values). For the top right orange
module, the V andK are given from the encoder (part from the source sentence). The
Q comes from the decoder (target sentence). The “Masked multi-head self-attention”
means that some positions in the decoder input are masked and thus ignored by
the self-attention layer. In practice, the attention function is computed on a set of
queries simultaneously, packed together into a matrix Q. The keys and values are
also packed together into matrices K and V . The matrix of the outputs is computed
as:

Attention(Q,K, V) = Softmax
(
QKT

√
dk

)
V (3.12)

The equation is described in a flow chart in Figure 3.11. Matrix multiplication
between Q and KT yields the pair-wise dot-product between their row vectors. In
high dimensions, this product will be close to 90°(product value around 0). However,
if the row vectors in Q and K are close to aligning it will be non-zero. The scaling
by dk is done to prevent pushing the softmax function into regions where it has
extremely small gradients (vanishing gradient problem). If Ki and Qi align with
each other, the softmax will yield a high value for index i, and multiplying this with
V yields a high value for Vi. In a way selecting Vi.

Figure 3.11: Attention concept used in the Transformer [8]. Scaled Dot-Product
Attention (left) and Multi-head Attention (right)

The encoder builds Key-Value pairs for the source sentence while the decoder builds
Queries for the target sentence. Keys can be viewed as a way to address the Values,
and the Queries can be viewed as information the decoder wants to know about the
target sentence.

24

3. Theory

3.4 Model Evaluation
For this thesis, the performance of the researched methods and models will be
measured by comparing the predicted labels of the baseband units to the ground
truth labels assigned by the SMEs.

3.4.1 F1-score
The main metric used for evaluating the classification performance for this thesis is
the F1 score. This performance metric is also the one primarily used by the team at
Ericsson which makes comparing models and methods easier. It is calculated from
the precision and recall of the results.

Precision is the number of true positives TP divided by the number of all positive
results. Since all positive results is the sum of all true positives TP and false positives
FP, we can calculate the precision as

Precision = TP
TP + FP (3.13)

Recall is the number of predicted true positives divided by the number of all positives.
Since all positives is the sum of all true positives TP and false negatives FN, we can
calculate the recall as

Recall = TP
TP + FN (3.14)

The F1-score F1 is then computed as the harmonic mean of the precision and recall,
such that

F1 = 2
Precision−1 + Recall−1 (3.15)

In a multiclass setting, the F1-score is calculated for each class in a binary classifica-
tion fashion, where one specific class is considered the positive, and all other classes
are considered negative. These scores can then be presented per class or averaged in
different ways, such as macro or weighted. The macro version takes the average of
the scores of each separate class without considering the class proportions in the data,
while the weighted version takes the weighted average with regard to the proportion
for each class.

3.4.2 Shapley and SHAP values
While some evaluation metrics focus on quantifying the predictive power or strength
of a learner or classifier, some metrics also offer insight into their interpretability.
A common scenario is, given a classifier, some input features, and a prediction, to
explain in what way the input features drove the classifier to make the prediction.

25

3. Theory

I.e., can we get insight into how the various input features affected, or caused the
model output, by perhaps assigning it some importance value?

One such metric is the Shapley value, which originally was devised as a solution
concept in cooperative game theory [3]. A solution concept is itself a rule predicting
how a game will be played.

Consider the set of all players N , and some coalition of players S ⊆ N . Then let the
real-valued function v(S) denote the worth or the total expected surplus generated
by the coalition S.

The Shapley value is then a way of fairly distributing this worth among players [23].
It gives the worth ϕi given to player i as

ϕi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
N ! (v(S ∪ {i})− v(S)). (3.16)

We can explain this formula as follows: We consider all possible coalitions of players
that can be formed without i, We then calculate their contribution by taking the
difference in worth between the coalition with, and without the player i. This is
averaged over the number of possible ways of forming the coalition. To highlight this
fact, we can also rewrite it as

ϕi(v) = 1
|N |

∑
S⊆N\{i}

(
|N | − 1
|S|

)−1

(v(S ∪ {i})− v(S)) =

= 1
no. players

∑
coalitions
without i

marginal contribution of i to coalition
no. coalitions without i of this size .

(3.17)

For a classification model, we can instead consider N to be a set of input features,
and v(S) to be the model output for some combination of input features S. E.g. for
binary classification where v(S) ∈ [0, 1] with some decision boundary of say 0.5, we
could have that ϕi(v) < 0, indicating that i contributes to a prediction of the 0 class,
or ϕi(v) > 0, indicating that i contributes to a prediction of the 1 class.

One practical issue with this approach is the number of possible coalitions there are
to consider. As seen in Equation (3.16), there are 2|N | possible coalitions, which
means that we would need to fit 2|N | classifier models. This is in practice completely
unfeasible for even the simplest models as the number of features grows.

Building of the classical Shapley values, there exists a framework specifically made
for interpreting machine learning model predictions called SHAP (SHapley Additive
exPlanations) [2]. These are based on the Shapley Values, which are optimal from a
game-theoretical point of view but implement several efficient estimation methods to
make the calculations practically feasible. Among these estimations exists estimations
methods for specific models, like a framework specifically for Ensemble models like
Random Forest and XGBoost (Sections 3.3.1 and 3.3.2) [24]. This takes advantage of
the inherent architecture of the models to reduce the number of calculations needed,
while still offering a usable estimate of the Shapely values.

26

3. Theory

3.4.3 Cross-validation
When testing the capabilities of a predictive model, it is important to separate the
data into training- and test sets. We first fit the model parameters on the training
set and then evaluate the predictive capabilities on the hold-out test set. The reason
for this is to make sure the model generalizes on unseen data, which in practice is
what it will be used on in the future.

For this reason, we would like to select model parameters using the training set
in such a way that we maximize the capabilities of the model to generalize. The
selection of model parameters can be driven by selecting different combinations of
parameters and then evaluating some metrics like the F1-score of the model to rank
which combination yielded the best result. However, if we use the test set to evaluate
these metrics for several combinations of parameters, and then select the best one,
we have in fact over-fitted the model on the test data. I.e., we have selected model
parameters that specifically work well for the test set, but not necessarily new unseen
data.

It is here we introduce the so-called validation set. This is created by splitting the
training set into a new training set and a validation set. We can now fit the model
on the new training set, and evaluate model parameters on the validation set to
select the best combination. Finally, we can then test the best model on the unseen
data in the hold-out test set to see how well the model actually generalized.

However, it could still be possible that the selected validation set might not be com-
pletely representative of the entire dataset. I.e., by evaluating our model parameters
using it we might end up with a sub-par model. To further mitigate this we can
perform k-fold cross-validation. Instead of splitting the original training set into only
one training and validation set, we do it consecutively for several splits k by dividing
it into k separate folds. For each of these splits, we let one fold act as the validation
set, and the remaining k − 1 act as the training set, as seen in Figure 3.12. We
can then test one combination of model parameters by training and evaluating on
each of these k splits and take the mean test metric (e.g. F1-score) to see how well
it generalizes over the entire training dataset. This further reduces the chances of
overfitting but does of course introduce more complexity in the fitting stage, as we
fit the model k times instead of only 1.

3.4.4 Bootstrapping
Bootstrapping is a resampling technique in which random sampling with replacement
can be carried out on a single sample dataset to create additional simulated datasets.
These simulated datasets can then be used to estimate statistics about the entire
population of which the original sample dataset is part. If the sample dataset is
large enough, and samples are drawn properly (as described), the resulting statistics
calculated over these sample datasets can be used to calculate e.g. the mean or
standard deviation of the statistic over the population. The technique is summarized
as pseudo-code in Algorithm 3.2. For example, if the chosen statistic is the accuracy

27

3. Theory

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Training dataset Test dataset

Original dataset

Test dataset

Fold 1

Fold 2

Fold 3

1. All data

2. Split training and test data

3. Fit model

Split 1

Split 2

Split 3

Split 4

Split 5

4. Evaluate model on withheld test data

Figure 3.12: Visualization of 5-fold cross-validation data splitting. After the initial
split intro training and test, the training set is further divided into k splits containing
k folds of the data each. For each split, one of the folds is used as the validation set,
while the remaining k − 1 folds are used for training.

of some classifier, it can be used to estimate its mean and standard deviation over
the dataset.

Algorithm 3.2 Bootstrap
Input: Dataset X = {x1, x2, ..., xn}, Sample size m, Bootstrap samples k
Output: List of statistics Y = {y1, y2, ..., yk}

1: Initialize empty list Y ← ∅
2: for Bootstrap iteration up to k do
3: Draw m samples XSample with replacement and uniform probability from X
4: Calculate statistic y from XSample and add this to Y
5: return Y

28

4
Methods

In this chapter, we present our methodology for data ingestion, feature extraction,
and model selection for the project. In Section 4.1 we introduce the data structure for
parsing, processing, and representation of the data for the models. In Section 4.2 we
present the different feature representations extracted from the logs. In Section 4.3 the
workflow and model of the main baseline solution are presented. In Section 4.4 other
more experimental solutions and their methods that were interesting to investigate
are presented.

4.1 Data ingestion

The data ingestion is handled by a data pipeline created for this thesis. The data
pipeline houses functionality for parsing and processing the data as well as the
representation of the data for the models. The initial dataset contains a collection of
units with corresponding labels, where each unit has several log files represented as
text files with the lines of the log. Several preprocessing steps are common among
the investigated solutions and are therefore presented in this section.

4.1.1 Data Structure
During the initial data ingestion and feature extraction, the log data and the features
are stored in two custom data structures we denote Unit and Log. We let X =
{X1, X2, ..., Xn} denote the dataset as a list of Unit objects, and Y = {y1, y2, ..., yn}
denote the corresponding classification labels where yi ∈ {NF, SW, HW}.

Each Unit X ∈ X is itself capable of containing multiple Log objects of different log
types. E.g., a unit might contain both the hwlog and llog, but perhaps not the ailog.
Each such Log object contains both the original text lines, as well as various features
extracted from these lines such as vectorized word-count embeddings or parameter-list
aggregates (see Section 4.2). Consider a Log object L, with N lines of log entries,
and some feature embedding dimension M . We make the distinction between two
main feature categories: A log-level feature FLog(L) represents the entire log file
as one numerical vector, such that FLog(L) ∈ RM . A line-level feature embedding
FLine(L) creates feature vectors for each line in the log file as FLine(L) ∈ RN×M .

29

4. Methods

4.1.2 Basic Regex Parsing
The first step in the data pipeline is regex parsing of the logs. This is to transform
the logs from an unstructured representation into a structured representation as
seen in Figure 4.1. As each of the log types have their data structured differently,
individual regex patterns had to be written for each of the log types.

Unstructured Text
[Thu Jun 09 06:07:04 2005] [notice] LDAP: Built with OpenLDAP LDAP SDK
[Thu Jun 09 06:07:04 2005] [notice] LDAP: SSL support unavailable
[Thu Jun 09 06:07:05 2005] [error] env.createBean2(): Factory error creating channel.jni:jni (channel.jni, jni)
[Thu Jun 09 06:07:05 2005] [error] config.update(): Can't create channel.jni:jni
[Thu Jun 09 06:07:19 2005] [notice] jk2_init(): Found child 2330 in scoreboard slot 0
[Thu Jun 09 06:07:19 2005] [notice] jk2_init(): Found child 2337 in scoreboard slot 7
[Thu Jun 09 06:07:19 2005] [notice] jk2_init(): Found child 2332 in scoreboard slot 2

Structured Representation
T Level Process Content

2005-06-09 06:07:04 notice LDAP Built with OpenLDAP LDAP SDK
2005-06-09 06:07:04 notice LDAP SSL support unavailable

2005-06-09 06:07:05 error env.createBean2() Factory error creating channel.jni:jni (channel.jni, jni)

2005-06-09 06:07:05 error config.update() Can't create channel.jni:jni

2005-06-09 06:07:19 notice jk2 init() Found child 2330 in scoreboard slot 0
2005-06-09 06:07:19 notice jk2_init() Found child 2337 in scoreboard slot 7

2005-06-09 06:07:19 notice jk2_init() Found child 2332 in scoreboard slot 2

Static features, Time normalization
Regular expressions

Figure 4.1: Example of transforming a unstructured log into a structured represen-
tation using regex patters.

4.1.3 Advanced Structured Parsing
After the logs have been processed into a structured format, a more advanced parsing
method such as Spell or Drain is applied to the structured representation of the logs
(see Sections 3.1.1 and 3.1.2). This produces the EventIds, EventTemplates, and
parameter lists as can be seen in Figure 4.2.

Structured Representation
T Level Process Content

2005-06-09 06:07:04 notice LDAP Built with OpenLDAP LDAP SDK
2005-06-09 06:07:04 notice LDAP SSL support unavailable

2005-06-09 06:07:05 error env.createBean2() Factory error creating channel.jni:jni (channel.jni, jni)

2005-06-09 06:07:05 error config.update() Can't create channel.jni:jni

2005-06-09 06:07:19 notice jk2 init() Found child 2330 in scoreboard slot 0
2005-06-09 06:07:19 notice jk2_init() Found child 2337 in scoreboard slot 7

2005-06-09 06:07:19 notice jk2_init() Found child 2332 in scoreboard slot 2

Structured Representation
T Level Process EventId EventTemplate Parameters

2005-06-09 06:07:04 notice LDAP E1 Built with OpenLDAP LDAP SDK []
2005-06-09 06:07:04 notice LDAP E2 SSL support unavailable []
2005-06-09 06:07:05 error env.createBean2() E3 Factory error creating <*> (<*>, <*>) ["channel.jni:jni", "channel.jni", "jni"]
2005-06-09 06:07:05 error config.update() E4 Can't create <*> ["channel.jni:jni"])
2005-06-09 06:07:19 notice jk2_init() E5 Found child <*> in scoreboard slot <*> [2330, 0]
2005-06-09 06:07:19 notice jk2_init() E5 Found child <*> in scoreboard slot <*> [2337, 7]
2005-06-09 06:07:19 notice jk2_init() E5 Found child <*> in scoreboard slot <*> [2332, 2]

Identify message/event types
Log parsers like Spell, Drain, IPLoM

Figure 4.2: Example of information extracted from a structured log by log parsers.

30

4. Methods

4.1.4 Tokenizing
Several embeddings methods, like BOW, TFIDF, and Word2Vec, all work by em-
bedding text data in the form of tokens. This requires that the lines of the logs are
divided into individual tokens through tokenization. In normal NLP circumstances,
this could be achieved by simply splitting a line by white spaces and other special
characters. However, for logs, there are usually many more characters that can
represent boundaries between potential tokens, such as brackets, parentheses, equal
signs, etc. Further, several potential tokens might pose issues for tokenizers, such
as numbers, timestamps, or IP addresses. A token consisting of a single number
could for example be any number between zero and a few million, which would lead
to vocabulary sizes increasing uncontrollably, i.e. they have a high cardinality. A
solution to this is by first filtering out these values from the string using regular
expressions, and replacing them with special tokens. Consider the example in Ta-
ble 4.1. Here we identify that the timestamp of the log entry has a high cardinality,
and potentially the two numbers 2330 and 0. For this reason, we write a simple
regular expression to find these types of entries and replace them with the special
tokens <T> for timestamps and <N> for number. We call this step the Filter step.
After this step, we identify the typical delimiters for this log type. Here we chose
white spaces, brackets, parentheses, and colons. By splitting on these delimiters we
get a list of tokens in the Token step. Finally, we can also apply lower casing in the
Lowercase step to further reduce the size of the vocabulary.

For each log type, we specify these filter patterns to replace potentially problematic
tokens like numbers, as well as lists of delimiters that are typical for each log type.
Since this configuration is only specified once per unique log type in the dataset, it
is feasible to do it manually, and without domain knowledge about the log contents.

Table 4.1: Example of how tokenization is performed on a log line.

Step Data
Input [Thu Jun 09 06:07:19 2005] [notice] jk2_init(): Found child 2330 in scoreboard slot 0
Filter <T> [notice] jk2_init(): Found child <N> in scoreboard slot <N>
Token [’<T>’, ’notice’, ’jk2_init’, ’Found’, ’child’, ’<N>’, ’in’, ’scoreboard’, ’slot’, ’<N>’]
Lowercase [’<t>’, ’notice’, ’jk2_init’, ’found’, ’child’, ’<n>’, ’in’, ’scoreboard’, ’slot’, ’<n>’]

4.2 Feature Extraction
Various feature extraction methods of the logs have been implemented for this thesis.
While some of these are commonly used in NLP settings, some are also related to
more classical data mining approaches used in log analysis. They are all presented
in Table 4.2.

4.2.1 Word token counts
The entire log file is represented by a BOW (Section 3.2.1) or TFIDF (Section 3.2.2)
representation of the word tokens present in the log. This is computed using a
CountVectorizer from the Python library Scikit-learn [18]. All the log files are

31

4. Methods

Table 4.2: Feature representations of the logs

Code Feature Name Description

word Word token counts BOW or TFIDF representation of
the tokens in the logs

event Event token counts
BOW or TFIDF representation of
the EventIds in the logs from log
parsers

param Parameter aggregates Aggregates of parameter extracted
from logs by log parsers

waemb Weighted Average Embedding Continuous Word2Vec line embed-
dings

viewed as a corpus where a log file is represented as a list of lines, where each line
is a list of tokens. It is also capable of producing N-grams of the tokens within the
same sentence (line). Each log type has its own BOW vocabulary and does not share
it with the other log types. Pseudocode for this feature extraction process can be
seen in Algorithm 4.1.

Algorithm 4.1 Word token count embedding
Input: List of logs L, embedding dimension d
Output: List of logs L with word count feature added

1: Initialize empty list XLogs
2: for Every log L ∈ L do
3: Initialize empty list XLog
4: for Every line l ∈ L do
5: for Every token w ∈ l do
6: Append w to XLog

7: Append XLog to XLogs

8: Generate BOW or TFIDF embedings X ∈ R|L|×d from XLogs
9: for Index i← 0 to |L| do

10: Store row vector Xi in log-level features of Li

11: return L

4.2.2 Event token counts
The log parsers Spell and Drain produces EventIds (see Section 4.1.3) which are
representations of the unique message types of each line in the log files. To represent
the sequences of the lines, i.e. in what order these message types appear in the
log, we can compute N-grams of these EventIds. This yields information of both
the occurrences of individual lines with 1-grams, but also the occurrences of line
sequences with e.g. 2-grams or 3-grams. Consider the example where a log file
contains the sequence of EventIds [E1, E2, E1, E3]. A 1-gram representation of
this sequence would tell how many of each message type was found in the log file.

32

4. Methods

However, it might be the case that event E3 very rarely should follow event E1, where
a 2-gram representation would be able to capture this feature with the 2-gram (E1,
E3). We wanted to include this type of feature to examine if the sequence of log
entries might be indicative of the fault type of the unit. Each of the log types has its
own vocabulary of the N-grams represented using BOW or TFIDF. Pseudocode for
this feature extraction process can be seen in Algorithm 4.2.

Algorithm 4.2 Event token count embedding
Input: List of logs L, embedding dimension d
Output: List of logs L with event count feature added

1: Initialize empty list XLogs
2: for Every log L ∈ L do
3: Initialize empty list XLog
4: for Every EventId e ∈ L do
5: Append e to XLog

6: Append XLog to XLogs

7: Generate BOW or TFIDF embedings X ∈ R|L|×d from XLogs
8: for Index i← 0 to |L| do
9: Store row vector Xi in log-level features of Li

10: return L

4.2.3 Parameter aggregates
The log parsers also extract parameter lists from the lines in the log files. Only the
numerical parameters are kept, and for each such series of numerical values, several
aggregates are calculated. These are the mean, standard deviation, minimum, and
maximum of the values. These are then concatenated over all EventIds for the log
files into a feature vector representing the numerical values of the parameter lists in
each log. Pseudocode for this feature extraction process can be seen in Algorithm 4.3.

4.2.4 Weighted Average Embedding
To create an embedding for an entire log line we created a method we call WAEMB
(Weighted Average Embedder). It utilizes a Word2Vec or FastText model which has
been trained on the tokens in the logs. For each line, each of the tokens in that line is
embedded into a d-dimensional vector. The embedding for the entire line is then the
weighted average of all the embedded tokens which is used to represent a line in a log
file, see Figure 4.3. Note that there is one such embedding model for each of the log
types. Pseudocode for this feature extraction process can be seen in Algorithm 4.4.

4.3 Baseline Model
The baseline solution is the main solution developed during the thesis. It was
originally thought of as an initial solution using very simple NLP techniques to get a
better understanding of how complex the classification task might be. Over time

33

4. Methods

Algorithm 4.3 Parameter aggregate embeddings
Input: List of logs L
Output: List of logs L with parameter aggregate feature added

1: Find all unique events e present in the logs L
2: Find corresponding size s of the parameter list for each unique event
3: Create mapping f(e, j) 7→ g ∈ F from an events e ∈ e and indices j = 1, ..., se in

parameter list to a new name g.
4: Let d← number of new feature names |F |
5: for Every log L ∈ L do
6: Let n← number of lines in log
7: Initialize parameter matrix X ∈ Rn×d filled with zeros
8: for Every line index i← 0 to n, event e ∈ L and parameters p ∈ L do
9: for Index j ← 0 to |p| do

10: Let g ← f(e, j) be the new feature name
11: Let Xig ← pj

12: Initialize empty list of aggregate features XAgg
13: for Feature name g ← 0 to d do
14: Extract parameter series column x← X:,g
15: if x contains only numeric values then
16: Append mean of x to XAgg
17: Append standard deviation of x to XAgg
18: Append minimum of x to XAgg
19: Append maximum of x to XAgg

20: Store matrix X in line-level features of L
21: Store matrix XAgg in log-level features of L
22: return L

its performance increased to a point where it had to be considered to be the main
solution for this thesis.

The prediction model chosen for the baseline solution is the gradient boosting model
XGBoost [4]. As described in Section 4.1, each unit could contain multiple types
of log data. Since the prediction is at unit-level, and not necessarily log-level, the
prediction model needs to be able to handle multimodal data. Therefore two different
types of architectures using XGBoost have been implemented in this thesis that can
work with multiple data types. The main one is utilizing early fusion, and the other
is an alternative variant that utilizes late fusion.

4.3.1 Early fusion XGBoost model
The main baseline model architecture uses early fusion where it concatenates feature
vectors of each log type in a unit into a single feature vector for the entire unit. For
example, taking the word feature vectors for the log types in the unit and concatenate
them into one vector that represents the entire unit. This feature vector is then
given to an XGBoost model for classification, see Figure 4.4.

34

4. Methods

Algorithm 4.4 Weighted Average Embedding
Input: List of logs L, embedding dimension d
Output: List of logs L with weighted average embedding feature added

1: Initialize empty list XLines
2: for Every log L ∈ L do
3: for Every line (tokenized list) l ∈ L do
4: Append l to XLines

5: Fit Word2Vec or FastText model on XLines
6: for Every log L ∈ L do
7: n← number of lines in log
8: Initialize embedding matrix X ∈ Rn×d

9: for Every line l ∈ L and index i← 0 to n do
10: m← number of tokens |l| in line
11: Generate embeddings XLine ∈ Rm×d from l
12: Create column-wise average X̂Line ∈ Rd from XLine
13: Let Xi ← X̂Line

14: Store matrix X in line-level features of L
15: return L

Raw Log Line

Tokenized

Filtered

"XXXX-YY-28t20:08:01.985980+00:00 du1 pghd[3213]: rlog: rlog: $ ordered restart $ XXXX-YY-28 20:08:01 $ - $ - $ cold with test $ - $ - $ 'manual restart'"

'ordered restart cold test manual restart'

['ordered', 'restart', 'cold', 'test', 'manual', 'restart']

Word2Vec Emb. [[0.2, 1.3, ..., -0.5], [1.2, -0.3, ..., -1.5], ..., [0.2, 1.3, ..., -0.5]]

Waemb [0.7, 0.5, ..., -1.0]

Figure 4.3: Workflow of the Weighted Average Embedding (WAEMB) method

4.3.2 Late fusion XGBoost model

The late fusion variant does not concatenate the feature representation of the log
types but instead has one XGBoost model per log type. Each log type’s feature
representation is given to an XGBoost model for classification. This yields a prediction
for each log type. The classification for the entire unit is made by a softmax layer of
the summed prediction probabilities of each model, see Figure 4.5.

4.3.3 Model Selection

For both the early- and late fusion variants of the baseline model, there are several
combinations of features and hyperparameters to consider:

1. What logs should be used? It might e.g. be the case that only a subset of
the logs actually contains useful information. Theoretically, we have 25−1 = 31
different combinations of logs to consider.

35

4. Methods

Unit
Data

Features
ailog

Features
bpmlog

Prediction

Features
llog

Features
hwlog

Features
uboot

XGBoost

Figure 4.4: Architecture of the implemented early fusion XGBoost model

2. What features should be used? If we consider the features of word token
counts, event token counts, and parameter aggregates, there are 3! = 6
combinations for each log file.

3. What feature parameters should be used? In the case of performing
BOW or TFIDF on e.g. words or events in the log files we e.g. need to consider
the maximum vocabulary size, and the n-gram ranges. If we would like to try
both BOW and TFIDF, 3 different vocabulary sizes, and 2 n-gram ranges, this
would mean 2× 3× 2 = 12 different combinations of parameters (for only the
word count feature).

4. What model parameters should be used? Finally, we must also consider
the actual hyperparameters of the classification model. For an XGBoost model,
we can consider e.g. the max depth, learning rate (eta), and minimum split loss
(gamma) parameters, among others, which could practically yield around 30
combinations to consider. Optimally, these parameters are determined through
k-fold cross-validation on the training data. For 5-fold cross-validation, this
would mean fitting the model 5 separate times.

In total considering these options, we would have somewhere around 31× 6× 12×
30× 5 = 334 800 total model training iterations on the data to carry out. This also
assumes that we use the same feature parameters for each feature type in all log
types (i.e. not BOW for the words in some log types, and TFIDF in others). This is
of course not feasible, so we need to prune the search space using a few assumptions:

1. We only fit the model on all log types at the same time. We assume that if a
log file doesn’t contain useful features, it will not lead to useful partitions in

36

4. Methods

XGBoost
ailog

Unit
Data

Features
ailog

Features
bpmlog

Prediction

XGBoost
bpmlog

XGBoost
llog

Features
llog

Features
hwlog

XGBoost
hwlog

XGBoost
uboot

Features
uboot

Softmax

Figure 4.5: Architecture of the implemented late fusion XGBoost model

the leaves of the XGBoost model. We can then inspect the feature importances
of the model and investigate which log files contributed most to the predictions.
In addition, we assume that the model is not hindered by the addition of
additional, potentially non-beneficial log files.

2. We separately investigate the feature types such that the model only uses
one feature representation at a time. This is to best understand what feature
parameters should be used in the next step. We test different parameters for
feature extraction for each of the 3 separate feature types to best understand
how well each feature works compared to each other:

(a) For the word token counts we consider 12 combinations

(b) For the event token counts we consider 16 combinations

(c) For the parameter aggregates we consider 2 combinations

3. Finally we consider the 23−1 = 7 combinations of the three feature types word
token counts, event token counts, and parameter aggregates, extracted
using the best feature parameters found in the previous step to best understand
which ones are the most useful in relation to each other.

Including 5-fold cross validation, this yields a total of 1×5×(12+16+2)+5×7 = 185
fits of the model in total.

37

4. Methods

4.4 Experimental Implementations
Besides variants of the baseline implementation, other possible solutions and methods
to the thesis problem were researched and tested. Due to the recent success of ML
models utilizing the attention mechanism, presented in the paper Attention is all
you need[8], a Transformer-like model was implemented and tested. Just as natural
language, logs are also generated in a sequence which is an area where LSTMs
have been successfully utilized. Therefore an LSTM based solution has also been
implemented and tested.

4.4.1 Transformer Model
The Transformers utilized in this thesis consist of two variants, one utilizing positional
encoding, and one without. A simplified visualization of the used model architecture
is shown in Figure 4.6.

Encoder
ailog

Unit
Data

Encoder
bpmlog

Encoder
llog

Encoder
hwlog

Encoder
uboot

Hidden state
ailog

Hidden state
bpmlog

Hidden state
llog

Hidden state
hwlog

Hidden state
uboot

Neural Net
(softmax)

Prediction

Figure 4.6: Simplified architecture of the implemented Transformer

The model architecture can be divided into two main parts, the individual log type
part, and the combined log types part. Since the data contains multiple log types
per unit we decided to use one Transformer encoder to process the features for each
of the log types, see Figure 4.6. The data from each of the log types are given as
input to these separated input layers. Here each type of the data is put through their
individual multi-head attention block, global average pooling, dropout, and finally
a dense layer. Each of the encoders transforms each original log representation of
[512, 50] into a vector of size 30. These vectors are then concatenated into a single
feature vector representing the information contained in all the logs for the unit.
That vector is then put through a dense layer, dropout, and finally a softmax layer
for classification.

38

4. Methods

The positional encoding is done within the encoder. Both of the model variants only
utilize one multi-head attention block per log type, and not multiple blocks as are
often seen in other attention-based models such as the original Transformer. This
decision was made to reduce training and inference times since by adding one more
multi-attention head to the model you actually add five of them, one for each log
type.

Due to the length of the logs, the input to the attention layer is not the embeddings
of each word in the logs, but instead, the feature representation WAEMB which is
an embedding of an entire log line.

Unlike recurrent models such as the LSTM, Transformers have a specified maximum
sequence length. Therefore one of the issues when working with Transformers
on log data is the high variance in length. For some log types, the length of
the log could be tens of lines or in the thousands. That is also why the chosen
embedding representation for the Transformer has been line embeddings and not
word embeddings, to further decrease the sequence length. To further simplify, if
the number of lines in a log exceeds 512 only the last 512 lines are given to the
model. This reduces the computation time for the Transformer and the need for large
amounts of padding. The input size of 512 is commonly used in language models
such as BERT and was therefore also chosen here. The reason behind choosing the
512 last lines in the log files comes from the assumption that if a unit is experiencing
faulty behavior it is likely that the cause behind it occurred recently. For those units
that do not contain all the log types, the input will be dummy encoded by zeros.
The model does not mask the dummy encoded input, meaning that they will affect
the gradient. The transformers were not trained with cross-validation, but instead
on a single training split of the data with early stopping patience of seven epochs on
the validation loss.

4.4.2 LSTM Model

The LSTM solution implemented in this thesis has a lot in common with the Trans-
former model. Again, each of the log types used is given as input to LSTM models,
specific for that log type. The models run through the WAEMB representations
of the logs for the unit. If some logs are not available in the unit they are dummy
encoded as zeros. The last hidden state in the LSTM models from all the log types,
see Section 3.3.3, are then concatenated into one single feature vector. That vector
is then put through a softmax layer for classification. See Figure 4.7.

Unlike the Transformer model, the LSTM model masks the gradients of the missing
log types for the units. Meaning that for units that do not have all of the log files
present, the gradient will not be affected by a dummy encoded input. The LSTM
model was not trained using cross-validation, but on a single train-test split with
early stopping patience of seven epochs on the validation loss.

39

4. Methods

LSTM
ailog

LSTM
bpmlog

LSTM
llog

LSTM
hwlog

Unit
Data

Dense
Layer

Dense
Layer

Dense
Layer

Dense
Layer

Concatenation

Linear
(prediction)

LSTM
uboot

Dense
Layer

Figure 4.7: Architecture of LSTM model

4.5 Evaluation Method

The methodology for evaluation of the feature combinations and models are as
follows:

1. Baseline XGBoost model:

(a) Extract the following features from the log files in the dataset: word,
event, and param.

(b) Fit the early- and late fusion XGBoost models on each feature type
separately using different feature parameters to see how best to extract
each feature type.

(c) Fit the early- and late fusion XGBoost models on combinations of the
best features in the previous step to see which combination yields the best
result

(d) Save the best model for the best feature combination

2. LSTM and Transformer models:

(a) Extract the waemb feature from the log files.
(b) Fit the LSTM and Transformer models on the embeddings using different

40

4. Methods

sizes of the embedding dimension.
(c) Save the best models for the best embedding dimension

3. Compare the best models and corresponding feature combinations using the
holdout test dataset and compare macro F1 scores, as well as F1 scores for
each class.

All of the model types are trained on an oversampled training set. The oversampling
is random with replacement within the three classes. This results in a balanced
training dataset in regards to the classes.

4.6 Used Hardware and Software
The different models were evaluated mainly using two different platforms:

• Part of the evaluation was done on a laptop provided by Ericsson. Among its
specifications is an Intel i7-8650U @ 1.90Hz with four physical cores and eight
logical cores, as well as 32GB DDR4 memory.

• The LSTM model was trained on an Ericsson compute cluster using an Nvidia
Tesla A100 GPU.

The software was written in Python 3.7 and major libraries used include Scikit-learn,
TensorFlow and Keras, PyTorch, Nltk, Gensim, XGBoost, and HuggingFace for the
Transformers.

41

4. Methods

42

5
Results

5.1 Baseline Models
In this section, we present the results for the baseline XGBoost models which were
the first models tested. The results here represent what was achievable using the most
straightforward NLP techniques for feature extraction, as well as the comparatively
lightweight classification model XGBoost.

5.1.1 Early fusion XGBoost model
In Table 5.1 we see the validation set performance of the early fusion XGBoost
model for different word embeddings. The tested embeddings methods are BOW
and TFIDF for different numbers of features (maximum vocabulary size), as well
as n-gram ranges. Here, an n-gram range of [1,3] means that 1-grams, 2-grams,
and 3-grams are considered when building the vocabulary. Evidently, it seems
both BOW and TFIDF work equally well, with n-gram ranges of either [1,1] or
[1,3] as long as the maximum vocabulary size is at least 500. We note that the
standard deviation of the scores is large compared to the difference between different
feature representations. For this reason, we can’t really say that any of the top
representations is evidently better than the other.

We decide to use 1000-dimensional BOW embeddings with n-gram ranges of [1,3]
going forward for a few reasons. It easier to interpret than the TFIDF embeddings,
the added complexity of 1000 dimensions over 500 is not an issue as the model is
itself quite simple and easy to run as-is. Also, by having access to 2-grams and
3-grams it might be easier to interpret the resulting features, as this gives more
specific feature such as ’download starting’ and ’download done’, compared to
the disjoint feature ’download’, ’starting’, ’done’ which might be hard to relate
with each other.

In Table 5.2 we see the validation set performance of the early fusion XGBoost model
for different event embeddings. We test EventIds produced by different log parsers,
and the tested embeddings methods are BOW and TFIDF for different numbers of
features (maximum vocabulary size), as well as n-gram ranges. Here it seems that
the most important parameter is the n-gram ranges. If we use a range of [1, 1], i.e.
only counting the number of different EventIds, we get the worst performance. When

43

5. Results

Table 5.1: Resulting F1-scores of the early fusion model on 5-fold cross-validation
for different word embedding methods. The table is sorted by the F1 Macro score in
descending order and presented as the mean score plus-minus the standard deviation.

Mode Features Ngrams F1 Macro HW NF SW
tfidf 500 [1, 1] .905±.014 .951±.006 .855±.029 .910±.020
bow 1000 [1, 1] .905±.016 .953±.005 .849±.039 .913±.016
bow 500 [1, 1] .905±.013 .954±.004 .847±.032 .914±.016
bow 1000 [1, 3] .903±.013 .952±.005 .842±.031 .915±.017
tfidf 1000 [1, 3] .900±.015 .951±.004 .846±.033 .905±.021
tfidf 1000 [1, 1] .896±.015 .950±.004 .834±.033 .905±.019
bow 500 [1, 3] .894±.020 .948±.007 .831±.046 .903±.013
tfidf 500 [1, 3] .892±.019 .946±.007 .830±.044 .899±.014
tfidf 100 [1, 1] .884±.023 .937±.006 .821±.051 .894±.020
bow 100 [1, 1] .880±.020 .936±.005 .812±.039 .892±.022
tfidf 100 [1, 3] .815±.013 .887±.005 .722±.040 .835±.010
bow 100 [1, 3] .807±.011 .879±.009 .713±.029 .829±.015

we increase this range to include 2-grams and 3-grams we get better performance,
indicating that the actual order of the events may play a role. Evidently, it seems
both BOW and TFIDF work equally well, with n-gram ranges of either [1,1] or
[1,3] as long as the maximum vocabulary size is at least 500. We note that the
standard deviation of the scores is large compared to the difference between different
feature representations. For this reason, we can’t really say that any of the top
representations is evidently better than the other.

We decide to use 1000-dimensional BOW Drain EventIds with n-gram ranges of [1,3]
going forward. It is, once again, easier to interpret than TFIDF embeddings and the
added complexity of 1000 dimensions over 500 is not an issue.

In Table 5.3 we see the validation set performance of the early fusion XGBoost model
for different parameter aggregates produced by different parsers. There is really no
discernible difference between the two parsers, and any of them seems to work. Of
note, is that these scores seem to be on par with the scores using the EventIds in
Table 5.2. Since we chose the Drain parser in that table, we choose it here as well
going forward.

In Table 5.4 we see the validation set performance of the early fusion XGBoost model
for different combinations of the best word, event, and parameter representations
presented and chosen in Tables 5.1 to 5.3. Here it is clear that the driving feature
behind the model performance is the word embeddings. There is no noticeable
difference between including either event- or parameter representations of the log as
long as the word representations are present. This seems to indicate that neither the
order of the lines as represented using n-grams of the EventIds nor the numerical
values found in the parameter lists produced by Drain offer anything which is not

44

5. Results

Table 5.2: Resulting F1-scores of the early fusion model on 5-fold cross-validation
for different event embedding methods. The table is sorted by the F1 Macro score in
descending order and presented as the mean score plus-minus the standard deviation.

Parser Mode Features Ngrams F1 Macro HW NF SW
drain bow 500 [1, 3] .824±.016 .901±.007 .736±.027 .836±.017
drain bow 1000 [1, 3] .824±.015 .903±.007 .727±.039 .840±.014
drain tfidf 500 [1, 3] .816±.008 .898±.007 .719±.014 .832±.017
drain tfidf 1000 [1, 3] .816±.009 .898±.010 .719±.019 .832±.010
spell tfidf 500 [1, 3] .815±.017 .895±.011 .718±.024 .833±.023
spell bow 1000 [1, 3] .815±.023 .890±.010 .723±.042 .831±.025
spell tfidf 1000 [1, 3] .815±.017 .890±.009 .723±.026 .830±.021
spell bow 500 [1, 3] .808±.033 .886±.015 .710±.064 .827±.029
drain bow 1000 [1, 1] .807±.009 .883±.015 .716±.025 .823±.027
drain bow 500 [1, 1] .800±.012 .880±.014 .700±.048 .819±.016
drain tfidf 500 [1, 1] .792±.010 .876±.009 .691±.030 .808±.008
drain tfidf 1000 [1, 1] .791±.004 .877±.009 .696±.013 .800±.011
spell bow 1000 [1, 1] .789±.020 .871±.006 .683±.045 .813±.019
spell bow 500 [1, 1] .788±.019 .868±.007 .684±.041 .813±.022
spell tfidf 1000 [1, 1] .787±.011 .869±.009 .691±.020 .801±.011
spell tfidf 500 [1, 1] .779±.020 .863±.014 .678±.043 .797±.018

Table 5.3: Resulting F1-scores of the early fusion model on 5-fold cross-validation
for parameter aggregates of different log parsers. The table is sorted by the F1 Macro
score in descending order and presented as the mean score plus-minus the standard
deviation.

Parser F3 Macro HW NF SW
drain .737±.029 .829±.018 .641±.061 .742±.027
spell .730±.023 .816±.010 .638±.043 .734±.031

already found in the word embeddings (in the case of this classification task). For
this reason, we see no reason to include neither the representations of the events nor
the parameters for the final model. In other words, we only use the word embeddings
as chosen in Table 5.1.

Finally, we also visualize the top important features using their SHAP values, as seen
in Figure 5.1. Here we can e.g. see that the model has found a positive correlation
between the words ’error’, ’disk’, and ’hw’ in the hwlog and the hardware fault
class. In addition, we also take the mean of the absolute SHAP values for the different
log types to investigate which log type contributed the most to the prediction. These
results can be seen in Figure 5.2 where we see that llog seem to be most important
in determining the NF and SW class, while hwlog is most important for the HW class.

45

5. Results

Table 5.4: Resulting F1-scores of the early fusion model on 5-fold cross-validation
for combinations of the best feature representations found previously. The table is
sorted by the F1 Macro score in descending order and presented as the mean score
plus-minus the standard deviation.

Words Events Parameters F1 Macro HW NF SW
X - - .910±.016 .955±.005 .855±.030 .919±.021
X - X .904±.019 .952±.006 .844±.041 .915±.020
X X X .903±.013 .952±.006 .846±.035 .911±.009
X X - .902±.013 .953±.005 .842±.035 .911±.008
- X - .826±.013 .901±.004 .735±.021 .842±.018
- X X .818±.013 .901±.006 .716±.023 .839±.014
- - X .729±.023 .825±.013 .635±.054 .728±.027

Figure 5.1: Top features by their corresponding SHAP value for the early fusion
model. The horizontal position indicates whether the feature contributed to a positive
prediction, and the color indicates the magnitude of the feature value.

5.1.2 Late fusion XGBoost model

Using the best feature representations for words, events, and parameters found in
Section 5.1.1 we also investigate which combination of these work best for the late
fusion model, as seen in Table 5.5. Once again, we see that the most useful feature
is the word representations, with both the events and parameters offering little to
help the classification performance. Again, we can use only the word representations
for the final late fusion model.

5.2 Experimental Models

In this section, we present the results achieved using the more experimental LSTM
and Transformer models. These results should be viewed in relation to the baseline
results in Section 5.1 as these models are comparatively more complex and utilize
features in the form of WAEMB which represent the logs on a per-line level.

46

5. Results

llog hwlog ailog uboot bpmlog
Log type

0

1

2

3

4

5
SH

AP
 V

al
ue

Mean of absolute SHAP values per log type and class
for the Early Fusion XGBoost model

Class
NF
HW
SW

Figure 5.2: Visualization of the mean SHAP value per sample per log type of the
early fusion XGBoost model. The values are also grouped by the true label for the
corresponding samples.

Table 5.5: Resulting F1-scores of the late fusion model on the validation set for
different word embedding methods. The table is sorted by the F1 Macro in descending
order.

Words Events Parameters F1 Macro HW NF SW
X - - .781±.020 .905±.014 .682±.035 .756±.035
X X - .780±.022 .909±.011 .674±.046 .757±.042
X X X .767±.036 .901±.012 .647±.079 .752±.057
X - X .760±.028 .897±.016 .652±.037 .730±.051
- X - .703±.022 .801±.015 .610±.039 .700±.033
- X X .668±.017 .821±.008 .542±.030 .641±.028
- - X .655±.024 .802±.017 .526±.054 .637±.042

5.2.1 Transformer
In Table 5.7 we evaluate the Transformer model validation performance for different
sizes of the WAEMB Word2Vec embeddings and whether or not the positional
encoding of the lines help the model, For each combination, the model was trained
using stochastic gradient descent using the ADAM optimizer with 0.005 learning rate,
0.9 for beta_1 and 0.999 for beta_2. The number of training epochs was limited by
using early stopping with validation patience of 7 epochs, see Table 5.6 for model
hyperparameters and training parameters.

Taking the standard deviation of the scores into account, it is evident that any of
the dimensions between 25 and 100 seem to work for the model. In addition, we also
see that the positional encoding might even make the model perform slightly worse.
This implies that the model doesn’t need to take the order of the lines into account
when performing classification on the units. As the top scores are within the margin
of each other for different embedding sizes, it appears to be sufficient to choose the

47

5. Results

Table 5.6: Hyper parameters used in Transformer model

Hyperparameter Value
Input size [25, 50, 100]
Attention heads 3
Feed Forward dimension 50
Max sequence 512
Positional Encoding [False, True]
Dropout rate 0.1
Learning rate 0.005
Early stopping 7

25-dimensional embedding without positional encoding for the final model

Table 5.7: Resulting F1-scores of the Transformer model over 100 bootstrap
iterations with replacement on the validation data for different WAEMB embedding
dimensions and positional encoding. The table is sorted by the F1 Macro score in
descending order and presented as the mean score plus-minus the standard deviation.

Dimension Positional F1 Macro HW NF SW
100 False .889±.015 .934±.009 .820±.030 .912±.018
25 False .887±.015 .930±.010 .819±.029 .913±.019
50 False .881±.013 .928±.009 .812±.025 .903±.016
50 True .879±.013 .924±.009 .812±.025 .901±.019
25 True .874±.014 .917±.010 .783±.030 .921±.016
100 True .860±.015 .911±.011 .778±.028 .892±.019

In Figures 5.3 and 5.4 we can see the training history for the chosen Transformer
model. We can see that after around 10 epochs there is no further improvement in
the model’s validation classification performance. For information on the training
histories of the other tested models, see Appendix A.1.

5.2.2 LSTM
In Table 5.9 we evaluate the LSTM model validation performance for different sizes
of the WAEMB Word2Vec embeddings, For each combination, the model was trained
using stochastic gradient descent using the ADAM optimizer with 0.005 learning rate,
0.9 for beta_1 and 0.999 for beta_2. The number of training epochs was limited by
using early stopping with validation patience of 7 epochs, see Table 5.8 for model
hyperparameters and training parameters.

Taking the standard deviation of the scores into account, it is evident that any of
the dimensions between 25 and 100 seem to work for the model. As the top scores
are within the margin of each other for different embedding sizes, it appears to be
sufficient to choose the 25-dimensional embedding for the final model

48

5. Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for Keras MultiTransformer model (pos_enc=False)
nr_units: training=2660, valid=665

logs: ['llog', 'bpmlog', 'uboot', 'ailog', 'hwlog'], waemb_dim=25
train
valid

Figure 5.3: Training and validation loss for Transformer without positional encoding
and WAEMB dimension 25

Table 5.8: Hyperparameters used in LSTM model

Hyperparameter Value
Input size [25, 50, 100]
Hidden size 50
Max sequence 3000
Recurrent layers 2
Bidirectional True
Learning rate 0.005
Early stopping 7

In Figures 5.5 and 5.6 we can see the training history for the chosen LSTM model. We
can see that after around 10 epochs there is no further improvement in the model’s
validation classification performance. For information on the training histories of the
other tested models, see Appendix A.2.

5.3 Comparison
In Sections 5.1 and 5.2 we investigated and selected the best candidate models
through evaluation on validation data. We can now compare these models against
the existing Ericsson model on the test data. These results are presented in Table 5.10.
In addition to the previously presented models in this chapter, we now also have
the Ericsson model which is the same one currently in use in production. We also

49

5. Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

0.65

0.70

0.75

0.80

0.85

0.90

Cr
os

sE
nt

ro
py

Lo
ss

Validation F1-score for Keras MultiTransformer model (pos_enc=False)
nr_units: training=2660, valid=665

logs: ['llog', 'bpmlog', 'uboot', 'ailog', 'hwlog'], waemb_dim=25
HW
NF
SW

Figure 5.4: F1-score on validation data for Transformer without positional encoding
and WAEMB dimension 25

Table 5.9: Resulting F1-scores of the LSTM model over 100 bootstrap iterations
with replacement on the validation data for different WAEMB embedding dimensions.
The table is sorted by the F1 Macro score in descending order and presented as the
mean score plus-minus the standard deviation.

Dimension F1 Macro HW NF SW
25 .709±.019 .785±.018 .612±.033 .729±.025
100 .704±.019 .775±.017 .599±.038 .740±.024
50 .673±.020 .728±.021 .586±.038 .705±.025

include a stratified baseline model which represents the base scores if we were to
guess randomly on labels with regard to their total proportion.

From these results, we can see that both the early fusion XGBoost model and the
transformer model can achieve parity with the current production model by Ericsson.
However, both the LSTM and late fusion XGBoost model struggle. We, once again,
note that the standard deviations of the top-performing models are so large that we
can’t really say which one (if any) of them is the best with regards to these metrics.

50

5. Results

0 5 10 15 20 25
epochs

0.6

0.7

0.8

0.9

1.0

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for LSTM classifier (waemb_dim=25)
nr_units: training=2660.0, valid=665.0

train
valid

Figure 5.5: Training and validation loss for LSTM model with WAEMB dimension
25

0 5 10 15 20 25
epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Cr
os

sE
nt

ro
py

Lo
ss

Validation F1-score for for LSTM classifier (waemb_dim=25)
nr_units: training=2660, valid=665

HW
NF
SW

Figure 5.6: F1-score on validation data for LSTM model with WAEMB dimension
25

51

5. Results

Table 5.10: Resulting F1-scores of the best models over 100 bootstrap iterations
with replacement on the test data. The table is sorted by the F1 Macro score in
descending order and presented as the mean score plus-minus the standard deviation.

Best Model F1 Macro HW NF SW
XGBoost Early Fusion .885±.014 .946±.009 .812±.029 .897±.016
Ericsson Model .866±.015 .937±.009 .781±.033 .878±.017
Transformer .861±.012 .934±.009 .785±.025 .865±.017
LSTM .686±.018 .787±.018 .563±.033 .708±.025
XGBoost Late Fusion .654±.023 .829±.013 .486±.049 .646±.032
Stratified baseline .325±.019 .560±.023 .186±.033 .227±.032

52

6
Discussion

From the final model comparison results presented in Table 5.10, the XGBoost model
with early fusion had the best performance according to the test evaluation. Both
in regards to F1 macro and the individual classes. The performance of our early
fusion solution compared to Ericsson is within the bootstrapped variance on the test
dataset, with ours being on the upper end for all metrics. The Transformer model is
also performing within variance compared to the Ericsson model.

The performance starts to clearly degrade with the LSTM and XGBoost late fusion
models. Their F1 macro and F1 for each class are lower and outside of the variance
than the top three models. Between the two, the performance is comparable with
the LSTM model having higher scores on all metrics besides F1-score for HW.

With the performance of our XGBoost early fusion model being better or as good
as the Ericsson model we have to start to compare their workflows to distinguish
them. As presented in Section 1.3 the Ericsson model utilizes a manual rule-based
data-mining feature extraction for the logs. Subject Matter Experts (SME) informs
data scientists of subsets and features in the logs that should be informative of the
state of the unit. This method requires people with domain knowledge to understand
what should be extracted from the logs. With large expanding companies, having
this domain knowledge timely available within multiple teams is difficult to achieve.
This is where NLP techniques are very useful. Instead of transforming manually
determined subsets of the logs into numerical representations, NLP techniques have
the ability to automatically transform almost the entirety of the logs for any given
log type. This results in being able to present the model with more information from
the logs, while also giving the model itself the responsibility to find informative parts
of the data. This generalized and scalable approach makes it easier to work with
new types of data where domain knowledge is lacking. The only requirement is of
course the access to labeled datasets, which will require some SME understanding of
the issue in the labeling stage.

Besides not relying as much on domain knowledge, using NLP techniques might also
result in a better understanding of the data. Depending on the type of prediction
model used, its interpretability could be used to gather new insights into the data.
For example, BOW and TFIDF representations of the data are easy to interpret
with an ensemble model such as the XGBoost. The effect the individual words have

53

6. Discussion

on the ensemble model’s output can be retraced back to the actual locations in the
log file with the use of SHAP values (Section 3.4.2), see Figure 5.1. Further, words
or log lines that previously have been seen as non-informative or unnecessary might
be viewed as key features by the prediction model. This could start a discussion
between data scientists and SMEs to better understand why the model interprets
the data this way, perhaps leading to better insights about the data.

While the Transformer model also achieves performance similar to the XGBoost
model it has some drawbacks in comparison. The XGBoost utilizes BOW represen-
tations which make for both fast feature extraction and training of the model. The
Transformer model is a neural model and utilizes the feature representation WAEMB.
Additionally, to compute the Wameb representation, another neural model like
Word2Vec or FastText needs to be trained on the data. This results in a much longer
training time compared to the XGBoost model. Another drawback the Transformer
model has compared to the XGBoost model is the level of interpretability. While
the XGBoost model can detect the effect of individual words in the logs, the feature
representation WAEMB used in the Transformer is an embedding of an entire line.
This way we can only consider the effect entire lines have on the model output. Even
the key mechanism of attention utilized by the Transformer does not seem to offer
any advantage over the XGBboost model. In theory, attention can be utilized to find
relationships between lines in the logs. We have not conducted a deeper quantitative
analysis of the behavior of the attention in the model. However, from the results, we
have not seen any indication of that making a difference on this data compared to
the XGBoost model and its BOW representation. With these three things in mind,
the Transformer model achieves similar performance to the XGBoost model but with
these additional drawbacks.

The LSTM model performed significantly worse compared to the Transformer model,
even though they both used the same feature representation of the data (WAEMB)
and shared similar model architectures. Both of the models use their Transformer or
LSTM models to produce a hidden state of each log type to be concatenated and
given to a prediction layer. The Transformer model has some additional layers such
as dropout layers to help with regularization. One key difference is also that the
Transformer model has a much lower max sequence length of 512 compared to the
LSTM’s 3000. If the results were reversed you could argue that giving the LSTM more
lines from logs increases the amount of information presented, therefore increasing
performance. However, this is not the case here as the Transformer outperforms the
LSTM with less data. This point towards that there is enough information about
the state of the unit in the last 512 lines, and that the hidden states produced by the
Transformer are more representative of the data than the LSTM’s. The Transformer
is also able to retrieve information from any of 512 lines without any losses, making
the model more robust compared to LSTMs which suffer from the vanishing gradient
problem.

From our results, we have not seen convincing proof that the sequence of the lines
gives any substantial information about the state of the unit. In Table 5.7 both
Transformers with and without positional encoding have been trained and tested

54

6. Discussion

on the same data. From those results having positional encoding does not increase
the performance of the model, rather the opposite. We do however do see some
advantage of incorporating sequential information in the features in Table 5.2. The
XGBoost model using EventIds produced by Spell or Drain is performing better if
the EventIds can be expressed in N-grams of range 1-3 instead of only 1. Keep in
mind that these results are restricted by how good Spell and Drain are on the data.
Using the same XGBoost model we achieve higher results anyway by only using a
BOW representation on the tokens in the logs, see Table 5.1. In the end, the LSTM
does not perform as well as other models that do not have the sequential property.

Two different types of fusion of data for the XGBoost model have been investigated:
early and late fusion. In Table 5.10 we clearly see that the early fusion model
performs significantly better than the late fusion version. One apparent drawback of
the late fusion model is that it can not utilize the relationship of features between
the log types in its prediction. Instead, it makes a prediction for each of the log types
and then makes the final prediction based on the sum of the prediction probabilities.
If certain log types do not contain useful information for some labels their ”vote” will
simply confuse the model instead of assisting it. Implementing a more sophisticated
prediction rule is time-consuming, and taking into account the great performance
achieved with a simple early fusion method, it’s not worth the effort.

In Figure 5.1 we also see an example of how easy it is to interpret the BOW features
and their importance of the XGBoost model using SHAP values. At a glance, it is
even quite understandable even without major domain knowledge of the logs that
the features are quite reasonable. E.g., we see words like ’hw’ and ’error’ in the HW
class features, and ’software’ and ’program’ in the SW class features. In Figure 5.2
we also see that it is mainly the llog and hwlog log types that are driving the
predictions of the model. While not presented in this report, initial testing of only
utilizing these log types did indeed yield similar performance as using all log files.
Through this data-driven approach. it is then also possible to find that not all log
files suggested by the SMEs were in fact important for the classification.

Both the Transformer model and the LSTM utilizes the WAEMB feature. In
Tables 5.7 and 5.9 there are results from models that use different sizes of the WAEMB
feature. The different feature dimensions are the cause of different embedding sizes
from the Word2Vec embedding models. The higher feature dimension results in
being able to store more information about the embedded word, or in this case the
embedded log entry. For both the Transformer and the LSTM it seems that neither
increasing or decreasing the feature dimension affects the models’ performances. For
the Transformer, all the results without positional encoding are within the variance
of each other. This also applies to the LSTM model. From our results, it did not
matter if we chose 25, 50, or 100 as the embedding dimension, the models performed
similarly with most configurations. One explanation of this could be the low amount
of unique tokens present in the lines of the log files, which can easily be embedded
in the relatively low-dimensional vector space.

55

6. Discussion

6.1 Anomaly Detection and Fault Classification
One remark we made in Section 2.3 is that the area of log anomaly detection seems
to be more researched compared to that of log classification. Therefore, we instead
looked into the NLP area of document classification. However with all the information
available on log anomaly detection, one could ask if those findings could be utilized
for the classification of logs. In most of the studied papers, the main focus of anomaly
detection was to identify when an anomaly is occurring. Often in the context of
this regression analysis, sequential models such as LSTM have been used [6], [16].
As an anomaly can be represented in a single log entry or short sequences, regression
or sequence models that can process the data sequentially can capture these local
anomalies. From our results, we have not seen any indication that the sequence
of the log lines affects the fault label for the baseband unit. This causes many of
the current methods for anomaly detection to not be suitable for our thesis. From
what we have observed the state (fault label) of the log, or the entire unit, might
not be determined by a sequence of lines or where a line occurs in the log. Instead,
simply the number of occurrences of certain lines or words might be what is needed
to correctly classify the log. This type of information can be captured in log-level
feature representations such as BOW. Despite not being able to capture anomalous
sequences, models like Random Forests seem to offer sufficient predictive capabilities
for this type of data.

6.2 NLP in Log Analysis
Most of the recently published NLP techniques, such as attention, that have shown
promising results are usually on textual data written by a person. The tasks are
usually translation tasks or classifying if a sentence or document is positive or
negative. The structure of the textual data could vary heavily depending on what
type of language the text is written in. One could then ask how different the textual
data in software and hardware logs are compared to written human language such as
English or French. To better understand if commonly used NLP techniques can be
effectively utilized on data logs we conduct a simple analysis to find the similarities
and dissimilarities between written language and computer-generated logs. This
analysis was conducted on approximately 4000 logs of the log types llog and hwlog
from Ericsson. To compare the log data against human written text we chose the
IMDb (Internet Movie Database) movie review dataset [25], containing 50000 written
reviews with binary labels (positive or negative).

One simple qualitative indication of a corpus is to see how well it follows Zipf’s Law.
By Zipf’s law, if you plot the occurrences of a word against its rank in a large corpus,
you should get something that looks like the power-law distribution. For a plot with
logarithmic scales on the axis that would result in a line.

Looking at llog in Figures 6.1a and 6.1b we can see that the bar plot follows a
power-law distribution and results in a linear line in the log-log plot. This is also
found in Figures 6.2a and 6.2b for the IMDb dataset which was expected.

56

6. Discussion

0 2 4 6 8
Occurences 1e4

cold
restart

2019
on

power
bin

2018
software
ordered

home
sirpa
pmd

program
09
10
07
08
12
11
06

Top tokens: Ericsson llog

(a) Bar plot of most occurring tokens in
llog

100 101 102 103 104 105

Token Rank

100

101

102

103

104

105

106

Oc
cu

re
nc

es

Zipfs analysis: Ericsson llog

(b) Log-Log plot of occurrences of tokens
in llog relative to their token rank

Figure 6.1: Analysis of Ericsson token occurrences in the Ericsson llog

Looking at Figures 6.3a and 6.3b however, we do not see the same behavior in hwlog.
Many high-ranked tokens share a similar number of occurrences which skews a part
of the distribution. By looking at the bigrams and trigrams of hwlog in Figures 6.4a
and 6.4b we understand why this occurs. Multiple tokens seem to almost only
occur together with each other, such as power and on. Since these words only occur
together you could view them as a single ”word” instead of two, a pattern not found
in the IMDb dataset. This indicates that some highly occurring words are never
used in different contexts.

Besides looking at the occurrences of tokens we can also investigate how the sequences
of words are structured in sentences and log lines. The log parsers Spell and Drain
have the functionality to group log lines by a similarity measure to extract features
from standardized templates, see Figure 4.2. By applying Spell to these three
datasets we can estimate how diverse the construction of sentences is by computing
the number of unique EventIds for an increasing number of documents. If certain
words only appear before or after another word you could have low diversity in terms
of sentences and how words are used. This could result in words that always have
the same context. If the words in the corpus are not utilized in different contexts
and kinds of sentences you could argue that there is no need for advanced models
that can learn to understand this contextualized information.

In Figure 6.5 we see how the number of unique EventIds for the datasets increases
with the number of documents. For both llog and hwlog, we see that the number
of unique EventIds barely increases after the initial 100 documents. Indicating that
Spell within these 100 documents has already seen all possible sentence templates.
For IMDb however, we see a steady increase of new EventIds relative to the number
of documents.

57

6. Discussion

0 1 2 3 4 5 6 7
Occurrences 1e5

the
and

a
of
to
is
it
in
i

this
that

s
was

as
movie

for
with
but
film
you

Top tokens: IMDB reviews

(a) Bar plot of most occurring tokens in
IMDB dataset

100 101

Token Rank

105

Oc
cu

re
nc

es

Zipfs analysis: IMDB reviews

(b) Log-Log plot of occurrences of tokens
in IMDB dataset relative to their token
rank

Figure 6.2: Analysis of IMDb movie reviews

With this analysis, we can’t prove that there is a major distinctive difference between
written textual data (IMDb movie reviews) and the Ericsson logs. What we can see
is some indications of how the variety of sentences and combinations of words are
different in the Ericsson logs compared to IMDb’s movie reviews.

Most of the progress made in the NLP area in the last years has been because of
large language models inspired by the Transformer such as BERT (Bidirectional
Encoder Representations from Transformers) [9] and GPT-3 [10]. There is no doubt
that these models achieve state-of-the-art performance on translation tasks as well
as text classification. However, all these tasks share one common trait, the type
of data. The datasets used for these tasks are often text or documents written by
people, and not computer-generated like logs. If there is a large enough difference
between ”normal” language and computer logs in terms of how words and sentences
are constructed, these large language models might be unnecessarily complex for log
classification. From the analysis, we can show that for hwlog and llog the number
of unique sentences (log entries) does not increase as much as the IMDb dataset
relative to the number of documents, see Figure 6.5. We also observe a unique
behavior for hwlog where multiple high-occurring words only appear in the same
context throughout the entire corpus. This results in words that do not change
semantic meaning depending on context. This takes away one major property of
the language models: understanding and learning words and sentences in different
contexts. If that property is not useful there are even fewer reasons to choose a
complex language model over a simple ensemble model.

From the results presented in Table 5.10 the attention-based model performs almost
as well as the XGBoost model. However, that is with the feature representation

58

6. Discussion

(a) Bar plot of most occurring tokens in
hwlog. Some tokens are obfuscated.

100 101 102 103

Token Rank

100

101

102

103

104

105

Oc
cu

re
nc

es

Zipfs analysis: Ericsson hwlog

(b) Log-Log plot of occurrences of tokens
in hwlog relative to their token rank

Figure 6.3: Analysis of the token occurrences in the Ericsson hwlog

WAEMB which reduces the dimensionality of the log files by using sequences of
line-embeddings instead of sequences of tokens. One issue a BERT model could have
is the tokenization. A pre-trained BERT model also has a pre-trained tokenizer.
Therefore all the domain-specific words in the logs will be split into sub-words or
even individual characters since these are never seen before words for the model. This
could result in logs with tokens in the tens of thousands. As most BERT models only
take a maximum sequence length of 512 to 2048, you’ll have to implement a solution
for this problem such as a sliding window. Due to time limitations and problems
with software, a proper evaluation of a BERT model was not conducted. A simple
DistilBERT [26] model was implemented on the log type llog with a sliding window
method. Since the model is only able to train and predict on units that have llog,
the results are not comparable with the other models in this thesis. Therefore it was
chosen not to be a part of this thesis results. Figures of the training/validation loss
as well F1-scores on the validation data for the DistilBERT model can be found in
Appendix A.3.

6.3 Future Work
One type of model we did not have enough time to examine closely was a larger
language model such as BERT. In Section 6.2 we bring up our concerns of using
a language model on log data. However, we did not present any results to further
prove our speculation besides a simple pre-trained DistilBERT implementation on
the log type llog, see Appendix A.3. As this model was neither trained nor tested
on the same dataset as the other models we could not draw any conclusions based
on its results. With the immense success of language models in NLP-related tasks,
one apparent way to extend this study is to include a thorough analysis of language

59

6. Discussion

(a) Bar plot of most occurring bigrams in
hwlog. Some tokens are obfuscated.

(b) Bar plot of most occurring trigrams
in hwlog. Some tokens are obfuscated.

Figure 6.4: Bigrams and trigrams of Ericsson hwlog

models on multimodal log classification, either through a pre-trained model or entirely
from scratch.

For the XGBoost model, SHAP values for the features were computed to analyze
what features in the log files the model found informative. As shown in Figures 5.1
and 5.2 by the SHAP values we can identify individual words, n-grams, or entire
log files to be more informative for certain labels than other features. A similar
analysis for the Transformer model was not conducted, but since its performance was
similar to the XGBoost model it would be interesting to further understand how the
model uses attention for its classifications. Since the Transformer uses the WAEMB
representation, the attention can only be used to get information on how lines in
the log affect the model output compared to the XGBoost which has token-level
representation. However, we could get some new insights about the data on line-level
better understand the model’s reasoning.

Another area of analysis that could be investigated more is the log parsers Spell and
Drain. The information EventIds and parameter lists can provide are only as good
as the parsers on the data. With poor configurations, the produced EventIds and
parameters will not be informative or of use for many models. Due to the large dataset
and long log files, the training of these parsers takes extensive time which limited
the number of tested configurations. Instead, more time and resources were invested
in other areas of the thesis. It would however be interesting to further examine the
possibilities and performance of these parsers by using different configurations as
well as incorporating them in new ways for log classification.

60

6. Discussion

200 400 600 800 1000
Number of documents

102

103

104

Un
iq

ue
 E

ve
nt

Id
s (

lo
g

sc
al

e)

Unique EventIds with increasing number of documents

Corpus
Ericsson (llog)
Ericsson (hwlog)
IMDB

Figure 6.5: Number of unique EventIds (log scale) relative to the amount of
documents

61

6. Discussion

62

7
Conclusion

To classify the Ericsson baseband units using logs produced by their hardware-
and software systems, we have shown that a data-driven NLP approach combined
with an XGBoost classification model can match the current feature extraction and
production model used by Ericsson. This was done by utilizing only the word-count
BOW feature of each log type as concatenated input features to the XGBoost model.
Attempts to incorporate feature representations of the sequence of the log entries, or
parameter lists did not yield any improved results. In addition, while this word-count
representation is relatively simple, it also provides interpretable predictions of the
model when evaluated using SHAP values. These words can in turn also be used to
find the actual location of specific lines in the original logs, to provide SMEs with
practically insightful ways of interpreting the features and predictions. This data-
driven approach to feature extraction also requires less domain knowledge compared
to the existing manual data-mining feature-engineering in use at Ericsson. In practice
this is then a more scalable method of generating features for ML, allowing for faster
implementation of similar ML models for other products where logs are used for
classification.

Furthermore, while larger deep learning models like Transformers combined with
neural embeddings like Word2Vec can produce similar results, they are also com-
paratively complex in relation to the baseline solution. Our explanation of this
is that the hardware- and system log data extracted from the baseband units do
not show the same high variability in sentence structure, nor seem to depend on
structures of sequences for different hardware- or software faults. We also claim that
care should be taken when treating logs as texts found in other classical NLP tasks,
like sentiment analysis, or document classification where the text is in fact directly
generated by humans, as opposed to automatic logging systems.

63

7. Conclusion

64

References

[1] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical learning
– data mining,” in, second. 2013, pp. 587–602.

[2] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems 30, I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., Curran Associates, Inc., 2017, pp. 4765–4774. [Online].
Available: http://papers.nips.cc/paper/7062-a-unified-approach-to-
interpreting-model-predictions.pdf.

[3] L. S. Shapley, Notes on the n-Person Game II: The Value of an n-Person
Game, 1951.

[4] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16, San Francisco, California, USA:
ACM, 2016, pp. 785–794, isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.
2939785. [Online]. Available: http : / / doi . acm . org / 10 . 1145 / 2939672 .
2939785.

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” in 1st International Conference on Learning
Representations, ICLR 2013 - Workshop Track Proceedings, 2013.

[6] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings of
the ACM Conference on Computer and Communications Security, 2017. doi:
10.1145/3133956.3134015.

[7] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao,
P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of sequential and
quantitative anomalies in unstructured logs,” in IJCAI International Joint
Conference on Artificial Intelligence, vol. 2019-August, 2019. doi: 10.24963/
ijcai.2019/658.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems, vol. 2017-December, 2017.

[9] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL HLT
2019 - 2019 Conference of the North American Chapter of the Association for

65

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.24963/ijcai.2019/658

References

Computational Linguistics: Human Language Technologies - Proceedings of the
Conference, vol. 1, 2019.

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G.
Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, Language models
are few-shot learners, 2020.

[11] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in Proceedings
- IEEE International Conference on Data Mining, ICDM, 2017. doi: 10.1109/
ICDM.2016.160.

[12] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An Online Log Parsing Ap-
proach with Fixed Depth Tree,” in Proceedings - 2017 IEEE 24th International
Conference on Web Services, ICWS 2017, 2017. doi: 10.1109/ICWS.2017.13.

[13] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen, H. Dong, X.
Qu, and L. Song, “Syslog processing for switch failure diagnosis and prediction
in datacenter networks,” in 2017 IEEE/ACM 25th International Symposium on
Quality of Service, IWQoS 2017, 2017. doi: 10.1109/IWQoS.2017.7969130.

[14] K. A. Nguyen, S. S. Im Walde, and N. T. Vu, “Integrating distributional lexical
contrast into word embeddings for antonym-synonym distinction,” in 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016 -
Short Papers, 2016. doi: 10.18653/v1/p16-2074.

[15] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé, “Deep unordered
composition rivals syntactic methods for text classification,” in ACL-IJCNLP
2015 - 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Processing, Proceedings of the
Conference, vol. 1, 2015. doi: 10.3115/v1/p15-1162.

[16] N. Bosch, “Multimodal Fusion for System-Wide Anomaly Detection through
Multiple Log Files,” BA thesis, University of Groningen, Faculty of Science
and Engineering, 2020. [Online]. Available: https://fse.studenttheses.ub.
rug.nl/22523/.

[17] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools and
Benchmarks for Automated Log Parsing,” in Proceedings - 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering
in Practice, ICSE-SEIP 2019, 2019. doi: 10.1109/ICSE-SEIP.2019.00021.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[19] J. Alammar, The illustrated word2vec, Accessed: 2021-02-03, 2019. [Online].
Available: https://jalammar.github.io/illustrated-word2vec/.

[20] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” CoRR,
vol. abs/1603.02754, 2016. arXiv: 1603 . 02754. [Online]. Available: http :
//arxiv.org/abs/1603.02754.

66

https://doi.org/10.1109/ICDM.2016.160
https://doi.org/10.1109/ICDM.2016.160
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/IWQoS.2017.7969130
https://doi.org/10.18653/v1/p16-2074
https://doi.org/10.3115/v1/p15-1162
https://fse.studenttheses.ub.rug.nl/22523/
https://fse.studenttheses.ub.rug.nl/22523/
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://jalammar.github.io/illustrated-word2vec/
https://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754

References

[21] C. Olah, “Understanding lstm networks,” Colah’s Blog, Aug. 27, 2015. [Online].
Available: http://colah.github.io/posts/2015- 08- Understanding-
LSTMs/ (visited on 04/26/2021).

[22] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Compu-
tation, vol. 9, no. 8, 1997, issn: 08997667. doi: 10.1162/neco.1997.9.8.1735.

[23] T. Ichiishi, “6 - cooperative behavior and fairness,” in Game Theory for
Economic Analysis, ser. Economic Theory, Econometrics, and Mathematical
Economics, T. Ichiishi, Ed., San Diego: Academic Press, 1983, pp. 117–149,
isbn: 978-0-12-370180-0. doi: https://doi.org/10.1016/B978- 0- 12-
370180-0.50011-1. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9780123701800500111.

[24] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized feature
attribution for tree ensembles,” CoRR, vol. abs/1802.03888, 2018.

[25] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, Portland, Oregon, USA: Association for Computational
Linguistics, Jun. 2011, pp. 142–150. [Online]. Available: http://www.aclweb.
org/anthology/P11-1015.

[26] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter, 2019.

67

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/B978-0-12-370180-0.50011-1
https://doi.org/https://doi.org/10.1016/B978-0-12-370180-0.50011-1
https://www.sciencedirect.com/science/article/pii/B9780123701800500111
https://www.sciencedirect.com/science/article/pii/B9780123701800500111
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

References

68

A
Appendix 1

A.1 Transformer Training History

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for Keras MultiTransformer model (pos_enc=False)
nr_units: training=2660, valid=665

logs: ['llog', 'bpmlog', 'uboot', 'ailog', 'hwlog'], waemb_dim=25
train
valid

Figure A.1: Training and validation loss for MultiTransformer without positional
encoding and WAEMB dimension 25

I

A. Appendix 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

0.65

0.70

0.75

0.80

0.85

0.90

Cr
os

sE
nt

ro
py

Lo
ss

Validation F1-score for Keras MultiTransformer model (pos_enc=False)
nr_units: training=2660, valid=665

logs: ['llog', 'bpmlog', 'uboot', 'ailog', 'hwlog'], waemb_dim=25
HW
NF
SW

Figure A.2: F1-score on validation data for MultiTransformer without positional
encoding and WAEMB dimension 25

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for Keras MultiTransformer model (pos_enc=True)
nr_units: training=2660, valid=665

logs: ['llog', 'bpmlog', 'uboot', 'ailog', 'hwlog'], waemb_dim=25
train
valid

Figure A.3: Training and validation loss for MultiTransformer with positional
encoding and WAEMB dimension 25

II

A. Appendix 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

0.4

0.5

0.6

0.7

0.8

0.9
Cr

os
sE

nt
ro

py
Lo

ss

Validation F1-score for Keras MultiTransformer model (pos_enc=True)
nr_units: training=2660, valid=665

logs: ['llog', 'bpmlog', 'uboot', 'ailog', 'hwlog'], waemb_dim=25
HW
NF
SW

Figure A.4: F1-score on validation data for MultiTransformer with positional
encoding and WAEMB dimension 25

0 2 4 6 8 10 12
epochs

0.2

0.3

0.4

0.5

0.6

0.7

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for Keras MultiTransformer model (pos_enc=False)
nr_units: training=2660, valid=665

logs: ['uboot', 'bpmlog', 'hwlog', 'llog', 'ailog'], waemb_dim=50
train
valid

Figure A.5: Training and validation loss for MultiTransformer without positional
encoding and WAEMB dimension 50

III

A. Appendix 1

0 2 4 6 8 10 12
epochs

0.65

0.70

0.75

0.80

0.85

0.90

Cr
os

sE
nt

ro
py

Lo
ss

Validation F1-score for Keras MultiTransformer model (pos_enc=False)
nr_units: training=2660, valid=665

logs: ['uboot', 'bpmlog', 'hwlog', 'llog', 'ailog'], waemb_dim=50
HW
NF
SW

Figure A.6: F1-score on validation data for MultiTransformer without positional
encoding and WAEMB dimension 50

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for Keras MultiTransformer model (pos_enc=True)
nr_units: training=2660, valid=665

logs: ['uboot', 'bpmlog', 'hwlog', 'llog', 'ailog'], waemb_dim=50
train
valid

Figure A.7: Training and validation loss for MultiTransformer with positional
encoding and WAEMB dimension 50

IV

A. Appendix 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

0.5

0.6

0.7

0.8

0.9
Cr

os
sE

nt
ro

py
Lo

ss

Validation F1-score for Keras MultiTransformer model (pos_enc=True)
nr_units: training=2660, valid=665

logs: ['uboot', 'bpmlog', 'hwlog', 'llog', 'ailog'], waemb_dim=50
HW
NF
SW

Figure A.8: F1-score on validation data for MultiTransformer with positional
encoding and WAEMB dimension 50

0 2 4 6 8 10 12 14
epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for Keras MultiTransformer model (pos_enc=True)
nr_units: training=2660, valid=665

logs: ['uboot', 'hwlog', 'bpmlog', 'ailog', 'llog'], waemb_dim=100
train
valid

Figure A.9: Training and validation loss for MultiTransformer with positional
encoding and WAEMB dimension 100

V

A. Appendix 1

0 2 4 6 8 10 12 14
epochs

0.5

0.6

0.7

0.8

0.9
Cr

os
sE

nt
ro

py
Lo

ss

Validation F1-score for Keras MultiTransformer model (pos_enc=True)
nr_units: training=2660, valid=665

logs: ['uboot', 'hwlog', 'bpmlog', 'ailog', 'llog'], waemb_dim=100
HW
NF
SW

Figure A.10: F1-score on validation data for MultiTransformer with positional
encoding and WAEMB dimension 100

A.2 LSTM Training History

0 5 10 15 20 25
epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for LSTM classifier (waemb_dim=50)
nr_units: training=2660.0, valid=665.0

train
valid

Figure A.11: Training and validation loss for LSTMmodel with WAEMB dimension
50

VI

A. Appendix 1

0 5 10 15 20 25
epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Cr
os

sE
nt

ro
py

Lo
ss

Validation F1-score for for LSTM classifier (waemb_dim=50)
nr_units: training=2660, valid=665

HW
NF
SW

Figure A.12: F1-score on validation data for LSTM model with WAEMB dimension
50

0 5 10 15 20 25 30 35
epochs

0.6

0.7

0.8

0.9

1.0

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for LSTM classifier (waemb_dim=100)
nr_units: training=2660.0, valid=665.0

train
valid

Figure A.13: Training and validation loss for LSTMmodel with WAEMB dimension
100

VII

A. Appendix 1

0 5 10 15 20 25 30 35
epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Cr

os
sE

nt
ro

py
Lo

ss

Validation F1-score for for LSTM classifier (waemb_dim=100)
nr_units: training=2660, valid=665

HW
NF
SW

Figure A.14: F1-score on validation data for LSTM model with WAEMB dimension
100

A.3 DistilBERT Training History

0 2 4 6 8 10 12 14
epochs

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

Training/Validation loss for DistilBERT classifier
nr_units: training=2585, valid=646.4000000000001

train
valid

Figure A.15: Training and validation loss for DistilBERT model (only llog)

VIII

A. Appendix 1

0 2 4 6 8 10 12 14
epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Cr

os
sE

nt
ro

py
Lo

ss

Validation F1-score for DistilBERT classifier
nr_units: training=2585, valid=646

HW
NF
SW

Figure A.16: F1-score on validation data for DistilBERT model (only llog)

IX

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Statement
	Ericsson Dataset
	Ericsson Model
	Scope and Delimitations

	Background
	Log Analysis
	Natural Language Processing
	Related work

	Theory
	Log Parsing
	Spell
	Drain

	NLP Techniques
	Bag-of-Words
	TFIDF
	N-Grams
	Word2Vec

	Classification Models
	Random Forest
	XGBoost
	LSTM
	Transformer

	Model Evaluation
	F1-score
	Shapley and SHAP values
	Cross-validation
	Bootstrapping

	Methods
	Data ingestion
	Data Structure
	Basic Regex Parsing
	Advanced Structured Parsing
	Tokenizing

	Feature Extraction
	Word token counts
	Event token counts
	Parameter aggregates
	Weighted Average Embedding

	Baseline Model
	Early fusion XGBoost model
	Late fusion XGBoost model
	Model Selection

	Experimental Implementations
	Transformer Model
	LSTM Model

	Evaluation Method
	Used Hardware and Software

	Results
	Baseline Models
	Early fusion XGBoost model
	Late fusion XGBoost model

	Experimental Models
	Transformer
	LSTM

	Comparison

	Discussion
	Anomaly Detection and Fault Classification
	NLP in Log Analysis
	Future Work

	Conclusion
	Bibliography
	References
	Appendix 1
	Transformer Training History
	LSTM Training History
	DistilBERT Training History

